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ABSTRACT  

Power system is a wide interconnected network of electricity generation, 

transmission, and distribution systems. With the technical advancement, increase in day-

to-day demand from industrial, agricultural and residential consumers, and the 

disadvantages of monopoly system demanded the power sector for disintegration and 

deregulation.  Power system deregulation and integrating communication devices are 

advantageous for better monitoring and decision making by the system operator.  At the 

same time, it increases the risk of cyber intrusion. In 2003, the eastern United States and 

Canada had major power system blackout due to the failure of grid. Despite of the fact 

that the blackout was caused by factors that are other than cyber-attack, many academics 

believed that similar catastrophe may occur with targeted cyber intrusion. In 2007, Idaho 

National Lab researchers attempted to attack a synchronous generator. The attempt was 

successful, and the generator got self-destructed within minutes. This incident alarmed 

cyber-security decision-makers, prompting them to establish a critical infrastructure that 

is vulnerable to prevent cyber-attack. The existing bad data detection procedure in state 

estimation is incapable of detecting a certain sort of cyber-intrusion known as a stealth 

attack. Stealth attacks can be used to influence state estimate results for financial gain or 

to cause technical problems for the power system. 

Unbundling of transmission lines, ensuring social welfare among the power 

system utilities, promote investment in the electricity sector. The deregulated power 

system has brought up power market as an efficient tool and has created an enabling 

environment to accelerate the all-around development of power generation, transmission 

and distribution systems. The effective monitoring and decision making is achieved with 

the integration of communication lines and internet network. Cyber-Physical System 

technology is utilized for more safer and secure grid operations. 

In this dissertation, financially motivated false data attacks are investigated, by 

injecting manipulated data into day-ahead and real-time electricity markets operation. For 

determining the optimal attack vector, it is assumed that the attacker runs a bi-level 

optimization problem that comprises the attacker's profit maximisation objective and the 

market clearing problem. While manipulating measurement devices such as RTUs, the 

attacker needs to take care of being identified by the ISO’s bad data detection (BDD) 

mechanism. The proposed attacking model is implemented on the PJM-5 bus test system 

to demonstrates the potential impact of financially motivated cyber intrusions in the 



x 
 

power markets. During the attack, the relationship between market clearing power and 

LMPs is established. The simulation results are deduced to demonstrate the effect on 

locational Marginal pricing in achieving the attacker's goal of profit maximization. 

Secondly, Renewable energy generation has become more prominent in the power 

sector around the world. Large integration of RE sources into the electricity markets has 

brought further complexities in the markets. Distributed energy sources (DE) have limited 

participation in these markets. Considering uncertainties related to RE intermittence 

nature, and market prices small-scale REs such as wind power, solar PV power, ESSs, 

and utilities comprising CHPs, DG sets, flexible demands, etc., are aggregated in to single 

entity in the name of (VPP) and participate in the electricity markets. Hence, it is 

important to find out an optimal scheduling solution to these VPPs.  

In this dissertation two-stage stochastic programming approach for optimal 

scheduling of VPP in the electricity market is presented. The uncertainties are modelled 

using scenario bounds and are formulated using stochastic programming approach. 

Simulation results are carried out on 4-hour planning horizon. 

Since, electricity markets are competitive in nature, each and every market 

participant tries to maximize their profits through strategic bidding. Keeping in the view, 

the uncertainties related to RE generation, market prices and reserve deployment requests, 

VPP also tries to maximize its profit. It is necessary to take strategic decision to counter 

the other market participants. 

Therefore, a bi-level model is proposed for finding out optimal scheduling 

solution in the electricity markets. Uncertainties are modelled using scenario realization 

technique.  VPP maximize its profit by making strategic decision on trading power in the 

DA and reserve markets. To exercise the power of VPP in altering market decision, the 

upper-level problem in the bi-level model address the VPP objective to maximize the 

profits, while lower level addresses the market clearing problem of both DA and reserve 

markets. The proposed model is then reformulated in to single level MILP problem using 

KKT optimality conditions and strong duality theorem.  

Finally, the proposed model is implemented on IEEE-24 reliability test bus 

system. The results are analysed based on the profit acquired by the VPP with and without 

flexible demands.  The importance of the reserve market in balancing the system is 

demonstrated through appropriate scenarios, additionally, demand-side flexibility 



xi 
 

smoothens the load curve and connects the generating and demand side curves, allowing 

the VPPs to achieve the best profit.  At the end, impact of strategic and non-strategic 

decision making on VPP’s profit is also analysed. 
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CHAPTER 1 
 

INTRODUCTION 
1.1. Background 

Power system is a widely interconnected electrical network. It consists of 

generators, transmission & distribution network and loads. Due to continuous increase 

in load demand and the limited energy production, power producers in that area used to 

have control over the economics of power sector. In most of the twentieth century, if a 

consumer wanted to purchase energy, they have to buy from the utility that held the 

monopoly in that area in supplying electricity. Some of these utilities are vertically 

integrated, which means they generate electricity, transmit from the power plants to 

load centers and then distribute to end-users. This form of vertically integrated system, 

removed the incentive to the operational efficiency and encouraged unnecessary 

investments. This system is called regulated power system. 

The disadvantageous of regulated power system raised concern on the growth of the 

power sector. Due to this, strengthening electricity sector became a primary objective of 

every country. The changes were brought with the new tools to work the system 

efficiently. Deregulation is introduced to restructure the power system and to promote 

investment in the electricity sector. Electricity markets, and open access of transmission 

network are part of deregulation.  Thus, monopoly system is on the verge of extinct.  

This deregulation introduces competition among the producers and buyers of the power. 

Economists argued that the introduction of competition lowers electricity prices, but 

most of the successful electricity markets now experience higher prices than expected. 

Chile was the first country to reform the power sector. It was implemented through 

legal and institutional changes. Following Chile, many other countries in the world have 

adopted the system of electricity market, some of them were PJM (Pennsylvania, New 

Jersey, and Maryland), New England and New York. Texas and California are moving 

towards the development of the market. Australia and New Zealand along with these 

many European countries have the markets at different stages of development, 

Scandinavia has the world’s most mature market [1]. 

In India restructuring of power sector started with the enforcement of Electricity 

Act-2003. This act introduced open access and unbundling of transmission network. 
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This has led to the establishment of power exchanges. By the end 2008, India’s first 

power exchanges “Indian Energy Exchange” started to trade the power. POSOCO acts 

as system operator and where, “Central Electricity Regulatory Commission (CERC)” is 

regulating authority of power markets. PXIL and BPXL are few other power exchanges 

in established in India. The power is traded through DA, real time and term ahead 

markets. Renewable energy is traded through “Renewable Energy certificate (REC)” 

mechanism as a weekly market. 

1.2. Electricity Markets 

The electricity market in economic terms, may be referred to as a place where 

electricity is a commodity that is capable of being, sold, and traded. In simple, an 

electricity market is a place where buyers and sellers meet on a special platform, but 

unlike the physical markets, here, electricity is sold as a commodity [2]. Electricity as a 

commodity is different from other commodities. The amount of power generated should 

be equal to the power consumed. Hence, it is important for real time balance of the 

system to ensure stability of the grid. The buyer and seller present the bids before the 

actual schedule, and are allowed to trade the electricity.  

Independent System Operator (referred as ISO or system operator) will look 

after the dispatch. Types of electricity markets, and market clearing process is clearly 

explained in the following chapters. They use bi-directional flow of the information in 

more efficient way for responding to wide range market clearing process. There should 

be no asymmetries in sharing the information to any class of market partisans. Thus, 

ensuring transparency in policy making and in the market clearing process. 

These electricity markets are no longer a monopoly, on the same lines it is far 

from a perfect market. Globally, the objectives of the electricity market are cost-

minimization and reliability. In spite of this electricity has several key issues such as 

risk management, lack of information, uncertainty in prices, RE integration, balancing 

the system, security, transmission congestion, and non-existence of power. The main 

advantage of deregulation, is to create a competitive market environment and to assure 

social welfare, in which consumers were able to purchase their energy from the cheap 

generating units. Fig.1.1 shows the structure of electricity markets. 
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Fig.1. 1 Structure of Electricity Markets 

 

1.2.1. Basic principles of Energy market: 

The following principles form the foundation of any Energy market. These 

principles can also be termed as design principles of the energy market. The principles 

should encourage open and fair competition between all power producers and demands. 

Following are the six major principles adopted by most of the successful energy markets 

in the world. 

1) Competition and market access: 

All the participants in the energy market should have open access without any 

discrimination and there should be competition between each market participant. End 

Consumers benefit more from the market participants responding to the market in a 

competitive environment than from a regulated system. 

2) Access to the transmission network: 

Transmission and distribution systems should be fully unbundled for the market. 

Unbundling helps in ensuring the objectives, transparency and non-discriminatory 

access to the network.  

3) Competitive neutrality: 

Markets should be non-discriminatory, i.e., they should not favor one 

technology or business model over another, and they should encourage consumers to 

have their requirements met at the lowest possible cost while still encouraging 

innovation. 
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4) Risk allocation: 

The market should be ready to take the risk. Markets take the risk, allocate costs, 

and provide accountability for decisions that are to be best placed to manage and 

promote efficient outcomes. 

5) Information Asymmetries: 

Market players require accurate and timely information to make decisions 

regarding competitive markets to operate well. If the information asymmetries exist, 

they won't feel like they're competing on unbiased platform. 

6) Integrating new technologies 

Today’s power industry has integrated with different new types of technologies 

which include medium and small scale RE sources, Distributed Energy sources etc., as a 

result complexity of the system has increased manifold. The trend of these changes 

stimulated the evolution of smart grid. Similar to changes in the grid system, Electricity 

markets are also required to meet the challenges in integrating these new technologies 

for scheduling and determining market prices.  

1.3. Members in Electricity Markets 

In the electricity markets, various stake holders play their role in maintaining 

reliability and transparency for the successful operation of the grid. The various market 

stake holders are as follows: 

1.3.1. Producers/Sellers/Generators 

Electricity is generated through various technologies which includes public 

conventional power plants, hydro power plants and other RE sources. There may be a 

group of small-scale power producers that aggregate their production, form a single 

entity to participate in the market, this concept is termed as Virtual Power Plants. The 

other producers, who have independent generation, are called as independent power 

producers. Private generating units come under this category. 

All the above power producers having license to trade, satisfying market 

principles are allowed to sell their production in terms of both quantity (MW) and 

price($/MW) in each time period in the market-based power systems. 

1.3.2. Consumers/Buyers/Loads/demands    

Loads belong to consumers or end-users. Each demand entity submits their need 

to buy power in terms of both quantity1 (MW) and price ($/MW). The loads in the 

market are large-scale industrial loads, commercial loads, and households.  Depending 
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upon the nature of the loads, these are classified as constant demands, flexible demands 

and interruptible demands. Entities having flexible demands shift their demand from 

one hour to other hour based upon the market prices in each time period, thus obtain 

profits. But in the case of constant demands, they bid for constant amount of power in 

each time period. Interruptible loads can switch off their demands from one time period 

to other time period. Thus, allowing them to participate whenever, the market price is 

low. 

1.3.3. Power  Exchanges 

Power Exchange is a third-party entity, independent of market participants. They 

are considered as the trading centers for electricity markets. Power Exchanges allows 

market players to submit their bids for each time period depending upon the type of 

market operation2.  Each and every market participant must have trading license to 

buy/sell power in the market. Power Exchange should ensure fair and non-

discriminatory market clearing process.  

Based upon the submitted bids power exchanges solves market clearing process. 

The results of market clearing process are in terms of amount of power cleared in each 

time period of a particular participant and its respective market price. This information 

is then shared with ISO/TSO for congestion management and system security. 

1.3.4. Independent System Operator/ Transmission system operator 

ISO/TSO, is considered as system operator and regulating entity of the market 

operations. It is independent of other market participants. ISO/TSO owns transmission 

rights in the power transmission system. It has all the information about the system 

topology, transmission capacity of each line, and reactive power requirements etc.,     

ISO/TSO should be non-discriminatory, providing open-access to transmission 

system and unbundling all the services under its control. It runs market clearing 

problem based upon the cleared bids obtained from the power exchanges, to determine 

congestion in the transmission lines. Thus, final market clearing prices are obtained 

based upon the congestion. This pricing system is said to be locational marginal price.  

ISO/TSO is primarily responsible for ensuring reliability of the grid. In some of 

the markets, ISO acts as administrator and regulates the market operation such as 

competitiveness, market clearing prices, transmission rights and also governs the system 

consistency. 
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1.4. RE Integration and Virtual Power Plants  

At present, integration of new technologies including RE sources is quite 

challenging. Due to the dynamic real time load demand and power generation, 

intermittency and variability of RE sources, and imperfect forecasting, there is some 

randomness in RE scheduling (viz. wind farms, solar PV plants, etc). Hence, it can be 

treated as a double edge sword. Although, RE sources are promising solution to reduce 

carbon footprints but they impose generation-demand imbalances and increases 

regulating burden in the power system. These challenges are also faced by the 

electricity markets. 

1.4.1. RE integration Complexities  

RE power being largely non-dispatchable, the generation scheduling of CPPs in 

combination with RE generators is a tough challenge being encountered by system 

operators in electricity markets. The other group of challenges faced by the electricity 

markets is uncertainty related to market prices and balancing the system.  Competition 

among the market participants, increases price fluctuations which leads to uncertainty in 

the market clearing prices.  

 Market participants predict their generation and demand for a particular time 

period and bid accordingly. But, the actual value of power traded may differ from the 

scheduled value. As a result, balancing markets such as reserve markets and ancillary 

markets are necessary.  

1.4.2. Concept of Virtual Power Plants 

In order to address the above issues, related to RE uncertainties, it is endeavored 

to integrate RE generating utilities with other DERs such as small scale CPPs, storage 

units, Combined heat and power plants, DG sets, and flexible demands. This concept of 

integrating the small-scale utilities is called as virtual power plant. This provides a 

centralized solution to above uncertainties. These energy sources aggregate their 

production, optimize their internal demands as a single entity through a control center, 

and there by participates in the electricity markets.   
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Fig.1. 2. Structure of VPP showing all the components 

1.5. Cyber-Attacks on Power system 

At present the power sector is operating in Day Ahead, and Real Time markets. 

Reserve markets are operated to address the balancing needs of the system. Power 

system is coupled with strong communication network for transmitting and distributing 

electricity from generating station to the load centres. This data is utilised by the 

electricity market to run the market clearing problem without violating security 

constraints. This huge network is consistently operated and monitored in real time mode 

by the Energy management system which inter-alia consist of master terminal units 

(MTUs), remote terminal units (RTUs), and sensing devices. This increases the risk of 

cyber-attacks. Measurements from the RTU’s and sensing devices are collected by the 

Master terminal unit and transmitted to the control center using radio frequency signals. 

The information collected by the RTUs range from power flow values, status of circuit 

breakers, energy delivered and consumed etc., Although the SCADA System has 

firewall as the first stage of security to the communication network, still cyber-threat is 

a challenging issue for ISO/TSO to defend its integrity. Fig.1.3, shows the block 

diagram flow of market operation utilizing the information from the control center and 

state estimation process. It also represents the attacker’s target place for injecting false 

data and the flow of shared information among the market participants  



 

8 
 

 

Fig.1.3. Electricity Market operation under FDI attacks and attacker as virtual 
participant. 

For reliability and proper scheduling system operator uses the data obtained 

from the state estimation. State estimation (SE) is an important function in real-time 

decision-making. State estimation identifies the current operating states of the systems 

by providing precise and efficient observations on operational limitations. The input 

quantities are power flow, generation and demand parameters. The estimated outputs 

are bus voltages and angles. Cyber attackers can attack the system by injecting false 

data in to the system which affects the output of the state estimation. Using this 

technique, bad data injected in the network can be detected.  But the attackers use 

advanced cyber technologies to launch a stealthy attack which can pass through the bad 

data detection process in the state estimation. 

This type of stealthy attacks may cause damage to grid resulting in blackouts 

and financial loss to the nation. On other hand adversary concentrates on the market 

clearing process, and acts as a virtual participant so that the adversary enter in to the 

market. By designing stealthy attack, the attackers aim to manipulate the market prices 

in specific time periods and trade the power strategically, therefore obtains financial 

profits without causing damage to the grid operations. These types of attacks are called 

as financially motivated false data injection attacks.  

 Hence, it is important to investigate these financially motivated attacks in the 

electricity markets. This assessment provides information about the vulnerable devices, 

and about the key nodes located in the power system network. 
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Nomenclature: 

BDD Bad data detection procedure 

CPP Conventional Power Plant 

DAM Day-Ahead Market 

FDIA False Data Injection Attack 

ISO Independent System Operator 

TSO Transmission System Operator 

Res Renewable Energy Sources 

RTM Real Time Market 

RRM Reserve Regulation Market 

RTU Remote Terminals Unit 

SCADA Supervisory control and Data Acquisition system 

SE State Estimation 
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CHAPTER-2 

Literature Review 

2.1.  Literature Survey on False Data Injection attacks on the 

Electricity Markets  

Deregulation regime of power system has taken pace at a slow rate; many of the 

power systems around the world adopted deregulation, but failed to implement in real 

time. Researchers and economist have suggested various form of the electricity markets 

from operational and participants view point. Among them the few prominent works are 

studied to acquire the knowledge on market-based power system. Deregulation of power 

system, and power planning for regulated and deregulated markets is studied in [1]. 

Different market trading strategies and the changes brought by the deregulation in the 

power system is explained in [2]. In this reference author discussed the clear view of 

market design and various strategic roles played by the different market participants.   

With the technical advancement and integration of power system with the 

communication system to ensure efficient and reliable operation, cyber security against 

cyber intrusion is also necessary. These, Cyber-attacks on power systems are classified 

into two types. The first type of attacks aims in creating damage to the grid and the latter 

type of the attacks focus on financial gains through electricity markets. False data 

injection attacks were first studied by the Linu et al. [3]. 

Attackers with the aim to damage grid, estimates attack vulnerability areas to 

inject false data into the measuring devices, which leads to grid failure or shutdown of 

some major grid components. Mathematical programming with equilibrium constraints 

for modelling cyber-attacks on electricity markets is formulated in the reference [4]. 

Attacks on state estimation in electric power systems via false data intrusion are 

investigated by the authors in the references [5-9]. R. J. Piechocki et al. in [5] formulated 

sparse false data used for malicious data attacks. The author mitigates the proposed attack 

by implementing pro-active defense mechanism.  M. M. Pour et al. reviewed various 

types of cyber intrusions and their respective mitigation methods in the smart grid system 

[6]. R. Tan et al. predict and minimize the impact of misleading data attacks on automatic 

creation in the reference [7]. The authors predicted residual value of automatic generation 
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control (AGC) signal for the future time periods. Financially motivated FDI on security 

constrained economical dispatch in Real-Time Electricity Markets and its defending 

mechanism are examined in [8]. In the references [9, 10], load frequency control is used 

to identify the FDI attacks on AGC. In this work the author used automatic control error 

signal act as major detection signal. Many other attacks including over/ under 

Compensation FDI attacks are formulated in the references [9-11]. On the other hand, 

different detection techniques are used to detect such cyber intrusions are proposed by 

the authors, such as principal component analysis (PCA), SVM algorithms [11], statistic 

decent realize learning algorithm [12], and minimizing residual value of power state 

estimator [13] are presented.  Cyber-attacks against state estimator are discussed in [14]. 

A Survey on FDIs on state estimation is conducted by R. Deng et al. [15]. An 

unobservable FDI attack is deployed to attack power flow measurements is presented in 

[16]. J. Zhao et al. in [17], proposed forecasting aided imparted FDI against Non-Linear 

State estimation is discussed. 

The second type of attack is based on gaining financial benefits from the fake data 

intrusion. These are special type of attacks where attacker does not cause any blackout, 

instead the attacker as a virtual participant in the power market injects FDIs in to the 

system to misguide market operations. As a result, financial loss occurs to the other 

market participants.  Reference [18] elucidates special class of FDI attacks using load 

distribution. Attacks by overloading the transmission lines [23] by introducing corrupt 

generators and load forecasting error in the security constrained economic dispatch is 

presented in the references [19- 22]. In those works, the proposed attacking strategy 

results in LMP shift. These attacks are said to be financially motivated attacks. Modelling 

dummy data attack vector which is used to change congestion pattern in the system is 

proposed by X. Liu et al. [24]. A new framework in designing FDI attack using stochastic 

robustness by limited adversary is presented in [26]. Deep learning techniques for FDI 

attack detection on power grid is examined in [28], A non-linear auto regressive 

exogenous configuration of ANN is used to identify FDI attack on state estimation is 

formulated in [27]. Dynamic data attacks using bi-level optimization is presented in [29].  

Mathematical models representing electricity market process for various 

application are formulated in the references [30-32].  Models related to Decision making, 

and non-linear optimization problems in electricity markets [30], along with Bi-level 
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optimization in power system is presented in [31]. Mathematical formulation of electricity 

markets under complementary constraints is discussed by Steven A. Gabriel et al.  

2.2.Literature survey on Virtual power plants in electricity markets 

The market clearing process in the electricity markets under various uncertainties is 

designed in [33]. I. Aravena et al. presents zonal market model with renewable integration 

is presented in [34]. Renewable energy sources are uncertain in nature, the effect of these 

energy sources on the power system is elucidated in [35]. Electricity market mechanism 

and bidding strategy is analysed by the B. Jie et al. [36], based on power balancing market. 

This work considers energy mix where conventional power plants and RE sources are the 

market participants.   

Virtual Power Plant bidding strategy for participating in energy and reserve markets 

is studied in the paper [37]. Introduction to the mathematical stochastic programming 

applied to electrical engineering is presented in [38]. S. R Dabbagh et.al proposed risk 

assessment in finding optimal scheduling strategy for the VPP in its decision-making 

process, and the VPP is allowed to trade in both energy and spinning reserve market [39]. 

