

“Comparative Analysis of Classification and Ensemble Methods

for Predicting Software Fault Proneness using Process Metrics”

A PROJECT REPORT

SUBMITTED IN THE PARTIAL FULFILMENT OF THE

REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted By

Anjali Bansal

(2K19/SWE/01)

Under the supervision of

Prof. Ruchika Malhotra

Head of Department (Software Engineering)

Associate Dean IRD, DTU
Department of Software Engineering

Delhi Technological University, Delhi

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

June, 2021

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

i

DECLARATION

I, Anjali Bansal, 2K19/SWE/01 student of M.Tech (SWE), hereby declare that the project

entitled “Comparative Analysis of Classification and Ensemble Methods for Predicting

Software Fault Proneness using Process Metrics” which is submitted by me to

Department of Software Engineering, Delhi Technological University, Shahbad

Daulatpur, Delhi in partial fulfilment of requirement for the award of the degree of Master

of Technology in Software Engineering, has not been previously formed the basis for any

fulfilment of requirement in any degree or other similar title or recognition.

This report is an authentic record of my work carried out during my degree under the

guidance of Prof. Ruchika Malhotra.

Place: Delhi Anjali Bansal

Date: June, 2021 (2K19/SWE/01)

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

ii

CERTIFICATE

I hereby certify that the project entitled “Comparative Analysis of Classification and

Ensemble Methods for Predicting Software Fault Proneness using Process Metrics”

which is submitted by Anjali Bansal (2K19/SWE/01) to Department of Software

Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi in partial

fulfilment of requirement for the award of the degree of Master of Technology in

Software Engineering, is a record of the project work carried out by the student under my

supervision. To the best of my knowledge this work has not been submitted in part or full

for any degree or diploma to this university or elsewhere.

Place: Delhi Prof. Ruchika Malhotra

Date: SUPERVISOR

 Professor

 Associate Dean IRD, DTU

 Department of Software Engineering

iii

ACKNOWLEDGEMENT

I am very thankful to Prof. Ruchika Malhotra (Head of Department, Professor, Associate

Dean IRD, DTU, Department of Software Engineering) and all the faculty members of the

Department of Computer Science at DTU. They all provided us with immense support and

guidance for the project. I would also like to express my gratitude to the University for

providing us with the laboratories, infrastructure, testing facilities and environment which

allowed us to work without any obstructions. I would also like to appreciate the support

provided to us by our lab assistants, seniors and our peer group who aided us with all the

knowledge they had regarding various topics.

Anjali Bansal

 2K19/SWE/01

iv

ABSTRACT

Various researchers have worked in the subject of software defect prediction to group the

modules into defective or non-defective classes. But most of the previous studies done in this

field utilize static code metrics to find the predicted value. The principal motive of this study

is to evaluate the impact of process metrics on fault prediction performance using various

classification techniques and ensemble techniques. In this study, we have analyzed the

prediction performance of several classification and ensemble techniques based on three

models: models that solely contain process metrics, models that solely contain static code

metrics, and models containing different combinations of both metrics. In other terms, we

can say these three models work as independent variables and dependent variables are actual

bug values. We have used Naive Bayes classifiers, Logistic Regression, Support Vector

Machines, K-Nearest Neighbors, and Decision Trees for implementation, and data sets are

collected from publicly available repositories. We have also used four ensemble techniques:

Stacking, Voting, Bagging, and Boosting to evaluate the impact of process metrics on fault

prediction performance. We have also analyzed which process metrics give the best result

among all selected process metrics. We have analyzed the prediction performance based on

AUC (Area under ROC) performance measure and we have also used Friedman test with

Nemenyi post hoc test to check whether the predictive performance of various classification

techniques and ensemble techniques differ significantly. The result of this study shows that

the use of process metrics in fault prediction gives effective results. In most of the cases, NR

metric is effective when combined with static code metrics. If we consider combined model

of 2 process metrics with static code metrics then combined model of NR, NDC metric with

static code metrics gives effective result. If we consider combined model of 3 process metrics

with static code metrics then combined model of NR, NDC, NDPV metric with static code

metrics gives effective result.

v

INDEX

Content Page Number

Declaration i

Certificate ii

Acknowledgement iii

Abstract iv

Index v

List of Figures vii

List of Tables x

List of Abbreviations xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Software Fault Prediction 1

1.3 Motivation 1

1.4 Research Questions 2

1.5 Thesis Structure 2

CHAPTER 2 LITERATURE REVIEW 4

2.1 Related Work 4

CHAPTER 3 EXPERIMENTAL DESIGN 7

3.1 Proposed Architecture 7

3.2 Dependent and Independent Variable 8

3.2.1 Static code metrics 8

3.2.2 Process metrics 9

3.3 Empirical Data Collection 10

vi

CHAPTER 4 RESEARCH METHODOLOGY 11

4.1 Dataset Preprocessing 11

4.2 Classification Techniques 11

4.2.1 Naïve Bayes 12

4.2.2 Logistic Regression 13

4.2.3 Support Vector Machine 13

4.2.4 K- Nearest Neighbor 14

4.2.5 Decision Tree 14

4.3 Ensemble Techniques 14

4.3.1 Stacking 15

4.3.2 Voting 16

4.3.3 Bagging 17

4.3.4 Boosting 18

4.4 Performance Evaluation Measure 18

4.5 Statistical Analysis 19

CHAPTER 5 EXPERIMENTAL ANALYSIS 21

5.1 Naïve Bayes Analysis 21

5.2 Logistic Regression Analysis 24

5.3 Support Vector Machine Analysis 25

5.4 K Nearest Neighbor Analysis 28

5.5 Decision Tree Analysis 29

5.6 Stacking Analysis 32

5.7 Voting Analysis 34

5.8 Bagging Analysis 37

5.9 Boosting Analysis 40

CHAPTER 6 DISCUSSION OF RESULTS 44

6.1 Naïve Bayes Analysis 44

6.2 Logistic Regression Analysis 47

6.3 Support Vector Machine Analysis 48

6.4 K Nearest Neighbor Analysis 51

6.5 Decision Tree Analysis 52

vii

6.6 Stacking Analysis 54

6.7 Voting Analysis 57

6.8 Bagging Analysis 60

6.9 Boosting Analysis 64

CHAPTER 7 CONCLUSION AND FUTURE WORK 68

7.1 Conclusion 68

7.2 Future work 69

REFERENCES 70

viii

LIST OF FIGURES

Figure Name Page Number

Fig 3.1 Proposed Architecture 7

Fig 4.1 Machine Learning Techniques 11

Fig 4.2 Types of Ensemble Techniques 15

Fig 4.3 Stacking Architecture 16

Fig 4.4 Hard Voting Architecture 16

Fig 4.5 Soft Voting Architecture 17

Fig 4.6 Bagging architecture 17

Fig 4.7 Boosting architecture 18

Fig 4.8 Confusion matrix 19

Fig. 6.1 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using NB

45

Fig 6.2 Box plots of models which contain combination of SC and 1 process

metric using NB

45

Fig 6.3 Box plots of models which contain combination of SC and 2 process

metrics using NB

46

Fig 6.4 Box plots of models which contain combination of SC and 3 process

metrics using NB

47

Fig. 6.5 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using LR

48

Fig. 6.6 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using SVM

49

Fig 6.7 Box plots of models which contain combination of SC and 1 process

metric using SVM

49

Fig 6.8 Box plots of models which contain combination of SC and 2 process

metrics using SVM

50

ix

Fig 6.9 Box plots of models which contain combination of SC and 3 process

metrics using SVM

51

Fig. 6.10 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using KNN

51

Fig. 6.11 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using DT

52

Fig 6.12 Box plots of models which contain combination of SC and 1

process metric using DT

53

Fig 6.13 Box plots of models which contain combination of SC and 2

process metrics using DT

53

Fig 6.14 Box plots of models which contain combination of SC and 3

process metric using DT

54

Fig 6.15 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using stacking

55

Fig 6.16 Box plots of models which contain combination of SC and 1

process metric using stacking

55

Fig 6.17 Box plots of models which contain combination of SC and 2

process metrics using stacking

56

Fig 6.18 Box plots of models which contain combination of SC and 3

process metric using stacking

57

Fig 6.19 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using voting

58

Fig 6.20 Box plots of models which contain combination of SC and 1

process metric using voting

58

Fig 6.21 Box plots of models which contain combination of SC and 2

process metrics using voting

59

Fig 6.22 Box plots of models which contain combination of SC and 3

process metric using voting

60

Fig 6.23 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using bagging

61

x

Fig 6.24 Box plots of models which contain combination of SC and 1

process metric using bagging

62

Fig 6.25 Box plots of models which contain combination of SC and 2

process metrics using bagging

63

Fig 6.26 Box plots of models which contain combination of SC and 3

process metrics using bagging

63

Fig 6.27 Box plots of combined model, model solely containing static code

metrics and model solely containing process metrics using boosting

64

Fig 6.28 Box plots of models which contain combination of SC and 1

process metrics using boosting

65

Fig 6.29 Box plots of models which contain combination of SC and 2

process metrics using boosting

66

Fig 6.30 Box plots of models which contain combination of SC and 3

process metrics using boosting

67

xi

LIST OF TABLES

Table Name Page Number

Table 3.1 Static code metrics details 8

Table 3.2 Dataset details 10

Table 5.1 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using NB

21

Table 5.2 AUC values of models which contain combination of SC and 1

process metric using NB

22

Table 5.3 AUC values of models which contain combination of SC and 2

process metrics using NB

23

Table 5.4 AUC values of models which contain combination of SC and 3

process metrics using NB

24

Table 5.5 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using LR

24

Table 5.6 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using SVM

25

Table 5.7 AUC values of models which contain combination of SC and 1

process metric using SVM

26

Table 5.8 AUC values of models which contain combination of SC and 2

process metrics using SVM

27

Table 5.9 AUC values of models which contain combination of SC and 3

process metrics using SVM

27

Table 5.10 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using KNN

28

Table 5.11 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using DT

29

Table 5.12 AUC values of models which contain combination of SC and 1

process metric using DT

30

xii

Table 5.13 AUC values of models which contain combination of SC and 2

process metrics using DT

30

Table 5.14 AUC values of models which contain combination of SC and 3

process metric using DT

31

Table 5.15 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using stacking

32

Table 5.16 AUC values of models which contain combination of SC and 1

process metric using stacking

32

Table 5.17 AUC values of models which contain combination of SC and 2

process metrics using stacking

33

Table 5.18 AUC values of models which contain combination of SC and 3

process metric using stacking

34

Table 5.19 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using voting

35

Table 5.20 AUC values of models which contain combination of SC and 1

process metric using voting

35

Table 5.21 AUC values of models which contain combination of SC and 2

process metrics using voting

36

Table 5.22 AUC values of models which contain combination of SC and 3

process metric using voting

37

Table 5.23 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using baaging

38

Table 5.24 AUC values of models which contain combination of SC and 1

process metric using bagging

38

Table 5.25 AUC values of models which contain combination of SC and 2

process metrics using bagging

39

Table 5.26 AUC values of models which contain combination of SC and 3

process metrics using bagging

40

Table 5.27 AUC values of combined model, model solely containing static

code metrics and model solely containing process metrics using boosting

40

xiii

Table 5.28 AUC values of models which contain combination of SC and 1

process metrics using boosting

41

Table 5.29 AUC values of models which contain combination of SC and 2

process metrics using boosting

42

Table 5.30 AUC values of models which contain combination of SC and 3

process metrics using boosting

43

xiv

LIST OF ABBREVIATIONS

Abbreviations Full Form

SFP Software Fault Prediction

AUC Area Under the Curve

ROC Receiver Operating Characteristics

WEKA Waikato Environment for Knowledge Analysis

SC Static Code Metrics

NR Number of Revisions

NDC Number of Distinct Committers

NML Number of Modified Lines

NDPV Number of Defects in Previous Version

NB Naïve Bayes

LR Logistic Regression

SVM Support Vector Machine

KNN K Nearest Neighbor

DT Decision Tree

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Software testing is detecting defects in the early stages of the software development life

cycle. It is an essential and costly process to find the faults in the software. As testing is a

costly process, it increases the overall project budget. Correct prediction of faults at an early

stage leads to improvement in the effectiveness and quality of the software. Also, the correct

prediction of faults helps in keeping the budget of the project under control. Many approaches

have been suggested to identify the defects in the beginning phase of the development life

cycle. This leads to the development of a fault prediction model which can predict the faults

and group them in non-faulty or faulty classes.

1.2 Software Fault Prediction

Software fault prediction (SFP) models use different software metrics for prediction. These

models use software metrics as their quality data. Previously there has been a lot of work

done in this field that uses static code metrics to find various design aspects of the system.

Many fault prediction models use static code metrics as quality attributes in classifying the

modules. Many methods such as Logistic Regression [25], Naive Bayes [15][3], Support

Vector Machines, Artificial Neural Network [25], K- Nearest Neighbor, Decision Tree,

Stacking, Voting, Bagging and Boosting have been proposed in the past which shows the

relationship between static code metrics and fault proneness.

1.3 Motivation

According to Dejaeger et al. [18], As of late, a few researchers directed their study toward

another subject of excitement, i.e., the addition of data different from static code variables

into defect prediction models such as data on inter-module connections and requirement

metrics. The connection to the more ordinarily utilized static code variables remains anyway

dubious. Two process metrics were used in this study but there can be other process metrics

as well.

