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ABSTRACT 

 

 

 

Various researchers have worked in the subject of software defect prediction to group the 

modules into defective or non-defective classes. But most of the previous studies done in this 

field utilize static code metrics to find the predicted value. The principal motive of this study 

is to evaluate the impact of process metrics on fault prediction performance using various 

classification techniques and ensemble techniques. In this study, we have analyzed the 

prediction performance of several classification and ensemble techniques based on three 

models: models that solely contain process metrics, models that solely contain static code 

metrics, and models containing different combinations of both metrics. In other terms, we 

can say these three models work as independent variables and dependent variables are actual 

bug values. We have used Naive Bayes classifiers, Logistic Regression, Support Vector 

Machines, K-Nearest Neighbors, and Decision Trees for implementation, and data sets are 

collected from publicly available repositories. We have also used four ensemble techniques: 

Stacking, Voting, Bagging, and Boosting to evaluate the impact of process metrics on fault 

prediction performance. We have also analyzed which process metrics give the best result 

among all selected process metrics. We have analyzed the prediction performance based on 

AUC (Area under ROC) performance measure and we have also used Friedman test with 

Nemenyi post hoc test to check whether the predictive performance of various classification 

techniques and ensemble techniques differ significantly. The result of this study shows that 

the use of process metrics in fault prediction gives effective results. In most of the cases, NR 

metric is effective when combined with static code metrics. If we consider combined model 

of 2 process metrics with static code metrics then combined model of NR, NDC metric with 

static code metrics gives effective result. If we consider combined model of 3 process metrics 

with static code metrics then combined model of NR, NDC, NDPV metric with static code 

metrics gives effective result. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

Software testing is detecting defects in the early stages of the software development life 

cycle. It is an essential and costly process to find the faults in the software. As testing is a 

costly process, it increases the overall project budget. Correct prediction of faults at an early 

stage leads to improvement in the effectiveness and quality of the software. Also, the correct 

prediction of faults helps in keeping the budget of the project under control. Many approaches 

have been suggested to identify the defects in the beginning phase of the development life 

cycle. This leads to the development of a fault prediction model which can predict the faults 

and group them in non-faulty or faulty classes. 

1.2 Software Fault Prediction 

Software fault prediction (SFP) models use different software metrics for prediction. These 

models use software metrics as their quality data. Previously there has been a lot of work 

done in this field that uses static code metrics to find various design aspects of the system. 

Many fault prediction models use static code metrics as quality attributes in classifying the 

modules. Many methods such as Logistic Regression [25], Naive Bayes [15][3], Support 

Vector Machines, Artificial Neural Network [25], K- Nearest Neighbor, Decision Tree, 

Stacking, Voting, Bagging and Boosting have been proposed in the past which shows the 

relationship between static code metrics and fault proneness.  

1.3 Motivation 

According to Dejaeger et al. [18], As of late, a few researchers directed their study toward 

another subject of excitement, i.e., the addition of data different from static code variables 

into defect prediction models such as data on inter-module connections and requirement 

metrics. The connection to the more ordinarily utilized static code variables remains anyway 

dubious. Two process metrics were used in this study but there can be other process metrics 

as well. 
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According to Okutan and Yildiz [1], As a forthcoming heading, we intend to refine our 

exploration to incorporate other process and software metrics in our model to uncover the 

connections among them and to decide the most important in fault prediction. We accept that 

instead of managing with a huge arrangement of software metrics, concentration on the nest 

ones will enhance the quality in fault prediction studies. 

Both studies show the requirement to explore the process metrics in the domain of fault 

prediction. There are many literature reviews published in the domain of software fault 

prediction (e.g. [28],[6]). Most of them use static code metrics and a few studies show the 

relationship between process metric and fault proneness. There is no conclusive result given 

by authors, some authors say that process metric outperforms static code metrics but some 

authors say that static code metrics outperforms process metric. This thesis focuses on 

analyzing the predictive accuracy of process metrics as compared to static code metrics. 

1.4 Research Questions 

This thesis is mainly focused on the following research questions: 

RQ1: Is process metric as effective as static code metrics in checking fault proneness? 

RQ2: Which classification technique gives best result for combined model? 

RQ3: To check whether ensemble techniques improve the prediction performance as 

compared to individual classification techniques used or not? 

