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ABSTRACT 

 

Historically, in the security-defence environment, information is derived through a 

subjective analytical approach principally based on the experience and the skills of the analyst 

who visually interprets the image(s). The spatial and contextual way to proceed varies and 

depends on the objective of the study. Spatial, pattern, texture, and, in general, spectral 

information is most of the time improved by standard image processing technics (i.e., image 

enhancement) for increasing the visual distinction between features. Different 

collateral/ancillary data, spatially and temporally correlated with the imagery, made available 

through different sources, may complement the analytical process providing worthwhile 

information, essential in helping, confirming, etc. the interpretation course and its inferences. 

For target detection in remotely sensed images, targets can be referred to as man-made 

or natural object or an event or activity of interest. Detection of an object or activity, such as 

military vehicles or vehicle tracks, is common in both military and civilian applications. 

Hyperspectral target identification algorithms look at the spectrum of each pixel to find targets 

based on the spectral characteristics of the target's surface material. Targets of interest may not 

be clearly resolved depending on the sensor's spatial resolution, hence the first fundamental 

characteristic of the hyperspectral target detection problem is that a "target present" versus 

"target absent" decision must be made individually for each pixel of a hyperspectral image. 

In this project, the various target detection algorithms along with the dimensionality 

reduction methods are explored and presented with valid results and discussions. The work 

involves the use of multi-platform, multi-dimensional and multi-sensor datasets making this 

work an important example of the various target detection approaches in remote sensing. 
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CHAPTER 1    

INTRODUCTION 

 

1.1 MOTIVATION 

The target detection in remote sensing has been widely studied from many years 

and is of great interest in many applications. Vital applications such as mineral mapping 

(for example, exploration and of epithermal ores deposits or recognizing hydrothermally 

altered rocks) [1], agriculture applications (for example, use of spectral signatures of 

vegetation and detection of disease and nutrient deficiency allowing monitoring, tracking 

and controlling of crops health) [2], law enforcement (for example, application of 

thermography to detect several illegal activities) [3], strategic surveillance and military 

applications (for example, detection of military objects such as vehicles, weapons, land and 

sea mines, camouflaged objects using multiple information extracted from hyperspectral 

imagery) [4] etc. involves the use of target detection and remote sensing.   

Target detection algorithms are capable of detecting man-made targets in 

uncluttered natural background and have been fairly well established [5]. Many of these 

simply do not work with difficult targets such as camouflaged targets, occluded targets, 

dim targets without sufficient a priori information [6]. In case of camouflaged targets, 

detection based on spectral information often fails, hence height, shape and surface 

information may be needed in combination with the spectral information to support 

detection and identification of such targets [7]. 

Therefore, with different challenges in target detection and with development of  

large number of algorithms, the development of approaches for detection and identification 

of targets will continue to work on similar challenges.  

 

1.2  BACKGROUND TO REMOTE SENSING  

Remote sensing, also called earth observation, refers in a general sense to the 

instrumentation, techniques and methods used to observe, or sense, the surface of the earth, 

usually by the formation of an image in a position, stationary or mobile, at a certain distance 

remote from that surface. In remote sensing, electromagnetic radiation from an object is 

measured and converted into information about the object or processes connected to the item 
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(in the instance of earth observation, this object is the earth's surface). 

Electromagnetic radiation can be transmitted, absorbed, or reflected when it hits an 

object on the earth's surface. The object's attributes define the mutual magnitude of these 

processes. We can quantify the amount of reflected solar radiation as a function of wavelength 

in remote sensing, which is known as spectral reflectance. 

            Passive sensors don't have their own radiation source. They are only sensitive to natural 

radiation, such as reflected sunlight or energy generated by an earthly object. Active sensors 

have a built-in radiation source. Radar (radio detection and ranging) and lidar (light detection 

and ranging) are two examples (light detection and ranging). 

1.3 APPROACHES IN TARGET DETECTION 

Target detection algorithms based on spectral modelling can be categorized in two 

groups namely spectral matching and anomaly detection algorithms. Spectral matching 

algorithms are based on matching of every pixel spectrum with a priory available information. 

Examples of some spectral matching algorithms are Spectral Angle Mapper (SAM), Constraint 

Energy Maximization (CEM), Matched Filter (MF), Adaptive Cosine estimator (ACE). While 

the anomaly detection algorithms compare the pixel spectrum with the background spectrum 

and declared a target based on noticing certain abrupt spectral variations. Some examples of 

anomaly detection algorithms are Reed- Xialoi (RX) and UTM algorithms, etc.  

 

1.4  ISSUES IN TARGET DETECTION 

 Target detection is considered challenging due to following issues: 

i. Size of the target is relatively small with respect to the spatial resolution of the 

image which creates complexity in its detection. 

ii. Spectral variability, that refers to the variations in measured spectra of different 

samples of the same material. 

iii. Illumination variation often occurs in natural scenes which effects the spectral 

properties of the target. 

iv. A target is occluded under other object or vegetation. 

v. A target is camouflaged purposely. 

vi. High dimensionality resulting in high complexity and redundancy. 

 
 

1.5  RESEARCH GAPS 

The research gaps found in this study are: 
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i. Optical camouflage used for protection of military equipment confuse the optical 

detection and surveillance of enemy making it look like the background. Hence, 

conventional target detection methods, based on spectral separation of background and 

target, generally fails to detect a camouflaging target. 

ii. Identification in addition to the detection is the demand of the problem which may 

require spatial information of the target such as shape etc. Multi sensor data can solve 

the needed.  

iii. Some dimensionality reduction algorithms proposing to reduce the size of data  may 

not consider the importance of target in the band rejected. This results in losing 

important information. Thus, an approach that reduces redundancy but retains the target 

information may need to be further explored.  

iv. Target detection is used in social security management, marine vehicle traffic 

monitoring, etc. There are very outstanding application results in the fields of early 

warning and national defense security. For deep learning models like Convolutional 

Neural Networks, computer vision algorithms for marine target recognition may need 

to be explored. 
 

1.6  RESEACH OBJECTIVES 

The objective of this research are as follows: 

i. To detect camouflaged targets using different dimensionality reduction and target 

detection algorithms. 

ii. To identify camouflaged targets using Lidar data  

iii. To perform Comparative assessment of various spectral target detection algorithms 

after dimensionality reduction. 

iv. To detect target object in marine Optical and SAR satellite datasets using deep 

learning 

 

1.7  ORGANIZATION OF THESIS 

i. Chapter 1 introduces the motivation leading to the problem formulation for this 

study and the background to remote sensing and target detection approaches. 

Next the research gaps and research objectives has been listed. 

ii. Chapter 2 provides the introduction, experimental methods and implementation 

description for the camouflaged target detection problem in Hyperspectral 

dataset and the resultant detection maps for different algorithms and discussion 
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is presented in the chapter. 

iii. Chapter 3 introduces to the LiDAR processing after the HSI data has been 

explored. Hence, adding to the identification of the camouflaging target. 

iv. Chapter 4 introduces to the use of receiver operating characteristics curve in 

doing the comparative assessment of various target detection algorithms used. 

v. Chapter 5 is the application of deep learning technique in detecting marine ship 

target using the optical and SAR satellite datasets. 

vi. Chapter 6 provides the conclusion and the future scope for the various target 

detection approaches used in this project thesis. 
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CHAPTER 2 

DETECTION OF CAMOUFLAGED TARGETS 

 

2.1  INTRODUCTION 

  It is possible to extract information about the scene from the data after the pre-

processing algorithm is applied on the data. This chapter focuses on dimensionality reduction 

and target detection algorithms. Once again, hyperspectral target detection is the process of 

locating desired pixels in a scene based on the spectral characteristics of the target and pixel. 

In this chapter, several different algorithms are introduced and explained.  

 

2.2  EXPERIMENTAL DATA AND SOFTWARE 

This experiment focuses on detection of camouflaged targets by detecting the 

camouflaging material. This experiment particularly uses two subsets of the hyperspectral data 

acquired over RIT campus described in section 2.2.1. below. Figure 1(a) shows the full image 

of the RIT campus scene. 

The study area comprising of the campus of Rochester Institute of Technology (RIT), 

New York, USA. Datasets are captured in three different flight lines flown over the campus 

namely RIT_1, RIT_2 and RIT_3 comprising several buildings of different sizes, roads, trees, 

parking areas, etc., which usually describes as an urban environment. In addition, several 

artificial targets have been deployed at various locations within the campus. 

The dataset has been collected as part of a data collection campaign titled as SpecTIR 

Hyperspectral Airborne Rochester Experiment (SHARE), conducted by RIT in conjunction 

with SpecTIR, LLC, during July 26-29, 2010. Related reference data is available in the 

campaign dataset and includes detailed information about each target deployed. It includes 

contextual images, field and laboratory spectra, G.P.S. data and ortho images as a part od 

ground data.  

The data consists of 360 bands with 5 nm spectral resolution and 1 m spatial resolution. 