2

According to Okutan and Yildiz [1], As a forthcoming heading, we intend to refine our

exploration to incorporate other process and software metrics in our model to uncover the

connections among them and to decide the most important in fault prediction. We accept that

instead of managing with a huge arrangement of software metrics, concentration on the nest

ones will enhance the quality in fault prediction studies.

Both studies show the requirement to explore the process metrics in the domain of fault

prediction. There are many literature reviews published in the domain of software fault

prediction (e.g. [28],[6]). Most of them use static code metrics and a few studies show the

relationship between process metric and fault proneness. There is no conclusive result given

by authors, some authors say that process metric outperforms static code metrics but some

authors say that static code metrics outperforms process metric. This thesis focuses on

analyzing the predictive accuracy of process metrics as compared to static code metrics.

1.4 Research Questions

This thesis is mainly focused on the following research questions:

RQ1: Is process metric as effective as static code metrics in checking fault proneness?

RQ2: Which classification technique gives best result for combined model?

RQ3: To check whether ensemble techniques improve the prediction performance as

compared to individual classification techniques used or not?

RQ4: Which process metric is more effective among all selected process metrics?

Thus, in this thesis, we will build a fault prediction model with the help of various

classification techniques and then compare and analyze the outcome of each classification

technique based on AUC values [16]. Also, we will build fault prediction models using

various ensemble techniques which all the individual classification techniques as their base

classification techniques. We will analyze the outcome of each technique based on several

combinations of static code metrics and process metrics and also, we analyze results to find

which process metric is effective in fault prediction.

1.5 Thesis Structure

This thesis is classified into various chapters that are as follows: Chapter 2 presents similar

work which has been done in the field of software fault prediction previously. Chapter 3

presents an experimental design that describes the independent and dependent variables used

in this study and also describes the dataset used in this study. In Chapter 4, research

3

methodology is given which describes the performance evaluation measure used,

classification techniques used, ensemble techniques used, how we will implement these

classification techniques, and ensemble techniques. In Chapter 5, the results of all the models

using various classification techniques and ensemble techniques are given. Chapter 6

presents the result analysis which describes the results based on statistical tests, box plots,

and a comparative analysis will be done to check the effectiveness of process metrics on fault

proneness using various classification techniques and ensemble techniques. The conclusion

of this study is described in Chapter 7.

4

CHAPTER 2

LITERATURE REVIEW

Plenty of work has been done to build software fault prediction models utilizing distinct fault

prediction techniques but most of them use static code metrics as independent variables and

few of them use process metrics as independent variables. This chapter examines all the past

work in the field of software fault prediction which makes use of process metrics as their

independent variable and also examines the previous work done which makes use of

ensemble techniques in building software fault prediction models.

2.1 Related Work

A systematic literature review is done by Radjenovic et al. [6] consist of 106 papers published

between 1991 and 2011 and the result of this study shows that in 49% of papers object-

oriented metrics were used, in 27% of papers traditional source code metrics were used and

in 24% of paper process metrics were used as independent variables. Process metrics and

object-oriented metrics prediction results outperform the prediction result of source code

metrics. In this literature review, code churn metrics, delta metrics, history, and developer

metrics were used as process metrics. Delta metrics are concerned with different software

versions whereas code churn metrics are concerned with changes in the code.

Some studies have indicated that when process metrics were used in the beginning phase of

software development, they have not performed well. Results of the conducted experiments

have shown that in the post-release phase of software development, process metric gives

better outcomes.

Xia et al. [32] introduced two new process metrics: lifecycle-based management process

metric and history change process metric. These metrics are based on the characteristics of

the development process. They describe the effectiveness of process metrics during

requirement analysis, designing, and coding. The result of this study shows that a combined

model of process metrics and code metrics gives better results in defect prediction and

decreases the error rate.

5

There are two sources to gather the process metrics: the developer’s experience and software

change history. Metrics gathered from software change history can be classified into two

types: code churn metrics and delta metrics. Delta metrics keep track of various versions of

the software and code churn metrics monitor changes in the code.

Kamei et al. [31] analyzed the fault density prediction based on code churn metrics and

cyclomatic complexity measures. The results of this study showed that code churn metrics

outperforms cyclomatic complexity measures.

Moser et al. [24] analyzed the Eclipse project for defect detection which consist of java files.

The result showed that process metrics based on change history give the best result when

contrasted with static code metrics. Hall et al. [28] suggested a combined model of process

metrics and static code metrics for better prediction results.

Madeyski and Jureczko [19] conducted an experiment in which they used the same process

metrics which we are using in this study. They considered open source and industrial projects

in their research. They examined models that contain 1 process metric and all static code

metrics. This study shows that the process metric improves defect prediction and gives a

notable contribution and NDC and NML process metrics improve the defect prediction.

Aleem et al. [2] analyzed and compare the prediction outcomes of 11 machine learning

techniques such as Multilayer Perceptron, Naive Bayes, Support Vector Machines, Adaboost,

Bagging, Random forest, etc. using 15 NASA dataset which was downloaded from

PROMISE repository. The result of this study shows that Bagging and Support Vector

Machine gives better prediction performance.

A study done by Elish, Aljamaan, and Ahmad (2015) [8] shows that the ensemble method

gives correct prediction results on the considered dataset. They analyzed the ensemble

approaches for predicting change efforts and maintenance of software using two publicly

available datasets.

A study was done by Perreault et al. [21] on five NASA datasets compared Artificial Neural

Networks, Logistic Regression, Naive Bayes, Support Vector Machines, and K Nearest

Neighbor but there is no clear explanation about which technique is best.

Hussain et al. [14] in his study compared the three ensemble techniques that use five base

classification techniques such as Logistic Regression, Naive Bayes, J48, Voted-Perceptron,

6

and Support Vector Machine in Weka tool for software defect prediction. This study shows

that Stacking gives better results among all the ensemble techniques used.

Rahman et al.[9] analyzed 85 versions of 12 projects to check the performance, stasis and

stability of different combination of metrics. They have used 14 process metrics and 4

classification techniques(J48, Naïve Bayes, Logistic Regression, Support Vector Machine)

to build the prediction model. They concluded that process metrics are more useful than code

metrics and process metrics have low stasis means their values can change from release to

release.

Alshehri et al.[30] analyzed 3 versions of the eclipse project to compare 3 different

classification techniques. The results in this study are based on different combinations of

change metrics and static code metrics and also, they analyzed the result based on a reduced

set of change metrics. They concluded that if we are choosing the G score as a performance

evaluation measure then J48 outperforms Logistic Regression and Naïve Bayes in all cases.

7

CHAPTER 3

EXPERIMENTAL DESIGN

3.1 Proposed Architecture

Fig 3.1 Proposed Architecture

8

In this chapter, we define the proposed architecture which we are following for

implementation. Figure 3.1 shows the proposed architecture. Also, we define about

independent and dependent metrics used in this study and empirical data collection of the

dataset. In other terms, we can say that in this chapter we are defining the software metrics

which we used in this work.

3.2 Dependent and Independent Variables

Independent variables that we are considering are static code metrics and process metrics,

and the dependent variable is fault proneness which is defined as the likelihood of finding

faults in the class.

3.2.1 Static Code Metrics

Static code metrics define the design complexity and size of the software system. These

metrics are widely used in building fault prediction models. Table 3.1 shows the static code

metrics used in this study. The definition of the metrics of the table 3.1 is given in a separate

report given by Jureczko and Madeyski [17] and also this report is available online.

Table 3.1 Static code metrics details

WMC Weighted Method per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Objects

RFC Response for a Class

LCOM Lack of Cohesion in Methods

LCOM3 Lack of Cohesion in Methods version 3

NPM Number of Public Methods

DAM Data Access Metric

MOA Measure of Aggregation

9

MFA Measure of Functional Abstraction

CAM Cohesion Among Methods

IC Inheritance Coupling

CBM Coupling Between Methods

AMC Average Method Complexity

Ca Afferent Coupling

Ce Efferent Coupling

Max (CC) Maximum McCabe’s Complexity

Avg (CC) Average McCabe’s Complexity

LOC Lines of Code

3.1.2 Process Metrics:

Process metrics determine the quality and effectiveness of the system. Process metrics consist

of more descriptive details about faulty modules These metrics are found from two sources:

a) Developer’s experience

b) Software change history

Process metrics used in this study are as follows:

1. NR

NR stands for Number of Revisions. This metric describes the number of amendments of a

java class during the evolution of examined release of the software.

2. NDC

NDC stands for Number of Distinct Committers. This metric describes the number of

developers who submitted their modifications in a java class during the evolution of

examined release of the software.

10

3. NML

NML stands for Number of Modified Lines. This metric computes the number of lines of

source code that were added or taken out from the java class. Each of the submitted changes

during the evolution of examined release of the software is considered.

4. NDPV

NDPV stands for Number of Defects in Previous Versions. This metric gives the number of

faults fixed in a java class during the evolution of the past release of the software.

3.2 Empirical Data Collection

The dataset is collected from 5 projects. All are java-based projects. To maintain the

consistent measurement of static code metrics, all projects chosen were java based. Madeyski

and Jureczko [19] maintained a metric repository [11] in which all the datasets are available

having both process metrics and static code metrics. Two tools have been used by Madeyski

and Jureczko [19] to extract metrics from the metric repository. To extract the static code

metrics, the CKJM tool [13] was used, and to extract process metrics BUGInfo [12] tool was

used. The datasets which have been used in this research are shown in table 3.2.

Table 3.2 Dataset details

Dataset

Name

Description # Modules #Faulty

Modules

Ant 1.4

Java- based build tool

265 40

Ant 1.5 401 32

Ant 1.6 524 92

Ant 1.7 1065 166

Jedit 4.0 Content editor written in java and free

to run on any platform that supports

java

606 75

Jedit 4.1 644 79

Synapse 1.1 Enterprise service bus 230 60

Synapse 1.2 269 86

Xalan 2.5.0 Maintenance of libraries that makes use

of XSLT standard stylesheet to

transform XML documents

945 387

Xalan 2.6.0 1170 411

Xalan 2.7.0 1194 898

Xerces 1.2.0 515 71

11

Xerces 1.3.0 Parser that supports XML 1.0 545 69

Xerces 1.4.4 671 437

12

CHAPTER 4

RESEARCH METHODOLOGY

4.1 Dataset Preprocessing

Datasets from the publicly available repositories may contain some noise or there can be

some missing values that can affect the performance of the generated model so to avoid this

type of problem some preprocessing is to be done on datasets such as removing the unique

id field, version field, class field, project name, etc. In this, we have used one filter “replacing

missing values with user constant” available in the weka tool to fill the missing values if any.

There can be incompatibility in the datatype of independent variable due to which there can

be some error during classification. Some of the process metrics have datatype as nominal.

If we directly apply classification algorithm on nominal data type fields, it leads to error. So,

to remove this error, firstly we apply “nominal to string” filter and then one more filter “string

to word vector” to convert nominal value into numerical value as there is no method by which

we can convert nominal values to numerical. We have also used one more filter of the weka

tool to convert the bug field data type from “numeric to nominal” as software can be faulty

or non-faulty. In other terms, we can say that the bug field contains binary values either 0 or

1.

4.2 Classification Techniques

The process of predicting class or categorical data from a set of independent data is known

as classification. Mathematically we can say that classification is the mapping of a function

from ana input variable (independent variable) to an output variable (dependent variable).

Fig 4.1 shows the classification of machine learning techniques.

13

Fig 4.1 Machine Learning Techniques

In this research, we are using five classification techniques to build the prediction model. For

implementation, we use weka machine learning tool. There can be some string data type

variables due to which there can be some error so we use a filtered classifier that provides

the facility of all the classifiers with additional functionality. We choose meta.filtered

classifier firstly. After this, we choose any classification technique as classifier and filter as

unsupervised. attribute. String to a word vector. All the techniques have their parameter

values as the default values available in the weka tool. Here we are also using a 10- fold

cross-validation technique for dividing the dataset into two parts: testing and training.

Five classification technique which we have chosen for implementation are as follows:

4.2.1 Naive Bayes

It is a supervised learning algorithm as both input and output are given to predict the value

of output variable. Supervised algorithms are further classified into two parts: Classification

and Regression. Naive bayes algorithms come under classification algorithms. It is a simple

technique and gives better accuracy results[5],[15]. In this technique, the value of one

variable is not dependent on another variable value.

There are 3 types of naive bayes model:

a) Gaussian naive bayes

b) Multinomial naive bayes

c) Bernoulli naive bayes

14

Naive Bayes classification technique follows Bayes theorem. In this, we find the posterior

probability.

P(F/c) = (P(F)*P(c/F))/P(c) (4.1)

P(F/c) is the posterior probability.

P(F) is the class prior probability.

P(c) is the predictor prior probability.

P(c/F) is the likelihood.

Given F is the set of feature values or independent variables and c is the dependent variable

or class variable having values either 0 or 1. 0 value indicates not faulty and 1 indicates faulty

modules.

4.2.2 Logistic Regression

It is a widely used statistical technique applied for predicting the value of dependent variables

by using independent variables. Here we are using binary Logistic regression to build the

model as the dependent variable has binary values of either 0 or 1. In this, first data is fit into

the Linear Regression model as Linear Regression outputs continuous variables, so Logistic

Regression makes use of the logistic sigmoid function to transform this output into

probability value and this probability is mapped to target categorical dependent variable. In

logistic regression, the model should not be correlated means all the independent variables

should be independent of each other. A detailed description of logistic regression is given by

Basili et al. (1996) [4] and Hosmer and Lemeshow (1989) [10].