Two stage network constrained robust unit commitment model is explained in [40]. L. 

Tianqi et.al [41] analysed optimal scheduling of VPPs considering cost of battery loss. 

The statistical scenario of RE is illustrated in [42-45]. Impacts on power markets due to 

adequacy in RE generation are presented in [46]. The challenges being faced by the whole 

sale generation scale in the electricity markets with the intermittence RE sources is 

explained in [47,48].  Optimal bidding strategy using the Nash SFE equilibrium with 

interruptible loads for VPP participation in the energy markets is proposed in [49]. 

Mathematical Models of VPP under uncertainties with various offering strategies is 

provided in [50]. 

Using WTs, PVs, and ESSs as aggregators, Liwei Ju et al [51] suggested a bi-level 

stochastic scheduling model for VPPs. The price-based demand response (PBDR) and the 

incentive-based demand response (IBDR) are both taken into account. The interval 

approach and the Kantorovich distance are used to model uncertainty. 

In [52], the author formulates the credibility theory to assess the feasibility of risk 

tolerance for VPPs utilising fuzzy chance constraints. In [53], the author proposes a 

bilevel optimization problem with a unique demand response scheme and CVaR risk 
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management technique. In the power markets, various offering strategies such as MILP 

have been proposed for VPP optimal scheduling. For optimal bidding of VPP in DA and 

frequency regulation markets, a deep learning-based technique known as the Bi-

directional Long Short-Term Memory (B-LSTM) network is used in reference [55]. In 

[56], thermal loads and non-renewable sources are considered VPP aggregators. 

In [57], the author considers and schedules thermostatically regulating loads in VPP, 

as well as other DERS, using a Bi-level problem. Various research, like CVar risk analysis 

in [58,59,60], have attempted to model various uncertainties in various ways. Monte 

Carlo Simulation is employed in [61], while scenario-based approaches are explained in 

[62-64], and fuzzy based modelling uncertainties are discussed in [65]. In references [66] 

and [43-45] an interval approach and a 2 m point estimate method are considered, 

respectively. Interval approaches are limited to deterministic applications, whereas fuzzy 

methods are considered to be time expensive. Each method of uncertain modelling has its 

own set of positives and negatives. According to the poll, scenario-based techniques have 

better outcomes than other methods. The method's accuracy is calculated by the size of 

situations chosen. 

The majority of the literatures provide optimization models in scheduling VPP in DA 

markets. Nevertheless, only a few studies have demonstrated scheduling in real-time and 

balancing markets. It is found that the optimal scheduling problem demonstrated is 

proposed with few shortcomings. Primarily, only uncertainties connected to RE sources 

are modelled. Secondly, the proposed models are focused on DA, real-time markets, and 

spinning reserve markets but rarely demonstrated using Up and Down reserve markets. 

Thirdly, most of the previous researchers proposed models do not take into account for 

market pricing uncertainty. Any market operator must model the uncertainties associated 

with market prices because they affect market participants strategic behaviour. Finally, 

cleared bids and offers obtained in the market clearing problems are transmitted to ISO 

for congestion management, where final locational marginal prices are produced 

alongside congestion pricing. These prices are calculated by taking into account network 

constraints. 

Modelling the VPP's behaviour in the electrical markets based on the other players' 

biddings is crucial. Furthermore, there is a knowledge gap in incorporating uncertainty 

parameters and modelling the scheduling problem of market participants’ strategic 

bidding. As a result of the foregoing study, we offer a bi-level stochastic model for VPP 
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strategic scheduling that takes into account market prices, renewable energy generation 

(Solar PV and Wind power generation), and reserve deployment requests. 

2.3. Dissertation Contribution 

Although Electricity markets use cyber technologies that improves the quality of 

decision making and scheduling of market participants, the threat from the cyber intrusion 

through the network is accessible to such malicious attacks. This dissertation describes 

one such possible cyber-attack on the power system. The main distinction between false 

data injection attacks and financial motivated data attacks is that the former aims to gain 

financial profit through false data injection, whereas the latter aims to cause both 

economic and physical damage to the system. 

Distributed energy sources, on the other hand, are required to participate in electricity 

markets as a single entity, despite of their uncertainties. By using optimal scheduling 

solution, and uncertainty modelling these DERs along with the conventional power plants 

aggregate their production. They collaborate to form a virtual power plant and participate 

in electricity markets. This dissertation proposes optimal scheduling of these virtual 

power plants in the electricity markets while taking into account market price 

uncertainties, the intermittent and variable nature of RE generation, and reserve 

deployment requirements.  

2.3.1. Detailed contribution 

Following are the detailed contributions of this dissertation: 

2.3.1.1 Illustration of electricity market clearing process. We first review the need of 

the electricity markets in the present trends, market principles and the clearing 

process. More specifically we describe the structure of electricity market and their 

formulation. We concentrate on Day-Ahead, Real-Time and reserve markets. This 

market clearing process is formulated using DC optimal power flow models. 

2.3.1.2 Illustration of false data injection attack formulation. Here, the attack vector 

is designed, considering network topology and meter measurements are known to 

the cyber-attacker. A bi-level attacking model is formulated to construct a new 

attack vector, which passes through the bad detection procedure run by the 

Independent System Operator (ISO). The attacker’s objective of profit 
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maximization is taken as the upper-level problem. In order to gain the profit, the 

attacker tries to buy the power from the DA market and sell it in the real time market 

where, locational marginal prices at specific bus are high in that specific time 

period. In the lower-level problem, market clearing problem of both DA and real 

time market is formulated with the ISO objective of profit maximization. And, the 

bi-level model is reformulated in to single-level problem by using KKT conditions 

and strong duality theorem. 

2.3.1.3 Demonstrating the effect of attack vector on the network flow and LMPs. 

After designing the attack vector, the same are injected into the measuring devices. 

By manipulating these data, the attacker changes the pattern of network flow in 

each transmission line such that the congestion pattern in each time period is 

changed. The measuring devices which are more vulnerable are attacked easily.  

Due to the change in the congestion pattern, LMPs are changed, so that the attacker 

buys the power at lower prices and participates in the real time where, power is sold 

at higher LMPs.  

2.3.1.4 Illustration of RE integration in to the electricity markets. Renewable energy 

sources are integrated in to the power system either in to a centralized or 

decentralized way. Small scale renewable energy sources along with some other 

distributed energy sources are aggregated into virtual power plants (VPP). This 

concept of virtual power plant is evolved as a centralized solution for these small-

scale generating units thus, allows them as single entity in the electricity market. 

The uncertainties in the RE generation are taken as stochastic process. Each 

uncertain parameter is realized into a set of scenarios using scenario realization 

technique.  

2.3.1.5 Modelling of VPP in the electricity markets. VPP as a single entity consisting 

of RE sources and energy storage system as its aggregators participates in the 

electricity markets. Specifically, VPP is allowed to participate in the DA market 

and reserve market. The uncertainties related to market prices and reserve 

deployment are model using scenario realization technique. A two-stage stochastic 

optimization model is formulated for finding optimal scheduling of these Virtual 

Power Plants in the DA and reserve electricity markets. 
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2.3.1.6 Demonstrating the VPP as price maker by making strategic decision in the 

electricity markets.   VPP as a strategic player can make the decision according to 

market environment. In this case, VPP always tries to obtain profits by trading the 

power in both DA and reserve markets while optimizing its own resources. Thus, 

VPP acts as price maker and able to control the prices in the electricity markets. 

This can be described using bi-level stochastic model, using scenario realization 

technique for modelling uncertainties.   VPP’s objective of profit maximization is 

formulated as upper-level problem, while in the lower-level problem market 

clearing process of both DA and reserve market is formulated. And, the modeled 

bi-level problem is reformulated in to single-level problem by using KKT 

conditions and strong duality theorem. 

2.4.Dissertation Organization 

The remainder of this dissertation is organized as follows: In Chapter-3, the market 

clearing process of Day Ahead, Real time and balancing reserve markets is explained. 

Mathematical formulation of these markets using power flow optimization models is 

discussed. The knowledge of these mathematical models is used in Chapter-4 and 

Chapter-5 in formulating lower-level problem of bi-level model. At the end, KKT 

conditions are deduced for the discussed model, which is utilized while formulating single 

level MILP problem.  In Chapter-4, financially motivated false data injection attacks on 

electricity market are analyzed. This study gives a clear picture about the state estimation, 

bad data detection procedures. The attacking vector is obtained by designing bi-level 

attacking model; at the end of this Chapter, simulation results are presented showing the 

impact of cyber intrusion. In Chapter-5, the concept of VPP and its various components 

are discussed. For optimal scheduling of this VPP, a two-stage stochastic model is 

formulated. In this chapter, uncertainty modelling, decision making sequence of the VPP 

is explained.  VPP as a price maker, making strategic decision along with the market 

participants, is modelled as a bi-level model in Chapter-6. At the end of this chapter 

simulation studies are carried out considering different cases. Finally in Chapter-7, the 

future scope of research is presented and conclusion on the dissertation work is drawn. 

For the sake of clarity nomenclature for every chapter is presented at the end of each 

chapter respectively.     
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CHAPTER 3 

Mathematical Formulation of Market-based Power System 
using Optimal Power flow Models 

3.1. Introduction 

  Electricity markets are modelled using DC and AC optimal power flow 

studies. One of the most significant roles of control centre is to ensure the reliability, 

security, and efficiency of the system operations, which may be accomplished through 

effective monitoring and decision-making. A market is a web-based platform where 

generation companies (GENCOs) and load serving entities (LSEs) bid and offer energy. 

The control centre attempts to maximise social welfare for all players by using reported 

prices and network limits. A well-known programme for accomplishing this 

optimization is the Optimal Power Flow studies. The DCOPF is a linear form of the 

optimal power flow, whereas the ACOPF is a nonlinear formulation that includes 

reactive power parameters. These optimal studies are used to define electricity prices 

(Locational Marginal Price or LMP) in both day–ahead and real–time markets. 

Mathematical formulation of DCOPF, as well as the general structure of day–ahead, 

real–time markets, and reserve markets are detailed in the following sections. These 

models are processed by the ISO/TSO. ISO is a system operator which is independent 

of both buyers and sellers in the market. In some markets it is considered as regulating 

entity. 

3.2. Day-Ahead Electricity Market 

Day-Ahead electricity market can be termed as DAM. In this type of power 

market, buyers and sellers submit their bids to ISO/TSO one day-ahead to the dispatch 

period. ISO runs DCOPF program as market clearing process, based on the bidding 

information submitted by the buyers (loads) and sellers (generators), Market clearing 

price (LMPs/Nodal Pries/ Area clearing Price) at each bus of the power network are 

calculated, and quantities of the energy cleared is determined and then the information 

is processed to concerned participants.  

Most of electricity markets in the world are operated as Day-head markets. The 

optimization problem must take into account the network's topology and physical 

constraints.  The objective function of the ISO/TSO is to maximize the social welfare of 
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each market participant. Based on the objective function and constraints the DCOPF 

model for DA market is formulated as security constrained economic load dispatch. 

3.2.1. Mathematical Formulation of DAM 

The problem of DA market optimization is presented in the references [4,11,15] 

and is formulated as follows: 

min
ఒ,௉೔೟,஽ೕ೟

𝑅ா௉ = ෍ ෍ 𝐶௜௧𝑃௜௧

்

௧ୀଵ

Ω೒

௜ୀଵ

− ෍ ෍ 𝐵௝௧𝐷௝௧

்

௧ୀଵ

Ω೏

௝ୀଵ

 (3.1) 

𝑆. 𝑡 ෍ 𝑃௜௧

௜∈ఆ೙

= ෍ 𝐷௝௧

௝∈ఆ೙

 ∀𝛺௡ ∈ 𝑁௕௨௦;  (𝜆௧) (3.2) 

 𝑃௜௧
௠௜௡ ≤ 𝑃௜௧ ≤ 𝑃௜௧

௠௔௫ ൫𝜇௜௧
௠௔௫, 𝜇௜௧

௠௜௡൯ (3.3) 

 𝐷௝௧
௠௜௡ ≤ 𝐷௝௧ ≤ 𝐷௝௧

௠௔௫ ൫𝛾௜௧
௠௔௫, 𝛾௜௧

௠௜௡൯ (3.1) 

 𝐹௟
௠௜௡ ≤ 𝐹௟௧ ≤ 𝐹௟

௠௔௫  ∀𝑙 ∈ 𝛺௟;  ൫𝜗௜௧
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௠௜௡൯ (3.2) 

Where 𝐶௜௧, 𝐵௝௧ are the price in $/MWh respectively and 𝑃௜௧, 𝐷௝௧ is the quantity in 

MWh offered by generators (suppliers) and demands (consumers) respectively. 

Constraint in the Eq. (3.1) shows ISO’s objective of maximizing social welfare and 

minimizing cost of generation 𝑅ா௉, Where 𝐹௟௧ = ෍ 𝑆௟௝

ఆ೙
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ቇ ; ∀𝑛 ∈ 𝑁௕௨௦ represents power flow in the transmission lines. Constraint in 

the Eq. (3.2) represents balancing constraints where, the amount of power generated 

should be balanced by the demand consumption in each time period. Eq. (3.3), imposes 

limits on the generating capacity offered by the seller. Where, Eq. (3.4) puts upper and 

lower bounds on the load demand bidded by the buyer, and Eq. (3.5) keeps limits on 

transmission line capacity respectively.  Variables 𝜆,  𝜇௜௧
௠௔௫,  𝜇௜௧

௠௜௡, 𝛾௜௧
௠௔௫,  𝛾௜௧

௠௜௡,

𝜗௜௧
௠௔௫,  𝜗௜௧

௠௜௡ are corresponding dual variables of Eq. (3.2), Eq. (1.3), Eq. (1.4) and Eq. 

(1.5) respectively. Locational Marginal Price at each bus in the DA market is interpreted 

as  𝐿𝑀𝑃௕௨௦. 
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3.2.2. Locational Marginal Pricing for DAM 

LMP’s are market clearing prices defined for each time period. In general, the 

marginal energy price, congestion price, and loss price are the three components of 

LMP at each bus. The LMP technique is used to trade electricity in most of the energy 

markets, including the PJM Interconnection, New York, and New England markets. 

 𝐿𝑀𝑃௕௨௦ = 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 + 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑙𝑜𝑠𝑠𝑒𝑠 𝑐𝑜𝑠𝑡 

𝐿𝑀𝑃௜௧
ா஺ = 𝜆௧ + ෍ 𝜗௟௧

௠௜௡

௟∈ఆ೗

∗ 𝑆௟௜ − ෍ 𝜗௟௧
௠௔௫

௟∈ఆ೗

∗ 𝑆௟௜ (3.6) 

Where, 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡 = 𝜆௧ (3.7) 

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = ෍ 𝜗௟௧
௠௜௡

௟∈ఆ೗

∗ 𝑆௟௜ − ෍ 𝜗௟௧
௠௔௫

௟∈ఆ೗

∗ 𝑆௟௜ (3.8) 

𝑙𝑜𝑠𝑠𝑒𝑠 𝑐𝑜𝑠𝑡 = 𝜆௧ × (DF୧ − 1) (3.9) 

Where 𝜆௧ is the Lagrangian multiplier for each time period in a day 

corresponding to the equality constraint in the Eq. (3.2). 𝜗௟௧
௠௔௫, 𝜗௟௧

௠௜௡ are the dual 

variable for each transmission line in each time period corresponding to the constraint in 

the Eq. (3.5). 𝐷𝐹௜, is the delivery factor at the ith bus. Here, we ignore the loss 

component, and will have 𝐷𝐹௜ = 1 in Eq. (3.9).  As a result, the LMP consist of two 

components, Energy and Generation costs. Whenever, there is congestion in the 

transmission network LMPs at each bus are different. 

3.3. Real Time Electricity Markets 

Real time electricity markets are meant to adjust the deviations in the quantity 

traded by the market participants. This type of market operates for every 5 to 15 

minutes ahead to the real time dispatch. The deviations in the loads and system 

constraints are allowed to adjust and ISO/TSO runs the market clearing process [11,15]. 

The ISO/TSO (system operator) plays a pivotal role in system operation from its control 

centres, and performs the following tasks:  

i. Collecting information from measuring devices installed in the physical layer of the 

power network.  
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ii. Online monitoring of the network, and estimating the network's status using state 

estimation.  

iii. Based on the results obtained from the state estimation a generation dispatch model 

is processed.  

The acquired LMPs will be used to calculate the real-time electricity price. Market 

clearing price (LMPs/Nodal Pries/ Area clearing Price) and the cleared amount of 

energy with respective to a particular bid is obtained as result from the market clearing 

problem, and then, the same information is processed to concerned participants.  

3.3.1. Mathematical Formulation of RTM 

Similar to the DA market clearing process, RT market solves SCED optimization 

problem and is formulated as follows: 

Where ∆𝑃௜௧,∆𝐷௝௧ represent the incremental change in power generation and load 

demand values. The term  𝑅ோ் in Eq. (3.10) represents the ISO objective function of 

minimizing incremental cost of generation. Constraints in the Eq. (3.11) represents 

balancing constraint. The incremental change in the generation value should be equal to 

amount of incremental change in the demand value. Constraints in the Eq. (3.12) and 

Eq. (3.12) ) are  limiting constraints on the incremental power generation and demand 

values respectively, where, ∆𝐹௟௧ = ෍ 𝑆௟௝
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change in power flow. 𝜆ሚ௧, 𝜇෤௜௧
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௠௜௡ are dual variables of 

Eq. (3.11), Eq. (3.12), Eq. (3.13), (3.14) and Eq. (3.15) respectively. Furthermore, ISO 

(system operator) computes line flow changes through each transmission line l and tries 

min
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∆𝐹௟௧ ≥ 0 ∀𝑙 ∈ 𝐶𝑙ି; ൫𝜗ሚ௜௧
௠௜௡൯ (3.15) 
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to keep line flow measurements within the limits, (for both positively (𝑙 ∈ 𝐶𝑙ା: 𝐹௟ ≥

𝐹௟
௠௔௫) [20,21] and negatively congested lines(𝑙 ∈ 𝐶𝑙ି: 𝐹௟ ≤ 𝐹௟

௠௜௡) respectively. 

3.3.2. Locational Marginal Price for RTM 

4.  Similar to the day-ahead market, LMPs at each bus in the RT market are governed 

by following equation 

Where 𝜆ሚ௧ is the Lagrangian multiplier for each time period, corresponding to the 

equality constraint Eq. (1.8). 𝜗ሚ௟௧
௠௔௫, 𝜗ሚ௟௧

௠௜௡ are the dual variables for each transmission 

line in each time period corresponding to the Eqs. (3.14) and (3.15). 

Note that the LMPs at each bus in the real-time market are determined depending 

on transmission line congestion patterns. i.e., 𝐶መ = {𝑙 ∈ (𝐶𝑙ି, 𝐶𝑙ା)}. As a result, if one 

of the transmission lines is manipulated to overload by introducing malicious data into 

the network, the congestion pattern shifts, affecting LMP measurements. Knowing this, 

the attacker is always looking for ways to modify the network's congestion pattern for 

financial gain. An attacker could create a power system blackout in addition to gaining 

financial gain. Different types of protective relays can be found on a transmission line. 

For example, special type of overloading relays will disconnect the line if it is 

overloaded in order to prevent over-heating and physical damage. This sudden loss 

creates blackout in the system. Here, we mainly concentrate on FDI attacks with 

financial motivation. 

3.4. Reserve Electricity Market 

Power systems should be designed with sufficient reserve capacity to loss of 

stability during normal operation, sudden load disconnections, and or in the event of 

unforeseen conditions. Reserve capacity is referred to in the reserve market as an 

ancillary service that is required for the system and the power market to function 

properly. This service can be obtained in a regulated and, mandatory way, or it can be 

provided by an ancillary services reserves market.  These reserve markets are important 

in balancing power grid from the uncertain events in the power supply and demand. 

𝐿𝑀𝑃௜௧
ா௉ =  𝜆ሚ௧ + ෍ 𝜗ሚ௟௧

௠௜௡

௟ఢ஼௟ష

∗ 𝑆௟௜ − ෍ 𝜗ሚ௟௧
௠௔௫

௟ఢ஼௟శ

∗ 𝑆௟௜ (3.16) 
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In the Reserve Market, generators and sometimes loads offer bids to sell their 

power to meet demand i.e., raising in the production at a faster rate whenever required. 

The generators and demands in the reserve market are called market agents. Similar to 

that of DA and real time energy markets that deals with active power, the reserve 

market also deals with active power reserves. The capacity of the power offered by the 

reserve market agent is defined in terms of MW/h. 

3.4.1. Types of Reserve Markets  

Generators and demands can provide the following types of reserve: 

 Regulation Reserve (RR): This type of reserve capacity is provided by fast 

acting units connected to grid, which are usually connected to the Automatic 

Generation Control unit and are capable of regulating small up and down 

imbalances produced by the unpredictable nature of loads. 

 Spinning Reserve (SR): This type of reserve capacity is provided by the online 

ready units. These reserve capacity units are used to accommodate larger 

variations in load, losses, and unanticipated events. 

 Supplemental Reserve (XR): This type of reserve capacity is provided by fast-

start units, which can be online or offline. This type of reserve is used to correct 

large imbalances caused by unforeseen events. 

Regulation reserve provides bidirectional control for balancing the system, i.e, either 

they can increase the generation or decrease the generation, whereas spinning and 

supplemental reserve provides unidirectional control. 

Regulation Reserve (RR) could be modelled in two ways: regulation reserve up 

(RR+) and regulation reserve down (RR-) (RR-). In order to provide reserve capacity, 

these controls can have independent different values. While the unit provides the same 

amount of regulating reserve in both directions as a single control. 