For each flight line, Internal Geometry Map (IGM) and Geographic Lookup Table (GLT) have 

also been provided for creating georeferenced hyperspectral image. 
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(a) 

 

(b) 

 

Fig 1 (a) RIT campus showing all flight lines of the SHARE campaign 2010. (b) Flight line_3 used in 

this experiment. 

 

 

2.2.1.  HSI SUBSETS 

The airborne Hyperspectral data was captured using ProSpecTIR-VS2 hyperspectral 

imaging sensor provided by SpecTIR, LLC, to collect data in spectral range from Visible to 

SWIR (short wave infrared) i.e., 390 to 2450 nm. This work uses RIT_3 flight line as shown 

in Figure 1(b). 

 

Two spatial subsets covering the desired targets have been extracted from the original 

image. The first subset consists of five camouflaging materials, namely green camouflaging 
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net (GREEN CAMO), tan camouflaging net (TAN CAMO) and three instances of green 

camouflaging tarp (GREEN TARP1, GREEN TARP2, GREEN TARP3). The second subset 

contains a camouflaged target which is a set of three chairs (CAM_CHAIR) places under a 

camouflaging net (CAMO1). Refer figure 2 for the subset 1 image.  

 

 

Fig 2. HSI subset 1 (QUAC atmospherically corrected). 

 

2.2.2  DESCRIPTION OF TARGETS 

Several artificial targets have been placed in study area at multiple locations. The details 

of each of the target and its reference data have been described in this section. Each target 

considered has been assigned a unique ID. Refer Table 1 summarizing details of the targets 

considered in this experiment. 

Table 1: Target considered 

Serial 

Number 

Target Name Number of 

Instances and 

ID 

Target Characteristics 

1. Green Camouflaging Net 1  

(GREEN 

CAMO) 

(i) A camouflaging material 

with light and dark colored 

woodland camouflaged 

pattern placed on asphalt. 

(ii) Full pixel 

(iii) Present in HSI data 

(iv) Location 43°5′17.64″N, 

77°40′40.80″ W 

2. Tan Camouflaging Net 1 

(TAN CAMO) 

(i) A desert tan green 

colored camouflaging 
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material placed on asphalt. 

(ii) Full pixel 

(iii) Present in HSI data 

(iv) Location 43°5′17.61″N, 

77°40′41.39″ W 

3. Green Camouflaging Tarp 3 (GREEN 

TARP1, 

GREEN 

TARP2, 

GREEN 

TARP3) 

 

(i) A green tarpaulin sheet 

with camouflaging pattern 

placed on asphalt 

(ii) Full pixel 

(iii) Present in HSI data 

(iv) Location of GREEN 

TARP1 43°5′17.62″N, 

77°40′42.23″ W 

 

4. Camouflaging Chairs 1 

(CAM_CHAIR, 

CAMO1) 

(i) Three chairs covered 

with camouflaging material 

Placed on grass  

(ii) Full pixel 

(iii) Present in HSI data 

(iv) Location 43°5′9.5″N, 

77°40′38.2″ W 

 

 

1. Green Camouflaging Net  

A thin camouflaging material with light and dark green colored woodland camouflaged 

pattern mounted on black mesh backing material has been used. It has been placed on asphalt. 

The field photograph of this target is shown in Figure 3. 

 

Fig 3. Green Camo Net target on asphalt road 
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2. Tan Camouflaging Net  

    A desert tan green colored camouflaging material mounted on blackmesh backing material 

placed on asphalt has been used. The field photograph of this target is shown in Figure 4. 

 

 

Fig 4. Tan camo net target on asphalt 

3. Green Camouflaging Tarps  

A green camouflaging tarpaulin sheet with camouflaging pattern on one side and plain 

green on other side has been used. Three instances of different size has been placed on asphalt. 

The field photograph of this target is shown in Figure 5. 

 

 

Fig 5. Green camo tarps targets on asphalt  
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4. Camouflaging Chairs  

Set of three tall purple colored chairs (CAM_CHAIR) made up  of plastic have been 

placed at known locations. These chairs have been covered with camouflaging net (CAMO1). 

field photograph of this target is shown in Figure 6. 

 

 

Fig 6. A target having set of three chairs covered with CAMO1 net  

 

2.2.3.  SOFTWARE 

For implementation of approached developed for detection of targets, ENVI software 

version 5.3 developed by L3HARRIS Geospatial has been used for visualization, processing 

and analyzing remote sensing data. This software is used to carry out the following work: 

i. Pre-processing of hyperspectral data such as georeferencing, atmospheric correction, 

spectral and spatial subsetting etc. 

ii. Viewing HSI image data. 

iii. Target detection etc. 

 

 

2.3. METHODOLOGY 

          The flow of methodology has been given below in Figure 7. The detailed terms of 

methodology used are described in further sections. 
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Fig 7: Flow of methodology used. 

 

2.3.1.    GEOREFERENCING 

           The original image has been georeferenced using the geographic lookup table (GLT) 

provided along with the data.           

 

2.3.2.     ATMOSPHERIC CORRECTION 

           QUick Atmospheric Correction (QUAC) method is used in this experiment. QUAC is 

a multispectral and hyperspectral atmospheric correction approach that uses the visible and 

near-infrared through shortwave infrared (VNIR-SWIR) wavelength range. If the following 

Hyperspectral Image

Georeferencing

Atmospheric correction

Spatial and spectral subsetting

Dimensionality reduction

Target detection algorithm ACE, SAM and MF

Computation of 
Statistic 
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requirements are met, QUAC can get reasonably accurate reflectance spectra: 

i.  A scene contains at least ten different materials. 

ii. There are enough dark pixels in an image to allow for a good baseline spectrum 

estimation. 

2.3.3.     DIMENSIONALITY REDUCTION 

             The goal of dimensionality reduction is to reduce the size of a data set while 

maintaining as much of the information content as possible. Large image files can contain low 

signal to noise ratio (SNR) bands as well as redundant information due to spectral similarities. 

Dimensionality reduction algorithms eliminate these redundancies in data based on a variety 

of different factors. The three algorithms described here utilize different aspects of eigenvector 

and eigenvalue calculations to represent the data in rotated data spaces. 

 

2.3.3.1.    PCA 

                 The Principle Component Analysis (PCA) method of dimensionality reduction 

attempts to decorrelate the data and maximize the data content in fewer dimensions [Schott 97, 

Johnson 02]. This is accomplished by finding a different axis to project the data onto that will 

maximize the variance. The pixel vector in principal component analysis is illustrated in Figure 

2.7.  

      An image pixel vector can be expressed as: 

                  

 𝐱𝑖 = [𝑥1, 𝑥2, …. 𝑥𝑁] 𝑖 T (1) 

where, 

x1, x2, .....zN   = Pixel values of Hyperspectral image at corresponding pixel location. 

N = The number of the hyperspectral bands equivalent to dimension of the pixel vector. 

      

        The mean vector for all image vectors is calculated as: 

 

 

 

(2) 

 

          The covariance matrix of x is defined as: 

 

 Cov(x) = E{(x-E(x))(x-E(x)}T (3) 

where, 

E = expectation operator; 
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T = transpose operation; and 

Cov = notation for covariance matrix. 

      The PCA is based on the eigenvalue decomposition of the covariance matrix, which takes  

the following form: 

 Cx = MDMT (4) 

 

Where D = diag(λ1, λ2...λN) is the diagonal matrix composed of the eigenvalues λ1, λ2...λN of 

the covariance matrix CX, and M is the orthonormal matrix composed of the corresponding N  

dimension eigenvectors.  

 

       The linear transformation defined by: 

 

 yi = MTxi (I = 1,2,…, K) (5) 

 

is the PCA pixel vector, and all these pixel vectors form the PCA (transformed) bands of the 

original images. the first K PCA bands contain majority of information residing in the original 

hyperspectral images. These can be used for more effective analyses since the number of bands 

and the amount of image noise involved are reduced. 

 

 

Fig 8. Pixel vector in principal component analysis [adapted from Gonzales and Woods 

(1993)]. 

 

2.3.3.2.    ICA 

                The goal of ICA is to find a linear representation of non-Gaussian data so that the 

components are statistically independent or as independent as possible. In the context of target 

detection, various bands of hyperspectral image can be considered as linear mixtures composed 

of n independent components. These components may consist of both the desired targets and 

redundant information in the form of undesired targets and noise. Mathematically, any given 
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mixture says the jth mixture in this case can be represented as: 

 𝑥𝑗 = 𝑎𝑗1𝑠1 + 𝑎𝑗2𝑠2… . 𝑎𝑗𝐾𝑠𝐾 (6) 

           Rewriting eq. (6) in matrix notation as: 

 𝑥 = 𝐴𝑠 (7) 

 

           Eq. (7) is also known as the ICA model. Denoting the columns of A, the ICA model 

can be rewritten as Aj  

 
𝑥 =∑  

𝑛

𝑖=1

𝑎𝑖𝑠𝑖 
(8) 

 

            The ICA aims to find components which are statistically independent meaning thereby 

that the resulting components will have non-Gaussian distribution. 

