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ABSTRACT

Robots generally su�er from nonlinearities such as deadzone, backlash and deadband. The

inherent coupling e�ect between links of the robot along with nonlinearities puts consid-

erable challenge to control the position of end e�ector. A two link manipulator is a basic

robot in which most of the controllers are implemented to get a fair idea of the control

performance. In this paper we use a adaptive neural network for controlling a two link rigid

planar manipulator with deadzone at input. The deadzone at the input is not static but dy-

namic. To remove the e�ect of deadzone, inverse deadzone is used which just adds an o�set

to the control input. The o�set is greater than or equal to the deadzone width and hence

there could be some extra input going to the actuator which is modeled as disturbance in

the system. Performance of the Multilayer Neuroadaptive (MN) controller is compared with

typical Single Layer Neuroadaptive controller, PID and classical Adaptive Controller in sim-

ulation. Error norms and other parameters are calculated for di�erent control performance

are given to compare quantitatively.

Keywords: Neuroadaptive; Deadzone; Inverse Deadzone; Manipulator;
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Chapter 1

Introduction

Robot manipulators are complicated multi-input�multi-output (MIMO) system, with strongly

coupled nonlinear characteristics. Given structured uncertainties, such as inertia, Coriolis,

gravity, and friction torque, the position tracking accuracy of a robot and the accuracy of

joint torque information are seriously a�ected. So there is need for fast and reliable con-

trollers that can handle the nonlinearities and give good steady-state and transient response.

The dynamics of the robot are modelled by euler-lagrange equation. Several controllers have

been designed for uncertain euler-lagrange systems like classical adaptive control [1], Com-

posite adaptive control [8], neuroadaptive control [6]. Neural network possesses an nonlinear

structure which is suitable for estimation and control of unknown nonlinear systems and thus

has been used widely for systems with deadzone [3]. In [5] state-feedback control is used

to control robot and the deadzone e�ect is approximated by a Radial Basis Function Neu-

ral Network (RBFNN). In [11] neural network is used to control manipulators with input

deadzone and output constraints. In [2] multilayer neural network is trained to identify

and control the system using a modi�ed back-propogation algorithm. In [10] a nonlinear

compensator using neural networks is proposed for manipulator control. In this paper a mul-

tilayer neuroadaptive controller is simulated on a two link manipulator with input deadzone.

Most of the existing papers deal with single layer neuroadaptive controllers but this paper

considers its variant multilayer neuroadaptive controller with sigmoidal activation function,

MN is shown to be better in terms of reducing error than single layer adaptive controller,

PID, and classical adaptive controller. Novelty of the work lies in the fact that rather than

estimating deadzone by neural network, a much simpler approach is shown. The deadzone

along with inverse deadzone is modelled as disturbance at the input. All the simulations

were done on Matlab. Tracking performance of the manipulator are shown and error norms

are calculated for comparison.

1.1 Problem Statement

Many controllers are already designed for manipulator robots. These controllers will also

work on our system but the performance would be worse when the direction of the motor

changes. This is because at this point the e�ect of deadzone is more. So the aim of this

project is to model the robot include the deadzone and then accordingly design neural

network controller to work on it.



1.2 Methodology 2

We have used various controllers in this project. Intially theses controllers were tested

on one-link manipulator which were

� PID

� Classical Adaptive Controller

� State Feedback Controller

Then after analysing the results we proceeded to test multiple adaptive controllers on

two-link manipulator which were

� PID

� Classical Adaptive Controller

� Single Layer Neuroadaptive Controller

� Multi Layer Neuroadaptive Controller

1.2 Methodology

First of all the simple dynamics of a loaded motor with input deadzone is used to test

the adaptive algorithm. Based on it's performance the same or better result is tried to be

obtained in two-link manipulator.

The dynamics of rigid planar two-link manipulater is modelled with euler-lagrange equa-

tion. The deadzone at the input is of varying positive and negative widths. The upper limit

of the deadzone width is known and is used to design inverse deadzone which adds an �xed

o�set greater than or equal to the deadzone width to the control input . The change is

incorporated as disturbance at the input. The parameters of the robot are not known. For

neuroadaptive controller the dynamics of the robot is modelled in neural network and its

weights are estimated online. The control objective is to track the trajectory by links of the

robot.

1.3 Organization of Thesis

Next chapter introduces the robots, their dynamics along with some properties of euler-

langrangian systems. The controller will be designed based on this information.

Third chapter is on deadzone modeling which will then be included in the robot dynamics.

This is then considered as deadzone compensated dynamics.
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Fourth and �fth chapter has controller design and stability proofs of various adaptive

controllers implemented on single and double link manipulator. Results are then compared.

Sixth chapter concludes the result obtained and suggests future work that could be made

in the controller for improvement.

The appendix has the Simulink blocks along with matlab codes of the various controllers

implemented on the model.



Chapter 2

System Description

2.1 Introduction

For designing any controller for a system, �rst the system need to be modeled mathemati-

cally. Relation between input and ouput should be de�ned based on which a good controller

is derived. In this project Euler-Lagrangian equations are used to de�ne the dynamics of

the manipulator. The dynamics is then shown as a combination of regressor and unknown

parameters. This type of model is used for adaptive controller design.

2.2 Model Description

The general Euler-Lagrange dynamics is of the form

τ = M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) (2.1)

where τ(t) ∈ Rn is input torque, q(t) ∈ Rn, represents the generalised coordinates of the sys-

tem. M(q) ∈ Rn×n symmetric positive de�nite inertial matrix, C(q, q̇) ∈ Rn×n is centripetal-

Coriolis matrix, G(q) ∈ Rn is the gravity vector, and F (q̇) ∈ Rn is represents friction vector.

The initial conditions are de�ned as q (t0) = q0 and q̇ (t0) = q̇0. The states q(t) and q̇(t) are

measurable andM(q), C(q, q̇), F (q̇), G(q) are locally Lipschitz in their respective arguments

and contain uncertain unknown parameters. Following are some important properties of the

above dynamics, which will be used in control design and stability proofs [4], [9].

Property 2.1: M(q) > 0 ∀q and is bounded by the following inequality

µ1I ≤M(q) ≤ µ2I , µ1 , µ2 ∈ R>0 (2.2)

Property 2.2: There exists a skew symmetric relationship

yT
(
Ṁ − 2C

)
y = 0, ∀y ∈ Rn (2.3)

Property 2.3: The centripetal-Coriolis matrix, gravity vector, and the friction vector
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satisfy the following bounds.