Contingency Reserve (CR) is the combination of spinning and supplemental 

reserves. Operating Reserve is the sum of the contingency reserve and the regulating 

reserve (OR). This can be summarized as follows: 

 SR + XR = CR 

 RR+ + SR + XR = OR 

 RR+ +CR = OR 
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Similar, to the Day-Ahead and real time markets, market agents in the reserve 

markets put their offers to balance the system during the uncertain events. Here, in this 

study we consider Regulation Reserve (RR) market. Virtual Power Plants (VPP) 

discussed in the earlier chapter, having fast response in increasing and decreasing power 

generation can also participate in the RR market. This RR market is modelled in the 

same way as the DA markets. The objective of the ISO/TSO (system operator) is to 

minimize the cost of reserve capacity requirements. In reserve markets, the system 

operator reacts to market participants for reserve capacity deployments. This can be 

accessed by assigning up and down reserves as necessary.  

3.4.2.  Mathematical model for regulation reserve markets 

The mathematical formulation of Regulation Reserve (RR) market is detailed as 

follows: 

 The reserve regulating electricity market clearing problem can be also formulated 

as linear programming problem.  The objective function in the Eq. (3.17) is to minimize 

the cost required for the reserve deployment whenever the system operator called to do 

so.  It includes two terms, defined as below: 

i. The term  𝐶௜௧
ீ,ோ௎ 𝑃௜௧

ீ,ோ௎is the cost incurred for up reserve capacity offered by the 

generating units with faster starting response 

ii.  The term 𝐶௜௧
ீ,ோ஽𝑃௜௧

ீ,ோ஽  is the cost related to down reserve capacity by the   

generating unit with faster shutdown capacity.  

Where, set Γோெ includes optimization variables ൛𝑃௜௧
ீ,ோ௎, 𝑃௜௧

ீ,ோ஽, 𝑃௧
ோ௎ , 𝑃௧

ோ஽ ൟ and dual 

variables are provided following a colon corresponding to each constraint. Variables 

Obj: 𝑚𝑖𝑛୻ೃಾ
 ෍ 𝐶௜௧

ீ,ோ௎ 𝑃௜௧
ீ,ோ௎

௜ఢΩೃೆ

− ෍ 𝐶௜௧
ீ,ோ஽𝑃௜௧

ீ,ோ஽

௜ఢΩೃವ

 (3.17) 

S.t 𝑃௧
ோ௎ + ෍  𝑃௜௧

ீ,ோ௎

௜ఢΩೃೆ

= 𝑃௧

ோ௎
 ∀𝑡; 𝜆௧

ோ௎ (3.18) 

 𝑃௧
ோ஽ + ෍  𝑃௜௧

ீ,ோ஽

௜ఢΩೃವ

= 𝑃௧

ோ஽
 ∀𝑡; 𝜆௧

ோ஽ (3.19) 

 𝑃௜௧
ீ,ோ௎ ≤  𝑃௜௧

ீ,ோ௎ ≤ 𝑃௜௧

ீ,ோ௎
 ∀𝑡, 𝑖𝜖Ωோ௎ ; 𝜇௜௧

ீ,ோ௎
, 𝜇௜௧

ீ,ோ௎ (3.20) 

 𝑃௜௧
ீ,ோ஽ ≤  𝑃௜௧

ீ,ோ஽ ≤ 𝑃௜௧

ீ,ோ஽
 ∀𝑡, 𝑖𝜖Ωோ஽ ; 𝜇௜௧

ீ,ோ஽
, 𝜇௜௧

ீ,ோ஽ (3.21) 
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ቄ𝑃௧

ோ௎
, 𝑃௧

ோ஽
 ቅ represents, the total amount of required reserve capacity in (MW). Eqs. 

(3.18) and (3.19) represents the balancing constraint on up and down reserves 

respectively. The reserve capacity requested by the system operator should be equal to 

reserve capacity cleared in each time period. Where, constraints (3.20) and (3.21) 

impose bounds on the generation of reserve utilities for up and down capacities 

respectively offered by the market agents.  

3.5. Bi-Level Programs 

A mathematical program consist of two optimization problems in their 

constraints are formulated as a bi-level program. The main problem is said to be upper-

level problem, which acts as leader or maker of the objective function. The nested 

problem is said to be lower-level problem, which acts as follower. It is a simple 

optimization problem that optimizes upper-level objective function over the constraints 

including both upper-level and lower-level problems. 

These types of mathematical models are used in power system for optimizing 

REs, energy storage system, optimal scheduling and to some smart grid applications. In 

this work, we model the false data injection attacks in the electricity markets as well as 

optimal scheduling of VPPs using the bi-level optimization programming. Because in 

both the cases, the objective function to be optimized is based on the constraints present 

in more than one optimization problem and are followers of the upper-level objective 

function. 

3.5.1. Mathematical Formulation: 

The above-mentioned bi-level problem is reformulated as a single-level problem 

using Karush-Kuhn-Tucker (KKT) optimality conditions and the strong duality 

theorem.  

The objective function and constraints for a convex optimization problem are 

linear and continuous, resulting in a viable convex set. The local optimum solution to 

these linear convex optimization problems is also the global optimal solution. As a 

result, KKT conditions are both necessary and sufficient to obtain the global optimal 

solution in a convex optimization problem. In the re-formulation of problem using KKT 

conditions, the Lagranges function is first derived by using derivative with respect to 

each variable. Using the generalized bi-level model, the lower-level optimization 



36 
 

problem is replaced using KKT optimality conditions. Thus, the resulting problem is a 

mixed integer equilibrium constrained programming model 

𝑀𝑖𝑛௫∈௑,௬,ఒ 𝑓(𝑥, 𝑦)  (3.28) 

s.t ℎ(𝑥, 𝑦) ≤ 0  (3.29) 

 𝑘(𝑥, 𝑦) ≤ 0  (3.30) 

 𝜆௜ ≤ 0 ∀𝑖 ∈ 𝑙 (3.31) 

 𝜆௜𝑘௜(𝑥, 𝑦) = 0 ∀𝑖 ∈ 𝑙 (3.32) 

 ∇௬ℒ(𝑥, 𝑦, 𝜆) = 0  (3.33) 

 0 ≤ 𝜆௜ ⊥ (𝑘(𝑥, 𝑦)) ≤ 0 ∀𝑖 ∈ 𝑙 (3.34) 

Where,  

ℒ(𝑥, 𝑦, 𝜆) = 𝑔(𝑥, 𝑦) + ∑ 𝜆௜𝑘௜(𝑥, 𝑦)௟
௜ୀଵ  is the lagrangian function of the lower-level 

problem. 𝜆௜is duality constraint. Eq. (3.28), is the objective function which is to be 

minimized. Eqs (3.29) and (3.30) are the constraints related to upper and lower-level 

problem.  Eq. (3.32) represents the lower- level equality constraint obtained by taking 

the derivative of the lagrangian function with respect to the variables 𝑥, 𝑦. Eq. (3.34) is 

the complementary constraint corresponding to the inequality constraint. This equation 

is termed as complementary slackness and possess non-linearity. 

𝑀𝑖𝑛௫∈௑,௬,ఒ 𝑓(𝑥, 𝑦)  (3.28) 

s.t ℎ(𝑥, 𝑦) ≤ 0  (3.29) 

 𝑘(𝑥, 𝑦) ≤ 0  (3.30) 

 𝜆௜ ≤ 0 ∀𝑖 ∈ 𝑙 (3.31) 

 𝜆௜𝑘௜(𝑥, 𝑦) = 0 ∀𝑖 ∈ 𝑙 (3.32) 

 ∇௬ℒ(𝑥, 𝑦, 𝜆) = 0  (3.33) 

 0 ≤ 𝜆௜ ⊥ (𝑘(𝑥, 𝑦)) ≤ 0 ∀𝑖 ∈ 𝑙 (3.34) 

Where,  

ℒ(𝑥, 𝑦, 𝜆) = 𝑔(𝑥, 𝑦) + ∑ 𝜆௜𝑘௜(𝑥, 𝑦)௟
௜ୀଵ  is the lagrangian function associated with the 

lower-level problem. 𝜆௜is duality constraint. Eq. (3.28), is the objective function which 

is to be minimized. Eqs (3.29) and (3.30) are the constraints related to upper and lower-

level problem.  Eq. (3.32) represents the lower- level equality constraint obtained by 

taking the derivative of the Lagrangian function with respect to the variables 𝑥, 𝑦. Eq. 

(3.34) is the complementary constraint corresponding to the inequality constraint. This 

equation is termed as complementary slackness and possesses non-linearity.  
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3.5.2. Complimentary Constraints: 

The nonlinear complimentary constraints having the form 𝑋. 𝑌 = 0 with 𝑥, 𝑦 ≥

0 corresponding to the inequality constraints in the lower-level problem can be 

linearized using big-M method presented in the following equations 

Where 𝑀௑ and 𝑀௒ are large enough positive constraints. 

The sections 3.6 and 3.6.1 describes the general mathematical formulation of the 

KKT optimality conditions, and complimentary constraints. The concept is utilised for 

formulating bi-level optimization in to single level mixed integer equilibrium 

constrained program and then into mixed integer linear program problem, depending 

upon the application for which the optimization is meant for.  

Nomenclature: 

sets 
Ω௚, Ωௗ Set of generators and demands respectively in the network 

𝑇 Operating time periods 
𝛺௡ Set of generators and demand connected to bus n 
𝛺௟  Number of branches (lines) in the network 

Ωோ௎ Set of market agents in the Up-reserve markets other than the VPP 
Ωோ஽ Set of market agents in the Down-reserve markets other than the VPP 
𝑆௟௝ Generalized shift factor matrix 
𝐷𝐹௜  Delivery factor of the ith bus 
𝑁௕௨௦ Number of buses in the network 

  
Parameters 

𝐵௜௧, 𝐵ᇱ
௜௧ Electricity Price ($/𝑀𝑊ℎ) offered by the ith demand in DA and RT 

markets during the tth time period. 

𝐶௜௧, 𝐶ᇱ
௜௧ 

Electricity Price ($/𝑀𝑊ℎ) offered by the ith generating in DA and 
RT markets during the tth time period. 

∁௔௧௧ Minimum threshold Value 

𝐷௝௧
௠௔௫ Maximum demand (𝑀𝑊)offered by the jth demand in DA market 

during the tth time period 

𝐷௝௧
௠௜௡ Minimum demand (𝑀𝑊)offered by the jth demand in DA market 

during the tth time period 
𝐹௟௧

௠௔௫ Maximum capacity of lth transmission line in (𝑀𝑊) 
𝐹௟௧

௠௔௫ Minimum capacity of lth transmission line in (𝑀𝑊) 

0 ≤ 𝑋 ≤ 𝑀௑𝑢 (3.35) 
0 ≤ 𝑌 ≤ 𝑀௒(1 − 𝑢) (3.36) 

𝑢 ∈ {0,1} (3.37) 
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𝑃௜௧
௠௔௫ 

Maximum generation capacity (𝑀𝑊)offered by the ith demand in 
DA market during the tth time period 

𝑃௜௧
௠௜௡ 

Minimum generating capacity (𝑀𝑊)offered by the ith demand in DA 
market during the tth time period 

𝑃௜௧
ீ,ோ௎, 𝑃௜௧

ீ,ோ௎
 

Lower and upper limits of Up reserve capacity offered by the ith 
market agent in the time period t in Reserve market [MW/h] 

𝑃௜௧
ீ,ோ஽ , 𝑃௜௧

ீ,ோ஽
 

Lower and upper limits of down reserve capacity offered by the ith 
market agent in the time period t in Reserve market [MW/h] 

𝑃௧

ோ௎
, 𝑃௧

ோ஽
 

Up and Down reserve capacity offered in the reserve market in the 
time period t in [MW/h] 

𝑋஽஺ Set of DA market variables 
𝑋ோ் Set of RT market variables 

𝜒௜௧
ீ,ோ௎ 

Up-reserve capacity offer price by the ith market agent in the reserve 
market in the time period t [$/MWh] 

𝜒௜௧
ீ,ோ஽ 

Down-reserve capacity offer price by the ith market agent in the 
reserve market in the time period t [$/MWh] 

∆𝐷௝௧
௠௜௡ Minimum incremental change in demand (𝑀𝑊)offered by the jth 

demand in RT market during the tth time period 

∆𝑃௜௧
௠௔௫ 

Maximum incremental change in generation capacity (𝑀𝑊)offered 
by the ith demand in RT market during the tth time period 

∆𝑃௜௧
௠௜௡ 

Minimum incremental change in generation capacity (𝑀𝑊)offered 
by the ith demand in RT market during the tth time period 

𝜏 Time period in hours 
Variables 

𝐷௝௧ Demand (𝑀𝑊) cleared (scheduled) in the DA market during the tth 
time period 

𝐹௟௧ 
Transmission capacity scheduled for the lth line during the tth time 
period 

𝑃௜௧ 
Generating capacity (𝑀𝑊) cleared (scheduled) in the DA market 
during the tth time period 

 𝑃௜௧
ீ,ோ௎ Up- reserve capacity sold to the reserve market by the ith market 

agent in the time period t [MW] 

𝑃௜௧
ீ,ோ஽ 

Down- reserve capacity sold to the reserve market by the ith market 
agent in the time period t [MW] 

𝑃௧
ோ௎ 

Up- reserve capacity requested by the system operator in the time 
period t [MW] 

𝑃௧
ோ஽ 

Down- reserve capacity requested by the system operator in the time 
period t [MW] 

∆𝐷௝௧ Incremental Demand (𝑀𝑊) value cleared (scheduled) in the RT 
market during the tth time period 

∆𝐹௟௧ 
Incremental change in scheduled capacity of lth transmission line in 
(𝑀𝑊) 

∆𝑃௜௧ 
Incremental generation (𝑀𝑊) value cleared (scheduled) in the RT 
market during the tth time period 

𝜆௧, 𝜆ሚ௧ 
Locational Marginal Price in ($) at the ith bus during the tth time 
period in DA, and RT markets 

∆𝑍௠௧ 
False data injected in the mth transmission line (𝑀𝑊) during the tth 
time period 
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CHAPTER 4 

Mathematical Modelling of Financially Motivated FDI attacks 
on Electricity Markets 

4.1. Introduction 

At present the power sector is operating as DA and RT markets. These markets 

provide a competitive environment resulting in diminishing of monopoly existence in 

the power sector. These types of markets operate on double sided auction-based systems 

and are being operated by the ISO/TSO.  In these types of markets, sellers and buyers 

participate through an online platform and submit their bids in quantity and price. The 

DC-OPF model is used to determine LMPs, considering the topology and physical 

constraints of the power system and power demand as per the load forecasting values. 

The demand forecasting values are different from the actual demand values during the 

real time market operation. Hence there is accuracy problem in the power system state 

estimation. Adversary takes this as a chance and manipulates the meter readings by 

injecting false data. Meanwhile the attacker takes care of not being detected in the BDD 

procedure. 

This chapter mainly focuses on financially motivated FDI attacks considering 

attacker as one of the virtual players in electricity market. A novel attacking model is 

designed using bi-level optimization problem where attacker aims to gain financial 

benefits by misleading market clearing problem. Attacker injects false data into the 

RTUs wherever necessary and the rest of the RTUs are not manipulated. Taking these 

into consideration, the vulnerability aspects of the grid system are investigated, to 

enable ISO/TSO to provide adequate security to nullify the impacts of the attack. 

4.2. DC State Estimation 

For a DC linearized lossless transmission system with 𝑛 + 1ଶbuses and a set 

𝑀 = {1,2,3, … 𝑚} of meters. The states are typically bus voltages and phase angle. The 

meter data (RTU’s) is typically including real power injection, branch power0flow0in 

each0transmission line. ‘J’ is the Jacobin matrix. The0relationship0between0the0meter 

data ‘Z’ and0the0system states X is given by 

𝑍 = 𝐽𝑋 + 𝑒 (4.1) 
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Where, e is the measurement error matrix and is0considered0to0follow0gaussian 

distribution0with zero0mean0and0co-variance matrix R, 𝐽 ∈ 𝑅௠×௡. ‘e’ matrix 

represents the deviation of run time states from the scheduled optimal states. The state 

estimation problem0is to0find0an0estimate 𝑋෠ of state variable X to the best suit0of0the 

meter00measurements [26-28], and that minimize weighted least square error is 

formulated below: 

The residual value r of the state estimator is the difference0between0observed 

measurement z and the0estimated0measurement 𝑍መand is given by 𝑟 = 𝑍 − 𝑍መ = (𝐼 −

𝐽𝐸)𝑍. Adding ∆𝑍 to Z results in change in residual value. The L-2 norm of residual 

value 

‖𝑟௡௘௪‖ଶ = ‖𝑍 + ∆𝑍 − 𝐽𝐸(𝑍 + ∆𝑍)‖ଶ 

           ≜ ‖𝑟‖ଶ+‖(𝐼 − 𝐽𝐸)∆𝑍‖ଶ 
(4.5) 

In order to avoid of being detected in the BDD procedure by the ISO/TSO, the 

change in residual value( 𝑟௡௘௪) by adding compromised measurement ∆𝑍 should be 

within the threshold limit ‖(𝐼 − 𝐽𝐸)∆𝑍‖ଶ ≤ ∈. This threshold limit is introduced as a 

constraint in the attacker’s optimization problem.  

4.3. Bi-Level Optimal Attack Vector Formulation 

Considering the market clearing problem discussed in the previous chapter, if the 

attacker buys certain amount of power (𝐷௜௧ 𝑀𝑊)  at  𝐿𝑀𝑃௜
ா஺in DA market and after 

compromising the meter data, sells (∆𝑃௜௧ 𝑀𝑊) in real time market at 𝐿𝑀𝑃௜
ா௉, its profit 

would be [𝐿𝑀𝑃௜௧
ா௉ × (∆𝑃௜௧) − 𝐿𝑀𝑃௜௧

ா஺ × (𝐷௜௧)]$/h and the same follows, if  the 

attacker0 sells0expensive0electricity in0DA0market and buy cheap price electricity  in 

real time market [4,11,20]. The profit that the attacker obtains by the above virtual 

electricity trading is given by 

𝑋෠ = 𝑎𝑟𝑔𝑚𝑖𝑛{(𝑍 − 𝐽𝑋)்𝑅(𝑍 − 𝐽𝑋)} (4.2) 

𝑋෠ = (𝐽்𝑅ିଵ𝐻)ିଵ𝐽்𝑅ିଵ𝑍 ≜ 𝐸𝑍 (4.3) 

𝐸 = (𝐽்𝑅ିଵ𝐽)ିଵ𝐽்𝑅ିଵ (4.4) 

Estimated Z is given by 𝑍መ = 𝐽𝑋෠  
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Profit = ෍ ෍[𝐿𝑀𝑃௜௧
ோ்∆𝑃௜௧  − 𝐿𝑀𝑃௜௧

஽஺𝐷௜௧] + [𝐿𝑀𝑃௜௧
஽஺𝑃௜௧ − 𝐿𝑀𝑃௜௧

ோ்∆𝐷௜௧]

்

௧ୀଵ

Ω೙

௜ୀଵ

 

= ෍ ෍[𝐿𝑀𝑃௜௧
ோ்(∆𝑃௜௧ − ∆𝐷௜௧) + 𝐿𝑀𝑃௜௧

஽஺(𝑃௜௧ − 𝐷௜௧)]

்

௧ୀଵ

Ω೙

௜ୀଵ

$/ℎ 

 

(4.6) 

Based on the state estimation and market clearing process, in order to achieve 

the attacker’s objective of profit maximization, the false data injected into the network 

should create congestion in the desired transmission line, and for this the attacker has to 

find out optimal generation and load values such that the attack is stealthy and passes 

through BDD procedure. In order to obtain optimal attack values, the attacker needs to 

relate DA and RT markets with the RTU’s measurement0data. For this the attacker 

considers network topology and physical constraints of both power markets in the attack 

problem. The attacker needs to choose some desirable meters that are to be 

compromised. Consequently, the attacker needs to embed the0relation0between0the 

traded power  [𝑃௜௧, 𝐷௜௧] , DA and RT market LMPs i.e., [𝐿𝑀𝑃௜௧
஽஺, 𝐿𝑀𝑃௜௧

ோ்] and false data 

injected (through the RTU’s). considering all above issues, a bi-level false data injection 

attack strategy is proposed [30,31, and 50]. Let us define the 𝑍஽஺ = [𝑃௜௧, 𝐷௜௧]  are the 

DA market state variables and 𝑍ோ் = [∆𝑃௜௧, ∆𝐷௜௧] as the RT market state variables 

[4,8,29]. The attacker’s bi-level problem is interpreted as 

max
 ∆௉೔೟,∆஽ೕ೟

𝑃𝑟𝑜𝑓𝑖𝑡஺௧௧ = ෍ ෍[𝐿𝑀𝑃௜௧
ோ்(∆𝑃௜௧ − ∆𝐷௜௧) + 𝐿𝑀𝑃௜௧

஽஺(𝑃௜௧ − 𝐷௜௧)]

்

௧ୀଵ

Ω೙

௜ୀଵ

 (4.7) 

S.t 
෍ 𝑈௠௧ ≤ ∁௔௧௧

ெ

௠ୀଵ

 ∀𝑚 ∈ Ω௟ (4.8) 

 ‖(𝐼 − 𝐽𝐸)∆𝑍௠௧‖଴ ≤ ∆∈ ∀𝑚 ∈ Ω௟ (4.9) 
 ∆𝑍௠௧ + ∆𝐹௟௧ + 𝐹௟௧ − 𝐹௟௧

௠௔௫ ≤ 0 ∀𝑚𝑙 ∈ Ω௟; (𝜗௠௧
௔ ) (4.10) 

 
෍ ∆𝐷௝௧

ఆ೏

௝ୀଵ

= 0  (4.11) 

 ∆𝑍௠௧

𝐹௟
௠௔௫ ≥ 𝜎 ∀𝑚, 𝑙 ∈ 𝛺௟ (4.12) 

 

෍(𝑃௜௧

ఆ೒

௜ୀଵ

− ∆𝑃௜௧) = ෍(𝐷௝௧

ఆ೏

௝ୀଵ

− ∆𝐷௝௧) 

 

(4.13) 

 ൣ𝑋஽஺, 𝜆௧, 𝑋ோ் , 𝜆ሚ௧൧ ∈ 𝑎𝑟𝑔 𝑚𝑖𝑛 (𝑅஽஺ + 𝑅ோ்) (4.14) 
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𝑆. 𝑡 ൜

(3.2) − (3.5)

(3.11) − (3.15)
 (4.15) 

In the above bi-level optimization problem, Eq. (4.7) governs the attacker’s objective 

of profit maximization by participating in the DA and RT markets as ith participant. Eq. 

