

TARGET DETECTION IN OPTICAL, MICROWAVE AND

LIDAR DATA

 A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

 FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

CIVIL ENGINEERING

(With Specialization in Geoinformatics Engineering)

By

SUSHMITA GAUTAM

(2K19/GINF/05)

Under the supervision of

 DR. (COL) K.C. TIWARI, PROFESSOR

MULTIDISCIPLINARY CENTRE FOR GEOINFORMATICS

DEPARTMENT OF CIVIL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi – 110042

November 2021

ii

iii

iv

ACKNOWLEDGEMENTS

First and foremost, I express my deep sense of gratitude to my supervisor, counselor

and advisor Prof. K.C. Tiwari, Multidisciplinary Centre for Geoinformatics, Department of

Civil Engineering for their constant guidance, support, motivation and encouragement

throughout the period this work was carried out. Their readiness for consultation at all times,

educative comments, concern and assistance have been invaluable.

I also want to thank Dr. Shalini Gakhar (Research Associate, IARI) and Dr. Deepti

Soni (IIT Roorkee alumni) for their support and all the staff of the Multidisciplinary Centre for

Geoinformatics, Civil Engineering Department for their fullest cooperation.

I would like to thank my friends and all those who have directly or indirectly helped

me in completion of the thesis well in time.

Finally, I wish to thank my parents for their moral support and confidence showed in

me to pursue M. Tech at an advanced stage of my academic career.

v

ABSTRACT

Historically, in the security-defence environment, information is derived through a

subjective analytical approach principally based on the experience and the skills of the analyst

who visually interprets the image(s). The spatial and contextual way to proceed varies and

depends on the objective of the study. Spatial, pattern, texture, and, in general, spectral

information is most of the time improved by standard image processing technics (i.e., image

enhancement) for increasing the visual distinction between features. Different

collateral/ancillary data, spatially and temporally correlated with the imagery, made available

through different sources, may complement the analytical process providing worthwhile

information, essential in helping, confirming, etc. the interpretation course and its inferences.

For target detection in remotely sensed images, targets can be referred to as man-made

or natural object or an event or activity of interest. Detection of an object or activity, such as

military vehicles or vehicle tracks, is common in both military and civilian applications.

Hyperspectral target identification algorithms look at the spectrum of each pixel to find targets

based on the spectral characteristics of the target's surface material. Targets of interest may not

be clearly resolved depending on the sensor's spatial resolution, hence the first fundamental

characteristic of the hyperspectral target detection problem is that a "target present" versus

"target absent" decision must be made individually for each pixel of a hyperspectral image.

In this project, the various target detection algorithms along with the dimensionality

reduction methods are explored and presented with valid results and discussions. The work

involves the use of multi-platform, multi-dimensional and multi-sensor datasets making this

work an important example of the various target detection approaches in remote sensing.

vi

CONTENTS

Candidates Declaration

Certificate

Acknowledgments

Abstract

Contents

List of Figures

List of Tables

List of Abbreviations

1. Introduction……………………………………………………………………………...1

1.1. Motivation…………………………………………………………………………..1

1.2. Background to Remote Sensing…………………………….………….…………...1

1.3. Approaches in Target Detection…………..……………………….………...……...2

1.4. Issues in Target Detection…………………………………………………………..2

1.5. Research Gaps……………………………………………………………………....2

1.6. Research Objectives………………………………………………………………...3

1.7. Organization of Thesis……………………………………………………………...3

2. Detection of Camouflaged Targets…………………...…………………………………..5

2.1. Introduction……….………………………………………………………………....5

2.2. Experimental Data and Software.…………………………………………………....5

 2.2.1. HSI Subsets…………………………………………………………………...6

 2.2.2. Description of Targets………………………………………………………...7

 2.2.3. Software……………………………………………………………………...10

2.3. Methodology………………………………………………………………………...11

 2.3.1. Georeferencing Image………………………………………………………..11

 2.3.2. Atmospheric Correction…………………………………………………..…12

 2.3.3. Dimensionality reduction……………………………………………………12

 2.3.3.1. PCA…………………………………………………………………12

 2.3.3.2. ICA………………………………………………………………….14

2.4. Target Detection Algorithms……………………………………………………......14

i

ii

iii

iv

vi

ix

xi

xii

vii

2.4.1. Adaptive Coherence Estimator…………………………………………...…..14

2.4.2. Matched Filter………………………………………………………………...15

2.4.3. Spectral Angle Mapper……………………………………………………….15

2.5. Implementation……………………………..……………………………………….15

2.6. Results and Discussions…………………………………………………………..…16

2.7. Summary………………………………………………………………………….....20

3. Identification of Camouflaged Target using Lidar data……………………….………..21

3.1. Introduction…………………………………………………..…………………….21

3.2. Experimental Data and Software.…………………………………………………..21

 3.2.1. Subset images…………………………………………………………..…...21

 3.2.2. Description of Targets………………………………………………………22

 3.2.3. Software…………………………………………………………………..…22

3.3. Methodology…………………………………………………………………..…...22

3.4. Implementation……………………………………………………………………..23

3.5. Results and Discussions……………………………………………………………24

3.6. Summary……………………………………………………………………….…..26

4. Comparative Assessment of Spectral Target Detection Algorithms................................27

4.1. Introduction…………………………………………………………………….…...27

4.2. ROC…………………………………………………………………………………28

4.3. Data and Software………….…………..…………………………………………...28

4.4. Methodology………………………………………………………………………...28

4.5. Implementation………………………………………………………...……………29

4.6. Results and Discussions………………………………………………..……………29

4.7. Summary………………………………………………………………...…………..32

5. Target object detection in Optical and SAR datasets using Deep Learning Methods......33

5.1. Introduction……………………………...………………………………………….33

5.2. Dataset and Software.…………………………………………………………..…..34

 2.2.2. Description of Targets………………………………………………………36

 2.2.3. Software…………………………………………………………………..…36

5.3. Methodology………………………………………………………………..……....36

5.4. Implementation…………………………………………………………………...…37

viii

5.5. Results and Discussions………………………………………………………..…37

5.6. Summary…………………………………………………………………………..40

6. Conclusion and Future Scope……………………………………………...……..….…41

6.1. Conclusion………………………………………………………………..……......41

6.2. Future Scope……………………………………………………………………….42

References 43

Appendix 1: Data Collection 46

Appendix 2: Source Code 47

ix

LIST OF FIGURES

Figure 1: RIT campus showing all flight lines ………...………………………………………………………...6

Figure 2: HSI subset 1 …………………………………………………………………………………………………....7

Figure 3: Green Camo Net target on asphalt road ……………….…………………………………………..8

Figure 4: Tan camo net target on asphalt …………...………………………….……………………………….9

Figure 5: Green camo tarps targets on asphalt …...…………...……………………………………………..9

Figure 6: A target having set of three chairs …………………………………………………………….…....10

Figure 7: Flow of methodology used.…………………………………………………………………..……..11

Figure 8: subset of full image containing target ……………………...………………………………….….22

Figure 9: A target having set of three chairs covered with CAMO1 net ……………………………22

Figure 10: Flow of methodology for target identification ……………………………….…….....23

Figure 11: LiDAR 3D viewer for the scene.……...………………….…………………………………….…….23

Figure 12: Spectral signature of the tan camouflaged n…...……………………………………………..23

Figure 13: ROC curve results of ICA based ACE algorithm …………………………………………….….23

Figure 14: ROC curve results of ICA based SAM algorithm ……………...………………………………25

Figure 15: ROC curve results of ICA based MF algorithm ………………………………………………..27

Figure 16: ROC curve results of ICA based ACE algorithm …………….…………………………….…..28

Figure 17: ROC curve for SAM detection …………………………….………………………………….………29

Figure 18: ROC curve results of PCA based MF detection ……………………………………………...30

Figure 19: Ship class image patches ……………………….………………………………………….………..34

Figure 20: No- ship class image patches …………………………………………………………………….....34

Figure 21: Nine sub-images from the SAR dataset ……………………………….…………………….....35

Figure 22: The CNN results of optical satellite dataset ………………………………….………………..…...38

Figure 23: CNN Detection results for SAR satellite dataset ……………………………………….…....39

x

LIST OF TABLES

Table 1: Target considered…………………………………………………………………………………………………..……..7

Table 2: Detection of green camo tarps………………………………………………………………………………………16

Table 3: Detection of tan camo net targets………………………………………………………………………………...17

Table 4: Detection of green camo net targets…………………………………………………………………………….17

Table 5: Statistics for detection of camouflaged targets material………………………………………………18

Table 6: Statistics for detection of camouflaged targets material in case of green tarp……….…….18

Table 7: Statistics for detection of camouflaged targets material in case of green

 camo after PCA……………………………………………………………………………………………………….……18

Table 8: Statistics for detection of camouflaged targets material in case of green

 camo net after ICA……19

Table 9: Statistics for detection of camouflaged targets material in case of tan

 camo net after ICA………………………………………………………………………………….…………………..19

Table 10: Statistics for detection of camouflaged targets material in case of green

 camo tarp after ICA……………………………………………………………………………………………………19

Table 11: Dataset information per image sensor and polarization.……………..……………………………34

xi

LIST OF ABBREVIATIONS

I. HSI – Hyperspectral Image

II. LiDAR – Light Detection And Ranging

III. PCA – Principle Component Analysis

IV. ICA – Independent Component Analysis

V. ACE – Adaptive Coherence Estimator

VI. SAM – Spectral Angle Mapper

VII. MF – Matched Filter

VIII. ROC- Receiver Operating Characteristics

IX. SAR – Synthetic Aperture Radar

X. CNN – Convolutional Neural Networks

1

CHAPTER 1

INTRODUCTION

1.1 MOTIVATION

The target detection in remote sensing has been widely studied from many years

and is of great interest in many applications. Vital applications such as mineral mapping

(for example, exploration and of epithermal ores deposits or recognizing hydrothermally

altered rocks) [1], agriculture applications (for example, use of spectral signatures of

vegetation and detection of disease and nutrient deficiency allowing monitoring, tracking

and controlling of crops health) [2], law enforcement (for example, application of

thermography to detect several illegal activities) [3], strategic surveillance and military

applications (for example, detection of military objects such as vehicles, weapons, land and

sea mines, camouflaged objects using multiple information extracted from hyperspectral

imagery) [4] etc. involves the use of target detection and remote sensing.