‖C(q, q̇)‖ ≤ c‖q̇‖ (2.4)

‖G(q)‖ ≤ ḡ (2.5)

‖F (q̇)‖ ≤ f1 + f2‖q̇‖ (2.6)

where c, ḡ, f1, f2 are positive constants.

Property 2.4: The EL dynamics in (2.1) is linear in parameter, so, it can be expressed as

Φ(q, q̇, q̈)θ, where Φ is the regressor matrix and θ is the unknown parameter vector.

2.3 Single-Link Manipulator

Initially a single-link manipulator is modeled to test the controller. Single link manipulator

is basically a loaded motor and can be described by the dynamics:

τ = Jq̈ +Bq̇ (2.7)

Here q being the angular position of the link, J is the moment of inertia and B is the viscous

friction. Torque τ is the input given to the system. This could also be written in the form

of �rst order transfer function

ω(s)

τ(s)
=

K

Ts+ 1
(2.8)

Here ω is angular velocity of the link, K = 1/B and T = J/B.

2.4 Two-Link Manipulator

For experiment, a planar 2-DOF RR (revolute joints) manipulator is used. The euler-

lagrangian dynamics for the robot is
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Figure 2.1: Rigid planar two-link manipulator

[
τ1

τ2

]
=

[
p1 + 2p2c2 p3 + p2c2

p3 + p2c2 p3

]
︸ ︷︷ ︸

M(q)

[
q̈1

q̈2

]
+

[
−p2s2q̇2 −p2s2(q̇1 + q̇2)

p2s2q̇1 0

]
︸ ︷︷ ︸

C(q,q̇)

[
q̇1

q̇2

]

+

[
fv1 0

0 fv2

]
︸ ︷︷ ︸

Fv

[
q̇1

q̇2

]
+

[
dz1

dz2

]
︸ ︷︷ ︸

Dz︸ ︷︷ ︸
F (q̇)

(2.9)

Where the parameters are

p1 = I1 + I2 +m2l
2
1

p2 = m2l1lc2

p3 = I2

c2 = cos(q2), s2 = sin(q2)

(2.10)

Here I1, I2 are the moment of inertia of the links about the axis of rotation and m1, m2

are the masses of the links. The mass of �rst link also includes the mass of motor placed

on it. l1, l2 are the length of the links and Lc1, Lc2 are the position of center of mass of the

links as shown in Fig.2.1. There is no G(q) term as it is a planar manipulator. Fv ∈ R2×2

is viscous friction coe�cient matrix. Dz is excess torque for deadzone compensation that is

discussed in section 3.2. Dz and Fv together constitute the friction vector F (q̇).
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The equation (2.9) is linear in parameter and thus can be written as

τ = ΦT(q̈, q̇, q)θ (2.11)

Where Φ is the known regressor matrix and θ is the unknown parameter vector:

θT =
[
p1, p2, p3, fv1, fv2, dz1, dz2

]
(2.12)

2.5 Conclusion

In this chapter, Euler-Lagrangian model of two link and single link manipulator were derived

from the general Euler-Lagrangian equations. Important properties of the dynamics are

mentioned which will be later used for deriving adaptive laws.

The dynamics was written in the form of regressor matrix and unknown parameter vector.



Chapter 3

Deadzone Modeling

3.1 Introduction

Like all mechanical robots with actuators, the manipulator in discussion also has deadzone

at input. This deadzone need to be modeled so that the controller compensated for it and

takes the extra variable into consideration. This will make for a better controlling action.

The regressor matrix of the dynamics has acceleration term which is not available. So

dynamics �ltering is done to remove that term. This will also remove noise and the need to

calculate acceleration by di�erentiation.

3.2 Deadzone Compensation

In mechanical systems, there is always deadzone present due to friction forces. Considering

the deadzone width changes within a range and is incorporated in model for accurate control

action. Let the input deadzone be (3.1)

τin =


u− d+ for u > d+

0 for d− ≤ u ≤ d+

u− d− for u < d−
(3.1)

Where u is the control input and τin is the actual torque input that a�ects the system.

Figure 3.1: Deadzone at the input

To remove the e�ect of deadzone we add an inverse deadzone in the controller. The

deadzone widths are not strictly constant and vary slightly within a range. The inverse

deadzone is constructed with the upper limit of the deadzone widths d. Now after this

modi�cation, let τ be the control input, then
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u =


τ + d+ for τ > 0

0 for τ = 0

τ + d− for τ < 0

(3.2)

Figure 3.2: Inverse deadzone to compensate the input deadzone

Let, Dz = d− d̄. Dz is negaitve as d̄ ≥ d. So the actual torque input being sent to the

actuators after applying inverse deadzone is

τin = τ + d̄− d
=⇒ τ = τin − (d̄− d)

=⇒ τ = M(q)q̈ + C(q, q̇)q̇ +G(q) + Fv(q̇) +Dz︸ ︷︷ ︸
F (q̇)

(3.3)

Similarly the equivalent deadzone compensated 1-DOF manipulator dynamics becomes

τ = Jq̈ +Bq̇ +Dz (3.4)

3.3 Dynamic Filtering

Regressor Φ in (2.11) depends on the value of q̈. Acceleration can be computed by dif-

ferentiating velocity but doing so would introduce noise. To remove the dependency on

acceleration data, regressor Φ and torque τ are passed through a low pass �lter.

Φ̇F = −pFΦF + Φ ΦF (t0) = 0 (3.5)

τ̇F = −pF τF + τ τF (t0) = 0 (3.6)
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where pF > 0 is a scalar �lter gain. The above �lter equations can be solved for getting the

�ltered regressor ΦF (t, q, q̇) ∈ Rn×p and the �ltered torque τF ∈ Rn as shown below

ΦF (t) = exp {−pF t}
∫ t

t0

exp {pF s}Φ(s)ds (3.7)

τF (t) = exp {−pF t}
∫ t

t0

exp {pF s} τ(s)ds (3.8)

Using (2.11) in (3.8) the following relation is deduced.

