
 i

STUDY AND FPGA BASED DESIGN OF BUS PROTOCOLS

A PROJECT REPORT

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY

IN

VLSI DESIGN AND EMBEDDED SYSTEM

Submitted by:

Deepak Chauhan

(2K19/VLS/05)

Under the supervision of

Ms. Kriti Suneja

Assistant Professor, Dept. of ECE

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

August, 2021

 ii

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

 CANDIDATE’S DECLARATION

I, Deepak Chauhan, Roll No. 2K19/VLS/05 student of M.Tech (VLSI Design & Embedded system),

hereby declare that the project dissertation titled “Study and FPGA based design of BUS protocols”

which is submitted by me to the Department of Electronics and Communication Engineering, Delhi

Technological University, Delhi in partial fulfillment of the requirement for the award of the degree

of Master of Technology, is original and not copied from any source without proper citation. This

work has not previously formed the basis for the award of any Degree, Diploma Associateship,

Fellowship or other similar title or recognition.

Place: Delhi Deepak Chauhan

 (2K19/VLS/05)
Date: 31st August, 2021

 iii

 DEPARTMENT OF ELECTRONICS AND COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Study and FPGA based design of BUS

protocols” which is submitted by Deepak Chauhan, 2K19/VLS/05 (Department of Electronics &

Communication Engineering), Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology, is a record of the project work

carried out by the student under my supervision. To the best of my knowledge this work has not been

submitted in part or full for any Degree or Diploma to this University or elsewhere.

Place: Delhi Ms. Kriti Suneja

Date: 31st August, 2021 Department of ECE

Delhi Technological University

 iv

 ACKNOWLEDGEMENT

I would like to express my deep gratitude and appreciation to all the people who have helped and

supported me in the process of dissertation. Without their help and support, 1 would not have been

able to reach this level of satisfaction with what 1 have learnt and accomplished during my Master's

dissertation. First and foremost, I would like to express my deep sense of respect and gratitude towards

my supervisor Ms. Kriti Suneja, Assistant Professor, Electronics and Communication Dept., DTU,

for giving me opportunity to do my Major project of master's dissertation under her guidance. I am

very thankful to her for giving me the opportunity to choose such an interesting topic by my own. I

would also like to thanks the NPTEL Lectures for their valuable thoughts and knowledge, which

motivated me to do better. Finally, none of this would have been possible without incredible support

of my friends. They were always supporting me and encouraging me with their best wishes.

DEEPAK CHAUHAN

 VLSI DESIGN & EMBEDDED SYSTEM

4th Semester

Delhi Technological University

(Formerly Delhi College of Engineering)

5 | P a g e

 ABSTRACT

The ARM Advanced Microcontroller Bus Architecture (AMBA) is an open-standard interconnect

protocol for connecting and managing functional blocks in a system on a chip design. With this bus

architecture, it is easier to construct multiprocessor architectures with a high number of controllers and

components. ARM gave various IPs such as, high performance microprocessor, high level cache,

memory management unit, decoders, arbiters, controllers, etc. But to connect them, there needs to be

an interconnect standard which is easy to design and built for low power applications. This de facto

standard is known as the AMBA architecture. Later, the standard was made open for others to build

and integrate with their own IPs. On chip price, latency, bandwidth, and number of IPs can be

connected to the bus are taken as key design considerations while developing an interconnection

standard.

For our work, target device used for obtaining synthesis results is ZYNQ-7000 FPGA, which is

increasingly becoming popular among the FPGA engineers due to its advanced features that make it

stand out among all the boards in the presence of an ARM cortex A9 chip which is the main reason for

its usage as a system on chip (SoC). Having an integrated support for PCI Express also helps it to

persuade its dominance over other FPGAs known to us.

For simulations and synthesis, XILINX VIVADO 2019.2 tool has been used. The implemented designs

have been analysed in terms of hardware utilization (number of slices, which is comprised of Look Up

Tables and Registers), timing (delay in ns) and power consumption (in Watts).

6 | P a g e

 TABLE OF CONTENTS

 Declaration……………………………………………………………….ii

 Certificate………………………………………………………………..iii

 Acknowledgement……………………………………………………….iv

Abstract…………………………………………………………………..5

 Table of Contents………………………………………………………..6

 List of figures……………………………………………………………11

 List of tables……………………………………………………………..13

List of abbreviations…………………………………………………….14

7 | P a g e

Sr. No. Chapter Page No.

Chapter 1 Introduction 15

1.1 Distinctive versions of AMBA 17

1.2 Goals of the AMBA

determination

 21

1.3 Thesis organization 21

Chapter 2 Literature survey 22

Chapter 3 ZNYQ 7000 FPGA Family 26

3.1 History 28

3.2 ZYNQ Design Flow 28

3.3 Processing System Unit 29

3.3.1 Application Processing Unit 29

3.3.2 General Interrupt Controller 30

3.3.3 Dynamic Memory Interfaces 31

3.3.4 Static Memory Interfaces 31

3.3.5 I/O Peripherals 32

3.3.6 Interconnect 32

3.3.7 PS External Interfaces 32

3.4 MIO overview 32

3.5 Programmable Logic Structure 33

3.6 Distinctive Features 35

8 | P a g e

Chapter 4 Framework outline and

execution

 38

4.1 Advance Peripheral Bus(APB) 38

4.1.1 Operating state of APB 39

4.1.2 Write Cycle 41

4.1.3 Read Cycle 41

4.1.4 Compose Trade 42

4.2 AMBA APB Signs 43

4.3 APB Associate 45

4.3.1 Interface layout 45

4.3.2 APB associate portrayal 46

4.3.3 Schedule graphs 46

4.3.4 Planning parameters 47

4.4 APB bound 48

4.4.1 Joining graphs 48

4.4.2 APB bound portrayal 49

4.4.3 Timing outlines 49

4.5 Advanced High performance

Bus (AHB)

 51

4.5.1 Master 52

4.5.2 Slave 52

4.5.3 Interconnect 53

4.5.3.1 Decoder 53

4.5.3.2 Multiplexor 53

9 | P a g e

4.5.4 Operation 54

4.5.5 Signal Descriptions 54

4.5.5.1 Global Signals 54

4.5.5.2 Master signals 55

4.5.5.3 Slave signals 56

4.5.5.4 Decoder signals 56

4.5.5.5 Multiplexor signals 56

4.5.6 Transfers 57

4.6 Advanced eXtensible Interface

(AXI)

 60

4.6.1 AXI architecture 60

4.6.2 Channel definition 62

4.6.2.1 Read and write address

channels

 62

4.6.2.2 Read data channel 62

4.6.2.3 Write data channel 62

4.6.2.4 Write response channel 63

4.6.3 Interface and interconnect 63

4.6.4 Typical system topologies 64

4.6.5 Register slices 64

4.6.6 Signal descriptions 64

4.6.6.1 Global signals 64

4.6.6.2 Address channel signals 65

4.6.6.3 Data channel signals 65

10 | P a g e

4.6.6.4 Write response channel signals 66

Chapter 5 Simulation results and analysis 67

5.1 APB 67

5.2 AHB 70

5.3 AXI slave 74

5.4 AXI 4 lite slave 76

5.5 comparison 79

Chapter 6 Conclusions and future scope 80

References 81

11 | P a g e

 LIST OF FIGURES

Sr. No Figure Details Page No.

Figure 1.1 SOC System Block Diagram 15

Figure 1.2 AMBA Bus Architecture diagram 18

Figure 3.1 Architecture of ZYNQ FPGA chip 27

Figure 3.2 ZYNQ overall view 28

Figure 3.3 ZYNQ design flow steps 30

Figure 3.4 Application Processing Unit Structure 31

Figure 3.5 MIO Signal Routing 33

Figure 3.6 Module block diagram of EMIO to PL 34

Figure 3.7 Structure of the PL 35

Figure 3.8 ZYNQ 7000 FPGA Board 36

Figure 4.1 Interfacing of APB master and slave 38

Figure 4.2 State diagram 40

Figure 4.3 Write cycle 41

Figure 4.4 Read cycle 42

Figure 4.5 Compose trade 42

Figure 4.6 APB connect interface char 45

Figure 4.7 APB connect exchange 46

Figure 4.8 APB bound joining depiction 48

Figure 4.9 APB hostage exchange 49

Figure 4.10 Block diagram of APB 50

Figure 4.11AHB block diagram 51

Figure 4.12 Master interface 52

12 | P a g e

Figure 4.13 Slave interface 53

Figure 4.14 Read transfer 57

Figure 4.15 Write transfer 57

Figure 4.16 Read transfer with wait state 58

Figure 4.17 Write transfer with wait state 58

Figure 4.18 Transfer type Examples 59

Figure 4.19 Channel Architecture of writes 61

Figure 4.20 Channel Architecture of reads 62

Figure 4.21 Interface and interconnect 63

Figure 5.1 RTL schematic of APB protocol 67

Figure 5.2 Synthesized design of APB protocol 68

Figure 5.3 Simulation result of write cycle for APB protocol 69

Figure 5.4 Simulation result of read cycle for APB protocol 70

Figure 5.5 RTL schematic of AHB protocol 71

Figure 5.6 Synthesized design of AHB protocol 72

Figure 5.7 Simulation result of AHB protocol 73

Figure 5.8 RTL schematic of AXI slave 74

Figure 5.9 Synthesized design of AXI slave 75

Figure 5.10 RTL schematic of AXI 4 lite slave 76

Figure 5.11 Synthesized design of AXI 4 lite slave 77

Figure 5.12 Simulation result of AXI 4 lite slave 78

13 | P a g e

 LIST OF TABLES

Table No. Name of Table Page No.

Table 4.1 List of APB Signals 39

Table 4.2 APB flag portrayals 43

Table 4.3 APB Expansion admission framework 47

Table 4.4 APB scaffold yield parameters 47

Table 5.1 Summary of AMBA protocols implementations 79

14 | P a g e

 LIST OF ABBREVIATIONS

1. SOC - System on Chip

2. AMBA - Advance Microcontroller Bus Architecture

3. APB - Advance Peripheral Bus

4. AHB - Advanced High Performance Bus

5. AXI – Advanced Extensible Interface

6. ASIC - Application Specific Integrated Circuit

7. IP – Intellectual Property

8. IC - Integrated Circuit

9. FPGA –Field Programmable Gate Array

10. RTL – Register Transfer Level

11. CPU - Central Processing Unit

12. GPU - Graphics Processing Unit

13. Gbps - Giga bits per second

14. PS - Processing System

15. PL - Programmable Logic

16. IOP - Input Output Peripherals

17. BW - Bandwidth

18. APU - Application Processing System

19. STA - Static Timing Analysis

15 | P a g e

CHAPTER 1

INTRODUCTION

The Advanced Microcontroller Bus Architecture (AMBA) is a well-known open standard, on-chip

communication standard, and on-chip interconnect for the alternate organizing and courting of squares

in a design. AMBA as a structure aids a wide range of designs, regardless of how many controllers and

peripherals they include. System on-chip designs (SOCs), Application-Specific Integrated Circuits

(ASICs), and Anomalous state embedded tiny scale controllers all use ABMA for on-chip delivery [1].

AMBA makes architectures with several processors and a large number of controllers and peripherals

easier to manage. However, AMBA's reach has grown over time, and it now encompasses far more

than just microcontrollers. AMBA is now widely used in a wide range of ASIC and SOC products.

Application processors, for example, are used in devices such as IoT subsystems, smartphones, and

networking SOCs.

A modern SOC design incorporates a high level of integration of several design components, often

known as Intellectual Property (IP), which is possible with shrinking technique technologies. To put it

another way, a SOC is an integrated circuit that implements most or all of the capabilities of a

completely digital system. Figure 1.1 shows a block diagram of an AMBA-enabled SoC.