(4.8) represents for any attack in a specific time slot, the attacker can compromise 

limited number of RTU’s (meters) restricted to a predefined number(∁௔௧௧).  In order to 

avoid0being0detected0by the0ISO in BDD procedure the attacker tries to keep the FDI 

below the threshold limit (∈) is shown in Eq. (4.9). Eq. (4.11) represents total change in 

the demand values should be equal to zero, the0injected0false0data0can0cause 

overloading level greater than a given threshold value equal to the 0.005, which can be 

ensured by constraints in the Eq. (4.11). Eq. (4.12) puts constraint on the amount of 

traded power in DA market should be equal to RT   markets. Eq. (4.10) and Eq. (4.11) 

ensures the injected false data follows KCL and KVL. Eq. (4.14) and Eq. (4.15) 

represents the lower-level market clearing problem discussed in the previous chapter-3. 

The main aim behind considering the market clearing problem is to remain undetected 

by the ISO. In other words, the attacker follows and understands the market clearing 

process. Hence to consider ISO’s prospective the DA and RT markets equation must be 

considered.  Due to this the attacker’s0 decision-making0problem turn in to bi-level 

optimization problem. In the next section, [32] using KKT conditions and strong duality 

constraints, the set of equations in the lower-level problem can be turned in to MILP 

problem. Therefore, the above bi-level0problem is turned in to single level MILP 

problem. 

 

Fig.4.1 Bi-level to single level MILP model  
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4.3.1. Bi-Level to Single level MILP Model 

In simplifying bi-level0optimization0problem,0Karush-Kuhn-Tucker (KKT)0optimality 

conditions for multivariable inequality constrained optimization technique is used. The 

lower-level market clearing problem is a continuous and linear optimization problem on 

its decision variables i.e., it is a convex optimization problem [50]. Therefore, the 

market clearing problem of both EA and EP markets can be replaced by the KKT 

optimality conditions. Although there exist similar methods with equilibrium constraints 

[30,31]. Such results are not applicable here, because the upper-level problem has 

discontinuous and non-linearity. Moreover,0the0complementary0slackness0can0be 

linearized0using0big M-method. Fig4.1 shows the block diagram process for converting 

bi-level attacker’s model to single level MILP model. 

The KKT0optimality0conditions of the market clearing problem is as follows  

∅௜௧
஽௨௔௟ = {  

𝐶௜௧ − 𝜆௧ + 𝜇௜௧
௠௔௫ − 𝜇௜௧

௠௜௡ + ෍ 𝑆௟௜൫𝜗௜௧
௠௔௫ − 𝜗௜௧

௠௜௡൯

௟∈Ω೙

 (4.16) 

−𝐵௜௧ + 𝜆௧ + 𝛾௜௧
௠௔௫ − 𝛾௜௧

௠௜௡ − ෍ 𝑆௟௜൫𝜗௜௧
௠௔௫ − 𝜗௜௧

௠௜௡൯

௟∈Ω೙

 (4.17) 

𝐶ᇱ
௜௧ − 𝜆ሚ௧ + 𝜇෤௜௧

௠௔௫ − 𝜇෤௜௧
௠௜௡ + ෍ 𝑆௟௜൫𝜗ሚ௜௧

௠௔௫ − 𝜗ሚ௜௧
௠௜௡൯

௟∈஼௟శ

 (4.18) 

−𝐵ᇱ
௜௧ + 𝜆ሚ௧ + 𝛾෤௜௧

௠௔௫ − 𝛾෤௜௧
௠௜௡ − ෍ 𝑆௟௜൫𝜗ሚ௜௧

௠௔௫ − 𝜗ሚ௜௧
௠௜௡൯

௟∈஼௟ష

 (4.19) 

0 ≤ 𝜇௜௧
௠௜௡ ⊥ ൫𝑃௜௧ − 𝑃௜௧

௠௜௡൯ ≥ 0 ∀𝑖 ∈ Ω௚ (4.20) 

0 ≤ 𝜇௜௧
௠௔௫ ⊥ (𝑃௜௧

௠௔௫ − 𝑃௜௧) ≥ 0 ∀𝑖 ∈ 𝛺௚ (4.21) 

0 ≤ 𝛾௝௧
௠௜௡ ⊥ ൫𝐷௝௧ − 𝐷௝௧

௠௜௡൯ ≥ 0 ∀𝑗 ∈ 𝛺ௗ (4.22) 

0 ≤ 𝛾௝௧
௠௔௫ ⊥ ൫𝐷௝௧

௠௔௫ − 𝐷௝௧൯ ≥ 0 ∀𝑗 ∈ 𝛺ௗ (4.23) 

0 ≤ 𝜇෤௜௧
௠௜௡ ⊥ ൫∆𝑃௜௧ − ∆𝑃௜௧

௠௜௡൯ ≥ 0 ∀𝑖 ∈ Ω௚ (4.24) 

0 ≤ 𝜇෤௜௧
௠௔௫ ⊥ (∆𝑃௜௧

௠௔௫ − ∆𝑃௜௧) ≥ 0 ∀𝑖 ∈ 𝛺௚ (4.25) 

0 ≤ 𝛾෤௝௧
௠௜௡ ⊥ ൫∆𝐷௝௧ − ∆𝐷௝௧

௠௜௡൯ ≥ 0 ∀𝑗 ∈ 𝛺ௗ (4.26) 

0 ≤ 𝛾෤௝௧
௠௔௫ ⊥ ൫∆𝐷௝௧

௠௔௫ − ∆𝐷௝௧൯ ≥ 0 ∀𝑗 ∈ 𝛺ௗ (4.27) 

0 ≤ 𝜗௟௧
௠௜௡ ⊥ ൫𝐹௟௧ − 𝐹௟௧

௠௜௡൯ ≥ 0 ∀𝑙 ∈ 𝛺௟  (4.28) 

0 ≤ 𝜗௟௧
௠௔௫ ⊥ (𝐹௟௧

௠௔௫ − 𝐹௟௧) ≥ 0 ∀𝑙 ∈ 𝛺௟  (4.29) 
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Equalities in the Eqs. (4.16) to (4.19) are obtained by taking derivatives of the Lagrange 

function of the lower-level market clearing problem with respect to the decision 

variables and are defined over  ∀𝑖 ∈ Ω௡. The conditions are said to be KKT conditions. 

Constraints in the Eq. (4.20) to Eq. (4.31) are the complementary constraints regarding 

inequalities in the Eq. (3.3) to (3.5) and Eq. (3.12) to (3.15). Note that the 

complementary slackness has the form of 0 ≤ 𝑋 ⊥ 𝑌 ≥ 0, equivalent to 𝑋, 𝑌 ≥ 0 and 

the slackness condition 𝑋 ∙ 𝑌. These conditions can be linearized using big-M method as 

discussed in the previous chapter.  Reference [50] elucidates how to formulate the 

Lagrange function of a LP problem as well as shows how to derive KKT optimal KKT 

conditions. 

max
 ∆௉೔೟,∆஽ೕ೟

𝑃𝑟𝑜𝑓𝑖𝑡஺௧௧ = 

෍ ෍[𝐿𝑀𝑃௜௧
஽஺(∆𝑃௜௧ − ∆𝐷௜௧) + 𝐿𝑀𝑃௜௧

ோ்(𝑃௜௧ − 𝐷௜௧)]

்

௧ୀଵ

Ω೙

௜ୀଵ

 
(4.33) 

S.t ൜
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝐸𝑞. (4.8) −  𝐸𝑞. (4.13 )

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝐸𝑞. (4.16) −  𝐸𝑞. (4.31 )
 (4.34) 

This problem is generally known as MPEC model. Note that the Eq. (4.33) 

objective function is same as in Eq. (4.7), while the constraints include upper-level 

constraints of bi-level model and the KKT conditions of market clearing problem.  

In order to solve a MILP, it is required to have continuous and linear objective 

function. The non-linearity in the objective function Eq. (4.33) is possible to replace 

with the terms by the exact equivalent mixed-integer linear expressions. Using KKT 

conditions and imposing strong duality theorem linear formulation for non-linear terms 

is possible. The objective function in the Eq. (4.33) can be obtained by multiplying 

KKT conditions from Eqs. (4.16) to (4.19) with 𝑃௜௧ , 𝐷௜௧, ∆𝑃௜௧, ∆𝐷௜௧  respectively and then 

summed up. The resultant equation is as follows 

⎣
⎢
⎢
⎢
⎡

𝐶௜௧ − 𝜆௧ + 𝜇௜௧
௠௔௫ − 𝜇௜௧

௠௜௡ + ∑ 𝑆௟௜൫𝜗௜௧
௠௔௫ − 𝜗௜௧

௠௜௡൯௟∈ே௟௜௡௘

−𝐵௜௧ + 𝜆௧ + 𝛾௜௧
௠௔௫ − 𝛾௜௧

௠௜௡ − ∑ 𝑆௟௜൫𝜗௜௧
௠௔௫ − 𝜗௜௧

௠௜௡൯௟∈ே௟௜௡௘

𝐶ᇱ
௜௧ − 𝜆ሚ௧ + 𝜇෤௜௧

௠௔௫ − 𝜇෤௜௧
௠௜௡ + ∑ 𝑆௟௜൫𝜗ሚ௜௧

௠௔௫ − 𝜗ሚ௜௧
௠௜௡൯௟∈஼௟శ

−𝐵ᇱ
௜௧ + 𝜆ሚ௧ + 𝛾෤௜௧

௠௔௫ − 𝛾෤௜௧
௠௜௡ − ∑ 𝑆௟௜൫𝜗ሚ௜௧

௠௔௫ − 𝜗ሚ௜௧
௠௜௡൯௟∈஼௟ష ⎦

⎥
⎥
⎥
⎤

× ൦

𝑃௜௧

𝐷௜௧

∆𝑃௜௧

∆𝐷௜௧

൪ = 0                                                     (4.35) 

0 ≤ 𝜗ሚ௟௧
௠௜௡ ⊥ ൫∆𝐹௟௧ − ∆𝐹௟௧

௠௜௡൯ ≥ 0 ∀𝑙 ∈ 𝐶𝑙ି (4.30) 

0 ≤ 𝜗ሚ௟௧
௠௔௫ ⊥ (𝐹௟௧

௠௔௫ − 𝐹௟௧) ≥ 0 ∀𝑙 ∈ 𝐶𝑙ା (4.31) 
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The terms in the Eq.(4.35),  𝜇௜௧
௠௔௫𝑃௜௧, 𝛾௜௧

௠௔௫𝐷௜௧, 𝜇෤௜௧
௠௔௫∆𝑃௜௧, 𝛾෤௜௧

௠௔௫∆𝐷௜௧ can be replaced 

by 𝜇௜௧
௠௔௫𝑃௜௧

௠௔௫ , 𝛾௜௧
௠௔௫𝐷௜௧

௠௔௫, 𝜇෤௜௧
௠௔௫∆𝑃௜௧

௠௔௫, 𝛾෤௜௧
௠௔௫∆𝐷௜௧

௠௔௫  respectively based on the duality 

theorem, similarly, the other terms  𝜇௜௧
௠௜௡𝑃௜௧, 𝛾௜௧

௠௜௡𝐷௜௧ , 𝜇෤௜௧
௠௜௡∆𝑃௜௧, 𝛾෤௜௧

௠௜௡∆𝐷௜௧  can be 

replaced by 𝜇௜௧
௠௜௡𝑃௜௧

௠௜௡,
 
𝛾

௜௧

௠௜௡
𝐷௜௧

௠௜௡, 𝜇෤௜௧
௠௜௡∆𝑃௜௧

௠௜௡, 𝛾෤௜௧
௠௜௡∆𝐷௜௧

௠௜௡ respectively based on the 

duality theorem [50]. Multiply Eq. (4.35) with unity matrix [1 1 1 1] on both sides 

results in a linear objective function.  

𝜆ሚ௧(∆𝑃௜௧ − ∆𝐷௜௧) + 𝜆௧(𝑃௜௧ − 𝐷௜௧)

= 𝐶௜௧𝑃௜௧+𝜇௜௧
௠௔௫𝑃௜௧

௠௔௫ −  𝜇௜௧
௠௜௡𝑃௜௧

௠௜௡ − 𝐵௜௧𝐷௜௧ + 𝛾௜௧
௠௔௫𝐷௜௧

௠௔௫

− 𝛾௜௧
௠௜௡𝐷௜௧

௠௜௡ + 𝐶ᇱ
௜௧∆𝑃௜௧ + 𝜇෤௜௧

௠௔௫∆𝑃௜௧
௠௔௫ − 𝜇෤௜௧

௠௜௡∆𝑃௜௧
௠௜௡  − 𝐵ᇱ

௜௧

+ 𝛾෤௜௧
௠௔௫∆𝐷௜௧

௠௔௫ − 𝛾෤௜௧
௠௜௡∆𝐷௜௧

௠௜௡ 
(4.36) 

From the above Eq. (4.36), left hand side represents LMP of both DA and RT 

market. And on the right-hand, linear terms are presented. Thus, it can be concluded 

that the nonlinear terms are equal to linear term. Therefore, the objective function is a 

quasi-concave.  

The L-0 norm represents the number of non-zero elements in a vector and aims to 

minimize the error in the measurements and keep within the threshold limit after the 

false data is injected. But it is hard to solve L-0 norm being nonlinear and non-convex. 

Hence, L-0 norm is relaxed with L-2 norm (Euclidean norm) which is convex set [29]. 

Furthermore, the attacker0must0define0mathematical0expression0whether the mth 

meter is compromised0or0not. In this context, the governing equations are as follows: 

0 ≤ 𝜗ሚ௜௧
௠௔௫ ≤ 𝑀(1 − 𝑈௠௧) (4.37) 

−𝑀(1 − 𝑈௠௧) ≤ ෍ 𝑆௟௝

ఆ೙

௜ୀଵ,௟∈஼௟శ

ቌ෍ ∆𝑃௜௧

ఆ೒

௜ୀଵ

− ෍ ∆𝐷௝௧

ఆ೏

௝ୀଵ

ቍ ≤ 0 (4.38) 

0 ≤ 𝜗ሚ௜௧
௠௜௡ ≤ 𝑀(1 − 𝑈௠௧) (4.39) 

 0 ≤ ෍ 𝑆௟௝

ఆ೙

௜ୀଵ,௟∈஼௟ష

ቌ෍ ∆𝑃௜௧

ఆ೒

௜ୀଵ

− ෍ ∆𝐷௝௧

ఆ೏

௝ୀଵ

ቍ ≤ 𝑀(1 − 𝑈௠௧) (4.40) 

0 ≤ 𝜗௠௧
௔ ≤ 𝑀(𝑈௠௧) (4.41) 
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−𝑀(𝑈௠௧) ≤ ∆𝑍௠௧ + ∆𝐹௟௧ + 𝐹௟௧ − 𝐹௟
௠௔௫ ≤ 0 (4.42) 

Where 𝑈௠௧ ∈ {0,1},The above equations Eqs. (4.37)- (4.42) show the relation 

between the attacker’s decision variables and electricity market variables.  For a 

particular attack the attacker decides to choose a meter to manipulate the data by 

injecting false data ∆𝑍 and its corresponding variable 𝜗௠௧
௔ . If 𝑈௠௧ = 1, this indicates 

that the attacker injected manipulated data in to the meter. If 𝑈௠௧ = 0, then the 

respective meter is not attacked by the adversary. These equations are required to inject 

fake data into the market clearing problem, and hence, included in the attacker’s profit 

maximization problem. 

0 ≤ 𝑃௜௧
௠௔௫ − 𝑃௜௧ ≤ 𝑀(1 − 𝑈௜௧) (4.43) 

0 ≤ ∆𝑃௜௧
௠௔௫ − ∆𝑃௜௧ ≤ 𝑀(1 − 𝑈௜௧) (4.44) 

0 ≤ 𝜇௜௧
௠௔௫ ≤ 𝑁(𝑈௜௧) (4.45) 

0 ≤ 𝜇෤௜௧
௠௔௫ ≤ 𝑁(𝑈௜௧) (4.46) 

0 ≤ 𝐷௝௧
௠௔௫ − 𝐷௝௧ ≤ 𝑀(1 − 𝑈௝௧) (4.48) 

0 ≤ ∆𝐷௝௧
௠௔௫ − ∆𝐷௝௧ ≤ 𝑀(1 − 𝑈௝௧) (4.50) 

0 ≤ 𝛾௝௧
௠௔௫ ≤ 𝑁(𝑈௝௧) (4.51) 

0 ≤ 𝛾෤௝௧
௠௔௫ ≤ 𝑁(𝑈௝௧) (4.52) 

0 ≤ 𝑃௜௧ − 𝑃௜௧
௠௜௡ ≤ 𝑀(1 − 𝑈௜௧) (4.53) 

0 ≤ ∆𝑃௜௧ − ∆𝑃௜௧
௠௜௡ ≤ 𝑀(1 − 𝑈௜௧) (4.54) 

0 ≤ 𝜇௜௧
௠௜௡ ≤ 𝑁(𝑈௜௧) (4.55) 

0 ≤ 𝜇෤௜௧
௠௜௡ ≤ 𝑁(𝑈௜௧) (4.56) 

0 ≤ 𝐷௝௧ − 𝐷௝௧
௠௜௡ ≤ 𝑀(1 − 𝑈௝௧) (4.57) 

0 ≤ ∆𝐷௝௧ − ∆𝐷௝௧
௠௜௡ ≤ 𝑀(1 − 𝑈௝௧) (4.58) 

0 ≤ 𝛾௝௧
௠௜௡ ≤ 𝑁(𝑈௝௧) (4.59) 

0 ≤ 𝛾෤௝௧
௠௜௡ ≤ 𝑁(𝑈௝௧)  (4.50) 

0 ≤ 𝐹௟௧
௠௔௫ − 𝐹௟௧ ≤ 𝑀(1 − 𝑈௟௧) (4.51) 

0 ≤ 𝜗௟௧
௠௔௫ ≤ 𝑁(𝑈௜௧) (4.52) 

0 ≤ 𝐹௟௧ − 𝐹௟௧
௠௜௡ ≤ 𝑀(1 − 𝑈௟௧) (4.53) 

0 ≤ 𝜗௟௧
௠௜௡ ≤ 𝑁(𝑈௜௧) (4.54) 

0 ≤ 𝜗ሚ௜௧
௠௔௫ ≤ 𝑀(1 − 𝑈௟௧) (4.55) 
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Note that the complementary constraints in KKT optimality constraints in the 

above final MPEC problem are in written after linearized using big M-method discussed 

in the chapter-3. From the above discussion, non-linear complimentary in Eq. (4.20) to 

(4.31) are linearized and are formulated in the Eqns. (4.4.3) to (4.55). The problem can 

finally be rewritten as the following mixed integer linear programming (MILP) 

equation: 

Obj: max
 ∆௉೔೟,∆஽ೕ೟

𝑃𝑟𝑜𝑓𝑖𝑡஺௧௧ 

= 𝐶௜௧𝑃௜௧+𝜇௜௧
௠௔௫𝑃௜௧

௠௔௫ −  𝜇௜௧
௠௜௡𝑃௜௧

௠௜௡    − 𝐵௜௧𝐷௜௧ + 𝛾௜௧
௠௔௫𝐷௜௧

௠௔௫

− 𝛾௜௧
௠௜௡𝐷௜௧

௠௜௡ + 𝐶௜௧∆𝑃௜௧ + 𝜇෤௜௧
௠௔௫∆𝑃௜௧

௠௔௫ − 𝜇෤௜௧
௠௜௡∆𝑃௜௧

௠௜௡  

− 𝐵௜௧ + 𝛾෤௜௧
௠௔௫∆𝐷௜௧

௠௔௫ − 𝛾෤௜௧
௠௜௡∆𝐷௜௧

௠௜௡ 
 

(4.56) 

S.t ቐ

𝑢𝑝𝑝𝑒𝑟 𝑙𝑒𝑣𝑒𝑙 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝐸𝑞. (22) − 𝐸𝑞. (27)

𝐾𝐾𝑇 𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑖𝑡𝑦  𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝐸𝑞. (30) − 𝐸𝑞. (45)

𝑎𝑡𝑡𝑎𝑐𝑘𝑠 𝑜𝑤𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠 𝐸𝑞 (53) − 𝐸𝑞. (58)
 (4.57) 

4.4. Simulation Results 

The proposed method is implemented on PJM-5 bus system. We empirically 

investigate the proposed method of financially motivated FDI attacks and can be 

extended to the larger systems. The data is taken from the MATPOWER packages 

As shown in the Fig-4.2, the PJM-5 bus system consists of 40generation0meters, 2 

load meters and 6 branch flow meters. According to the proposed method, the attacker 

need not compromise all the meters.  Power system is large widespread network 

operates with different0zones0have0different0communication0systems0to0send data to 

the system operator, hence it is difficult for an attacker to attack entire system.  For any 

FDI attack, attacker needs to estimate network parameters including thermal limits. The 

results for five different scenarios i.e., attack on five-line flow meters are illustrated. In 

each case the attacker can compromises two meters, the attacker has provision of 

attacking more meters, in this work, attacker is limited to attack two meters. Load 

forecast error is small, and the injected fake data at the loads0are0limited to 𝜏 = 0.05, 

and change in flow limits is set as 𝜎 = 0.5. The constant positive value M is set to 

5 × 10ସ . The   proposed financially motivated FDI attacks are0implemented0in GAMS 

softwareousing0CLPEX solver0on0a0PC with an Intel i7 3.6GHZ CPU and 8-GB 

RAM.  
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Fig.4.2. PJM-5 Bus system 

4.4.1. Financial investigation of the attack on meters (RTU’s): 

In this section, different scenarios are demonstrated to attack the network 

measurements. In the proposed attack, attack on line flow meters is considered, there 

are 6 potential line flow meters and all the meters can be compromised among the total 

13 meters. Under no attack condition(∁௔௧௧= 0), Line-6 is congested between the bus 4 

and 5. The adversary as virtual participant in the market buys power at cheap generating 

station in the DA market and sell it for higher prices in RT market. For example, a 

market participant (attacker) wants to make profit, So, the attacker buys 24MW at 31.61 

($/ MW h) power from generating plant-5 at bus-5 in DA market, and sells the same 

amount of power at different bus number wherever LMPs are high in the RT market. It 

is assumed that the participant (attacker) sells the power at bus-1 at 49 $/ MWh. The 

total profit gained by the attacker is 24𝑀𝑊(49 − 31.61)$/MWh = 417.39)$/hour. 