 

2.4.    TARGET DETECTION ALGORITHMS 

           In this experiment, the target detection is performed by implementing three spectral 

matching based target detection algorithms namely Adaptive Coherence Estimator (ACE), 

Matched Filter (MF), Spectral Angle Mapper (SAM). 

 

2.4.1.    ADAPTIVE COHERENCE ESTIMATOR 

             The Adaptive Coherence Estimator (ACE) can be derived from the GLRT through 

some assumptions. 

 
Σ̂𝑏 =

1

𝑁
Σ𝑏 

(9) 

Where where Σ b represents the covariance matrix of the background. N represents the number of 

pixels in the set of sample data. This in turn alters the GLRT equation as 

 
𝑇̂𝐺𝐿𝑅𝑇(𝑥) =

(𝑑𝑇Σ̂𝑏
−1𝑥)

2

(𝑑𝑇Σ̂𝑏
−1𝑑) (1 +

1

𝑁
𝑥𝑇Σ̂𝑏

−1𝑥)
 

(10) 

 

Since N is small, GLRT is the ACE algorithm and is written as: 
 

𝑇𝐴𝐶𝐸(𝑥) =
(𝑑𝑇Σ̂𝑏

−1𝑥)
2

(𝑑𝑇Σ̂𝑏
−1𝑑)(𝑥𝑇Σ̂𝑏

−1𝑥)
 

(11) 
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2.4.2.    MATCHED FILTER 

             Matched Filter algorithm finds the abundance of targets using a partial unmixing 

algorithm. This technique maximizes the response of the known spectra and suppresses the 

response of the composite unknown background, therefore matching the known signature. It 

provides a rapid means of detecting specific materials based on matches to target spectra and 

does not require knowledge of all the endmembers within an image scene. 

 

2.4.3.    SPECTRAL ANGLE MAPPER 

               The Spectral Angle Mapper (SAM), developed by Boardman, is a simple detection 

algorithm that computes the angle between two vectors. According to the SAM algorithm, pixel 

A is more target like than pixel B due to the smaller angle between it and the target vector. The 

SAM algorithm is expressed in vector form as 

 
𝑇𝑆𝐴𝑀(𝑥) =

𝑑𝑇𝑥

(𝑑𝑇𝑑)1/2(𝑥𝑇𝑥)1/2
 

(12) 

 

               where d represents the target spectra and x represents the pixel of interest. This 

equation will have values between 0 and 1 for a reflectance data set. Similar pixels will have a 

value near 1 which corresponds to a small angle between the vectors in question. SAM is a 

simple and fast detection technique with low computing costs. It is only affected by the object's 

spectral profile and is unaffected by magnitude changes between the target and pixel. 

 

2.5.    IMPLEMENTATION 

         All the implementations for the above discussed algorithms were done using ENVI 5.3 

as summarized below: 

 

i. For each target, reference spectra have been drawn from the image itself and is referred 

to as in scene spectra. 

ii. PCA and ICA has been applied on Subset 1 and Subset 2. For both subsets, first 100 

components have been selected using 360 bands in original image. 

iii. Detection using spectral matching algorithm namely ACE, MF and SAM has been 

performed  

iv. The results obtained has been thresholded to generate binary images depicting the 

presence or absence of target. 
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2.6.    RESULTS AND DISCUSSIONS 

         ICA yielded 360 components from which 100 components were retained. All the 100 

components were used to detect all 3 camouflaged targets using the above three algorithms, 

ACE, SAM and MF. The results obtained after applying is shown below. 

Table 2: Detection of green camo tarps 

ALGORITH

M 

ORIGINAL SUBSET PCA ICA 

 MF  

   

ACE 

 

   

SAM  

   

 

 

Table 3: Detection of tan camo net targets 

ALGORITH

M 

ORIGINAL SUBSET PCA ICA 

 MF  
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ACE 

 

   

SAM  

   

 

Table 4: Detection of green camo net targets 

ALGORITH

M 

ORIGINAL SUBSET PCA ICA 

 MF  

   

ACE 

 

   

SAM  
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Table 5: Statistics for detection of camouflaged targets material in case of tan 

camo after PCA on subset 

Algorithm threshold Target number of 

pixels 

Detected number 

pixels  

MF 0.70 14 13 

ACE 0.545 10 8 

SAM 0.216 15 9 

 

Table 6: Statistics for detection of camouflaged targets material in case of green 

tarp after PCA 

Algorithm threshold Target number of 

pixels 

Detected number 

pixels  

MF 0.430 15 14 

ACE 0.746 6 2 

SAM 0.233 30 18 

 

 

Table 7: Statistics for detection of camouflaged targets material in case of green 

camo net after PCA 

Algorithm threshold Target number of 

pixels 

Detected number 

pixels  

MF 0.800 24 20 

ACE 0.686 2 2 

SAM 0.250 33 32 

 

 

 

Table 8: Statistics for detection of camouflaged targets material in case of green 

camo net after ICA 

Algorithm threshold Target number of 

pixels 

Detected number 

pixels  

MF 0.908 19 18 
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ACE 0.554 3 3 

SAM 0.850 5 5 

 

Table 9: Statistics for detection of camouflaged targets material in case of tan 

camo net after ICA 

Algorithm threshold Target number of 

pixels 

Detected number 

pixels  

MF 0.783 11 10 

ACE 0.560 8 8 

SAM 0.850 11 11 

 

Table 10: Statistics for detection of camouflaged targets material in case of green 

camo tarp after ICA 

Algorithm threshold Target number of 

pixels 

Detected number 

pixels  

MF 0.686 8 8 

ACE 0.650 6 2 

SAM 0.754 7 7 

 

Now, the following can be observed from the figures and Tables: 

• Table 2 to Table 4 shows the targets in original image subset, PCA applied subset and 

the ICA applied subset contains camouflaging material as encircled. These figures are 

results of the three detection algorithms i.e., MF, ACE and SAM. For the thresholds, it 

was observed that in case of SAM, as the threshold is lower, higher probability of 

finding the targets.  

• Based on the outputs figures in these Tables, and statistics in the Table 5 to Table 10, 

the following observations can be made: 

i. Table 5 shows that MF resulted in 13 pixels out of 14 were correctly detected. 

While in ACE and SAM the number of pixels correctly detected was low in case 

of PCA. 

ii. Table 6 and 7 shows MF has resulted sufficient number of correct pixels as 

compared to ACE and SAM after the thresholds were applied. 

iii. Table 8 to 10 improves the correct detection results in case of ICA. 
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From the above observations, following may be concluded  

• MF has performed better in case of all the camouflaging targets for PCA and SAM has 

performed worst. 

• MF performance result giving target pixels are much better after ICA was implemented 

for the original subset. 

 

2.7  SUMMARY 

Camouflaging is the process of merging the target with background. This is done for 

reducing or delaying detection of the target. This experiment used three target different target 

detection algorithms before and after 2 different dimensionality reduction approaches. Results 

demonstrated that the detection of camouflaging material can be performed using PCA and 

ICA approach followed by detection algorithms. Matched Filter algorithm works well. 

However, identification of targets is also important for which LiDAR data after the HSI 

processing in this chapter, is used in the next chapter.  
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CHAPTER 3  

IDENTIFICATION OF CAMOUFLAGED TARGET USING 

LIDAR DATA 

 

3.1.   INTRODUCTION 

 Besides HSI data, various other types of remote sensing data such as multispectral, radar 

and Lidar data, etc, have also been used in camouflaged breaking. Literature suggests that 

specialized LiDAR sensing systems may be designed for military purposes such as target 

positioned under trees, camouflaged target etc. Titterton in 2015 performed detection of 

artificial targets using laser scanning system. Combined usage of data from different sensors 

HSI and Lidar for detection of camouflaged targets is explored in this chapter.  

3.2.   EXPERIMENTAL DATA AND SOFTWARE 

         The hyperspectral data used in earlier chapter detected the targets, while in this chapter 

LiDAR data has been used for detection and identification of underlying camouflaged target. 

3.2.1.    SUBSET IMAGE 

            Here, in this experiment the second subset, Subset 2 of the HSI image is used and shown 

below. 

 

(a) 
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(b) 

Fig 8. (a) full image (b) subset of full image containing target.  

3.2.2.    DESCRIPTION OF TARGET 

Set of three tall purple colored chairs (CAM_CHAIR) made up  of plastic have been 

placed at known locations. These chairs have been covered with camouflaging net (CAMO1). 

field photograph of this target is shown in Figure 9. 

 

 

Fig 9. A target having set of three chairs covered with CAMO1 net  

3.2.3.    SOFTWARE 

 The software ENVI 5.3 and ENVI LIDAR 5.3 developed by L3HARRIS Geospatial is 

used in this experiment. 
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3.3   METHODOLOGY 

 The flow of methodology is shown below: 

 

Fig 10. Flow of methodology for target identification using LIDAR data. 