ΦT
F (t, q, q̇)θ = τF (3.9)

Although τF (t) can be obtained directly by solving (3.6), ΦF (t, q, q̇) cannot be solved from

(3.5) because Φ(q, q̇, q̈) is dependent on q̈ which is not known. However, Φ(q, q̇, q̈) can be

split into measurable and unmeasurable terms as

ΦT θ = ΦT
1 (q, q̈)θ + ΦT

2 (q, q̇)θ (3.10)

where Φ1 and Φ2 are the following regressors

Φ1(q, q̈)θ = M(q)q̈ (3.11)

Φ2(q, q̇)θ = C(q, q̇)q̇ +G(q) + F (q̇) (3.12)

Since Φ2(q, q̇) is known, the di�erential equation below can be solved online.

Φ̇F2 = −ρFΦF2 + Φ2, ΦF2 (t0) = 0 (3.13)

Further, considering the following di�erential equation.

Φ̇F1 = −ρFΦF1 + Φ1, ΦF1 (t0) = 0 (3.14)

The solution of (3.14) is given by

ΦF1(t) = e−kt
∫ t

t0

eksΦ1(s)ds (3.15)

Structure M(q)q̈, is such that the elements of Φ1(q, q̈) are of the form f (qk) q̈l for some

l, k ∈ {1, 2, . . . , n}, and qi represents the i
th scalar component of the vector q. Thus, by

using integration by parts on the elements of ΦF1 we get

e−ρF t
∫ t

t0

eρF sf (qk(s)) q̈l(s)ds = f (qk(t)) q̇l(t)− e−pF (t−t0)f (qk (t0)) q̇l (t0)− h(t) (3.16)



3.4 Conclusion 11

where h(t) is given by the di�erential equation:

ḣ = −ρFh+ ḟ (qk(t))q̇l(t) + ρFf (qk(t)) q̇l(t), h (t0) = 0 (3.17)

Using (3.14), (3.16) and (3.17), ΦF1(t) can also be computed online, and therefore ΦF =

ΦF1 + ΦF2 can be obtained online (refer [8] for further details).

3.4 Conclusion

Deadzone was modeled and compensated by adding an o�set at the input. Deadzone is

not �xed but changing. So the extra o�set term is the included in the dynamics for better

control action.

A �rst order low pass �lter was applied on the dynamics which removed the acceleration

term. The �nal �ltered dynamics will be used henceforth for designing the controller.



Chapter 4

Controller Design for 1-DOF Manipulator

4.1 Introduction

Single-Link or 1-DOF manipulator is simply a motor with load. First adaptive controller

is tested on this basic robot which gives insight into the control system. Based on the

performance of di�erent controller, controller is designed for more complex robot in the

next chapter.

The objective is to design an adaptive state-feedback controller to track a desired tra-

jectory qd(t) ∈ R in the presence of parametric uncertainties in J,B and Dz. The tracking

error is de�ned as

e(t) , q(t)− qd(t) (4.1)

It is assumed that the desired trajectory qd(t) is continuous and di�erentiable and qd(t), q̇d(t) ∈
L∞.

4.2 PID Controller

Most of the industrial controllers are PID controller due to its ease of design and implemen-

tation. The generalized equation of PID controller in time domain is given by

U(t) = KP e(t) +KD
de(t)

dt
+KI

∫
e(t)dt (4.2)

where U(t) is control input, KP is proportional gain, KD is derivative gain, KI is integral

gain. In s-domain the equation of PID controller is given as

U(s) = KPE(s) +KDsE(s) +
KIE(s)

s
(4.3)

The bene�t of PID controller is that it neither needs plant parameters nor deadzone

widths. The integral action of PID controller automatically compensates for the nonlin-
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earity i.e. deadzone. PID controller requires the gain to be tuned according to the user

requirements. We have tuned the PID gains by trail and error method.

The PID gains are kp = 4, kd = 12, kI = 3

Figure 4.1: PID Tracking Control of Single Link

4.3 State Feedback Controller

The state space of the system is

ẋ = Ax+Bu

y = Cx (4.4)

where x =

(
q

ω

)
, A =

(
0 1

0 −B/J

)
, B =

(
0

1/J

)
, and C =

(
1 0

)
The feedback controller is

u = −Kx (4.5)

where K = (K1 K2) is controller gain, which is given by placing the pole to desired

location.

The close loop system becomes
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ẋ = (A−BK)x (4.6)

The characteristics equation becomes

det(sI − A+BK) = 0 (4.7)

We can place poles to desired location to get the gain matrix K. For this controller we

need complete system knowledge i.e. J, B and deadzone widths for using pre-compensator

as used in previous part.

ẋ = Ax+Bu

y = Cx

A =

(
0 1

0 −0.33

)
, B =

(
0

33.13

)
, C =

(
1 0

) (4.8)

To ensure same control e�ort we will directly use matrix K as

K =
[

1 0.05
]

With this K the close loop poles of system are at −0.185± j0.869

Figure 4.2: State Feedback Tracking Control of Single Link
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4.4 Adaptive Controller

Let

[τ(s) + τoff (s)]
Kp

s(Jp +Bp)
= q(s) (4.9)

(4.10)

=⇒ τ(s) + τoff (s) =
Jp
Kp

s2q(s) +
Bp

Kp

sq(s) (4.11)

Taking the laplace inverse

=⇒ τ(t) + τoff (t) =
Jp
Kp

(̈q) +
Bp

Kp

q̇ (4.12)

We know that error e(t) = q(t)− qd(t). De�ne �ltered tracking error:

r = ė+ αe α > 0 (4.13)

Di�erentiate and multiply Jp
Kp

on both sides we get

Jp
Kp

ṙ =
Jp
Kp

ë+ α
Jp
Kp

ė (4.14)

=
Jp
Kp

q̈ − Jp
Kp

q̈d + α
Jp
Kp

ė (4.15)

Substituting the value from

=− Bp

Kp

q̇ + τoff + τ − Jp
Kp

q̈d + α
Jp
Kp

ė (4.16)

=
[
−q̇ −q̈d + αė

]
︸ ︷︷ ︸

Y (e,ė,t)

[
Bp

Kp
Jp
Kp

]
︸ ︷︷ ︸

Φ

+τoff + τ (4.17)

Writing in the form of regressor and parameter matrix we get

Jp
Kp

ṙ = Y Φ + τoff + τ (4.18)

Let the control input be τ = −Y Φ̂ − Kr where K > 0 and Φ̂ is the estimated Φ.

Substituting this torque in the above equation we closed-loop error system

Jp
Kp

ṙ = Y Φ̃−Kr + τoff (4.19)
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Here Φ̃ = Φ− Φ̂.