 Fig 1.1 SOC System Block Diagram [2]

16 | P a g e

A iSOC idesign imay iconsist iof ione ior imore iprogrammable icomponents iconsisting iof igeneral-

purpose iprocessor icores, idigital isignal iprocessor icores, ior iapplication-specific iintellectual

iproperty i(IP) icores iand ian ianalog ithe ifront iend ion-chip imemory, iIO idevices, iand inumerous

idifferent iapplication-specific icircuits.

 iOne iof ithe ibiggest ichallenges iin iSOC idesign iis ithe ion-chip icommunication iamong ithe

ispecific icomponents. iThe ispecific ibus iprotocols iused ifor iinterconnection ihave ia ibig iimpact

ion ithe ioverall iperformance iof ithe iSOC idesign. i

Most iof ithe itime, ithe iIP icores iare idesigned iwith imany idifferent iinterfaces iand icommunication

iprotocols iand ithis imay ibe ia iproblem iwhile iintegrating iinto ia iSOC. iTo ikeep iaway ifrom ithis

iproblem, istandard ion-chip ibus isystems iand iprotocols ihad ibeen ideveloped.

AMBA iprovides iseveral ibenefits: i

 Efficient iIP ireuse: iIP ireuse iis ia ivital iaspect iin ireducing iSoC iimprovement icosts iand

itimescales. iAMBA ispecifications ioffer ian iinterface istandard ithat ipermits iIP ireuse. iTherefore,

ithousands iof iSoCs, iand iIP iproducts, iare iusing iAMBA iinterfaces.

 Flexibility: iAMBA igives ithe iability ito iwork iwith ivarious iSoCs. iIP ireuse irequires ia icommon

istandard iat ithe isame itime ias isupporting ian iextensive itype iof iSoCs iwith idistinctive ipower,

iperformance, iand iarea irequirements. iArm ioffers ia irange iof iinterface ispecifications ithat iare

ioptimized ifor ithese idifferent irequirements. i

 Compatibility: iA istandard iinterface ispecification ilike iAMBA, ipermits icompatibility iamong iIP

icomponents ifrom idifferent idesign igroups ior ivendors.

 Support: iAMBA iis iwell isupported. iIt iis iwidely iimplemented iand isupported ithroughout ithe

isemiconductor iindustry, iincluding isupport ifrom ithird-party iIP iproducts iand itools. iBus

iinterface irequirements ilike iAMBA, iare idifferentiated ivia ithe ioverall iperformance ithat ithey

ienable. iThe imain icharacteristics iof ibus iinterface iperformance iare:

 Bandwidth: iThe irate iat iwhich idata imay ibe idriven iacross ithe iinterface. iIn ia isynchronous

isystem, ithe imaximum ibandwidth iis iconfined iwith ithe iaid iof iusing ithe iproduct iof ithe iclock

ispeed iand ithe iwidth iof ithe idata ibus.

 Latency: iThe idelay iamong ithe iinitiation iand icompletion iof ia itransaction. iIn ia iburst-based

isystem, ithe ilatency ifigure ioften irefers ito ithe icompletion iof ithe ifirst itransfer irather ithan ithe

ientire iburst. iThe iperformance iof iyour iinterface irelies iupon ithe ivolume ito iwhich iit iachieves

ithe imaximum ibandwidth iwith izero ilatency.

17 | P a g e

1.1 iDISTINCTIVE iVERSIONS iOF iAMBA i i

 i i i i

AMBA1: iArm iintroduced iAMBA iin ithe ilate i1990s. iThe ifirst iAMBA ibuses iwere ithe i i i i i

iAdvanced iPeripheral iBus i(APB) iand ithe iAdvanced iSystem iBus i(ASB). iASB ihas ibeen

isuperseded iby imore irecent iprotocols, iwhile iAPB iis istill iwidely iused itoday. i i i

APB iis idesigned ifor ilow-bandwidth imanage iaccesses, ifor iexample, iregister iinterfaces ion

idevice iperipherals. iThis ibus ihas ian isimple iaddress iand idata iphase iand ia ilow icomplexity

isignal ilist. i i i

AMBA2: iThe iAMBA iHigh-performance iBus i(AHB), ia isingle iclock-edge iprotocol, iwas

iintroduced iin i1999 iwith iAMBA i2. iAt ithe iAHB, ia isimple itransaction iconsists iof ian iaddress

iphase ifollowed iby ia idata iphase. iA iMUX icontrols iaccess ito ithe itarget itool, iallowing iaccess

ito ionly ione imaster iat ia itime. iEven iwhile iAPB iisn't inecessarily ipipelined ifor idesign

isimplicity, iAHB iis ipipelined ifor ioverall iperformance.

 i

AMBA3: i iIn i2003, iArm iintroduced ithe ithird igeneration, iAMBA i3, iwhich ihas i iATB iand

iAHB-Lite. iAdvanced iTrace iBus icould ibe ia ia ipart iof ithe iCore iSight ion-chip iright iand itrace

ianswer. i i i

AHB-Lite icould ibe ia iset iof iAHB. iThis iset isimplifies ithe iplanning ifor ia ibus iwith ione imaster.

i iAdvanced iextensible iInterface i(AXI), ithe ithird igeneration iof iAMBA iinterface ioutlined iwithin

ithe iAMBA i3 ispecification, iis itargeted iat ihigh iperformance, ihigh iclock ifrequency isystem

istyles. iAXI iincludes ioptions ithat icreate iit iappropriate ifor ihigh-speed isub-micrometer

iinterconnect. i i i

AMBA4: iIn i2010, ithe iAMBA i4 ispecifications iwere iintroduced, ibeginning iwith iAMBA iAXI4

ithen iAMBA i4 iAXI iCoherency iExtensions i(ACE) iin i2011. i i

 i

ACE iextends iAXI iwith iadditional isignal iintroducing isystem-wide icoherency. iThis isystem-wide

icoherency ipermits imultiple iprocessors ito ishare imemory iand iallows itechnology ilike imassive

ilittle iprocessing. iAt iconstant itime, ithe iACE-Lite iprotocol iallows iunidirectional icoherency.

iUnidirectional icoherency iallows ia inetwork iinterface ito iread ifrom ithe icaches iof ia itotally

icoherent iACE iprocessor. i i i

The iAXI4-Stream iprotocol iis iintended ifor ione-way iknowledge itransfers ifrom imaster ito islave

iwith ireduced isignal irouting, ithat iis igood ifor iimplementation iin iFPGAs.

AMBA5: iAMBA i5 iCHI i(Coherent iHub iInterface) iwas igiven iby iARM iwithin ithe iyear i2013

ito iempower ia isuperior iand iversatile iframework ion-chip iinnovation. iIt ibolsters inon-blocking

isound iinformation iexchanges ibetween iprocessors iutilizing istores. iThis iis ioften iused iby

iCortex-A57, iCortex-A53 iprocessors, iCore iLink iDMC-520 iDynamic iMemory iController, iand

iCore iLink iCCN504 iCache iCoherent iNetwork.

18 | P a g e

 Figure i1.2 ishows ithe iAMBA idiagram, iwhich iincludes ia ihigh-performance iARM iprocessor,

ihigh-bandwidth ion-chip iRAM, iUART, iand ian iexternal imemory iinterface, iamong iother

ifeatures.

 Fig 1.2 AMBA Bus Architecture diagram [1]

 Advanced iPeripheral iBus i(APB) i i

 i i i

Advanced iPeripheral iBus iis iused ias ia isubset iof iAMBA-based idesigns ito ireduce ithe

icomplexity iconnected iwith iinterfacing iand ipower iutilisation. iAPB iis iused ito iconnect

iperipherals iwith ilow itransfer ispeeds. iFramework iexecution iwill ibe iimproved ithanks ito iAPB.

iThe itwo imain isegments iof ithis itransportation iare ithe iAPB iBridge iand ithe iAPB iSlave. iAPB

iBridge iis ia ispecialist iin ithe ifield iof itransportation. iThe imaster iis ionly ipresent ifor isingle

itransport iin iAMBA-based ioutlines. i i

 i

Address ihooking, ia istrobe iflag iPENABLE, iand ia ichoice iflag iSSELx iare ithe imain icomponents

iof iAPB iBridge. iThey iset iinformation ion iAPB ifor icomposing iexchange iand imake iAPB

iinformation iaccessible ifor iexamined iinterchange. iAPB iBridge iis iaware iof ia ivariety iof

igenerating iparameters. iInformation iand iyield iparameters iare ithe inames iof ithese iparameters.

iThe iAPB islave's iinterfacing iis isaid ito ibe iextremely iadaptable. iThe iAPB islave itask iis

imanaged iusing ithe isame iAPB itiming iparameters.

 i i

Sclk, iSRESETn, iSADDR i[31:0], iSSELx, iSENABLE, iSWRITE, iSRDATA, iand iSWDATA iare

ithe ifundamental iflags ithat igovern iAPB's itask. iAPB3 iv1.0 iis ian iAPB iset. iSREADY iand

iSLVERR, iin iaddition ito ialternate isigns iof iAPB, iare iused iin ithese itwo isupplementary isignals.

iThe imost irecent iimproved iadaptation iof iAPB iis iAPB4v2.0. iThese isignals iare iused ito iwrite

iand iread idata.

19 | P a g e

 Advanced iSystem iBus i(ASB) i i

 ASB iwill ibe iused ias ian iarea iof ithe ivarious iinserted imicrocontrollers ias ian iassociate ielite

ipipelined itransport. iIt ihelps ito iconnect idifferent iprocessors, iexternal imemory iinterfaces, iand

ion-chip imemories. iASB iwill iprovide ithe ifirst ibenefits, isuch ias iburst iexchange, ivarious

itransport imaster iassistance, iand ibetter-pipelined iactivity. i i

 ASB imaster, iASB islave, iASB ijudge, iand iASB idecoder iare iall iguideline iportions ithat icannot

ibe iavoided. iThrough iaddress iand icontrol iinformation, ithe iASB imaster ibegins ito igenerate ithe

ibrowsing iworkouts. iVarious itransportation iprofessionals iare iavailable iin iASB; inevertheless,

ionly ione iof ithem iwill ibe igranted iaccess. iASB iChoose ican iassist iprofessionals iin igaining

iaccess ito iASB. iASB islaves ihave ia istandard ilimit iof iresponding ito iscrutiny iand icreating

iassignments. I

The ithree itypes iof iexchanges ithat ican ihappen ithrough iASB iare inon-sequential, isequential,

iand iaddress-only. iDSELx, iBWRITE, iBWAIT, iBTRAN i[1:0], iBPROT i[1:0], iBSIZE i[1:0],

iBnRES, iBLOK, iBLAST, iBERROR, iBD[31:0], iBCLK, iBA[31:0], iAREQx, iand iAGNTx iare

ithe icharacteristic isignals iused iin ithis itransport.