So, behind any attack made by the attacker there is a financial motivation. In order to 

successfully launch finically motivated FDIs the attacker need to change the congestion 

pattern in the system. This can be achieved by the compromised power flow meters. 

Therefore, for any attack in a time period the attacker runs the optimization problem in 

Eq. (4.55). According to the presented attacker’s decision-making problem, attacker can 

only compromise line flow meters the rest are untouched. So, attacker can compromise 

6-meters (∁௔௧௧= 0 𝑡𝑜 ∁௔௧௧= 6).  
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Fig. 4.3. Electricity Market prices in DA market with and without attack at individual  
bus number 

 Attacker can launch an attack for financial benefits. In the first case, the attacker 

compromise line-4 and line-1 meters. As a result, the congested line-6 between the bus 

4 and 5 is relived and there is no congestion in the system. This leads to same LMP’s at 

every bus. Similarly, in other case when the attacker tries to compromise line-4 and 

line-3 meters, it is observed that line-6 along with the line-1 are congested, as a result 

there will be different LMP’s at each bus as shown in the Fig.4.4. Power flow meter 

values with and without attack are presented in Table.4.1. 

Table.4.1. Power flow meters under attack and no attack condition  

∁𝒂𝒕𝒕 L1  L2  L3  L4  L5  L6  

No Attack 222.8 152.71 -165.60 -27.107 -44.714 -192.00 

L4-L1 85 124.25 0 -164.25 105.74 -127.14 

L4-L2 73.32 96.23 40.44 -176.67 93.32 -89.73 

L4-L3 192 157.95 -140.76 -57.18 0 -192 

L4-L5 92.44 117.55 0 -157.55 90.11 -120.28 

L4-L6 85 124.25 0 -164.25 105.74 -127.14 

 Based on the LMP’s in the DA market, the attacker decides to buy/sell the power in 

the RT market. Figs. 4.3 and 4.4 depicts the electricity market prices variations in both 

DA and RT markets at each bus. In most of the cases the attacker tries to remove 

congestion in order to mitigate the risk of getting financial loss. And from Fig. 4.4, it 

can be observed that under the attack by compromising line-4 and line-1meters, the 

attacker will obtain loss as the difference between DA and RT market prices is negative. 
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During this period, the attacker tries to sell this power at bus-4 in the RT market as 

LMPs are same in both markets. Here the attacker is out of risk from financial losses. 

 

Fig. 4.4. Electricity Market prices in RT market with and without attack at individual 
bus number. 

In the second case when the attacker tries to compromise line-4 and line-2 meters in 

the DA market, the LMP’s at each bus are same but higher compared to the attack on 

line-4 and line-5 meters. In this case the attacker compromised the meters such that the 

generator-4 which is costly compared to the other generators is made to dispatch.  

Consequently, in RT market the LMP’s at each bus are higher compared to the other 

cases. This provides the proof for best attacking strategy. Also, it can be observed that 

the attacker needs to compromise line-4 meter for every attack to obtain optimal attack 

vector, and from the Fig.4.3 and Fig.4.4 it can be observed that change in LMP’s at bus-

4 in both DA and RT market is very less compared to the other variations in the LMP.  

 

Fig.4.5. Electricity generation under attack and no attack conditions 
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The generation and demand variations in the DA market are depicted by the Figs.4.5 

and 4.6 respectively. The generation at bus-1 under no-attack and attacking conditions 

is same. But, under the attack conditions the generation at bus-3 and bus-5 are varied. 

This reveals that the generating meters at bus-3 and bus-5 are more vulnerable 

compared to the meters at bus-1 and bus-4. This shows that the attacker prefers to 

buy/sell power at these buses more often compared to other meters to gain financial 

benefits.   

 

Fig.4.6. Electrcity Demand values under attack and no attack conditio 

The demand variations at bus-2 and bus-3 are seen for both attacking conditions. So, 

the attacker may prefer to buy at these buses. But the change in the demands is observed 

at bus-4, here the attacker tries to buy the power. From the above discussion it can be 

concluded that the attacker will be interested to compromise the flow meters of line-3, 

line-5 and line-6 along with line-4. All these lines form node at bus 4. Hence bus-4 is 

more vulnerable to the attack.  Compromising the above meters in the specified 

combination will result in financial profits in each case. Moreover, in the case of 

compromising line-1 and line-4 meters, the attacker can buy power at any generating 

bus in the network during DA market as LMP’s are same. While, in the RT market the 

attacker has to sell at bus-4, so that the attacker will not get financial loss. This can be 

depicted by Figs.4.3 and 4.4. It also helps in reducing the risk of being detected by the 

ISO as only two meters are compromised in each case. The presented model can extend 

to attack more than two meters. This increases the change in error∆∈ in Eq. (4.9). As a 

result, the probability of launching stealthy attack may be reduced. 
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4.5. Conclusion  

       In this work we modelled the attacker’s objective of profit maximization considering 

ISO market clearing problem of both DA and RT markets as MILP problem. According 

to the presented model the attacker is one of the participants in the market as a virtual 

bidder. Attacker will mislead ISO from its market clearing problem by injecting false 

data in to RTU’s and results in estimating fake data along with maintaining the error 

within permissible limits. In conjunction to this, attacker leads the market clearing 

problem to gain consistent financial benefits. The presented model co-relates market 

prices, state variables and false data injected. The simulation results illustrated reveals 

the dependency of market prices on state variables and false data. These attack models 

investigate for the vulnerable areas (meters) in the network and tries to expose weak 

points in the system (as in the above results line flow meter(𝑙ସ). This provides the 

system operator to improve the security at vulnerable points.   

Nomenclature: 

sets 
Ω௚, Ωௗ Set of generators and demands respectively in the network 

𝑇 Operating time periods 

𝛺௡ Set of generators and demand connected to bus n 

𝑆௟௝ Generalized shift factor matrix 

𝑁௕௨௦ Number of buses in the network 

𝛺௟ Number of branches (lines) in the network 
Parameters 

𝐵௜௧, 𝐵ᇱ
௜௧ 

Electricity Price ($/𝑀𝑊ℎ) offered by the ith demand in DA and RT 
markets during the tth time period. 

𝐶௜௧, 𝐶ᇱ
௜௧ 

Electricity Price ($/𝑀𝑊ℎ) offered by the ith generating in DA and RT 
markets during the tth time period. 

∁௔௧௧ Minimum threshold Value  

𝐷௝௧
௠௔௫ 

Maximum demand (𝑀𝑊)offered by the jth demand in DA market during 
the tth time period 

𝐷௝௧
௠௜௡ 

Minimum demand (𝑀𝑊)offered by the jth demand in DA market during 
the tth time period 

𝐹௟௧
௠௔௫ Maximum capacity of lth transmission line in (𝑀𝑊) 

𝐹௟௧
௠௔௫ Minimum capacity of lth transmission line in (𝑀𝑊) 

𝑃௜௧
௠௔௫ 

Maximum generation capacity (𝑀𝑊)offered by the ith demand in DA 
market during the tth time period 

𝑃௜௧
௠௜௡ 

Minimum generating capacity (𝑀𝑊)offered by the ith demand in DA 
market during the tth time period 
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𝑋஽஺ Set of DA market variables 

𝑋ோ் Set of RT market variables 

∆𝐷௝௧
௠௔௫ 

Maximum incremental change in demand (𝑀𝑊)offered by the jth 
demand in RT market during the tth time period 

∆𝐷௝௧
௠௜௡ 

Minimum incremental change in demand (𝑀𝑊)offered by the jth 
demand in RT market during the tth time period 

∆𝐹௟௧
௠௔௫ Maximum incremental change allowed of lth transmission line in (𝑀𝑊) 

∆𝐹௟௧
௠௜௡ Minimum incremental change allowed of lth transmission line in (𝑀𝑊) 

∆𝑃௜௧
௠௔௫ 

Maximum incremental change in generation capacity (𝑀𝑊)offered by 
the ith demand in RT market during the tth time period 

∆𝑃௜௧
௠௜௡ 

Minimum incremental change in generation capacity (𝑀𝑊)offered by 
the ith demand in RT market during the tth time period 

Variables 

𝐷௝௧ 
Demand (𝑀𝑊) cleared (scheduled) in the DA market during the tth time 
period 

𝐹௟௧ Transmission capacity scheduled for the lth line during the tth time period 

𝑃௜௧ 
Generating capacity (𝑀𝑊) cleared (scheduled) in the DA market during 
the tth time period 

𝐿𝑀𝑃௜௧
ா௉ 

Locational Marginal Price in ($) at the ith bus during the tth time period 
in DA market 

𝐿𝑀𝑃௜௧
ா஺ 

Locational Marginal Price in ($) at the ith bus during the tth time period 
in RT market 

𝑅஽஺, 𝑅ோ் Value of objective function in DA and RT market 

∆𝐷௝௧ 
Incremental Demand (𝑀𝑊) value cleared (scheduled) in the RT market 
during the tth time period 

∆𝐹௟௧ 
 Incremental change in scheduled capacity of lth transmission line in 
(𝑀𝑊) 

∆𝑃௜௧ 
Incremental generation (𝑀𝑊) value cleared (scheduled) in the RT 
market during the tth time period 

𝜆௧, 𝜆ሚ௧ 
Locational Marginal Price in ($) at the ith bus during the tth time period 
in DA, and RT markets 

∆𝑍௠௧ 
False data injected in the mth transmission line (𝑀𝑊) during the tth time 
period 
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CHAPTER 5 

Stochastic Optimal Scheduling of Virtual Power Plants in market-
based power system 

5.1.  Introduction 

The world's power system utilities are being restructured and reformed, resulting 

in the loss of monopolies in the vertically integrated Power sector. The deregulated 

market regime has provided an enabling environment for faster expansion in 

generation, transmission, and distribution networks to encourage investment in the 

power sector. As a result, a large number of market participants, stakeholders, 

independent power producers, electricity traders, and regulators plays an active role. 

Renewable energy-based electricity generation is gaining massive traction in every 

country on the planet. It has had a significant impact on the deregulated power market. 

These developments have an impact on the financial health of incumbent fossil fuel 

generators, whose marginal costs of generation is comparatively high. 

RE sources are incorporated in the electricity grid in one of the two ways: 

centralised or distributed. A stochastic model is frequently used to schedule large-scale 

renewable energy sources that are centralised. While RE sources that are distributed 

and integrated have a small capacity, they are extensively spread over the network 

[57]. However, the uncertainties in RE generation and market price changes can be 

viewed as a double-edged sword, as while RE sources offer a promising solution for 

reducing carbon footprints, they also impose generation-demand mismatches and 

adding to this increases power system's regulating burden, which leads to limited 

participation in the electricity markets. 

The virtual power plant concept offers a centralised solution to these issues. VPP 

aggregate total energy production from distributed0energy0resources (DERs) 

including0small to medium-scale0renewable generating units such as small hydro 

plants, roof top solar PV systems, wind farms, flexible loads, diesel generator sets, 

Combined Heat and Power Producers (CHPs) and so on. 

These utilities can be combined with other fossil fuel power plants to form a 

cluster of energy sources. VPPs, with aim to consolidate a cluster of small distributed 

RE-based generating units into a single entity participates in the competitive electricity 
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market. This has brought further complexities in market operation, primarily in terms 

of its operation scheduling, and economic profitability, etc. 

VPP acts as a link between distributed energy resources and whole-sale electricity 

markets, trading energy on behalf of DER owners who are unable to participate in the 

market directly. VPP concept enables small-scale renewable energy generators to enter 

the power market. 

The power generation and load imbalances are dynamic in nature. Furthermore, 

there is unpredictability in RE generation (e.g., wind farms, solar PV plants, etc.) due 

to the intermittency and unpredictability of RE sources, as well as imprecise 

forecasting, adds to the complexity of RE integration with electrical networks. 

Keeping in view about the complexities, RE power is usually non-dispatchable, 

system operators in DAM and RTM face a difficult issue in scheduling RE generators 

in conjunction with CPPs. 

Understanding the uncertainties in the RE generating process, which are classified 

as stochastic process. It is being attempted to connect RE producing utilities with other 

generating units such as CPPs, storage units, and flexible loads. Similar, to the other 

market participants VPP as a single entity tries to maximize its profits by trading its 

power in DA and regulating reserve (RR) markets while, optimizing its resources. 

 

Fig.5.1. VPP energy management system showing its participation in DA and Reserve 

market 

 A two-stage0stochastic0programming0approach is proposed to describe the 

uncertainties that arise during the process of integrating these VPPs with RE sources 
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and to discover the best solution for scheduling RE units in the electricity market 

clearing process. 

5.1.1.  Impacts of Renewable Generating Units on the Electricity 

Markets 

The market conditions have changed dramatically as a result of renewable 

energy generation. Historically, the cost of RES generation has decreased dramatically 

over time, and the per unit cost is low when compared to the cost of fossil fuel-based 

generating. The introduction of renewable energy into the market has resulted in lower 

wholesale electricity rates. 

According to [45], the levelized cost of electricity (LCOE) for PVs declined by 

72 percent from $304 per MWh to roughly $86 per MWh between 2009 and 2017. The 

LCOE of onshore wind has fallen by 27%, from $93 to $67 per MWh. 

 These reasons, as well as the fact that greenhouse gas emissions are negligible, 

are critical in establishing a renewable energy market. However, it has had a 

significant influence on the economic viability of traditional generators and has had a 

significant influence on the financial health of fossil fuel generator stakeholders. It has 

also been discovered that widespread adoption of renewable energy is and will 

continue to lead to even negative electricity costs, in which traditional generators must 

pay to create electricity [35].  

Another important aspect that impacts grid scheduling and operation is the 

uncertainty of RE generation [47]. With its set of producing units (including 

conventional and RE sources), storage units, biomass plants, and flexible demands, 

VPPs can give a feasible way to minimise such concerns. These VPPs can optimise 

their energy sources by using conventional plants when RE production is low, and 

storage units are used to charge when RE production is high. It also highlights the 

significance of traditional sources in the system's sustenance. In the capacity markets, 

these typical generators can serve as capacity plants.  

Stochastic and optimal scheduling of VPP is done as part of market research in the 

context of economic profitability of stakeholders [42-45], optimal resource utilization 

to fulfil end-user requirements, and minimise imbalances of load-generation dynamics 

in RE dominated electricity market. 
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5.2.  Uncertainties Modelling 

  The information about market prices, RE intermittence generation, and reserve 

deployment requests is unknown and unclear during the decision-making process. As a 

result, VPP must deal with these uncertainties while making strategic market scheduling 

decisions. As a result, it's critical to deal with these uncertainties.  

  Using0historical0data0and0forecasting0tools such as ARIMA models [48, -50], 

Monte Carlo Simulation tool [59], and interval approaches [51,62-64], these scenarios 

are generated. For the optimum realisation of the real output from WT and PV plants, a 

suitable set of scenarios is evaluated. A huge0number0of0scenarios0may0result0in a 

computationally infeasible task. 

  The uncertainties mentioned above are modelled using a set of predefined 

discrete scenario realizations indicated by 𝑤𝜖Ω௪. Therefore, in this study we use the 

discrete set of scenarios used in the reference [50] which are feasible and 

computationally efficient.  Each scenario of 𝑤 is defined by the parameters 

𝜇௪௧
ா , 𝜇෤௪௧

ோା, 𝜇௪௧
ோା, 𝜇෤௪௧

ோି, 𝜇௪௧
ோି, 𝐾௪௧

ோି, 𝐾௪௧
ோି, and 𝑃௥௧௪

ோ,஺  that indicates energy market price, power 

capacity price in the down-reserve market, the up and down-reserve deployment request, 

and0the0available0generating levels of stochastic RE generating0units0respectively. 

Each0scenario 0𝑤 is defined with probability of occurrence Π௪. The0sum0of overall 

probabilities of the scenarios0is0equal0to 1, i.e., ∑ 𝜋௪ = 1.௪  

5.3. Stochastic Optimal Scheduling 

 This section analyses the optimal scheduling problem of the electricity markets 

where virtual power plants (VPP) sell or buys the energy with the objective of profit 

maximization. On other hand, reserve markets provide the flexibility0to0increase0or 

decrease the total energy production of VPPs upon the request of the system operator. 

 The Day-Ahead and reserve electricity markets are considered in this section to 

analyse the market scheduling decisions one day in advance. While making this 

scheduling decision the VPP faces a number of uncertainties [33,41]. Following are the 

uncertainties faced in the market scheduling process: 

 The market prices include the day-ahead market0prices0and0the0reserve0market 

prices (for both capacity and energy). 

 Stochastic nature of the available renewable generating unit’s production level. 
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 The requests to deploy reserve sources by the system operator.  

 The proposed uncertainties are modeled for obtaining optimal market scheduling 

decisions.  As the proposed approach is probabilistic and not deterministic in nature, 

inappropriate modeling will result0in0loss or profit to the VPPs and even results in an 

infeasible0operation0of utilities/ generation0and demand asset. 

5.3.1. Two- Stage Stochastic optimal Scheduling Problem 

The optimal decision-making problem under these scenarios is modelled as a two-

stage stochastic programming model and is interpreted as follows: 

𝑚𝑎𝑥ఝೇ ෍ 𝛱௪

௪∈ఆೢ

൝ ෍ ൫(𝜇௧
ா𝑃௧

ா∆𝑡) + (𝜇෤௪௧
ோା + 𝐾௪௧

ோା𝜇௪௧
ோା∆𝑡)𝑃௧

ோା

௧∈ఆ೅

 

+(𝜇෤௪௧
ோି − 𝐾௪௧

ோି𝜇௪௧
ோି∆𝑡)𝑃௧

ோି − ෍ ൫𝐶஼
஼,ி𝑢௖௧

஼ + 𝐶஼
஼,௏𝑃௖௧௪

஼ ∆𝑡൯

஼∈ఆ಴

൱ൡ 

(5.1) 

Subject to: 

𝑃௧
ா ≤ 𝑃௧

ா ≤ 𝑃௧

ா
  (5.2) 

𝑃௧
ோା ≤ 𝑃௧

ோା ≤ 𝑃௧

ோା
  (5.3) 

𝑃௧
ோି ≤ 𝑃௧

ோି ≤ 𝑃௧

ோି
  (5.4) 

𝑃௧
ா + 𝐾௪௧

ோା𝑃௧
ோା − 𝐾௪௧

ோି𝑃௧
ோି

= ෍ 𝑃௖௧௪
஼ +

஼∈ఆ಴

+ ෍ 𝑃௥௧௪
ோ

௥∈ఆೃ

+ ෍ ൫𝑃௦௧௪
ௌ,஽ − 𝑃௦௧௪

ௌ,஼൯

௦ఢఆೞ

− ෍ 𝑃ௗ௧௪
஽

ௗఢఆವ

 

 

(5.5) 

𝑃ௗ௧
஽ ≤ 𝑃ௗ௧௪

஽ ≤ 𝑃ௗ௧

஽
 ; ∀𝑑 ∈  𝛺஽ (5.6) 

෍ 𝑃ௗ௧௪
஽

௧ ∈ ఆ೅

∆𝑡 ≥ 𝐸ௗ
஽ ; ∀𝑑 ∈  𝛺஽ (5.7) 

𝑃௖௧
஼ 𝑢௖௧

஼ ≤ 𝑃௖௧௪
஼ ≤ 𝑃ௗ௧

஼
𝑢௖௧

஼  ; ∀𝐶 ∈  𝛺஼   (5.8) 

0 ≤ 𝑃௥௧௪
ோ ≤ 𝑃௥௧௪

ோ,஺ ; ∀𝑅 ∈  𝛺ோ (5.9) 

𝑃௦௧
ௌ,஼ ≤ 𝑃௦௧௪

ௌ,஼ ≤ 𝑃௦௧

ௌ,஼
 ; ∀𝑆 ∈  𝛺ௌ (5.10) 

𝑃௦௧
ௌ,஽ ≤ 𝑃௦௧௪

ௌ,஽ ≤ 𝑃௦௧

ௌ,஽
 ; ∀𝑆 ∈  𝛺ௌ (5.11) 



 

60 
 

 Where set 𝜑௏ = ൛𝑃௧
ா , 𝑃௧

ோା, 𝑃௧
ோି, ∀𝑡 ∈ 𝛺்; 𝑢௖௧

஼ , ∀𝐶 ∈ 𝛺஼;   𝑃௖௧௪,
஼ ∀𝐶 ∈ 𝛺஼;  𝑃௥௧௪

ோ , ∀𝑅 ∈

 𝛺ோ ;   𝑃௦௧௪
ௌ,஼ , ; ∀𝑆 ∈  𝛺ௌ;   𝑃௦௧௪

ௌ,஽ , ∀𝑆 ∈  𝛺ௌ;  𝑒௦௧௪
௦ , ; ∀𝑆 ∈  𝛺ௌൟ∀𝑡 ∈ 𝛺் , ∀𝑤𝜖𝛺௪ are the 

optimization variables in the above  problem.  𝛱௪ indicates, weight of each scenario 

𝑤 [39,40,41].  VPPs objective is defined in the Eq. (5.1) throughout0the0planning 

0horizon and consists of the0following0terms: 

 The term 𝜇௧
ா𝑃௧

ா∆𝑡, ∀𝑡 ∈ 𝛺்  represents the revenues acquired by the VPP for their 

participation in the DA markets. Here the variable  𝑃௧
ா  may be +ve (if VPPs sell 

power in the DA market) and -ve (if the VPPs buy power in the DA markets). 