RQ4: Which process metric is more effective among all selected process metrics? 

Thus, in this thesis, we will build a fault prediction model with the help of various 

classification techniques and then compare and analyze the outcome of each classification 

technique based on AUC values [16]. Also, we will build fault prediction models using 

various ensemble techniques which all the individual classification techniques as their base 

classification techniques. We will analyze the outcome of each technique based on several 

combinations of static code metrics and process metrics and also, we analyze results to find 

which process metric is effective in fault prediction. 

1.5 Thesis Structure 

This thesis is classified into various chapters that are as follows: Chapter 2 presents similar 

work which has been done in the field of software fault prediction previously. Chapter 3 

presents an experimental design that describes the independent and dependent variables used 

in this study and also describes the dataset used in this study. In Chapter 4, research 
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methodology is given which describes the performance evaluation measure used, 

classification techniques used, ensemble techniques used, how we will implement these 

classification techniques, and ensemble techniques. In Chapter 5, the results of all the models 

using various classification techniques and ensemble techniques are given. Chapter 6 

presents the result analysis which describes the results based on statistical tests, box plots, 

and a comparative analysis will be done to check the effectiveness of process metrics on fault 

proneness using various classification techniques and ensemble techniques. The conclusion 

of this study is described in Chapter 7. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

Plenty of work has been done to build software fault prediction models utilizing distinct fault 

prediction techniques but most of them use static code metrics as independent variables and 

few of them use process metrics as independent variables. This chapter examines all the past 

work in the field of software fault prediction which makes use of process metrics as their 

independent variable and also examines the previous work done which makes use of 

ensemble techniques in building software fault prediction models. 

2.1 Related Work 

A systematic literature review is done by Radjenovic et al. [6] consist of 106 papers published 

between 1991 and 2011 and the result of this study shows that in 49% of papers object-

oriented metrics were used, in 27% of papers traditional source code metrics were used and 

in 24% of paper process metrics were used as independent variables. Process metrics and 

object-oriented metrics prediction results outperform the prediction result of source code 

metrics. In this literature review, code churn metrics, delta metrics, history, and developer 

metrics were used as process metrics. Delta metrics are concerned with different software 

versions whereas code churn metrics are concerned with changes in the code. 

Some studies have indicated that when process metrics were used in the beginning phase of 

software development, they have not performed well. Results of the conducted experiments 

have shown that in the post-release phase of software development, process metric gives 

better outcomes. 

Xia et al. [32] introduced two new process metrics: lifecycle-based management process 

metric and history change process metric. These metrics are based on the characteristics of 

the development process. They describe the effectiveness of process metrics during 

requirement analysis, designing, and coding. The result of this study shows that a combined 

model of process metrics and code metrics gives better results in defect prediction and 

decreases the error rate. 
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There are two sources to gather the process metrics: the developer’s experience and software 

change history. Metrics gathered from software change history can be classified into two 

types: code churn metrics and delta metrics. Delta metrics keep track of various versions of 

the software and code churn metrics monitor changes in the code. 

Kamei et al. [31] analyzed the fault density prediction based on code churn metrics and 

cyclomatic complexity measures. The results of this study showed that code churn metrics 

outperforms cyclomatic complexity measures. 

Moser et al. [24] analyzed the Eclipse project for defect detection which consist of java files. 

The result showed that process metrics based on change history give the best result when 

contrasted with static code metrics. Hall et al. [28] suggested a combined model of process 

metrics and static code metrics for better prediction results. 

Madeyski and Jureczko [19] conducted an experiment in which they used the same process 

metrics which we are using in this study. They considered open source and industrial projects 

in their research. They examined models that contain 1 process metric and all static code 

metrics. This study shows that the process metric improves defect prediction and gives a 

notable contribution and NDC and NML process metrics improve the defect prediction. 

Aleem et al. [2] analyzed and compare the prediction outcomes of 11 machine learning 

techniques such as Multilayer Perceptron, Naive Bayes, Support Vector Machines, Adaboost, 

Bagging, Random forest, etc. using 15 NASA dataset which was downloaded from 

PROMISE repository. The result of this study shows that Bagging and Support Vector 

Machine gives better prediction performance. 

