STUDY AND FPGA BASED DESIGN OF BUS PROTOCOLS

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY
IN

VLSI DESIGN AND EMBEDDED SYSTEM

Submitted by:
Deepak Chauhan
(2K19/VLS/05)

Under the supervision of

Ms. Kriti Suneja
Assistant Professor, Dept. of ECE

S §
HNOLOG\CN' :

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042
August, 2021

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Deepak Chauhan, Roll No. 2K19/VLS/05 student of M.Tech (VLSI Design & Embedded system),
hereby declare that the project dissertation titled “Study and FPGA based design of BUS protocols”
which is submitted by me to the Department of Electronics and Communication Engineering, Delhi
Technological University, Delhi in partial fulfillment of the requirement for the award of the degree
of Master of Technology, is original and not copied from any source without proper citation. This
work has not previously formed the basis for the award of any Degree, Diploma Associateship,

Fellowship or other similar title or recognition.

CBbamva v

Place: Delhi Deepak Chauhan
(2K19/VLS/05)
Date: 31% August, 2021

DEPARTMENT OF ELECTRONICS AND COMMUNICATION
ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Study and FPGA based design of BUS
protocols” which is submitted by Deepak Chauhan, 2K19/VLS/05 (Department of Electronics &
Communication Engineering), Delhi Technological University, Delhi in partial fulfillment of the
requirement for the award of the degree of Master of Technology, is a record of the project work
carried out by the student under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

.
Place: Delhi Ms. Kriti Suneja
Date: 31 August, 2021 Department of ECE

Delhi Technological University

ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to all the people who have helped and
supported me in the process of dissertation. Without their help and support, 1 would not have been
able to reach this level of satisfaction with what 1 have learnt and accomplished during my Master's
dissertation. First and foremost, 1 would like to express my deep sense of respect and gratitude towards
my supervisor Ms. Kriti Suneja, Assistant Professor, Electronics and Communication Dept., DTU,
for giving me opportunity to do my Major project of master's dissertation under her guidance. | am
very thankful to her for giving me the opportunity to choose such an interesting topic by my own. |
would also like to thanks the NPTEL Lectures for their valuable thoughts and knowledge, which
motivated me to do better. Finally, none of this would have been possible without incredible support

of my friends. They were always supporting me and encouraging me with their best wishes.

@Lsa'q\'\a B

e e

DEEPAK CHAUHAN

VLSI DESIGN & EMBEDDED SYSTEM
4" Semester

Delhi Technological University

(Formerly Delhi College of Engineering)

ABSTRACT

The ARM Advanced Microcontroller Bus Architecture (AMBA) is an open-standard interconnect
protocol for connecting and managing functional blocks in a system on a chip design. With this bus
architecture, it is easier to construct multiprocessor architectures with a high number of controllers and
components. ARM gave various IPs such as, high performance microprocessor, high level cache,
memory management unit, decoders, arbiters, controllers, etc. But to connect them, there needs to be
an interconnect standard which is easy to design and built for low power applications. This de facto
standard is known as the AMBA architecture. Later, the standard was made open for others to build
and integrate with their own IPs. On chip price, latency, bandwidth, and number of IPs can be
connected to the bus are taken as key design considerations while developing an interconnection

standard.

For our work, target device used for obtaining synthesis results is ZYNQ-7000 FPGA, which is
increasingly becoming popular among the FPGA engineers due to its advanced features that make it
stand out among all the boards in the presence of an ARM cortex A9 chip which is the main reason for
its usage as a system on chip (SoC). Having an integrated support for PCI Express also helps it to

persuade its dominance over other FPGAs known to us.

For simulations and synthesis, XILINX VIVADO 2019.2 tool has been used. The implemented designs
have been analysed in terms of hardware utilization (number of slices, which is comprised of Look Up

Tables and Registers), timing (delay in ns) and power consumption (in Watts).

5|Page

TABLE OF CONTENTS

D=Tol Fo1 = 1 1[0 o D PP I
(OF:] g 1] {071 (- PP i
ACKNOWIEAGEMENT. e eeiiieiiiiiieetieeineteeetesaseenscenscanscnnssannscnnses iv
FAY o151 1 - To! H PP 5
Table Of CONTENTS. uiiiieiiiieeeeiaeeeeieeerseeeereneeesnseeesnsecsnscccnnnscene 6
L 0] B {0 U] T PP 11
TS 0] =1 o] (<1 PPNt 13
IE f0] =1 0] o] =AY/ F=1 € 0] ¢ OSSP 14

6|Page

Sr. No. Chapter Page No.
Chapter 1 Introduction 15
1.1 Distinctive versions of AMBA 17
1.2 Goals of the AMBA 21
determination
1.3 Thesis organization 21
Chapter 2 Literature survey 22
Chapter 3 ZNYQ 7000 FPGA Family 26
3.1 History 28
3.2 ZYNQ Design Flow 28
3.3 Processing System Unit 29
3.3.1 Application Processing Unit 29
3.3.2 General Interrupt Controller 30
3.3.3 Dynamic Memory Interfaces 31
3.34 Static Memory Interfaces 31
3.35 I/O Peripherals 32
3.3.6 Interconnect 32
3.3.7 PS External Interfaces 32
3.4 MIO overview 32
35 Programmable Logic Structure 33
3.6 Distinctive Features 35

7|Page

Chapter 4 Framework outline and 38
execution
4.1 Advance Peripheral Bus(APB) 38
4.1.1 Operating state of APB 39
4.1.2 Write Cycle 41
4.1.3 Read Cycle 41
4.1.4 Compose Trade 42
4.2 AMBA APB Signs 43
4.3 APB Associate 45
4.3.1 Interface layout 45
4.3.2 APB associate portrayal 46
4.3.3 Schedule graphs 46
4.3.4 Planning parameters 47
4.4 APB bound 48
4.4.1 Joining graphs 48
4.4.2 APB bound portrayal 49
443 Timing outlines 49
4.5 Advanced High performance 51
Bus (AHB)
45.1 Master 52
45.2 Slave 52
4.5.3 Interconnect 53
453.1 Decoder 53
4.5.3.2 Multiplexor 53

8|Page

4.5.4 Operation 54
455 Signal Descriptions 54
455.1 Global Signals 54
455.2 Master signals 55
4.55.3 Slave signals 56
4554 Decoder signals 56
4555 Multiplexor signals 56
4.5.6 Transfers 57
4.6 Advanced eXtensible Interface 60
(AXI)
4.6.1 AXI architecture 60
4.6.2 Channel definition 62
4.6.2.1 Read and write address 62
channels
4.6.2.2 Read data channel 62
4.6.2.3 Write data channel 62
4.6.2.4 Write response channel 63
4.6.3 Interface and interconnect 63
4.6.4 Typical system topologies 64
4.6.5 Register slices 64
4.6.6 Signal descriptions 64
4.6.6.1 Global signals 64
4.6.6.2 Address channel signals 65
4.6.6.3 Data channel signals 65

9|Page

4.6.6.4 Write response channel signals 66
Chapter 5 Simulation results and analysis 67
5.1 APB 67
5.2 AHB 70
5.3 AXI slave 74
54 AXI 4 lite slave 76
55 comparison 79
Chapter 6 Conclusions and future scope 80
References 81

10|Page

LIST OF FIGURES

Sr. No Figure Details Page No.

Figure 1.1 SOC System Block Diagram 15
Figure 1.2 AMBA Bus Architecture diagram 18
Figure 3.1 Architecture of ZYNQ FPGA chip 27
Figure 3.2 ZYNQ overall view 28
Figure 3.3 ZYNQ design flow steps 30
Figure 3.4 Application Processing Unit Structure 31
Figure 3.5 MIO Signal Routing 33
Figure 3.6 Module block diagram of EMIO to PL 34
Figure 3.7 Structure of the PL 35
Figure 3.8 ZYNQ 7000 FPGA Board 36
Figure 4.1 Interfacing of APB master and slave 38
Figure 4.2 State diagram 40
Figure 4.3 Write cycle 41
Figure 4.4 Read cycle 42
Figure 4.5 Compose trade 42
Figure 4.6 APB connect interface char 45
Figure 4.7 APB connect exchange 46
Figure 4.8 APB bound joining depiction 48
Figure 4.9 APB hostage exchange 49
Figure 4.10 Block diagram of APB 50
Figure 4.11AHB block diagram 51
Figure 4.12 Master interface 52

11|Page

Figure 4.13 Slave interface

Figure 4.14 Read transfer

Figure 4.15 Write transfer

Figure 4.16 Read transfer with wait state

Figure 4.17 Write transfer with wait state

Figure 4.18 Transfer type Examples

Figure 4.19 Channel Architecture of writes

Figure 4.20 Channel Architecture of reads

Figure 4.21 Interface and interconnect

Figure 5.1 RTL schematic of APB protocol

Figure 5.2 Synthesized design of APB protocol
Figure 5.3 Simulation result of write cycle for APB protocol
Figure 5.4 Simulation result of read cycle for APB protocol
Figure 5.5 RTL schematic of AHB protocol
Figure 5.6 Synthesized design of AHB protocol
Figure 5.7 Simulation result of AHB protocol
Figure 5.8 RTL schematic of AXI slave

Figure 5.9 Synthesized design of AXI slave
Figure 5.10 RTL schematic of AXI 4 lite slave
Figure 5.11 Synthesized design of AXI 4 lite slave
Figure 5.12 Simulation result of AXI 4 lite slave

12| Page

53
57
S7
58
58
59
61
62
63
67
68
69
70
71
72
73
74
75
76
77
/8

LIST OF TABLES

Table No. Name of Table

Table 4.1 List of APB Signals
Table 4.2 APB flag portrayals
Table 4.3 APB Expansion admission framework

Table 4.4 APB scaffold yield parameters

Table 5.1 Summary of AMBA protocols implementations

13| Page

Page No.

39

43

47

47

79

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

14

LIST OF ABBREVIATIONS

. SOC - System on Chip

. AMBA - Advance Microcontroller Bus Architecture
. APB - Advance Peripheral Bus

. AHB - Advanced High Performance Bus

. AXI — Advanced Extensible Interface

. ASIC - Application Specific Integrated Circuit

IP — Intellectual Property

IC - Integrated Circuit

FPGA —Field Programmable Gate Array
RTL — Register Transfer Level

CPU - Central Processing Unit

GPU - Graphics Processing Unit
Gbps - Giga bits per second

PS - Processing System

PL - Programmable Logic

IOP - Input Output Peripherals

BW - Bandwidth

APU - Application Processing System

STA - Static Timing Analysis

|Page

CHAPTER 1

INTRODUCTION

The Advanced Microcontroller Bus Architecture (AMBA) is a well-known open standard, on-chip
communication standard, and on-chip interconnect for the alternate organizing and courting of squares
in a design. AMBA as a structure aids a wide range of designs, regardless of how many controllers and
peripherals they include. System on-chip designs (SOCs), Application-Specific Integrated Circuits
(ASICs), and Anomalous state embedded tiny scale controllers all use ABMA for on-chip delivery [1].

AMBA makes architectures with several processors and a large number of controllers and peripherals
easier to manage. However, AMBA's reach has grown over time, and it now encompasses far more
than just microcontrollers. AMBA is now widely used in a wide range of ASIC and SOC products.
Application processors, for example, are used in devices such as loT subsystems, smartphones, and
networking SOCs.