Target detection algorithms are capable of detecting man-made targets in

uncluttered natural background and have been fairly well established [5]. Many of these

simply do not work with difficult targets such as camouflaged targets, occluded targets,

dim targets without sufficient a priori information [6]. In case of camouflaged targets,

detection based on spectral information often fails, hence height, shape and surface

information may be needed in combination with the spectral information to support

detection and identification of such targets [7].

Therefore, with different challenges in target detection and with development of

large number of algorithms, the development of approaches for detection and identification

of targets will continue to work on similar challenges.

1.2 BACKGROUND TO REMOTE SENSING

Remote sensing, also called earth observation, refers in a general sense to the

instrumentation, techniques and methods used to observe, or sense, the surface of the earth,

usually by the formation of an image in a position, stationary or mobile, at a certain distance

remote from that surface. In remote sensing, electromagnetic radiation from an object is

measured and converted into information about the object or processes connected to the item

2

(in the instance of earth observation, this object is the earth's surface).

Electromagnetic radiation can be transmitted, absorbed, or reflected when it hits an

object on the earth's surface. The object's attributes define the mutual magnitude of these

processes. We can quantify the amount of reflected solar radiation as a function of wavelength

in remote sensing, which is known as spectral reflectance.

 Passive sensors don't have their own radiation source. They are only sensitive to natural

radiation, such as reflected sunlight or energy generated by an earthly object. Active sensors

have a built-in radiation source. Radar (radio detection and ranging) and lidar (light detection

and ranging) are two examples (light detection and ranging).

1.3 APPROACHES IN TARGET DETECTION

Target detection algorithms based on spectral modelling can be categorized in two

groups namely spectral matching and anomaly detection algorithms. Spectral matching

algorithms are based on matching of every pixel spectrum with a priory available information.

Examples of some spectral matching algorithms are Spectral Angle Mapper (SAM), Constraint

Energy Maximization (CEM), Matched Filter (MF), Adaptive Cosine estimator (ACE). While

the anomaly detection algorithms compare the pixel spectrum with the background spectrum

and declared a target based on noticing certain abrupt spectral variations. Some examples of

anomaly detection algorithms are Reed- Xialoi (RX) and UTM algorithms, etc.

1.4 ISSUES IN TARGET DETECTION

 Target detection is considered challenging due to following issues:

i. Size of the target is relatively small with respect to the spatial resolution of the

image which creates complexity in its detection.

ii. Spectral variability, that refers to the variations in measured spectra of different

samples of the same material.

iii. Illumination variation often occurs in natural scenes which effects the spectral

properties of the target.

iv. A target is occluded under other object or vegetation.

v. A target is camouflaged purposely.

vi. High dimensionality resulting in high complexity and redundancy.

1.5 RESEARCH GAPS

The research gaps found in this study are:

3

i. Optical camouflage used for protection of military equipment confuse the optical

detection and surveillance of enemy making it look like the background. Hence,

conventional target detection methods, based on spectral separation of background and

target, generally fails to detect a camouflaging target.

ii. Identification in addition to the detection is the demand of the problem which may

require spatial information of the target such as shape etc. Multi sensor data can solve

the needed.

iii. Some dimensionality reduction algorithms proposing to reduce the size of data may

not consider the importance of target in the band rejected. This results in losing

important information. Thus, an approach that reduces redundancy but retains the target

information may need to be further explored.

iv. Target detection is used in social security management, marine vehicle traffic

monitoring, etc. There are very outstanding application results in the fields of early

warning and national defense security. For deep learning models like Convolutional

Neural Networks, computer vision algorithms for marine target recognition may need

to be explored.

1.6 RESEACH OBJECTIVES

The objective of this research are as follows:

i. To detect camouflaged targets using different dimensionality reduction and target

detection algorithms.

ii. To identify camouflaged targets using Lidar data

iii. To perform Comparative assessment of various spectral target detection algorithms

after dimensionality reduction.

iv. To detect target object in marine Optical and SAR satellite datasets using deep

learning

1.7 ORGANIZATION OF THESIS

i. Chapter 1 introduces the motivation leading to the problem formulation for this

study and the background to remote sensing and target detection approaches.

Next the research gaps and research objectives has been listed.

ii. Chapter 2 provides the introduction, experimental methods and implementation

description for the camouflaged target detection problem in Hyperspectral

dataset and the resultant detection maps for different algorithms and discussion

4

is presented in the chapter.

iii. Chapter 3 introduces to the LiDAR processing after the HSI data has been

explored. Hence, adding to the identification of the camouflaging target.

iv. Chapter 4 introduces to the use of receiver operating characteristics curve in

doing the comparative assessment of various target detection algorithms used.

v. Chapter 5 is the application of deep learning technique in detecting marine ship

target using the optical and SAR satellite datasets.

vi. Chapter 6 provides the conclusion and the future scope for the various target

detection approaches used in this project thesis.

TARGET DETECTION IN OPTICAL MICROWAVE AND LIDAR DATA

INTRODUCTION

CHAPTER 1

HSI DATA
PROCESSING

CHAPTER 2

CHAPTER 4

LIDAR DATA
PROCESSING AND
IDENTIFICATION

CHAPTER 3

OPTICAL AND
SAR DATA

DETECTION

CHAPTER 5

CONCLUSION

CHAPTER 6

5

CHAPTER 2

DETECTION OF CAMOUFLAGED TARGETS

2.1 INTRODUCTION

 It is possible to extract information about the scene from the data after the pre-

processing algorithm is applied on the data. This chapter focuses on dimensionality reduction

and target detection algorithms. Once again, hyperspectral target detection is the process of

locating desired pixels in a scene based on the spectral characteristics of the target and pixel.

In this chapter, several different algorithms are introduced and explained.

2.2 EXPERIMENTAL DATA AND SOFTWARE

This experiment focuses on detection of camouflaged targets by detecting the

camouflaging material. This experiment particularly uses two subsets of the hyperspectral data

acquired over RIT campus described in section 2.2.1. below. Figure 1(a) shows the full image

of the RIT campus scene.

The study area comprising of the campus of Rochester Institute of Technology (RIT),

New York, USA. Datasets are captured in three different flight lines flown over the campus

namely RIT_1, RIT_2 and RIT_3 comprising several buildings of different sizes, roads, trees,

parking areas, etc., which usually describes as an urban environment. In addition, several

artificial targets have been deployed at various locations within the campus.

The dataset has been collected as part of a data collection campaign titled as SpecTIR

Hyperspectral Airborne Rochester Experiment (SHARE), conducted by RIT in conjunction

with SpecTIR, LLC, during July 26-29, 2010. Related reference data is available in the

campaign dataset and includes detailed information about each target deployed. It includes

contextual images, field and laboratory spectra, G.P.S. data and ortho images as a part od

ground data.

The data consists of 360 bands with 5 nm spectral resolution and 1 m spatial resolution.

For each flight line, Internal Geometry Map (IGM) and Geographic Lookup Table (GLT) have

also been provided for creating georeferenced hyperspectral image.

6

(a)

(b)

Fig 1 (a) RIT campus showing all flight lines of the SHARE campaign 2010. (b) Flight line_3 used in

this experiment.

2.2.1. HSI SUBSETS

The airborne Hyperspectral data was captured using ProSpecTIR-VS2 hyperspectral

imaging sensor provided by SpecTIR, LLC, to collect data in spectral range from Visible to

SWIR (short wave infrared) i.e., 390 to 2450 nm. This work uses RIT_3 flight line as shown

in Figure 1(b).

Two spatial subsets covering the desired targets have been extracted from the original

image. The first subset consists of five camouflaging materials, namely green camouflaging

7

net (GREEN CAMO), tan camouflaging net (TAN CAMO) and three instances of green

camouflaging tarp (GREEN TARP1, GREEN TARP2, GREEN TARP3). The second subset

contains a camouflaged target which is a set of three chairs (CAM_CHAIR) places under a

camouflaging net (CAMO1). Refer figure 2 for the subset 1 image.

Fig 2. HSI subset 1 (QUAC atmospherically corrected).

2.2.2 DESCRIPTION OF TARGETS

Several artificial targets have been placed in study area at multiple locations. The details

of each of the target and its reference data have been described in this section. Each target

considered has been assigned a unique ID. Refer Table 1 summarizing details of the targets

considered in this experiment.

Table 1: Target considered

Serial

Number

Target Name Number of

Instances and

ID

Target Characteristics

1. Green Camouflaging Net 1

(GREEN

CAMO)

(i) A camouflaging material

with light and dark colored

woodland camouflaged

pattern placed on asphalt.

(ii) Full pixel

(iii) Present in HSI data

(iv) Location 43°5′17.64″N,

77°40′40.80″ W

2. Tan Camouflaging Net 1

(TAN CAMO)

(i) A desert tan green

colored camouflaging

8

material placed on asphalt.

(ii) Full pixel

(iii) Present in HSI data

(iv) Location 43°5′17.61″N,

77°40′41.39″ W

3. Green Camouflaging Tarp 3 (GREEN

TARP1,

GREEN

TARP2,

GREEN

TARP3)

(i) A green tarpaulin sheet

with camouflaging pattern

placed on asphalt

(ii) Full pixel

(iii) Present in HSI data

(iv) Location of GREEN

TARP1 43°5′17.62″N,

77°40′42.23″ W

4. Camouflaging Chairs 1

(CAM_CHAIR,

CAMO1)

(i) Three chairs covered

with camouflaging material

Placed on grass

(ii) Full pixel

(iii) Present in HSI data

(iv) Location 43°5′9.5″N,

77°40′38.2″ W

1. Green Camouflaging Net

A thin camouflaging material with light and dark green colored woodland camouflaged

pattern mounted on black mesh backing material has been used. It has been placed on asphalt.

The field photograph of this target is shown in Figure 3.

Fig 3. Green Camo Net target on asphalt road

9

2. Tan Camouflaging Net

 A desert tan green colored camouflaging material mounted on blackmesh backing material

placed on asphalt has been used. The field photograph of this target is shown in Figure 4.