 

 

3.4  IMPLEMENTATION 

Detection and identification of camouflaged target (set of three chairs) has been 

performed using LiDAR point clouds. The steps of implementation are described below:  

i. The HSI subset 2 is used to conduct the target detection, the pixel location is 

used as seed location for LiDAR interpretation. 

ii. Automatic point cloud classification is done on the basis of height. 

iii. A 3D LiDAR view is created for the data. 

iv. Pixel location of the target from HSI detection is pointed on the 3D LiDAR 

view. 

v. A digital surface model is created to confirm the target surface property and 

finally identify the set of three chair underlying the camouflaged net target.  

vi. Reference data such as contextual images provided in dataset at the site of target 

is use to confirm the presence of target in the image data of the RIT campus 

area. 
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3.5.  RESULTS AND DISCUSSIONS 

 

          Results of LiDAR data processing:  

The 3D view generated and the DSM created for the target is shown below. The DSM shows 

3 peaks of valid chair height of the target is visible in the figure. The location of the target is 

matched with the HSI detection results as well as the reference contextual images. 

 

(a) 

 

 

(b) 

 

TARGET 
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(c) 

 

 

(d) 

Figure 11. (a) LiDAR 3D viewer for the scene. (b) Subset scene near the target. 

(c) and (d) DSM generated for the scene and the target respectively.   

 

    From the above figures, the following observations and conclusion can be made. 

 

• The Digital Surface Model shows in figure (d) the three peaks indicating the 

presence of three chairs target that were covered with the camouflaged net. 

• The contextual images as reference confirmed that the target location associated 

with the its surroundings   

•  Hence, it can be concluded that the LiDAR point cloud, DSMs and the reference 

data can aid in identification of the target to be detected. 
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3.6  SUMMARY 

     The results demonstrated that the detection on camouflaging material can be 

performed using various Target detection algorithm and the identification part can be 

performed using the LiDAR data with the combination of reference data. Furthermore, 

the results obtained by processing LiDAR point demonstrate the use of DSM of the 

potential target at the seed locations generated using the HSI processing.  
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CHAPTER 4 

COMPARATIVE ASSESSMENT OF SPECTRAL TARGET 

DETECTION ALGORITHMS 

 

4.1  INTRODUCTION 

 
A receiver operator characteristic (ROC) curve is a standard approach for assessing 

detection results. The false alarm rate (FAR) vs the detection rate (DR) plot for a particular 

target is known as an ROC curve. A log FAR axis can be used to expand this figure and 

highlight differences at low FAR values. When employing log ROC curves, a minimum FAR 

value must be set because the minimum cannot be zero. These curves can be used for 

performance analysis on their own, or metrics can be calculated from them. The DR at a certain 

FAR is one such measure that may be taken from a ROC curve. This threshold metric reduces 

the ROC curve to a single point on the curve specified by the user. This is typically a low FAR 

on the order of 10−3 or 10−4. 

 

4.2  ROC 

         Four outcomes of the binary hypothesis test are possible.  

i. TT: True target labeled as a target (correct detection).  

ii. TB: True target labeled as background (missed detection). 

iii. BT: True background labeled as target (false alarm).  

iv. BB: True background labeled as background (correct non detection). 

        The ROC curve describes detection performance with PD plotted as a function of PFA. 

When applied to a known empirical situation (with ground truth), these probabilities are 

estimated by the maximum-likelihood estimates. 

 

 
𝑃̂D =

 Number of observed true detections (𝑁TT)

 Number of possible targets (𝑁TT + 𝑁TB)
 

(13) 

 

 
𝑃̂FA =

 Number of observed false detections (𝑁BT)

 Number of background pixels (𝑁BT + 𝑁BB)
 

(14) 

       The ROC curve is created by shifting the threshold across the test statistic's range, with 
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points on the curve calculated by counting the number of true and false detections at each 

threshold and computing (13) and (14) at each threshold. When the test statistic for the target 

and background samples overlaps, increasing the number of true detections will inevitably 

result in an increase in the number of false alarms. This tradeoff is represented by the ROC 

curve. 

       The genuine positive rate (Sensitivity) is presented as a function of the false positive rate 

(100-Specificity) at various cut-off points in a Receiver Operating Characteristic (ROC) curve. 

A sensitivity/specificity pair corresponding to a specific decision threshold is represented by 

each point on the ROC curve. The ROC curve of a test with perfect discrimination (no overlap 

between the two distributions) passes through the upper left corner (100 percent sensitivity, 

100 percent specificity). As a result, the higher the overall accuracy of the test, the closer the 

ROC curve is to the upper left corner. 

 

4.3 DATA AND SOFTWARE 

This chapter uses the data of the worked upon in chapter 2 and presents the valid ROC 

curve analysis for the various algorithm used in the chapter 1, i.e., MF, ACE and SAM 

preferably for the tan camouflaged target. 

All the implementations are performed using the ENVI version 5.3 and the MATLAB 

r2021a software.   

 

4.4  METHODOLOGY 

The methods are described in below steps:  

i. The spectra from the image for the tan camouflage target is saved with the 

header file using ENVI. 

ii. The atmospherically corrected subset 1 image is input in MATLAB. The 

implementation in MATLAB is depended on the image processing toolbox and 

Hyperspectral image processing toolbox of the MATLAB version. 

iii. The code, refer appendix section, is ran for PCA and ICA pre-processing of the 

subset image and for further applying MF, ACE and SAM on the same subset 

separately for PCA and ICA results and ROC curves for each are generated. 

 

4.5.   IMPLEMENTATION 

A source code in the appendix section is attached at last of this thesis that can be referred 

for the implementation part of this chapter. The code is an implementation that uses MATLAB 

programming and Image Processing Toolbox add on. The purpose of the implementation is to 

generate ROC curves for the mentioned target detection algorithm in the methodology. 
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4.6. RESULTS AND DISCUSSIONS 

           The spectra extracted from the image subset is saved and then imported in MATLAB. 

The visualization of the spectra for tan camouflaging net is shown below. 

 

 

Fig 12. Spectral signature of the tan camouflaged net target. 

 

 

       Next the various resultant ROC curves after the dimensionality reduction (PCA and ICA) 

and the target detection algorithm (MF, SAM and ACE) are shown next. 

 

4.6.1 ICA based Target detection ROC curves 

 

Fig. 13. ROC curve results of ICA based ACE algorithm 
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Fig. 14. ROC curve results of ICA based SAM algorithm 

 

 

Fig. 15. ROC curve results of ICA based MF algorithm 
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4.6.2. PCA based Target Detection ROC curves 

 

Fig. 16. ROC curve results of ICA based ACE algorithm 

 

 

 

Fig. 17. ROC curve for SAM detection 
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Fig. 18. ROC curve results of PCA based MF detection 

 

Following is observed from the ROC curves: 

•    From the above discussions about the ROC curve analysis, it can be seen in the results 

that the ICA based Matched Filter (MF) algorithm has performed best in the detection 

of the camouflaged target.  

•    Secondly, the ICA based ACE algorithm has shown second best algorithm in detection 

of camouflaged target. While the PCA and the ICA based SAM (spectral angle mapper) 

algorithm has performed badly in detection of the camouflaged target in the experiment.  

 

4.7. SUMMARY 

          This experiment focuses on comparing the performance of target detection algorithms 

on the basis and inclusion of two dimensionality reduction algorithm with the RIT SHARE 

2010 hyperspectral dataset. From the results it can be seen that the ICA based ACE and MF 

algorithms has performed well as compared to the PCA based ACE and MF results of ROCs.  
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CHAPTER 5 

TARGET OBJECT DETECTION IN OPTICAL AND SAR 

DATASETS USING DEEP LEARNING METHODS  

 

5.1 INTRODUCTION 

Computer vision technology has been integrated into all aspects of life in the continuous 

development of today’s society. Target detection is a very basic but very important task in 

computer vision technology. Target detection is used in social security management, traffic 

vehicle monitoring, environmental pollution detection, and forest disasters. There are very 

outstanding application results in the fields of early warning and national defense security. The 

task of target detection mainly includes the recognition and location of single or multiple 

targets of interest in digital images. Target detection algorithms have been studied for many 

years. In the 1990s, many effective traditional target detection algorithms appeared. They 

mainly used traditional feature extraction algorithms to extract features and then combined with 

template matching algorithms or classifiers for target recognition. However, traditional 

algorithms have encountered a bottleneck in their development due to the lack of strong 

semantic information and complex calculations. In 2014, Ross Girshick proposed a 

convolutional network-based target detection model RCNN with high detection accuracy and 

strong specific robustness and generalization ability, making people pay more attention to the 

use of convolutional neural networks to extract high-level semantic information of images and 

many excellent detection models of convolutional neural networks have been proposed. 