 Advanced iHigh-Performance iBus i(AHB) i i

 i i i i

Massive iand ielite itransit iuse iAHB, iwhich imay iresult iin iincreased idata itransmission iactivity.

iA itop ilevel iperspective iwill iachieve ihighlights isuch ias isplit iexchanges, ihigher iinformation

itransport isetup, iburst iexchange, isingle iclock iedge iactivity, iand iso ion, ithanks ito iAHB. iAHB

iis itypically iutilised ion iARM7, iARM iCortex-M, iand iARM9-based idesigns. iAHB imaster,

iAHB islave, iAHB idecoder, iand iAHB iauthority iare iall ipart iof ithe iAHB iframework isetup.

 i i

AHB iuses iaddress iand icontrol ito iread iand icompose itasks. iOnly ione imaster iwill iprofitably

iuse ithe itransport iat iany igiven itime. iThe islave iof ithe iAHB ireacts ito ithe imaster iof ithe

iAHB. iThe islave iresponds ito ithe iread ior icompose ioperation iusing ithe iaddress. iThe islave ito

ithe imaster irecognises ithe istatus iof ithe iknowledge iexchange. iThe istatus iindicates iwhether

ithe iinformation iexchange iwas ia isuccess, ia ifailure, ior ia ipause. iAHB iarbiter iand idecoder

ihave ithe isame icapacities ias iASB.

 i i

RWDATA i[31:0], iRSELx, iRRDATA i[31:0], iRREADY, iRRESP i[1:0], iRSPLITx i[15:0],

iRMASTLOCK, iRMASTER i[3:0], iRGRANTx, iRLOCKx, iand iRBUSREQx iare iRWDATA

i[31:0], iRSELx, iRRDATA i[31:0], iRREADY, iRRESP i[1:0], iRSPLITx i[15:0]. iAHB-Lite iv1.0

ifeatures ia ihigh-speed iexchange imotion. iAside ifrom ithe ibasic iAHB isignals, ithis iadjustment

iemploys ia ivariety iof ibanners ito iincrease iactivity. i i

20 | P a g e

Advanced iExtensible iInterface i(AXI) i i

ARM iintroduced iAXI iv1.0, ia iburst-based iconvention, iduring ithe ithird iphase iof iAMBA. iIt

idelivers ia ihigher ilevel iof iexecution, ia ihigher irate iof ireturn, iand ia ifaster itask. iThere iis ia

iseparate istage ifor iaddress iand iinformation. iIt iexchanges ithe idata ithat ibyte istrobes iuse. iBurst

iexchanges ican ibe iused ito isolve ithe iproblem. iThe idistinctive iclassifications iof isigns

iintroduced iin iAXI iare icompose iinformation icarrier isignals, icompose iaddress icarrier isignals,

icompose ireaction icarrier isignals, iread iaddress icarrier isignals, iread iinformation icarrier iflags,

iand ilow ipower iinterface isignals. iThere iare ifive iunique ichannels iavailable ifor ireading iand

iwriting. iAXI's iother imain istrengths iare ithe icompletion iof irequest iexchanges iand ithe

iexpansion iof ienlistment istages. iAXI4 i– ilight iis ia imore ipowerful iversion iof iAXI. iIt

imodifies ithe iessential iAXI iindications. iThis iset imakes iuse iof ia ipredetermined iinformation

itransit idimension iand istrobe ibackings. iThe imost irecent imodification iof iAXI iis iAXI-Stream

iv1.0. i

 i i

AXI iCoherency iExtensions i(ACE)

 iExpert iis ian iAXI iupgrade ithat iincludes ithird-level ireserves, ion-chip iRAM, iperipherals, iand

iexternal imemory. iThe iAXI iread iand icompose ichannels iare ibuilt ifor ia i64-bit ior i128-piece

iinterface iin ithis icase. iIt iis ithe ifoundation ifor i1:1 iclock iproportions iin iprocessor iclocks. iIt

iwill ialso irun iwith ia ilarge inumber iof iCPU iclocks. iProfessional iis ian iARM iCortex-A

iprocessor ithat iincludes ithe iCortex-A7 iand iCortex-A15. iACE imasters, iACE ilite imasters, iand

iACE iLite/AXI islaves iare iinterconnected iportions iwithin ithe imaster. iSkilled ioffers icoherency

iat ithe iframework ilevel ia istructure. iThe iessential iflags iof iACE iare iread idata ichannel isignals,

ibrowse iaddress icarrier isignals, isnoop icarrier isignals, iwrite iaddress icarrier isignals, iand

iresponse isignals. i

 i i

 A iset iof iACE imay ibe iPro-Lite. iAce icomponents ithat ido inot ihave iinstrumentality iintelligible

ireserves iuse iPro-Lite. iThey'll ishow iwhether ithe iissued iexchanges ican ibe icontrolled iwithin

ithe iinstrumentality icoherent istores iof ivarious ibosses ior iwhether ithey ican ibe iused ito

ifacilitate iobstruction iexchanges. iOn ithe iread iaddress ichannel, iit iadds imore iflags, iand ion

ithe icompose iaddress ichannel, iit iadds imore iflags. iSnoop ichannels, isnoop iindicators, iand

ireaction isignals iwill ibe iblocked iby iPro-Lite.

 iAdvanced iTrace iBus i(ATB) i i

 i i i

To idebug ithe iframework, ithe iAdvanced iTrace iBus i(ATB) isupports ian iinterchange iof

iinformation iaround ithe iCore iSight. iIt isupports ibite-sized ibundles iand, ias ia iresult, ithe

icontrol isignals iused ito idisplay ithe inumber iof ibytes isignificant iin ieach icycle. iThis imode iof

itransportation iuses ithe isignals iATCLK, iATCLKEN, iATRESETn, iATREADY, iATVALID,

iATID i[6:0], iATBYTES i[m:0], iknowledge i[n:0], iAFVALID, iand iAFREADY.

21 | P a g e

1.2 GOALS OF THE AMBA DETERMINATION

The goals of the AMBA particular are:

• It will upgrade the inserted small-scale controller things with a focal handling unit on SoC.

• It will upgrade the reusability of fringe and IPs and make the design simple.

• It will configure fewer potential interfaces.

1.3 THESIS ORGANISATION

The thesis report is organized as follows :

Chapter 1 gives a brief presentation about the Advanced Microcontroller Bus Architecture (AMBA),

advanced peripheral bus (APB), advanced high-performance bus (AHB), and advanced extensible

interface (AXI).

Chapter 2 is a brief study of AMBA setups that have existed up to this date. It also highlights the

current arrangements' flaws.

Chapter 3 gives us a deep insight into the FPGA board, which is utilized for synthesis purpose.

Chapter4 AMBA protocols, which include advanced peripheral bus (APB), advanced high-

performance bus (AHB), and advanced extensible interface (AXI), explain the framework outline and

execution.

Chapter 5 presents the simulation results and analysis.

Chapter 6 consists of the work's conclusion and future scope.

22 | P a g e

 CHAPTER 2

 LITERATURE SURVEY

ARM Confined demonstrated AMBA, an open-source transport tradition, in 1999 [2]. The author

presented an AMBA 2.0 [1] that distinguishes three modes of transportation: ASB, APB, AHB. It

investigates all modes of transportation's testing systems. The interface module is a piece of software

that allows you to In terms of its restricted state machine, AMBA AHB may plainly be utilized as a

conventional joining module because it can read and write data. As it communicates with the peripheral

contraptions, the connection module AMBA APB is melodic, displaying a low repeat [3].

Kiran Rawat in [4] proposed an intricate interface between AMBA ASB and APB is the goal of the

combination. Verilog dialect with restricted state machine models designed in Model Sim Variant 10.3

and Xilinx-ISE outline suite were used to design the utilization rundown and power reports. The usage

of APB Extension necessitates the employment of a referee and a decoder. In the AMBA ASB APB

module, the master makes contact with APB transport. The judge begins conversing with the transport

after determining on the master's status. The decoder selects a transport slave using the specific address

lines, and the slave answers to the transport master with an affirmation. As the outline complexity of

the structures rises, the power consumption of SoC structures becomes increasingly essential. The

power reports separate the various power components that contribute to power use [5].

Kiran Rawat et al. introduced [6] AMBA APB, a variant of AMBA that provides the lowest power

consumption and transmission capacity. For this, a Verilog dialect APB Extension with Reset

Controller configuration was used. BnRES and Power-on Reset (PO Reset) conditions are presented

by the reset controller so that Meta stable characteristics may be propagated and glitches can be kept

at a strategic distance. Power report demonstrates that the different power segments contribute in the

power utilization by APB connect design. As the consequence,: extension under PO Reset conditions,

On-chip add up to control utilization is 9.52%, Chain of command control utilization is 29.12% and

dynamic supply control utilization is 28.89% not as much as Scaffold under no PO Reset conditions.

As a result, when Scaffold is designed under Power-on Reset circumstances, it may make effective use

of intensity. This is done using the Verilog dialect, which is used to create restricted state machine

models and test seats. Model Sim Rendition 10.3 is used to show and reproduce the APB Extension

and Reset Controller. For combination and power reporting, the Xilinx-ISE outline suite, version 13.4,

is used.

23 | P a g e

Kiran Rawat et al. proposed [7] the fundamental test for building a plan not just to outline but to

organized and synthesize RTL code to plan vitality and streamlined in control utilization. The author's

goal is to make the AMBA APB extension a reality by properly organizing framework assets. For this,

a replication and synthetization of the span interface is proposed, with the goal of achieving the lowest

power consumption and data transfer capacity possible between AMBA fast ASB and low speed APB

transports. When a distinction is made between the entrance timings of clock flags, clock skew appears.

Limit clock skew can be dealt with either a swell counter or a three-piece up or down counter method.

The article uses Verilog HDL to implement an APB Scaffold with a clock skew reduction technique.

Jasmine Chhikara et al. proposed [8] the unit which comprises of littler practical squares called

subsystems or module. These modules must be in sync with one another and provide resources for the

framework to function properly. The problem arises when one subsystem adopts the same norms as

others. Each module uses a different piece rate or baud rate for data exchange, which might be non-

concurrent or synchronous. The author also shows how to share information by starting with one

convention and then moving on to the next. It takes advantage of I2C's adaptable conventions, making

it ideal for usage with the APB AMBA convention. The proposed engineering is a bridge between the

I2C Master and the APB salve, allowing information to flow from an I2C-enabled module to an APB-

enabled module. The data is transferred in a state of harmony with the area clock, from serial (I2C) to

parallel (APB) to serial (I2C). This creates a bidirectional interface between I2C-enabled and APB-

enabled modules.

Ashutosh Gupta provided [9] an on-chip representation backdrop for better implanted microcontrollers.

This figure depicts the physical implementation of the AMBA advanced system bus (ASB) and

advanced peripheral bus (APB) connection modules. To maintain the clock skew to a minimum, a

three-piece swell counter was utilised. For showing and reenactment, Model Sim Form 10.3 is utilised,

and test chairs are developed for this purpose. For the amalgamation and experience, the RTL Compiler

is used, while the Xilinx-ISE plan suite is used to eliminate the union and utilisation rundown. An

sophisticated execution framework is employed for the physical plan.

Kanishka Lahiri and Anand Raghunathan et al. proposed [10] the complex System on-chips (SoCs),

the framework level on-chip correspondence design is increasing as a huge wellspring of intensity

utilization. Supervision and reorganization are the vital segments of SoC control which requires the

qualities of the capacity utilization. While compelling, they just address a constrained piece of

correspondence design control utilization. A cutting-edge correspondence engineering, involves few

segments, for example, transport interfaces, mediators, scaffolds, decoders, and multiplexers,

notwithstanding the worldwide transport lines In addition to statistically supporting the perspective

that on-chip correspondence is a critical focus for framework level power streamlining, their work

demonstrates (i) importance of fully considering correspondence engineering, and (ii) the opportunities

for control reduction that exist through careful correspondence engineering design[11-13].

24 | P a g e

Ge Zhiwei et al. discussed [14] a novel picture on on-chip and CMOS sensor, which is applied to the

APB transport. The suggested design shows shading picture planning difficulties and highlights the

contrasts between the proposed structure and the conventional image, which considers pipeline as a

component of cutting-edge still cameras. This work combines two advantageous automobiles white

modify methods to adjust the three self-ruling shading channels, taking into account the gear utilisation

and power requirements. The suggested technology, which is linked to FPGA, can effectively restore

the picture concept of rough data [15-17].

L. Benini, A. Macii et al. proposed [18] the encoding and decoding counts that will interface the way

of reasoning that will limit the normal number of modifications on heavily stacked overall transport

lines at no cost in correspondence throughput (i.e., single word is transmitted at each cycle). Given

knowledge on word-level estimates, the perceiving feature technique grows low-change development

codes and gear execution of encoders and decoders without relying on organizer's sense. A correct

system that is suitable to low-width transports, and furthermore deduced procedures that scale well

with transport width. In addition, display a flexible building that normally changes encoding to lessen

advance development on transports whose word-level estimations are not known from the before[19].

J. Y. Chen et al. proposed [20] a technique that proficiently diminishes the exchanged capacitance of

the transport. The power devoured by the transport can, consequently, diminished. The fundamental of

the transport division is to parcel the transport into a few transport portions isolated by pass transistors.

Especially transmission gadgets are situated to adjoin transport fragments, in this way, most

information Correspondence can be accomplished by exchanging a little segment of the transport

sections. Accordingly, control utilization and delay are both decreased. Exploratory outcomes got by

reproducing a defer display and a power show exhibit that the proposed divided transport framework

decreases transport control by around 60%-70% and enhances basic transport delay by around 10%-

30%.