Choose Lyapunov function candidate

V (r, Φ̃) =
1

2

Jp
Kp

r2 +
1

2
Φ̃TΓ−1Φ̃ (4.20)

Di�erentiating and substituting the values we get

V̇ = r(Y Φ̃−Kr + τoff )− Φ̃TΓ−1 ˙̂
Φ (4.21)

= −Kr2 + τoffr + rY Φ̃− Φ̃TΓ−1 ˙̂
Φ (4.22)

Consider the adaptive law with sigma modi�cation:

˙̂
Φ = ΓY T r − ΓσΦ̂ (4.23)

Substituting this in the above equation

V̇ = −Kr2 + τoffr + σΦ̃T Φ̂ (4.24)

Substituting Φ̂ = Φ− Φ̃

V̇ = −Kr2 + τoffr + σΦ̃TΦ− σΦ̃T Φ̃ (4.25)

Taking upper bound τoff ≤ ¯τoff and norms

≤ −K ‖r‖2 + ¯τoff ‖r‖+ σ
∥∥∥Φ̃T

∥∥∥ ‖Φ‖ − σ ∥∥∥Φ̃
∥∥∥2

(4.26)

Using Young's Inequality

V̇ ≤ −K ‖r‖2 + ¯τoff ‖r‖ −
σ

2

∥∥∥Φ̃
∥∥∥2

+−σ
2
‖Φ‖2 (4.27)

This can be written as

V̇ ≤ αvV + C (4.28)

where αv and C are some constants. This controller is UUB (Uniformly Ultimately Bounded)

Stable.
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Figure 4.3: Adaptive Tracking Control of Single Link

4.5 Performance Comparison

Table 4.1 shows the RMS values of error, �ltered error and the estimation error. The formula

used for calculating RMS is

Urms =

√∑N−1
n=0 u

2(n)

N
(4.29)

Here, N is the total samples taken in the period of 10 seconds which comes out to be 10,0000

samples (sampling time = 0.0001 s).

Table 4.1: RMS measures of control system performance of Single Link Manipulator

Controller ‖e‖
PID 6.523

State Feedback 120.1

Classical Adaptive 1.097

4.6 Conclusion

As seen in the plots, and the Table 4.1, con�rms that out of all the controllers, adaptive

controller performed the best in reducing the tracking error but the state feedback controller

performed worst due to e�ect of changing deadzone width.



Chapter 5

Controller Design for Two Link Manipulator

5.1 Introduction

Two-Link horizontal planar manipulator is typically used as industrial robot for welding,

painting, pick-and-place,etc. It is basically emulating the arm of humans. The robot has

coupled dynamics and deadzone at input which makes the designing of the controller di�cult.

In this chapter various adaptive controllers are tested on the robot and conclusion is

drawn based on their performance.

The objective is to design an adaptive state-feedback controller to track a desired trajec-

tory qd(t) ∈ Rn in the presence of parametric uncertainties in M(q), C(q, q̇) and F (q̇). The

tracking error is de�ned as

e(t) , q(t)− qd(t) (5.1)

It is assumed that the desired trajectory qd(t) is continuous and twice di�erentiable and

qd(t), q̇d(t), q̈d(t) ∈ L∞.

5.2 Classical PD Adaptive Controller

The adaptive controller consists of a PD feedback part and a full dynamics feedforward

compensation part, with the unknown manipulator parameters being estimated online [7].

5.2.1 Controller Design

Consider �ltered tracking error which is but the PD feedback,

r(t) , ė+ αe (5.2)

where α > 0 is a positive scalar. Using (2.1), (5.1), and (5.2) we get the dynamics

Mṙ = −Cq̇ −G− F −Mq̈d +Mαė+ τ (5.3)
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Using Property 4.3 the above dynamics can be represented as

Mṙ = Y (q, q̇, qd, q̇d) θ + τ − Cr (5.4)

where θ ∈ Rp is the unknown parameter vector, p being the number of parameters and

Y ∈ Rn×p is the known regressor matrix. Here, Y θ is given by

Y θ = −Cq̇ −G− F −Mq̈d +Mαė+ Cr (5.5)

Consider the following torque control input design

τ = −Y θ̂ − kr (5.6)

where k > 0 is a scalar feedback-gain, and θ̂(t) ∈ Rp is an online estimate of the unknown

system parameter vector θ, updated using the following adaptive law.

˙̂
θ = ΓθY

Tr (5.7)

where Γθ is a PD adaptive gain matrix.

5.2.2 Stability Analysis

Substituting the torque control input (5.6) the dynamics (5.4), the closed-loop error dynam-

ics becomes

Mṙ = Y θ̃ − kr − Cr (5.8)

Consider the following PD, radially unbounded, and decrescent Lyapunov candidate

V =
1

2
rTMr +

1

2
θ̃TΓ−1

θ θ̃ (5.9)

Taking the time-derivative of (5.9) and substituting the error dynamics from (5.8) yields

V̇ = rT
(
Y θ̃ − kr − Cr

)
+

1

2
rTṀr − θ̃TΓ−1

θ
˙̂
θ (5.10)

Canceling the like terms, using Property 2.2, and the adaptive law (5.7) the above equation

further simpli�es to

V̇ = −rTkr ≤ 0 (5.11)

implying r(t) → 0 as t → ∞. The same cannot be proved about θ̃, however, we can say

that it will be bounded. Thus the adaptive controller is globally asymptotically stable and
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guarantees zero steady-state error for joint positions.

5.3 Single Layer Neuroadaptive Controller

A single layer neural network(SLNN) with sigmoidal activation function for estimation of θ

is implemented [5,3]. For SLNN we can approximate Y θ as

Y θ = W Tγ
(
V Tx

)
+ ε (x) (5.12)

Y θ = W TΦ (x) + ε (x) (5.13)

Here W is the output weight matrix, Φ (x) = γ
(
V Tx

)
is the activation function ap-

plied on the input layer, V is the input to hidden layer neuron weight matrix, and γ =

[1 γ1 γ2 ... γL]T , L being the number of neurons is the activation function vector as shown

in the Fig. 3.

yi = ΣL
j=1wijσ (Σn

k=1vjkXk + θvi) + θwi for j, i = 1, · · · ,m

In Matrix form

Y =


y1

y2

...

ym

 = W Tσ(V Tx)

V TX =


θv1 v11 v12 . . . V1n

θv2 v21 v22 · · · v2n

...
...