A modern SOC design incorporates a high level of integration of several design components, often
known as Intellectual Property (IP), which is possible with shrinking technique technologies. To put it
another way, a SOC is an integrated circuit that implements most or all of the capabilities of a
completely digital system. Figure 1.1 shows a block diagram of an AMBA-enabled SoC.

ATO1SAM9263 uno

OVI3 00L/0)
22eLI0)U] RIBWED
VWQ 1suueyn-g

N
o
@
als
o=
213
>
518
S lle
=l
Ll B
s
]
g
DMA

£ poadg |In4 150H BSN

g
E

GPBREG

RTT
32K OSC RTT 9-layer AHB Matrix

IBK B! Y]
AMEBA Bridge Peripheral DMA
controller

:
s
0 g

PWM x4 CAN PIO

Fig 1.1 SOC System Block Diagram [2]

15| Page

A SOC design may consist of one or more programmable components consisting of general-
purpose processor cores, digital signal processor cores, or application-specific intellectual
property (IP) cores and an analog the front end on-chip memory, 10 devices, and numerous
different application-specific circuits.

One of the biggest challenges in SOC design is the on-chip communication among the
specific components. The specific bus protocols used for interconnection have a big impact
on the overall performance of the SOC design.

Most of the time, the IP cores are designed with many different interfaces and communication
protocols and this may be a problem while integrating into a SOC. To keep away from this
problem, standard on-chip bus systems and protocols had been developed.

AMBA provides several benefits:

Efficient IP reuse: IP reuse is a vital aspect in reducing SoC improvement costs and
timescales. AMBA specifications offer an interface standard that permits IP reuse. Therefore,
thousands of SoCs, and IP products, are using AMBA interfaces.

Flexibility: AMBA gives the ability to work with various SoCs. IP reuse requires a common
standard at the same time as supporting an extensive type of SoCs with distinctive power,
performance, and area requirements. Arm offers a range of interface specifications that are
optimized for these different requirements.

Compatibility: A standard interface specification like AMBA, permits compatibility among IP
components from different design groups or vendors.

Support: AMBA is well supported. It is widely implemented and supported throughout the
semiconductor industry, including support from third-party IP products and tools. Bus
interface requirements like AMBA, are differentiated via the overall performance that they
enable. The main characteristics of bus interface performance are:

Bandwidth: The rate at which data may be driven across the interface. In a synchronous
system, the maximum bandwidth is confined with the aid of using the product of the clock
speed and the width of the data bus.

Latency: The delay among the initiation and completion of a transaction. In a burst-based
system, the latency figure often refers to the completion of the first transfer rather than the
entire burst. The performance of your interface relies upon the volume to which it achieves
the maximum bandwidth with zero latency.

16 |Page

1.1 DISTINCTIVE VERSIONS OF AMBA

AMBAL: Arm introduced AMBA in the late 1990s. The first AMBA buses were the
Advanced Peripheral Bus (APB) and the Advanced System Bus (ASB). ASB has been
superseded by more recent protocols, while APB is still widely used today.

APB is designed for low-bandwidth manage accesses, for example, register interfaces on
device peripherals. This bus has an simple address and data phase and a low complexity
signal list.

AMBA2: The AMBA High-performance Bus (AHB), a single clock-edge protocol, was
introduced in 1999 with AMBA 2. At the AHB, a simple transaction consists of an address
phase followed by a data phase. A MUX controls access to the target tool, allowing access
to only one master at a time. Even while APB isn't necessarily pipelined for design
simplicity, AHB is pipelined for overall performance.

AMBAS3: In 2003, Arm introduced the third generation, AMBA 3, which has ATB and
AHB-Lite. Advanced Trace Bus could be a a part of the Core Sight on-chip right and trace
answer.

AHB-Lite could be a set of AHB. This set simplifies the planning for a bus with one master.
Advanced extensible Interface (AXI), the third generation of AMBA interface outlined within
the AMBA 3 specification, is targeted at high performance, high clock frequency system
styles. AXI includes options that create it appropriate for high-speed sub-micrometer
interconnect.

AMBA4: In 2010, the AMBA 4 specifications were introduced, beginning with AMBA AXI4
then AMBA 4 AXI Coherency Extensions (ACE) in 2011.

ACE extends AXI with additional signal introducing system-wide coherency. This system-wide
coherency permits multiple processors to share memory and allows technology like massive
little processing. At constant time, the ACE-Lite protocol allows unidirectional coherency.
Unidirectional coherency allows a network interface to read from the caches of a totally
coherent ACE processor.

The AXI4-Stream protocol is intended for one-way knowledge transfers from master to slave
with reduced signal routing, that is good for implementation in FPGAs.

AMBAS: AMBA 5 CHI (Coherent Hub Interface) was given by ARM within the year 2013
to empower a superior and versatile framework on-chip innovation. It bolsters non-blocking
sound information exchanges between processors utilizing stores. This is often used by
Cortex-A57, Cortex-A53 processors, Core Link DMC-520 Dynamic Memory Controller, and
Core Link CCN504 Cache Coherent Network.

17 |Page

Figure 1.2 shows the AMBA diagram, which includes a high-performance ARM processor,
high-bandwidth on-chip RAM, UART, and an external memory interface, among other
features.

High-performance | | High-bandwidth
ARM processor on-chip RAM

B UART Timer
; . R
High-bandwicth AHB orASB | | APB
Extemal Memory D
Interface G
L Keypad PIO
DMA bus
master AHB to APB Bridge
or

ASB 1o APB Bridge

Fig 1.2 AMBA Bus Architecture diagram [1]

Advanced Peripheral Bus (APB)

Advanced Peripheral Bus is used as a subset of AMBA-based designs to reduce the
complexity connected with interfacing and power utilisation. APB is used to connect
peripherals with low transfer speeds. Framework execution will be improved thanks to APB.
The two main segments of this transportation are the APB Bridge and the APB Slave. APB
Bridge is a specialist in the field of transportation. The master is only present for single
transport in AMBA-based outlines.

Address hooking, a strobe flag PENABLE, and a choice flag SSELx are the main components
of APB Bridge. They set information on APB for composing exchange and make APB
information accessible for examined interchange. APB Bridge is aware of a variety of
generating parameters. Information and yield parameters are the names of these parameters.
The APB slave's interfacing is said to be extremely adaptable. The APB slave task is
managed using the same APB timing parameters.

Sclk, SRESETn, SADDR [31:0], SSELX, SENABLE, SWRITE, SRDATA, and SWDATA are
the fundamental flags that govern APB's task. APB3 v1.0 is an APB set. SREADY and
SLVERR, in addition to alternate signs of APB, are used in these two supplementary signals.

The most recent improved adaptation of APB is APB4v2.0. These signals are used to write
and read data.

18| Page

Advanced System Bus (ASB)

ASB will be used as an area of the various inserted microcontrollers as an associate elite
pipelined transport. It helps to connect different processors, external memory interfaces, and
on-chip memories. ASB will provide the first benefits, such as burst exchange, various
transport master assistance, and better-pipelined activity.

ASB master, ASB slave, ASB judge, and ASB decoder are all guideline portions that cannot
be avoided. Through address and control information, the ASB master begins to generate the
browsing workouts. Various transportation professionals are available in ASB; nevertheless,
only one of them will be granted access. ASB Choose can assist professionals in gaining
access to ASB. ASB slaves have a standard limit of responding to scrutiny and creating
assignments.

The three types of exchanges that can happen through ASB are non-sequential, sequential,
and address-only. DSELx, BWRITE, BWAIT, BTRAN [1:0], BPROT [1:0], BSIZE [1:0],
BnRES, BLOK, BLAST, BERROR, BD[31:0], BCLK, BA[31:0], AREQx, and AGNTx are
the characteristic signals used in this transport.

Advanced High-Performance Bus (AHB)

Massive and elite transit use AHB, which may result in increased data transmission activity.
A top level perspective will achieve highlights such as split exchanges, higher information
transport setup, burst exchange, single clock edge activity, and so on, thanks to AHB. AHB
is typically utilised on ARM7, ARM Cortex-M, and ARM?9-based designs. AHB master,
AHB slave, AHB decoder, and AHB authority are all part of the AHB framework setup.

AHB uses address and control to read and compose tasks. Only one master will profitably
use the transport at any given time. The slave of the AHB reacts to the master of the
AHB. The slave responds to the read or compose operation using the address. The slave to
the master recognises the status of the knowledge exchange. The status indicates whether
the information exchange was a success, a failure, or a pause. AHB arbiter and decoder
have the same capacities as ASB.

RWDATA [31:0], RSELxX, RRDATA [31:0], RREADY, RRESP [1:0], RSPLITx [15:0],
RMASTLOCK, RMASTER [3:0], RGRANTX, RLOCKx, and RBUSREQx are RWDATA
[31:0], RSELx, RRDATA [31:0], RREADY, RRESP [1:0], RSPLITx [15:0]. AHB-Lite v1.0
features a high-speed exchange motion. Aside from the basic AHB signals, this adjustment
employs a variety of banners to increase activity.

19| Page

Advanced Extensible Interface (AXI)

ARM introduced AXI v1.0, a burst-based convention, during the third phase of AMBA. It
delivers a higher level of execution, a higher rate of return, and a faster task. There is a
separate stage for address and information. It exchanges the data that byte strobes use. Burst
exchanges can be used to solve the problem. The distinctive classifications of signs
introduced in AXI are compose information carrier signals, compose address carrier signals,
compose reaction carrier signals, read address carrier signals, read information carrier flags,
and low power interface signals. There are five unique channels available for reading and
writing. AXI's other main strengths are the completion of request exchanges and the
expansion of enlistment stages. AXI4 — light is a more powerful version of AXI. It
modifies the essential AXI indications. This set makes use of a predetermined information
transit dimension and strobe backings. The most recent modification of AXI is AXI-Stream
v1.0.

AXI Coherency Extensions (ACE)

Expert is an AXI upgrade that includes third-level reserves, on-chip RAM, peripherals, and
external memory. The AXI read and compose channels are built for a 64-bit or 128-piece
interface in this case. It is the foundation for 1:1 clock proportions in processor clocks. It
will also run with a large number of CPU clocks. Professional is an ARM Cortex-A
processor that includes the Cortex-A7 and Cortex-Al5. ACE masters, ACE lite masters, and
ACE Lite/AXI slaves are interconnected portions within the master. Skilled offers coherency
at the framework level a structure. The essential flags of ACE are read data channel signals,
browse address carrier signals, snoop carrier signals, write address carrier signals, and
response signals.

A set of ACE may be Pro-Lite. Ace components that do not have instrumentality intelligible
reserves use Pro-Lite. They'll show whether the issued exchanges can be controlled within
the instrumentality coherent stores of various bosses or whether they can be used to
facilitate obstruction exchanges. On the read address channel, it adds more flags, and on
the compose address channel, it adds more flags. Snoop channels, snoop indicators, and
reaction signals will be blocked by Pro-Lite.

Advanced Trace Bus (ATB)

To debug the framework, the Advanced Trace Bus (ATB) supports an interchange of
information around the Core Sight. It supports bite-sized bundles and, as a result, the
control signals used to display the number of bytes significant in each cycle. This mode of
transportation uses the signals ATCLK, ATCLKEN, ATRESETn, ATREADY, ATVALID,
ATID [6:0], ATBYTES [m:0], knowledge [n:0], AFVALID, and AFREADY.