Recent advancements in SoC technology have enabled the integration of many devices on a single

chip, paving the path for more compact devices. The various gadgets from various sellers, each

performing a particular function, are all combined on a single chip. These components can be linked

using bus-based protocols to enable effective communication. The AHB protocol is the most widely

utilized communication method. The AHB protocol allows devices to communicate at fast speeds.

Because of their bulkiness, processors are gradually growing quicker, but memory are becoming

slower. This becomes a problem since the data retrieval speed does not match the processing speed.

As a result, a fast memory controller is necessary, one that can match the CPU speed to the memory

speed to ensure effective communication .It's difficult to interface SDRAM with AHB since SDRAM's

latency isn't limited to one cycle, forcing AHB to sit idle throughout that period. As a result, bus

resources are being used inefficiently [21-22].

25 | P a g e

K. Shaikh and colleagues created an SDRAM-specific memory unit. When a query is made concerning

recently consumed data, for example, the controller's internal memory is searched first before fetching

it to the memory. Because the AHB bus architecture provides for increased performance,

increased clock frequency system modules, this controller was designed to work with the AHB

(AMBA) bus architecture. It's the building block for increased performance systems [23].

The complying AMBA bus hardware IP presented by Acasandrei et al. is a modularized, extremely

flexible, reduced power , and technology-independent core written in the HDL language. The Viola-

Jones method, which is one of the most frequently used face identification techniques, is accelerated

by the IP core. The hardware accelerator IP is used in an embedded face detection system based on the

LEON3 Sparc V8 CPU. The authors describe their techniques, challenges, and performance findings

for software, hardware, and system level design [24].

Modern SoCs include multi-core clusters and sophisticated peripherals, for which the current AHB

protocol, which supports low-complexity shared buses, cannot meet the expectations of today's world

high-speed SoCs, due to a number of protocol impediments, including the fact that the AHB has only

one outstanding transaction, no full-duplex mode, and only one channel-shared bus that is directed to

the employee AXI bus. By identifying how the five-channels in the bus operate independently, as well

as the handshaking concept, a more realistic comparison with the advanced AXI bus is drawn [25].

The AMBA AXI4 bus, which is the best in terms of throughput, latency, and high performance/

frequency, is used with single or multiple channels, and the connection block encapsulates the

arbitrator, decoder, and multiplexers .The arbiter monitors the priority to access/release the bus to one

of multiple masters who begin transactions at the same time using an arbitration technique. The decoder

decodes the master's address and control and delivers the transaction to one of 16 slaves for basic and

burst read/write operations [26].

The design complexity of SOC is increasing day by day as the result it increased consumer demands.

As a result, there is always a productivity gap, and the appropriate protocol is picked for each

application. To improve connectivity performance, QoS, and reduce wiring congestion, a migration

from AXI4 to AXI4-Lite is required, which allows the processor or masters to access the registers

(small and mini peripherals). We choose AXI4-Lite. Using the aforementioned references and keeping

an eye on the situation, if the Master agent regularly wants to access information that may be in small

registers for which it uses basic registers like cache to interact, an effective and proper bus interface

must be chosen to meet the need. This prompted the development of the Verilog HDL work “Design

and interface of AXI4-Lite Master core with a modified Memory” [27].

26 | P a g e

 CHAPTER – 3

 ZYNQ 7000 FPGA FAMILY

This FPGA series uses a SOC architecture, which combines a dual-core ARM Cortex A9 CPU with

28nm Programmable Logic into a single device. Because the A9 chip is also at the base of the

Processing System , this FPGA is an excellent candidate for usage as a SOC. There's also an on-chip

boot Read-only Memory (ROM), 16- to 32-bit external memory interfaces, and a few peripheral

connection interfaces. It provides a completely programmable alternative to ASIC and system-on-chip

customers, as well as a versatile platform for launching new solutions. For computationally intensive

and performance-demanding applications, this serves as a highly integrated and optimized alternative.

The Z-7010, Z-7020, and Z-7030 devices are members of this FPGA architecture, which is primarily

focused on automotive iapplications [29].

The ZYNQ 7000 is optimized for maximum design flexibility and performance per watt. These SOCs

are cost-optimized entry points with ARM single Core processor acquaintance with 28nm Artix 7 based

Programmable Logic. The system on chips is an ideal candidate for numerous applications in the motor

control field and vision engineering. This family contains up to 10 devices to be chosen from that may

be single or dual-core, hence allowing a scalable platform for the consumer. FPGAs are the ideal

candidates for implementing sorting algorithms due to their unparalleled features like parallelism, low

latency, high bandwidth, faster processing speed, in-built processor core availability among others

[24].

The Zynq-7000 SoC devices are able to provide numerous applications including:

• Automotive driver assistance: lane departure, blind-spot detection

• Wireless applications, Reliable Ethernet

• Embedded prototyping

• Software acceleration for DSP functionality

• Time-domain reflectometer

27 | P a g e

The ZYNQ facilitates the mapping of software and custom logic in the PL and PS, allowing for the

development of unique and distinct system functionalities. The architecture of the ZYNQ SoC is shown

in Figure 3.1. The following are the key components:

• Processing System (PS)

• Application processor unit (APU)

• Memory interfaces

• I/O peripherals (IOP)

• Interconnect

• Programmable Logic (PL)

 Fig 3.1 Architecture of ZYNQ FPGA chip [29]

28 | P a g e

3.1 iHISTORY i

 It iis ian iall-programmable isystem ion ia ichip ithat iis iembodied iby itwo ihard iprocessors, iADC

iblock iProgrammable iLogic i(PL), iand ia ilot imore icomponents iembedded iin ione iSilicon ichip

ionly. i iBefore ithe iinnovation iof ithe iZYNQ icame iinto ipractice, ithe iprocesses iwere icoupled

iwith ian iFPGA iwhich imade ithe icommunication ibetween ithe iProcessing iSystem i& ithe

iProgrammable iLogic iquite iintricate iand iits ilayout idifficult ifor ithe iengineers ito iunderstand.

iThe iadvanced iextensible iinterface i(AXI) istandard iis iused ias ia imeans iof iinterfacing iacross

idifferent ielements ipresent ion ithe iZYNQ iarchitecture iwhich ithereby iaccounts ifor ithe ihigh

ibandwidth iand ilow ilatency ipresent iin iconnections. iA isoft-core iprocessor isuch ias iMicro iblaze

iwas ibeing iused iby ithe iusers ibefore ithe iARM iprocessor iwas iimplemented iinside ithe iZYNQ

idevice; ias iits iheart. iThe iupper ihand iprovided iby ithe iMicro iblaze ito idate iis ithe iflexibility

iof ithe iprocessor iinstances iwithin ia idesign. iOn ithe iother ihand, iZYNQ idelivers isignificant

iperformance ienhancement iwith ithe iencompassing iof ithe ihard iprocessor iin ithe iZYNQ i[30].

iAlso, ithe icost ito imarket iand ithe iphysical isize iget ireduced iby isimplifying ithe isystem ito ia

isingle ichip. i

 Fig 3.2 shows the significance of AXI interface in ZYNQ.

 Fig 3.2 ZYNQ overall view [30]

3.2 ZYNQ DESIGN FLOW

This design flow has some steps that are recurrent with a regular FPGA. We start the design cycle by

first defining the requirements and specifications of the system, next the different tasks are assigned to

29 | P a g e

implement in either the PL or PS which is called task partitioning. Because the overall performance of

the system will depend on the task or function being assigned for implementation, so this stage is most

important in the technology node be it hardware or software. The next step is the testing of the

hardware and software development. We need to now identify the functional blocks related to the

Programmable Logic in order to attain the design characteristics and also to congregate them as IPs

and for facilitating the connections between all of these IPs, all the steps are hence governed with

respect to the functionality of the Programmable Logic (PL). The software activity includes running

on the PS, the code that is developed [30]. To wrap the design, system integration and testing are

needed. Figure 4.3 gives the design cycle briefly.

3.3 PROCESSING SYSTEM UNIT

The Application Processing Unit (APU), memory interface, interconnect, and input-output (I/O)

peripherals are the four primary blocks.

3.3.1 Application Processing Unit (APU)

Two Cortex A9 processor units are present in it along with the NEON Unit, Memory management unit,

floating-point unit, L1 caches. Additionally, L2 cache and Snoop controls are also present in it. The

representation of APU block diagram is given in Fig. 3.4.

1. NEON: implementation of the single instruction multiple data in the ARM processor is

provided by this unit that acts as a catalyst to the DSP and the media algorithms

2. FPU: the floating-point unit operations are managed by this unit

3. Level 1 Cache: storing the instructions and the data separately we have a data and instruction

cache

4. MMU: the virtual memory gets translated to the physical memory address by this unit.

5. Snoop control unit (SCU): its main task is to create interfaces among the processors 4 –way

set associative L1 and L2 cache.

6. L2 cache: to check the currently updated value of a variable, the cache is shared between two

processors

30 | P a g e

 Fig 3.3 ZYNQ Design Flow Steps [30]

3.3.2 General Interrupt Controller (GIC)

Consists of two main components:

• 3 WDT (watch dog timers) (one per CPU and one system WDT)

• 2 TTCs (triple timers/counters).

31 | P a g e

Fig 3.4 Application Processing Unit Structure [29]

3.3.3 iDynamic iMemory iInterfaces i

The imulti-protocol imemory icontroller ican ibe iconfigured ito iprovide i16 ibit ior i32-bit ibyte

iaccesses iusing ia isingle irank iconfiguration iof i8 ibits,16 ibits ior i32 ibits ito ia i1 iGB iaddress

ispace i[29]. i iIt iincorporates iits iown iset iof idedicated iIOS iand ihence ispeeds iof iup ito i1333

iMB iper isecond ifor ithe iDDR i3 iis isupported. i i4 iAXI islave iports iare ifeatured ifor ithis

ipurpose inamely ias i: i

• via i ithe iL2 icache icontroller: ia i64-bit iport iis idedicated ifor ilow ilatency i

• for ithe iPL iaccess: itwo i64- ibit iports iare idesignated i

• all iother iAXI iMasters ishare: ione i64-bit iport ivia ithe icentral iinterconnect i

3.3.4 iStatic iMemory iInterfaces i

 i

It isupports istatic iexternal imemory isuch ias: i

• 8-bit idata ibus iup ito i64-MB i i

• 8 ibit iparallel iNOR iflash iup ito i64- iMB i

• NAND iflash isupport iwith i1-bit iECC

32 | P a g e

3.3.5 iI/O iPeripherals i(IOP) i

The idata icommunication iperipherals iare ipresent iwithin ithe iIOP iunit. iIts ifeatures iare; i

 Ethernet iMAC iperipherals: iTri-Mode i

 Supports ian iexternal iPHY iinterface i

 High ispeed iand ifull ispeed imode iin ithe ihost, idevices iby ithe ipresence iof itwo iUSB i2.0 i i

iOTG iperipherals ihaving i12 iendpoints i

 Makes iuse iof ithe i32 ibit iAHB islave iand iAHB iDMA imaster iinterfaces i

 Two ifull iCAN i(Controller iArea iNetwork) ibus iinterface icontrollers ithat ihave iautomotive

iapplications i

 Three iperipheral ichip iselect isignals iaccompanied iby i2 ifull-duplex iSPI iports i