θv2 v21 v12 · · · v2n


L×(n+1)︸ ︷︷ ︸

V T


1

x1

...

xn


︸ ︷︷ ︸

X

W T =


θw1 w11 . . . w1L

θw2 w21 . . . w2L

...
... · · · ...

θwm wm1 . . . wmL


m×(L+1)

σ =


1

σ1

...

σn


L+1×1
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Figure 5.1: Neural Network Architecture
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The θ terms are just the bias(o�set) in the network weights. ε (x) is the function approxi-

mation error. x is the input to neurons which in this case

x = [1 q q̇ qd q̇d q̈d]
T (5.14)

So x1 = 1, x2 = q...x6 = q̈d. For single layer neural network V = [Vij] and Vij = 1 ∀ i, j. So
the input to all the neurons is same with γ =

∑6
i = 1 xi. From Eq. (5.4) and (5.13) we get

Mṙ = WTΦ (x) + ε (x) + τ − Cr (5.15)

The control input equation considered is

τ = −ŴTΦ (x)−Kr (5.16)

Kr is a positive stabilizing term. Since there is no training data we use adaptive method

to train the network. The adaptive law used is

˙̂
W = ΓwΦT (x) r − Γwσ ‖e‖ Ŵ (5.17)

Stability Consider the lypunov function

V =
1

2
rTMr +

1

2
tr(W̃ TΓ−1

w W̃ ) (5.18)

Di�erentiating w.r.t time

V̇ = rTMṙ − tr(W̃ TΓ−1
w

˙̂
W ) +

1

2
rTṀr (5.19)

Substituting values we get

V̇ = rT (W̃ TΦ + ε(x)−Kr − Vmr)− tr(W̃ TΓ−1
w

˙̂
W )

= rTKr + rT ε(x) + rT W̃ TΦ(x)− tr(W̃ TΓ−1
w

˙̂
W )

Using
˙̂
W = ΓwΦT (x)r

V̇ = −rTKr + rT ε(x) (5.20)

This is similar to robust disturbance rejection. Using sigma modi�cation

˙̂
W = ΓwΦT (x)r − ΓwσW̃
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V̇ = rTKr + rT ε− tr(W̃ TσŴ )

= rTKr + rT ε− σtr(W̃ T (W − W̃ ))

= rTKr + rT ε+ σtr(W̃ TW )− σtr(W̃ T W̃ )

We know that tr(ATB) ≤ ‖A‖F ‖B‖F where ‖‖F denotes Frobenius norm.

V̇ ≤ −λminK ‖r‖2 + σ
∥∥∥W̃∥∥∥

F
‖W‖F − σ

∥∥∥W̃∥∥∥2

F
+ rT ε

≤ λminK ‖r‖2

2
− σ

2

∥∥∥W̃∥∥∥2

F
+ σ

∥∥∥W̃∥∥∥
F
‖W‖F −

σ

2

∥∥∥W̃∥∥∥2

F
+ ε̄ ‖r‖ − λminK ‖r‖2

2

≤ λminK ‖r‖2

2
− σ

2

∥∥∥W̃∥∥∥2

F
+

Multiplication Inequality︷ ︸︸ ︷
σ

2
‖W‖2

F +
σ

2

∥∥∥W̃∥∥∥2

F
−σ

2
σ
∥∥∥W̃∥∥∥2

F

−

[
λminK ‖r‖2

2
− ε̄ ‖r‖+

ε̄2

2λminK

]
︸ ︷︷ ︸

Square Term

+
ε2

2λminK

≤ λminK ‖r‖2

2
− σ

2

∥∥∥W̃∥∥∥2

F
+
σ

2
‖W‖2

F +
ε2

2λminK︸ ︷︷ ︸
C

The above equation can be approximated as

V̇ ≤ −αV + C (5.21)

Thus the control system in UUB stable. To decrease C, increase K in ε2

2λminK
or decrease γ,

but this also decreases the term

[
−γ

2

∥∥∥W̃∥∥∥2

F

]
i.e.

V (t) ≤ e−αtV (t) +
C

α

[
1− e−αt

]
(5.22)

5.4 Multilayer Neuroadaptive Controller

The equation of multilayer Neuroadaptive controller is similar to single layer Neuroadaptive

controller [1]. The only di�erence is the extra hidden layer in the neural network. So

Φ (x) = γ
(
V Tx

)
.Following the above procedure the Eq. (5.15) is now

Mṙ = WTγ
(
V Tx

)
+ ε (x) + τ − Cr (5.23)

And the control input equation becomes

τ = −ŴTΦ (x)−Kr ˘e (5.24)
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Hence

Mṙ = −Cr +W Tγ(V T c)− Ŵ Tγ(V̂ Tx)−Kr + ε− e (5.25)

By using Taylor series expansion about V̂ Tx:

γ(V Tx) = γ(V̂ Tx) +
∂γ

∂V Tx
‖V̂ T xṼ

Tx+ O(Ṽ Tx)2︸ ︷︷ ︸
Higher order terms that are neglected

(5.26)

Let

γ , γ(V Tx) (5.27)

γ̂ , γ(V̂ Tx) (5.28)

γ′ ,
∂γ

∂V Tx
(5.29)

Thus

γ = γ̂ + γ̂′Ṽ Tx+O(Ṽ Tx)2 (5.30)

Substituting it in the equation

Mṙ = −Cr +W T
(
γ̂ + γ̂′Ṽ Tx+O(Ṽ Tx)2

)
− Ŵ T γ̂ −Kr + ε− e (5.31)

= −Cr + W̃ T γ̂ +W T γ̂′Ṽ Tx+W TO −Kr + ε− e (5.32)

= −Cr + W̃ T γ̂ +W T γ̂′V Tx−W T γ̂′V̂ Tx+ Ŵ T γ̂′Ṽ Tx+W TO −Kr + ε− e (5.33)

= −Cr + W̃ T
(
γ̂ − γ̂′V̂ Tx

)
+ Ŵ T γ̂′Ṽ Tx−Kr − e+X (5.34)

where X , W̃ T γ̂′V Tx+W TO + ε

Stability Consider the Lyapunov function

V =
1

2
rTMr +

1

2
eT e+

1

2
tr(W̃ TΓ−1

w W̃ ) +
1

2
tr(Ṽ TΓ−1

v Ṽ ) (5.35)