20|Page

1.2 GOALS OF THE AMBA DETERMINATION

The goals of the AMBA particular are:

. It will upgrade the inserted small-scale controller things with a focal handling unit on SoC.
. It will upgrade the reusability of fringe and IPs and make the design simple.
. It will configure fewer potential interfaces.

1.3 THESIS ORGANISATION

The thesis report is organized as follows :

Chapter 1 gives a brief presentation about the Advanced Microcontroller Bus Architecture (AMBA),
advanced peripheral bus (APB), advanced high-performance bus (AHB), and advanced extensible

interface (AXI).

Chapter 2 is a brief study of AMBA setups that have existed up to this date. It also highlights the
current arrangements' flaws.

Chapter 3 gives us a deep insight into the FPGA board, which is utilized for synthesis purpose.
Chapter4 AMBA protocols, which include advanced peripheral bus (APB), advanced high-
performance bus (AHB), and advanced extensible interface (AXI), explain the framework outline and
execution.

Chapter 5 presents the simulation results and analysis.

Chapter 6 consists of the work's conclusion and future scope.

21| Page

CHAPTER 2

LITERATURE SURVEY

ARM Confined demonstrated AMBA, an open-source transport tradition, in 1999 [2]. The author
presented an AMBA 2.0 [1] that distinguishes three modes of transportation: ASB, APB, AHB. It
investigates all modes of transportation's testing systems. The interface module is a piece of software
that allows you to In terms of its restricted state machine, AMBA AHB may plainly be utilized as a
conventional joining module because it can read and write data. As it communicates with the peripheral
contraptions, the connection module AMBA APB is melodic, displaying a low repeat [3].

Kiran Rawat in [4] proposed an intricate interface between AMBA ASB and APB is the goal of the
combination. Verilog dialect with restricted state machine models designed in Model Sim Variant 10.3
and Xilinx-ISE outline suite were used to design the utilization rundown and power reports. The usage
of APB Extension necessitates the employment of a referee and a decoder. In the AMBA ASB APB
module, the master makes contact with APB transport. The judge begins conversing with the transport
after determining on the master's status. The decoder selects a transport slave using the specific address
lines, and the slave answers to the transport master with an affirmation. As the outline complexity of
the structures rises, the power consumption of SoC structures becomes increasingly essential. The
power reports separate the various power components that contribute to power use [5].

Kiran Rawat et al. introduced [6] AMBA APB, a variant of AMBA that provides the lowest power
consumption and transmission capacity. For this, a Verilog dialect APB Extension with Reset
Controller configuration was used. BnRES and Power-on Reset (PO Reset) conditions are presented
by the reset controller so that Meta stable characteristics may be propagated and glitches can be kept
at a strategic distance. Power report demonstrates that the different power segments contribute in the
power utilization by APB connect design. As the consequence,: extension under PO Reset conditions,
On-chip add up to control utilization is 9.52%, Chain of command control utilization is 29.12% and
dynamic supply control utilization is 28.89% not as much as Scaffold under no PO Reset conditions.
As a result, when Scaffold is designed under Power-on Reset circumstances, it may make effective use
of intensity. This is done using the Verilog dialect, which is used to create restricted state machine
models and test seats. Model Sim Rendition 10.3 is used to show and reproduce the APB Extension
and Reset Controller. For combination and power reporting, the Xilinx-ISE outline suite, version 13.4,
is used.

22| Page

Kiran Rawat et al. proposed [7] the fundamental test for building a plan not just to outline but to
organized and synthesize RTL code to plan vitality and streamlined in control utilization. The author's
goal is to make the AMBA APB extension a reality by properly organizing framework assets. For this,
a replication and synthetization of the span interface is proposed, with the goal of achieving the lowest
power consumption and data transfer capacity possible between AMBA fast ASB and low speed APB
transports. When a distinction is made between the entrance timings of clock flags, clock skew appears.
Limit clock skew can be dealt with either a swell counter or a three-piece up or down counter method.
The article uses Verilog HDL to implement an APB Scaffold with a clock skew reduction technique.

Jasmine Chhikara et al. proposed [8] the unit which comprises of littler practical squares called
subsystems or module. These modules must be in sync with one another and provide resources for the
framework to function properly. The problem arises when one subsystem adopts the same norms as
others. Each module uses a different piece rate or baud rate for data exchange, which might be non-
concurrent or synchronous. The author also shows how to share information by starting with one
convention and then moving on to the next. It takes advantage of 12C's adaptable conventions, making
it ideal for usage with the APB AMBA convention. The proposed engineering is a bridge between the
I2C Master and the APB salve, allowing information to flow from an 12C-enabled module to an APB-
enabled module. The data is transferred in a state of harmony with the area clock, from serial (12C) to
parallel (APB) to serial (12C). This creates a bidirectional interface between 12C-enabled and APB-
enabled modules.

Ashutosh Gupta provided [9] an on-chip representation backdrop for better implanted microcontrollers.
This figure depicts the physical implementation of the AMBA advanced system bus (ASB) and
advanced peripheral bus (APB) connection modules. To maintain the clock skew to a minimum, a
three-piece swell counter was utilised. For showing and reenactment, Model Sim Form 10.3 is utilised,
and test chairs are developed for this purpose. For the amalgamation and experience, the RTL Compiler
is used, while the Xilinx-ISE plan suite is used to eliminate the union and utilisation rundown. An
sophisticated execution framework is employed for the physical plan.

Kanishka Lahiri and Anand Raghunathan et al. proposed [10] the complex System on-chips (SoCs),
the framework level on-chip correspondence design is increasing as a huge wellspring of intensity
utilization. Supervision and reorganization are the vital segments of SoC control which requires the
qualities of the capacity utilization. While compelling, they just address a constrained piece of
correspondence design control utilization. A cutting-edge correspondence engineering, involves few
segments, for example, transport interfaces, mediators, scaffolds, decoders, and multiplexers,
notwithstanding the worldwide transport lines In addition to statistically supporting the perspective
that on-chip correspondence is a critical focus for framework level power streamlining, their work
demonstrates (i) importance of fully considering correspondence engineering, and (ii) the opportunities
for control reduction that exist through careful correspondence engineering design[11-13].

23| Page

Ge Zhiwei et al. discussed [14] a novel picture on on-chip and CMOS sensor, which is applied to the
APB transport. The suggested design shows shading picture planning difficulties and highlights the
contrasts between the proposed structure and the conventional image, which considers pipeline as a
component of cutting-edge still cameras. This work combines two advantageous automobiles white
modify methods to adjust the three self-ruling shading channels, taking into account the gear utilisation
and power requirements. The suggested technology, which is linked to FPGA, can effectively restore
the picture concept of rough data [15-17].

L. Benini, A. Macii et al. proposed [18] the encoding and decoding counts that will interface the way
of reasoning that will limit the normal number of modifications on heavily stacked overall transport
lines at no cost in correspondence throughput (i.e., single word is transmitted at each cycle). Given
knowledge on word-level estimates, the perceiving feature technique grows low-change development
codes and gear execution of encoders and decoders without relying on organizer's sense. A correct
system that is suitable to low-width transports, and furthermore deduced procedures that scale well
with transport width. In addition, display a flexible building that normally changes encoding to lessen
advance development on transports whose word-level estimations are not known from the before[19].

J. Y. Chen et al. proposed [20] a technique that proficiently diminishes the exchanged capacitance of
the transport. The power devoured by the transport can, consequently, diminished. The fundamental of
the transport division is to parcel the transport into a few transport portions isolated by pass transistors.
Especially transmission gadgets are situated to adjoin transport fragments, in this way, most
information Correspondence can be accomplished by exchanging a little segment of the transport
sections. Accordingly, control utilization and delay are both decreased. Exploratory outcomes got by
reproducing a defer display and a power show exhibit that the proposed divided transport framework
decreases transport control by around 60%-70% and enhances basic transport delay by around 10%-
30%.

Recent advancements in SoC technology have enabled the integration of many devices on a single
chip, paving the path for more compact devices. The various gadgets from various sellers, each
performing a particular function, are all combined on a single chip. These components can be linked
using bus-based protocols to enable effective communication. The AHB protocol is the most widely
utilized communication method. The AHB protocol allows devices to communicate at fast speeds.
Because of their bulkiness, processors are gradually growing quicker, but memory are becoming
slower. This becomes a problem since the data retrieval speed does not match the processing speed.
As a result, a fast memory controller is necessary, one that can match the CPU speed to the memory
speed to ensure effective communication .It's difficult to interface SDRAM with AHB since SDRAM's
latency isn't limited to one cycle, forcing AHB to sit idle throughout that period. As a result, bus
resources are being used inefficiently [21-22].

24| Page

K. Shaikh and colleagues created an SDRAM-specific memory unit. When a query is made concerning
recently consumed data, for example, the controller's internal memory is searched first before fetching
it to the memory. Because the AHB bus architecture provides for increased performance,
increased clock frequency system modules, this controller was designed to work with the AHB
(AMBA) bus architecture. It's the building block for increased performance systems [23].

The complying AMBA bus hardware IP presented by Acasandrei et al. is a modularized, extremely
flexible, reduced power , and technology-independent core written in the HDL language. The Viola-
Jones method, which is one of the most frequently used face identification techniques, is accelerated
by the IP core. The hardware accelerator IP is used in an embedded face detection system based on the
LEONS3 Sparc V8 CPU. The authors describe their techniques, challenges, and performance findings
for software, hardware, and system level design [24].

Modern SoCs include multi-core clusters and sophisticated peripherals, for which the current AHB
protocol, which supports low-complexity shared buses, cannot meet the expectations of today's world
high-speed SoCs, due to a number of protocol impediments, including the fact that the AHB has only
one outstanding transaction, no full-duplex mode, and only one channel-shared bus that is directed to
the employee AXI bus. By identifying how the five-channels in the bus operate independently, as well
as the handshaking concept, a more realistic comparison with the advanced AXI bus is drawn [25].

The AMBA AXI4 bus, which is the best in terms of throughput, latency, and high performance/
frequency, is used with single or multiple channels, and the connection block encapsulates the
arbitrator, decoder, and multiplexers .The arbiter monitors the priority to access/release the bus to one
of multiple masters who begin transactions at the same time using an arbitration technique. The decoder
decodes the master's address and control and delivers the transaction to one of 16 slaves for basic and
burst read/write operations [26].

The design complexity of SOC is increasing day by day as the result it increased consumer demands.
As a result, there is always a productivity gap, and the appropriate protocol is picked for each
application. To improve connectivity performance, QoS, and reduce wiring congestion, a migration
from AXI4 to AXI4-Lite is required, which allows the processor or masters to access the registers
(small and mini peripherals). We choose AXI4-Lite. Using the aforementioned references and keeping
an eye on the situation, if the Master agent regularly wants to access information that may be in small
registers for which it uses basic registers like cache to interact, an effective and proper bus interface
must be chosen to meet the need. This prompted the development of the Verilog HDL work “Design
and interface of AXI4-Lite Master core with a modified Memory” [27].