On the basis of categories, logistic regression can be classified into the following types:

a) Binary

b) Multinomial

c) Ordinal

4.2.3 Support Vector Machines

It is another simple algorithm used for both regression and classification. It is a powerful and

flexible supervised machine learning algorithm . It is a highly preferred technique as it gives

the best accuracy with less computation. It divides the whole dataset into two parts by

constructing an N-dimensional hyperplane. The hyperplane is created in such a way that it

divides the values of one class of the dependent variable on one side and another class value

of the dependent variable on another side[26]. Vectors that are nearer to the hyperplane are

15

called support vectors. Support vector machines can handle continuous and categorical

variables.

This technique have also been used in face recognition, medical diagnosis, text

classification[29].

Support vector machine kernels are used in the implementation of support vector machines.

These kernels are divided into the following parts:

a) Linear Kernel

b) Polynomial Kernel

c) Radial Basis Function Kernel

In this study, we have used linear kernels to predict the fault proneness using support vector

machines.

4.2.4 K Nearest Neighbor

It is another simple and clustering techniques used for both regression and classification

problems. It is also known as the lazy learning technique as there is no specification for

choosing training data, the whole dataset is considered as training data. It thinks about the k

most similar instances to classify an instance by calculating the Euclidean distance between

instances [27]. It is a nonlinear and versatile technique and the computation cost of this

technique is high as whole data is considered as training data. In pattern recognition, data

mining, and intrusion detection, K Nearest Neighbor techniques has been used.

4.2.5 Decision Tree

In this, we use the REP tree which means reduced error pruning tree. It comes under decision

tree learner and uses regression logic as it creates trees for every iteration and chooses the

best one among all. REPTree makes use of information gain to produce classification and

regression trees and pruning is done with the help of a reduced error pruning algorithms. It

uses the methods from C4.5 or J48 algorithm. It has also been used in intrusion detection. A

study done by Zhao and Zhang[33] shows that the C4.5 algorithm or J48 produces decision

tree arrangement for a given dataset by the recursive division of the data, and using the depth

first strategy, decision trees are grown.

4.3 Ensemble Techniques

The performance of classification algorithms for software fault prediction has been accessed

by a number of researchers. Therefore, there is no clear agreement in the literature that a

16

classification approach is the best for fault prediction. Recent advances in the field of

machine learning have introduced the concept of ensemble learning to improve the prediction

model’s performance. The ensemble’s core idea is to integrate the prediction outputs of

several learning techniques such that the decision’s overall performance is improved

compared to the output of the individual techniques[7]. Ensemble model improves the

performance of individual model by reducing bias and variance. Fig 4.2 shows the types of

ensemble techniques. The ensemble method can be of two types: homogeneous ensemble

and heterogeneous ensemble.

In a homogenous ensemble, learning techniques are of the same type such as bagging,

boosting, etc [20]. In heterogeneous ensembles, different learning techniques are used. Here

in this study, we are using two homogeneous ensemble techniques to combine the prediction

result of some classification techniques to get better prediction accuracy.

Ensemble methods follows 3 step procedure:

1. Generation: In this step, all the individual base models are generated using

classification techniques for the given dataset.

2. Pruning: In this step, a subset of individual models is selected among all the generated

individual models. One major advantage of this step is that ensemble of selected

models gives better results as compare to ensemble of all the generated models.

3. Integration: In this step, all the selected models in the pruning steps are combined to

make ensemble.

Fig 4.2 Types of Ensemble Techniques

17

Base classification techniques which we are using here to build an ensemble are Naïve Bayes,

Support Vector Machine, K Nearest Neighbor, Logistic Regression, and Decision Tree

(Reduced Error Pruning Tree). Ensemble techniques which we have chosen here for

implementation are as follows:

4.3.1 Stacking

Stacking is a method of putting together classification or regression models with two-layer

estimators. The base models or models for individual techniques that are used to predict the

outputs based on test datasets make up the first layer. All the base classifiers work as Level

0 classifier. The second layer is made up of a Meta-Classifier or Regressor which accepts all

of the base models prediction as an input and generates new ones. Here in this study, we have

used logistic regression as meta classifier which is Level 1 classifier. Fig 4.3 shows the

architecture of stacking method.

Fig 4.3 Stacking architecture

4.3.2 Voting

Voting is another way of ensemble technique used for classification models. In this, the

results are combined based on majority voting and the basis of probability values. There are

two types of voting:

1. Hard Voting

Fig 4.4 shows the architecture of hard voting in which selection of prediction outputs

is done on the basis of majority voting. In fig 4.4, Class A has two votes so final

predicted output is Class A.

18

Fig 4.4 Hard voting architecture

2. Soft Voting

Fig 4.5 shows the architecture of soft voting in which selection of prediction outputs

is done on the basis of average of probabilities. In fig 4.5, Class A and Class B has

some probabilities for all the classifiers. Now Class A has average probability of 0.39

and Class B has average probability of 0.61 which is greater so final predicted output

is Class B.

Fig 4.5 Soft voting architecture

4.3.3 Bagging

Bagging is the combination of bootstrapping and aggregating. Bagging stands for Bootstrap

AGGregation. It helps in reducing variance and overfitting. Fig 4.6 shows the bagging

architecture. In this type of ensemble, firstly bootstraps are created by choosing the training

datasets by using replacement policy. After that, individual classification techniques are used

to build the model and find the prediction for individual techniques. For combining the results

and choosing the best prediction among all prediction outputs, voting is applied to get the

final prediction output.

19

Fig 4.6 Bagging architecture

4.3.4 Boosting

Boosting is an ensemble method which enhance the capability of weak learners and convert

them into strong learner. In this method, we train the weak learners sequentially while in

bagging we train the learners parallelly. In boosting methods, the individual models can have

unequal importance. Boosting method helps in reducing the bias. Prediction of each models

are combined using voting method to get final prediction result. There are different types of

boosting algorithms:

1. Adaboost

2. XGBoost

3. Gradient boosting

4. LightGBM

Here we have used Adaboost technique. Figure 4.7 shows boosting architecture. The results

of Prediction 1, Prediction 2…., Prediction N are combined using voting method to get final

prediction results.

Fig 4.7 Boosting architecture

20

4.4 Performance Evaluation Measure

If there is a class imbalance problem in the dataset and we are trying to do classification then

it is a difficult task to choose the correct performance evaluation measure. In such a scenario,

AUC is used to estimate the prediction performance. Although the ROC (Receiver Operating

Characteristics) curve is the accurate measure for prediction performance[18][16], it does not

give the numeric values to discriminate between the results so AUC is the better choice for

measuring prediction performance. Fig 4.8 represents confusion matric in which TP

represents True Positive, FP represents False Positive, TN represents True Negative, and FN

represents False Negative. AUC is a summarization of the ROC curve. It plots the curve

between two parameters:

1. TPR: It stands for true positive rate and is defined as follows:

TPR=TP/(TP+FN) (4.2)

2. FPR: It stands for false positive rate and is defined as follows:

 FPR=FP/(FP+TN) (4.3)

Fig 4.8 Confusion matrix

AUC value is the summarization of ROC curve. Value of AUC nearer to 1 shows better

prediction results and nearer to 0 shows poor prediction results. AUC value is scale-invariant

and classification threshold invariant. A detailed description of how to calculate AUC values

is given in Dejaeger et al [18].

4.5 Statistical Analysis

We have used Friedman test with Nemenyi test to check whether the predictive performance

of several classification and ensemble techniques differ significantly or not.

21

• Friedman Test

It is a non-parametric test that means this test doesn’t require that data should be normal. This

test follows a ranking method. Over multiple datasets, this test assigns some ranks to a set of

classification techniques. The Null and alternative hypothesis for Friedman test is defined as

follows:

Null Hypothesis (H0): Performances of the various techniques do not differ significantly.

Alternative Hypothesis (Ha): Performances of the various techniques differ significantly.

Friedman test is utilized to check whether the performance of different techniques differs

significantly or not. In this test, we compare the calculated 𝛘2-statistics value with the

tabulated chi-square value to check whether the null hypothesis is accepted or rejected. We

can calculate the 𝛘2-statistics value using the given formula.

2- statistics=
12

𝑛(𝑛+1)
∑ 𝑅𝑖

2 − 3𝑛(𝑘 + 1)𝑘
𝑖=1 (4.4)

• Nemenyi Test

This test is utilized to contrast numerous procedures and each other when the sample sizes

are equivalent. It is a Post hoc test as it is applicable when there is a rejection of the null

hypothesis when we use the Kruskal Wallis or Friedman test. In this, a comparison between

critical distance and pairwise difference of average ranks takes place to check whether the

null hypothesis is accepted or rejected. We can calculate the critical distance value using the

given formula.

 𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑛
 (4.5)

• Effect Size

Effect size in statistics is the measure of the importance of differences between two groups

or samples. It is not the same as statistical significance[19]. There is no direct method to

calculate effect size if we are applying the Friedman test, so we apply Kendall’s W coefficient

(Coefficient of Cordonance). Kendall’s W coefficient can be calculated as:

 𝑊 =
2−𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

𝑛(𝑘−1)
 (4.6)

This coefficient value talks about the agreement between the techniques used and the

coefficient value lies between 0 and 1. If the coefficient value is 0.1 to 0.2, it will be

considered as a small effect size, if the coefficient value is 0.3 to 0.4, it will be considered as

22

medium effect size and if the value of effect size exceeds 0.5 then it will be considered as

large effect size.

23

CHAPTER 5

EXPERIMENTAL RESULTS

To check whether process metrics outperform static code metrics in case of fault prediction

results, we analyze the following models using various classification and ensemble

techniques:

Model-1: model that solely contains static code metrics.

Model-2: model that solely contains process metrics.

Model-3: combination of process and static code metrics.

In this section, we analyze the results of all three models using various classifiers and

ensemble techniques based on AUC values. We will analyze three other models also using

only those classification and ensemble techniques which performs better in combined model.

Model-4: combination of 1 process metric and all static code metrics

Model-5: combination of 2 process metrics and all static code metrics

Model -6: combination of 3 process metrics and all static code metrics and

Using these 3 models, we can identify which process metric is useful or which pair of process

metric is more useful in predicting the fault proneness.

5.1 Naive Bayes Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using naive bayes are presented in this section. Table 5.1

shows the experimental results of all the three models implemented using naive bayes

classification techniques. This table shows that in 53.33% of cases combination of both

metrics gives better AUC values, in 40 % cases process metric gives better AUC values and

in 6.67% cases static code metric gives better AUC values. As Naïve Bayes gives better

prediction performance in combined model so we will also analyze model 4, model 5 and

model 6 using Naïve Bayes classification technique.

24

Table 5.1 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using NB

Dataset Name Combined Static Code Metric Process Metric

Ant1.4 0.746 0.668 0.789

Ant1.5 0.831 0.805 0.800

Ant1.6 0.862 0.841 0.840

Ant1.7 0.889 0.846 0.876

Jedit4.0 0.902 0.826 0.914

Jedit4.1 0.926 0.837 0.906

Synapse1.1 0.694 0.707 0.475

 Synapse1.2 0.761 0.754 0.694

Xalan2.5.0 0.723 0.621 0.732

Xalan2.6.0 0.865 0.822 0.810

Xalan2.7.0 0.973 0.932 0.991

Xerces 1.2.0 0.737 0.543 0.773

Xerces1.3.0 0.830 0.786 0.650

Xerces1.4.4 0.806 0.755 0.713

Table 5.2 shows the experimental results of model 4 implemented using the naïve bayes

classification technique. This table shows that NR metrics is more useful in predicting the

fault proneness as in 71.42% of cases the combination of NR metrics with all static code

metrics gives better AUC values.

Table 5.2 AUC values of models which contain combination of SC and 1 process metric using NB

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC

Ant1.4 0.762 0.705 0.738 0.661

Ant1.5 0.823 0.821 0.823 0.805

Ant1.6 0.862 0.850 0.860 0.840

Ant1.7 0.876 0.865 0.867 0.853

Jedit4.0 0.879 0.868 0.867 0.833

Jedit4.1 0.887 0.889 0.888 0.866

Synapse1.1 0.702 0.705 0.705 0.708

25

Synapse1.2 0.757 0.761 0.763 0.755

Xalan2.5.0 0.708 0.666 0.709 0.634

Xalan2.6.0 0.863 0.834 0.858 0.833

Xalan2.7.0 0.977 0.952 0.953 0.941

Xerces1.2.0 0.680 0.608 0.634 0.648

Xerces1.3.0 0.822 0.817 0.809 0.796

Xerces1.4.4 0.828 0.789 0.784 0.756

Table 5.3 shows the experimental results of model 5 implemented using naïve bayes

classification technique. This table shows that NR metric combining with NDC metric gives

better prediction performance as in 57.14% of cases combination of static code metrics, NR

metrics and NDC metric gives better AUC values.