 Two iUARTS i i

 Up ito i118 iGPIO ibits

 i

3.3.6 iInterconnect i

 i

 A imultilayered iARM iAMBA iAXI iinterconnect iis iused ito iconnect ithe iAPU, imemory

iinterface iunit, iand ithe iIOP ito ieach iother iand ialso ito ithe iPL. iThis iinterconnection isupports

imultiple isimultaneous itransactions iof ithe imaster iand islave; iit’s ia inon i- iblocking itype. iAnd

iis itherefore idesigned iwith ilatency-sensitive imasters iwhich ihave ithe ishortest ipath ito ithe

imemory iand ithe ibandwidth-critical iMasters ihaving ithe ihighest ithroughput iwith ithe islaves

ithrough iwhich ithey ihave ito icommunicate i[29]. iThe itraffic igenerated iby ithe iCPU, iDMA

icontroller ican ibe iregulated iby imeans iof ia iblock iknown ias ithe iquality iof iservice ipresent iin

ithe iinterconnect. i i

3.3.7 iPS iExternal iInterfaces i

 i

They icannot ibe iassigned ias iPL iPins iand iare ihence idesigned ispecifically ifor ithe ipurpose iof

iinterfacing. iThe iinterfaces iare iencompassed iby: i

 Clock, ireset, iboot imode, iand ivoltage ireference i i

 32-bit ior i16-bit iDDR2/DDR3/DDR3L/LPDDR2 imemories

3.4 iMIO i(MULTIPLEXED iINPUT i– iOUTPUT) iOVERVIEW i

There iare iup ito i54 iMIO ipresent ifor imultiplexing iaccess ito iPS ipins ithat ican ibe iused iby ithe

istatic imemory iinterface iand ithe iPS iinterfaces, iwhich ican ibe imapped iwith ithe idifferent

iperipheral ipins iat iall isteps iof ithe iinterfacing iframework i[29]. iThe isignal irouting iof ithe iMIO

iblock ihas ibeen ishown ibelow iin ifig i4.5. iIf igreater ithan i54 iare irequired ithen iwe ineed ito

iroute ithis ithrough ithe iPL ito ithe iinput-output iassociated iI/O iwith ithe iPL iand iare itherefore

ireferred ito ias ithe iextendable imultiplex iinput-output i(EMIO). iMIO_PIN i[53:0] iconfiguration

iregisters ilocated iin ithe iSCLR iregisters iset iis icontrolled iby ithe isignal irouted ithrough ithe

iMIO iblock i[29]. iWe ican iprogram iany ione iof ithe itotal ipins ipresent ion ithe iMIO ipins ito ithe

ireference iclock iof ian iexternal iCAN icontroller.

33 | P a g e

 A typical module block diagram of EMIO to PL has been shown in Fig 3.6.

 Fig 3.5 MIO Signal Routing [29]

3.5 PROGRAMMABLE LOGIC STRUCTURE

It is comprised of configurable logic blocks (CLBs) which are housed by slices like any other FPGA

we are familiar with. Any slice contains a combination of 8 flip flops + 4 LUTs and is accompanied

by a switch matrix, also there are DSP slices and Block RAMs as well. Fig 3.7 shows the structure of

the Programmable Logic. Its main components are:

1. Slice: It is embodied by resources for implementing the combinatorial and the sequential circuits of

the design.

2. Look-up-table (LUT): For implementing a logic function of inputs up to 6 or more RAM and ROM

shift registers are used.

34 | P a g e

 Fig 3.6 Module block diagram of EMIO to PL [30]

1. Flip Flop (FF): Usually employed for the implementation of a 1-bit register with a

reset functionality.

2. Switch Matrix: The connections among different parts present within the combinational logic blocks

as well as with other CLB and other parts of the programming logic structure.

35 | P a g e

 Figure 3.7 Structure of the PL [30]

3.6 DISTINCTIVE FEATURES

The key features of the ZYNQ 7000 are:

• 1 GHz CPU Frequency

• GPIO has four 32-bit banks

• All programmable SOC

• Level 1 cache : 32 KB each

• Level 2 Cache : 512 KB

• Up to 118 GPIO bits

• Over 85k logic cells

• ARM v7 architecture with Trust – Zone security

• 100 Gb/s of I/O bandwidth

• 8 channel DMA ; 4 channel dedicated specifically to PL

• 8 LUTs + 16 FF per CLB

• Two 12 bit ADCs (XADC)

• 36 KB Block RAM

• 25 bit pre-adder, 18 x 25 signed multiply

36 | P a g e

• ARM Cortex A9 Microprocessor chip

• PCIe supports upto 8 lanes, Gen2 speed

• 4 AXI ports : configurable as 32 or 64- bit interfaces

• 1KB deep FIFO ; 32 word buffer for read acceptance

• 16 Interrupts available

• Upto 220 trans receivers for enhanced capability

 Figure 3.8 ZYNQ 7000 FPGA board [30]

• Scatter-gather DMA capability

• Two USB 2.0 OTG peripherals

• 8-bit PHY external interface

• 1 Mb/s high Speed UART’s

37 | P a g e

• XADC , JTAG interfaces

• Processor configuration access port (PCAP) for facilitating chip security

• PS boot image authentication

• 8 Clock Management Tiles (CMT)

• CMT has Mixed – Mode Clock Manager (MMCM) & PLL.

38 | P a g e

 CHAPTER 4

 FRAMEWORK OUTLINE AND EXECUTION

 4.1 Advance Peripheral Bus Protocol (APB)

The IP for the inter-Advanced peripheral bus (APB) protocol is presented in this design. The current

VLSI design environment is characterized by high speed, complex functionality, and a short time to

market. A reuse-based SoC design method has become important to solve these challenges. The APB

Protocol and its slave Verification are the subjects of the project. The goal is to put DUT to the test.

This model is used to communicate between the slave and the master. The complete design has been

verified and coded in Verilog.

Figure 4.1 depicts the APB protocol's master-slave communication.

 APB Block Diagram

 Figure 4.1 Interfacing of APB Master & Slave [5]

39 | P a g e

 Table 4.1 List of APB signals [5]

SIGNALS DESCRIPTION

Clock For Positive edge clock all sign changes

Reset Dynamic high reset signal

Address Address bus can be 4 bits or 8 bit wide

Select signal Select. Each slave device has a this signal, this demonstrate

what slave gadget is chosen for information

Write Direction. This signal high indicates a write access when it is

low indicates read access

Ready The slave utilizes this sign to expand an exchange

Read Data The chose slave drive this transport during read cycles when

wr is low. This transport is 32 bit wide

Error This sign shows an exchange disappointment

4.1.1 Operating states of APB

IDLE is the most common condition of the APB. The bus enters the SETUP state and asserts the

relevant select signal, PSELx, when a transfer is necessary.

40 | P a g e

 Fig 4.2 State Diagram [2]

 The ibus ionly istays iin ithe iSETUP istate ifor ione iclock icycle ibefore imoving ito ithe iACCESS

istate ion ithe iclock's irising iedge. iIn ithe iACCESS istate, ithe iACCESS iwill ienable isignal,

iPENABLE, iis iasserted. iDuring ithe itransition ifrom ithe iSETUP ito ithe iACCESS istate, ithe

iwrite, iwrite idata isignals, iselect, iand iaddress imust iall iremain istable. iWhen ithe islave isends

ithe iPREADY isignal, ithe iACCESS istate idetermines iwhen ito iexit. iThe ifirst icondition iis ithat

iif ithe islave ihas iPREADY iLOW, ithe iperipheral ibus iremains iin ithe iACCESS istate. iThe

isecond icondition iis ithat iif iPREADY iis iheld iHIGH iby ithe islave, ithe iperipheral ibus iremains

iin ithe iACCESS istate. iThe islave idrives iPREADY iHIGH, ithen iexits ithe iACCESS istate iand

ithe ibus ireturns ito ithe iIDLE istate iif ino iadditional itransfers iare inecessary. iIt ithen irepeats ithe

icycle i[2][3].

41 | P a g e

4.1.2 iWrite cycle

 Figure 4.3 Write Cycle [2]

 PADDR, iPWDATA, iPWRITE, iand iPSEL iare iregistered iat ithe irising iedge iof iPCLK ito

iinitiate ia iwrite itransfer iat iT1. iThe iSETUP icycle iis iwhat iit's icalled. iThe iACCESS icycle,

iPENABLE, iand iPREADY iare iregistered iat ithe inext irising iedge iof ithe iclock iT2. iWhen

iasserted, iPENABLE isignifies ithat ithe itransfer's iAccess iphase ihas ibegun. iPREADY

isignals ithat ithe islave ican ifinish ithe itransfer iat ithe inext irising iedge iof iPCLK iwhen

iasserted. iThe iPADDR, iPWDATA, iand icontrol isignals iare iall ivalid iuntil iT3, ithe iend iof

ithe iAccess iphase, iwhen ithe itransfer iis icompleted. iAt ithe iend iof ithe itransfer, ithe

iPENABLE iis idisabled. iUnless ithe itransfer iis ipromptly ifollowed iby ianother itransfer ito

ithe isame iperipheral, ithe ichoose isignal iPSEL iis ialso idisabled i[2-3].

4.1.3 iRead icycle

The iPENABLE, iPSEL, iPADDR, iand iPWRITE isignals iare iasserted iat ithe iclock iedge iT1

iduring ireading ioperation i(SETUP icycle). iPENABLE, iPREADY, iand iPRDATA iare iasserted

iat ithe iclock iedge iT2 i(ACCESS icycle), iand iPRDATA iis ialso iread iduring ithis iphase. iThe

idata imust ibe iprovided iby ithe islave ibefore ithe iread itransmission iis icompleted[2-3].

42 | P a g e

 Fig 4.4 Read Cycle [2]

4.1.4 Compose trade

The fundamental create move is showed up in figure 4.5.

 Figure 4.5 Compose trade [2]

43 | P a g e

The figure starts with the stamp, influence realities, to make wave and pick all flags behind the

developing edge of the plot. The very important plot arrangement of the exchange is known as the plan

arrangement. Behind running with log arrangement the support flag PENABLE is declared, and this

demonstrates the Empower arrangement is going on. The exchange achieved toward the entire of this

cycle.

The sum of the deal will be reduced by the PENABLE draw in hail. The select flag will likely go low

unless the transaction is promptly supported by another swap to the comparable peripheral. There

reduce control, the address flag and the frame hail will not change following an exchange until the

minute that the going with get to happens. In hail, the custom just demands a flawless change on the

draw. It's possible that the choose and creates signs will be blamed if there are many exchanges.

4.2 AMBA APB SIGNS

The APB motion is depicted with the join as "S" image to detach with different signs appeared in table

4.2.

 Table 4.2 APB flag portrayals [2]

Flag Portrayal

SCLK Log. The developing edges of SCLK all exchanges on the

APB.

SRESETn Cutoff. As far as possible banner is dynamic less. This

banner is generally related to the system transport

constrain hail.

SADDR Name. This is a transport with the APB mark. It is handled

by the peripheral transport association unit and can be up

to 32 bits wide.

44 | P a g e

SPROT Protection assembles. This flag indicates if the

transaction is an information get to or a direction get to

and indicates whether the exchange is normal,

exceptional, or secure.

SSELx Pick. The APB associate part makes the banner to each

periphery transport grub. It shows that the grub device has

selected a needed data swap.

SENABLE Empower. This banner shows the following and

coming arrangement of an APB trade.

SWRITE Instruction. When the banner is high, it displays an APB

make get to, and when it is low, it shows an APB read get

to.

SWDATA Enlist information. When SWRITE is high, the cars are

controlled by the peripheral transport interface unit,

which creates an arrangement. The vehicle's width can be

up to 32 bits.

SSTRB Enlist log. The banner depicts which bytes may be

upgraded and which can be traded. For every eight bits of

create data transfer, there is one form log. As a result,

SSTRB[n] is linked to SWDATA [(8n+7) : (8n)].

SREADY Arranged. Grub uses this banner to extend an APB

trade.

SRDATA Translate data. For this media, they chose grub work

and decode cycles while SWRITE is low. The width

of this medium can be up to 32 bits.

4.3 APB ASSOCIATE

On the AMBA APB, the APB interface is the fundamental transport master.

45 | P a g e

4.3.1 Interface layout

On an extraordinarily crucial level, APB depicts the insignificant exertion that is upgraded for less

power use and less multifaceted design [1]. This APB custom used to interface the less- information

transmission periphery that needn't bother with the AXI tradition.

The APB can communicate with the following systems:

• AMBA iAdvanced High-performance Bus (AHB)

• AMBA iAdvanced High-performance Bus Lite (AHB-Lite)

• AMBA iAdvanced extensible Interface (AXI)

• AMBA iAdvanced extensible Interface Lite (AXI4-Lite)

 Figure 4.6 exhibits the APB hail interfaces of an APB associate.