 The term (𝜇෤௪௧
ோା + 𝐾௪௧

ோା𝜇௪௧
ோା∆𝑡)𝑃௧

ோା, ∀𝑡 ∈ 𝛺்represents the revenue obtained by the 

VPP for participating in0the0Up-reserve0markets. These0revenues0are again 

divided into (𝜇෤௪௧
ோା𝑃௧

ோା) capacity0payments and (𝐾௪௧
ோା𝜇௪௧

ோା∆𝑡𝑃௧
ோା) energy 

payments. 

 The term (𝜇෤௪௧
ோି − 𝐾௪௧

ோି𝜇௪௧
ோି∆𝑡)𝑃௧

ோି, ∀𝑡 ∈ 𝛺்represents the revenue obtained by the 

VPP for participating in0the0Down-reserve markets. These revenues are again 

classified into (𝜇෤௪௧
ோି𝑃௧

ோି) capacity0payments and (𝐾௪௧
ோି𝜇௪௧

ோି∆𝑡𝑃௧
ோି) energy 

payments. 

 Variable cost incurred by the CPPs is represented by the term ൫𝐶஼
஼,ி𝑢௖௧

஼ +

𝐶஼
஼,ி𝑃௖௧௪

஼ ∆𝑡൯; ∀𝐶 ∈ 𝛺஼ , ∀𝑡 ∈ 𝛺் 

Where Eqs. (5.2), (5.3) and (5.4) are the constraints, representing upper and lower 

bounds on the amount of power0traded0in0the DA, up, and0down-reserve0markets 

respectively. Eq. (5.5) represents the power balancing constraint. Eqs. (5.6) and (5.7) 

puts power consumption limits on the demands. 𝑢௖௧
஼ ∈ {0,1}; ∀𝐶 ∈ 𝛺஼ , ∀𝑡 ∈ 𝛺் denotes 

binary variable, it represents the on/off status of CPP. Constraints in the Eqs. (4.8), and 

(4.9) limits the power produced by the CPPs and stochastic RE generation level 

respectively. Eqs. (5.10) and (5.11) represents the constraints on the0charging0and 

discharging level of storage units, while the Eq. (5.12) represents the energy production 

level in storage units and Eq. (5.13) represents the limiting constraint on the energy level 

𝑒௦௧௪
௦ = 𝑒௦(௧ିଵ)௪

ௌ + 𝑃௦௧௪
ௌ,஼∆𝑡𝜂௦

ௌ,஼ −
𝑃௦௧௪

ௌ,஽∆𝑡

𝜂௦
ௌ,஽  ; ∀𝑆 ∈  𝛺ௌ (5.12) 

𝐸௦௧
ௌ ≤ 𝑒௦௧௪

ௌ ≤ 𝐸௦௧

௦
 ; ∀𝑆 ∈  𝛺ௌ (5.13) 
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of the storage units. The above0problem0is0a0Mixed0Integer0Linear Programming 

(MILP) problem solved using CLPEX solver. 

5.4. Simulation Results 

 The proposed two-stage stochastic model for optimal scheduling is tested on 4-hour 

planning horizon, and the required data is collected from [50]. The simulation results are 

implemented in GAMS software using CLPEX solver on a PC with0an0Intel i7 3.6GHZ 

CPU and 8-GB RAM. 

The0maximum0power0traded (sold/buy) in the energy market is limited to 100MW.  

The up and down reserve market capacity is limited at 50 MW. Energy Market prices 

along with up0and0down reverse0market0prices for the power capacity are presented in 

Table-5.1. Generation limits of the CPPs and their economic data along with the flexible 

demand data is referred from IEEE-5 bus system. The forecasted wind power production 

level is provided in Table-5.2. Reverse deployment request is considered to be 80% of 

the power capacity scheduled in down reserve market during the time period-2, similarly 

for up reserve market 50% and 100% of scheduling capacity are requested during the 

time period-1 and 3 respectively. No reserve deployment is requested during the time 

period-4.  This data is assumed and considered based on the system operators request for 

the reverse deployments. 

In the above two-stage0stochastic0programming model, the uncertainty in the RE 

(wind) generating levels along with the0uncertainty present in the0reserve0deployment 

request are modeled by using0two0equiprobable0scenarios in each stage. Thus 4 

scenarios (two of each) are considered. For the sake of simplicity these scenarios are 

independent of each other. 

Table 5.1. Energy and Reserve market price data  

Time 
Period 

Price [$/MWh] 
Energy 
Markets 

Up0reserve0market Down0reserve0market 
Energy Capacity Energy Capacity 

1 12 14 4 14 4 
2 14 15 10 38 10 
3 22 30 8 26 8 
4 32 20 6 25 6 
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Table 5.2. Total Wind forecasting level for different time periods 

 The proposed two stage stochastic model is run by the system operator to 

determine optimal scheduling for each generating unit in each time period. Considering 

the data presented in the tables-5.1 and 5.2, the optimal power scheduled and market 

prices in Day-ahead and reserve markets are presented and explained in Figs. 5.2 to 5.8.  

 

Fig.5.2. Plants Power 0traded0in energy, up-reserve0and0down reserve markets  

  VPPs participate in the energy markets and submit their bids based upon their 

demand levels in the specific time period, these bids are submitted  in terms of price and 

quantity to the system operator. Fig. 5.2 shows, the optimal amount of power traded in 

each time period in the energy, up and down reserve markets.  In these markets the VPP 

decides to buy the energy, expect for the time period-2 when its demand level is being 

low and during this period energy is supplied by their own renewable generating units. 

In all other cases the VPP tries to buy the energy in0the0energy0market. In the case of 

up reserve market, the power is traded in time periods 2 and 3. While in the case of 

down reserve market power is traded during the periods 1, 3 and 4. No power is traded 

during the time period-2. This is because of the maximum demand levels and low prices 

for the  reserve deployment as explained in Table-5.2. 
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Based up on the amount of0power0traded0in the energy and reserve0markets, 

conventional power plants are scheduled. During the low demand level i.e., during the 

time period-2, these plants are turned off. Fig. 5.3 shows, scheduling of CPP. The power 

plants with highest economical prices are not scheduled for the entire market operation 

as shown in Fig 5.6. The renewable generation is maximum at each time period as 

shown in the Fig. 5.5. Power consumption levels in each time period is same expect for 

the time period T-2. In order to supply their demand level during the maximum demand 

periods, VPPs enter in to the power markets. Therefore, based on the market prices the 

VPP decides to buy maximum power from RE sources in the markets. 

Fig.5.3. Power consumption by the conventional power plants in the market 

 

Fig.5.4. Power consumption by the demand in the market 
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 Fig.5.5. Forecasting Power generating level of Wind Power source 

 From the above optimal scheduling process, it is clear, that the stochastic RE 

sources are made to dispatch in all time periods and  based on the power demand level 

and market prices the system operator request for up and down reverse deployments 

during a specific time period. 

 The conventional power plants are scheduled only when the required demand is 

more than the RE generation and reverse deployment capacity. Fig.5.6 shows scheduled 

dispatch of CPPs. During each hour,  generator (G-4) is not dispatched. Similarly, 

during second period no CPP is scheduled. This puts economic burden on the 

conventional generators. The prices incurred during the power production is less than 

the revenues obtained. Hence, it is required to provide policy incentives and to take 

standard tariff policy mechanism for conventional generation. Updating to the current 

technology, increasing ramp up and ramp down rates of the generators may make their 

way possible to compete with the RE sources.  

 

Fig.5.6. Scheduled power dispatch of conventional power plants 
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Fig.5.7 and Fig.5.8 represent market clearing price ($/h) variations with and 

without RE sources. It is observed that MCP’s without RE sources is always greater 

than the MCP’S with RE.  Therefore, it is clear that the conventional generators are 

forced to generate power for lesser prices. This price variations will result in economic 

losses. Therefore, it is required to provide cost-based policy incentives for the 

conventional plants. Some of the countries are following fed in tariff policy, purchase 

obligations and contract for difference mechanism to create a balance pricing 

mechanism. 

 

Fig.5.7. Market clearing prices in $/h with RE sources for different time   periods. 

 

Fig.5.8. Market clearing prices in $/h without RE sources for different time periods. 

The above simulation result has established that during low demand periods 

VPP optimizes its resources by using RE (wind) generation only. During maximum 

demand periods CPPs are scheduled, and reserve deployment requests are made 

accordingly to the system operator request. With interest participation of VPPs market 
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price levied on the consumers is reduced but burden on the conventional generators 

increases. The simulation graphs shown in Fig.5.7 and 5.8 has clearly indicated the 

price variations with and without RE sources.  This clearly indicate that the VPP in the 

electricity market are acting as price makers and sometimes as price takers. 

The above two stage stochastic problem is executed using deterministic approach, in 

such case the optimal scheduling of VPP is found infeasible. This is due to the error 

while providing reserve deployment request. This highlights0the0importance0of an 

accurate modelling of the0uncertainties0in the problem. Economic impact on CPPs due 

to RE sources can also be interpretated from the above results.  

5.5. Conclusion  

Power and energy balancing mechanisms are evolutionary in market operation from 

the cost economic angle. It depends on RE policies, power sector reform strategies, 

price discovery mechanisms, generation scheduling economics, load management 

techniques, role of VPPs, etc. Like every generator looking for its profitability and 

services to the system operation. VPPs with its resources look for maximization of their 

profits. The proposed two-stage stochastic modelling for optimal scheduling of VPP in 

electricity markets has established the merits of its generation scheduling to mitigate 

certain uncertainties as explained above. The simulation work provides impressive 

results for accurate optimal scheduling of the generating units of VPP. This method may 

be extended to large scale market operations and big power system networks by 

dividing the system into several subsystems. 

Nomenclature: 

Sets 

𝛺஼ Set of Conventional Power Plants  
𝛺஽ Set of Demands 
𝛺ோ set of renewable energy generating units  
𝛺ௌ Set of storage units 
𝛺் Scheduling Time periods 
𝛺௪ Set of discrete scenarios  

Parameters 
𝐶஼

஼,ி Online0cost0of0conventional generating unit c [$/MWh] 
𝐶஼

஼,௏ Variable0cost0of0conventional generating unit c [$/MWh] 
𝐾௪௧

ோା Up-reserve requirement request factor in time period t [pu] 
𝐾௪௧

ோି Up-reserve requirement request factor in time period t [pu] 

𝑃ௗ௧

஽
, 𝑃ௗ௧

஽  
Upper and lower bounds of the power consumption of the dth demand 
[MW] in time period t  
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𝐸ௗ
஽ Minimum0energy0consumption of0the0demand dth throughout the 

planning horizon [MW] 

𝑃ௗ௧

஼
, 𝑃௖௧

஼  
Upper and lower bounds on the power generation of the cth 
conventional generating unit [MW] in time period t 

𝑃௥௧௪
ோ,஺ Available RE generating limit of unit r in the time period t 

𝑃௦௧
ௌ,஼ , 𝑃௦௧

ௌ,஼
 

Upper and lower bounds on the charging capacity of storage unit s 
[MW] 

𝑃௦௧
ௌ,஽ , 𝑃௦௧

ௌ,஽
  

Upper and lower bounds on the discharging capacity of storage unit s 
[MW] 

𝐸௦௧
ௌ , 𝐸௦௧

௦
 

Upper and lower bounds on the energy stored in the storage unit s 
[MW] 

∆𝑡 Duration time period in hours  

𝑃௖௧
஼  

Power generation of the conventional power plants in time period t 
[MW] 

𝑃ௗ௧
஽  Demand d power consumption level in the time period t [MW] 

𝑃௥௧
ோ  RE generating unit r production level during the time period t 

𝑃௦௧
ௌ,஽ Power discharging level of storage unit s in the time period t 

𝑃௦௧
ௌ,஼ Charging level of storage unit s in the time period t [MW] 

𝑒௦௧
௦  Energy stored by the storage unit s in the time period t [MWh] 

𝑃௧
ோା Power capacity traded in up-reserve market in time period t 

𝑃௧
ோି Power capacity traded in down-reserve market in time period t 

𝑃௧
ா  Amount of Power traded in the market during the time period t 

Parameters 

𝐶஼
஼,ி Online cost of conventional generating unit c [$/MWh] 

𝐶஼
஼,௏ Variable cost of conventional generating unit c [$/MWh] 

𝑃௖௧
஼  

Power generation of the conventional power plants in time period t 
[MW] 

𝑃ௗ௧
஽  Demand d power consumption level in the time period t [MW] 

𝑃௥௧
ோ  RE generating unit r production level during the time period t 

𝑃௥௧
ோ,஺ Available RE generating limit of unit r in the time period t 

𝑃௦௧
ௌ,஽ Power discharging level of storage unit s in the time period t 

𝑃௦௧
ௌ,஼ Charging level of storage unit s in the time period t [MW] 

𝑒௦௧
௦  Energy stored by the storage unit s in the time period t [MWh] 

𝑃௧
ோା Power0capacity0traded0in0up-reserve0market0in0time period t 

𝑃௧
ோି Power0capacity0traded0in0down-reserve0market0in0time period t 

𝑃௧
ா  Amount of Power traded in the market during the time period t 
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Chapter 6 

Security constrained Bi-level Strategic Scheduling of Virtual 
Power Plant in Electricity markets   

6.1. Introduction 

Virtual Power Plant concept allows distributed energy sources, and small utilities to 

participate in the electricity markets. It is well known fact that the each and every 

market participant tries to maximize their profit through trading electricity in the 

markets. Similar to the other market participants, VPP also tries to make profits. Hence, 

strategic bidding is necessary to sustain against the fluctuating market prices. VPP as an 

aggregator of different energy sources optimize its internal demands and then 

participate in the electricity market. 

In the system modelling, the VPP that is considered as a single entity in the 

electricity market of DERs for electricity generation and flexible load duration profiles. 

The DERs include solar PV plants, wind turbines, CHPs, diesel generating sets (DGs), 

and energy storage/discharge systems (ESSs). Uncertainties in scheduling and making 

decision are modelled using scenario realization technique (refer chapter-4). The VPP 

uses the0flexibility0of0its energy assets and participate0in0the DA energy and0reserve 

markets to increase its profitability.  This decision is made before the scenario ‘w' is 

actually realised, it is termed ‘here and now' decision. It schedules its energy assets after 

forecasting and modelling the data related to uncertainties as0well0as information 

regarding0up0and0down0reserve deployment requests made by market participants to 

the market operator, and this act of taking dispatch decision is termed as ‘wait and see’ 

decision with0respect0to0the scenario. 

Thus, knowing the actual requirements of electricity markets, VPP takes strategic 

decision about its scheduling of energy assets. Therefore, VPP emerges as leader in 

deciding market price. Thus, VPP acts as price maker in the market followed by the 

market clearing process.  A bi-level programming is suitable for modelling leader and 

follower models and is developed for optimal scheduling of the VPP, with the objective 

to maximise profit by serving as price maker. 

Network flow constraints are included in the optimization problem. Therefore, the 

optimization model is converted into security constrained power flow model. The 
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congestion on the transmission line is realized along with congestion prices. The impact 

of congestion on VPPs profit is worked out. 

6.2. Mathematical Modelling of VPP’s strategic behaviour 

The VPP considered here participates in DA, and Reserve market. The0bi-level 

model0consists0of0upper0level0and0lower level as explained earlier in the previous 

Chapter-3. The upper-level0problem0is said to be0leader whereas the0lower-level 

problem0is considered as follower. 

VPP as a price maker decides the market price decision by participating in0the DA 

and0reserve0markets. The0VPP strategic decision0in scheduling its energy assets is 

followed by the utilities participating in DA and reserve markets. Hence bi-level 

modelling is suitable for investigating the VPP’s strategic behaviour. The mathematical 

formulation is explained as follows:  

6.2.1.  Upper-level Problem: 

The objective function in the0upper-level model is0to0maximize0the profits 

obtained by the VPP and minimize the cost of generation of VPP. It consists of three 

components which includes profit obtained by participating in DA and reserve market, 

and revenues obtained from scheduling VPP components. 

𝑃 ஽஺ெ = ෍ 𝜆௧
஽஺

ଶସ

௧ୀଵ

[𝑃௧
஽஺ା − 𝑃௧

஽஺ି] ∀Γ஽஺ெ (6.1) 

𝑃ோெ = ෍[𝜆௧
ோ௎𝑃௧

ோ௎ + 𝜆௧
ோ஽𝑃௧

ோ஽]

ଶସ

௧ୀଵ

 ∀Γோெ (6.2) 

𝐶௏௉௉ = ෍ 𝛱௪

௪ఢ௽ವಲಾ,ೃಾ

෍ 𝐶௧௪
௉௏

ଶସ

௧ୀଵ

+ 𝐶௧௪
ௐ் + 𝐶௪௧

஼ு௉ + 𝐶௪௧
஽ீ + 𝐶௪௧

஼௉௉ − 𝐶௪௧
ௗ  ∀Γ௏௉௉ (6.3) 

 Eq. (6.1) represents the profit acquired by selling and bidding power by the 

VPP designated by 𝑃 ஽஺ெ. Eq. (6.2) represents the profit acquired by offering reserve 

capacity for balancing the system in the reserve market. Finally, Eq. (6.3) indicates the 

revenues obtained in scheduling the components of VPP. This objective function is 

subjected to the constraints related to different VPP components and includes network 

flow constraints at the end. These constraints are for formulated below, corresponding 
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to the each VPP component and constraints related to VPP participation in the DA and 

reserve market. 