5.2.     DATASETS AND SOFTWARE 

       Image chips from Planet satellite imagery collected over the San Francisco Bay and 

San Pedro Bay areas of California make up dataset 1. It contains 4000 80x80 RGB photos with 

a classification of "ship" or "no-ship." PlanetScope full-frame visual scene products, 

orthorectified to a 3 m pixel scale, were used to create image chips. 

Shipsnet.json, a JSON-formatted text file, is also included with the dataset. Data, label, 

scene ids, and location lists are all included in the loaded object. 
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i.  “label”: Valued 1 or 0, representing the "ship" class and "no-ship" class, respectively. 

ii. “longitude_latitude”: The longitude and latitude coordinates of the image center point, 

with values separated by a single underscore.  

        The dataset 2 which was obtained from IEEE Dataport, is “A SAR SHIP DATASET FOR 

DETECTION, DISCRIMINATION AND ANALYSIS”. The dataset contains 43 Sentinel-1 

Extended Wide Swath images and three RADARSAT-2 ScanSAR Narrow images from 

October 6, 2014, to July 22, 2015. Using multiple polarizations and three different resolutions, 

these photos cover a substantial portion of the South African Exclusive Economic Zone. 

Synthetic Aperture Radar is a surveillance system that is particularly well suited to marine 

surveillance. Large swath widths, time-independent observations, and weather resistance can 

be particularly beneficial for detecting ships that are generally unseen to conventional means 

of monitoring. The entire generation process from the initial compressed data to the geo - coded 

images is described in detail, as well as the dataset organizational structure tailored to each 

phase of the ship detection process, ship referencing and attribute extraction practices, 

additional Automatic Identification System (AIS) transponder information and matching, and 

ship reference and Automatic Identification System matched ship attribute analysis. 

TABLE 11: Dataset information per image sensor and polarization. 

  

 

5.2.1.   DESCRIPTION OF TARGETS 

Class Labels of Dataset 1: 

        There are 1000 photos in the "ship" class. Images in this category are near-centered on a 

single ship's body. There are ships of various sizes, orientations, and atmospheric collection 

conditions. Below are some examples of photographs from this lesson. 
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Fig 19. Ship class image patches of the optical satellite dataset. 

    There are 3000 photos in the "no-ship" class. A third of them are random samples of various 

landcover features, such as water, flora, bare dirt, buildings, and so on, that do not include any 

part of a ship. The third category is "partial ships," which contain only a fraction of a ship but 

not enough to match the "ship" class's full definition. 

Fig 20. No- ship class image patches of the optical satellite dataset.  

Dataset 2:  

    A ship is defined as any item that is sufficiently brighter than its surrounding ocean 

backscatter in SAR intensity imagery covering the ocean. A ship was presumed to be an area 

of ocean with significantly higher backscatter than its neighbours and is at least 2 pixels in 

length for the sake of simplicity and due to the resolution of the SAR imagery for this dataset. 

Ships with dimensions less than these are outside the scope of this dataset and would be better 

analysed with higher resolution SAR imagery. As a result, single pixels with strong backscatter 

due to speckle noise are ignored by this definition. 

    There are four images associated with each ship in the dataset: a "ship patch," a "reference 

patch," a "ship sub-image," and a "reference sub-image." Patches are big pictures centred on 

the ship that cover a large region of pixel (101 x 101). Sub-images are smaller images (21 x 

21) with little to no information 5 other than the ships in the image's centre. A reference image 

is a binary image that shows "true" for pixels related with the ship in the centre and "false" for 
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all other pixels. The sizes of the reference photos were selected to match the SAR ship patches 

and sub-images (101 x 101 and 21 x 21 respectively). 

        The Automatic Identification System (AIS) is a transponder system that is installed aboard 

ships and sends their positions at regular intervals. Ship tracks can be formed by tracking these 

places over time. AIS messages are received in one of two ways: by terrestrial AIS receivers 

on the coast or inland satellite-based receivers. Coastal-based AIS receivers have a range of 

around 74 kilometres from the coast and receive messages in near real time, but satellite-based 

AIS communications are received every 6-12 hours and have a near-global range. The SAR 

dataset includes roughly 220 million AIS signals obtained from the 6th of October 2014 to the 

22nd of July 2015, and it covers the full of South Africa's EEZ. 

 

 

Fig. 21. Nine sub-images from the SAR dataset 

 

5.2.2.   SOFTWARE 

     All the programming regarding this experiment were performed on Google Colab. 

Colaboratory, or "Colab" for short, allows one to write and execute Python in browser. 

 

5.3.   METHODOLOGY 

       Convolutional neural network target detection also has certain similarities with traditional 

detection, which can be regarded as feature extraction and use of features to identify targets. 

Both backbone feature extraction network and "detection head".  
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           Convolutional neural networks use convolutional networks to extract high-level 

semantic features of images, which are generally the backbone of the network, and then process 

the feature maps, such as connecting a fully connected network and softmax to form a 

classification head to complete the classification task, or use a small volume The product core 

is processed into feature dimensions and a position loss function is used to form target 

positioning.   

         The network judges the error through the loss function and updates the network weight 

parameters by the reverse gradient propagation of the network, thereby continuously reducing 

the value of the loss function to improve the detection accuracy. The detection network 

calculates multiple times through a large amount of training data and can learn a set of optimal 

weight values from the set of data to predict the detection target.  

       The model model is based on four Conv2D layers: an input layer with a 2x2 MaxPool2D 

pooling layer, two dense layers of 64 and 128 neurons each with a ReLU activation function, 

and a final layer with two neurons and the softmax activation function for producing final class 

predictions. 

5.4.   IMPLEMENTATION 

For this Section, code can be referred from the appendix attached at the end of the 

thesis.  

5.5. RESULTS AND DISCUSSIONS 

  The following results were obtained as a result of the CNN model used for Dataset 1 and Dataset 2.  

 

(a) 
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(b) 

 

(c) 
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(d) 

Fig 22. The CNN results of optical satellite dataset in detection of ship class. (a) visualization of the ship and 

non-ship class labels. (b) Confusion Matrix (c) Model summary (d) Detection report.  

 

 

(a) 

 

 

(b) 

Fig 23.CNN Detection results for SAR satellite dataset. (a) Visualization of the ship and non-ship 

class. (b) Confusion Matrix.   
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5.6. SUMMARY 
           

            Synthetic Aperture Radar is a surveillance system that is particularly well suited to 

marine surveillance. Large swath widths, time-independent observations, and weather 

resistance can be particularly beneficial for detecting ships that are generally unseen to 

conventional means of monitoring. The accuracy of the CNN model used in this experiment 

was obtained as 98% accurate for the optical satellite dataset. 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

  

6.1  CONCLUSION 

An important component of Earth Observation in supporting the primary aims of the 

space and security and defence domain is the provision of image and geospatial intelligence 

products and services resulting from the exploitation of remotely sensed data acquired by 

sensors mounted on spaceborne assets. The reflections or emissions measured by the different 

types of sensors are depicted in images that need to be converted into meaningful information. 

For target detection in remotely sensed images, targets can be referred to as man-made or 

natural object or an event or activity of interest. Many applications of military and civilian 

applications involve the detection of an object or activity such as military vehicles or vehicles 

track. Hyperspectral target identification algorithms look at the spectrum of each pixel to find 

targets based on the spectral characteristics of the target's surface material. Combination of 

Hyperspectral data and LiDAR data can be found extremely useful in detection and also 

identification of the target such as camouflaged target used in this study. 

 Artificial Intelligence (AI) methods are progressively demonstrating the potential to get 

information out faster with more thorough and complete analysis. In recent years, neural 

network applications increasingly demonstrated better capability to automatically discover 

relevant contextual features in remotely sensed images. Data volume and computational 

capacity increased exponentially, boosting precisely the application of neural network 

computing to satellite image. Combining satellite radar imagery with Automatic Identification 

System (AIS), coastal radars, Vessel Monitoring System (VMS), and any available intelligence 

data provide useful information to build a database behavior concerning the vessel tracks in 

specific area. Any deviation from recognized track patterns might be considered as an anomaly 

to be further investigated. A thorough exploitation of SAR imagery strengths would enlarge 

the use of SAR imagery alone and/or in combined use with electro-optical images, thus taking 

full advantage of its unique 24/7 and all-weather characteristics, therefore raising the 

effectiveness of investments made by several European Ministries of defence on SAR satellites. 

        In this thesis, various target detection methodologies is used to detect targets in optical, 

microwave and Lidar data successfully jointly with the rich reference data available from multi-
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platform and multi-sensors. 

 

6.2  FUTURE SCOPE 

There is a great need for better performing target detection algorithms in real time data 

processing. Hence the development of better performing algorithms can revolutionize the 

remote sensing target detection application more importantly for defence and strategic interest 

targets such as camouflaged, hiding and disguising targets.  