 Fig 4.6 APB connect interface [3]

46 | P a g e

4.3.2 APB associate portrayal

The platform unit basically trades the structure transport into APB and plays with limits:

1. Check it fast and catch it extensively through the exchange.

2. Decrypts the test and sends SSELX, a boundary select. Only a single select standard can be

dynamic in a market.

3. Operate the data onto the APB for exchange.

4. Operate the APB data onto the structure transport for a translate exchange.

5. Deliver an orchestrating log, SENABLE, for the exchange.

 4.3.3 Schedule graphs

 Fig 4.7 APB connect exchange [3]

47 | P a g e

4.3.4 Planning parameters

Table 4.3 for admission banners and table 4.4 for yield signals lists the arranging criteria for an

APB partner.

 Table 4.3 APB Expansion admission frameworks [3]

 Table 4.4 APB scaffold yield framework [3]

Framework Portrayal

Tclkl SCLK less minute

Tclkh SCLK high time

Tisnres SRESETn de-pronounced format to

expanding SCLK

Tihnres SRESETn de-pronounced catch

resulting to developing SCLK

Tihprd For read exchanges, SRDATA

catch in the wake of SCLK

Framework Portrayal

Tovpen SENABLE substantial in the wake

of rising SCLK

Tohpen SENABLE hold subsequent to

rising SCLK

Tovpsel SSEL substantial in the wake of

rising SCLK

Tohpsel SSEL hold subsequent to rising

SCLK

Tovpa SADDR substantial in the wake of

rising SCLK

48 | P a g e

Tohpa SADDR hold subsequent to rising

SCLK

Tovpw SWRITE substantial in the wake of

rising

SCLK

Tohpw SWRITE hold subsequent to rising

SCLK

Tovpwd For compose exchanges, SWDATA

substantial in the wake of rising

SCLK

Tohpwd For compose exchanges, SWDATA

hold subsequent to rising SCLK

4.4 APB BOUND

APB bound has a basic, yet adaptable, joining. The correct execution of the joining will be dependent

on the plan style utilized and a wide range of choices are possible.

4.4.1 Joining graph

Figure 4.8 demonstrates the flag joining of an APB bound.

 Figure 4.8 APB bound joining depiction[3]

49 | P a g e

4.4.2 APB bound portrayal

The APB bound joining has a lot of flexibility.

The following focuses can be used to exchange information for a composition:

• When SSEL is high, on each side of SCLK's rising edge

• When SSEL is high, you're on the leading edge of SENABLE.

Combining the choice flag SSEL x, the address flag SADDR, and the compose flag SWRITE yields

the compose job. The information can be pushed into the information transport for read exchanges

when SWRITE is logic 0 and both SSEL x and SENABLE are logic 1. To decide which enrollment

should be read, SADDR is utilized.

4.4.3 Timing outlines

The planning parameters identified with an entrance to an APB transport prisoner are appeared in

 Fig 4.9.

 Fig 4.9 APB hostage exchange[3]

50 | P a g e

 Fig 4.10 Block diagram of APB [3]

The APB Slave input Signals are PADDR, PWRITE, PCLK, PRESETn, PWDATA and PSEL,

PRDATA, PENABLE are output signals.

In advance microcontroller bus architecture, APB bridge is very important part. APB Bridge performs

different type of operations. The operations are data, address and control signal latching for the

peripheral. As like AHB. APB has no peripheral protocol. Therefore, APB interfaces the peripheral

that have low bandwidth. This will reduce the low power consumption and also interface complexity.

51 | P a g e

4.5 i iAdvanced iHigh-performance iBus i(AHB)

Component iinterfaces i isuch ias imasters, iinterconnects, iand islaves.

The iAMBA iAHB iincludes ithe ifollowing ifeatures ifor ihigh-performance, ihigh-clock ifrequency

isystems:

• iTransfers iin ibursts.

• iOnly ione iclock iedge iis iused.

• iImplementation iin ia inon-tristate imanner.

• i64, i128, i256, i512, iand i1024 ibit idata ibus ioptions.

 Internal imemory idevices, iexternal imemory iinterfaces, iand ihigh-bandwidth iperipherals iare ithe

imost itypical iAHB islaves. iAlthough ilow-bandwidth iperipherals ican ibe iincluded ias iAHB

islaves, ithey iare icommonly ifound ion ithe iAMBA iAdvanced iPeripheral iBus ifor isystem

iperformance ireasons i(APB). iAn iAHB islave, ialso iknown ias ian iAPB ibridge, iis iused ito

iconnect ithe ihigher-performance iAHB iand iAPB. iWith ithe iAHB imaster iand ithree iAHB islaves,

iFigure i4.11 idepicts ia isingle imaster iAHB isystem iconfiguration. iOne iaddress idecoder iand ia

islave-to-master imultiplexor imake iup ithe ibus iconnectivity ilogic. iThe imaster's iaddress iis

imonitored iby ithe idecoder, iwhich iselects ithe iappropriate islave, iand ithe imultiplexor itransmits

ithe islave ioutput idata iback ito ithe imaster.

AHB ialso ienables imulti-master idesigns ivia ian iinterconnect icomponent ithat iarbitrates iand

iroutes isignals ifrom iseveral imasters ito ithe iappropriate islaves.

 Figure 4.11 iAHB block diagram[24]

52 | P a g e

The following are the primary component kinds of an AHB system :

• Slave

• Master

• Interconnect

4.5.1 Master

A master provides addressing and control the information to start read and write operations.

Figure 4.12 depicts a master interface.

 Fig 4.12 Master interface [24]

4.5.2 iSlave

In the system, a slave reacts to master-initiated transfers. The slave uses the decoder's HSELx select

signal to control when it reacts to a bus transfer.

The slave sends the following message to the master:

• The completion or expansion of the bus transfer.

• The success or failure of the bus transfer.

 A slave interface is shown in Figure 4.13.

53 | P a g e

 Fig 4.13 Slave interface[24]

4.5.3 iInterconnect

The iconnection iis imade ithrough ian iinterconnect icomponent. iThe iusage iof ia iDecoder iand

iMultiplexer, ias idetailed iin ithe ifollowing isections, iis iall ithat iis irequired ifor ia isingle imaster

isystem. iIn ia imulti-master isystem, ian iinterconnect iis irequired ito iprovide isignal iarbitration iand

irouting ifrom idifferent imasters ito ithe iappropriate islaves. iAddress, icontrol, iand iwrite idata

isignals iall irequire ithis iroute. iThis ispecification idoes inot igo iinto idetail iabout ithe ivarious

imethodologies iused ifor imulti-master isystems, isuch ias isingle ilayer ior imulti-layer

iinterconnects.

4.5.3.1 iDecoder

This icomponent idecodes ieach itransfer's iaddress iand isends ia ichoose isignal ito ithe islave

iinvolved iin ithe itransaction. iIt ialso igives ithe imultiplexer ia icontrol isignal. iIn iall iconfigurations

iwith itwo ior imore islaves, ia isingle icentralized idecoder iis irequired.

4.5.3.2 iMultiplexer

The iread idata ibus iand iresponse isignals ifrom ithe islaves ito ithe imaster imust ibe imultiplexed

iusing ia islave-to-master imultiplexer. iThe imultiplexer iis icontrolled iby ithe idecoder. iIn iall

iimplementations iwith itwo ior imore islaves, ia isingle icentralized imultiplexer iis irequired.

54 | P a g e

4.5.4.1 Operation

The iaddress iand icontrol isignals iare idriven iby ithe imaster ito ibegin ia itransfer. iThese isignals

iinclude iinformation iabout ithe itransfer's ilocation, idirection, iand iwidth, ias iwell ias iwhether ithe

itransfer iis ipart iof ia iburst.

Transfers ican itake ithe ifollowing iforms:

• iYou iare isingle.

• iBursts ithat ido inot iwrap iat iaddress iboundaries iare iincremented.

• iBursts iof iwrapping ithat iwrap iat icertain iaddress ilimits.

The iwrite idata ibus itransports idata ifrom ia imaster ito ia islave, iwhereas ithe iread idata ibus

itransports idata ifrom ia islave ito ia imaster.

Every itransfer iis imade iup iof ithe ifollowing icomponents:

• iPhase ione iof ithe iaddress iand icontrol icycle

• iPhase iof idata icollection ifor ithe idata, ione ior imore icycles iare irequired.

Because ia islave icannot iask ifor ithe iaddress iphase ito ibe iextended, iall islaves imust ibe iable ito

isample ithe iaddress ithroughout ithis itime. iA islave, ion ithe iother ihand, ican iuse iHREADY ito

irequest ithat ithe imaster iextend ithe idata iphase. iWhen ithis isignal iis iLOW, iwait istates iare

iincluded iwithin ithe itransfer, igiving ithe islave imore itime ito isupply ior isample idata.

HRESP iis iused iby ithe islave ito iindicate iif ia itransfer iwas isuccessful ior inot.

4.5.5 Signal iDescriptions

4.5.5.1 iGlobal isignals

NAME SOURCE DESCRIPTION

HCLK Clock isource This iclock itimes iall ibus itransfers. iAll

isignal itimings iare irelated ito ithe irising

iedge iof iHCLK. i

HRESETn Reset icontroller The ibus ireset isignal iis iactive iLOW iand

iis iused ito ireset i

55 | P a g e

4.5.5.2 i iMaster isignals

NAME Destination DESCRIPTION

HADDR[31:0] Slave iand

idecoder

The i32-bit isystem iaddress ibus.

HBURST[2:0] Slave Indicates iif ithe itransfer iforms ipart iof ia

iburst. i

HMASTLOCK Slave When iHIGH, iindicates ithat ithe icurrent

itransfer iis ipart iof ia ilocked isequence. i

HPROT[3:0] Slave The iprotection icontrol isignals iprovide

iadditional iinformation i

HPROT[6:4] Slave Extended imemory itypes iare iadded ito

ithe iHPROT isignal iby ia i3-bit

iextension.

HSIZE[2:0] Slave Indicates ithe isize iof ithe itransfer, iwhich

iis itypically ibyte i(8-bit), ihalfword i(16-

bit) ior iword i(32-bit). i

HTRANS[1:0] Slave Indicates ithe itransfer itype iof ithe

icurrent itransfer. i

HWDATA[31:0] Slave The iwrite idata ibus iis iused ito itransfer

idata ifrom ithe ibus imaster ito ithe ibus

islaves iduring iwrite ioperations. i

HWRITE Slave When iHIGH ithis isignal iindicates ia

iwrite itransfer iand iwhen iLOW ia iread

itransfer. i

56 | P a g e

4.5.5.3 Slave isignals

NAME Destination DESCRIPTION

HRDATA[31:0] Multiplexer The iread idata ibus iis iused ito itransfer

idata ifrom ibus islaves ito ithe ibus imaster

iduring iread ioperations. i

HREADYOUT Multiplexer When iHIGH ithe iHREADY isignal

iindicates ithat ia itransfer ihas ifinished

ion ithe ibus. i

HRESP Multiplexer The itransfer iresponse iprovides

iadditional iinformation ion ithe istatus iof

ia itransfer i

4.5.5.4 Decoder isignls

NAME Destination DESCRIPTION

HSELx

Slave iEach islave ihas iits iown islave iselect

isignal iHSELx, iwhich isignals ithat ithe

ipresent itransfer iis ifor ithe islave inow

iselected.

4.5.5.5 Multiplexer isignals

NAME SOURCE DESCRIPTION

HRDATA[31:0] Master The idecoder iselects ia idata ibus ito

iread.

HREADY Master iand islave The iHREADY isignal iconveys ito ithe

imaster iand iall islaves ithat ithe iprevious

itransfer iis ifinished iwhen iit iis iHIGH.

HRESP Master The idecoder ichooses ithe itransfer

ianswer.

57 | P a g e

4.5.6 i iTransfers

There iare itwo istages ito ia itransfer:

• iUnless iextended iby ithe ipreceding ibus itransfer, ithe iaddress ilasts ifor ia isingle iHCLK icycle.