Subject to   

෍ 𝑃௜௧௪
ீ,௏௉௉

௜

+ ෍ ൫𝑃௦௧௪
ௌ,஼ − 𝑃௦௧௪

ௌ,஽൯

௜∈ ఆೄ

− ෍ 𝑃௝௧௪
஽,௏௉௉

௝

=  𝑃௧

஽஺ெ
− 𝑃௧

஽஺ெ + 𝐾௧௪
஽ோெା𝑃௧

௎ோெା − 𝐾௧௪
஽ோெି𝑃௧

஽ோெି 

∀𝑖 ∈ Γ௏௉௉,𝑗 ∈ Γ஽ாெ,𝑡 (6.4) 
 

𝑃௜௧௪
ீ,௏௉௉ ≤ 𝑃௜௧௪

ீ,௏௉௉ ≤ 𝑃௜௧௪

ீ,௏௉௉
 ∀𝑖 ∈ Γ௏௉௉, 𝑡, (6.5) 

𝑃௜(௧ିଵ)௪
ீ,௏௉௉ − 𝑃௜௧௪

ீ,௏௉௉ ≤ 𝑅௜
ீ,௏௉௉,஽ௐ ∀𝑖 ∈ {𝐶𝑃𝑃𝑠, 𝐷𝐺𝑠, 𝐶𝐻𝑃𝑠} (6.6) 

𝑃௜௧௪
ீ,௏௉௉ − 𝑃௜(௧ିଵ)௪

஽,௏௉௉ ≤ 𝑅௜
ீ,௏௉௉,௎௉ ∀𝑖 ∈ {𝐶𝑃𝑃𝑠, 𝐷𝐺𝑠, 𝐶𝐻𝑃𝑠} (6.7) 

𝑃௝௧
஽,௏௉௉ ≤ 𝑃௝௧௪

஽,௏௉௉ ≤ 𝑃௝௧

஽,௏௉௉
 𝑗𝜖Γ஽ாெ,, ∀𝑡 (6.8) 

𝑃௝(௧ିଵ)௪
஽,௏௉௉ − 𝑃௝௧௪

஽,௏௉௉ ≤ 𝑅௝
஽,௏௉௉,஽ௐ 𝑗𝜖Γ஽ாெ,ௗ

, ∀𝑡, (6.9) 

𝑃௝௧௪
஽,௏௉௉ − 𝑃௝(௧ିଵ)௪

஽,௏௉௉ ≤ 𝑅௝
஽,௏௉௉,௎௉ 𝑗𝜖Γ஽ாெ,, ∀𝑡 (6.10) 

෍ 𝑃௝௧௪
஽,௏௉௉

௧

∆𝑡 ≥ 𝐸௝
௠௜௡ 𝑗𝜖Γ஽ாெ,, ∀𝑡 (6.11) 

𝑃௦௧
ௌ,஼ ≤ 𝑃௦௧௪

ௌ,஼ ≤ 𝑃௦௧

ௌ,஼
 ; ∀𝑆 ∈  𝛺ௌ (6.12) 

𝑃௦௧
ௌ,஽ ≤ 𝑃௦௧௪

ௌ,஽ ≤ 𝑃௦௧

ௌ,஽
 ; ∀𝑆 ∈  𝛺ௌ (6.13) 

𝑒௦௧ణ
௦ = 𝑒௦(௧ିଵ)௪

ௌ + 𝑃௦௧௪
ௌ,஼∆𝑡𝜂௦

ௌ,஼ −
𝑃௦௧௪

ௌ,஽∆𝑡

𝜂௦
ௌ,஽  ; ∀𝑆 ∈  𝛺ௌ (6.14) 

𝐸௦௧
ௌ ≤ 𝑒௦௧௪

ௌ ≤ 𝐸௦௧

௦
 ; ∀𝑆 ∈  𝛺ௌ (6.15) 

𝑃௧

஽஺ெା
, 𝑃௧

௎ோெ ≤  𝑃௧

௏௉௉ା
 ∀𝑡 (6.16) 

𝑃௧

஽஺ெି
, 𝑃௧

஽ோெ ≤  𝑃௧

௏௉௉ି
 ∀𝑡 (6.17) 

𝑃௧

஽஺ெା
+ 𝑃௧

௎ோெ ≤  𝑃௧

௏௉௉ା
 ∀𝑡 (6.18) 

𝑃௧

஽஺ெ
+ 𝑃௧

஽ோெ ≤  𝑃௧

௏௉௉ି
 ∀𝑡 (6.19) 

𝑃௧

஽஺ெା
, 𝑃௧

஽஺ெି
, 𝑃௧

௎ோெ, 𝑃௧
஽ோெ  ≥ 0 ∀𝑡 (6.20) 

𝑉௧
஽஺ெା, 𝑉௧

஽஺ெି, 𝑉௧
௎ோெ, 𝑉௧

஽ோெ ≥ 0 ∀𝑡 (6.21) 
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𝜆௧
஽஺ெ, 𝑃௧

஽஺ெା, 𝑃௧
஽஺ெି𝜖 𝜓௧

஽஺ெ ∀𝑡 (6.22) 

𝜆௧
௎ோெ, 𝑃௧

௎ோெ ,  𝜆௧
஽ோெ, 𝑃௧

஽ோெ 𝜖 𝜓௧
ோெ ∀𝑡 (6.23) 

𝑃௜௝௧௪
௙௟௢௪

= 𝐵௜௝
௟௜௡௘൫𝛿௜௧௪ − 𝛿௝௧௪൯ ∀𝑖, 𝑗 𝜖𝑁௕௨௦, 𝑤 (6.24) 

෍ 𝑃௜௧௪
௏௉௉

௜∈ Ω೙

+ ෍ ൫𝑃௦௧௪
ௌ,஼ − 𝑃௦௧௪

ௌ,஽൯

௜∈ Ω೙

− ෍ 𝑃௝௧௪
௏௉௉

௝∈ Ω೙

+ ෍ 𝑃௜௧
ீ,஽஺ெ − ෍ 𝑃௝௧

஽,஽஺ெ

௝∈ Ω೙௜∈ Ω೙

+ ෍ 𝑃௜௧
௎ோெ

௜∈ Ω೙

+ ෍ 𝑃௜௧
஽ோெ

௜ఢ∈ Ω೙

= ෍ 𝑃௜௝௧௪
௙௟௢௪

௝ఢ∈ Ω೙

                                                                ; ∀𝑡, 𝑤 

 

(6.25) 

−𝑃௜௝
௙௟௢௪

≤ 𝑃௜௝௧௪
௙௟௢௪

≤ 𝑃௜௝
௙௟௢௪ ∀𝑖, 𝑗, 𝑤 (6.26) 

 Where, Γ௏௉௉  ∈ {𝐶𝑃𝑃𝑠, 𝐷𝐺𝑠, 𝑊𝑇, 𝑃𝑉, 𝑎𝑛𝑑  𝐶𝐻𝑃𝑠} ie., set of VPP components. 

Eq. (6.4) governs balancing constraints, the demands should be equal to generation in 

specific time period. Eqs. (6.5) and (6.8) imposes upper and lower bounds on the power 

generation and demand consumption by the VPP components respectively. Constraints 

in Eqs. (6.6) and (6.7) formulates ramping constraints related to CPPs, CHPs and DG 

sets of VPP. Similarly, constraints in the Eqs. (6.9) and (6.10) are ramping limits related 

to flexible demands, while Eq. (6.11) imposes minimum demand consumption in each 

time period. Eqs. (6.12) and (6.13), limits maximum and minimum charging and 

discharging0level0of0storage units, while0the0Eq. (6.14) represents the energy 

production level0in0storage0units and Eq. (6.15) limits the amount of energy stored in 

the storage units.  

Constraints in the Eqs. (6.16) and (6.17) represents upper limit on0the0power 

quantity0that is offered0and0bid0by0the VPP in the DA and reserve electricity markets 

respectively.  These limiting bounds are based on the VPP scheduling capacity in each 

time period. Eqs. (6.18) and (6.19), govern the limiting constraint on sum of capacities 

offered and bidded by the VPP in the DA and RMs. Constraints in Eqs. (6.20) and 

(6.21) define the quantity and price offers and bid decisions as a positive variable 

respectively. Constraints in Eqs. (6.22) and (6.23) states that the both scheduled power 

of0the0VPP and0the0market cleared prices0are0the results of market clearing problem 

of DA energy and reserve electricity markets represented by the set  𝜓௧
஽஺ெ,  𝜓௧

ோெ  

respectively.  

Finally, network flow constraints are defined in Eqs. (6.24) and (6.25). These 

constraints are defined at each bus i.e., difference0between0the0generated power and 

consumed power is flowed through the transmission lines (6.25). The constraint in the 
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Eq. (6.26) limits the power flow through each transmission line in the network. Note, 

these constraints can be included in the lower level market clearing problem according 

to [18, 34]. The Variables 𝑃௜௧
ீ,஽஺ெ,  𝑃௜௧

௎ோெ,  𝑃௜௧
஽ோெ, 𝑎𝑛𝑑 𝑃௝௧

஽,஽஺ெ are belong to lower-level 

problem. 

6.2.2. Lower-level0problem 

In a bi-level model, lower-level0problem follows the upper-level problem. In 

this case, VPP as a price maker with the objective of profit maximization is followed by 

the market clearing process in which VPP participates. Here, VPP participates in DA 

and reserve markets. In particular, VPP participates in regulation reserve markets for 

balancing the market requirements. The reserve deployment requests made by the 

system operator are modelled using the scenario realization technique. The detailed 

formulation of DA and reserve regulation is explained in Chapter-3. With few additions 

to the present context of VPP, the power flow model of the market clearing process is as 

follows: 

𝑚𝑖𝑛୻ವಲಾ,ೃಾ
𝑂𝑏𝑗 = 𝑂𝑏𝑗1 + 𝑂𝑏𝑗2 (6.27) 

Obj1: 𝑚𝑖𝑛୻ವಲಾ
 𝑆௧

஽஺ெା𝑃௧
஽஺ெା + ෍ 𝐶௜௧

ீ,஽஺ெ𝑃௜௧
ீ,஽஺ெ

௜ఢΩಸ

− 𝑆௧
஽஺ெି𝑃௧

஽஺ெି − ෍ 𝐵௝௧
஽,஽஺ெ𝑃௝௧

஽,஽஺ெ

௝ఢΩವ

 (6.28) 

St: 𝑃௧
஽஺ெା + ෍ 𝑃௜௧

ீ,஽஺ெ

௜ఢΩಸ

= 𝑃௧
஽஺ெି + ෍ 𝑃௝௧

஽,஽஺ெ

௝ఢΩವ

 ∀𝑡; 𝜆௧
஽஺ெ (6.29) 

 𝑃௜௧
ீ,஽஺ெ ≤ 𝑃௜௧

ீ,஽஺ெ ≤ 𝑃௜௧

ீ,஽஺ெ
 ∀𝑡, 𝑖𝜖Ωீ  ; 𝜇௜௧

ீ,஽஺ெ
, 𝜇௜௧

ீ,஽஺ெ (6.30) 

 𝑃௝௧
஽,஽஺ெ ≤ 𝑃௝௧

஽,஽஺ெ ≤ 𝑃௝௧

஽,஽஺ெ
 ∀𝑡, 𝑗𝜖Ω஽, 𝜇௝௧

஽,஽஺ெ
, 𝜇௝௧

஽,஽஺ெ (6.31) 

 0 ≤ 𝑃௧
஽஺ெା ≤ 𝑃௧

஽஺ெା
 ∀𝑡; 𝜑

௧

஽஺ெା
, 𝜑௧

஽஺ெା (6.32) 

 0 ≤ 𝑃௧
஽஺ெି ≤ 𝑃௧

஽஺ெି
 ∀𝑡; 𝜑

௧

஽஺ெି
, 𝜑௧

஽஺ெି (6.33) 

Obj2:  𝑚𝑖𝑛୻ೃಾ
 𝑆௧

௎ோெ𝑃௧
௎ோெ + ෍ 𝐶௜௧

௎ோெ  𝑃௜௧
௎ோெ

௜ఢΩೆೃಾ

−  𝑆௧
஽ோெ𝑃௧

஽ோெ − ෍ 𝐵௜௧
஽ோெ𝑃௜௧

஽ோெ

௜ఢΩವೃಾ

 (6.34) 

St: 𝑃௧
௎ோெ + ෍  𝑃௜௧

௎ோெ

௜ఢΩೆೃಾ

= 𝑃௧

௎ோெ
 ∀𝑡; 𝜆௧

௎ோெ (6.35) 

 𝑃௧
஽ோெ + ෍  𝑃௜௧

஽ோெ

௜ఢΩೆೃಾ

= 𝑃௧

஽ோெ
 ∀𝑡; 𝜆௧

ோ஽ (6.36) 

 𝑃௜௧
௎ோெ ≤  𝑃௜௧

௎ோெ ≤ 𝑃௜௧

௎ோெ
 ∀𝑡, 𝑖𝜖Ω௎ோெ  ; 𝜇௜௧

௎ோெ
, 𝜇௜௧

௎ோெ (6.37) 

 𝑃௜௧
஽ோெ ≤  𝑃௜௧

஽ோெ ≤ 𝑃௜௧

஽ோெ
 ∀𝑡, 𝑖𝜖Ω஽ோெ  ; 𝜇௜௧

஽ோெ
, 𝜇௜௧

஽ோெ (6.38) 
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 0 ≤ 𝑃௧
௎ோெ ≤ 𝑃௧

௎ோெ
 ∀𝑡; 𝜔௜௧

௎ோெ
, 𝜔௜௧

௎ோெ (6.39) 

 0 ≤ 𝑃௧
஽ோெ ≤ 𝑃௧

஽ோெ
 ∀𝑡; 𝜔௜௧

௎ோெ
, 𝜔௜௧

஽ோெ (6.40) 

The objective function in Eq. (6.28) is related the system operator’s objective to 

maximize0the0social0welfare0in0the DA market. It consists of four terms including 

VPP generation offering and bidding terms.  Balancing constraints is formulated in Eq. 

(6.29).  Eqs. (6.30) and (6.31) limits bidding and offering capacity of each market 

participant including VPP’s capacity. Constraints as denoted in Eqs. (6.32) and (6.33), 

impose limits on the amount of power offered and bidded by0the0VPP0in0DA energy 

market respectively.  

Similar to the DA market, VPP participates in the reserve regulation market 

based upon its requirements and system operator request for reserve capacity 

deployment. The objective function in Eq. (6.34) is related to the system operator’s 

objective to minimize the cost for reserve deployment. Constraints denoted in Eqs. 

(6.35) and (6.36) represents the balancing constraint on the up and down reserves 

respectively.  Eqs. (6.37) and (6.38) impose limits on the reserve capacity offered by 

each market participant other than VPP’s respectively. Limits0are0imposed0on up and 

down reserve capacity offered by the VPP0in0the0reserve market using Eqs. (6.39) and 

(6.40) respectively. The overall clearing process of DA and reserve markets with 

respective to their objective is considered as lower-level problem. 

The dual variables are defined for each constraint separated by using semicolon,  

where, Γ஽஺ெ 𝑎𝑛𝑑, Γோெ represent the set of optimization variables 

൛𝑃௜௧
ீ,஽஺ெ, 𝑃௝௧

஽,஽஺ெ, 𝑃௧
஽஺ெ , 𝑃௧

஽஺ெି ൟ, {𝑃௜௧
௎ோெ, 𝑃௜௧

஽ோெ, 𝑃௧
௎ோெ, 𝑃௧

஽ோெ } respectively. The 

variables ቄ𝑃௧

஽஺ା
, 𝑃௧

஽஺ି
 ቅ , ቄ𝑃௧

ோ௎
, 𝑃௧

ோ஽
 ቅ belong to upper-level problem. Now, the overall 

bi-level problem is together with0upper-level0and0lower-level problems.0The complete 

bi-level problem is shown in the Fig. (6.1). 
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Fig.6.1. Complete Bi-level optimization problem 

The above bi-level problem is then converted into single level mixed integer 

linear program using KKT and duality constraints. The process of converting lower 

level into dual problem is explained in the Chapter-3.  The non-linearities in 

complementary slackness are linearized using big-M method as explained in the 

Chapter-3. 
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                            Fig.6.2. Study results of IEEE-24 reliability test bus systems during 
scenario-I 

6.3. Simulation Results 

The proposed has been implemented using modified IEEE -24 bus reliable test 

system.0The test0system has VPP components distributed across the network shown in 

the Fig (6.2).  Network data is obtained from the Matpower [51]. CPLEX solvers in 

GAMS software are used to simulate the suggested model on intel i7 core PC. 

The VPP is a price-maker in this study, and it is always focusing on improving 

its profit by making strategic decisions. Four equiprobable scenarios are being used to 

characterize market pricing and RE generation uncertainty. To cope with these 

uncertainties, data on hourly electricity prices, as well as RE generation, are forecasted. 
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The data related to the generating units in the DA and reserve market along with the 

data related to VPP components is provided in Appendix-A 

The VPP optimises its assets for its own demand during peak demand hours and 

low market prices in the DA and RMs, and does not participate in the market scheduling 

process. We investigate two different operating instances to examine the strategic 

decision-making of price-maker VPP using the suggested model. Profit maximisation 

and bidding decisions are compared in each situation. The two separate cases that are 

considered are listed below. 

i. VPP with flexible loads 

ii. VPP without flexible loads 

VPP with flexible loads obtain more profits compared to the case without flexible 

demands. This is due to the flexibility in loads; VPP can shift its maximum peak 

demand to some other hour where sufficient generation is available. As a result, VPP 

0participates0in0the0DA market and0reserve0markets for most of the time periods. 

This is clearly shown in Figs. (6.3) and (6.4). The optimal VPP generation vis-a-vis 

demand is shown in Figs. (6.5) and (6.6). It can be observed that VPP generation flows 

follows the demand curve during flexible demands while in the case of VPP without 

flexible loads no such relation is seen. 
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Fig.6.6. Total power scheduling of the VPP during scenario-1 without flexible demand. 
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6.3.1. Case-I:  VPP with flexible demands 

Now, we will investigate the0participation0of VPP in DA and reserve markets. 

Let us consider the time period -17th hour in the Fig.6.5. During this time period VPP 

generation is greater than the demand i.e., 40 MW. While in the DA energy market the 

energy is deficient about 55 MW. During this period the VPP offers it excess generation 

in the0DA0energy market. The0energy0is balanced by offering its reserve capacity.  

VPP decides to offer its 55 MW of excess power generated in DA market, but only 40 

MW is required in the DA market.  The remaining 15 MW is offered by participating in 

the reserve markets. This can be observed from the Fig.6.3. Based on the VPP offer, the 

down reserve capacity is cleared for 30 MW. Here, 30 MW is the maximum limit 

allowed for making reserve deployment requests or offers.   Due to the uncertainty in 

the reserve deployment, the cleared capacity is multiplied by the uncertain parameter 

(𝜙௧௪
ோ௎ = 0.5). The VPP sells this power at the market price 𝜆௧

஽஺ = 45 $/𝑀𝑊, and it 

offer down reserve capacity for balancing the load at 𝜆௧
ோ஽ = 10$/𝑀𝑊. The profit 

obtained for this time period is 45 × 55 + 30 × (10) = 2775$. The net profit obtained 

in this time period is equal to 2775$. In this case the profit obtained from the DA energy 

market is 2475$ and in the reserve market the profit obtained is 300 $. Here, if we 

observe the DA market, price is more and the VPP strategically offers its excess 

generation in that higher price and in the0case0of0reserve market participation, the 

excess 15MW is reduced from its generation as its down reserve capacity offer. 

6.3.2. Case. II:   VPP without flexible demands  

In this case the DA market offering of the VPP is greatly affected, since VPP 

demands doesn’t have flexibility to shift their peak demand hours to the maximum 

generating hours. This can be depicted in the Fig. 6.6. In this case, participation of VPP 

in the DA and reserve market during the time period 13th hour is taken as example. 

During this time period VPP generation is greater than VPP demand consumption. The 

difference in the power generation and demand is 112 𝑀𝑊. Here, the VPP has 

sufficient power to optimize its demand. Hence, VPP decides to sell the power in the 

DA energy market. In the DA energy market, as there is a requirement of  100 𝑀𝑊 

from the demands other than VPP components shown in the Fig.6.4. The VPP sells this 

power at the market price 𝜆௧
஽஺ = 20 $/𝑀𝑊, and it offer both of its up and down reserve 

capacities for balancing the load generation at 𝜆௧
ோ௎ = 10$/𝑀𝑊, and 𝜆௧

ோ஽ = 10$/𝑀𝑊 
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respectively. The profit obtained for this time period is 100 × 20 + 30 × (10 + 10) =

2600$. Here, the VPP gain the profit from the DA and RMs. During this case, the 

profits obtained by the VPP are greatly affected comparted to the previous case.  

 

Fig.6.7 Comparing profit obtained by the VPP through participating in DA market with 
and without flexible loads 

6.3.3. Impact of flexible demands on the profits obtained by the VPP: 

In this section, we will analyse the impact of flexible demand on the VPP profits 

in DA and reserve market.  Figs. 6.3 and 6.4 shows the amount of0power0traded by the 

VPP0in both DA and reserve market. It is clearly visible that, the VPP offers in the DA 

market for the case without flexible demand is greatly reduced while, VPP bid for 

optimizing its demand is increased. Hence, the profit obtained by the VPP is also 

reduced. Fig. 6.7. compares the profit obtained by the VPP in the DA market for both 

cases. From this figure, it is observed that VPP obtains the profit during the time periods 

8th to 17th hours, and in the remaining periods VPP pays to optimize its resources. 

Whereas, in the case of VPP with flexible demand, it can be observed that VPP obtains 

profit in all the time periods except for the hours 2nd to 8th time periods.  

The time periods where VPP obtain profit can be correlated with the VPP 

scheduling in the Figs. (6.5) and (6.6). The VPP makes profits during the hours 

whenever, generation is greater than demand consumption. This can be related to 

flexibility of the demands. Since flexible demands can shift their consumption from one 

period to other periods, the VPP generation is greater than the demand in most of the 

periods except for few periods when, RE sources are unavailable (solar PV generation is 
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zero during early morning hours and night times). As a result, VPP profit is increased. 

The percentage values of VPP traded power and profit difference is compared in the 

Table-6.1.  

VPP offers in the DA market, for the case-I is recorded as 721.19 MW where as 

for the case-ii, it is limited to 406.71. The percentage share of the VPP power offered in 

the DA market is reduced by -43.6% when VPP supplies constant demands (Case-II). 

But in the0case0of reserve0market, the VPP participation is increased by 1.31% 

compared to the case-I, this clearly states the balancing reserve are utilised more in the 

case-II. The profit obtained by the VPP followed same trend similar to DA market 

participation. The VPP obtains -47.94% reduced profit in the case-II when compared 

with the case-I. Thus, the profit obtained by the VPP is greatly reduced.  

6.3.4.  Comparing strategic and non-strategic case 

In order to investigate the power of market participant as0price0maker, VPP 

participation in DA and reserve market is modelled as strategic and non-strategic case. 

It is assumed that the VPP objective during the non-strategic case is to maximize the 

social welfare. While for the strategic case, the VPP’s objective is to maximize profit. 

Table-6.2, shows the comparison between the strategic and non-strategic case.  When 

VPP as a non-strategic player in the market, the total profit obtained by the VPP is 

reduced by -20.99% compared to the strategic case. Similarly, VPP obtains less 

profit0in0DA market. The dependency on the0reserve0market for balancing the system 

is reduced by a slight value of -0.98%. While social welfare is increased by 25.57%. 

This clearly indicates that VPP excises the market power to alter the prices during the 

strategic case. Hence VPP as a single entity acts as price maker. During the non-

strategic case social welfare value is increased.  

Table.6.1. Simulation result of DA and Reserve market participation of VPP comparing 
with and without flexible demand cases for all the time periods 
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Table.6.2.  Strategic and non-strategic operation of VPP 

   

6.4. Conclusion: 

The concept of VPP as a prospective market participant in the energy market has 

been discussed in this chapter. VPP as a promising solution to incorporate DERs as a 

single entity can act as both a price and profit maker. The 24-IEEE test bus system has 

been used to study optimal scheduling strategies with varied energy sources, flexible 

and non-flexible load demands. The primary VPP components, such as WT, solar PV 

plants, DG sets, CHP units, ESSs, electrical loads, have been considered as distributed 

over the test bus system. A bi-level stochastic optimization model with network 

constraints is presented in this research. This model investigates the possibility of VPP 

to act as market power for its own gain. Using KKT and the strong duality theorem, the 

proposed bi-level model has been restated as a MILP problem. The profit obtained by 

the VPP is examined using simulation results that incorporated demand flexibility into 

account. Flexible loads, as deduced, can increase the VPP's profit in DA and RMs. 