Fig 4. Tan camo net target on asphalt

3. Green Camouflaging Tarps

A green camouflaging tarpaulin sheet with camouflaging pattern on one side and plain

green on other side has been used. Three instances of different size has been placed on asphalt.

The field photograph of this target is shown in Figure 5.

Fig 5. Green camo tarps targets on asphalt

10

4. Camouflaging Chairs

Set of three tall purple colored chairs (CAM_CHAIR) made up of plastic have been

placed at known locations. These chairs have been covered with camouflaging net (CAMO1).

field photograph of this target is shown in Figure 6.

Fig 6. A target having set of three chairs covered with CAMO1 net

2.2.3. SOFTWARE

For implementation of approached developed for detection of targets, ENVI software

version 5.3 developed by L3HARRIS Geospatial has been used for visualization, processing

and analyzing remote sensing data. This software is used to carry out the following work:

i. Pre-processing of hyperspectral data such as georeferencing, atmospheric correction,

spectral and spatial subsetting etc.

ii. Viewing HSI image data.

iii. Target detection etc.

2.3. METHODOLOGY

 The flow of methodology has been given below in Figure 7. The detailed terms of

methodology used are described in further sections.

11

Fig 7: Flow of methodology used.

2.3.1. GEOREFERENCING

 The original image has been georeferenced using the geographic lookup table (GLT)

provided along with the data.

2.3.2. ATMOSPHERIC CORRECTION

 QUick Atmospheric Correction (QUAC) method is used in this experiment. QUAC is

a multispectral and hyperspectral atmospheric correction approach that uses the visible and

near-infrared through shortwave infrared (VNIR-SWIR) wavelength range. If the following

Hyperspectral Image

Georeferencing

Atmospheric correction

Spatial and spectral subsetting

Dimensionality reduction

Target detection algorithm ACE, SAM and MF

Computation of
Statistic

12

requirements are met, QUAC can get reasonably accurate reflectance spectra:

i. A scene contains at least ten different materials.

ii. There are enough dark pixels in an image to allow for a good baseline spectrum

estimation.

2.3.3. DIMENSIONALITY REDUCTION

 The goal of dimensionality reduction is to reduce the size of a data set while

maintaining as much of the information content as possible. Large image files can contain low

signal to noise ratio (SNR) bands as well as redundant information due to spectral similarities.

Dimensionality reduction algorithms eliminate these redundancies in data based on a variety

of different factors. The three algorithms described here utilize different aspects of eigenvector

and eigenvalue calculations to represent the data in rotated data spaces.

2.3.3.1. PCA

 The Principle Component Analysis (PCA) method of dimensionality reduction

attempts to decorrelate the data and maximize the data content in fewer dimensions [Schott 97,

Johnson 02]. This is accomplished by finding a different axis to project the data onto that will

maximize the variance. The pixel vector in principal component analysis is illustrated in Figure

2.7.

 An image pixel vector can be expressed as:

 𝐱𝑖 = [𝑥1, 𝑥2, …. 𝑥𝑁] 𝑖 T (1)

where,

x1, x2,zN = Pixel values of Hyperspectral image at corresponding pixel location.

N = The number of the hyperspectral bands equivalent to dimension of the pixel vector.

 The mean vector for all image vectors is calculated as:

(2)

 The covariance matrix of x is defined as:

 Cov(x) = E{(x-E(x))(x-E(x)}T (3)

where,

E = expectation operator;

13

T = transpose operation; and

Cov = notation for covariance matrix.

 The PCA is based on the eigenvalue decomposition of the covariance matrix, which takes

the following form:

 Cx = MDMT (4)

Where D = diag(λ1, λ2...λN) is the diagonal matrix composed of the eigenvalues λ1, λ2...λN of

the covariance matrix CX, and M is the orthonormal matrix composed of the corresponding N

dimension eigenvectors.

 The linear transformation defined by:

 yi = MTxi (I = 1,2,…, K) (5)

is the PCA pixel vector, and all these pixel vectors form the PCA (transformed) bands of the

original images. the first K PCA bands contain majority of information residing in the original

hyperspectral images. These can be used for more effective analyses since the number of bands

and the amount of image noise involved are reduced.

Fig 8. Pixel vector in principal component analysis [adapted from Gonzales and Woods

(1993)].

2.3.3.2. ICA

 The goal of ICA is to find a linear representation of non-Gaussian data so that the

components are statistically independent or as independent as possible. In the context of target

detection, various bands of hyperspectral image can be considered as linear mixtures composed

of n independent components. These components may consist of both the desired targets and

redundant information in the form of undesired targets and noise. Mathematically, any given

14

mixture says the jth mixture in this case can be represented as:

 𝑥𝑗 = 𝑎𝑗1𝑠1 + 𝑎𝑗2𝑠2… . 𝑎𝑗𝐾𝑠𝐾 (6)

 Rewriting eq. (6) in matrix notation as:

 𝑥 = 𝐴𝑠 (7)

 Eq. (7) is also known as the ICA model. Denoting the columns of A, the ICA model

can be rewritten as Aj

𝑥 =∑  

𝑛

𝑖=1

𝑎𝑖𝑠𝑖
(8)

 The ICA aims to find components which are statistically independent meaning thereby

that the resulting components will have non-Gaussian distribution.

2.4. TARGET DETECTION ALGORITHMS

 In this experiment, the target detection is performed by implementing three spectral

matching based target detection algorithms namely Adaptive Coherence Estimator (ACE),

Matched Filter (MF), Spectral Angle Mapper (SAM).

2.4.1. ADAPTIVE COHERENCE ESTIMATOR

 The Adaptive Coherence Estimator (ACE) can be derived from the GLRT through

some assumptions.

Σ̂𝑏 =

1

𝑁
Σ𝑏

(9)

Where where Σ b represents the covariance matrix of the background. N represents the number of

pixels in the set of sample data. This in turn alters the GLRT equation as

𝑇̂𝐺𝐿𝑅𝑇(𝑥) =

(𝑑𝑇Σ̂𝑏
−1𝑥)

2

(𝑑𝑇Σ̂𝑏
−1𝑑) (1 +

1

𝑁
𝑥𝑇Σ̂𝑏

−1𝑥)

(10)

Since N is small, GLRT is the ACE algorithm and is written as:

𝑇𝐴𝐶𝐸(𝑥) =
(𝑑𝑇Σ̂𝑏

−1𝑥)
2

(𝑑𝑇Σ̂𝑏
−1𝑑)(𝑥𝑇Σ̂𝑏

−1𝑥)

(11)

15

2.4.2. MATCHED FILTER

 Matched Filter algorithm finds the abundance of targets using a partial unmixing

algorithm. This technique maximizes the response of the known spectra and suppresses the

response of the composite unknown background, therefore matching the known signature. It

provides a rapid means of detecting specific materials based on matches to target spectra and

does not require knowledge of all the endmembers within an image scene.

2.4.3. SPECTRAL ANGLE MAPPER

 The Spectral Angle Mapper (SAM), developed by Boardman, is a simple detection

algorithm that computes the angle between two vectors. According to the SAM algorithm, pixel

A is more target like than pixel B due to the smaller angle between it and the target vector. The

SAM algorithm is expressed in vector form as

𝑇𝑆𝐴𝑀(𝑥) =

𝑑𝑇𝑥

(𝑑𝑇𝑑)1/2(𝑥𝑇𝑥)1/2

(12)

 where d represents the target spectra and x represents the pixel of interest. This

equation will have values between 0 and 1 for a reflectance data set. Similar pixels will have a

value near 1 which corresponds to a small angle between the vectors in question. SAM is a

simple and fast detection technique with low computing costs. It is only affected by the object's

spectral profile and is unaffected by magnitude changes between the target and pixel.

2.5. IMPLEMENTATION

 All the implementations for the above discussed algorithms were done using ENVI 5.3

as summarized below:

i. For each target, reference spectra have been drawn from the image itself and is referred

to as in scene spectra.

ii. PCA and ICA has been applied on Subset 1 and Subset 2. For both subsets, first 100

components have been selected using 360 bands in original image.

iii. Detection using spectral matching algorithm namely ACE, MF and SAM has been

performed

iv. The results obtained has been thresholded to generate binary images depicting the

presence or absence of target.

16

2.6. RESULTS AND DISCUSSIONS

 ICA yielded 360 components from which 100 components were retained. All the 100

components were used to detect all 3 camouflaged targets using the above three algorithms,

ACE, SAM and MF. The results obtained after applying is shown below.

Table 2: Detection of green camo tarps

ALGORITH

M

ORIGINAL SUBSET PCA ICA

 MF

ACE

SAM

Table 3: Detection of tan camo net targets

ALGORITH

M

ORIGINAL SUBSET PCA ICA

 MF

17

ACE

SAM

Table 4: Detection of green camo net targets

ALGORITH

M

ORIGINAL SUBSET PCA ICA

 MF

ACE

SAM

18

Table 5: Statistics for detection of camouflaged targets material in case of tan

camo after PCA on subset

Algorithm threshold Target number of

pixels

Detected number

pixels

MF 0.70 14 13

ACE 0.545 10 8

SAM 0.216 15 9

Table 6: Statistics for detection of camouflaged targets material in case of green

tarp after PCA

Algorithm threshold Target number of

pixels

Detected number

pixels

MF 0.430 15 14

ACE 0.746 6 2

SAM 0.233 30 18

Table 7: Statistics for detection of camouflaged targets material in case of green

camo net after PCA

Algorithm threshold Target number of

pixels

Detected number

pixels

MF 0.800 24 20

ACE 0.686 2 2

SAM 0.250 33 32

Table 8: Statistics for detection of camouflaged targets material in case of green

camo net after ICA

Algorithm threshold Target number of

pixels

Detected number

pixels

MF 0.908 19 18

19

ACE 0.554 3 3

SAM 0.850 5 5

Table 9: Statistics for detection of camouflaged targets material in case of tan

camo net after ICA

Algorithm threshold Target number of

pixels

Detected number

pixels

MF 0.783 11 10

ACE 0.560 8 8

SAM 0.850 11 11

Table 10: Statistics for detection of camouflaged targets material in case of green

camo tarp after ICA

Algorithm threshold Target number of

pixels

Detected number

pixels

MF 0.686 8 8

ACE 0.650 6 2

SAM 0.754 7 7

Now, the following can be observed from the figures and Tables:

• Table 2 to Table 4 shows the targets in original image subset, PCA applied subset and

the ICA applied subset contains camouflaging material as encircled. These figures are

results of the three detection algorithms i.e., MF, ACE and SAM. For the thresholds, it

was observed that in case of SAM, as the threshold is lower, higher probability of

finding the targets.