A study done by Elish, Aljamaan, and Ahmad (2015) [8] shows that the ensemble method 

gives correct prediction results on the considered dataset. They analyzed the ensemble 

approaches for predicting change efforts and maintenance of software using two publicly 

available datasets. 

A study was done by Perreault et al.  [21] on five NASA datasets compared Artificial Neural 

Networks, Logistic Regression, Naive Bayes, Support Vector Machines, and K Nearest 

Neighbor but there is no clear explanation about which technique is best. 

Hussain et al. [14] in his study compared the three ensemble techniques that use five base 

classification techniques such as Logistic Regression, Naive Bayes, J48, Voted-Perceptron, 
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and Support Vector Machine in Weka tool for software defect prediction. This study shows 

that Stacking gives better results among all the ensemble techniques used. 

Rahman et al.[9] analyzed 85 versions of 12 projects to check the performance, stasis and 

stability of different combination of metrics. They have used 14 process metrics and 4 

classification techniques(J48, Naïve Bayes, Logistic Regression, Support Vector Machine) 

to build the prediction model. They concluded that process metrics are more useful than code 

metrics and process metrics have low stasis means their values can change from release to 

release. 

Alshehri et al.[30] analyzed 3 versions of the eclipse project to compare 3 different 

classification techniques. The results in this study are based on different combinations of 

change metrics and static code metrics and also, they analyzed the result based on a reduced 

set of change metrics. They concluded that if we are choosing the G score as a performance 

evaluation measure then J48 outperforms Logistic Regression and Naïve Bayes in all cases. 
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CHAPTER 3 

 

EXPERIMENTAL DESIGN 

 

 

3.1 Proposed Architecture 

 

Fig 3.1 Proposed Architecture 
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In this chapter, we define the proposed architecture which we are following for 

implementation. Figure 3.1 shows the proposed architecture. Also, we define about 

independent and dependent metrics used in this study and empirical data collection of the 

dataset. In other terms, we can say that in this chapter we are defining the software metrics 

which we used in this work. 

3.2 Dependent and Independent Variables 

Independent variables that we are considering are static code metrics and process metrics, 

and the dependent variable is fault proneness which is defined as the likelihood of finding 

faults in the class. 

3.2.1 Static Code Metrics 

Static code metrics define the design complexity and size of the software system. These 

metrics are widely used in building fault prediction models. Table 3.1 shows the static code 

metrics used in this study. The definition of the metrics of the table 3.1 is given in a separate 

report given by Jureczko and Madeyski [17] and also this report is available online.  

Table 3.1 Static code metrics details 

WMC Weighted Method per Class 

DIT Depth of Inheritance Tree 

NOC Number of Children 

CBO Coupling Between Objects 

RFC Response for a Class 

LCOM Lack of Cohesion in Methods 

LCOM3 Lack of Cohesion in Methods version 3 

NPM Number of Public Methods 

DAM Data Access Metric 

MOA Measure of Aggregation 
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MFA Measure of Functional Abstraction 

CAM Cohesion Among Methods 

IC Inheritance Coupling 

CBM Coupling Between Methods 

AMC Average Method Complexity 

Ca Afferent Coupling 

Ce Efferent Coupling 

Max (CC) Maximum McCabe’s Complexity 

Avg (CC) Average McCabe’s Complexity 

LOC Lines of Code 

 

3.1.2 Process Metrics: 

Process metrics determine the quality and effectiveness of the system. Process metrics consist 

of more descriptive details about faulty modules These metrics are found from two sources: 

a) Developer’s experience 

b) Software change history 

Process metrics used in this study are as follows: 

1. NR 

NR stands for Number of Revisions. This metric describes the number of amendments of a 

java class during the evolution of examined release of the software. 

2. NDC 

NDC stands for Number of Distinct Committers. This metric describes the number of 

developers who submitted their modifications in a java class during the evolution of 

examined release of the software. 
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3. NML 

NML stands for Number of Modified Lines. This metric computes the number of lines of 

source code that were added or taken out from the java class. Each of the submitted changes 

during the evolution of examined release of the software is considered. 

4. NDPV 

NDPV stands for Number of Defects in Previous Versions. This metric gives the number of 

faults fixed in a java class during the evolution of the past release of the software. 