• iData imay inecessitate imultiple iHCLK icycles. iControl ithe inumber iof iClock icycles irequired

ito ifinish ithe itransfer iusing ithe iHREADY isignal.

The idirection iof idata iflow ito ior ifrom ithe imaster iis icontrolled iby iHWRITE. iAs ia iresult,

iwhen i:

• iWhen iHWRITE iis iHIGH, iit isignals ithat ia iwrite itransfer iis itaking iplace, iand ithe imaster

ibroadcasts idata ion ithe iHWDATA i[31:0] iwrite idata ibus.

• iWhen iHWRITE iis iLOW, ia iread itransfer iis iinitiated, iand ithe islave imust igenerate idata

ifor ithe iHRDATA i[31:0] iread idatabus.

 Fig 4.14 Read transfer[24]

58 | P a g e

 Fig 4.15 Write transfer [24]

In ithe icase iof ia istraightforward itransfer iwith ino iwait istates:

 After ithe irising iedge iof iHCLK, ithe imaster idrives ithe iaddress iand icontrol isignals ionto

ithe ibus.

 On ithe inext irising iedge iof iHCLK, ithe islave isamples ithe iaddress iand icontrol

iinformation.

 After isampling ithe iaddress iand icontrol, ithe islave ican ibegin idriving ithe iappropriate

iHREADY iresponse. iOn ithe ithird irising iedge iof iHCLK, ithe imaster isamples ithis

iresponse.

The iaddress iand idata iphases iof ithe itransfer iare ishown iin ithis ibasic iexample ithroughout

idifferent iclock icycles. iAny itransfer's iaddress iphase ihappens iduring ithe iprevious itransfer's idata

iphase. iThe ipipelined idesign iof ithe ibus inecessitates ithis ioverlapping iof iaddress iand idata,

iwhich iallows ifor igreat iperformance iwhile istill iallowing isufficient itime ifor ia islave ito irespond

ito ia itransfer.

Any transfer can have wait states added to it by a slave in order to give it more time to finish.

 Fig 4.16 Read transfer with wait state [24]

59 | P a g e

 Fig 4.17 Write transfer with wait state [24]

The master maintains data stability over lengthy periods of time for write operations. For read transfers,

the slave does not have to provide correct data until the transfer is virtually complete.

There are four different sorts of transfers (iHTRANS[1:0]) :

• IDLE (b00)

• No data transfer is necessary

• Slave must OKAY without waiting

• Slave must disregard IDLE

• BUSY (b01)

• Use a burst of idle cycles

• After that, the burst will continue

• In a burst, the address/control reflects the next transfer

• Slave must accept without waiting

 • Slave must be unconcerned

 BUSYNONSEQ (b10)

• A single burst transfer or the initial burst transfer is indicated.

• Control/address issues unrelated to previous transfers

 SEQ (b11)

• Burst's remaining transfers

• Addr = preceding addr + transfer size

 Fig 4.18 Transfer type examples [24]

60 | P a g e

4.6 iAdvanced ieXtensible iInterface i(AXI) i

 For icommunication ibetween imaster iand islave icomponents, ithe iAMBA iAXI iprotocol ioffers

ihigh-performance, ihigh-frequency isystem iarchitectures.

 iThe iAXI iprotocol:

• iCan ibe iused iin ihigh-bandwidth, ilow-latency idesigns.

• iOperates iat ia ihigh ifrequency iwithout ithe iuse iof icomplicated ibridges.

• iCan ibe iused iwith imemory icontrollers ithat ihave ia ilong iinitial iaccess idelay.

• iAllows ifor igreater ifreedom iin ithe idesign iof iconnection itopologies.

• iAHB iand iAPB iinterfaces iare ibackwards icompatible.

 iThe ikey ifeatures iof ithe iAXI iprotocol iare:

• iAddress/control iand idata iphases iare iseparated.

• iByte istrobes iare iused ito iprovide iunaligned idata itransfers.

• iTransactions iare iburst-based, iwith ionly ithe istart iaddress iissued.

• iRead iand iwrite idata ichannels iare iseparated, iallowing ifor ilow-cost iDirect iMemory iAccess

i(DMA).

• iAllows ifor inumerous ioutstanding iaddresses ito ibe iissued.

• iOut-of-order itransaction icompletion iis isupported.

• iAllows ifor ithe iquick iinsertion iof iregister istages ifor itiming iclosure.

4.6.1 iAXI iArchitecture

The iAXI iprotocol iis ia iburst-based iprotocol ithat idefines ifive itransaction ichannels:

• iRead ithe iaddress, iwhich istarts iwith ithe iletter iAR.

61 | P a g e

• iRead idata iwith isignal inames ithat ibegin iwith ithe iletter iR.

• iWrite ian iaddress iwith ia isignal iname ithat istarts iwith iAW.

• iWrite idata iwith ia isignal iname ithat istarts iwith iW.

• iCreate ia iresponse iwith ia isignal iname ithat istarts iwith ithe iletter iB.

Control iinformation iabout ithe ikind iof ithe idata ito ibe idelivered iis icarried iby ian iaddress

ichannel. i

The idata iis iexchanged ibetween ithe imaster iand islave iusing ione iof ithe ifollowing imethods:

• iA iwrite idata ichannel ithat iallows idata ito ibe itransferred ifrom ithe imaster ito ithe islave. iThe

iwrite iresponse ichannel iis iused iby ithe islave iin ia iwrite itransaction ito isignal ithe imaster iwhen

ithe itransfer iis icomplete.

• iData iis itransferred ifrom ithe islave ito ithe imaster ivia ia iread idata ichannel. iThe iAXI iprotocol

ientails ithe ifollowing isteps:

• iAllows ifor ithe idistribution iof iaddress iinformation iprior ito ithe iactual idata itransfer.

• iAllows ifor imany itransactions ito ibe iactive iat ithe isame itime.

• iAllows itransactions ito ibe icompleted iout iof iorder.

Figure i4.19 ishows ihow ithe iwrite iaddress, iwrite idata, iand iwrite iresponse ichannels iare

iused iin ia iwrite itransaction.

62 | P a g e

 Fig 4.19 Channel architecture of writes[25]

Figure 4.20 shows how the read address and read data channels are used in a read transaction.

 Fig 4.20 Channel architecture of reads [25]

4.6.2 iChannel idefinition

Each iof ithe ifive iseparate ichannels icontains ia iset iof iinformation isignals ias iwell ias ithe

iVALID iand iREADY isignals ithat iallow ifor ia itwo-way ihandshake. iThe iVALID isignal iis iused

iby ithe iinformation isource ito iindicate iwhen ithere iis ivalid iaddress, idata, ior icontrol iinformation

ion ithe ichannel. iThe iREADY isignal iis iused iby ithe idestination ito iindicate iwhen iit iis iready

ito itake ithe idata. iA iLAST isignal iis iincluded iin iboth ithe iread iand iwrite idata ichannels ito

isignify ithe itransfer iof ithe ilast idata iitem iin ia itransaction.

4.6.2.1 iRead iand iwrite iaddress ichannels

Each iread iand iwrite ioperation ihas iits iown iaddress ichannel. iAll iof ithe iessential iaddress iand

icontrol iinformation ifor ia itransaction iis icarried ion ithe iappropriate iaddress ichannel.

4.6.2.2 iRead idata ichannel

The iread idata ichannel itransports iboth iread idata iand iread iresponse iinformation ifrom ithe islave

ito ithe imaster iand icontains ithe ifollowing iinformation:

• iA idata ibus iwith ia iwidth iof i8, i16, i32, i64, i128, i256, i512, ior i1024 ibits.

• iA iread iresponse isignal ishowing ithe iread itransaction's icompletion istatus.

4.6.2.3 iWrite idata ichannel

The iwrite idata ichannel itransports iwrite idata ifrom ithe imaster ito ithe islave iand icontains ithe

ifollowing iinformation:

63 | P a g e

• iA idata ibus iwith ia iwidth iof i8, i16, i32, i64, i128, i256, i512, ior i1024 ibits.

• iEvery ieight idata ibits, ia ibyte ilane istrobe isignal iidentifying ithe ivalid ibytes iof ithe idata.

The iwrite idata ichannel iinformation iis ialways ihandled ias ibuffered, iso ithe imaster ican iperform

iwrite itransactions iwithout ihaving ito iwait ifor iearlier iwrite itransactions ito ibe iacknowledged

iby ithe islave.

4.6.2.4 iWrite iresponse ichannel

The iwrite iresponse ichannel iis iused iby ia islave ito irespond ito iwrite itransactions. iOn ithe iwrite

iresponse ichannel, iall iwrite itransactions irequire icompletion isignalling.

4.6.3 iInterface iand iinterconnect

A itypical isystem iconsists iof imultiple imaster iand islave idevices ithat iare iinterconnected iin

isome iway.

 Fig 4.21 Interface and interconnect [25]

The iAXI iprotocol iestablishes ia isingle iinterface ispecification ifor ithe ifollowing iinterfaces:

• iThere's ia imaster iand ithere's ian iinterconnect.

• iAn iinterconnect iand ia islave.

• iA islave iand ia imaster.

Many idistinct iconnectivity iimplementations iare isupported iby ithis iinterface idefinition. iA idevice

iinterconnect iis ithe isame ias ianother idevice ihaving isymmetrical imaster iand islave iports ito

iwhich igenuine imaster iand islave idevices ican ibe iconnected.

4.6.4 iTypical isystem itopologies

One iof ithree iinterconnect itopologies iis iused iby ithe imajority iof isystems:

64 | P a g e

• iAddress iand idata ibuses ithat iare ishared.

• iMultiple idata ibuses iand ishared iaddress ibuses.

• iMultiple iaddress iand idata ibuses ion ia imultilayer isystem.

The iaddress ichannel ibandwidth ineed iis ioften imuch ilower ithan ithe idata ichannel ibandwidth

irequirement iin imost isystems. iBy icombining ia ishared iaddress ibus iwith inumerous idata ibuses

ito ienable iparallel idata itransfers, isuch isystems ican istrike ia ifair icompromise ibetween isystem

iperformance iand iinterconnect icomplexity.

4.6.5 iRegister islices

Each iAXI ichannel ijust itransmits idata iin ione iway, iand ithe iarchitecture idoes inot irequire iany

iset ichannel irelationships. iBecause iof ithese icharacteristics, ia iregister islice ican ibe iintroduced

iat ipractically iany ipoint iin iany ichannel, ialbeit iat ithe ipenalty iof ian iextra icycle iof ilatency.

These icharacteristics iallow iyou ito ido ithe ifollowing:

• iA itrade-off ibetween idelay icycles iand imaximum ioperating ifrequency.

• iA idirect, iquick iconnection ibetween ia iCPU iand ihigh-performance imemory, iwith isimple

iregister islices iused ito iseparate ia ilonger ipath ito iperipherals iwith ilower iperformance

irequirements.

4.6.6 Signal Descriptions

4.6.6.1 iGlobal signals

Signal Source

ACLK Clock source

ARESETn Reset source

65 | P a g e

4.6.6.2 Address channel signals

4.6.6.3 iData channel signals

66 | P a g e

4.6.6.4 Write response channel signals

Write response channel (B) Signal Description

BID Identification tag

BRESP The state of a write transaction is

indicated by the write response.

BVALID Valid

BREADY Ready

67 | P a g e

 CHAPTER 5

 SIMULATION RESULTS AND ANALYSIS

In this chapter , AMBA protocol’s designs are implemented using Verilog in Xilinx VIVADO 2019.2

by selecting Zynq-7000 xc7z010sclg400-1 FPGA device. The AMBA Protocols: APB, AHB, AXI,

AXI4 have been designed.

The Simulation waveforms and synthesized designs are given in the following subsections.

5.1 APB

RTL schematic and synthesized design of APB protocol is shown in Figs 5.1 and 5.2 respectively. In

this design 9870 LUTs and 32802 Registers are used. The maximum delay, minimum delay, dynamic

power are found to be 4.676 ns, 0.392 ns and 28.746 W respectively.