• Based on the outputs figures in these Tables, and statistics in the Table 5 to Table 10,

the following observations can be made:

i. Table 5 shows that MF resulted in 13 pixels out of 14 were correctly detected.

While in ACE and SAM the number of pixels correctly detected was low in case

of PCA.

ii. Table 6 and 7 shows MF has resulted sufficient number of correct pixels as

compared to ACE and SAM after the thresholds were applied.

iii. Table 8 to 10 improves the correct detection results in case of ICA.

20

From the above observations, following may be concluded

• MF has performed better in case of all the camouflaging targets for PCA and SAM has

performed worst.

• MF performance result giving target pixels are much better after ICA was implemented

for the original subset.

2.7 SUMMARY

Camouflaging is the process of merging the target with background. This is done for

reducing or delaying detection of the target. This experiment used three target different target

detection algorithms before and after 2 different dimensionality reduction approaches. Results

demonstrated that the detection of camouflaging material can be performed using PCA and

ICA approach followed by detection algorithms. Matched Filter algorithm works well.

However, identification of targets is also important for which LiDAR data after the HSI

processing in this chapter, is used in the next chapter.

21

CHAPTER 3

IDENTIFICATION OF CAMOUFLAGED TARGET USING

LIDAR DATA

3.1. INTRODUCTION

 Besides HSI data, various other types of remote sensing data such as multispectral, radar

and Lidar data, etc, have also been used in camouflaged breaking. Literature suggests that

specialized LiDAR sensing systems may be designed for military purposes such as target

positioned under trees, camouflaged target etc. Titterton in 2015 performed detection of

artificial targets using laser scanning system. Combined usage of data from different sensors

HSI and Lidar for detection of camouflaged targets is explored in this chapter.

3.2. EXPERIMENTAL DATA AND SOFTWARE

 The hyperspectral data used in earlier chapter detected the targets, while in this chapter

LiDAR data has been used for detection and identification of underlying camouflaged target.

3.2.1. SUBSET IMAGE

 Here, in this experiment the second subset, Subset 2 of the HSI image is used and shown

below.

(a)

22

(b)

Fig 8. (a) full image (b) subset of full image containing target.

3.2.2. DESCRIPTION OF TARGET

Set of three tall purple colored chairs (CAM_CHAIR) made up of plastic have been

placed at known locations. These chairs have been covered with camouflaging net (CAMO1).

field photograph of this target is shown in Figure 9.

Fig 9. A target having set of three chairs covered with CAMO1 net

3.2.3. SOFTWARE

 The software ENVI 5.3 and ENVI LIDAR 5.3 developed by L3HARRIS Geospatial is

used in this experiment.

23

3.3 METHODOLOGY

 The flow of methodology is shown below:

Fig 10. Flow of methodology for target identification using LIDAR data.

3.4 IMPLEMENTATION

Detection and identification of camouflaged target (set of three chairs) has been

performed using LiDAR point clouds. The steps of implementation are described below:

i. The HSI subset 2 is used to conduct the target detection, the pixel location is

used as seed location for LiDAR interpretation.

ii. Automatic point cloud classification is done on the basis of height.

iii. A 3D LiDAR view is created for the data.

iv. Pixel location of the target from HSI detection is pointed on the 3D LiDAR

view.

v. A digital surface model is created to confirm the target surface property and

finally identify the set of three chair underlying the camouflaged net target.

vi. Reference data such as contextual images provided in dataset at the site of target

is use to confirm the presence of target in the image data of the RIT campus

area.

24

3.5. RESULTS AND DISCUSSIONS

 Results of LiDAR data processing:

The 3D view generated and the DSM created for the target is shown below. The DSM shows

3 peaks of valid chair height of the target is visible in the figure. The location of the target is

matched with the HSI detection results as well as the reference contextual images.

(a)

(b)

TARGET

25

(c)

(d)

Figure 11. (a) LiDAR 3D viewer for the scene. (b) Subset scene near the target.

(c) and (d) DSM generated for the scene and the target respectively.

 From the above figures, the following observations and conclusion can be made.

• The Digital Surface Model shows in figure (d) the three peaks indicating the

presence of three chairs target that were covered with the camouflaged net.

• The contextual images as reference confirmed that the target location associated

with the its surroundings

• Hence, it can be concluded that the LiDAR point cloud, DSMs and the reference

data can aid in identification of the target to be detected.

26

3.6 SUMMARY

 The results demonstrated that the detection on camouflaging material can be

performed using various Target detection algorithm and the identification part can be

performed using the LiDAR data with the combination of reference data. Furthermore,

the results obtained by processing LiDAR point demonstrate the use of DSM of the

potential target at the seed locations generated using the HSI processing.

27

CHAPTER 4

COMPARATIVE ASSESSMENT OF SPECTRAL TARGET

DETECTION ALGORITHMS

4.1 INTRODUCTION

A receiver operator characteristic (ROC) curve is a standard approach for assessing

detection results. The false alarm rate (FAR) vs the detection rate (DR) plot for a particular

target is known as an ROC curve. A log FAR axis can be used to expand this figure and

highlight differences at low FAR values. When employing log ROC curves, a minimum FAR

value must be set because the minimum cannot be zero. These curves can be used for

performance analysis on their own, or metrics can be calculated from them. The DR at a certain

FAR is one such measure that may be taken from a ROC curve. This threshold metric reduces

the ROC curve to a single point on the curve specified by the user. This is typically a low FAR

on the order of 10−3 or 10−4.

4.2 ROC

 Four outcomes of the binary hypothesis test are possible.

i. TT: True target labeled as a target (correct detection).

ii. TB: True target labeled as background (missed detection).

iii. BT: True background labeled as target (false alarm).

iv. BB: True background labeled as background (correct non detection).

 The ROC curve describes detection performance with PD plotted as a function of PFA.

When applied to a known empirical situation (with ground truth), these probabilities are

estimated by the maximum-likelihood estimates.

𝑃̂D =

 Number of observed true detections (𝑁TT)

 Number of possible targets (𝑁TT + 𝑁TB)

(13)

𝑃̂FA =

 Number of observed false detections (𝑁BT)

 Number of background pixels (𝑁BT + 𝑁BB)

(14)

 The ROC curve is created by shifting the threshold across the test statistic's range, with

28

points on the curve calculated by counting the number of true and false detections at each

threshold and computing (13) and (14) at each threshold. When the test statistic for the target

and background samples overlaps, increasing the number of true detections will inevitably

result in an increase in the number of false alarms. This tradeoff is represented by the ROC

curve.

 The genuine positive rate (Sensitivity) is presented as a function of the false positive rate

(100-Specificity) at various cut-off points in a Receiver Operating Characteristic (ROC) curve.

A sensitivity/specificity pair corresponding to a specific decision threshold is represented by

each point on the ROC curve. The ROC curve of a test with perfect discrimination (no overlap

between the two distributions) passes through the upper left corner (100 percent sensitivity,

100 percent specificity). As a result, the higher the overall accuracy of the test, the closer the

ROC curve is to the upper left corner.

4.3 DATA AND SOFTWARE

This chapter uses the data of the worked upon in chapter 2 and presents the valid ROC

curve analysis for the various algorithm used in the chapter 1, i.e., MF, ACE and SAM

preferably for the tan camouflaged target.

All the implementations are performed using the ENVI version 5.3 and the MATLAB

r2021a software.

4.4 METHODOLOGY

The methods are described in below steps:

i. The spectra from the image for the tan camouflage target is saved with the

header file using ENVI.

ii. The atmospherically corrected subset 1 image is input in MATLAB. The

implementation in MATLAB is depended on the image processing toolbox and

Hyperspectral image processing toolbox of the MATLAB version.

iii. The code, refer appendix section, is ran for PCA and ICA pre-processing of the

subset image and for further applying MF, ACE and SAM on the same subset

separately for PCA and ICA results and ROC curves for each are generated.

4.5. IMPLEMENTATION

A source code in the appendix section is attached at last of this thesis that can be referred

for the implementation part of this chapter. The code is an implementation that uses MATLAB

programming and Image Processing Toolbox add on. The purpose of the implementation is to

generate ROC curves for the mentioned target detection algorithm in the methodology.

29

4.6. RESULTS AND DISCUSSIONS

 The spectra extracted from the image subset is saved and then imported in MATLAB.

The visualization of the spectra for tan camouflaging net is shown below.

Fig 12. Spectral signature of the tan camouflaged net target.

 Next the various resultant ROC curves after the dimensionality reduction (PCA and ICA)

and the target detection algorithm (MF, SAM and ACE) are shown next.

4.6.1 ICA based Target detection ROC curves

Fig. 13. ROC curve results of ICA based ACE algorithm

30

Fig. 14. ROC curve results of ICA based SAM algorithm

Fig. 15. ROC curve results of ICA based MF algorithm

31

4.6.2. PCA based Target Detection ROC curves

Fig. 16. ROC curve results of ICA based ACE algorithm

Fig. 17. ROC curve for SAM detection

32

Fig. 18. ROC curve results of PCA based MF detection

Following is observed from the ROC curves:

• From the above discussions about the ROC curve analysis, it can be seen in the results

that the ICA based Matched Filter (MF) algorithm has performed best in the detection

of the camouflaged target.

• Secondly, the ICA based ACE algorithm has shown second best algorithm in detection

of camouflaged target. While the PCA and the ICA based SAM (spectral angle mapper)

algorithm has performed badly in detection of the camouflaged target in the experiment.

4.7. SUMMARY

 This experiment focuses on comparing the performance of target detection algorithms

on the basis and inclusion of two dimensionality reduction algorithm with the RIT SHARE

2010 hyperspectral dataset. From the results it can be seen that the ICA based ACE and MF

algorithms has performed well as compared to the PCA based ACE and MF results of ROCs.