           In case of applying deep learning artificial intelligence it should known that with the 

diversification of detection task requirements, the target detection model is no longer a single 

task model, which adds instance segmentation (similar to multi-target detection, but uses edge 

contours instead of bounding boxes (target boxes)) and some are also added Panoramic 

segmentation (it is a combination of semantic segmentation and instance segmentation: 

semantic segmentation refers to assigning a category to each pixel on the image (can be 

distinguished by color) but does not distinguish between individuals). Hence, in order to pursue 

faster and more accurate target detection algorithm models, the algorithm model will 

incorporate more other advanced model algorithms, and single-stage and two-stage methods 

will gradually merge. For example, the target position estimation proposed by the single-stage 

CornerNet-Lite model is pseudo. The two-stage model adopts the idea of two-stage target 

detection. 
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APPENDIX 1: DATA COLLECTION 

 

 

Chapter Wise Data Collection sources or weblinks: 

CHAPTER 2: 

1. http://dirsapps.cis.rit.edu/share-2010/cgi-bin/share-2010.pl  

- SpecTIR Hyperspectral Airborne Rochester Experiment (SHARE) 

2. http://dirsapps.cis.rit.edu/wwwdata/share-2010/SpecTIR_20100729/ 

- SpecTIR Imagery (non-Geo Corrected) (29 July 2010) 

 

CHAPTER 3: 

     1. http://dirsapps.cis.rit.edu/wwwdata/share-2010/LiDAR_20100726/ 

          - Kucera LiDAR Imagery (26 July 2010) 

     2. http://dirsapps.cis.rit.edu/wwwdata/share-2010/GroundTruth/ContextPhotos_Ground/ 

         - Ground truth contextual imagery 

 

CHAPTER 5: 

     1. https://www.kaggle.com/rhammell/ships-in-satellite-imagery 

          - Dataset for optical satellite image for ship detection 

      2. https://ieee-dataport.org/documents/sar-ship-dataset-detection-discrimination-and-analysis 

        - A SAR SHIP DATASET FOR DETECTION, DISCRIMINATION AND ANALYSIS 

         - IEEE Dataport https://ieee-dataport.org/datasets 

         - Categories: Geoscience and Remote Sensing, Keywords: SAR, Machine Learning 

 

 

 

 

 

 

 



 

47  

APPENDIX 2: SOURCE CODE 

 

Chapter Wise source code that can be referred for 

implementation: 

 

CHAPTER 4.  

The Source Code for the developed ROC analysis using MATLAB for 

various algorithms 

15/10/21 6:23 PM C:\Users\Sushmita Gautam\D...\QUAC_TD.m 

% Read in the data 
w = 161; 
h = 132; 
p = 360; 
M = multibandread('QUAC.dat', [w h p], 'uint16', 0, 'bsq', 'ieee-le'); 
lData = hyperGetHymapWavelengthsNm(); 
% Read in target signatures 
[sig1,lsig] = hyperGetEnviSignature( 'tan.txt'); 
figure; imagesc(M(:,:,18)); axis image; colormap(gray); 
% Get signature from data for comparison 
%fsig1 = squeeze(M(295,1139,:)); 
%sig1 = fsig1; 
% Resample data to commone wavelength set 
desiredLambdas = lData; 
sig1 = squeeze(hyperResample(sig1, lsig, desiredLambdas)); 
%figure; plot(sig1); grid on; title('Signature 1'); 
xlabel('Wavelength [nm]'); ylabel('Reflectance [%]'); 
hold on; plot(fsig1, '--'); 
legend('Recorded', 'From Image'); 
sig1=transpose(sig1); 
% Display data 
M = hyperConvert2d(M); 
%figure; imagesc(M_pct); axis image; title('Scene'); 
algorithm = lower('matchedfilter'); 
tic 
switch algorithm 
case 'matchedfilter' 
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1); 
case 'ace' 
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1); 
case 'sid' 
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1); 
case 'cem' 
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1); 
end 
toc 
% Display results and write to file 
figure; imagesc(r); axis image; colorbar; 
title(algorithm); 
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[a,b]=sort(r(:),'descend'); 
tmpicamf = a(1:20); 
figure; plot(tmpicamf./tmpicamf(1)); grid on; 
[x, y, val] = hyperMax2d(r); 
tmpmf = (hyperNormalize(r)*2^10); 
multibandwrite(tmpicamf,'tmpicamf.tif','bsq'); 
[pd,fa] = hyperRoc(r); 
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt')); 

algorithm = lower('sam'); 
tic 
switch algorithm 
case 'matchedfilter' 
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1); 
case 'ace' 
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1); 
case 'sid' 
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1); 
case 'cem' 
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1); 
case 'sam' 
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1))); 
end 
toc 
% Display results and write to file 
figure; imagesc(r); axis image; colorbar; 
title(algorithm); 
[a,b]=sort(r(:),'descend'); 
tmpsam2 = a(1:20); 
figure; plot(tmpsam2./tmpsam2(1)); grid on; 
[x, y, val] = hyperMax2d(r); 
tmpsam2 = (hyperNormalize(r)*2^10); 
multibandwrite(tmpsam2,'tmpsam2.tif','bsq'); 
[pd,fa] = hyperRoc(r); 
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt')); 
algorithm = lower('cem'); 
tic 
switch algorithm 
case 'matchedfilter' 
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1); 
case 'ace' 
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1); 
case 'sid' 
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1); 
case 'cem' 
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1); 
case 'sam' 
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1))); 
end 
toc 
% Display results and write to file 
figure; imagesc(r); axis image; colorbar; 
title(algorithm); 
[a,b]=sort(r(:),'descend'); 
tmpcem = a(1:20); 
figure; plot(tmpcem./tmpcem(1)); grid on; 

[x, y, val] = hyperMax2d(r); 
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tmpcem = (hyperNormalize(r)*2^10); 
multibandwrite(tmpcem,'tmpcem.tif','bsq'); 
[pd,fa] = hyperRoc(r); 
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt')); 
algorithm = lower('sam'); 
tic 
switch algorithm 
case 'matchedfilter' 
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1); 
case 'ace' 
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1); 
case 'sid' 
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1); 
case 'cem' 
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1); 
case 'sam' 
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1))); 
end 
toc 
% Display results and write to file 
figure; imagesc(r); axis image; colorbar; 
title(algorithm); 
[a,b]=sort(r(:),'descend'); 
tmpsam2 = a(1:20); 
figure; plot(tmpsam./tmpsam(1)); grid on; 
[x, y, val] = hyperMax2d(r); 
tmpsam2 = (hyperNormalize(r)*2^10); 
multibandwrite(tmpsam2,'tmpsam2.tif','bsq'); 
[pd,fa] = hyperRoc(r); 
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt')); 
algorithm = lower('sid'); 
tic 
switch algorithm 
case 'matchedfilter' 
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1); 
case 'ace' 
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1); 
case 'sid' 
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1); 
case 'cem' 
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1); 
case 'sam' 
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1))); 
end 
toc 
% Display results and write to file 

figure; imagesc(r); axis image; colorbar; 
title(algorithm); 
[a,b]=sort(r(:),'descend'); 
tmpsid = a(1:20); 
figure; plot(tmpsam./tmpsam(1)); grid on; 
[x, y, val] = hyperMax2d(r); 
tmpsid = (hyperNormalize(r)*2^10); 
multibandwrite(tmpsid,'tmpsid.tif','bsq'); 
[pd,fa] = hyperRoc(r); 
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt')) 
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algorithm = lower('ica-eea'); 
tic 
switch algorithm 
case 'ica-eea' 
[U, X] = hyperIcaEea(M, 50, sig1); 
r = X(1,:); 
r = hyperConvert3d(r, w, h, 1); 
end 
toc 
% Display results and write to file 
figure; imagesc(r); axis image; colorbar; 
title(algorithm); 
[a,b]=sort(r(:),'descend'); 
tmpica = a(1:20); 
figure; plot(tmpica./tmpica(1)); grid on; 
[x, y, val] = hyperMax2d(r); 
tmpica = (hyperNormalize(r)*2^10); 
multibandwrite(tmpica,'tmpica.tif','bsq'); 
[pd,fa] = hyperRoc(r); 
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt')); 
algorithm = lower('sam'); 
tic 
switch algorithm 
case 'matchedfilter' 
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1); 
case 'ace' 
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1); 
case 'sid' 
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1); 
case 'cem' 
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1); 
case 'sam' 
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1))); 
end 
toc 

% Display results and write to file 
figure; imagesc(r); axis image; colorbar; 
title(algorithm); 
[a,b]=sort(r(:),'descend'); 
tmpsam2 = a(1:20); 
figure; plot(tmpsam2./tmpsam2(1)); grid on; 
[x, y, val] = hyperMax2d(r); 
tmpsam2 = (hyperNormalize(r)*2^10); 
multibandwrite(tmpsam2,'tmpsam2.tif','bsq'); 
[pd,fa] = hyperRoc(r); 
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt')); 
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CHAPTER 5.  

The Source Code for the developed CNN model implementation on optical 

satellite data. 