Table 5.3 AUC values of models which contain combination of SC and 2 process metrics using NB

Dataset Name NR+ND

C+SC

NR+NM

L+SC

NR+NDP

V+SC

NDC+NM

L+SC

NDC+NDP

V+SC

NML+ND

PV+SC

Ant1.4 0.766 0.743 0.758 0.753 0.700 0.733

Ant1.5 0.831 0.824 0.824 0.832 0.820 0.823

Ant1.6 0.864 0.860 0.861 0.862 0.849 0.858

Ant1.7 0.885 0.878 0.880 0.878 0.869 0.872

Jedit4.0 0.900 0.882 0.881 0.890 0.870 0.869

Jedit4.1 0.912 0.889 0.901 0.911 0.904 0.904

Synapse1.1 0.700 0.697 0.703 0.694 0.705 0.705

Synapse 1.2 0.763 0.757 0.758 0.768 0.763 0.765

Xalan2.5.0 0.711 0.712 0.714 0.713 0.676 0.717

Xalan2.6.0 0.864 0.864 0.865 0.865 0.842 0.862

Xalan2.7.0 0.982 0.968 0.980 0.959 0.954 0.955

Xerces1.2.0 0.685 0.678 0.738 0.653 0.696 0.711

Xerces1.3.0 0.840 0.807 0.829 0.834 0.825 0.817

Xerces1.4.4 0.840 0.795 0.826 0.803 0.787 0.784

26

Table 5.4 shows the experimental results of model 6 implemented using naïve bayes

classification technique. This table shows that NR metric combining with NDC metric and

NDPV metric gives better prediction performance as in 78.57% of cases combination of static

code metrics, NR metrics, NDC metric and NDPV metric gives better AUC values.

Table 5.4 AUC values of models which contain combination of SC and 3 process metrics using NB

Dataset Name NR+NDC+

NML+SC

NR+NDC+N

DPV+SC

NR+NML+N

DPV+SC

NDC+NML+N

DPV+SC

Ant1.4 0.750 0.763 0.740 0.747

Ant1.5 0.831 0.831 0.823 0.831

Ant1.6 0.863 0.863 0.859 0.861

Ant1.7 0.886 0.888 0.881 0.881

Jedit4.0 0.900 0.901 0.883 0.892

Jedit4.1 0.913 0.925 0.904 0.925

Synapse1.1 0.694 0.700 0.697 0.702

Synapse1.2 0.760 0.764 0.758 0.770

Xalan2.5.0 0.716 0.717 0.720 0.721

Xalan2.6.0 0.864 0.866 0.865 0.864

Xalan2.7.0 0.972 0.983 0.969 0.960

Xerces1.2.0 0.683 0.739 0.733 0.724

Xerces1.3.0 0.825 0.845 0.814 0.842

Xerces1.4.4 0.808 0.837 0.794 0.801

5.2 Logical Regression Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using logistic regression are presented in this section. Table

5.5 shows the experimental results of all the three models implemented using the logistic

regression classification techniques. Table 5.5 consists of AUC values. This table shows that

in 86.66% cases static code metrics give better AUC values, in 6.66% case process metric,

and in the remaining 6.66% cases combined model of both process and static code metric

gives better AUC values.

27

Table 5.5 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using LR

Dataset Name Combined Static Code Metric Process Metric

Ant1.4 0.631 0.751 0.450

Ant1.5 0.635 0.844 0.596

Ant1.6 0.725 0.848 0.589

Ant1.7 0.726 0.856 0.698

Jedit4.0 0.694 0.819 0.687

Jedit4.1 0.612 0.856 0.212

Synapse1.1 0.689 0.717 0.493

Synapse1.2 0.461 0.737 0.329

Xalan2.5.0 0.731 0.733 0.677

Xalan2.6.0 0.833 0.844 0.771

Xalan2.7.0 0.982 0.956 0.989

Xerces1.2.0 0.604 0.564 0.523

Xerces1.3.0 0.604 0.751 0.552

Xerces1.4.4 0.853 0.867 0.764

5.3 Support Vector Machine Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using a support vector machine are presented in this section.

Table 5.6 shows the experimental results of all the three models implemented using the

support vector machine classification technique. Table 5.6 consists of AUC values. This table

shows that in 66.67% cases combination of both metrics gives better AUC values, in 33.33%

cases process metric gives better AUC values and in 13.33% cases static code metric gives

better AUC values. As Support Vector Machine gives better prediction performance in

combined model so we will also analyze model 4, model 5 and model 6 using Support Vector

Machine technique.

28

Table 5.6 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using NB

Dataset Name Combined Static Code Metric Process Metric

Ant1.4 0.579 0.500 0.589

Ant1.5 0.616 0.500 0.553

Ant1.6 0.676 0.606 0.647

Ant1.7 0.694 0.620 0.669

Jedit4.0 0.735 0.538 0.748

Jedit4.1 0.740 0.609 0.723

Synapse1.1 0.671 0.635 0.499

Synapse1.2 0.601 0.628 0.546

Xalan2.5.0 0.651 0.575 0.629

Xalan2.6.0 0.784 0.695 0.684

Xalan2.7.0 0.981 0.843 0.981

Xerces1.2.0 0.540 0.500 0.553

Xerces1.3.0 0.594 0.519 0.548

Xerces1.4.4 0.849 0.766 0.679

Table 5.7 shows the experimental results of model 4 implemented using support vector

machine technique. This table shows that NR metric is more useful in predicting fault

proneness as in 57.14% of cases combination of NR metrics with static code metrics gives

better AUC values.

Table 5.7 AUC values of models which contain combination of SC and 1 process metric using SVM

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC

Ant1.4 0.595 0.543 0.575 0.527

Ant1.5 0.540 0.500 0.556 0.500

Ant1.6 0.634 0.606 0.650 0.617

Ant1.7 0.656 0.636 0.666 0.617

Jedit4.0 0.751 0.569 0.633 0.558

Jedit4.1 0.707 0.662 0.701 0.666

Synapse1.1 0.674 0.655 0.662 0.627

29

Synapse1.2 0.640 0.645 0.601 0.622

Xalan2.5.0 0.649 0.627 0.642 0.581

Xalan2.6.0 0.774 0.728 0.777 0.719

Xalan2.7.0 0.981 0.881 0.883 0.850

Xerces1.2.0 0.493 0.500 0.539 0.498

Xerces1.3.0 0.576 0.527 0.572 0.511

Xerces1.4.4 0.847 0.846 0.845 0.767

Table 5.8 shows the experimental results of model 5 implemented using support vector

machine technique. This table shows that NR metric combining with NML metric gives

better prediction performance as in 50% of cases combination of static code metrics, NR

metrics and NML metric gives better AUC values.

Table 5.8 AUC values of models which contain combination of SC and 2 process metrics using SVM

Dataset Name NR+ND

C+SC

NR+NM

L+SC

NR+ND

PV+SC

NDC+NM

L+SC

NDC+ND

PV+SC

NML+ND

PV+SC

Ant1.4 0.608 0.601 0.610 0.558 0.518 0.558

Ant1.5 0.540 0.616 0.540 0.587 0.500 0.554

Ant1.6 0.637 0.683 0.636 0.653 0.612 0.650

Ant1.7 0.662 0.693 0.663 0.687 0.646 0.680

Jedit4.0 0.751 0.735 0.751 0.640 0.583 0.638

Jedit4.1 0.711 0.726 0.715 0.687 0.695 0.694

Synapse1.1 0.677 0.663 0.654 0.659 0.655 0.665

Synapse1.2 0.648 0.595 0.645 0.610 0.645 0.601

Xalan2.5.0 0.648 0.654 0.656 0.634 0.627 0.636

Xalan2.6.0 0.770 0.789 0.773 0.782 0.740 0.778

Xalan2.7.0 0.981 0.981 0.981 0.883 0.882 0.883

Xerces1.2.0 0.493 0.529 0.507 0.523 0.498 0.537

Xerces1.3.0 0.591 0.601 0.569 0.566 0.527 0.566

Xerces1.4.4 0.846 0.851 0.847 0.846 0.849 0.845

30

Table 5.9 shows the experimental results of model 6 implemented using support vector

machine technique. This table shows that NR metric combining with NML metric and NDPV

metric gives better prediction performance as in 64.28% of cases combination of static code

metrics, NR metrics, NML metric and NDPV metric gives better AUC values.

Table 5.9 AUC values of models which contain combination of SC and 3 process metrics using SVM

Dataset Name NR+NDC+N

ML+SC

NR+NDC+N

DPV+SC

NR+NML+ND

PV+SC

NDC+NML+ND

PV+SC

Ant1.4 0.570 0.592 0.591 0.556

Ant1.5 0.600 0.540 0.601 0.571

Ant1.6 0.677 0.637 0.682 0.652

Ant1.7 0.690 0.666 0.693 0.691

Jedit4.0 0.735 0.751 0.735 0.638

Jedit4.1 0.734 0.720 0.747 0.694

Synapse1.1 0.679 0.669 0.668 0.651

Synapse1.2 0.610 0.648 0.604 0.610

Xalan2.5.0 0.646 0.655 0.656 0.643

Xalan2.6.0 0.784 0.774 0.786 0.779

Xalan2.7.0 0.981 0.981 0.981 0.883

Xerces1.2.0 0.516 0.500 0.544 0.530

Xerces1.3.0 0.600 0.591 0.594 0.552

Xerces1.4.4 0.849 0.846 0.851 0.846

5.4 K Nearest Neighbor Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using the K nearest neighbor is presented in this section. Table

5.10 shows the experimental results of all the three models implemented using K Nearest

Neighbor technique. Table 5.10 consists of AUC values. This table shows that in 60% of

cases process metric gives better AUC values, combined model of both metrics gives better

AUC value in 20% of cases and model that solely contain static code metrics also give better

AUC values in 20% of cases.

31

Table 5.10 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using KNN

Dataset Name Combined Static Code Metric Process Metric

Ant1.4 0.657 0.651 0.762

Ant1.5 0.665 0.647 0.728

Ant1.6 0.691 0.728 0.778

Ant1.7 0.719 0.719 0.785

Jedit4.0 0.753 0.774 0.868

Jedit4.1 0.746 0.710 0.820

Synapse1.1 0.621 0.695 0.428

Synapse1.2 0.699 0.719 0.630

Xalan2.5.0 0.705 0.708 0.733

Xalan2.6.0 0.817 0.801 0.811

Xalan2.7.0 0.991 0.924 0.990

Xerces1.2.0 0.700 0.694 0.714

Xerces1.3.0 0.679 0.759 0.614

Xerces1.4.4 0.893 0.847 0.812

5.5 Decision Tree Analysis

The results of analyzing all three models to check the relationship between fault proneness

and process metrics using a decision tree is presented in this section. Table 5.11 shows the

experimental results of all the three models implemented using the decision tree classification

technique. Table 5.11 consists of AUC values. This table shows that in 80% of cases

combination of both metrics gives better AUC values, in 20% cases process metric gives

better AUC values and in 13.33% of cases static code metric gives better AUC values.

Table 5.11 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using DT

Dataset Name Combined Static Code Metric Process Metric

Ant1.4 0.676 0.580 0.629

Ant1.5 0.679 0.646 0.535

32

Ant1.6 0.813 0.809 0.771

Ant1.7 0.846 0.810 0.814

Jedit4.0 0.817 0.717 0.871

Jedit4.1 0.873 0.783 0.790

Synapse1.1 0.683 0.630 0.494

Synapse1.2 0.695 0.701 0.612

Xalan2.5.0 0.797 0.734 0.717

Xalan2.6.0 0.872 0.848 0.848

Xalan2.7.0 0.987 0.914 0.989

Xerces1.2.0 0.732 0.659 0.673

Xerces1.3.0 0.763 0.712 0.603

Xerces1.4.4 0.909 0.893 0.795

Table 5.12 shows the experimental results of model 5 implemented using decision tree

technique. This table shows that NR metric is more useful in predicting fault proneness as in

35.71% of cases combination of NR metrics with static code metrics gives better AUC

values.

Table 5.12 AUC values of models which contain combination of SC and 1 process metric using DT

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC

Ant1.4 0.654 0.601 0.572 0.549

Ant1.5 0.644 0.734 0.603 0.700

Ant1.6 0.779 0.800 0.794 0.801

Ant1.7 0.778 0.802 0.798 0.828

Jedit4.0 0.856 0.836 0.845 0.761

Jedit4.1 0.786 0.872 0.847 0.768

Synapse1.1 0.641 0.643 0.681 0.694

Synapse1.2 0.698 0.691 0.723 0.730

Xalan2.5.0 0.767 0.765 0.779 0.722

Xalan2.6.0 0.868 0.865 0.862 0.837

Xalan2.7.0 0.987 0.961 0.958 0.947

Xerces1.2.0 0.657 0.672 0.635 0.658

33

Xerces1.3.0 0.710 0.693 0.757 0.689

Xerces1.4.4 0.939 0.902 0.892 0.863

Table 5.13 shows the experimental results of model 5 implemented using decision tree

technique. This table shows that NR metric combining with NDC metric gives better

prediction performance as in 28.57% of cases combination of static code metrics, NR metrics

and NDC metric gives better AUC values.