33

CHAPTER 5

TARGET OBJECT DETECTION IN OPTICAL AND SAR

DATASETS USING DEEP LEARNING METHODS

5.1 INTRODUCTION

Computer vision technology has been integrated into all aspects of life in the continuous

development of today’s society. Target detection is a very basic but very important task in

computer vision technology. Target detection is used in social security management, traffic

vehicle monitoring, environmental pollution detection, and forest disasters. There are very

outstanding application results in the fields of early warning and national defense security. The

task of target detection mainly includes the recognition and location of single or multiple

targets of interest in digital images. Target detection algorithms have been studied for many

years. In the 1990s, many effective traditional target detection algorithms appeared. They

mainly used traditional feature extraction algorithms to extract features and then combined with

template matching algorithms or classifiers for target recognition. However, traditional

algorithms have encountered a bottleneck in their development due to the lack of strong

semantic information and complex calculations. In 2014, Ross Girshick proposed a

convolutional network-based target detection model RCNN with high detection accuracy and

strong specific robustness and generalization ability, making people pay more attention to the

use of convolutional neural networks to extract high-level semantic information of images and

many excellent detection models of convolutional neural networks have been proposed.

5.2. DATASETS AND SOFTWARE

 Image chips from Planet satellite imagery collected over the San Francisco Bay and

San Pedro Bay areas of California make up dataset 1. It contains 4000 80x80 RGB photos with

a classification of "ship" or "no-ship." PlanetScope full-frame visual scene products,

orthorectified to a 3 m pixel scale, were used to create image chips.

Shipsnet.json, a JSON-formatted text file, is also included with the dataset. Data, label,

scene ids, and location lists are all included in the loaded object.

34

i. “label”: Valued 1 or 0, representing the "ship" class and "no-ship" class, respectively.

ii. “longitude_latitude”: The longitude and latitude coordinates of the image center point,

with values separated by a single underscore.

 The dataset 2 which was obtained from IEEE Dataport, is “A SAR SHIP DATASET FOR

DETECTION, DISCRIMINATION AND ANALYSIS”. The dataset contains 43 Sentinel-1

Extended Wide Swath images and three RADARSAT-2 ScanSAR Narrow images from

October 6, 2014, to July 22, 2015. Using multiple polarizations and three different resolutions,

these photos cover a substantial portion of the South African Exclusive Economic Zone.

Synthetic Aperture Radar is a surveillance system that is particularly well suited to marine

surveillance. Large swath widths, time-independent observations, and weather resistance can

be particularly beneficial for detecting ships that are generally unseen to conventional means

of monitoring. The entire generation process from the initial compressed data to the geo - coded

images is described in detail, as well as the dataset organizational structure tailored to each

phase of the ship detection process, ship referencing and attribute extraction practices,

additional Automatic Identification System (AIS) transponder information and matching, and

ship reference and Automatic Identification System matched ship attribute analysis.

TABLE 11: Dataset information per image sensor and polarization.

5.2.1. DESCRIPTION OF TARGETS

Class Labels of Dataset 1:

 There are 1000 photos in the "ship" class. Images in this category are near-centered on a

single ship's body. There are ships of various sizes, orientations, and atmospheric collection

conditions. Below are some examples of photographs from this lesson.

35

Fig 19. Ship class image patches of the optical satellite dataset.

 There are 3000 photos in the "no-ship" class. A third of them are random samples of various

landcover features, such as water, flora, bare dirt, buildings, and so on, that do not include any

part of a ship. The third category is "partial ships," which contain only a fraction of a ship but

not enough to match the "ship" class's full definition.

Fig 20. No- ship class image patches of the optical satellite dataset.

Dataset 2:

 A ship is defined as any item that is sufficiently brighter than its surrounding ocean

backscatter in SAR intensity imagery covering the ocean. A ship was presumed to be an area

of ocean with significantly higher backscatter than its neighbours and is at least 2 pixels in

length for the sake of simplicity and due to the resolution of the SAR imagery for this dataset.

Ships with dimensions less than these are outside the scope of this dataset and would be better

analysed with higher resolution SAR imagery. As a result, single pixels with strong backscatter

due to speckle noise are ignored by this definition.

 There are four images associated with each ship in the dataset: a "ship patch," a "reference

patch," a "ship sub-image," and a "reference sub-image." Patches are big pictures centred on

the ship that cover a large region of pixel (101 x 101). Sub-images are smaller images (21 x

21) with little to no information 5 other than the ships in the image's centre. A reference image

is a binary image that shows "true" for pixels related with the ship in the centre and "false" for

36

all other pixels. The sizes of the reference photos were selected to match the SAR ship patches

and sub-images (101 x 101 and 21 x 21 respectively).

 The Automatic Identification System (AIS) is a transponder system that is installed aboard

ships and sends their positions at regular intervals. Ship tracks can be formed by tracking these

places over time. AIS messages are received in one of two ways: by terrestrial AIS receivers

on the coast or inland satellite-based receivers. Coastal-based AIS receivers have a range of

around 74 kilometres from the coast and receive messages in near real time, but satellite-based

AIS communications are received every 6-12 hours and have a near-global range. The SAR

dataset includes roughly 220 million AIS signals obtained from the 6th of October 2014 to the

22nd of July 2015, and it covers the full of South Africa's EEZ.

Fig. 21. Nine sub-images from the SAR dataset

5.2.2. SOFTWARE

 All the programming regarding this experiment were performed on Google Colab.

Colaboratory, or "Colab" for short, allows one to write and execute Python in browser.

5.3. METHODOLOGY

 Convolutional neural network target detection also has certain similarities with traditional

detection, which can be regarded as feature extraction and use of features to identify targets.

Both backbone feature extraction network and "detection head".

37

 Convolutional neural networks use convolutional networks to extract high-level

semantic features of images, which are generally the backbone of the network, and then process

the feature maps, such as connecting a fully connected network and softmax to form a

classification head to complete the classification task, or use a small volume The product core

is processed into feature dimensions and a position loss function is used to form target

positioning.

 The network judges the error through the loss function and updates the network weight

parameters by the reverse gradient propagation of the network, thereby continuously reducing

the value of the loss function to improve the detection accuracy. The detection network

calculates multiple times through a large amount of training data and can learn a set of optimal

weight values from the set of data to predict the detection target.

 The model model is based on four Conv2D layers: an input layer with a 2x2 MaxPool2D

pooling layer, two dense layers of 64 and 128 neurons each with a ReLU activation function,

and a final layer with two neurons and the softmax activation function for producing final class

predictions.

5.4. IMPLEMENTATION

For this Section, code can be referred from the appendix attached at the end of the

thesis.

5.5. RESULTS AND DISCUSSIONS

 The following results were obtained as a result of the CNN model used for Dataset 1 and Dataset 2.

(a)

38

(b)

(c)

39

(d)

Fig 22. The CNN results of optical satellite dataset in detection of ship class. (a) visualization of the ship and

non-ship class labels. (b) Confusion Matrix (c) Model summary (d) Detection report.

(a)

(b)

Fig 23.CNN Detection results for SAR satellite dataset. (a) Visualization of the ship and non-ship

class. (b) Confusion Matrix.

40

5.6. SUMMARY

 Synthetic Aperture Radar is a surveillance system that is particularly well suited to

marine surveillance. Large swath widths, time-independent observations, and weather

resistance can be particularly beneficial for detecting ships that are generally unseen to

conventional means of monitoring. The accuracy of the CNN model used in this experiment

was obtained as 98% accurate for the optical satellite dataset.

41

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

6.1 CONCLUSION

An important component of Earth Observation in supporting the primary aims of the

space and security and defence domain is the provision of image and geospatial intelligence

products and services resulting from the exploitation of remotely sensed data acquired by

sensors mounted on spaceborne assets. The reflections or emissions measured by the different

types of sensors are depicted in images that need to be converted into meaningful information.

For target detection in remotely sensed images, targets can be referred to as man-made or

natural object or an event or activity of interest. Many applications of military and civilian

applications involve the detection of an object or activity such as military vehicles or vehicles

track. Hyperspectral target identification algorithms look at the spectrum of each pixel to find

targets based on the spectral characteristics of the target's surface material. Combination of

Hyperspectral data and LiDAR data can be found extremely useful in detection and also

identification of the target such as camouflaged target used in this study.

 Artificial Intelligence (AI) methods are progressively demonstrating the potential to get

information out faster with more thorough and complete analysis. In recent years, neural

network applications increasingly demonstrated better capability to automatically discover

relevant contextual features in remotely sensed images. Data volume and computational

capacity increased exponentially, boosting precisely the application of neural network

computing to satellite image. Combining satellite radar imagery with Automatic Identification

System (AIS), coastal radars, Vessel Monitoring System (VMS), and any available intelligence

data provide useful information to build a database behavior concerning the vessel tracks in

specific area. Any deviation from recognized track patterns might be considered as an anomaly

to be further investigated. A thorough exploitation of SAR imagery strengths would enlarge

the use of SAR imagery alone and/or in combined use with electro-optical images, thus taking

full advantage of its unique 24/7 and all-weather characteristics, therefore raising the

effectiveness of investments made by several European Ministries of defence on SAR satellites.

 In this thesis, various target detection methodologies is used to detect targets in optical,

microwave and Lidar data successfully jointly with the rich reference data available from multi-

42

platform and multi-sensors.

6.2 FUTURE SCOPE

There is a great need for better performing target detection algorithms in real time data

processing. Hence the development of better performing algorithms can revolutionize the

remote sensing target detection application more importantly for defence and strategic interest

targets such as camouflaged, hiding and disguising targets.

 In case of applying deep learning artificial intelligence it should known that with the

diversification of detection task requirements, the target detection model is no longer a single

task model, which adds instance segmentation (similar to multi-target detection, but uses edge

contours instead of bounding boxes (target boxes)) and some are also added Panoramic

segmentation (it is a combination of semantic segmentation and instance segmentation:

semantic segmentation refers to assigning a category to each pixel on the image (can be

distinguished by color) but does not distinguish between individuals). Hence, in order to pursue

faster and more accurate target detection algorithm models, the algorithm model will

incorporate more other advanced model algorithms, and single-stage and two-stage methods

will gradually merge. For example, the target position estimation proposed by the single-stage

CornerNet-Lite model is pseudo. The two-stage model adopts the idea of two-stage target

detection.