25| Page

CHAPTER -3

ZYNQ 7000 FPGA FAMILY

This FPGA series uses a SOC architecture, which combines a dual-core ARM Cortex A9 CPU with
28nm Programmable Logic into a single device. Because the A9 chip is also at the base of the
Processing System , this FPGA is an excellent candidate for usage as a SOC. There's also an on-chip
boot Read-only Memory (ROM), 16- to 32-bit external memory interfaces, and a few peripheral
connection interfaces. It provides a completely programmable alternative to ASIC and system-on-chip
customers, as well as a versatile platform for launching new solutions. For computationally intensive
and performance-demanding applications, this serves as a highly integrated and optimized alternative.
The Z-7010, Z-7020, and Z-7030 devices are members of this FPGA architecture, which is primarily
focused on automotive applications [29].

The ZYNQ 7000 is optimized for maximum design flexibility and performance per watt. These SOCs
are cost-optimized entry points with ARM single Core processor acquaintance with 28nm Artix 7 based
Programmable Logic. The system on chips is an ideal candidate for numerous applications in the motor
control field and vision engineering. This family contains up to 10 devices to be chosen from that may
be single or dual-core, hence allowing a scalable platform for the consumer. FPGAs are the ideal
candidates for implementing sorting algorithms due to their unparalleled features like parallelism, low
latency, high bandwidth, faster processing speed, in-built processor core availability among others
[24].

The Zyng-7000 SoC devices are able to provide numerous applications including:

. Automotive driver assistance: lane departure, blind-spot detection
. Wireless applications, Reliable Ethernet

. Embedded prototyping

. Software acceleration for DSP functionality

. Time-domain reflectometer

26| Page

The ZYNQ facilitates the mapping of software and custom logic in the PL and PS, allowing for the
development of unique and distinct system functionalities. The architecture of the ZYNQ SoC is shown
in Figure 3.1. The following are the key components:

. Processing System (PS)

. Application processor unit (APU)
. Memory interfaces

. I/O peripherals (IOP)

. Interconnect

. Programmable Logic (PL)

Zynq-7000 SoC

= mm Processing System
rphe | Ciock I | Roset I essorUett_ _ _ ____ -

/ usa FPU and NEON Engine FPU and NEON Engine

ARM Cortex-AQ
cPU
2 KB 32 KB
+Cache D-Cache

i
§
|

e = = — = —

=
o

usa 2x USH
GigkE 2x Gigk
Gigk 22 SO

ARM Cortax-AS
cPU
B2 KB 2 KB
+Cache D-Cache

|

— | MMU MMU

]

e o o o

8
§
g

8
i

0 | [a@ic I[Sncop Controller, AWDT, Timer]"

GPIO | | el DMAS | §

{512 KB L2 Cache & Controlier |

UART | |

CAN
CAN OoCcM 256K

TS . Intarconnect | SHAM)

12C | Memaory
S Central Intortaces
(53 Interconnact
DOR27,
CereSght DORSL,
LPDDR2

Indertaces Companents
\ SFRAM Controlier
NOH ’_LIDIP
ONF 1.0 L ’ ‘
NAND IDavC I Progeammabie Logic 10
Q-sP p Memory imerconnect

L KR 1 111

EMIO Ganeral-Purpase DMA 1RQ | Config High-Performance Porls ACP.

XADO Ports Syne AES/
12-81 ADC SHA Programmable Logic
Notes: Selectio

IFAesources]
1) Arrow direction shows controf (master to siave)
2) Data flows in both directions: AX1 32-Biv64-Ba, AX) 64-Ba, AXI 32.8it, AHB 32-8a. APB 22.80, Cuslom
3) Dashed ne bax indicates 2nd processor in dual-core devices

Fig 3.1 Architecture of ZYNQ FPGA chip [29]

27| Page

3.1 HISTORY

It is an all-programmable system on a chip that is embodied by two hard processors, ADC
block Programmable Logic (PL), and a lot more components embedded in one Silicon chip
only. Before the innovation of the ZYNQ came into practice, the processes were coupled
with an FPGA which made the communication between the Processing System & the
Programmable Logic quite intricate and its layout difficult for the engineers to understand.
The advanced extensible interface (AXI) standard is used as a means of interfacing across
different elements present on the ZYNQ architecture which thereby accounts for the high
bandwidth and low latency present in connections. A soft-core processor such as Micro blaze
was being used by the users before the ARM processor was implemented inside the ZYNQ
device; as its heart. The upper hand provided by the Micro blaze to date is the flexibility
of the processor instances within a design. On the other hand, ZYNQ delivers significant
performance enhancement with the encompassing of the hard processor in the ZYNQ [30].
Also, the cost to market and the physical size get reduced by simplifying the system to a
single chip.

Fig 3.2 shows the significance of AXI interface in ZYNQ.

/ﬁ\ AXI

v /,/ N

\ interfaces

=

Processing

=
System

\Programmable Logic

Fig 3.2 ZYNQ overall view [30]

3.2 ZYNQ DESIGN FLOW

This design flow has some steps that are recurrent with a regular FPGA. We start the design cycle by
first defining the requirements and specifications of the system, next the different tasks are assigned to

28| Page

implement in either the PL or PS which is called task partitioning. Because the overall performance of
the system will depend on the task or function being assigned for implementation, so this stage is most
important in the technology node be it hardware or software. The next step is the testing of the
hardware and software development. We need to now identify the functional blocks related to the
Programmable Logic in order to attain the design characteristics and also to congregate them as IPs
and for facilitating the connections between all of these IPs, all the steps are hence governed with
respect to the functionality of the Programmable Logic (PL). The software activity includes running
on the PS, the code that is developed [30]. To wrap the design, system integration and testing are
needed. Figure 4.3 gives the design cycle briefly.

3.3 PROCESSING SYSTEM UNIT
The Application Processing Unit (APU), memory interface, interconnect, and input-output (I/O)

peripherals are the four primary blocks.

3.3.1 Application Processing Unit (APU)

Two Cortex A9 processor units are present in it along with the NEON Unit, Memory management unit,
floating-point unit, L1 caches. Additionally, L2 cache and Snoop controls are also present in it. The
representation of APU block diagram is given in Fig. 3.4.

1. NEON: implementation of the single instruction multiple data in the ARM processor is
provided by this unit that acts as a catalyst to the DSP and the media algorithms

2. FPU: the floating-point unit operations are managed by this unit

3. Level 1 Cache: storing the instructions and the data separately we have a data and instruction
cache

4. MMU: the virtual memory gets translated to the physical memory address by this unit.

5. Snoop control unit (SCU): its main task is to create interfaces among the processors 4 —way
set associative L1 and L2 cache.

6. L2 cache: to check the currently updated value of a variable, the cache is shared between two
processors

29| Page

Design
specification

System de5|gn
(Software &
hardware
partitioning)

l

Hardware &
software
development

l

Testing and
system
integration

) J . J

Fig 3.3 ZYNQ Design Flow Steps [30]

3.3.2 General Interrupt Controller (GIC)
Consists of two main components:

» 3 WDT (watch dog timers) (one per CPU and one system WDT)

» 2 TTCs (triple timers/counters).

30|Page

MMU
ARM 1

On-Chip Memory

NEON/FPU
/ (OCM)
L1 (Inst) L1 (Data)
Snoop Control Unit (SCU)
{/ <7
i 4 L1 (Inst) L1 (Data)
L2 Cache MMU
ARM 2
NEON/FPU

Fig 3.4 Application Processing Unit Structure [29]

3.3.3 Dynamic Memory Interfaces

The multi-protocol memory controller can be configured to provide 16 bit or 32-bit byte
accesses using a single rank configuration of 8 bits,16 bits or 32 bits to a 1 GB address
space [29]. It incorporates its own set of dedicated 10S and hence speeds of up to 1333
MB per second for the DDR 3 is supported. 4 AXI slave ports are featured for this
purpose namely as :

. via the L2 cache controller: a 64-bit port is dedicated for low latency
. for the PL access: two 64- bit ports are designated
. all other AXI Masters share: one 64-bit port via the central interconnect

3.3.4 Static Memory Interfaces

It supports static external memory such as:

. 8-bit data bus up to 64-MB
. 8 bit parallel NOR flash up to 64- MB
. NAND flash support with 1-bit ECC

31|Page

3.3.5 /O Peripherals (I10OP)

The data communication peripherals are present within the 10P unit. Its features are;

o Ethernet MAC peripherals: Tri-Mode

e Supports an external PHY interface

o High speed and full speed mode in the host, devices by the presence of two USB 2.0
OTG peripherals having 12 endpoints

o Makes use of the 32 bit AHB slave and AHB DMA master interfaces

e Two full CAN (Controller Area Network) bus interface controllers that have automotive
applications

e Three peripheral chip select signals accompanied by 2 full-duplex SPI ports

e Two UARTS

e Up to 118 GPIO bits

3.3.6 Interconnect

A multilayered ARM AMBA AXI interconnect is used to connect the APU, memory
interface unit, and the IOP to each other and also to the PL. This interconnection supports
multiple simultaneous transactions of the master and slave; it’s a non - blocking type. And
is therefore designed with latency-sensitive masters which have the shortest path to the
memory and the bandwidth-critical Masters having the highest throughput with the slaves
through which they have to communicate [29]. The traffic generated by the CPU, DMA
controller can be regulated by means of a block known as the quality of service present in
the interconnect.

3.3.7 PS External Interfaces

They cannot be assigned as PL Pins and are hence designed specifically for the purpose of
interfacing. The interfaces are encompassed by:

e Clock, reset, boot mode, and voltage reference
e 32-bit or 16-bit DDR2/DDR3/DDR3L/LPDDR2 memories

3.4 MIO (MULTIPLEXED INPUT - OUTPUT) OVERVIEW

There are up to 54 MIO present for multiplexing access to PS pins that can be used by the
static memory interface and the PS interfaces, which can be mapped with the different
peripheral pins at all steps of the interfacing framework [29]. The signal routing of the MIO
block has been shown below in fig 4.5. If greater than 54 are required then we need to
route this through the PL to the input-output associated I/O with the PL and are therefore
referred to as the extendable multiplex input-output (EMIO). MIO_PIN [53:0] configuration
registers located in the SCLR registers set is controlled by the signal routed through the
MIO block [29]. We can program any one of the total pins present on the MIO pins to the
reference clock of an external CAN controller.

32|Page

A typical module block diagram of EMIO to PL has been shown in Fig 3.6.

Level 3 Muxing

Controller
Outputs

L

Controller
Outputs [

To Program Muxang
Levels, refer fo the
select fields n Registers
MIO_PIN_[53:00]

Level 2 Muxing

Level 1 Muxing

Inputs to
input Tie-Offs Controliers
EMIO

Controller
Other Input
MiO
Pins
MIO Pin

Outputs Controller
Output

from

Controllers Level 0 Muxing
0

Notice: Not all mux Controller

inputs are popuiated Output 4

with controlier outputs.

Fig 3.5 MIO Signal Routing [29]

3.5 PROGRAMMABLE LOGIC STRUCTURE

—

o ——
I
I

Lo s e 3

UGSES _c2 04 032312

It is comprised of configurable logic blocks (CLBs) which are housed by slices like any other FPGA
we are familiar with. Any slice contains a combination of 8 flip flops + 4 LUTs and is accompanied
by a switch matrix, also there are DSP slices and Block RAMs as well. Fig 3.7 shows the structure of

the Programmable Logic. Its main components are:

1. Slice: It is embodied by resources for implementing the combinatorial and the sequential circuits of

the design.

2. Look-up-table (LUT): For implementing a logic function of inputs up to 6 or more RAM and ROM

shift registers are used.