Table 5.13 AUC values of models which contain combination of SC and 2 process metrics using DT

Dataset Name NR+ND

C+SC

NR+NM

L+SC

NR+ND

PV+SC

NDC+NM

L+SC

NDC+ND

PV+SC

NML+N

DPV+SC

Ant1.4 0.763 0.709 0.644 0.715 0.590 0.541

Ant1.5 0.713 0.537 0.728 0.704 0.703 0.715

Ant1.6 0.832 0.828 0.800 0.819 0.790 0.798

Ant1.7 0.830 0.826 0.804 0.841 0.827 0.823

Jedit4.0 0.843 0.869 0.823 0.816 0.872 0.801

Jedit4.1 0.862 0.868 0.811 0.863 0.897 0.824

Synapse1.1 0.633 0.722 0.624 0.710 0.693 0.695

Synapse1.2 0.695 0.719 0.704 0.725 0.715 0.740

Xalan2.5.0 0.768 0.794 0.772 0.787 0.780 0.774

Xalan2.6.0 0.857 0.855 0.849 0.862 0.867 0.860

Xalan2.7.0 0.990 0.993 0.992 0.961 0.965 0.961

Xerces1.2.0 0.658 0.668 0.718 0.688 0.694 0.673

Xerces1.3.0 0.787 0.697 0.769 0.772 0.763 0.756

Xerces1.4.4 0.947 0.917 0.931 0.896 0.923 0.879

Table 5.14 shows the experimental results of model 6 implemented using decision tree

technique. This table shows that NR metric combining with NML metric and NDPV metric

gives better prediction performance as in 50% of cases combination of static code metrics,

NR metrics, NML metric and NDPV metric gives better AUC values.

34

Table 5.14 AUC values of models which contain combination of SC and 3 process metric using DT

Dataset Name NR+NDC+N

ML+SC

NR+NDC+N

DPV+SC

NR+NML+ND

PV+SC

NDC+NML+ND

PV+SC

Ant1.4 0.690 0.597 0.603 0.543

Ant1.5 0.600 0.695 0.658 0.659

Ant1.6 0.810 0.814 0.831 0.821

Ant1.7 0.811 0.832 0.784 0.813

Jedit4.0 0.816 0.833 0.858 0.828

Jedit4.1 0.862 0.803 0.811 0.847

Synapse1.1 0.673 0.641 0.683 0.682

Synapse1.2 0.743 0.716 0.727 0.693

Xalan2.5.0 0.785 0.769 0.768 0.764

Xalan2.6.0 0.848 0.854 0.873 0.868

Xalan2.7.0 0.989 0.985 0.992 0.951

Xerces1.2.0 0.718 0.718 0.728 0.722

Xerces1.3.0 0.718 0.737 0.740 0.731

Xerces1.4.4 0.933 0.941 0.933 0.890

5.6. Stacking Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using naive bayes are presented in this section. Table 5.15

shows the experimental results of all the three models implemented using stacking ensemble

technique. Table 5.15 consists of AUC values. This table shows that in 71.42 % of cases

combination of both metrics gives better AUC values, and in 28.57% cases static code metric

gives better AUC values.

Table 5.15 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using stacking

Dataset Name Combined Static Code Metrics Process Metrics

Ant1.4 0.767 0.716 0.760

Ant1.5 0.772 0.802 0.706

Ant1.6 0.864 0.857 0.850

35

Ant1.7 0.872 0.850 0.856

Jedit4.0 0.894 0.821 0.888

Jedit4.1 0.913 0.815 0.911

Synapse1.1 0.711 0.752 0.453

Synapse1.2 0.788 0.789 0.664

Xalan2.5.0 0.797 0.792 0.733

Xalan2.6.0 0.898 0.867 0.824

Xalan2.7.0 0.993 0.968 0.991

Xerces1.2.0 0.797 0.725 0.777

Xerces1.3.0 0.756 0.777 0.719

Xerces1.4.4 0.942 0.918 0.817

Table 5.16 shows the experimental results of model 4 implemented using stacking technique.

This table shows that NR metric is more useful in predicting fault proneness as in 57.14% of

cases combination of NR metrics with static code metrics gives better AUC values.

Table 5.16 AUC values of models which contain combination of SC and 1 process metric using stacking

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC

Ant1.4 0.797 0.749 0.649 0.724

Ant1.5 0.786 0.843 0.786 0.787

Ant1.6 0.881 0.873 0.834 0.853

Ant1.7 0.882 0.888 0.824 0.864

Jedit4.0 0.861 0.896 0.872 0.837

Jedit4.1 0.903 0.904 0.809 0.851

Synapse1.1 0.737 0.733 0.711 0.749

Synapse1.2 0.777 0.809 0.779 0.780

Xalan2.5.0 0.821 0.805 0.801 0.795

Xalan2.6.0 0.900 0.885 0.891 0.880

Xalan2.7.0 0.994 0.981 0.979 0.970

Xerces1.2.0 0.787 0.759 0.692 0.782

Xerces1.3.0 0.859 0.849 0.769 0.794

36

Xerces1.4.4 0.950 0.934 0.938 0.913

Table 5.17 shows the experimental results of model 5 implemented using stacking technique.

This table shows that NDC metric combining with NDPV metric gives better prediction

performance as in 50% of cases combination of NDC metric, NDPV metric and static code

metrics gives better AUC values.

Table 5.17 AUC values of models which contain combination of SC and 2 process metrics using stacking

Dataset Name NR+ND

C+SC

NR+NM

L+SC

NR+ND

PV+SC

NDC+NM

L+SC

NDC+ND

PV+SC

NML+N

DPV+SC

Ant1.4 0.743 0.750 0.778 0.749 0.812 0.662

Ant1.5 0.783 0.773 0.782 0.775 0.795 0.769

Ant1.6 0.885 0.857 0.878 0.825 0.863 0.796

Ant1.7 0.883 0.859 0.886 0.824 0.891 0.823

Jedit4.0 0.835 0.864 0.846 0.866 0.887 0.839

Jedit4.1 0.905 0.911 0.916 0.898 0.918 0.844

Synapse1.1 0.729 0.704 0.707 0.726 0.742 0.730

Synapse1.2 0.767 0.789 0.778 0.756 0.817 0.819

Xalan2.5.0 0.825 0.799 0.823 0.808 0.824 0.813

Xalan2.6.0 0.904 0.901 0.904 0.898 0.887 0.894

Xalan2.7.0 0.991 0.993 0.992 0.983 0.982 0.980

Xerces1.2.0 0.791 0.750 0.793 0.761 0.835 0.727

Xerces1.3.0 0.840 0.784 0.830 0.781 0.828 0.750

Xerces1.4.4 0.945 0.945 0.947 0.935 0.933 0.937

Table 5.18 shows the experimental results of model 6 implemented using stacking technique.

This table shows that NR metric combining with NDC metric and NDPV metric gives better

prediction performance as in 78.57% of cases combination of NR metric, NDC metric,

NDPV metric and static code metrics gives better AUC values.

37

Table 5.18 AUC values of models which contain combination of SC and 3 process metric using stacking

Dataset Name SC+NR+NDC

+NML

SC+NR+NDC

+NDPV

SC+NR+NML+

NDPV

SC+NDC+NML

+NDPV

Ant1.4 0.786 0.812 0.796 0.677

Ant1.5 0.809 0.820 0.774 0.811

Ant1.6 0.863 0.886 0.849 0.845

Ant1.7 0.853 0.890 0.867 0.835

Jedit4.0 0.843 0.898 0.846 0.844

Jedit4.1 0.902 0.912 0.914 0.865

Synapse1.1 0.731 0.732 0.694 0.737

Synapse1.2 0.753 0.772 0.766 0.762

Xalan2.5.0 0.802 0.822 0.806 0.792

Xalan2.6.0 0.899 0.900 0.900 0.894

Xalan2.7.0 0.993 0.993 0.995 0.981

Xerces1.2.0 0.738 0.811 0.764 0.780

Xerces1.3.0 0.754 0.844 0.775 0.768

Xerces1.4.4 0.949 0.950 0.948 0.938

5.7 Voting Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using naive bayes are presented in this section. Table 5.19

shows the experimental results of all the three models implemented using stacking ensemble

technique. Table 5.19 consists of AUC values. This table shows that in 71.42% of cases

combination of both metrics gives better AUC values, in 14.28% of cases process metrics

gives better AUC values, and in 14.28% cases static code metric gives better AUC values.

Table 5.19 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using voting

Dataset Name Combined Static Code Metrics Process Metrics

Ant1.4 0.806 0.760 0.811

Ant1.5 0.832 0.832 0.772

Ant1.6 0.872 0.857 0.856

38

Ant1.7 0.877 0.862 0.877

Jedit4.0 0.890 0.845 0.911

Jedit4.1 0.916 0.855 0.908

Synapse1.1 0.745 0.797 0.480

Synapse1.2 0.764 0.794 0.651

Xalan2.5.0 0.792 0.759 0.735

Xalan2.6.0 0.899 0.869 0.832

Xalan2.7.0 0.997 0.963 0.989

Xerces1.2.0 0.812 0.741 0.797

Xerces1.3.0 0.818 0.794 0.711

Xerces1.4.4 0.943 0.897 0.817

Table 5.20 shows the experimental results of model 4 implemented using voting technique.

This table shows that NR metric is more useful in predicting fault proneness as in 78.57%

of cases combination of NR metric with static code metrics gives better AUC values.

Table 5.20 AUC values of models which contain combination of SC and 1 process metric using voting

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC

Ant1.4 0.836 0.829 0.760 0.767

Ant1.5 0.881 0.864 0.802 0.828

Ant1.6 0.888 0.884 0.849 0.856

Ant1.7 0.885 0.885 0.840 0.870

Jedit4.0 0.923 0.912 0.860 0.855

Jedit4.1 0.932 0.921 0.884 0.871

Synapse1.1 0.782 0.801 0.777 0.796

Synapse1.2 0.802 0.830 0.736 0.795

Xalan2.5.0 0.797 0.805 0.781 0.764

Xalan2.6.0 0.897 0.878 0.888 0.882

Xalan2.7.0 0.995 0.979 0.979 0.971

Xerces1.2.0 0.812 0.789 0.698 0.781

Xerces1.3.0 0.871 0.843 0.779 0.810

39

Xerces1.4.4 0.954 0.939 0.937 0.902

Table 5.21 shows the experimental results of model 5 implemented using voting technique.

This table shows that NR metric combining with NDC metric gives better prediction

performance as in 50% of cases combination of static code metrics, NR metrics and NDC

metric gives better AUC values.

Table 5.21 AUC values of models which contain combination of SC and 2 process metrics using voting

Dataset Name NR+ND

C+SC

NR+NM

L+SC

NR+ND

PV+SC

NDC+NM

L+SC

NDC+ND

PV+SC

NML+N

DPV+SC

Ant1.4 0.846 0.802 0.840 0.777 0.818 0.762

Ant1.5 0.874 0.847 0.872 0.817 0.858 0.799

Ant1.6 0.892 0.856 0.886 0.859 0.880 0.853

Ant1.7 0.892 0.854 0.890 0.846 0.889 0.841

Jedit4.0 0.924 0.889 0.923 0.865 0.911 0.846

Jedit4.1 0.934 0.911 0.929 0.894 0.937 0.875

Synapse1.1 0.785 0.744 0.783 0.757 0.803 0.776

Synapse1.2 0.807 0.760 0.807 0.753 0.830 0.740

Xalan2.5.0 0.805 0.791 0.805 0.782 0.808 0.783

Xalan2.6.0 0.902 0.898 0.899 0.890 0.887 0.889

Xalan2.7.0 0.994 0.997 0.996 0.982 0.979 0.980

Xerces1.2.0 0.790 0.765 0.818 0.736 0.843 0.744

Xerces1.3.0 0.865 0.798 0.868 0.780 0.843 0.786

Xerces1.4.4 0.954 0.947 0.953 0.937 0.938 0.935

Table 5.22 shows the experimental results of model 6 implemented using voting technique.

This table shows that NR metric combining with NDC metric and NDPV metric gives better

prediction performance as in 92.85% of cases combination of NR metric, NDC metric,

NDPV metric and static code metrics gives better AUC values.

40

Table 5.22 AUC values of models which contain combination of SC and 3 process metric using voting

Dataset Name SC+NR+NDC+

NML

SC+NR+NDC

+NDPV

SC+NR+NML

+NDPV

SC+NDC+NML

+NDPV

Ant1.4 0.809 0.840 0.813 0.776

Ant1.5 0.838 0.865 0.838 0.814

Ant1.6 0.874 0.890 0.862 0.861

Ant1.7 0.878 0.891 0.860 0.845

Jedit4.0 0.894 0.924 0.885 0.853

Jedit4.1 0.916 0.943 0.912 0.895

Synapse1.1 0.753 0.787 0.741 0.756

Synapse1.2 0.765 0.809 0.764 0.758

Xalan2.5.0 0.790 0.810 0.795 0.787

Xalan2.6.0 0.898 0.901 0.900 0.888

Xalan2.7.0 0.997 0.995 0.997 0.982

Xerces1.2.0 0.750 0.840 0.801 0.782

Xerces1.3.0 0.798 0.863 0.808 0.794

Xerces1.4.4 0.949 0.951 0.945 0.936

5.8 Bagging Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using naive bayes are presented in this section. Table 5.23

shows the experimental results of all the three models implemented using stacking ensemble

technique. Table 5.23 consists of AUC values. This table shows that in 64.28% of cases

combination of both metrics gives better AUC values, in 14.28% of cases process metrics

gives better AUC values, and in 21.42% cases static code metric gives better AUC values.