43

REFERENCES

[1] Mohamed El Zalaky. Target Detection Using Matched Filtering Analysis of the ASTER

Data for Exploration of Uranium Mineralization in the Northern Part of El-Erediya

Pluton , Central Eastern Desert , Egypt

[2] Ariolfo Camacho, A comparative study of target detection algorithms in hyperspectral

imagery applied to agricultural crops in Colombia

[3] M Lega 1, C Ferrara, G Persechino, P Bishop Remote sensing in environmental police

investigations: aerial platforms and an innovative application of thermography to detect

several illegal activities

[4] Chen Ke, Military object detection using multiple information extracted from

hyperspectral imagery

[5] Dimitris Manolakis and Gary Shaw, “Detection algorithms for hyperspectral Imaging

applications”

[6] Dimitris Manolakis, “Hyperspectral Image Processing for Automatic Target Detection

Applications

[7] D. Manolakis and G. A. Shaw, Detector algorithm for hyper spectral Imaging

application.

[8] C.I. Chang, Hyperspectral Imaging -Techniques for Spectral Detection and

Classification,

[9] A.R. Stefan , P. K. Varshney, “Further Results in Use of Independent Components

Analysis for Target Detection in Hyperspectral Images

[10] A. Hyvarinen A and E. Oja E, Independent Component Analysis : Algorithms and

Applications

[11] S. A. Robila, P. K. Varshney, “Target Detection in Hyperspectral Images Based on

Independent Component Analysis”, Proceedings of SPIE AeroSense, 2002, 173-182

[12] S-S. Chiang, C-I. Chang , and I.W. Ginsberg, “Unsupervised target detection in

hyperspectral images using projection pursuit”, IEEE Transactions on Geoscience and

Remote Sensing, 39, no. 7, 2001, 1380-1391

[13] A. Ifarraguerri , and C.-I Chang, “Unsupervised hyperspectral image analysis with

44

projection pursuit”, IEEE Transactions on Geoscience and Remote Sensing, 38, no. 6,

2000, 2529-2538

[14] C.H. Chen, X. Zhang, “Independent component analysis for remote sensing”,

Proceedings of SPIE Image and Signal Processing Conference for Remote Sensing V,

3871, 1999, 150-157

[15] T.M. Tu, P.S. Huang, P.Y. Chen, “Blind separation of spectral signatures in

hyperspectral imagery”, IEE Proceedings on Vision, Image and Signal Processing, 148,

no. 4, 2001, 217-226

[16] S-S. Chiang, C-I. Chang, and I.W. Ginsberg, “Unsupervised hyperspectral image

analysis using independent component analysis”, Proceedings of IEEE Geoscience and

Remote Sensing Symposium, 7, 2000, 3136-3138

[17] A. J. Bell, and T. J. Sejnowski, “The 'Independent Components' of natural scenes are

edge filters”, Vision Research, 37, no. 23, 1999, 3327-3338

[18] S. A. Robila, P. K. Varshney, “A Fast Source Separation Algorithm for Hyperspectral

Imagery”, Proceedings of IEEE IGARSS 2002, 3516-3518

[19] Hyperspectral Digital Imagery Collection Experiment Documentation, August, 1995.

[20] J. Bowles, J. Antoniades, and all, “Real time analysis of hyperspectral data sets using

NRL’s ORASIS algorithm”, Proceedings SPIE, 1997, 38-45.

[21] Bell, A. and Sejnowski, T. (1997). The ’independent components’ of natural scenes are

edge filters. Vision Research, 37:3327–3338.

[22] Cardoso, J.-F. (1997). Infomax and maximum likelihood for source separation. IEEE

Letters on Signal Processing, 4:112–114.

[23] Comon, P. (1994). Independent component analysis—a new concept? Signal

Processing, 36:287–314

[24] Delfosse, N. and Loubaton, P. (1995). Adaptive blind separation of independent sources:

a deflation approach. Signal Processing, 45:59–83

[25] Gonzales, R. and Wintz, P. (1987). Digital Image Processing. Addison-Wesley.

[26] Hyvärinen, A. (1998b). New approximations of differential entropy for independent

component analysis and projection pursuit. In Advances in Neural Information

Processing Systems, volume 10, pages 273–279.MIT Press.

[27] Kiviluoto, K. and Oja, E. (1998). Independent component analysis for parallel financial

time series. In Proc. Int. Conf. on Neural Information Processing (ICONIP’98), volume

2, pages 895–898, Tokyo, Japan.

[28] Vigário, R., Jousmäki, V., Hämäläinen, M., Hari, R., and Oja, E. (1998). Independent

45

component analysis for identification of artifacts in magnetoencephalographic

recordings. In Advances in Neural Information Processing Systems, volume 10, pages

229–235.MIT Press.

[29] Jin, X. & Davis, C.H., 2005. Automated building extraction from high-resolution

satellite imagery in urban areas using structural, contextual, and spectral information,

EURASIP Journal on Applied Signal Processing, 2005(14): 2196-2206.

[30] Meng, X., 2005. A slope- and elevation-based filter to remove non-ground

measurements from airborne LIDAR Data, UCGIS Summer Assembly, June 28-July 1,

Jakson Hole, Wyoming-USA.

[31] Morgan, M., & Tempfli, K., 2000. Automatic building extraction from airborne laser

scanning data, In Proc. 19th ISPRS Congr., Amsterdam-The Netherlands, book 3B, pp.

616-623.

[32] Rottensteiner, F., Trinder, J., Clode, S., & Kubik, K., 2003. Building detection using

LIDAR data and multi-spectral images, Proc. VIIth Digital Image Computing:

Techniques and Applications, Sydney-Australia, pp.10-12.

[33] Sohn, G. & Dowman, I., 2003. Building Extraction. Using LIDAR DEMs and IKONOS

Images, ISPRS, Volume XXXIV, PART 3/W13. Dresden-Germany, pp. 8-10.

[34] Peng, J., Zhang, D., & Liu, Y., 2005. An improved snake model for building detection

from urban aerial images, Pattern Recognition Letters, 26(5): 587-595.

[35] Rottensteiner, F., Trinder, J., Clode, S., & Kubik, K., 2003. Building detection using

LIDAR data and multi-spectral images, Proc. VIIth Digital Image Computing:

Techniques and Applications, Sydney-Australia, pp.10-12.

46

APPENDIX 1: DATA COLLECTION

Chapter Wise Data Collection sources or weblinks:

CHAPTER 2:

1. http://dirsapps.cis.rit.edu/share-2010/cgi-bin/share-2010.pl

- SpecTIR Hyperspectral Airborne Rochester Experiment (SHARE)

2. http://dirsapps.cis.rit.edu/wwwdata/share-2010/SpecTIR_20100729/

- SpecTIR Imagery (non-Geo Corrected) (29 July 2010)

CHAPTER 3:

 1. http://dirsapps.cis.rit.edu/wwwdata/share-2010/LiDAR_20100726/

 - Kucera LiDAR Imagery (26 July 2010)

 2. http://dirsapps.cis.rit.edu/wwwdata/share-2010/GroundTruth/ContextPhotos_Ground/

 - Ground truth contextual imagery

CHAPTER 5:

 1. https://www.kaggle.com/rhammell/ships-in-satellite-imagery

 - Dataset for optical satellite image for ship detection

 2. https://ieee-dataport.org/documents/sar-ship-dataset-detection-discrimination-and-analysis

 - A SAR SHIP DATASET FOR DETECTION, DISCRIMINATION AND ANALYSIS

 - IEEE Dataport https://ieee-dataport.org/datasets

 - Categories: Geoscience and Remote Sensing, Keywords: SAR, Machine Learning

47

APPENDIX 2: SOURCE CODE

Chapter Wise source code that can be referred for

implementation:

CHAPTER 4.

The Source Code for the developed ROC analysis using MATLAB for

various algorithms

15/10/21 6:23 PM C:\Users\Sushmita Gautam\D...\QUAC_TD.m

% Read in the data
w = 161;
h = 132;
p = 360;
M = multibandread('QUAC.dat', [w h p], 'uint16', 0, 'bsq', 'ieee-le');
lData = hyperGetHymapWavelengthsNm();
% Read in target signatures
[sig1,lsig] = hyperGetEnviSignature('tan.txt');
figure; imagesc(M(:,:,18)); axis image; colormap(gray);
% Get signature from data for comparison
%fsig1 = squeeze(M(295,1139,:));
%sig1 = fsig1;
% Resample data to commone wavelength set
desiredLambdas = lData;
sig1 = squeeze(hyperResample(sig1, lsig, desiredLambdas));
%figure; plot(sig1); grid on; title('Signature 1');
xlabel('Wavelength [nm]'); ylabel('Reflectance [%]');
hold on; plot(fsig1, '--');
legend('Recorded', 'From Image');
sig1=transpose(sig1);
% Display data
M = hyperConvert2d(M);
%figure; imagesc(M_pct); axis image; title('Scene');
algorithm = lower('matchedfilter');
tic
switch algorithm
case 'matchedfilter'
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1);
case 'ace'
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1);
case 'sid'
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1);
case 'cem'
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1);
end
toc
% Display results and write to file
figure; imagesc(r); axis image; colorbar;
title(algorithm);

48

[a,b]=sort(r(:),'descend');
tmpicamf = a(1:20);
figure; plot(tmpicamf./tmpicamf(1)); grid on;
[x, y, val] = hyperMax2d(r);
tmpmf = (hyperNormalize(r)*2^10);
multibandwrite(tmpicamf,'tmpicamf.tif','bsq');
[pd,fa] = hyperRoc(r);
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt'));

algorithm = lower('sam');
tic
switch algorithm
case 'matchedfilter'
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1);
case 'ace'
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1);
case 'sid'
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1);
case 'cem'
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1);
case 'sam'
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1)));
end
toc
% Display results and write to file
figure; imagesc(r); axis image; colorbar;
title(algorithm);
[a,b]=sort(r(:),'descend');
tmpsam2 = a(1:20);
figure; plot(tmpsam2./tmpsam2(1)); grid on;
[x, y, val] = hyperMax2d(r);
tmpsam2 = (hyperNormalize(r)*2^10);
multibandwrite(tmpsam2,'tmpsam2.tif','bsq');
[pd,fa] = hyperRoc(r);
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt'));
algorithm = lower('cem');
tic
switch algorithm
case 'matchedfilter'
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1);
case 'ace'
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1);
case 'sid'
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1);
case 'cem'
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1);
case 'sam'
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1)));
end
toc
% Display results and write to file
figure; imagesc(r); axis image; colorbar;
title(algorithm);
[a,b]=sort(r(:),'descend');
tmpcem = a(1:20);
figure; plot(tmpcem./tmpcem(1)); grid on;