33| Page

Static Memory

2x SPI -

2x PC -
2xCAN |e—
2XUART |a—>
2xGPIO (—
2xGPIO (w—

2xUSB WiDMA |<—>
2x SDIO WiDMA |<t—
2x GigE w/DMA |<—

yyvyy

EMIO

Fig 3.6 Module block diagram of EMIO to PL [30]

1. Flip Flop (FF): Usually employed for the implementation of a 1-bit register with a
reset functionality.

2. Switch Matrix: The connections among different parts present within the combinational logic blocks
as well as with other CLB and other parts of the programming logic structure.

34|Page

CLB

Slice 1 Slice 2
LuT LT LT wr | |
Switch Matrix
=]
==
|

Figure 3.7 Structure of the PL [30]

3.6 DISTINCTIVE FEATURES

The key features of the ZYNQ 7000 are:

« 1 GHz CPU Frequency

« GPIO has four 32-bit banks

« All programmable SOC

« Level 1 cache : 32 KB each

« Level 2 Cache : 512 KB

« Up to 118 GPIO bhits

« Over 85k logic cells

« ARM V7 architecture with Trust — Zone security
« 100 Gb/s of I/O bandwidth

« 8 channel DMA ; 4 channel dedicated specifically to PL
« 8 LUTs + 16 FF per CLB

- Two 12 bit ADCs (XADC)
- 36 KB Block RAM

« 25 bit pre-adder, 18 x 25 signed multiply

35| Page

Switch Matrix

« ARM Cortex A9 Microprocessor chip

« PCle supports upto 8 lanes, Gen2 speed

« 4 AXI ports : configurable as 32 or 64- bit interfaces
« 1KB deep FIFO ; 32 word buffer for read acceptance
- 16 Interrupts available

« Upto 220 trans receivers for enhanced capability

Figure 3.8 ZYNQ 7000 FPGA board [30]

- Scatter-gather DMA capability
« Two USB 2.0 OTG peripherals
- 8-bit PHY external interface

+ 1 Mb/s high Speed UART’s

36| Page

« XADC , JTAG interfaces

« Processor configuration access port (PCAP) for facilitating chip security
« PS boot image authentication

« 8 Clock Management Tiles (CMT)

« CMT has Mixed — Mode Clock Manager (MMCM) & PLL.

37| Page

CHAPTER 4

FRAMEWORK OUTLINE AND EXECUTION

4.1 Advance Peripheral Bus Protocol (APB)

The IP for the inter-Advanced peripheral bus (APB) protocol is presented in this design. The current
VLSI design environment is characterized by high speed, complex functionality, and a short time to
market. A reuse-based SoC design method has become important to solve these challenges. The APB
Protocol and its slave Verification are the subjects of the project. The goal is to put DUT to the test.
This model is used to communicate between the slave and the master. The complete design has been
verified and coded in Verilog.

Figure 4.1 depicts the APB protocol's master-slave communication.

APB Block Diagram

Select 1

\J

Select 2

v

Select N SLAVE
4‘\ MASTER Advanced
Read

data Advanced Emable Peripheral
Peripheral > Bus Read
Data
Bus
Address >
Reset Write
—
Write Data II>
Ready
Clock
—_—
Error

A

Figure 4.1 Interfacing of APB Master & Slave [5]

38| Page

Table 4.1 List of APB signals [5]

SIGNALS DESCRIPTION

Clock For Positive edge clock all sign changes

Reset Dynamic high reset signal

Address Address bus can be 4 bits or 8 bit wide

Select signal Select. Each slave device has a this signal, this demonstrate
what slave gadget is chosen for information

Write Direction. This signal high indicates a write access when it is
low indicates read access

Ready The slave utilizes this sign to expand an exchange

Read Data The chose slave drive this transport during read cycles when
wr is low. This transport is 32 bit wide

Error This sign shows an exchange disappointment

4.1.1 Operating states of APB

IDLE is the most common condition of the APB. The bus enters the SETUP state and asserts the

relevant select signal, PSELX, when a transfer is necessary.

39| Page

No transfer

IDLE
PSELx=0
PENABLE =0

Transfer

/

PREADY =1 SETUP

and no PSELx =1 =

\ = PREADY = 1
, I) and transfer

PREADY =0
ACCESS

PSELx =1
PENABLE =1

Fig 4.2 State Diagram [2]

The bus only stays in the SETUP state for one clock cycle before moving to the ACCESS
state on the clock's rising edge. In the ACCESS state, the ACCESS will enable signal,
PENABLE, is asserted. During the transition from the SETUP to the ACCESS state, the
write, write data signals, select, and address must all remain stable. When the slave sends
the PREADY signal, the ACCESS state determines when to exit. The first condition is that
if the slave has PREADY LOW, the peripheral bus remains in the ACCESS state. The
second condition is that if PREADY is held HIGH by the slave, the peripheral bus remains
in the ACCESS state. The slave drives PREADY HIGH, then exits the ACCESS state and
the bus returns to the IDLE state if no additional transfers are necessary. It then repeats the

cycle [2][3].

40| Page

4.1.2 Write cycle

T0

PCLK!

11 T2 T3 T4

PADDR !

PWRITE |

5[} ? Addr 1

§//

7 A

PSEL |
PENABLE |

N/

PWDATA

PREADY |

éXX QME1 gx_x

W \A

Figure 4.3 Write Cycle [2]

PADDR, PWDATA, PWRITE, and PSEL are registered at the rising edge of PCLK to
initiate a write transfer at T1. The SETUP cycle is what it's called. The ACCESS cycle,
PENABLE, and PREADY are registered at the next rising edge of the clock T2. When
asserted, PENABLE signifies that the transfer's Access phase has begun. PREADY
signals that the slave can finish the transfer at the next rising edge of PCLK when
asserted. The PADDR, PWDATA, and control signals are all valid until T3, the end of
the Access phase, when the transfer is completed. At the end of the transfer, the
PENABLE is disabled. Unless the transfer is promptly followed by another transfer to
the same peripheral, the choose signal PSEL is also disabled [2-3].

4.1.3 Read cycle

The PENABLE, PSEL, PADDR, and PWRITE signals are asserted at the clock edge T1
during reading operation (SETUP cycle). PENABLE, PREADY, and PRDATA are asserted
at the clock edge T2 (ACCESS cycle), and PRDATA is also read during this phase. The
data must be provided by the slave before the read transmission is completed[2-3].

41 |Page

TO T1 T2 T3 T4
PCLK| 5

PADDR Addr 1 _

PWRITE 1
PSEL ! 7] T
PENABLE | 0 A

PRDATA D |

| | XDataﬂD |

Fig 4.4 Read Cycle [2]

4.1.4 Compose trade

The fundamental create move is showed up in figure 4.5.

IDLE SETUP ENABLE IDLE

T T2 T3 T4 T5
— — fp— W—

PCLK

PADDR Agldr 1

PWRITE

I
0
@' 4
PSEL l '
0

PENABLE

Dita 1 XX

PWDATA

Figure 4.5 Compose trade [2]

42 |Page

The figure starts with the stamp, influence realities, to make wave and pick all flags behind the
developing edge of the plot. The very important plot arrangement of the exchange is known as the plan
arrangement. Behind running with log arrangement the support flag PENABLE is declared, and this
demonstrates the Empower arrangement is going on. The exchange achieved toward the entire of this
cycle.

The sum of the deal will be reduced by the PENABLE draw in hail. The select flag will likely go low
unless the transaction is promptly supported by another swap to the comparable peripheral. There
reduce control, the address flag and the frame hail will not change following an exchange until the
minute that the going with get to happens. In hail, the custom just demands a flawless change on the
draw. It's possible that the choose and creates signs will be blamed if there are many exchanges.

4.2 AMBA APB SIGNS

The APB motion is depicted with the join as "S™ image to detach with different signs appeared in table
4.2.

Table 4.2 APB flag portrayals [2]

Flag Portrayal

SCLK Log. The developing edges of SCLK all exchanges on the
APB.

SRESETN Cutoff. As far as possible banner is dynamic less. This

banner is generally related to the system transport
constrain hail.

SADDR Name. This is a transport with the APB mark. It is handled
by the peripheral transport association unit and can be up
to 32 bits wide.

43 | Page

SPROT

Protection assembles. This flag indicates if the
transaction is an information get to or a direction get to
and indicates whether the exchange is normal,
exceptional, or secure.

SSELXx

Pick. The APB associate part makes the banner to each
periphery transport grub. It shows that the grub device has
selected a needed data swap.

SENABLE

Empower. This banner shows the following and
coming arrangement of an APB trade.

SWRITE

Instruction. When the banner is high, it displays an APB
make get to, and when it is low, it shows an APB read get
to.

SWDATA

Enlist information. When SWRITE is high, the cars are
controlled by the peripheral transport interface unit,
which creates an arrangement. The vehicle's width can be
up to 32 bits.

SSTRB

Enlist log. The banner depicts which bytes may be
upgraded and which can be traded. For every eight bits of
create data transfer, there is one form log. As a result,
SSTRBI[nN] is linked to SWDATA [(8n+7) : (8n)].

SREADY

Arranged. Grub uses this banner to extend an APB
trade.

SRDATA

Translate data. For this media, they chose grub work
and decode cycles while SWRITE is low. The width
of this medium can be up to 32 bits.

4.3 APB ASSOCIATE

On the AMBA APB, the APB interface is the fundamental transport master.

44 |Page

4.3.1 Interface layout

On an extraordinarily crucial level, APB depicts the insignificant exertion that is upgraded for less
power use and less multifaceted design [1]. This APB custom used to interface the less- information
transmission periphery that needn't bother with the AXI tradition.

The APB can communicate with the following systems:

. AMBA Advanced High-performance Bus (AHB)
. AMBA Advanced High-performance Bus Lite (AHB-L.ite)

. AMBA Advanced extensible Interface (AXI)

. AMBA Advanced extensible Interface Lite (AXI14-Lite)

Figure 4.6 exhibits the APB hail interfaces of an APB associate.

System bus
slave interface

Read data

Reset
Clock

PROATA)

PRESETn

-—-—————-’.‘

PCLK

——

APB
bridge

PSEL1

PSEL2

SEEE
Selects

PSELn

PENABLE Strobe

S

Address
PADDR and
control

PWRITE

PWDATA Write data

Fig 4.6 APB connect interface [3]

45| Page

4.3.2 APB associate portrayal

The platform unit basically trades the structure transport into APB and plays with limits:

1. Check it fast and catch it extensively through the exchange.

2. Decrypts the test and sends SSELX, a boundary select. Only a single select standard can be
dynamic in a market.

3. Operate the data onto the APB for exchange.

4. Operate the APB data onto the structure transport for a translate exchange.

5. Deliver an orchestrating log, SENABLE, for the exchange.

4.3.3 Schedule graphs

C1 c2
L W A I W A
PENABLE \ /
Tovpen — - Tohpeh
PSELxx /t I
Tovpsel - Tohpsel —
PADDR { Address {
Tovpa — Tohpa—
PWRITE { {
Tavpw — Tohpw —
PWDATA q Data {
Tovpwd Tohpwd =
PRDATA X } Dwi
Tisprd — Titped

Fig 4.7 APB connect exchange [3]

46 |Page

4.3.4 Planning parameters

Table 4.3 for admission banners and table 4.4 for yield signals lists the arranging criteria for an
APB partner.