Table 5.23 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using bagging

Dataset Name Combined Static Code Metrics Process Metrics

Ant1.4 0.808 0.769 0.817

Ant1.5 0.850 0.858 0.784

Ant1.6 0.894 0.868 0.859

41

Ant1.7 0.900 0.875 0.877

Jedit4.0 0.917 0.850 0.920

Jedit4.1 0.938 0.881 0.906

Synapse1.1 0.764 0.790 0.494

Synapse1.2 0.794 0.811 0.660

Xalan2.5.0 0.803 0.779 0.740

Xalan2.6.0 0.906 0.876 0.834

Xalan2.7.0 0.997 0.967 0.992

Xerces1.2.0 0.814 0.759 0.804

Xerces1.3.0 0.843 0.831 0.731

Xerces1.4.4 0.959 0.905 0.823

Table 5.24 shows the experimental results of model 4 implemented using bagging technique.

This table shows that NR metric is more useful in predicting fault proneness as in 78.57% of

cases combination of NR metric with static code metrics gives better AUC values.

Table 5.24 AUC values of models which contain combination of SC and 1 process metric using bagging

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC

Ant1.4 0.840 0.815 0.799 0.768

Ant1.5 0.882 0.869 0.841 0.851

Ant1.6 0.896 0.891 0.868 0.867

Ant1.7 0.892 0.892 0.883 0.881

Jedit4.0 0.918 0.909 0.891 0.858

Jedit4.1 0.942 0.931 0.913 0.900

Synapse1.1 0.779 0.785 0.775 0.784

Synapse1.2 0.802 0.819 0.794 0.808

Xalan2.5.0 0.806 0.808 0.789 0.785

Xalan2.6.0 0.904 0.890 0.899 0.887

Xalan2.7.0 0.996 0.979 0.980 0.971

Xerces1.2.0 0.800 0.791 0.771 0.807

Xerces1.3.0 0.870 0.868 0.827 0.839

42

Xerces1.4.4 0.956 0.943 0.947 0.911

Table 5.25 shows the experimental results of model 5 implemented using bagging technique.

This table shows that NR metric combining with NDC metric gives better prediction

performance as in 57.14% of cases combination of static code metrics, NR metrics and NDC

metric gives better AUC values.

Table 5.25 AUC values of models which contain combination of SC and 2 process metrics using bagging

Dataset Name NR+ND

C+SC

NR+NM

L+SC

NR+ND

PV+SC

NDC+NM

L+SC

NDC+ND

PV+SC

NML+N

DPV+SC

Ant1.4 0.844 0.813 0.833 0.810 0.806 0.791

Ant1.5 0.870 0.855 0.866 0.862 0.864 0.840

Ant1.6 0.895 0.893 0.895 0.874 0.888 0.869

Ant1.7 0.896 0.893 0.895 0.884 0.896 0.887

Jedit4.0 0.923 0.915 0.919 0.901 0.909 0.894

Jedit4.1 0.946 0.936 0.945 0.926 0.940 0.918

Synapse1.1 0.776 0.766 0.776 0.770 0.778 0.775

Synapse1.2 0.806 0.791 0.804 0.785 0.821 0.792

Xalan2.5.0 0.805 0.799 0.812 0.792 0.812 0.793

Xalan2.6.0 0.906 0.906 0.905 0.899 0.897 0.901

Xalan2.7.0 0.996 0.997 0.998 0.982 0.980 0.981

Xerces1.2.0 0.796 0.775 0.838 0.780 0.831 0.809

Xerces1.3.0 0.871 0.836 0.869 0.858 0.865 0.837

Xerces1.4.4 0.955 0.959 0.954 0.945 0.943 0.946

Table 5.26 shows the experimental results of model 6 implemented using bagging technique.

This table shows that NR metric combining with NDC metric and NDPV metric gives better

prediction performance as in 78.57% of cases combination of NR metric, NDC metric,

NDPV metric and static code metrics gives better AUC values.

43

Table 5.26 AUC values of models which contain combination of SC and 3 process metrics using bagging

Dataset Name NR+NDC+NM

L+SC

NR+NDC+ND

PV+SC

NR+NML+ND

PV+SC

NDC+NML+N

DPV+SC

Ant1.4 0.814 0.836 0.810 0.806

Ant1.5 0.854 0.866 0.851 0.861

Ant1.6 0.893 0.898 0.890 0.871

Ant1.7 0.899 0.898 0.894 0.888

Jedit4.0 0.920 0.920 0.912 0.898

Jedit4.1 0.938 0.947 0.937 0.928

Synapse1.1 0.766 0.773 0.764 0.765

Synapse1.2 0.793 0.807 0.789 0.785

Xalan2.5.0 0.800 0.810 0.803 0.795

Xalan2.6.0 0.907 0.905 0.906 0.900

Xalan2.7.0 0.998 0.998 0.997 0.982

Xerces1.2.0 0.778 0.841 0.814 0.812

Xerces1.3.0 0.841 0.867 0.835 0.859

Xerces1.4.4 0.961 0.955 0.958 0.946

5.9 Boosting Analysis

The results of analyzing all the three models to check the relationship between fault

proneness and process metrics using naive bayes are presented in this section. Table 5.27

shows the experimental results of all the three models implemented using stacking ensemble

technique. Table 5.27 consists of AUC values. This table shows that in 71.42% of cases

combination of both metrics gives better AUC values, and in 28.57% cases static code metric

gives better AUC values.

Table 5.27 AUC values of combined model, model solely containing static code metrics and model solely

containing process metrics using boosting

Dataset Name Combined Static Code Metrics Process Metrics

Ant1.4 0.822 0.781 0.759

Ant1.5 0.835 0.852 0.763

Ant1.6 0.869 0.871 0.843

44

Ant1.7 0.894 0.873 0.857

Jedit4.0 0.908 0.857 0.901

Jedit4.1 0.902 0.844 0.877

Synapse1.1 0.732 0.758 0.506

Synapse1.2 0.753 0.796 0.547

Xalan2.5.0 0.815 0.783 0.718

Xalan2.6.0 0.899 0.875 0.830

Xalan2.7.0 0.993 0.967 0.992

Xerces1.2.0 0.801 0.744 0.772

Xerces1.3.0 0.819 0.801 0.657

Xerces1.4.4 0.949 0.904 0.822

Table 5.28 shows the experimental results of model 5.28 implemented using boosting

technique. This table shows that NR metric is more useful in predicting fault proneness as in

50% of cases combination of NR metric with static code metrics gives better AUC values.

Table 5.28 AUC values of models which contain combination of SC and 1 process metrics using boosting

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC

Ant1.4 0.831 0.843 0.802 0.783

Ant1.5 0.847 0.841 0.798 0.854

Ant1.6 0.894 0.885 0.865 0.863

Ant1.7 0.890 0.884 0.857 0.871

Jedit4.0 0.921 0.906 0.887 0.851

Jedit4.1 0.940 0.929 0.877 0.887

Synapse1.1 0.765 0.773 0.761 0.775

Synapse1.2 0.785 0.834 0.748 0.792

Xalan2.5.0 0.808 0.811 0.800 0.788

Xalan2.6.0 0.900 0.881 0.892 0.880

Xalan2.7.0 0.995 0.982 0.982 0.973

Xerces1.2.0 0.795 0.809 0.737 0.790

Xerces1.3.0 0.822 0.855 0.780 0.825

45

Xerces1.4.4 0.954 0.941 0.939 0.901

Table 5.29 shows the experimental results of model 5 implemented using boosting technique.

This table shows that NDC metric combining with NDPV metric gives better prediction

performance as in 50% of cases combination of NDC metric, NDPV metric and static code

metrics gives better AUC values. Also, NR metric combining with NDPV metric gives better

prediction performance as in 50% of cases combination of NR metric, NDPV metric and

static code metrics gives better AUC values.

Table 5.29 AUC values of models which contain combination of SC and 2 process metrics using boosting

Dataset Name NR+NDC

+SC

NR+NM

L+SC

NR+ND

PV+SC

NDC+NM

L+SC

NDC+ND

PV+SC

NML+N

DPV+SC

Ant1.4 0.824 0.814 0.825 0.799 0.835 0.795

Ant1.5 0.851 0.834 0.834 0.795 0.839 0.802

Ant1.6 0.901 0.863 0.891 0.867 0.884 0.864

Ant1.7 0.889 0.876 0.896 0.856 0.883 0.869

Jedit4.0 0.920 0.898 0.922 0.890 0.914 0.878

Jedit4.1 0.934 0.889 0.936 0.892 0.926 0.876

Synapse1.1 0.759 0.731 0.755 0.749 0.776 0.746

Synapse1.2 0.815 0.745 0.793 0.754 0.839 0.747

Xalan2.5.0 0.826 0.807 0.826 0.802 0.821 0.806

Xalan2.6.0 0.906 0.902 0.903 0.891 0.886 0.889

Xalan2.7.0 0.996 0.998 0.996 0.982 0.982 0.981

Xerces1.2.0 0.791 0.743 0.839 0.744 0.841 0.782

Xerces1.3.0 0.852 0.827 0.842 0.797 0.861 0.779

Xerces1.4.4 0.954 0.952 0.955 0.937 0.942 0.934

Table 5.30 shows the experimental results of model 6 implemented using boosting technique.

This table shows that NR metric combining with NDC metric and NDPV metric gives better

prediction performance as in 92.85% of cases combination of NR metric, NDC metric,

NDPV metric and static code metrics gives better AUC values.

46

Table 5.30 AUC values of models which contain combination of SC and 3 process metrics using boosting

Dataset Name NR+NDC+N

ML+SC

NR+NDC+ND

PV+SC

NR+NML+ND

PV+SC

NDC+NML+ND

PV+SC

Ant1.4 0.819 0.823 0.813 0.802

Ant1.5 0.823 0.823 0.814 0.796

Ant1.6 0.867 0.899 0.871 0.864

Ant1.7 0.877 0.901 0.884 0.865

Jedit4.0 0.906 0.922 0.905 0.880

Jedit4.1 0.895 0.937 0.898 0.891

Synapse1.1 0.730 0.760 0.727 0.754

Synapse1.2 0.765 0.813 0.758 0.748

Xalan2.5.0 0.817 0.822 0.810 0.806

Xalan2.6.0 0.902 0.902 0.898 0.891

Xalan2.7.0 0.994 0.996 0.996 0.983

Xerces1.2.0 0.750 0.811 0.792 0.810

Xerces1.3.0 0.794 0.857 0.834 0.803

Xerces1.4.4 0.953 0.952 0.953 0.934

47

CHAPTER 6

DISCUSSION ON RESULTS

We analyzed various models to check the effectiveness of process metrics on fault proneness

using various classifiers and ensemble techniques. We also investigated some other models

for that classifiers in which combination model gives better prediction performance to check

which process metric or which pair of process metric is useful in prediction. The results of

the experimental analysis show that the combination model gives better prediction results

when we are using Naïve Bayes classifiers, Decision Trees and Support Vector Machines.

Also, the result of all ensemble techniques shows that combination model gives better

prediction results. NR metric, NDC metric and NDPV metric are most effective process

metric in almost all the analyzed cases. In this section, we are analyzing the AUC results

using box plots and statistical test. We are also calculating the effect size if there is a rejection

of null hypothesis.

6.1 Naive Bayes Analysis

If we statistically analyze the results of table 5.1 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 7.429 and the p-value is 0.024.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the models differs significantly with an effect size

of 0.265 which indicates that the difference among the models has a small effect on the

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc

test to check the pairwise comparison of the models. The results show that a significant

difference exists between the performances of the combined model and model which contain

static code metric just.

Fig 6.1 represents the box plot for table 5.1. We can see that combined model of process

metrics and static code metrics outperforms the models solely containing process metrics and

model solely containing static code metrics.

48

Fig. 6.1 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using NB

If we statistically analyze the results of table 5.2 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 19.108 and the p-value is 0.0002.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pair differs significantly with an effect size of

0.455 which indicates that the difference among the pairs has a small effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contain all static code metric and 1

process metric. The results show that a significant difference exists between the performances

of the SC+NR model and SC+NDPV models, also there exist a significant difference between

SC+NML model and SC+NDPV model.

Fig 6.2 represents the box plot for table 5.2. We can see that combination of NR metric with

statis code metric outperforms other pair of process metric and static code metrics.

Fig 6.2 Box plots of models which contain combination of SC and 1 process metric using NB

49

If we statistically analyze the results of table 5.3 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 22.37 and the p-value is 0.0004.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null

hypothesis. Hence the performance of at least one of the pairs differs significantly with an

effect size of 0.319 which indicates that the difference among the pairs has a small effect on

the prediction performance. As the results differ significantly, we will apply a Nemenyi post

hoc test to check the pairwise comparison of the models which contains 2 process metrics

and all static code metrics. The results show that a significant difference exists between the

performances of the NR+NDC+SC model and NR+NML+SC model, NR+NDC+SC model

and NDC+NDPV+SC model, and NR+NDPV+SC model and NDC+NDPV+SC.

Fig 6.3 represents the box plot for table 5.3. We can see that combination of NR metric with

NDC metric and statis code metric outperforms other pair of process metric and static code

metrics.

Box plots of models which contain combination of SC and 2 process metrics using NB

If we statistically analyze the results of table 5.4 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 17.75 and the p-value is 0.0004.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pairs differs significantly with an effect size of

0.423 which indicates that the difference among the pairs has a small effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

50

check the pairwise comparison of the models which contains 3 process metrics and all static

code metrics. The results show that a significant difference exists between the performances

of the NR+NDC+NML+SC model and NR+NDC+NDPV+SC model,

NR+NDC+NDPV+SC model and NR+NML+NDPV+SC model, and

NR+NML+NDPV+SC model and NML+NDC+NDPV+SC model.