[x, y, val] = hyperMax2d(r);

49

tmpcem = (hyperNormalize(r)*2^10);
multibandwrite(tmpcem,'tmpcem.tif','bsq');
[pd,fa] = hyperRoc(r);
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt'));
algorithm = lower('sam');
tic
switch algorithm
case 'matchedfilter'
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1);
case 'ace'
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1);
case 'sid'
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1);
case 'cem'
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1);
case 'sam'
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1)));
end
toc
% Display results and write to file
figure; imagesc(r); axis image; colorbar;
title(algorithm);
[a,b]=sort(r(:),'descend');
tmpsam2 = a(1:20);
figure; plot(tmpsam./tmpsam(1)); grid on;
[x, y, val] = hyperMax2d(r);
tmpsam2 = (hyperNormalize(r)*2^10);
multibandwrite(tmpsam2,'tmpsam2.tif','bsq');
[pd,fa] = hyperRoc(r);
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt'));
algorithm = lower('sid');
tic
switch algorithm
case 'matchedfilter'
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1);
case 'ace'
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1);
case 'sid'
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1);
case 'cem'
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1);
case 'sam'
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1)));
end
toc
% Display results and write to file

figure; imagesc(r); axis image; colorbar;
title(algorithm);
[a,b]=sort(r(:),'descend');
tmpsid = a(1:20);
figure; plot(tmpsam./tmpsam(1)); grid on;
[x, y, val] = hyperMax2d(r);
tmpsid = (hyperNormalize(r)*2^10);
multibandwrite(tmpsid,'tmpsid.tif','bsq');
[pd,fa] = hyperRoc(r);
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt'))

50

algorithm = lower('ica-eea');
tic
switch algorithm
case 'ica-eea'
[U, X] = hyperIcaEea(M, 50, sig1);
r = X(1,:);
r = hyperConvert3d(r, w, h, 1);
end
toc
% Display results and write to file
figure; imagesc(r); axis image; colorbar;
title(algorithm);
[a,b]=sort(r(:),'descend');
tmpica = a(1:20);
figure; plot(tmpica./tmpica(1)); grid on;
[x, y, val] = hyperMax2d(r);
tmpica = (hyperNormalize(r)*2^10);
multibandwrite(tmpica,'tmpica.tif','bsq');
[pd,fa] = hyperRoc(r);
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt'));
algorithm = lower('sam');
tic
switch algorithm
case 'matchedfilter'
r = hyperConvert3d(hyperMatchedFilter(M, sig1), w, h, 1);
case 'ace'
r = hyperConvert3d(hyperAce(M, sig1), w, h, 1);
case 'sid'
r = hyperConvert3d(hyperSid(M, sig1), w, h, 1);
case 'cem'
r = hyperConvert3d(hyperCem(M, sig1), w, h, 1);
case 'sam'
r = (1./(eps+hyperConvert3d(hyperSam(M, sig1), w, h, 1)));
end
toc

% Display results and write to file
figure; imagesc(r); axis image; colorbar;
title(algorithm);
[a,b]=sort(r(:),'descend');
tmpsam2 = a(1:20);
figure; plot(tmpsam2./tmpsam2(1)); grid on;
[x, y, val] = hyperMax2d(r);
tmpsam2 = (hyperNormalize(r)*2^10);
multibandwrite(tmpsam2,'tmpsam2.tif','bsq');
[pd,fa] = hyperRoc(r);
figure; plot(fa,pd,'.'); grid on; title(sprintf('%s\n%s',algorithm, 'tan.txt'));

51

CHAPTER 5.

The Source Code for the developed CNN model implementation on optical

satellite data.

-*- coding: utf-8 -*-

"""Copy of optical_ship.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1XpF87kGonQZvejMfSQ6CnR_Vw_Vgwa1_

"""

from google.colab import drive

drive.mount('/content/drive')

!ls "/content/drive/My Drive/SHIP/shipsnet.json"

import numpy as np

from numpy import expand_dims

import pandas as pd

import json

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.metrics import confusion_matrix

import tensorflow as tf

from tensorflow.keras.utils import to_categorical

import keras

from tensorflow.keras import layers

from keras.wrappers.scikit_learn import KerasClassifier

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D

from tensorflow.keras.optimizers import RMSprop,Adam

from keras.preprocessing.image import ImageDataGenerator

52

from tensorflow.keras.callbacks import EarlyStopping

with open('/content/drive/My Drive/SHIP/shipsnet.json') as data_file:

 dataset = json.load(data_file)

shipsnet= pd.DataFrame(dataset)

shipsnet.head()

shipsnet = shipsnet[["data", "labels"]]

shipsnet.head()

ship_images = shipsnet["labels"].value_counts()[0]

no_ship_images = shipsnet["labels"].value_counts()[1]

print("Number of the ship_images :{}".format(ship_images),"\n")

print("Number of the ship_images :{}".format(no_ship_images))

Turning the json information into numpy array and then assign it as x and y variables

x = np.array(dataset['data']).astype('uint8')

y = np.array(dataset['labels']).astype('uint8')

x.shape

x_reshaped = x.reshape([-1, 3, 80, 80])

x_reshaped.shape

x_reshaped = x.reshape([-1, 3, 80, 80]).transpose([0,2,3,1])

x_reshaped.shape

y.shape

y_reshaped = to_categorical(y, num_classes=2)

y_reshaped.shape

y_reshaped

image_no_ship = x_reshaped[y==0]

image_ship = x_reshaped[y==1]

def plot(a,b):

53

 plt.figure(figsize=(15, 15))

 for i, k in enumerate(range(1,9)):

 if i < 4:

 plt.subplot(2,4,k)

 plt.title('Not A Ship')

 plt.imshow(image_no_ship[i+2])

 plt.axis("off")

 else:

 plt.subplot(2,4,k)

 plt.title('Ship')

 plt.imshow(image_ship[i+15])

 plt.axis("off")

 plt.subplots_adjust(bottom=0.3, top=0.7, hspace=0.25)

#Implementation of the function

plot(image_no_ship, image_ship)

x_reshaped = x_reshaped / 255

x_reshaped[0][0][0] # Normalized RGB values of the firs pixel of the first image in the dataset.

n_bins = 30

plt.hist(x_reshaped[y == 0][0][:,:,0].flatten(), bins = n_bins, lw = 0, color = 'r', alpha = 0.5);

plt.hist(x_reshaped[y == 0][0][:,:,1].flatten(), bins = n_bins, lw = 0, color = 'g', alpha = 0.5);

plt.hist(x_reshaped[y == 0][0][:,:,2].flatten(), bins = n_bins, lw = 0, color = 'b', alpha = 0.5);

plt.ylabel('Count', fontweight = "bold")

plt.xlabel('Pixel Intensity', fontweight = "bold")

plt.title("Histogram of normalized data")

plt.show()

x_train_1, x_test, y_train_1, y_test = train_test_split(x_reshaped, y_reshaped,

 test_size = 0.20, random_state = 42)

x_train, x_val, y_train, y_val = train_test_split(x_train_1, y_train_1,

 test_size = 0.25, random_state = 42)

54

print("x_train shape",x_train.shape)

print("x_test shape",x_test.shape)

print("y_train shape",y_train.shape)

print("y_test shape",y_test.shape)

print("y_train shape",x_val.shape)

print("y_test shape",y_val.shape)

x_train.shape

model = Sequential()

model.add(Conv2D(filters = 64, kernel_size = (4,4),padding = 'Same',

 activation ='relu', input_shape = (80,80,3)))

model.add(MaxPool2D(pool_size=(5,5)))

model.add(Dropout(0.25))

model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',

 activation ='relu'))

model.add(MaxPool2D(pool_size=(3,3), strides=(1,1)))

model.add(Dropout(0.25))

model.add(Conv2D(filters = 16, kernel_size = (2,2),padding = 'Same',

 activation ='relu'))

model.add(MaxPool2D(pool_size=(3,3), strides=(1,1)))

model.add(Dropout(0.25))

Fully connected

model.add(Flatten())

model.add(Dense(200, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(100, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(100, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(50, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(2, activation = "softmax"))

optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

55

model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])

from tensorflow.keras import callbacks

earlystopping = callbacks.EarlyStopping(monitor ="val_loss", mode ="min", patience = 10,

restore_best_weights = True)

history = model.fit(x_train, y_train, epochs = 100, validation_data=(x_val, y_val), callbacks = [earlystopping])

model.evaluate(x_test, y_test)

pd.DataFrame(history.history).plot();

datagen = ImageDataGenerator(

 featurewise_center=False,

 samplewise_center=False,

 featurewise_std_normalization=False,

 samplewise_std_normalization=False,

 zca_whitening=False,

 rotation_range=5,

 zoom_range = 0.1,

 width_shift_range=0.1,

 height_shift_range=0.1,

 horizontal_flip=False,

 vertical_flip=False)

datagen.fit(x_train)

data = x_reshaped[y==1][15]

expand dimension to one sample

samples = expand_dims(data, 0)

create image data augmentation generator

datag = ImageDataGenerator(brightness_range=[0.2,1.0],

 zoom_range=[0.5,1.0],

 horizontal_flip=True,

 rotation_range=90)

prepare iterator

it = datag.flow(samples, batch_size=1)

generate samples and plot

plt.figure(figsize = (10,10))

for i in range(9):

 # define subplot

56

 plt.subplot(3,3,i+1)

 # generate batch of images

 batch = it.next()

 # convert to unsigned integers for viewing

 image = batch[0].astype('uint8')

 # plot raw pixel data

 plt.imshow(image)

 # show the figure

plt.show()

history = model.fit(datagen.flow(x_train, y_train), epochs = 100,

 validation_data=(x_val, y_val), callbacks = [earlystopping])

model.evaluate(x_test, y_test)

from sklearn import metrics

import seaborn as sns

Y_pred = model.predict(x_test)