Di�erentiating w.r.t

V̇ =
1

2
rTMṙ +

1

2
rTṀr + eT e− tr(W̃ TΓ−1

w
˙̂
W )− tr(Ṽ TΓ−1

v
˙̂
V ) (5.36)

=rT
(
−Cr + W̃ T

(
γ̂ − γ̂′V̂ Tx

)
+ Ŵ T γ̂′Ṽ Tx−Kr − e+X

)
+

1

2
rTṀr + eT (r − αe)

− tr(W̃ TΓ−1
w

˙̂
W )− tr(Ṽ TΓ−1

v
˙̂
V )
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Let the adaptive laws be

˙̂
W = Γw

(
γ̂ − γ̂′V̂ Tx

)
rT (5.37)

˙̂
V = Γvxr

T Ŵ T γ̂′ (5.38)

Substituting the adaptive laws we the the simpli�ed equation

V̇ = −rTKr − αeT e+ rTX (5.39)

We need to upperbound X. Now

X = W̃ T γ̂′V Tx+W TO + ε

O = γ − γ̂ − γ̂′Ṽ Tx

‖O‖ ≤ C11 + C12

∥∥∥Ṽ ∥∥∥
F
‖x‖

Also

‖x‖ ≤ C1 + C2 ‖Z‖

Here Z ,
[
eT rT

]T
Assuming

‖W‖F ≤ W̄ (5.40)

‖V ‖F ≤ V̄ (5.41)

ε ≤ ε̄ (5.42)

Substituting all the constants

‖X‖ ≤ C̄11 + C̄12

∥∥∥Ṽ ∥∥∥
F

+ C̄13

∥∥∥W̃∥∥∥
F

+ C̄14

∥∥∥Ṽ ∥∥∥
F

+ C̄15

∥∥∥W̃∥∥∥
F
‖Z‖ (5.43)

Adaptive update law with σ-mod

˙̂
W = Γw

(
γ̂ − γ̂′V̂ Tx

)
rT − ΓwσwŴ (5.44)

˙̂
V = Γvxr

T Ŵ T γ̂′ − ΓvσvV̂ (5.45)

Substituting the above modi�ed adaptive laws

V̇ = −rTKr − αeT e+ rTX − σw
∥∥∥W̃∥∥∥2

F
− σv

∥∥∥Ṽ ∥∥∥2

F
+ σw

∥∥∥W̃∥∥∥
F
‖W‖F + Γv

∥∥∥Ṽ ∥∥∥
F
‖V ‖F

V̇ ≤ −rTKr − αeT e+ ‖r‖ ‖X‖ − σw
∥∥∥W̃∥∥∥2

F
− σv

∥∥∥Ṽ ∥∥∥2

F
+ σw

∥∥∥W̃∥∥∥
F
‖W‖F + Γv

∥∥∥Ṽ ∥∥∥
F
‖V ‖F
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Substituting the value of ‖X‖ we get

V̇ = −rTKr − αeT e+ ‖r‖
[
C̄11 + C̄12

∥∥∥Ṽ ∥∥∥
F

+ C̄13

∥∥∥W̃∥∥∥
F

+ C̄14

∥∥∥Ṽ ∥∥∥
F

+ C̄15

∥∥∥W̃∥∥∥
F
‖Z‖

]
− σw

∥∥∥W̃∥∥∥2

F
− σv

∥∥∥Ṽ ∥∥∥2

F
+ σw

∥∥∥W̃∥∥∥
F
‖W‖F + Γv

∥∥∥Ṽ ∥∥∥
F
‖V ‖F

From Young's Inequality σw

∥∥∥W̃∥∥∥
F
‖W‖F ≤

σw
2

∥∥∥W̃∥∥∥2

F
+ σw

2
‖W‖2

F

V̇ = −rTKr − αeT e+ ‖r‖
[
C̄11 + C̄12

∥∥∥Ṽ ∥∥∥
F

+ C̄13

∥∥∥W̃∥∥∥
F

+ C̄14

∥∥∥Ṽ ∥∥∥
F

+ C̄15

∥∥∥W̃∥∥∥
F
‖Z‖

]
− σw

2

∥∥∥W̃∥∥∥2

F
− σv

2

∥∥∥Ṽ ∥∥∥2

F
+
σv
2
‖V ‖2

F +
σw
2
‖W‖2

F +
σv
V

2

F

Further simplifying

V̇ ≤ −K ‖r‖2 − α ‖e‖2 · · ·+ C̄11
2

2
+
‖r‖2

2
+ ‖r‖ [· · · ]

≤ −(−K − 1

2
) ‖r‖2 − α ‖e‖2 · · · C̄11

2

2
+ ‖r‖ [· · · ]

V̇ ≤−
(
K − 1

2
− C̄12

2
− C̄13

2

)
‖r‖2 − α ‖e‖2 +

C̄11
2

2
−
(
σw
2
− C̄13

2

)∥∥∥W̃∥∥∥2

F
−
(
σv
2
− C̄12

2

)∥∥∥Ṽ ∥∥∥2

F

+
σw
2
‖W‖2

F +
σv
2
‖V ‖2

F + ‖r‖
[
C̄14

∥∥∥Ṽ ∥∥∥
F
‖Z‖+ C̄15

∥∥∥W̃∥∥∥
F
‖Z‖

]
Again

C̄14

∥∥∥Ṽ ∥∥∥2

F
‖r‖ ‖Z‖ ≤ C̄14

2

∥∥∥Ṽ ∥∥∥2

F
‖r‖2 +

C̄14

2
‖Z‖2

C̄15

∥∥∥W̃∥∥∥2

F
‖r‖ ‖Z‖ ≤ C̄15

2

∥∥∥W̃∥∥∥2

F
‖r‖2 +

C̄15

2
‖Z‖2

Gain conditions

K >
1

2
+
C̄12

2
+
C̄13

2

σw > C̄13

σv > C̄12

Kα >
C̄14

2
+
C̄15

2

Now ∥∥∥Ṽ ∥∥∥2

F
=
∥∥∥V − V̂ ∥∥∥2

F
≤
(
V̄ +

∥∥∥V̂ ∥∥∥
F

)2
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This makes

C̄14

∥∥∥Ṽ ∥∥∥
F
‖r‖ ‖Z‖ ≤ C̄14

2

(
V̄ +

∥∥∥V̂ ∥∥∥
F

)2

‖r‖2 +
C̄14

2
‖Z‖2 (5.46)

C̄15

∥∥∥W̃∥∥∥
F
‖r‖ ‖Z‖ ≤ C̄15

2

(
W̄ +

∥∥∥Ŵ∥∥∥
F

)2

‖r‖2 +
C̄15

2
‖Z‖2 (5.47)

Let

τ = Ŵ T γ̂ −Kr − e− C̄14

2

(
V̄ +

∥∥∥V̂ ∥∥∥
F

)2

‖r‖2 − C̄15

2

(
W̄ +

∥∥∥Ŵ∥∥∥
F

)2

‖r‖2 (5.48)

Then

V̇ ≤ −
(
Kα −

C̄14

2
− C̄15

2

)
‖Z‖2 −

(
σw
2
− C̄13

2

)∥∥∥W̃∥∥∥2

F
−
(
σv
2
− C̄12

2

)∥∥∥Ṽ ∥∥∥2

F
+ C̄

Which can be further simpli�ed as

V̇ ≤ −βV + C̄ (5.49)

Thus the control system is locally UUB stable.