 Fig 5.1 RTL Schematic of APB Protocol

68 | P a g e

 Fig 5.2 Synthesized Design of APB Protocol

69 | P a g e

 Fig i5.3 ishows iAPB iWrite icycle. iThe i iPADDR, iPWDATA, iPWRITE, iand iPSEL iare

iregistered iat ithe irising iedge iof iPCLK ito iinitiate ia iwrite itransfer i. iThe iSETUP icycle iis iwhat

iit's icalled. iThe iACCESS icycle, iPENABLE, iand iPREADY iare iregistered iat ithe inext irising

iedge iof ithe iclock i. iWhen iasserted, iPENABLE isignifies ithat ithe itransfer's iAccess iphase ihas

ibegun. iPREADY isignals ithat ithe islave ican ifinish ithe itransfer iat ithe inext irising iedge iof

iPCLK iwhen iasserted. iThe iPADDR, iPWDATA, iand icontrol isignals iare iall ivalid iuntil inext

icycle i, ithe iend iof ithe iAccess iphase, iwhen ithe itransfer iis icompleted. iAt ithe iend iof ithe

itransfer, ithe iPENABLE iis idisabled. iUnless ithe itransfer iis ipromptly ifollowed iby ianother

itransfer ito ithe isame iperipheral, ithe ichoose isignal iPSEL iis ialso idisabled.

 Fig 5.3 Simulation results of write cycle for APB Protocol

70 | P a g e

 Fig i5.4 ishows iAPB iRead icycle. iThe iPENABLE, iPSEL, iPADDR, iand iPWRITE isignals iare

iasserted iat ithe iclock iedge i iduring ireading ioperation i(SETUP icycle). iPENABLE, iPREADY,

iand iPRDATA iare iasserted iat ithe iclock iedge i(ACCESS icycle), iand iPRDATA iis ialso iread

iduring ithis iphase. iThe idata imust ibe iprovided iby ithe islave ibefore ithe iread itransmission iis

icompleted.

 Fig 5.4 Simulation result of Read Cycle for APB Protocol

5.2 AHB

RTL schematic and synthesized design of AHB protocol is shown in Figs 5.5 and 5.6 respectively. In

this design 1406 LUTs and 4355 Registers are used. The maximum delay, minimum delay, dynamic

power are found to be 4.076 ns, 0.305 ns and 9.319 W respectively.

71 | P a g e

 Fig 5.5 RTL Schematic of AHB Protocol

72 | P a g e

 Fig 5.6 Synthesized Design of AHB Protocol

73 | P a g e

Figure 5.7 depicts a simulation of an AHB system with one AHB master and four AHB slaves. The

bus connection logic consists of one address decoder and one slave-to-master multiplexer. The decoder

monitors the master's address and picks the suitable slave, while the multiplexor sends the slave output

data back to the master. Multi-master designs are also possible with AHB thanks to an interconnect

component that arbitrates and directs signals from many masters to the appropriate slaves.

 Fig 5.7 Simulation results of AHB Protocol

74 | P a g e

5.3 AXI Slave

RTL schematic and synthesized design of AXI protocol is shown in Figs 5.8 and 5.9 respectively. In

this design 1328 LUTs and 649 Registers are used. The maximum delay, minimum delay, dynamic

power are found to be 5.541 ns, 0.395 ns and 12.036 W respectively.

 Fig 5.8 RTL Schematic of AXI Slave

75 | P a g e

 Fig 5.9 Synthesized Design of AXI Slave

76 | P a g e

5.4 AXI 4 LITE SLAVE

RTL schematic and synthesized design of AXI 4 Lite Slave protocol is shown in Figs 5.10 and 5.11

respectively. In this design 222 LUTs and 341 Registers are used. The maximum delay, minimum

delay, dynamic power are found to be 4.076 ns, 0.385 ns and 5.456 W respectively.

 Fig 5.10 RTL Schematic of AXI 4 Lite Slave

77 | P a g e

 Fig 5.11 Synthesized Design of AXI 4 Lite Slave

78 | P a g e

The AXI4-Lite Slave is a basic Memory with 16 register locations of 32-bit data content, as shown in

Fig. 5.12. Reading operations are performed from customized Memory to Master, which reads the data

in memory.

The following are the key tasks or functions that the slave and Master perform:

• During the reading process, the Master communicates a specific address from which it wishes

to read data from the memory file/peripheral through the ARADDR signal on the read address

channel, as well as validating the address.

• If there is a valid address, ARVALID will be equal to logic one .Until the RREADY signal is

logic one, the Master's address remains steady.

• Memory acknowledges Master by declaring ARREADY and placing the data on a data bus,

signaling that it accepts the address.

When valid data is present on the data bus, the RVALID Signal becomes high, signaling that the

master accepts the data and reads the data.

 Fig 5.12 Simulation Result of AXI 4 Lite Slave

79 | P a g e

5.5 Comparison

All designs are functionally verified using simulation on Vivado 2019.2 and selecting Zynq-7000

xc7z010sclg400-1 FPGA. The designs are compared in terms of area (Look Up Tables i.e LUTs),

maximum delay, minimum delay and dynamic power. The findings are summarized in Table 5.1.

 Table 5.1 Summary of AMBA Protocols Implementations

 AMBA

Protocols

 Slices

 Power (in Watt)

 Delay (in ns)

LUTs Registers Dynamic

Power

Static

power

Maximum

delay

(Setup)

Minimum

delay

(Hold)

APB 9870 32802 28.746 0.747 4.676 0.392

AHB 1406 4355 9.319 0.747 4.076 0.305

AXI 1328 649 12.036 0.747 5.541 0.395

AXI4 222 341 5.456 0.291 4.076 0.385

80 | P a g e

 CHAPTER 6

 CONCLUSION AND FUTURE SCOPE

The AMBA Bus protocols i.e APB, AHB, AXI, AXI4 have been implemented in VIVADO 2019.2 by

selecting Zynq-7000 xc7z010sclg400-1 FPGA, written in Verilog HDL language. They have further

been analysed in terms of hardware utilization (number of slices, which is comprised of Look Up

Tables or LUT and Registers), timing (delay in ns) and power consumption (in watt). We now see

from the above timing diagrams that our RTL design based on the state diagram is indeed correct as

verified by the timing diagrams of read and write cycle.

The integration trend continues in the current era of heterogeneous computing for HPC and data centre

sectors, with an increasing number of processor cores and many heterogeneous computing parts such

as GPU, DSP, FPGAs, memory controllers, and IO sub systems. AMBA4 AXI4: Extending System-

Wide Coherency with AMBA 4 AXI Coherency Extensions is an introduction to AMBA4 AXI4

(ACE). As a re-design of the AXI/ACE protocol, the CHI (Coherent Hub Interconnect) protocol was

created. The AXI/ACE signal-based protocol was replaced with the new packet-based CHI layered

protocol, which can scale very well in the near future.

81 | P a g e

REFERENCES

[1] “AMBA Specification (Rev 2.0)”, available at http://www.arm.com.

[2] ARM. “AMBA Open Specifications” http://www.arm.com/products/system- ip/amba/ambaopen

specifications.php.

[3] http://en.wikepedia.org/wiki/ Advanced_MicrocontrollerBus_Architecture.

[4] Kiran Rawat et al. (2015). “RTL Implementation for AMBA ASB APB Protocol at System on Chip

Level” 2nd International Conference on Signal Processing and Integrated Networks (SPIN,) pp. 927-

930.

[5] Yasemin M. Akay et al. (2009). “Hippocampal gamma Oscillations in Rats” IEEE Engineering in

Medicine and Biology Magazine, vol. 28, pp. 92-95.

[6] Kiran Rawat et al. (2014). “Design of AMBA APB Bridge with Reset Controller for Efficient

Power Consumption” 9th International Conference on Industrial and Information Systems (ICIIS),

pp.1-5.

[7] Kiran Rawat et al. (2015). “Implementation of AMBA APB Bridge with Efficient Deployment of

System Resources” International Conference on Computer, Communication and Control (IC4), pp.14.

[8] Jasmine Chhikara et al. (2015). “Implementing Communication Bridge between 12C and APB”

IEEE International Conference on Computational Intelligence & Communication Technology, pp.

235-238.

[9] Ashutosh Gupta et al. (2016). “Physical Design Implementation of 32-bit AMBA ASB APB

module with improved performance” International Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT), pp. 3121-3124.

[10] Kanishka Lahiri and Anand Raghunanthan (2004). “Power Analysis of System-Level On-Chip

Communication Architectures” International Conference on Hardware/Software Codesign and System

Synthesis, pp. 236-241.

[11] Raed M. Salih and Laszek T. Lilien (2015). “Protecting Users’ Privacy in Healthcare Cloud

Computing with APB-TTP” IEEE International Conference on Pervasive Computing and

Communication Workshops (Per Com Workshops), pp. 236-238.

82 | P a g e

[12] Roopa M. et al. (2013) “UART Controller as AMBA APB Slave” National Conference on

Challenges in Research & Technology in the Coming Decades, pp. 1-6.

[13] Chenghai Ma et al. (2011) “Design and Implementation of APB Bridge based on AMBA 4.0”

International Conference on Consumer Electronics, Communications and Networks (CECNet), pp.

193-196.

[14] Ge Zhiwei et al. (2009). “Design of On-chip Image Processing Based on APB Bus with CMOS

Image Sensor” IEEE 8th International Conference on ASIC, pp. 963-966.

[15] Miss. Dhage Naiyna Kashinath and Prof. S.I. Nipanikar (2015). “AMBA Bus with Multiple

Masters Using VLSI” IJEDR, vol. 3, pp. 97-102.

[16] 17 P. P. Sotiriadis and A. P. Chandrakasan (2002). “A Bus Energy Model for Deep Submicron

Technology,” IEEE Trans. VLSI Systems, vol. 10, pp. 341–350.

[17] M. R. Stan and W. P. Burleson (1995). “Bus Invert Coding for Low Power I/O,” IEEE Trans.

VLSI Systems, vol. 3, pp. 49–58.

[18] L. Benini, A. Macii et al. (2000). “Architectures and Synthesis Algorithms for Power-efficient

Bus Interfaces,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 969–980.

[19] C.-T. Hsieh and M. Pedram (2002). “Architectural Power Optimization by Bus Splitting,” IEEE

Trans. Computer-Aided Design, vol. 21, pp. 408–414.

[20] J. Y. Chen et al. (1999). “Segmented Bus Design for Low Power,” IEEE Trans. VLSI Systems,

vol. 7, pp. 25–29.

[21] T. Lv et al. (2003). “A Dictionary-based En/decoding Scheme for Low-power Data buses,” IEEE

Trans. VLSI Systems, vol. 11, pp. 943–951.

[22] Sharma, Archana C., and C. Z. Ali. "Construct High-Speed SDRAM Memory Controller Using

Multiple FIFO’s for AHB Memory Slave Interface." International Journal of Emerging Technology

and Advanced Engineering3, no. 3 (2013): 907-916.

[23] Kareemullah Shaik, Mohammad Mohiddin, Md. Zabirullah, “A Reduced Latency Architecture

for Obtaining High System Performance”, IJRTE, 2012.

[24] Acasandrei, Laurentiu, and Angel Barriga. "AMBA bus hardware accelerator IP for Viola-Jones

face detection."IET Computers & Digital Techniques 7, no. 5 (2013): 200-209.

[25] Gandhani, P., & Patel, C. (2011). Moving fromAMBA AHB to AXI Bus in SoC Designs: A

Comparative Study. International Journal of Computer Science & Emerging Technologies (IJCSET),

2(4), 476-479.

83 | P a g e

[26] Kandiya, M. M. N., Harniya, M. M. K., & Govani, K. K. (2014). Implementation of Read/Write

operation for AMBA AXI4 Bus using VHDL. IJFTMR. I, IV, 1-3.

[27] Samir Palnitkar. (2003). Verilog HDL: A Guide to Digital Design and Synthesis, Second Edition

Publisher:Prentice Hall PTR.

[28] Xilinx Datasheet: www.xilinx.com/zynq7000-Pkg-Pinout.

[29] www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture.

[30] www.store.digilentic.com.

http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.store.digilentic.com/