Convert predictions classes to one hot vectors

Y_pred_classes = np.argmax(Y_pred,axis = 1)

Convert validation observations to one hot vectors

Y_true = np.argmax(y_test,axis = 1)

Compute the confusion matrix

print("\n""Test Accuracy Score : ",metrics.accuracy_score(Y_true, Y_pred_classes),"\n")

fig, axis = plt.subplots(1, 3, figsize=(20,6))

axis[0].plot(history.history['val_accuracy'], label='val_acc')

axis[0].set_title("Validation Accuracy")

axis[0].set_xlabel("Epochs")

axis[0].set_ylabel("Val. Acc.")

axis[1].plot(history.history['accuracy'], label='acc')

axis[1].set_title("Training Accuracy")

axis[1].set_xlabel("Epochs")

axis[0].set_ylabel("Train. Acc.")

axis[2].plot(history.history['val_loss'], label='val_loss')

axis[2].set_title("Test Loss")

axis[2].set_xlabel("Epochs")

axis[2].set_ylabel("Loss")

plt.show()

57

confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)

Plot the confusion matrix

f,ax = plt.subplots(figsize=(7, 7))

sns.heatmap(confusion_mtx, annot=True, linewidths=0.01,linecolor="gray", fmt= '.1f',ax=ax)

plt.xlabel("Predicted Label")

plt.ylabel("True Label")

plt.title("Confusion Matrix")

plt.tight_layout()

plt.show()

pd.DataFrame(history.history).plot();

prediction = model.predict(x_test)

pd.Series(prediction[0], index=["Not A Ship", "Ship"])

with open('modelsummary.txt', 'w') as f:

 model.summary(print_fn=lambda x: f.write(x + '\n'))

plt.rc('figure', figsize=(12, 7))

#plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 12}) old approach

plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 10}, fontproperties = 'monospace') # approach improved

by OP -> monospace!

plt.axis('off')

plt.tight_layout()

plt.savefig('output_model_Summary.png')

from sklearn.metrics import classification_report, accuracy_score

pred = np.argmax(model.predict(x_test), axis=1)

Classification Report

print(classification_report(pred, np.argmax(y_test, 1),

 target_names = ['1. No Ship', '2. Ship']))

58

The Source Code for the developed CNN model implementation on SAR

satellite data.

-*- coding: utf-8 -*-

"""SAR SHIP.ipynb

Automatically generated by Colaboratory.

Original file is located at

 https://colab.research.google.com/drive/1DUO5rRgpy1cyh0SLa7SmZur7J2-9UEjR

"""

from google.colab import drive

drive.mount('/content/drive')

!ls "/content/drive/My Drive/ieee sar ship subscribed"

import numpy as np

from numpy import expand_dims

import pandas as pd

import json

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.model_selection import cross_val_score

from sklearn.metrics import confusion_matrix

from tensorflow.keras.utils import to_categorical

import keras

from keras import layers

from keras.wrappers.scikit_learn import KerasClassifier

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPool2D

from tensorflow.keras.optimizers import RMSprop,Adam

from keras.preprocessing.image import ImageDataGenerator

from keras.callbacks import EarlyStopping

import json

59

#dataset = json.load('/content/drive/My Drive/ieee sar ship subscribed/json/ship_positives')

with open('/content/drive/My Drive/ieee sar ship subscribed/json/ship_positives.json') as data_file:

 dataset = json.load(data_file)

ship= pd.DataFrame(dataset).T

ship.head()

ship.rename(columns={0:'column1'})

import pandas as pd

df2 = pd.json_normalize(ship[0])

df2.head()

dtype = type(df2["patchgt"])

print(dtype)

ship_images = df2["validais"].value_counts()[0]

no_ship_images = df2["validais"].value_counts()[1]

print("Number of the ship_images :{}".format(ship_images),"\n")

print("Number of the no ship_images :{}".format(no_ship_images))

dtype_before = type(df2["patchfu"])

data = df2["patchfu"].tolist()

dtype_after = type(data)

print("Data type before converting = {}\nData type after converting = {}".format(dtype_before, dtype_after))

print (data)

print(data[0:10])

labels = df2["validais"].tolist()

print(labels[0:10])

x = np.array(data).astype('uint8')

60

y = np.array(labels).astype('uint8')

newarr = x.reshape(x.shape[0], (x.shape[1]*x.shape[2]))

x= newarr

x.shape

x_reshaped = x.reshape([-1, 101, 101])

x_reshaped.shape

x_reshaped = x.reshape([-1,101, 101]).transpose([0,2,1])

x_reshaped.shape

y_reshaped = to_categorical(y, num_classes=2)

y_reshaped.shape

image_no_ship = x_reshaped[y==0]

image_ship = x_reshaped[y==1]

def plot(a,b):

 plt.figure(figsize=(15, 15))

 for i, k in enumerate(range(1,9)):

 if i < 4:

 plt.subplot(2,4,k)

 plt.title('Not A Ship')

 plt.imshow(image_no_ship[i+2])

 plt.axis("off")

 else:

 plt.subplot(2,4,k)

 plt.title('Ship')

 plt.imshow(image_ship[i+15])

 plt.axis("off")

 plt.subplots_adjust(bottom=0.3, top=0.7, hspace=0.25)

61

#Implementation of the function

plot(image_no_ship, image_ship)

x_reshaped = x.reshape([-1,1,101, 101]).transpose([0,2,3,1])

x_reshaped.shape

x_reshaped = x_reshaped / 255

x_reshaped[0][0][0] # Normalized RGB values of the firs pixel of the first image in the dataset.

x_train_1, x_test, y_train_1, y_test = train_test_split(x_reshaped, y_reshaped,

 test_size = 0.20, random_state = 42)

x_train, x_val, y_train, y_val = train_test_split(x_train_1, y_train_1,

 test_size = 0.25, random_state = 42)

print("x_train shape",x_train.shape)

print("x_test shape",x_test.shape)

print("y_train shape",y_train.shape)

print("y_test shape",y_test.shape)

print("y_train shape",x_val.shape)

print("y_test shape",y_val.shape)

x_train.shape

from keras import callbacks

model = Sequential()

model.add(Conv2D(filters = 32, kernel_size = (4,4),padding = 'Same',

 activation ='relu', input_shape = (101,101,1)))

model.add(MaxPool2D(pool_size=(1,1)))

model.add(Dropout(0.25))

model.add(Conv2D(filters = 32, kernel_size = (3,3),padding = 'Same',

 activation ='relu'))

model.add(MaxPool2D(pool_size=(1,1), strides=(1,1)))

model.add(Dropout(0.25))

62

model.add(Conv2D(filters = 16, kernel_size = (2,2),padding = 'Same',

 activation ='relu'))

model.add(MaxPool2D(pool_size=(1,1), strides=(1,1)))

model.add(Dropout(0.25))

Fully connected

model.add(Flatten())

model.add(Dense(200, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(100, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(100, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(50, activation = "relu"))

model.add(Dropout(0.5))

model.add(Dense(2, activation = "softmax"))

optimizer = Adam(lr=0.001, beta_1=0.9, beta_2=0.999)

model.compile(optimizer = optimizer , loss = "categorical_crossentropy", metrics=["accuracy"])

earlystopping = callbacks.EarlyStopping(monitor ="val_loss",

 mode ="min", patience = 10,

 restore_best_weights = True)

history = model.fit(x_train, y_train, epochs = 100, validation_data=(x_val, y_val), callbacks = [earlystopping])

model.evaluate(x_test, y_test)

pd.DataFrame(history.history).plot();

datagen = ImageDataGenerator(

 featurewise_center=False,

 samplewise_center=False,

 featurewise_std_normalization=False,

 samplewise_std_normalization=False,

 zca_whitening=False,

 rotation_range=5,

 zoom_range = 0.1,

 width_shift_range=0.1,

63

 height_shift_range=0.1,

 horizontal_flip=False,

 vertical_flip=False)

datagen.fit(x_train)

history = model.fit(datagen.flow(x_train, y_train), epochs = 100,

 validation_data=(x_val, y_val), callbacks = [earlystopping])

model.evaluate(x_test, y_test)

from sklearn import metrics

import seaborn as sns

Y_pred = model.predict(x_test)

Convert predictions classes to one hot vectors

Y_pred_classes = np.argmax(Y_pred,axis = 1)

Convert validation observations to one hot vectors

Y_true = np.argmax(y_test,axis = 1)

Compute the confusion matrix

print("\n""Test Accuracy Score : ",metrics.accuracy_score(Y_true, Y_pred_classes),"\n")

fig, axis = plt.subplots(1, 3, figsize=(20,6))

axis[0].plot(history.history['val_accuracy'], label='val_acc')

axis[0].set_title("Validation Accuracy")

axis[0].set_xlabel("Epochs")

axis[0].set_ylabel("Val. Acc.")

axis[1].plot(history.history['accuracy'], label='acc')

axis[1].set_title("Training Accuracy")

axis[1].set_xlabel("Epochs")

axis[0].set_ylabel("Train. Acc.")

axis[2].plot(history.history['val_loss'], label='val_loss')

axis[2].set_title("Test Loss")

axis[2].set_xlabel("Epochs")

axis[2].set_ylabel("Loss")

plt.show()

confusion_mtx = confusion_matrix(Y_true, Y_pred_classes)

Plot the confusion matrix

f,ax = plt.subplots(figsize=(7, 7))

64

sns.heatmap(confusion_mtx, annot=True, linewidths=0.01,linecolor="gray", fmt= '.1f',ax=ax)

plt.xlabel("Predicted Label")

plt.ylabel("True Label")

plt.title("Confusion Matrix")

plt.tight_layout()

plt.show()

pd.DataFrame(history.history).plot();

prediction = model.predict(x_test)

pd.Series(prediction[0], index=["Not A Ship", "Ship"])

with open('modelsummary.txt', 'w') as f:

 model.summary(print_fn=lambda x: f.write(x + '\n'))

plt.rc('figure', figsize=(12, 7))

#plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 12}) old approach

plt.text(0.01, 0.05, str(model.summary()), {'fontsize': 10}, fontproperties = 'monospace') # approach improved

by OP -> monospace!

plt.axis('off')

plt.tight_layout()

plt.savefig('output_model_Summary.png')