 

# -*- coding: utf-8 -*- 

"""Copy of optical_ship.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1XpF87kGonQZvejMfSQ6CnR_Vw_Vgwa1_ 

""" 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

!ls "/content/drive/My Drive/SHIP/shipsnet.json" 

 

import numpy as np 

from numpy import expand_dims 

import pandas as pd 

import json 

import matplotlib.pyplot as plt 

 

 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import confusion_matrix 

import tensorflow as tf 

from tensorflow.keras.utils import to_categorical 

import keras 

from tensorflow.keras import layers 

from keras.wrappers.scikit_learn import KerasClassifier 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D 

from tensorflow.keras.optimizers import RMSprop,Adam 

from keras.preprocessing.image import ImageDataGenerator 
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from tensorflow.keras.callbacks import EarlyStopping 

 

with open('/content/drive/My Drive/SHIP/shipsnet.json') as data_file: 

    dataset = json.load(data_file) 

shipsnet= pd.DataFrame(dataset) 

shipsnet.head() 

 

shipsnet = shipsnet[["data", "labels"]] 

shipsnet.head() 

 

ship_images = shipsnet["labels"].value_counts()[0] 

no_ship_images = shipsnet["labels"].value_counts()[1] 

print("Number of the ship_images :{}".format(ship_images),"\n") 

print("Number of the ship_images :{}".format(no_ship_images)) 

 

# Turning the json information into numpy array and then assign it as x and y variables 

x = np.array(dataset['data']).astype('uint8') 

y = np.array(dataset['labels']).astype('uint8') 

 

x.shape 

 

x_reshaped = x.reshape([-1, 3, 80, 80]) 

 

x_reshaped.shape 

 

x_reshaped = x.reshape([-1, 3, 80, 80]).transpose([0,2,3,1]) 

x_reshaped.shape 

 

y.shape 

 

y_reshaped = to_categorical(y, num_classes=2) 

 

y_reshaped.shape 

 

y_reshaped 

 

image_no_ship = x_reshaped[y==0] 

image_ship = x_reshaped[y==1] 

 

def plot(a,b): 



 

53  

     

    plt.figure(figsize=(15, 15)) 

    for i, k in enumerate(range(1,9)): 

        if i < 4: 

            plt.subplot(2,4,k) 

            plt.title('Not A Ship') 

            plt.imshow(image_no_ship[i+2]) 

            plt.axis("off") 

        else: 

            plt.subplot(2,4,k) 

            plt.title('Ship') 

            plt.imshow(image_ship[i+15]) 

            plt.axis("off") 

             

    plt.subplots_adjust(bottom=0.3, top=0.7, hspace=0.25) 

 

#Implementation of the function  

 

plot(image_no_ship, image_ship) 

 

x_reshaped = x_reshaped / 255 

 

x_reshaped[0][0][0] # Normalized RGB values of the firs pixel of the first image in the dataset. 

 

n_bins = 30 

plt.hist(x_reshaped[y == 0][0][:,:,0].flatten(), bins = n_bins, lw = 0, color = 'r', alpha = 0.5); 

plt.hist(x_reshaped[y == 0][0][:,:,1].flatten(), bins = n_bins, lw = 0, color = 'g', alpha = 0.5); 

plt.hist(x_reshaped[y == 0][0][:,:,2].flatten(), bins = n_bins, lw = 0, color = 'b', alpha = 0.5); 

plt.ylabel('Count', fontweight = "bold") 

plt.xlabel('Pixel Intensity', fontweight = "bold") 

plt.title("Histogram of normalized data") 

plt.show() 

 

x_train_1, x_test, y_train_1, y_test = train_test_split(x_reshaped, y_reshaped, 

                                                        test_size = 0.20, random_state = 42) 

 

 

x_train, x_val, y_train, y_val = train_test_split(x_train_1, y_train_1,  

                                                  test_size = 0.25, random_state = 42) 
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print("x_train shape",x_train.shape) 

print("x_test shape",x_test.shape) 

print("y_train shape",y_train.shape) 

print("y_test shape",y_test.shape) 

print("y_train shape",x_val.shape) 

print("y_test shape",y_val.shape) 

 

x_train.shape 

 

model = Sequential() 

# 

model.add(Conv2D(filters = 64, kernel_size = (4,4),padding = 'Same',  

                 activation ='relu', input_shape = (80,80,3))) 

model.add(MaxPool2D(pool_size=(5,5))) 

model.add(Dropout(0.25)) 

# 

model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',  

                 activation ='relu')) 

model.add(MaxPool2D(pool_size=(3,3), strides=(1,1))) 

model.add(Dropout(0.25)) 

# 

model.add(Conv2D(filters = 16, kernel_size = (2,2),padding = 'Same',  

                 activation ='relu')) 

model.add(MaxPool2D(pool_size=(3,3), strides=(1,1))) 

model.add(Dropout(0.25)) 

 

# Fully connected 

model.add(Flatten()) 

model.add(Dense(200, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(100, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(100, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(50, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(2, activation = "softmax")) 

 

optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999) 
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model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) 

from tensorflow.keras import callbacks 

earlystopping = callbacks.EarlyStopping(monitor ="val_loss", mode ="min", patience = 10, 

restore_best_weights = True) 

history = model.fit(x_train, y_train, epochs = 100, validation_data=(x_val, y_val), callbacks = [earlystopping]) 

 

model.evaluate(x_test, y_test) 

 

pd.DataFrame(history.history).plot(); 

 

datagen = ImageDataGenerator( 

        featurewise_center=False, 

        samplewise_center=False,  

        featurewise_std_normalization=False,  

        samplewise_std_normalization=False,   

        zca_whitening=False, 

        rotation_range=5,   

        zoom_range = 0.1, 

        width_shift_range=0.1,   

        height_shift_range=0.1,   

        horizontal_flip=False,  

        vertical_flip=False)   

 

datagen.fit(x_train) 

 

data = x_reshaped[y==1][15] 

# expand dimension to one sample 

samples = expand_dims(data, 0) 

# create image data augmentation generator 

datag = ImageDataGenerator(brightness_range=[0.2,1.0], 

                          zoom_range=[0.5,1.0], 

                          horizontal_flip=True, 

                          rotation_range=90) 

# prepare iterator 

it = datag.flow(samples, batch_size=1) 

# generate samples and plot 

plt.figure(figsize = (10,10)) 

for i in range(9): 

    # define subplot 
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    plt.subplot(3,3,i+1) 

    # generate batch of images 

    batch = it.next() 

    # convert to unsigned integers for viewing 

    image = batch[0].astype('uint8') 

    # plot raw pixel data 

    plt.imshow(image) 

    # show the figure 

plt.show() 

 

history = model.fit(datagen.flow(x_train, y_train), epochs = 100,  

                    validation_data=(x_val, y_val), callbacks = [earlystopping]) 

 

model.evaluate(x_test, y_test) 

 

from sklearn import metrics 

import seaborn as sns 

Y_pred = model.predict(x_test) 

# Convert predictions classes to one hot vectors  

Y_pred_classes = np.argmax(Y_pred,axis = 1)  

# Convert validation observations to one hot vectors 

Y_true = np.argmax(y_test,axis = 1)  

# Compute the confusion matrix 

 

print("\n""Test Accuracy Score : ",metrics.accuracy_score(Y_true, Y_pred_classes),"\n") 

 

fig, axis = plt.subplots(1, 3, figsize=(20,6)) 

axis[0].plot(history.history['val_accuracy'], label='val_acc') 

axis[0].set_title("Validation Accuracy") 

axis[0].set_xlabel("Epochs") 

axis[0].set_ylabel("Val. Acc.") 

axis[1].plot(history.history['accuracy'], label='acc') 

axis[1].set_title("Training Accuracy") 

axis[1].set_xlabel("Epochs") 

axis[0].set_ylabel("Train. Acc.") 

axis[2].plot(history.history['val_loss'], label='val_loss') 

axis[2].set_title("Test Loss") 

axis[2].set_xlabel("Epochs") 

axis[2].set_ylabel("Loss") 

plt.show() 
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confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)  

# Plot the confusion matrix 

f,ax = plt.subplots(figsize=(7, 7)) 

sns.heatmap(confusion_mtx, annot=True, linewidths=0.01,linecolor="gray", fmt= '.1f',ax=ax) 

plt.xlabel("Predicted Label") 

plt.ylabel("True Label") 

plt.title("Confusion Matrix") 

plt.tight_layout() 

 

plt.show() 

 

pd.DataFrame(history.history).plot(); 

 

prediction = model.predict(x_test) 

pd.Series(prediction[0], index=["Not A Ship", "Ship"]) 

 

 

 

with open('modelsummary.txt', 'w') as f: 

 

    model.summary(print_fn=lambda x: f.write(x + '\n')) 

 

plt.rc('figure', figsize=(12, 7)) 

#plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 12}) old approach 

plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 10}, fontproperties = 'monospace') # approach improved 

by OP -> monospace! 

plt.axis('off') 

plt.tight_layout() 

plt.savefig('output_model_Summary.png') 

 

from sklearn.metrics import classification_report, accuracy_score 

 

pred = np.argmax(model.predict(x_test), axis=1) 

 

# Classification Report 

print(classification_report(pred, np.argmax(y_test, 1), 

      target_names = ['1. No Ship', '2. Ship'])) 
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The Source Code for the developed CNN model implementation on SAR 

satellite data. 