Fig 6.4 represents the box plot for table 5.4. We can see that combination of NR metric with

NDC metric, NDPV metric and statis code metric outperforms other pair of process metric

and static code metrics.

Fig 6.4 Box plots of models which contain combination of SC and 3 process metrics using NB

6.2 Logistic Regression Analysis

If we statistically analyze the results of table 5.5 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 19 and the p-value is 7.4e-05. From

the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 which

is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. Hence the

performance of at least one of the models differs significantly with an effect size of 0.678

which indicates that the difference among the models has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models. The results show that a significant difference

exists between the performances of the combined model and model which solely contain

process metric, and model which solely contain static code metric.

51

Fig 6.5 represents the box plot for table 5.5. We can see that models solely containing static

code metrics outperforms models solely containing process metrics and combined model of

process metric and static code metrics and there is one outlier in the combination model.

Fig. 6.5 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using LR

6.3 Support Vector Machine Analysis

If we statistically analyze the results of table 5.6 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 12.47 and the p-value is 0.0019.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the models differs significantly with an effect size

of 0.445 which indicates that the difference among the models has a small effect on the

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc

test to check the pairwise comparison of the models. The results show that a significant

difference exists between the performances of the combined model and model which contain

static code metric just.

Fig 6.6 represents the box plot for table 5.6. We can see that the combined model of process

metric and static code metrics outperforms models solely containing process metrics and

models solely containing static code metrics and there is one outlier in combined model and

model containing just process metric.

52

Fig. 6.6 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using SVM

If we statistically analyze the results of table 5.7 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 23.84 and the p-value is 2.68e-05.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pair differs significantly with an effect size of

0.567 which indicates that the difference among the pairs has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contain all static code metric and 1

process metric. The results show that a significant difference exists between the performances

of the SC+NR model and SC+NDC model, SC+NR model and SC+NDPV models, and

SC+NML model and SC+NDPV model.

Fig 6.7 represents the box plot for table 5.7. We can see that the combination of NR metric

with statis code metrics outperforms other pairs of process metric and static code metrics.

Fig 6.7 Box plots of models which contain combination of SC and 1 process metric using SVM

53

If we statistically analyze the results of table 5.8 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 22.40 and the p-value is 0.0004.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null

hypothesis. Hence the performance of at least one of the pairs differs significantly with an

effect size of 0.32 which indicates that the difference among the pairs has a small effect on

the prediction performance. As the results differ significantly, we will apply a Nemenyi post

hoc test to check the pairwise comparison of the models which contains 2 process metrics

and all static code metrics. The results show that a significant difference exists between the

performances of the NR+NML+SC model and NDC+NDPV+SC model, and

NR+NDPV+SC model and NDC+NDPV+SC model.

Fig 6.8 represents the box plot for table 5.8. We can see that combination of NR metric with

NML metric and statis code metric outperforms other pair of process metric and static code

metrics and there is one outlier in the pair of NR metric, NML metric and static code metric.

Fig 6.8 Box plots of models which contain combination of SC and 2 process metrics using SVM

If we statistically analyze the results of table 5.9 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 13.736 and the p-value is 0.0032.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pairs differs significantly with an effect size of

0.327 which indicates that the difference among the pairs has a small effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contains 3 process metrics and all static

54

code metrics. The results show that a significant difference exists between the performances

of the NR+NML+NDPV+SC model and NDC+NML+NDPV+SC model.

Fig 6.9 represents the box plot for table 5.9. We can see that combination of NR metric with

NML metric, NDPV metric and statis code metric outperforms other pair of process metric

and static code metrics and there is one outlier in the pair SC+NR+NDC+NML.

Fig 6.9 Box plots of models which contain combination of SC and 3 process metrics using SVM

6.4 K Nearest Neighbor Analysis

If we statistically analyze the results of table 5.10 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 2.072 and the p-value is 0.354.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99

which is greater than the calculated 𝛘2-statistics so the null hypothesis is accepted.

Fig 6.10 represents the box plot for table 5.10. We can see that the models solely containing

process metric outperforms models solely containing static code metric and combined model

of process metrics and static code metrics. There is one outlier in combined model, one outlier

in model that solely contains static code metric and one outlier in model that solely contains

process metric.

55

Fig. 6.10 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using KNN

6.5 Decision Tree Analysis

If we statistically analyze the results of table 5.11 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 13.199and the p-value is 0.0013.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the models differs significantly with an effect size

of 0.471 which indicates that the difference among the models has a small effect on the

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc

test to check the pairwise comparison of the models. The results show that a significant

difference exists between the performances of the combined model and model which contain

static code metric just, and the combined model and model which contain process metric just.

Fig 6.11 represents the box plot for table 5.11. We can see that the combined model of process

metric and static code metrics outperforms models solely containing process metrics and

models solely containing static code metrics.

56

Fig. 6.11 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using DT

If we statistically analyze the results of table 5.12 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 1.971 and the p-value is 0.578.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is greater than the calculated 𝛘2-statistics so null hypothesis is accepted.

Fig 6.12 represents the box plot for table 5.12. We can see that the combination of NR metric

with statis code metrics outperforms other pairs of process metric and static code metrics.

Fig 6.12 Box plots of models which contain combination of SC and 1 process metric using DT

If we statistically analyze the results of table 5.13 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 5.286 and the p-value is 0.3819.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is

11.070 which is greater than the calculated 𝛘2-statistics so null hypothesis is accepted.

57

Fig 6.13 represents the box plot for table 5.13. We can see that combination of NR metric

with NDC metric and static code metric outperforms other pair of process metric and static

code metrics.

Fig 6.13 Box plots of models which contain combination of SC and 2 process metrics using DT

If we statistically analyze the results of table 5.14 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 4.630 and the p-value is 0.2009.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is greater than the calculated 𝛘2-statistics so the null hypothesis is accepted.

Fig 6.14 represents the box plot for table 5.14. We can see that combination of NR metric

with NDC metric, NML metric and statis code metric outperforms other pair of process

metric and static code metrics.

Fig 6.14 Box plots of models which contain combination of SC and 3 process metric using DT

58

6.6 Stacking Analysis

If we statistically analyze the results of table 5.15 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 12 and the p-value is 0.0024. From

the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 which

is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. Hence the

performance of at least one of the models differs significantly with an effect size of 0.428

which indicates that the difference among the models has a small effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models. The results show that a significant difference

exists between the performances of the combined model and model which contain process

metric just.

Fig 6.15 represents the box plot for table 5.15. We can see that the combined model of process

metric and static code metrics outperforms models solely containing process metrics and

models solely containing static code metrics and there is one outlier in model solely

containing process metrics.

If we statistically analyze the results of table 5.16 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 15.345 and the p-value is 0.0015.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Fig 6.15 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using stacking

59

Hence the performance of at least one of the pair differs significantly with an effect size of

0.365 which indicates that the difference among the pairs has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contain all static code metric and 1

process metric. The results show that a significant difference exists between the performances

of the SC+NR model and SC+NML model, and SC+NDC model and SC+NML model.

Fig 6.16 represents the box plot for table 5.16. We can see that the combination of NR metric

with static code metrics outperforms other pairs of process metric and static code metrics.

Fig 6.16 Box plots of models which contain combination of SC and 1 process metric using stacking

If we statistically analyze the results of table 5.17 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 21.567 and the p-value is 0.0006.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null

hypothesis. Hence the performance of at least one of the pairs differs significantly with an

effect size of 0.308 which indicates that the difference among the pairs has a small effect on

the prediction performance. As the results differ significantly, we will apply a Nemenyi post

hoc test to check the pairwise comparison of the models which contains 2 process metrics

and all static code metrics. The results show that a significant difference exists between the

performances of the SC+NR+NDPV model and SC+NML+NDPV model, and

SC+NML+NDPV model and SC+NDC+NDPV model.

60

Fig 6.17 represents the box plot for table 5.17. We can see that combination of NDC metric

with NDPV metric and statis code metric outperforms other pair of process metric and static

code metrics.

Fig 6.17 Box plots of models which contain combination of SC and 2 process metrics using stacking

If we statistically analyze the results of table 5.18 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 21.239 and the p-value is 9.38e-05.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pairs differs significantly with an effect size of

0.505 which indicates that the difference among the pairs has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contain 3 process metrics and all static

code metrics. The results show that a significant difference exists between the performances

of the NR+NDC+NDPV+SC model and NDC+NML+NDPV+SC model.

Fig 6.18 represents the box plot for table 5.18. We can see that combination of NR metric

with NDC metric, NDPV metric and static code metric outperforms other pair of process

metric and static code metrics.

61

Fig 6.18 Box plots of models which contain combination of SC and 3 process metric using stacking

6.7 Voting Analysis

If we statistically analyze the results of table 5.19 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 9.148 and the p-value is 0.0103.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the models differs significantly with an effect size

of 0.326 which indicates that the difference among the models has a small effect on the

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc

test to check the pairwise comparison of the models. The results show that a significant

difference exists between the performances of the combined model and model which contain

just process metric, and the combined model and model which contain just static code metric.

Fig 6.19 represents the box plot for table 5.19. We can see that the combined model of process

metric and static code metrics outperforms models solely containing process metrics and

models solely containing static code metrics and there is one outlier in model solely

containing process metrics.

62

Fig 6.19 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using voting

If we statistically analyze the results of table 5.20 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 27.804 and the p-value is 3.99e-06.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pair differs significantly with an effect size of

0.662 which indicates that the difference among the pairs has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contain all static code metric and 1

process metric. The results show that a significant difference exists between the performances

of the SC+NR model and SC+NML model, SC+NR model and SC+NDPV, SC+NDC model

and SC+NDPV model, and SC+NDC model and SC+NML model.

Fig 6.20 represents the box plot for table 5.20. We can see that the combination of NR metric

with static code metrics outperforms other pairs of process metric and static code metrics.

63

Fig 6.20 Box plots of models which contain combination of SC and 1 process metric using voting

If we statistically analyze the results of table 5.21 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 47.868 and the p-value is 3.77e-09.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null

hypothesis. Hence the performance of at least one of the pairs differs significantly with an

effect size of 0.684 which indicates that the difference among the pairs has a large effect on

the prediction performance. As the results differ significantly, we will apply a Nemenyi post

hoc test to check the pairwise comparison of the models which contains 2 process metrics

and all static code metrics. The results show that a significant difference exists between the

performances of the NR+NDC+SC model and NR+NML+SC model, NR+NDC+SC model

and NDC+NML+SC model, NR+NDC+SC model and NML+NDPV+SC model,

NR+NML+SC model and NDC+NML+SC model, NR+NML+SC model and

NML+NDPV+SC model, NDC+NML+SC model and NDC+NDPV+SC model, and

NML+NDPV+SC model and NDC+NDPV+SC model.

Fig 6.21 represents the box plot for table 5.21. We can see that combination of NR metric

with NDC metric and static code metric outperforms other pair of process metric and static

code metrics.

64

Fig 6.21 Box plots of models which contain combination of SC and 2 process metrics using voting

If we statistically analyze the results of table 5.22 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 29.826 and the p-value is 1.50e-06.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pairs differs significantly with an effect size of

0.710 which indicates that the difference among the pairs has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contains 3 process metrics and all static

code metrics. The results show that a significant difference exists between the performances

of the NR+NDC+NML+SC model and NDC+NML+NDPV+SC model,

NR+NDC+NDPV+SC model and NR+NML+NDPV+SC model, and NR+NDC+NDPV+SC

model and NDC+NML+NDPV+SC model.

Fig 6.22 represents the box plot for table 5.22. We can see that combination of NR metric

with NDC metric, NDPV metric and static code metric outperforms other pair of process

metric and static code metrics.

65

Fig 6.22 Box plots of models which contain combination of SC and 3 process metric using voting

6.8 Bagging Analysis

If we statistically analyze the results of table 5.23 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 9 and the p-value is 0.011. From

the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 which

is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. Hence the

performance of at least one of the models differs significantly with an effect size of 0.321

which indicates that the difference among the models has a small effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models. The results show that a significant difference

exists between the performances of the combined model and model which contain just

process metric, and the combined model and model which contain just static code metric.

Fig 6.23 represents the box plot for table 5.23. We can see that the combined model of process

metric and static code metrics outperforms models that solely contains process metrics and

models that solely contains static code metrics and there is one outlier in model that solely

contains process metrics.

66

Fig 6.23 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using bagging

If we statistically analyze the results of table 5.24 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 20.61 and the p-value is 0.0001.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pair differs significantly with an effect size of

0.490 which indicates that the difference among the pairs has a small effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contain all static code metric and 1

process metric. The results show that a significant difference exists between the performances

of the SC+NR model and SC+NML model, SC+NR model and SC+NDPV, and SC+NDC

model and SC+NDPV model.

Fig 6.24 represents the box plot for table 5.24. We can see that the combination of NR metric

with static code metrics outperforms other pairs of process metric and static code metrics.