While in the case of constant demands, the profit curve shrinks. Flexible demands have 

an impact on the VPP scheduling and profit making during specified time periods, as 

shown by the simulation results. It has been observed that the strategic behaviour 

outperforms the non-strategic behaviour. The proposed strategic optimal scheduling 

methodology is appealing because it increases profits while also positioning the VPP as 

a price maker also among market participants. 

Nomenclature:  

sets 

Π୵ Scenario’s sets; ∑ Π୵ = 1୵  

Γ୚୔୔, Set of VPP components 

Ωୗ Set of energy storage systems in the VPP 
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Ω௡ Set of units connected to a bus  

 ψ୲
ୈ୅୑ Set of DA market variables 

 ψ୲
ୖ୑ Set of reserve market variables 

Π୵ Scenario’s sets; ∑ Π୵ = 1୵  

Parameters 

B୨୲
ୈ,ୈ୅୑ Cost associated by the ith demand other than VPP in the DA 

energy market [$/MWh 

C୧୲
ୋ,ୈ୅୑ Cost associated by the ith power producers other than VPP in the 

DA energy market [$/MWh] 

C୲୵
୔୚ Cost of ith Solar PV plant in VPP[$/MWh] 

C୲୵
୛୘ Cost of ith WT generating plant in VPP[$/MWh] 

C୵୲
େୌ୔ Cost of ith generating plant in VPP[$/MWh] 

C୵୲
ୈୋ Total cost of ith DG set in VPP[$/h] 

C୵୲
େ୔୔ Total cost of ith CPP units in VPP[$/h] 

C୵୲
ୢ  jth Utility demand price in the time period t in VPP [$/h] 

Eୱ୲
ୗ , Eୱ୲୵

ୱ
 Lower and upper limits on the energy stored in the ith storage unit 

in the time period t [MWh] 

𝐸௝
௠௜௡ Minimum daily energy consumption of jth demand [MW] 

𝑃௝௧
஽,௏௉௉ , 𝑃௝௧

஽,௏௉௉
 Upper and lower bounds on demand consumption of jth demand of 

VPP in the time period t [MW]  

𝑃௜௧
ீ,௏௉௉ , 𝑃௜௧

ீ,௏௉௉
 Upper and lower bounds on generation of ith unit of VPP in in the 

time period t [MW] 

Pୱ୲

ୗ,େ
 Maximum charging limit of the ith storage unit in the time period t 

[MW] 

Pୱ୲

ୗ,ୈ
 Maximum dis-charging limit of the ith storage unit in the time 

period t [MW] 

P୧୲
ୋ,ୈ୅୑, P୧୲

ୋ,ୈ୅୑
 Lower and upper limits on the Power offered by the ith generating 

plant in the time period t other than VPP in [MW] 

P୨୲
ୈ,ୈ୅୑, P୨୲

ୈ,ୈ୅୑
 Lower and upper limits on the Power bided by the jth demand in 

the time period t other than VPP in [MW] 

P୧୲
୙ୖ୑P୧୲

୙ୖ୑
 Lower and upper limits of Up reserve capacity offered by the ith 

market agent in the time period t in Reserve market [MW/h] 
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P୧୲
ୈୖ୑P୧୲

ୈୖ୑
 Lower and upper limits of down reserve capacity offered by the ith 

market agent in the time period t in Reserve market [MW/h] 

P୧୨
୤୪୭୵ Maximum power flow in transmission line connecting ith  bus and 

jth bus during time period t [MW]  

𝑅௝
஽,௏௉௉,஽ௐ Down Ramping rate of jth demand of VPP in [MW] 

𝑅௝
஽,௏௉௉,௎௉ Up Ramping rate of jth demand of VPP in [MW] 

𝑅௜
ீ,௏௉௉,஽ௐ Down Ramping rate of ith generating unit of VPP in [MW] 

𝑅௜
ீ,௏௉௉,௎௉ Up Ramping rate of ith generating unit of VPP in [MW] 

B୧୨
୪୧୬ୣ Admittance of transmission lines connecting ith and jth bus 

ηୱ
ୗ,େηୱ

ୗ,ୈ Charging and discharging efficiency of ith storage unit [%] 

∆t Time period duration i.e., 1hour  

Variables  

eୱ୲୵
ୱ  Amount of energy stored in the ith storage unit in time period t and 

scenario w [MWh] 

P୨୲୵
ୈ,୚୔୔ Amount of Power consumed by the jth demand in the VPP in the 

time period t [MW] 

P୲
ୈ୅୑ା Power sold by the VPP to the DA market in the time period t 

[MW] 

P୲
ୈ୅୑ି Power brought by the VPP to the DA market in the time period t 

[MW] 

P୧୲୵
ୋ,୚୔୔ Amount of Power generated by the ith VPP component in the time 

period t scenario w [MW] 

P୧୨୵
୤୪୭୵ Power flow in the transmission lines connecting ith and jth bus 

during time period t and scenario w [MW] 

P୧୲
ୋ,ୈ୅୑ Amount of Power generated by the ith producer in the DA market 

in the time period t [MW] 

P୨୲
ୈ,ୈ୅୑ Amount of Power consumed by the jth demand in the DA market 

in the time period t [MW] 

 P୧୲
୙ୖ୑ Up- reserve capacity sold to the reserve market by the ith market 

agent in the time period t [MW] 

 P୧୲
ୈୖ୑ Down- reserve capacity sold to the reserve market by the ith 

market agent in the time period t [MW] 
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P୲

୙ୖ୑
P୲

ୈୖ୑
 Up and Down reserve capacity offered in the reserve market in the 

time period t in [MW/h] 

Pୱ୲୵
ୗ,େ  Power charging level of the ith storage unit in time period t and 

scenario w [MW] 

Pୱ୲୵
ୗ,ୈ Power discharging level of the ith storage unit in time period t and 

scenario w [MW] 

λ୲
ୈ୅୑ DA energy market price in the time period t [$/MWh] 

λ୲
୙ୖ୑ Up- reserve market price in the time period t [$/MWh] 

λ୲
ୈୖ୑ Down - reserve market price in the time period t [$/MWh 

δ୧୲୵ Voltage Bus angle of the ith bus in degrees 

S୲
ୈ୅୑ା, S୲

ୈ୅୑ି The offer and bid price submitted in the DA market by the VPP in 

the time period t [$/MWh] 

S୲
୙ୖ୑, S୲

ୈୖ୑ The Up and Down reserve offer price submitted in the reserve 

market by the VPP in the time period t [$/MWh] 
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CHAPTER 7 

Conclusion and Scope for Future Research 

 

7.1. Conclusion 

 In this thesis work, we have analysed false data injection attacks in the 

electricity market where, attacker acquire financial profits by trading electrical power in 

the DA and real time markets.  This work also analyses the optimal scheduling of VPP 

generation as two stage stochastic processes, where VPP acts as a price maker in the 

electricity market.   

 At first, the structure of electricity markets and its principles are reviewed. 

Integrating market driven new technologies and its complexities are studied to 

investigate the proposed model, wherein state estimation and cyber threat to the power 

system are the major areas of being focussed. Market based power system is formulated 

based upon the social welfare maximization objective. Day Ahead, Real time and 

reserve markets and their market clearing process is presented as DC optimal power 

flow model.  

 Cyber-attacks are great threat to the integrity of the power system. In this work, 

attacker objective is to obtain financial profits. This attacking strategy is modelled as bi-

level mathematical model, and is formulated for launching a stealthy attack. Attacker as 

a virtual participant, knowing the system topology, and market clearing process the 

adversary designs an attack vector. The changes brought by the attacking values are not 

detected in the BDD process in the state estimation run by the ISO.  The designed 

stealthy data is injected into the measuring devices deployed at various locations. Due 

to the errors in measuring devices, attacker always tries to attack less meters that cause 

more changes in the congestion pattern.   Thus, attacker manipulates system operator 

and market clearing process.  

The proposed stealthy false data attack is tested using IEEE-5 bus test system. 

From the simulation results, it is observed that the attacker alters the congestion in the 

transmission lines, as a result Locational Marginal Prices (LMPs) at each bus are 

different. Knowing this the attacker buys power in the DA market at lesser LMPs and 

then sell the same amount of power at higher LMPs in the Real time markets. Thus, the 

attacker acquires profits. The results show that the attacker can manipulates two meters 
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at a time to change congestion in the transmission line. In each and every attack the 

attacker manipulates the line-4 flow meter indicated in the Figs. (4.3) and (4.4). The 

impact of attacking transmission lines connecting bus-4 is more when compared to 

other cases.  Hence, it can be concluded that node at bus-4 is critical node to launch the 

attack. So, it is desirable to provide strong security at this node in order to avoid such 

financially motivated cyber intrusions.  Here, the proposed model is converted into 

single level MILP model using KKT and duality conditions. 

 Integrating new technologies such as RE sources and DERs has brought further 

complexities in the market clearing process.  In order to eliminate the disadvantages in 

integrating these technologies, the concept of VPP is studied. VPP as a single entity 

aggregates the production from different DERs and participates in the electricity 

markets. 

In this work, optimal scheduling of VPP in the DA and reserve market is 

investigated. Uncertainties related to the intermittence and variability of RE generation, 

market prices and reserve deployment request for balancing the system are considered 

as stochastic process, and are modelled using scenario realization technique. In this 

technique for each uncertain parameter different scenarios are realized as probability of 

occurrence.  A two- stage stochastic model is formulated for optimal scheduling of VPP 

in the DA and reserve markets. 

The proposed two-stage stochastic model is implemented on 4-hour planning 

horizon and the VPP considered here, consist of WT and CPPs as its components. The 

simulation results indicate that the VPP generating utilities are scheduled for the most of 

the time period while, CPPs with low generation costs are utilized to supply for the 

remaining loads. It can be observed that the CPPs with high marginal costs are not 

being scheduled. As a result, market clearing prices are at low values, which are less 

than the marginal cost of generation of the CPPs. This has large impact upon the income 

acquired by the CPPs. The reserve deployments are scheduled when the market operator 

request to deploy, these are also scheduled based upon the prices. The simulation results 

clearly indicate the VPP as a single entity can alter the prices. However, these effects 

the income of CPPs.  This work provides impressive results for accurate optimal 

scheduling of the generating units in the VPP. 
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Since the VPP can alter the prices in the electricity markets, a bi-level model has 

been proposed to investigate the power of the VPP in the electricity market. The VPP 

considered in this work consist of diversified RE sources, CHPs, DG sets, small scale 

CPPs, and flexible electrical loads. The proposed model formulates VPP as strategic 

market participant with the objective to maximize its profits. The bi-level model is then 

reformulated into single-level MILP problem using KKT optimality conditions and 

duality theorem.  

The proposed model finds out strategic optimal scheduling of VPP in the DA and 

reserve market. This model is implemented on IEEE modified-24 reliability test bus 

system. From the simulation results, it is deduced from the table-6.4 that VPP strategic 

participation obtains 20.99% more profits compared to the non-strategic operation. 

Also, the flexibility in the demand increases the participation of VPP in DA market to 

obtain profits. The results show that the profit obtained by the VPP with flexible 

demands is more than the case of the VPP scheduling without flexible demands. The 

proposed strategic optimal scheduling methodology is suitable because it increases 

profit from the DA and reserve markets, positioning the VPP as a price maker also 

among the market participants. 

7.2. Research Papers Published on the dissertation work:  

(1) M. Indeevar Reddy, Radheshyam Saha and Sudharshan K Valluru, “Modelling Financially 

Motivated Cyber Attacks on Electricity Markets using MILP Program”, 2nd IEEE 

International conference on power, Energy, control and transmission systems, Chennai, India, 

pp:1-6, 10th-11th December, 2020. (Best Paper Award) 

(2)  M. Indeevar Reddy, Radheshyam Saha and Sudharshan K Valluru “Two Stage Stochastic 

programming model for optimal scheduling of RE based Virtual Power Plants in Electricity 

Markets ”,.   IEEE 6th International Conference for Convergence in Technology (I2CT), 

Pune, India, pp. 1-6, 2nd - 4th April, 2021.   

(3)  M. Indeevar Reddy, Radheshyam Saha and Sudharshan K Valluru, “Bi-level Optimal 

Strategic Generation Scheduling with Flexible Demands under Uncertainties and Improving 

Profitability of VPP in Day Ahead and Reserve Electricity Markets” International Journal 

of Electrical Power and Energy Systems, Elsevier (Communicated) 
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7.3. Scope for Future Research 

In the power system generation, transmission, distribution, and security issues 

remain as a challenge. For example, integrity of the data related to measuring devices in 

the power system is important to ensure the validity and consistency of data in state 

estimation. The enormous large amount of data that need to be handled is a big ongoing 

difficulty. Indeed, data analysis should extract information from the vast data set 

generated by smart metres and convert it into a comprehensible structure that a control 

centre may utilise for a variety of purposes, including speedy defect identification in 

distribution systems. 

 At present, data analytics and deep learning techniques are used in analysing the 

large data. This task of digitalising power system network is a big challenge. 

Meanwhile, these techniques are more reliable in detecting and defending cyber 

intrusions, which is an ongoing and highly potential research work. In future, 

developing a model to mitigate the cyber intrusions using deep learning-based 

techniques is could be investigated; in addition to this, we are to plan and integrate large 

numbers of VPPs in the electricity grid and electricity market as well. It would be very 

essential to study the roles of the VPPs, ESSs and dominant REs of the various 

independent VPPs in the electricity markets and importantly to provide remedial 

measures   when such models are subjected to cyber-attacks.      

  The optimal scheduling of RE based VPPs in the electricity market is ongoing 

research work mainly in two directions. One group of researchers are trying to find out 

the more accurate predictive models in realising precise outputs, so that the 

uncertainties are minimized. The other group of researchers are finding out the optimal 

scheduling solution for the VPPs without violating network security constraints. 

  Microgrids are low-voltage supply networks designed to supply electrical and 

heat loads to small customers in a defined area such as academic institution, public 

communities, manufacturing firms, etc. In the event of a power outage, these microgrids 

can be disconnected from the main grid and can provide appropriate electricity to the 

customers. These micro grids are largely dependent on communication systems for 

efficient and reliable operation. This increases the risk of cyber intrusions. Developing 

new protocols and cyber-drill for vulnerable assessments were limited in securing the 

grid from such attacks. Hence, it is important to advance the defending and detection 
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mechanism against the attacks.  On other hands, microgrids hold enormous promise in 

terms of integrating renewable resources with other distributed energy sources, smart 

grid and peak demand, significant obstacles are being faced in terms of real-time power 

management and control systems. The risk in scheduling these distributed energy 

sources is to be analysed.  Some of these issues can be handled by solving optimization 

problems with various objectives, such as power demands, fuel consumption, 

environmental emissions, costs, dispatchable loads, and so on. Developing a model 

considering these objectives and risk assessment can be further investigated.  
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Appendix-A

Table A1 
Wind Turbine Generating Unit parameters [34] 

Parameter Value Unit 
𝜗௖௜௡ 3 m/s 
𝜗௖௢ 25 m/s 

𝜗௥௔௧௘ௗ 14 m/s 
𝐺ோ

ௐ்  400 MW 
𝐶௜௧

ௐ் 3 $/MWh 
   

Table A2 
Solar PV Plant parameters [34] 

Parameter Value Unit 
𝑛௉௏ 3560 - 
𝑆௉௏ 1.28 𝑚ଶ 

𝜂௥,௉௏ 0.255 - 
𝜂௥,௣௖ 1 - 
𝑇௥௘௙ 27 ℃ 
𝐶௜௧

௉௏ 2 $/𝑘𝑊ℎ 
𝐺௜௧

௉௏,௠௔௫  300 𝑀𝑊 
 

Table A3 
CHP unit Parameters [50] 

Parameter Value Unit 
𝐴൫𝐴௉ , 𝐴ொ൯ 𝐴(26,0) - 

𝐵൫𝐵௉ , 𝐵ொ൯ 𝐵(23,20) - 

𝐶൫𝐶௉ , 𝐶ொ൯ 𝐶(10,20) - 

𝐷൫𝐷௉ , 𝐷ொ൯ 𝐷(12,11) - 

𝐶௜௧
௙௜௫,௉,஼ு௉

, 𝐶௜௧
௏௔௥,௉,஼ு௉ 0,5 $/kWh 

𝑃௜௧
஼ு௉,௠௔௫, 𝑃௜௧

஼ு௉,௠௜௡ 150,15 MW 

𝐶௜௧
௙௜௫,௧௛,஼ு௉

, 𝐶௜௧
௏௔௥,௧௛,஼ு௉ 0.5,5 $/MWh 

𝑄௜௧
஼ு௉,௠௔௫ , 𝑄௜௧

஼ு௉,௠௜௡ 27,5 MW 

𝐿௜௧
஼ு௉ 10 MW 

 
Table A4 
DG sets parameters 

Parameter 
Value 

Unit 
DG set-1 DG set-2 

𝑃௜௧
஽ீ,௠௔௫ 80 85 MW 

𝑃௜௧
஽ீ,௠௜௡ 5 5 MW 

𝑅௜
஽ீ,௎ 25 25 MW/h 

𝑅௜
஽ீ,஽ 25 25 MW/h 

𝐶௜௧
௙௜௫,஽ீ  2 2 $/MWh 

𝐶௜௧
௏௔௥,஽ீ  5 5 $/MWh 

 
Table A5 
Conventional Power Plant parameters [50] 

Parameter 
Value 

Unit 
CPP-1 

CPP-
2 

CPP-3 

𝐶௜௧
௙௜௫,஼௉௉  2 5 4 $/MWh 

𝐶௜௧
௩௔௥,஼௉௉  20 10 20 $/MWh 

𝑃௜௧
஼௉௉,௠௔௫  100 100 100 MW 

𝑃௜௧
஼௉௉,௠௜௡ 0 0 0 MW 

𝑅௜
஼௉௉,௎ 15 15 15 MW/h 

𝑅௜
஼௉௉,஽ 15 15 15 MW/h 

 
Table A6 
ESS parameter [50] 
Parameter Value Unit 

𝜂௜
௦,௖௛ 0.95 - 

𝜂௜
௦,ௗ௜௦ 0.9 - 

𝑃௜௧
௦,௖௛,௠௔௫ 140 MW 

𝑃௜௧
௦,ௗ௜௦,௠௔௫ 140 MW 
𝐸௜௧

௦,௠௔௫ 160 MWh 

𝐸௜௧
௦,௠௜௡ 125 MWh 
𝐸௜௡௧

௦  130 MW 
 

Table A7 
Generating Units other than VPP [18] 
Parameter Value Unit 

 Gen-1 Gen-2 Gen-3  
𝜒௜௧

ீ,஽஺ 30 15 25 $/MWh 

𝑃௜௧
ீ,஽஺ 75 75 55 MW 

𝑃௜௧

ீ,஽஺
 0 0 0 MW 

 
Table A8 
Demand Units other than VPP [18] 

Parameter 
Value 

Unit 
D-1 D-2 D-3 

𝜒௝௧
஽,஽஺ 70 70 73 $/MWh 

𝑃௝௧
ீ,஽஺ 75 75 25 MW 

𝑃௝௧

ீ,஽஺
 0 0 0 MW 

 
Table A9 
Reserve market agents other than VPP [18] 

Parameter 
Value 

Unit 
C-1 C-2 C-3 

𝜒௜௧
ீ,ோ௎ 10 20 10 $/MWh 

𝜒௜௧
ீ,ோ஽ 10 20 10 MW/h 

𝑃௜௧

ீ,ோ௎
 20 20 30 MW/h 

𝑃௜௧
ீ,ோ௎ 0 0 0 MW/h 

𝑃௜௧

ீ,ோ஽
 20 20 30 MW/h 

𝑃௜௧
ீ,ோ஽ 0 0 0 MW/h 
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Table A10 
Flexible Demand utilities data 

Parameter 
Value of each Demand 

Unit 
D-1 D-2 D-3 D-4 D-5 D-6 D-7 

𝑃௝௧
ௗ,௠௔௫  70 75 35 75 74 50 70 MW 

𝑃௝௧
ௗ,௠௜௡ 10 25 07 10 10 10 10 MW 

𝑅௝
ௗ,஽ௐ 10 10 10 10 10 10 10 MW/h 

𝑅௝
ௗ,௎௉ 10 10 10 10 10 10 10 MW/h 

𝐶௝௧
ௗ 45 40 43 42 32 32 33 $/MWh 

𝑃௝,௜௡௧
ௗ  40 30 05 20 40 20 20 MW 

Parameter D-8 D-9 D-10 D-11 D-12 D-13 D-14 Unit 

𝑃௝௧
ௗ,௠௔௫  50 35 55 26 54 80 100 MW 

𝑃௝௧
ௗ,௠௜௡ 15 10 12 5 20 20 10 MW 

𝑅௝
ௗ,஽ௐ 10 10 10 10 10 10 10 MW/h 

𝑅௝
ௗ,௎௉ 10 05 10 10 10 05 10 MW/h 

𝐶௝௧
ௗ 44 45 42 42 42 45 45 $/MWh 

𝑃௝,௜௡௧
ௗ  20 05 15 10 24 40 55 MW 

 
Table A11 
Scenarios related to the Up and Down Reserve Market deployment request in all the time periods 

Time periods 
Up regulation Market Down regulation Market 

S-1 S-2 S-3 S-4 S-1 S-2 S-3 S-4 
1-8 hours 0.5 0.8 0.5 0.8 0.9 0.5 0.7 0.6 

9-16 hours 0.9 0.5 0.7 0.6 0.5 0.8 0.5 0.8 
17-24 hours 0.6 0.6 0.6 0.6 0.5 0.8 0.5 0.8 
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