Table 4.3 APB Expansion admission frameworks [3]

Framework Portrayal

Tclkl SCLK less minute

Tclkh SCLK high time

Tisnres SRESETn de-pronounced format to

expanding SCLK

Tihnres SRESETn de-pronounced catch
resulting to developing SCLK

Tihprd For read exchanges, SRDATA
catch in the wake of SCLK

Table 4.4 APB scaffold yield framework [3]

Framework Portrayal

Tovpen SENABLE substantial in the wake
of rising SCLK

Tohpen SENABLE hold subsequent to
rising SCLK

Tovpsel SSEL substantial in the wake of
rising SCLK

Tohpsel SSEL hold subsequent to rising
SCLK

Tovpa SADDR substantial in the wake of
rising SCLK

47 |Page

Tohpa

SADDR hold subsequent to rising
SCLK

Tovpw

SWRITE substantial in the wake of
rising
SCLK

Tohpw

SWRITE hold subsequent to rising
SCLK

Tovpwd

For compose exchanges, SWDATA

substantial in the wake of rising
SCLK

Tohpwd

For compose exchanges, SWDATA
hold subsequent to rising SCLK

4.4 APB BOUND

APB bound has a basic, yet adaptable, joining. The correct execution of the joining will be dependent
on the plan style utilized and a wide range of choices are possible.

4.4.1 Joining graph

Figure 4.8 demonstrates the flag joining of an APB bound.

48 | Page

Select

Strobe

Address
and
control

Reset
Clock

Write data

PSELx

PENABLE

(= ..

PWRITE | slave

PRESETn
PCLK_

PWDATA PRDATA D Read data

Figure 4.8 APB bound joining depiction[3]

4.4.2 APB bound portrayal
The APB bound joining has a lot of flexibility.
The following focuses can be used to exchange information for a composition:

* When SSEL is high, on each side of SCLK's rising edge

* When SSEL is high, you're on the leading edge of SENABLE.
Combining the choice flag SSEL x, the address flag SADDR, and the compose flag SWRITE yields
the compose job. The information can be pushed into the information transport for read exchanges
when SWRITE is logic 0 and both SSEL x and SENABLE are logic 1. To decide which enrollment
should be read, SADDR is utilized.

4.4.3 Timing outlines

The planning parameters identified with an entrance to an APB transport prisoner are appeared in
Fig 4.9.

— f—

PENABLE

Tispen —

PSELxx
Tispsal l— Tihpsel —f

PADDR } Afddress %ﬁ
Tiapa - Tihpa —

PWRITE } {
Tispw - Tihpw —

PWDATA } Data {
Tispad — Tihpad —

PRDATA X { Data {

Towvped —f — ohprd

Fig 4.9 APB hostage exchange[3]

49 | Page

PCLK
[—————
F — PSEL
PADDR e
PWRITE T
———— PRDATA
APB
ADDR |
SLAVE
READ -
p————x"> PENABLE
WRITE ————r
MASTER e
PRESETn ——

Fig 4.10 Block diagram of APB [3]

The APB Slave input Signals are PADDR, PWRITE, PCLK, PRESETn, PWDATA and PSEL,
PRDATA, PENABLE are output signals.

In advance microcontroller bus architecture, APB bridge is very important part. APB Bridge performs
different type of operations. The operations are data, address and control signal latching for the
peripheral. As like AHB. APB has no peripheral protocol. Therefore, APB interfaces the peripheral
that have low bandwidth. This will reduce the low power consumption and also interface complexity.

50| Page

45 Advanced High-performance Bus (AHB)

Component interfaces such as masters, interconnects, and slaves.

The AMBA AHB includes the following features for high-performance, high-clock frequency
systems:

Transfers in bursts.

Only one clock edge is used.

Implementation in a non-tristate manner.
64, 128, 256, 512, and 1024 bit data bus options.

Internal memory devices, external memory interfaces, and high-bandwidth peripherals are the
most typical AHB slaves. Although low-bandwidth peripherals can be included as AHB
slaves, they are commonly found on the AMBA Advanced Peripheral Bus for system
performance reasons (APB). An AHB slave, also known as an APB bridge, is used to
connect the higher-performance AHB and APB. With the AHB master and three AHB slaves,
Figure 4.11 depicts a single master AHB system configuration. One address decoder and a
slave-to-master multiplexor make up the bus connectivity logic. The master's address is
monitored by the decoder, which selects the appropriate slave, and the multiplexor transmits
the slave output data back to the master.

AHB also enables multi-master designs via an interconnect component that arbitrates and
routes signals from several masters to the appropriate slaves.

= HWDATA[31:0]
—HADDR[31:0] ;
—HSEL_1 - Slave 1
Decoder —HSEL_2
—HSEL_ —| | W
Master ; Slave 2
Multiplexor
select
—p-
l » Slave 3 fem
_ >
[HRDATA_3
<4=HRDATA[31:0] = HRDATA_2
L HRDATA_1

Figure 4.11 AHB block diagram[24]

51|Page

The following are the primary component kinds of an AHB system :

« Slave
» Master
« Interconnect

45.1 Master

A master provides addressing and control the information to start read and write operations.

Figure 4.12 depicts a master interface.

Global /
signals \

Transfer /~ ——HREADY—

response \,

Data

45.2 Slave

HRESETh—»
HCLK >

HRESP—»|

——HRDATA[31:0] =

Master

keHADDR[31:0]=p
- HWRITE—»
e H S ZE [2:0] =
ke HBURS T[2:0]=p>
e HPROT[3:0]==p>
ke HTRANS[1:0] =

—HMASTLOCK—»_
—HWDATA[31:0] =

Fig 4.12 Master interface [24]

Address
and control

Data

In the system, a slave reacts to master-initiated transfers. The slave uses the decoder's HSELX select

signal to control when it reacts to a bus transfer.

The slave sends the following message to the master:

* The completion or expansion of the bus transfer.
* The success or failure of the bus transfer.

A slave interface is sh

52|Page

own in Figure 4.13.

Global /~——HRESETn—»
signals HCLK——»

Select HSELX—»|

(e HADDR[31:0]m=p
HWRITE—»
e H S| ZEE [2: 0] s Slave

Address) m—HBURS T[2:0]=p ——HREADYOUT—» " Transfer
and control | eee==HPROT[3:0] == HRESP——»_/ response
mee HTRANS[1:0]==p>
—HMASTLOCK—»|
_———HREADY—»

Data ===HWDATA[31:0]=p m—=HRDATA[31:0]=p Data

Fig 4.13 Slave interface[24]

4.5.3 Interconnect

The connection is made through an interconnect component. The usage of a Decoder and
Multiplexer, as detailed in the following sections, is all that is required for a single master
system. In a multi-master system, an interconnect is required to provide signal arbitration and
routing from different masters to the appropriate slaves. Address, control, and write data
signals all require this route. This specification does not go into detail about the various
methodologies used for multi-master systems, such as single layer or multi-layer
interconnects.

4.5.3.1 Decoder
This component decodes each transfer's address and sends a choose signal to the slave

involved in the transaction. It also gives the multiplexer a control signal. In all configurations
with two or more slaves, a single centralized decoder is required.

4.5.3.2 Multiplexer
The read data bus and response signals from the slaves to the master must be multiplexed

using a slave-to-master multiplexer. The multiplexer is controlled by the decoder. In all
implementations with two or more slaves, a single centralized multiplexer is required.

53| Page

4.5.4.1 Operation

The address and control signals are driven by the master to begin a transfer. These signals
include information about the transfer's location, direction, and width, as well as whether the
transfer is part of a burst.

Transfers can take the following forms:

* You are single.
* Bursts that do not wrap at address boundaries are incremented.

» Bursts of wrapping that wrap at certain address limits.

The write data bus transports data from a master to a slave, whereas the read data bus
transports data from a slave to a master.

Every transfer is made up of the following components:

» Phase one of the address and control cycle

» Phase of data collection for the data, one or more cycles are required.

Because a slave cannot ask for the address phase to be extended, all slaves must be able to
sample the address throughout this time. A slave, on the other hand, can use HREADY to
request that the master extend the data phase. When this signal is LOW, wait states are
included within the transfer, giving the slave more time to supply or sample data.

HRESP is used by the slave to indicate if a transfer was successful or not.

4.5.5 Signal Descriptions

45.5.1 Global signals

NAME SOURCE DESCRIPTION

HCLK Clock source This clock times all bus transfers. All
signal timings are related to the rising
edge of HCLK.

HRESETN Reset controller The bus reset signal is active LOW and
IS used to reset

54 |Page

455.2 Master signals

NAME Destination DESCRIPTION

HADDR[31:0] Slave and The 32-bit system address bus.

decoder

HBURST[2:0] Slave Indicates if the transfer forms part of a
burst.

HMASTLOCK Slave When HIGH, indicates that the current
transfer is part of a locked sequence.

HPROTI[3:0] Slave The protection control signals provide
additional information

HPROTI[6:4] Slave Extended memory types are added to
the HPROT signal by a 3-bit
extension.

HSIZE[2:0] Slave Indicates the size of the transfer, which
is typically byte (8-bit), halfword (16-
bit) or word (32-bit).

HTRANS[1:0] Slave Indicates the transfer type of the
current transfer.

HWDATA[31:0] Slave The write data bus is used to transfer
data from the bus master to the bus
slaves during write operations.

HWRITE Slave When HIGH this signal indicates a

write transfer and when LOW a read
transfer.

55|Page

4.5.5.3 Slave signals

NAME Destination DESCRIPTION

HRDATA[31:0] Multiplexer The read data bus is used to transfer
data from bus slaves to the bus master
during read operations.

HREADYOUT Multiplexer When HIGH the HREADY signal
indicates that a transfer has finished
on the bus.

HRESP Multiplexer The transfer response provides
additional information on the status of
a transfer

4.5.5.4 Decoder signls

NAME Destination DESCRIPTION

HSELXx Slave Each slave has its own slave select

signal HSELX, which signals that the
present transfer is for the slave now
selected.

4.5.5.5 Multiplexer signals

NAME SOURCE

DESCRIPTION

HRDATA[31:0] Master

The decoder selects a data bus to
read.

HREADY Master and slave The HREADY signal conveys to the
master and all slaves that the previous
transfer is finished when it is HIGH.

HRESP Master The decoder chooses the transfer

answer.

56 |Page

456 Transfers

There are two stages to a transfer:

» Unless extended by the preceding bus transfer, the address lasts for a single HCLK cycle.

« Data may necessitate multiple HCLK cycles. Control the number of Clock cycles required

to finish the transfer using the HREADY signal.

The direction of data flow to or from the master is controlled by HWRITE. As a result,

when :

« When HWRITE is HIGH, it signals that a write transfer is taking place, and the master

broadcasts data on the HWDATA [31:0] write data bus.

« When HWRITE is LOW, a read transfer is initiated, and the slave must generate data

for the HRDATA [31:0] read

databus.

<4———Address phase——»<—————Data phase——»

HCLK | | | -
HADDR(31:0] | () A XX B 0
HWRITE || 7 X
HRDATA[31:0] _ () X J Data (&) Y)_
HREADY | V/ v \W
Fig 4.14 Read transfer[24]
<+———Address phas Data phase——»
HCLK | {]

HADDR([31:0] |

A

HWRITE

HWDATA[31:0]

Data (A)

HREADY

e

57|Page

<=

si=t=1

Fig 4.15 Write transfer [24]
In the case of a straightforward transfer with no wait states:

e After the rising edge of HCLK, the master drives the address and control signals onto
the bus.

e On the next rising edge of HCLK, the slave samples the address and control
information.

o After sampling the address and control, the slave can begin driving the appropriate
HREADY response. On the third rising edge of HCLK, the master samples this
response.