 

# -*- coding: utf-8 -*- 

"""SAR SHIP.ipynb 

 

Automatically generated by Colaboratory. 

 

Original file is located at 

    https://colab.research.google.com/drive/1DUO5rRgpy1cyh0SLa7SmZur7J2-9UEjR 

""" 

 

from google.colab import drive 

drive.mount('/content/drive') 

 

!ls "/content/drive/My Drive/ieee sar ship subscribed" 

 

import numpy as np 

from numpy import expand_dims 

import pandas as pd 

import json 

import matplotlib.pyplot as plt 

 

 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import cross_val_score 

from sklearn.metrics import confusion_matrix 

from tensorflow.keras.utils import to_categorical 

import keras 

from keras import layers 

from keras.wrappers.scikit_learn import KerasClassifier 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D 

from tensorflow.keras.optimizers import RMSprop,Adam 

from keras.preprocessing.image import ImageDataGenerator 

from keras.callbacks import EarlyStopping 

 

import json 
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#dataset = json.load('/content/drive/My Drive/ieee sar ship subscribed/json/ship_positives') 

with open('/content/drive/My Drive/ieee sar ship subscribed/json/ship_positives.json') as data_file: 

    dataset = json.load(data_file) 

ship= pd.DataFrame(dataset).T 

ship.head() 

 

ship.rename(columns={0:'column1'}) 

 

import pandas as pd 

 

df2 = pd.json_normalize(ship[0]) 

 

df2.head() 

 

dtype = type(df2["patchgt"]) 

print(dtype) 

 

ship_images = df2["validais"].value_counts()[0] 

no_ship_images = df2["validais"].value_counts()[1] 

 

print("Number of the ship_images :{}".format(ship_images),"\n") 

print("Number of the no ship_images :{}".format(no_ship_images)) 

 

dtype_before = type(df2["patchfu"]) 

 

data = df2["patchfu"].tolist() 

 

dtype_after = type(data) 

 

print("Data type before converting = {}\nData type after converting = {}".format(dtype_before, dtype_after)) 

 

print (data) 

 

print(data[0:10]) 

 

labels = df2["validais"].tolist() 

 

print(labels[0:10]) 

 

x = np.array(data).astype('uint8') 
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y = np.array(labels).astype('uint8') 

 

newarr = x.reshape(x.shape[0], (x.shape[1]*x.shape[2])) 

 

x= newarr 

 

x.shape 

 

x_reshaped = x.reshape([-1, 101, 101]) 

 

x_reshaped.shape 

 

x_reshaped = x.reshape([-1,101, 101]).transpose([0,2,1]) 

x_reshaped.shape 

 

y_reshaped = to_categorical(y, num_classes=2) 

 

y_reshaped.shape 

 

image_no_ship = x_reshaped[y==0] 

image_ship = x_reshaped[y==1] 

 

 

def plot(a,b): 

     

    plt.figure(figsize=(15, 15)) 

    for i, k in enumerate(range(1,9)): 

        if i < 4: 

            plt.subplot(2,4,k) 

            plt.title('Not A Ship') 

            plt.imshow(image_no_ship[i+2]) 

            plt.axis("off") 

        else: 

            plt.subplot(2,4,k) 

            plt.title('Ship') 

            plt.imshow(image_ship[i+15]) 

            plt.axis("off") 

             

    plt.subplots_adjust(bottom=0.3, top=0.7, hspace=0.25) 
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#Implementation of the function  

 

plot(image_no_ship, image_ship) 

 

x_reshaped = x.reshape([-1,1,101, 101]).transpose([0,2,3,1]) 

x_reshaped.shape 

 

x_reshaped = x_reshaped / 255 

 

x_reshaped[0][0][0] # Normalized RGB values of the firs pixel of the first image in the dataset. 

 

x_train_1, x_test, y_train_1, y_test = train_test_split(x_reshaped, y_reshaped, 

                                                        test_size = 0.20, random_state = 42) 

 

 

x_train, x_val, y_train, y_val = train_test_split(x_train_1, y_train_1,  

                                                  test_size = 0.25, random_state = 42) 

 

 

print("x_train shape",x_train.shape) 

print("x_test shape",x_test.shape) 

print("y_train shape",y_train.shape) 

print("y_test shape",y_test.shape) 

print("y_train shape",x_val.shape) 

print("y_test shape",y_val.shape) 

 

x_train.shape 

 

from keras import callbacks 

model = Sequential() 

# 

model.add(Conv2D(filters = 32, kernel_size = (4,4),padding = 'Same',  

                 activation ='relu', input_shape = (101,101,1))) 

model.add(MaxPool2D(pool_size=(1,1))) 

model.add(Dropout(0.25)) 

# 

model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',  

                 activation ='relu')) 

model.add(MaxPool2D(pool_size=(1,1), strides=(1,1))) 

model.add(Dropout(0.25)) 
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# 

model.add(Conv2D(filters = 16, kernel_size = (2,2),padding = 'Same',  

                 activation ='relu')) 

model.add(MaxPool2D(pool_size=(1,1), strides=(1,1))) 

model.add(Dropout(0.25)) 

 

# Fully connected 

model.add(Flatten()) 

model.add(Dense(200, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(100, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(100, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(50, activation = "relu")) 

model.add(Dropout(0.5)) 

model.add(Dense(2, activation = "softmax")) 

 

optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999) 

 

model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"]) 

 

earlystopping = callbacks.EarlyStopping(monitor ="val_loss",  

                                        mode ="min", patience = 10,  

                                        restore_best_weights = True) 

history = model.fit(x_train, y_train, epochs = 100, validation_data=(x_val, y_val), callbacks = [earlystopping]) 

 

model.evaluate(x_test, y_test) 

 

pd.DataFrame(history.history).plot(); 

 

datagen = ImageDataGenerator( 

        featurewise_center=False, 

        samplewise_center=False,  

        featurewise_std_normalization=False,  

        samplewise_std_normalization=False,   

        zca_whitening=False, 

        rotation_range=5,   

        zoom_range = 0.1, 

        width_shift_range=0.1,   
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        height_shift_range=0.1,   

        horizontal_flip=False,  

        vertical_flip=False)   

 

datagen.fit(x_train) 

 

history = model.fit(datagen.flow(x_train, y_train), epochs = 100,  

                    validation_data=(x_val, y_val), callbacks = [earlystopping]) 

 

model.evaluate(x_test, y_test) 

 

from sklearn import metrics 

import seaborn as sns 

Y_pred = model.predict(x_test) 

# Convert predictions classes to one hot vectors  

Y_pred_classes = np.argmax(Y_pred,axis = 1)  

# Convert validation observations to one hot vectors 

Y_true = np.argmax(y_test,axis = 1)  

# Compute the confusion matrix 

 

print("\n""Test Accuracy Score : ",metrics.accuracy_score(Y_true, Y_pred_classes),"\n") 

 

fig, axis = plt.subplots(1, 3, figsize=(20,6)) 

axis[0].plot(history.history['val_accuracy'], label='val_acc') 

axis[0].set_title("Validation Accuracy") 

axis[0].set_xlabel("Epochs") 

axis[0].set_ylabel("Val. Acc.") 

axis[1].plot(history.history['accuracy'], label='acc') 

axis[1].set_title("Training Accuracy") 

axis[1].set_xlabel("Epochs") 

axis[0].set_ylabel("Train. Acc.") 

axis[2].plot(history.history['val_loss'], label='val_loss') 

axis[2].set_title("Test Loss") 

axis[2].set_xlabel("Epochs") 

axis[2].set_ylabel("Loss") 

plt.show() 

 

confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)  

# Plot the confusion matrix 

f,ax = plt.subplots(figsize=(7, 7)) 



 

64  

sns.heatmap(confusion_mtx, annot=True, linewidths=0.01,linecolor="gray", fmt= '.1f',ax=ax) 

plt.xlabel("Predicted Label") 

plt.ylabel("True Label") 

plt.title("Confusion Matrix") 

plt.tight_layout() 

 

plt.show() 

 

pd.DataFrame(history.history).plot(); 

 

prediction = model.predict(x_test) 

pd.Series(prediction[0], index=["Not A Ship", "Ship"]) 

 

with open('modelsummary.txt', 'w') as f: 

 

    model.summary(print_fn=lambda x: f.write(x + '\n')) 

 

plt.rc('figure', figsize=(12, 7)) 

#plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 12}) old approach 

plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 10}, fontproperties = 'monospace') # approach improved 

by OP -> monospace! 

plt.axis('off') 

plt.tight_layout() 

plt.savefig('output_model_Summary.png') 

 