5.5 Experimental Results

All the control algorithms were implemented on the rigid two link planar manipulator (refer

Section 2.4 for the dynamics). Due to presence of unmodeled disturbance σ−mod was used
with all the adaptive controllers.

For adaptive controller (section 5.2), the gains were chosen as α = 2, k = 5, Γθ = 10,

and σ = 0.1. All the common gains for the di�erent adaptive controllers were chosen same

for comparing their performance. The desired trajectory is

qd(t) = [2.5 + 1.2sin(t), 2.5 + 1.2sin(t)] radians (5.50)

The controller gains were chosen by trail and error method (refer section 3.2 of [8]). Initially,

classical adaptive controller was implemented which was tuned by �rst keeping all the gains

high and then bringing the values down till a good performance is achieved. Once these

gains were determined the common gains for the single layer neuroadaptive controller as

well as the multilayer neuroadaptive controller were chosen the same.

Fig. 5.2 - 5.5 shows all the controller performance.

In addition to these, a PID controller was also implemented with the gains Kp = 12,

Ki = 3, Kd = 10 for link-1, and Kp = 6, Ki = 3, Kd = 12 for link-2. The values were tuned
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Figure 5.2: PID Tracking Control

Figure 5.3: Adaptive Tracking Control
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Figure 5.4: Single Layer Neuroadaptive Tracking Control

Figure 5.5: Multilayer Neuroadaptive Tracking Control
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by trail and error method. First proportional gain Kp was tuned while keeping integral

gain Ki and derivative gain Kd to zero. Kp was increased till the system response became

fast and steady state error was minimum. While tuning the values were chosen within the

saturation limit. Integral gain was then tuned to remove the steady-state error. Further,

derivative gain was tuned to minimize the overshoot and to speed up the response.

Due to σ−modi�cation, the parameters are not guaranteed to converge to the true values.

Even in those conditions it is observed that the multilayer neuroadaptive controller gives

the least estimation error.

5.6 Performance Comparison

Figure 5.6: Plot of tracking error norm of di�erent controllers
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Figure 5.7: Plot of �ltered tracking error norm of di�erent controllers

Fig. 5.6 and Fig. 5.7 shows the norm tracking error and �ltered error norm of all the

controllers used. It can be seen that Multilayer Neuroadaptive controller performed the best

in both the categories.

In all the controllers the plant paramteres, initial condition, desired trajectory and con-

troller parameters were kept same. Integral Squared Error and Integral Time Absoulte Error

(ITAE) were calculated for a �xed period of 10 seconds of the tracking error.

ISE =

∫ 10

0

e2dt

ITAE =

∫ 10

0

t|e|dt

The results are shown in Tab. 5.1 for the sum of the errors in tracking by link-1 and

link-2.
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Table 5.1: ISE and ITAE measure of di�erent controllers

Controller ISE ITAE

PID 12716.0 196830.0

Adaptive 2042.4 25355.0

Single Layer Neuroadaptive 1036.6 14006.0

Multilayer Neuroadaptive 500.0 6088.1

5.7 Conclusion

As seen in the plots, and the Table 5.1, con�rms that out of all the adaptive controllers,

multilayer neuroadaptive controller performed the best in reducing the tracking error as

�ltered tracking error.

Neural Network based adaptive controller performed better because they are more ac-

curate in estimating the unknown parameters. Adaptive training combined with neural

architecture worked best in such robots.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

Initially controllers- PID, Adaptive, and State Feedback were tested on a single link ma-

nipulator. The gains were kept the same and performance was compared. The Adaptive

controller performed best with and without deadzone compensation. So for two link manip-

ulator adaptive controller was used to get to the best tracking performance.

Deadzone nonlinearity was handled by passing the control input through inverse dead-

zone which just adds an o�set slightly above the deadzone width. Without the deadzone

compensation the adaptive controller though worked, but the tracking error was compara-

tively bad. The errors were particularly large at the instants where input changed sign.

It was observed that the varying deadzone width leads to huge tracking error and drift

in the parameters. This was solved by adding σ−modi�cation term. The additional term

makes the controller UUB stable, so error convergence to zero cannot be guaranteed.

Multilayer neural adaptive controller with sigmoidal activation function was simulated on

a two link manipulator with varying deadzone at input. Classical adaptive controller, PID

single layer and multilayer nurodaptive controller tracking performance was compared. In

term of integral absolute error and integral time absolute error the MN controller performed

best. Also the plot of error norms and �ltered error norms were shown which was least in

the case of MN controller.

6.2 Future Work

In extension to this work, controller can be designed for other nonlinearities like deadband,

delay, and backlash. Compensating for these nonlinearities will give more precise tracking

control.

Rather than tuning the gains by trail and error method a more better procedure can

be used to set the gains like in [8] (section 3.2). Similar methods should be extended for

neuroadaptive controller.