The address and data phases of the transfer are shown in this basic example throughout
different clock cycles. Any transfer's address phase happens during the previous transfer's data
phase. The pipelined design of the bus necessitates this overlapping of address and data,
which allows for great performance while still allowing sufficient time for a slave to respond
to a transfer.

Any transfer can have wait states added to it by a slave in order to give it more time to finish.

«Address phase-»ie +—Data phase— ’_

wee | L L[L[|
HADDR[31:0] [A B)i
HWRITE | || ¥/ ; | JC
HRDATA(31:0] | (¥ :X : J_Data (A): 0
HREADY | |/ A\ v T

Fig 4.16 Read transfer with wait state [24]

-+ Address phase-» Data phase <

= S N S I e
HADDR[31:0] _ (X A XX B 0O
HWRITE | [/ |\ 0C
HWDATA[31:0] DO()O(Diata(A) | 0C
HREADY V/ \ /i L

58| Page

Fig 4.17 Write transfer with wait state [24]
The master maintains data stability over lengthy periods of time for write operations. For read transfers,
the slave does not have to provide correct data until the transfer is virtually complete.

There are four different sorts of transfers (HTRANS[1:0]) :

IDLE (b00)
* No data transfer is necessary
» Slave must OKAY without waiting
» Slave must disregard IDLE
BUSY (b01)
* Use aburst of idle cycles
« After that, the burst will continue
* In a burst, the address/control reflects the next transfer
« Slave must accept without waiting
+ Slave must be unconcerned
e BUSYNONSEQ (b10)
« A single burst transfer or the initial burst transfer is indicated.
* Control/address issues unrelated to previous transfers
e SEQ (b11)
* Burst's remaining transfers

* Addr = preceding addr + transfer size

T0 Tt T2 T3 T4 T5 T6 T7
wow L L L L L L L
HTRANS[1:0] f)Nonsea)f) Busy) sea) sea) SEQ 0 0
HADDR[31:0] [} 0x20) ox24)} ox24 i} o0x28 |} 0x2C) 0
HWRITE 1\ :/\ :_/\ A A :./7 0C
HBURST[2:0]) INCR o 1
HREADY |/ v v v v J v L
HRDATA[31:0] [}) o > (X Dpaax2s)) J» N

' Data (0x20)~ Data (0x24)~ ' Data (0x2C)~

Fig 4.18 Transfer type examples [24]

59| Page

4.6 Advanced eXtensible Interface (AXI)

For communication between master and slave components, the AMBA AXI protocol offers
high-performance, high-frequency system architectures.

The AXI protocol:

» Can be used in high-bandwidth, low-latency designs.

Operates at a high frequency without the use of complicated bridges.

Can be used with memory controllers that have a long initial access delay.

Allows for greater freedom in the design of connection topologies.

AHB and APB interfaces are backwards compatible.

The key features of the AXI protocol are:

» Address/control and data phases are separated.

» Byte strobes are used to provide unaligned data transfers.
 Transactions are burst-based, with only the start address issued.

» Read and write data channels are separated, allowing for low-cost Direct Memory Access
(DMA).

« Allows for numerous outstanding addresses to be issued.
 Out-of-order transaction completion is supported.

+ Allows for the quick insertion of register stages for timing closure.

4.6.1 AXI Architecture

The AXI protocol is a burst-based protocol that defines five transaction channels:

» Read the address, which starts with the letter AR.

60| Page

Read data with signal names that begin with the letter R.

Write an address with a signal name that starts with AW.

Write data with a signal name that starts with W.

Create a response with a signal name that starts with the letter B.

Control information about the kind of the data to be delivered is carried by an address
channel.

The data is exchanged between the master and slave using one of the following methods:

« A write data channel that allows data to be transferred from the master to the slave. The
write response channel is used by the slave in a write transaction to signal the master when
the transfer is complete.

 Data is transferred from the slave to the master via a read data channel. The AXI protocol
entails the following steps:

» Allows for the distribution of address information prior to the actual data transfer.
« Allows for many transactions to be active at the same time.
 Allows transactions to be completed out of order.

Figure 4.19 shows how the write address, write data, and write response channels are
used in a write transaction.

Write address channel

Address
and control
—
Write data channel
Master Write Write Write Write Slave
interface data data data data interface

—_—, —> ——> —»

Write response channel

Write
response

«

6l|Page

Fig 4.19 Channel architecture of writes[25]
Figure 4.20 shows how the read address and read data channels are used in a read transaction.

Read address channel

Address
and control
. — .

Master Slave
interface interface
Read data channel
Read Read Read Read
data data data data

§ —— — — ——

Fig 4.20 Channel architecture of reads [25]

4.6.2 Channel definition

Each of the five separate channels contains a set of information signals as well as the
VALID and READY signals that allow for a two-way handshake. The VALID signal is used
by the information source to indicate when there is valid address, data, or control information
on the channel. The READY signal is used by the destination to indicate when it is ready
to take the data. A LAST signal is included in both the read and write data channels to
signify the transfer of the last data item in a transaction.

4.6.2.1 Read and write address channels

Each read and write operation has its own address channel. All of the essential address and
control information for a transaction is carried on the appropriate address channel.

4.6.2.2 Read data channel

The read data channel transports both read data and read response information from the slave
to the master and contains the following information:

« A data bus with a width of 8, 16, 32, 64, 128, 256, 512, or 1024 bits.
» A read response signal showing the read transaction's completion status.

4.6.2.3 Write data channel

The write data channel transports write data from the master to the slave and contains the
following information:

62| Page

« A data bus with a width of 8, 16, 32, 64, 128, 256, 512, or 1024 bits.
» Every eight data bits, a byte lane strobe signal identifying the valid bytes of the data.

The write data channel information is always handled as buffered, so the master can perform
write transactions without having to wait for earlier write transactions to be acknowledged
by the slave.

4.6.2.4 Write response channel

The write response channel is used by a slave to respond to write transactions. On the write
response channel, all write transactions require completion signalling.

4.6.3 Interface and interconnect

A typical system consists of multiple master and slave devices that are interconnected in
some way.

| Master1 | | Master2 | | Master3 |

+—— |nterface

| Interconnect |

Interface —»
| Slave 1 | | Slave 2 \ [Slave 3 | | Slave 4 |

Fig 4.21 Interface and interconnect [25]

The AXI protocol establishes a single interface specification for the following interfaces:

» There's a master and there's an interconnect.
« An interconnect and a slave.

* A slave and a master.

Many distinct connectivity implementations are supported by this interface definition. A device
interconnect is the same as another device having symmetrical master and slave ports to
which genuine master and slave devices can be connected.

4.6.4 Typical system topologies

One of three interconnect topologies is used by the majority of systems:

63|Page

» Address and data buses that are shared.
« Multiple data buses and shared address buses.

» Multiple address and data buses on a multilayer system.

The address channel bandwidth need is often much lower than the data channel bandwidth
requirement in most systems. By combining a shared address bus with numerous data buses
to enable parallel data transfers, such systems can strike a fair compromise between system
performance and interconnect complexity.

4.6.5 Register slices

Each AXI channel just transmits data in one way, and the architecture does not require any
set channel relationships. Because of these characteristics, a register slice can be introduced
at practically any point in any channel, albeit at the penalty of an extra cycle of latency.
These characteristics allow you to do the following:

» A trade-off between delay cycles and maximum operating frequency.

* A direct, quick connection between a CPU and high-performance memory, with simple

register slices used to separate a longer path to peripherals with lower performance
requirements.

4.6.6 Signal Descriptions

4.6.6.1 Global signals

Signal Source
ACLK Clock source
ARESETN Reset source

64| Page

4.6.6.2 Address channel signals

Write address channel (AW) Read address channel (AR) Signal Description

AWID ARID Identification tags
AWADDR ARADDR Addresses

AWLEN ARLEN This information determines the number of data

transfers associated with the address.
AWSIZE ARSIZE The number of bytes in each data transfer in a write
transaction.
AWBURST ARBURST Burst type
AWVALID ARVALID Valid
AWREADY ARREADY Ready
4.6.6.3 Data channel signals
Write Data channel (W) Read Data channel(R) Signal Description
WID RID |dentification tags
WDATA RDATA Read/Write Data
WSTRB Write strobes, indicate which byte lanes
- hold valid data.
WLAST RLAST Indicates Last data transfer in the
transaction.
RRESP Read response, indicates the status of a read
transfer.
WVALID RVALID Valid
WREADY RREADY Ready

65| Page

4.6.6.4 Write response channel signals

Write response channel (B) Signal Description

BID Identification tag

BRESP The state of a write transaction is
indicated by the write response.

BVALID Valid

BREADY Ready

66| Page

CHAPTER 5

SIMULATION RESULTS AND ANALYSIS

In this chapter, AMBA protocol’s designs are implemented using Verilog in Xilinx VIVADO 2019.2
by selecting Zyng-7000 xc7z010sclg400-1 FPGA device. The AMBA Protocols: APB, AHB, AXI,
AXI4 have been designed.

The Simulation waveforms and synthesized designs are given in the following subsections.

5.1 APB

RTL schematic and synthesized design of APB protocol is shown in Figs 5.1 and 5.2 respectively. In
this design 9870 LUTs and 32802 Registers are used. The maximum delay, minimum delay, dynamic
power are found to be 4.676 ns, 0.392 ns and 28.746 W respectively.

[—— i
: r"—’—_'z.-— : ﬂt—*r—- =
HEETEER r.;ul..u-!:'_
e e
= .-"’@—__’.__. B
1=2== e ——
T
- i

L

IJI‘ “ I|I I_ Ill “

T

J

g

Fig5.1 RTL Schematic of APB Protocol

67 |Page

-mlmmr-~unhhh||

Fig 5.2 Synthesized Design of APB Protocol

68| Page

Fig 5.3 shows APB Write cycle. The PADDR, PWDATA, PWRITE, and PSEL are
registered at the rising edge of PCLK to initiate a write transfer . The SETUP cycle is what
it's called. The ACCESS cycle, PENABLE, and PREADY are registered at the next rising
edge of the clock . When asserted, PENABLE signifies that the transfer's Access phase has
begun. PREADY signals that the slave can finish the transfer at the next rising edge of
PCLK when asserted. The PADDR, PWDATA, and control signals are all valid until next
cycle , the end of the Access phase, when the transfer is completed. At the end of the
transfer, the PENABLE is disabled. Unless the transfer is promptly followed by another
transfer to the same peripheral, the choose signal PSEL is also disabled.

Objects ¢ Untitled 11+

Q BIANGQ S N { }
Narme Valie Data.” -

fy PCLK 0 Logic

i PRESETn 1 Logic e (e
) % PADDR7:0] ea Array

GPWRTE 0 Logic

fy PSEL 1 Logic
) % PWOATAL.. 000000F Array
) & PROATAP... 00000000 Aray T
WREDY 1 Logie 006000 |
) §iBL0 256 Array
) §iBL % Array

69| Page

Fig 5.3 Simulation results of write cycle for APB Protocol

Fig 5.4 shows APB Read cycle. The PENABLE, PSEL, PADDR, and PWRITE signals are
asserted at the clock edge during reading operation (SETUP cycle). PENABLE, PREADY,
and PRDATA are asserted at the clock edge (ACCESS cycle), and PRDATA is also read
during this phase. The data must be provided by the slave before the read transmission is

completed.