67

Fig 6.24 Box plots of models which contain combination of SC and 1 process metric using bagging

If we statistically analyze the results of table 5.25 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 35.74 and the p-value is 1.069e-06.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null

hypothesis. Hence the performance of at least one of the pairs differs significantly with an

effect size of 0.511 which indicates that the difference among the pairs has a large effect on

the prediction performance. As the results differ significantly, we will apply a Nemenyi post

hoc test to check the pairwise comparison of the models which contains 2 process metrics

and all static code metrics. The results show that a significant difference exists between the

performances of the NR+NDC+SC model and NDC+NML+SC model, NR+NDC+SC model

and NML+NDPV+SC model, NR+NDPV+SC model and NDC+NML+SC model, and

NR+NDPV+SC model and NML+NDPV+SC model.

Fig 6.25 represents the box plot for table 5.25. We can see that combination of NR metric

with NDC metric and static code metric outperforms other pair of process metric and static

code metrics.

If we statistically analyze the results of table 5.26 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 29.826 and the p-value is 1.50e-06.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pairs differs significantly with an effect size of

68

Fig 6.25 Box plots of models which contain combination of SC and 2 process metrics using bagging

0.710 which indicates that the difference among the pairs has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contains 3 process metrics and all static

code metrics. The results show that a significant difference exists between the performances

of the NR+NDC+NML+SC model and NR+NDC+NDPV+SC model, NR+NDC+NML+SC

model and NDC+NML+NDPV+SC model, NR+NDC+NDPV+SC model and

NDC+NML+NDPV+SC model, and NR+NDC+NDPV+SC model and

NR+NML+NDPV+SC model.

Fig 6.26 represents the box plot for table 5.26. We can see that combination of NR metric

with NDC metric, NDPV metric and static code metric outperforms other pair of process

metric and static code metrics.

Fig 6.26 Box plots of models which contain combination of SC and 3 process metrics using bagging

69

6.9 Boosting Analysis

If we statistically analyze the results of table 5.27 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 14.285 and the p-value is 0.0007.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the models differs significantly with an effect size

of 0.510 which indicates that the difference among the models has a large effect on the

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc

test to check the pairwise comparison of the models. The results show that a significant

difference exists between the performances of the combined model and model which contain

just process metric.

Fig 6.27 represents the box plot for table 5.27. We can see that the combined model of process

metric and static code metrics outperforms models that solely contains process metrics and

model that solely contains static code metrics.

Fig 6.27 Box plots of combined model, model solely containing static code metrics and model solely

containing process metrics using boosting

If we statistically analyze the results of table 5.28 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 18.625 and the p-value is 0.0003.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pair differs significantly with an effect size of

0.444 which indicates that the difference among the pairs has a small effect on the prediction

70

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contain all static code metric and 1

process metric. The results show that a significant difference exists between the performances

of the SC+NR model and SC+NML model, SC+NR model and SC+NDPV, and SC+NDC

model and SC+NML model.

Fig 6.28 represents the box plot for table 5.28. We can see that the combination of NR metric

with static code metrics outperforms other pairs of process metric and static code metrics.

Fig 6.28 Box plots of models which contain combination of SC and 1 process metrics using boosting

If we statistically analyze the results of table 5.29 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 45.04 and the p-value is 1.423e-08.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null

hypothesis. Hence the performance of at least one of the pairs differs significantly with an

effect size of 0.643 which indicates that the difference among the pairs has a large effect on

the prediction performance. As the results differ significantly, we will apply a Nemenyi post

hoc test to check the pairwise comparison of the models which contains 2 process metrics

and all static code metrics. The results show that a significant difference exists between the

performances of the NR+NDC+SC model and NR+NML+SC model, NR+NDC+SC model

and NML+NDC+SC model, NR+NDC+SC model and NML+NDPV+SC, NR+NML+SC

model and NR+NDPV+SC model, NR+NDPV+SC model and NDC+NML+SC model,

NR+NDPV+SC model and NML+NDPV+SC model, NDC+NML+SC model and

NDC+NDPV+SC model, and NDC+NDPV+SC model and NML+NDPV+SC model.

71

Fig 6.29 represents the box plot for table 5.29. We can see that combination of NR metric

with NDC metric and static code metric outperforms other pair of process metric and static

code metrics.

Fig 6.29 Box plots of models which contain combination of SC and 2 process metrics using boosting

If we statistically analyze the results of table 5.30 using Friedman test at the 0.05 significance

level, then results show that the calculated 𝛘2-statistics is 24.860 and the p-value is 1.65e-05.

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.

Hence the performance of at least one of the pairs differs significantly with an effect size of

0.592 which indicates that the difference among the pairs has a large effect on the prediction

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to

check the pairwise comparison of the models which contains 3 process metrics and all static

code metrics. The results show that a significant difference exists between the performances

of the NR+NDC+NML+SC model and NR+NDC+NDPV+SC model,

NR+NDC+NDPV+SC model and NDC+NML+NDPV+SC model, and

NR+NDC+NDPV+SC model and NR+NML+NDPV+SC model.

Fig 6.30 represents the box plot for table 5.30. We can see that combination of NR metric

with NDC metric, NDPV metric and static code metric outperforms other pair of process

metric and static code metrics.

72

Fig 6.30 Box plots of models which contain combination of SC and 3 process metrics using boosting

73

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

Various types of models exist and are researched in the field of software fault prediction.

Many of them utilize static code metrics to predict faulty modules. Here we are analyzing the

effectiveness of process metrics on fault prediction results using different classification

techniques and ensemble techniques. We have analyzed the results based on AUC values,

boxplots and statistical test (Friedman test with Nemenyi post hoc test). We can conclude

that when we are using logistic regression, models containing only static code metrics give

the best result. When we are using K nearest neighbor, models containing only process

metrics give the best result, and combination of process metric and static code metric gives

the best result in the case of naive bayes, decision tree, support vector machines, stacking,

voting, bagging and boosting. The answer to the research questions are as follows:

RQ1: Is process metric as effective as static code metrics in checking software fault

proneness?

Process metrics are good predictors as the results of most of the classification techniques and

ensemble techniques show that the combination of process metric and static code metric gives

better prediction results based on experimental analysis, boxplot analysis and statistical

analysis.

RQ2: Which classification technique gives best outcome for combined model?

As compare to other classification techniques, the results of Naïve Bayes, Support Vector

Machine and Decision tree shows the better prediction outcome for combined model based

on experimental analysis, boxplot analysis and statistical analysis.

RQ3: To check whether ensemble techniques improve the prediction performance as

compared to individual classification techniques or not?

74

As compare to individual classification technique results, ensemble techniques (Stacking,

Voting, Bagging and Boosting) gives better AUC values for combined model in almost all

the analyzed dataset.

RQ4: Which process metric is more effective among all selected process metrics?

To answer this research question, we have analyzed the prediction results of model 4, model

5 and model 6 based on AUC values, box plots and Friedman test with Nemenyi post hoc

test. The results are as follows:

If we analyze the results of model 4 which is a combined model of 1 process metric and all

static code metric then the result of most of the techniques based on experimental analysis,

boxplot analysis and statistical analysis shows NR metric is more effective.

If we analyze the model 5 which is a combined model of 2 process metric and all static code

metric then the result of most of the techniques based on experimental analysis, boxplot

analysis and statistical analysis shows NR+NDC pair is more effective.

If we analyze the model 6 which is a combined model of 3 process metric and all static code

metric then the result of most of the techniques based on experimental analysis, boxplot

analysis and statistical analysis shows NR+NDC+NDPV pair is more effective.

7.2 Future Work

This work can be extended to analyzing other process metrics using classification techniques

and ensemble techniques. Also, we can predict number of defects using regression technique

considering same dataset used in this work. Also, instead of bugs, we can consider effort or

maintainability as dependent variable.

75

CHAPTER 9

REFERENCE

[1] A. Okutan and O. T. Y. Software defect prediction using Bayesian networks. Empirical

Software Engineering, 19(1):154–181, 2014

[2] Aleem, S., Capretz, L. and Ahmed, F. (2015) Benchmarking Machine Learning

Technologies for Software Defect Detection. International Journal of Software Engineering

& Applications, 6, 11-23.

[3] B. Diri, C. Catal, U. Sevim. Practical development of an Eclipse-based software fault

prediction tool using Naive Bayes algorithm. Expert Syst. Appl., 38 (2011), pp. 2347-2353.

[4] Basili, V., Briand, L. and Melo, W. (1996) ‘A validation of object-oriented design metrics

as quality indicators’, IEEE Transactions on Software Engineering, Vol. 22, No.10, pp.751–

761.

[5] C. Catal, U. Sevim, and B. Diri. Practical development of an eclipse-based software fault

prediction tool using Na¨ıve Bayes algorithm. Expert Systems with Applications, 38(3):2347

– 2353, 2011.

[6] D. Radjenovic, M. Heri cko, R. Torkar, and A. Zivkovi c. Software fault prediction

metrics: A systematic literature review. Information and Software Technology, 55(8):1397 –

1418, 2013.

[7] Dietterich, T. G.(2000a). Ensemble methods in machine learning. In multiple classifier

systems (pp. 1-15). Springer.

[8] Elish, M. O., Aljamaan, H., & Ahmad, I. (2015) Three empirical studies on predicting

software maintainability using ensemble methods. Soft Computing, 1-14.

[9] F. Rahman and P. Devanbu, “How, and why, process metrics are better”, 2013 35th

International Conference on Software Engineering (ICSE), San Francisco, CA, USA, 2013,

pp. 432-441, doi: 10.1109/ICSE.2013.6606589.

[10] Hosmer, D. and Lemeshow, S. (1989) Applied Logistic Regression, John Wiley & Sons.

[11] https://madeyski.e-informatyka.pl/tools/software-defect-prediction

[12] https://kenai.com/projects/buginfo

[13] http://www.spinellis.gr/sw/ckjm

76

[14] Hussain, S., Keung, J., Khan, A. and Bennin, K. (2015) Performance evaluation of

ensemble methods for software fault prediction: An experiment. Proceedings of the ASWEC

2015 24th Australasian Software Engineering Conference, 2, 91-95.

[15] I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on

empirical methods in artificial engineering. Volume 3 (pp 41-46).

[16] J. Hanley, B.J. McNeil. The meaning and use of the area under a Receiver Operating

Characteristic ROC curve Radiology, 143 (1982), pp. 29-36.

[17] Jureczko, M., & Madeyski, L. (2011c). Software product metrics used to build defect

prediction models. Report SPR 2/2014, Faculty of Computer Science and Management,

Wroclaw University of Technology.

[18] K. Dejaeger, T. Verbraken, and B. Baesens. Toward comprehensible software fault

prediction models using Bayesian network classifiers. IEEE Transactions on Software

Engineering, 39(2):237–257, 2013.

[19] L. Madeyski and M. Jureczko. Which process metrics can significantly improve defect

prediction models? An empirical study. Software Quality Journal, 23(3):393–422, 2015.

[20] Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for

regression: A survey. ACM Comput. Surv. (CSUR) 45(1), 10 (2012).

[21] Perreault, L., Berardinelli, S., Izurieta, C., and Sheppard, J. (2017) Using Classifiers for

Software Defect Detection. 26th International Conference on Software Engineering and Data

Engineering, 2-4 October 2017, Sydney, 2-4.

[22] Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu. A general software defect-proneness

prediction framework. IEEE Transactions on Software Engineering, 37(3):356–370, 2011.

[23] R. Malhotra. Empirical Research in Software Engineering. Chapman & Hall/CRC:978-

1-4987-1972-8, 2015.

[24] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of change

metrics and static code attributes for defect prediction. In Proceedings of the 30th

International Conference on Software Engineering (ICSE’08), New York, NY, USA, 2008.

ACM.

[25] S. Dreiseitl, L. Ohno-Machado. Logistic Regression and Artificial Neural Network

Classification models: a methodology review. J. Biomed. Inform., 35 (2002), pp. 352-359.

[26] Sherrod, P. (2003) ‘DTreg predictive modeling software’.

77

[27] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on

Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[28] T. Hall, S.Beecham, D. Bowes, D.Gray, and S.Counsell, “A systematic literature

review on fault prediction performance in software engineering”, Software Engineering,

IEEE Transactions, Volume 38, Issue 6, pp 1276– 1304, Nov.-Dec. 2012.

[29] Wang, X., Bi, D. and Wang, S. (2007) ‘Fault recognition with labeled multi-category’,

3rd Conference on Natural Computation, Haikou, China.

[30] Y. A. Alshehri, K. Goseva-Popstojanova, D. G. Dzielski and T. Devine, “Applying

Machine Learning to Predict Software Fault Proneness Using Change Metrics, Static Code

Metrics, and a Combination of Them”, SoutheastCon 2018, St. Petersburg, FL, USA, 2018,

pp. 1-7, doi: 10.1109/SECON.2018.8478911.

[31] Y. Kamei, H. Sato, A. Monden, S. Kawaguchi, H. Uwano, M. Nagura, K. I. Matsumoto,

and N. Ubayashi. An empirical study of fault prediction with code clone metrics. In

Proceedings of the 21st International Workshop on Software Measurement and 6th

International Conference on Software Process and Product Measurement, 2011.

[32] Y. Xia, G. Yan, and H. Zhang. Analyzing the significance of process metrics for TT&C

software defect prediction. In Proceedings of the 5th IEEE International Conference on

Software Engineering and Service Science, 2014.

[33] Y. Zhao and Y. Zhang, “Comparison of Decision Tree Methods for Finding Active

Objects,” National Astronomical Observatories, Advances of Space Research, 2007.