Appendix A

Simulink Diagrams

A.1 Classical PD Adaptive controller

Figure A.1: Simulink model of PID controller

Inverse DZ Block

1 function U = Inv_DZ(T)

2 dp = 0.4;

3 dm = 0.18;

4 n = (T > 0);

5 U = T + n*dp + (n-1)*dm;

6 if(T == 0)

7 U = 0;

8 end
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A.2 State Feedback Controller

Figure A.2: Simulink model of State Feedback controller

Control Input Block

1 function T = ControlInput(r,theta,w)

2 x = [theta; w];

3 T = -[1, 0.05]*x + r;

A.3 Single Link Adaptive Controller

Figure A.3: Simulink model of Single Link Adaptive controller
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AdaptiveControl Block

1 function [T, Phi_hat_dot] = AdaptiveControl(theta_d, theta_d_dot, ...

theta_d_ddot, theta, theta_dot, Phi_hat)

2 e = theta - theta_d;

3 e_dot = theta_dot - theta_d_dot;

4

5 alpha = 2;

6 r = e_dot + alpha*e;

7 %% Adaptive Law

8 Y = [-theta_dot , -theta_d_ddot + alpha*e_dot];

9 Gamma = 10;

10 Phi_hat_dot = Gamma*Y'*r - Gamma*0.1*Phi_hat;

11 %% Control Input

12 K = 10;

13 T = -Y*Phi_hat - K*r;

A.4 Two LinkPID Controller

Figure A.4: Simulink model of Two Link PID controller
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A.5 Two Link Manipulator

Figure A.5: Simulink model of Two Link Manipulator

Plant Block

1 function q_ddot = PLANT(T,q,q_dot)

2 q2 = q(2);

3 q1_dot = q_dot(1);

4 q2_dot = q_dot(2);

5

6 M = [(3.473+2*0.242*cos(q2)) , (0.196+0.242*cos(q2)); ...

(0.196+0.242*cos(q2)) , 0.196];

7 Vm = [-0.242*sin(q2)*q2_dot , -0.242*sin(q2)*(q1_dot+q2_dot); ...

0.242*sin(q2)*q1_dot , 0];

8 Fd = [5.3 0;0 1.1];

9

10 q_ddot = M\(T-Vm*q_dot-Fd*q_dot);

11 end
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A.6 Two Link Adaptive controller

Figure A.6: Simulink model of Two Link Adaptive controller

Adaptive Controller Block

1 function [r,Y,T,Theta_hat_dot] = ...

AdaptiveController(e,qd_dot,qd_ddot,q,q_dot,Theta_hat)

2

3 e_dot = q_dot - qd_dot;

4 e1_dot = e_dot(1);

5 e2_dot = e_dot(2);

6

7 qd1_dot = qd_dot(1);

8 qd2_dot = qd_dot(2);

9

10 qd1_ddot = qd_ddot(1);

11 qd2_ddot = qd_ddot(2);

12

13 q1_dot = q_dot(1);

14 q2_dot = q_dot(2);

15

16 q2 = q(2);

17

18 C2 = cos(q2);

19 S2 = sin(q2);

20

21 a = 2;

22

23 r = e_dot + a*e;

24 r1 = r(1);
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25 r2 = r(2);

26 %%

27 Y11 = a*e1_dot - qd1_ddot;

28 Y12 = -S2*q1_dot*r2 - C2*(2*qd1_ddot + qd2_ddot) + a*C2*(2*e1_dot + ...

e2_dot) + S2*q2_dot*(2*q1_dot + q2_dot - r1 - r2);

29 Y13 = a*e2_dot - qd2_ddot;

30 Y14 = -q1_dot;

31 Y15 = 0;

32 Y16 = -1;%sign(q1_dot);

33 Y17 = 0;

34 Y21 = 0;

35 Y22 = S2*q1_dot*(r1 - q1_dot) + C2*(a*e1_dot - qd1_ddot);

36 Y23 = a*(e1_dot + e2_dot) - (qd1_ddot + qd2_ddot);

37 Y24 = 0;

38 Y25 = -q2_dot;

39 Y26 = 0;

40 Y27 = -1;%sign(q2_dot);

41 Y = [Y11 Y12 Y13 Y14 Y15 Y16 Y17; Y21 Y22 Y23 Y24 Y25 Y26 Y27]';

42 %%

43 sigma = 0.1;

44 Gamma = 10;

45 Theta_hat_dot = Gamma*Y*r - Gamma*sigma*norm(e)*Theta_hat;

46 K = 5;

47 T1 = -Y'*Theta_hat;

48 T2 = - K*r;

49 T = T1 + T2 ;

A.7 Single Layer Neuroadaptive Controller

Figure A.7: Simulink model of single layer neuroadaptive controller
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SLNN block

1 function [w_hat_dot,r,e,T] = SLNN(w_hat,qd,qd_dot,qd_ddot,q,q_dot)

2

3 e = q - qd;

4 e_dot = q_dot - qd_dot;

5

6 X = [1 ; q ; q_dot ; qd ; qd_dot ; qd_ddot];

7 sigma_input=0;

8 L = 10;

9 for i=1:size(X,1)

10 sigma_input=sigma_input+X(i);

11 end

12

13 sigma = [1 ;zeros(L,1)];

14

15 for i= 2:L

16 sigma(i)= 1/(1+exp(-sigma_input));

17 end

18

19 Tw = 10;

20 a = 2;

21

22 r = e_dot+a*e;

23

24 phi = sigma;

25

26 w_hat_dot = Tw*phi*r'- Tw*0.1*norm(e)*w_hat;

27 K = 5;

28 T = -(w_hat)'*phi-K*r;

29 end
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A.8 Multilayer Neuroadaptive Controller

Figure A.8: Simulink model of multilayer neuroadaptive controller

MLNN block

1 function [w_hat_dot,v_hat_dot,e,r,T] = ...

MLNN(w_hat,v_hat,qd,qd_dot,qd_ddot,q,q_dot)

2

3 e = q - qd;

4 e_dot = q_dot - qd_dot;

5

6 L = 10;

7 X = [1 ; q ; q_dot ; qd ; qd_dot ; qd_ddot];

8 sigma = [1;zeros(10,1)];

9 sigma_hatd = zeros(11,10);

10

11 Tw = 10*eye(11,11);

12 Tv = 10*eye(11,11);

13

14 A=(v_hat)'*X;

15 for i=1:L

16 sigma(i+1)=1/(1+exp(-A(i)));

17 end

18 for j=1:L

19 sigma_hatd(j+1,j) = 0.5*(1-(sigma(j+1))^2);

20 end

21
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22 a = 2;

23 r = e_dot+a*e;

24

25 w_hat_dot = Tw*(sigma-sigma_hatd*A)*r';

26 v_hat_dot = Tv*X*r'*(w_hat)'*(sigma_hatd);

27

28 K = 5;

29 T = -(w_hat)'*sigma -K*r - e ...

-5*((2+norm(v_hat))^2)*r-5*((3+norm(w_hat))^2)*r;

30 end
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