543,400 ps

Fig 5.4 Simulation result of Read Cycle for APB Protocol

5.2 AHB

RTL schematic and synthesized design of AHB protocol is shown in Figs 5.5 and 5.6 respectively. In
this design 1406 LUTs and 4355 Registers are used. The maximum delay, minimum delay, dynamic
power are found to be 4.076 ns, 0.305 ns and 9.319 W respectively.

70| Page

ity

mukigmr

ahl A

et

I
ez Oy i
uuuuuuuu =
=
e
siew it} O
w O
o

71| Page

Fig 5.5 RTL Schematic of AHB Protocol

72| Page

i

|

Fig 5.6 Synthesized Design of AHB Protocol

Figure 5.7 depicts a simulation of an AHB system with one AHB master and four AHB slaves. The
bus connection logic consists of one address decoder and one slave-to-master multiplexer. The decoder
monitors the master's address and picks the suitable slave, while the multiplexor sends the slave output
data back to the master. Multi-master designs are also possible with AHB thanks to an interconnect
component that arbitrates and directs signals from many masters to the appropriate slaves.

1SR Y, .

(ERILE LN LT 100 L LER TN UP A B e PO e LU LTS =

1

'
"

&b
o i
& Frd
bt
Pt
T

Fig 5.7 Simulation results of AHB Protocol

73| Page

5.3 AXI Slave

RTL schematic and synthesized design of AXI protocol is shown in Figs 5.8 and 5.9 respectively. In
this design 1328 LUTSs and 649 Registers are used. The maximum delay, minimum delay, dynamic
power are found to be 5.541 ns, 0.395 ns and 12.036 W respectively.

hid
y
IR
[BG
o
et
i

]

| e e —

Iid
Sl
:

i
.

1
PR
; "‘fﬁ%

i

i
Il
ity
e g
LJJ!,I
&

T e

kg
}

_a
i

£x
17
rﬂ

i

]

|

|

LR R

|

[1]

g

[|
b i i D W W e I i W

s

JUeryyye

Fig 5.8 RTL Schematic of AXI Slave

74| Page

75| Page

11

+43

Fig 5.9 Synthesized Design of AXI Slave

5.4 AX1 4 LITE SLAVE

RTL schematic and synthesized design of AXI 4 Lite Slave protocol is shown in Figs 5.10 and 5.11
respectively. In this design 222 LUTs and 341 Registers are used. The maximum delay, minimum
delay, dynamic power are found to be 4.076 ns, 0.385 ns and 5.456 W respectively.

L]

0|
safoo
lri,
[T T ——
et

:ElL_‘rJl'_'":rJ
gy g LAY

A
PoRop bl

e

7

iy
i

Fig 5.10 RTL Schematic of AXI 4 Lite Slave

76 |Page

77| Page

Fig 5.11 Synthesized Design of AXI 4 Lite Slave

The AXI4-Lite Slave is a basic Memory with 16 register locations of 32-bit data content, as shown in
Fig. 5.12. Reading operations are performed from customized Memory to Master, which reads the data
in memory.

The following are the key tasks or functions that the slave and Master perform:
» During the reading process, the Master communicates a specific address from which it wishes
to read data from the memory file/peripheral through the ARADDR signal on the read address

channel, as well as validating the address.

» If there is a valid address, ARVALID will be equal to logic one .Until the RREADY signal is
logic one, the Master's address remains steady.

* Memory acknowledges Master by declaring ARREADY and placing the data on a data bus,

signaling that it accepts the address.

When valid data is present on the data bus, the RVALID Signal becomes high, signaling that the
master accepts the data and reads the data.

168.234 ns

40.000 ns 60.000 ns B0.000 ns 100.000 ns 120.000 ns 140.000 ns 160.000 n

00000064 000000c8

i

Fig 5.12 Simulation Result of AXI 4 Lite Slave

78| Page

5.5 Comparison

All designs are functionally verified using simulation on Vivado 2019.2 and selecting Zyng-7000
xc7z010sclg400-1 FPGA. The designs are compared in terms of area (Look Up Tables i.e LUTS),
maximum delay, minimum delay and dynamic power. The findings are summarized in Table 5.1.

Table 5.1 Summary of AMBA Protocols Implementations

AMBA Slices Power (in Watt) Delay (in ns)
Protocols
LUTs Registers Dynamic Static Maximum Minimum
Power power delay delay
(Setup) (Hold)

APB 9870 32802 28.746 0.747 4.676 0.392

AHB 1406 4355 9.319 0.747 4.076 0.305

AXI 1328 649 12.036 0.747 5.541 0.395

AXIl4 222 341 5.456 0.291 4.076 0.385

79| Page

CHAPTER 6

CONCLUSION AND FUTURE SCOPE

The AMBA Bus protocols i.e APB, AHB, AXI, AXI14 have been implemented in VIVADO 2019.2 by
selecting Zyng-7000 xc7z010sclg400-1 FPGA, written in Verilog HDL language. They have further
been analysed in terms of hardware utilization (number of slices, which is comprised of Look Up
Tables or LUT and Registers), timing (delay in ns) and power consumption (in watt). We now see
from the above timing diagrams that our RTL design based on the state diagram is indeed correct as

verified by the timing diagrams of read and write cycle.

The integration trend continues in the current era of heterogeneous computing for HPC and data centre
sectors, with an increasing number of processor cores and many heterogeneous computing parts such
as GPU, DSP, FPGAs, memory controllers, and 10 sub systems. AMBA4 AXI4: Extending System-
Wide Coherency with AMBA 4 AXI Coherency Extensions is an introduction to AMBA4 AXI4
(ACE). As a re-design of the AXI/ACE protocol, the CHI (Coherent Hub Interconnect) protocol was
created. The AXI/ACE signal-based protocol was replaced with the new packet-based CHI layered

protocol, which can scale very well in the near future.

80|Page

REFERENCES

[1] “AMBA Specification (Rev 2.0)”, available at http://www.arm.com.

[2] ARM. “AMBA Open Specifications” http://www.arm.com/products/system- ip/amba/ambaopen
specifications.php.

[3] http://en.wikepedia.org/wiki/ Advanced_MicrocontrollerBus_Architecture.

[4] Kiran Rawat et al. (2015). “RTL Implementation for AMBA ASB APB Protocol at System on Chip
Level” 2nd International Conference on Signal Processing and Integrated Networks (SPIN,) pp. 927-
930.

[5] Yasemin M. Akay et al. (2009). “Hippocampal gamma Oscillations in Rats” IEEE Engineering in
Medicine and Biology Magazine, vol. 28, pp. 92-95.

[6] Kiran Rawat et al. (2014). “Design of AMBA APB Bridge with Reset Controller for Efficient
Power Consumption” 9th International Conference on Industrial and Information Systems (ICIIS),
pp.1-5.

[7] Kiran Rawat et al. (2015). “Implementation of AMBA APB Bridge with Efficient Deployment of
System Resources” International Conference on Computer, Communication and Control (1C4), pp.14.
[8] Jasmine Chhikara et al. (2015). “Implementing Communication Bridge between 12C and APB”
IEEE International Conference on Computational Intelligence & Communication Technology, pp.
235-238.

[9] Ashutosh Gupta et al. (2016). “Physical Design Implementation of 32-bit AMBA ASB APB
module with improved performance” International Conference on Electrical, Electronics, and
Optimization Techniques (ICEEOT), pp. 3121-3124.

[10] Kanishka Lahiri and Anand Raghunanthan (2004). “Power Analysis of System-Level On-Chip
Communication Architectures” International Conference on Hardware/Software Codesign and System
Synthesis, pp. 236-241.

[11] Raed M. Salih and Laszek T. Lilien (2015). “Protecting Users’ Privacy in Healthcare Cloud
Computing with APB-TTP” IEEE International Conference on Pervasive Computing and

Communication Workshops (Per Com Workshops), pp. 236-238.

8l|Page

[12] Roopa M. et al. (2013) “UART Controller as AMBA APB Slave” National Conference on
Challenges in Research & Technology in the Coming Decades, pp. 1-6.

[13] Chenghai Ma et al. (2011) “Design and Implementation of APB Bridge based on AMBA 4.0”
International Conference on Consumer Electronics, Communications and Networks (CECNet), pp.
193-196.

[14] Ge Zhiwei et al. (2009). “Design of On-chip Image Processing Based on APB Bus with CMOS
Image Sensor” IEEE 8th International Conference on ASIC, pp. 963-966.

[15] Miss. Dhage Naiyna Kashinath and Prof. S.I. Nipanikar (2015). “AMBA Bus with Multiple
Masters Using VLSI” IJEDR, vol. 3, pp. 97-102.

[16] 17 P. P. Sotiriadis and A. P. Chandrakasan (2002). “A Bus Energy Model for Deep Submicron
Technology,” IEEE Trans. VLSI Systems, vol. 10, pp. 341-350.

[17] M. R. Stan and W. P. Burleson (1995). “Bus Invert Coding for Low Power 1/0,” IEEE Trans.
VLSI Systems, vol. 3, pp. 49-58.

[18] L. Benini, A. Macii et al. (2000). “Architectures and Synthesis Algorithms for Power-efficient
Bus Interfaces,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 969-980.

[19] C.-T. Hsieh and M. Pedram (2002). “Architectural Power Optimization by Bus Splitting,” IEEE
Trans. Computer-Aided Design, vol. 21, pp. 408-414.

[20] J. Y. Chen et al. (1999). “Segmented Bus Design for Low Power,” IEEE Trans. VLSI Systems,
vol. 7, pp. 25-29.

[21] T. Lvetal. (2003). “A Dictionary-based En/decoding Scheme for Low-power Data buses,” |IEEE
Trans. VLSI Systems, vol. 11, pp. 943-951.

[22] Sharma, Archana C., and C. Z. Ali. "Construct High-Speed SDRAM Memory Controller Using
Multiple FIFO’s for AHB Memory Slave Interface." International Journal of Emerging Technology
and Advanced Engineering3, no. 3 (2013): 907-916.

[23] Kareemullah Shaik, Mohammad Mohiddin, Md. Zabirullah, “A Reduced Latency Architecture
for Obtaining High System Performance”, IJRTE, 2012.

[24] Acasandrei, Laurentiu, and Angel Barriga. "AMBA bus hardware accelerator IP for Viola-Jones
face detection."IET Computers & Digital Techniques 7, no. 5 (2013): 200-2009.

[25] Gandhani, P., & Patel, C. (2011). Moving fromAMBA AHB to AXI Bus in SoC Designs: A
Comparative Study. International Journal of Computer Science & Emerging Technologies (IJCSET),
2(4), 476-479.

82|Page

[26] Kandiya, M. M. N., Harniya, M. M. K., & Govani, K. K. (2014). Implementation of Read/Write
operation for AMBA AXI4 Bus using VHDL. IJFTMR. I, 1V, 1-3.

[27] Samir Palnitkar. (2003). Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition
Publisher:Prentice Hall PTR.

[28] Xilinx Datasheet: www.xilinx.com/zynq7000-Pkg-Pinout.

[29] www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture.

[30] www.store.digilentic.com.

83|Page

http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.store.digilentic.com/