3.2 Empirical Data Collection 

The dataset is collected from 5 projects. All are java-based projects. To maintain the 

consistent measurement of static code metrics, all projects chosen were java based. Madeyski 

and Jureczko [19] maintained a metric repository [11] in which all the datasets are available 

having both process metrics and static code metrics. Two tools have been used by Madeyski 

and Jureczko [19] to extract metrics from the metric repository. To extract the static code 

metrics, the CKJM tool [13] was used, and to extract process metrics BUGInfo [12] tool was 

used.  The datasets which have been used in this research are shown in table 3.2. 

Table 3.2 Dataset details 

Dataset 

Name 

Description # Modules #Faulty 

Modules 

Ant 1.4  

Java- based build tool 

265 40 

Ant 1.5 401 32 

Ant 1.6 524 92 

Ant 1.7 1065 166 

Jedit 4.0 Content editor written in java and free 

to run on any platform that supports 

java 

606 75 

Jedit 4.1 644 79 

Synapse 1.1 Enterprise service bus 230 60 

Synapse 1.2 269 86 

Xalan 2.5.0 Maintenance of libraries that makes use 

of XSLT standard stylesheet to 

transform XML documents 

945 387 

Xalan 2.6.0 1170 411 

Xalan 2.7.0 1194 898 

Xerces 1.2.0  515 71 
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Xerces 1.3.0 Parser that supports XML 1.0 545 69 

Xerces 1.4.4 671 437 
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CHAPTER 4 

 

RESEARCH METHODOLOGY 

 

 

4.1 Dataset Preprocessing 

Datasets from the publicly available repositories may contain some noise or there can be 

some missing values that can affect the performance of the generated model so to avoid this 

type of problem some preprocessing is to be done on datasets such as removing the unique 

id field, version field, class field, project name, etc. In this, we have used one filter “replacing 

missing values with user constant” available in the weka tool to fill the missing values if any. 

There can be incompatibility in the datatype of independent variable due to which there can 

be some error during classification. Some of the process metrics have datatype as nominal. 

If we directly apply classification algorithm on nominal data type fields, it leads to error. So, 

to remove this error, firstly we apply “nominal to string” filter and then one more filter “string 

to word vector” to convert nominal value into numerical value as there is no method by which 

we can convert nominal values to numerical. We have also used one more filter of the weka 

tool to convert the bug field data type from “numeric to nominal” as software can be faulty 

or non-faulty. In other terms, we can say that the bug field contains binary values either 0 or 

1. 

4.2 Classification Techniques 

The process of predicting class or categorical data from a set of independent data is known 

as classification. Mathematically we can say that classification is the mapping of a function 

from ana input variable (independent variable) to an output variable (dependent variable). 

Fig 4.1 shows the classification of machine learning techniques.  
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Fig 4.1 Machine Learning Techniques 

In this research, we are using five classification techniques to build the prediction model. For 

implementation, we use weka machine learning tool. There can be some string data type 

variables due to which there can be some error so we use a filtered classifier that provides 

the facility of all the classifiers with additional functionality. We choose meta.filtered 

classifier firstly. After this, we choose any classification technique as classifier and filter as 

unsupervised. attribute. String to a word vector. All the techniques have their parameter 

values as the default values available in the weka tool. Here we are also using a 10- fold 

cross-validation technique for dividing the dataset into two parts: testing and training. 

Five classification technique which we have chosen for implementation are as follows: 

4.2.1 Naive Bayes 

It is a supervised learning algorithm as both input and output are given to predict the value 

of output variable. Supervised algorithms are further classified into two parts: Classification 

and Regression. Naive bayes algorithms come under classification algorithms. It is a simple 

technique and gives better accuracy results[5],[15]. In this technique, the value of one 

variable is not dependent on another variable value. 

There are 3 types of naive bayes model: 

a) Gaussian naive bayes 

b) Multinomial naive bayes 

c) Bernoulli naive bayes 
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Naive Bayes classification technique follows Bayes theorem. In this, we find the posterior 

probability. 

P(F/c) = (P(F)*P(c/F))/P(c)                                             (4.1) 

P(F/c) is the posterior probability. 

P(F) is the class prior probability. 

P(c) is the predictor prior probability. 

P(c/F) is the likelihood. 

Given F is the set of feature values or independent variables and c is the dependent variable 

or class variable having values either 0 or 1. 0 value indicates not faulty and 1 indicates faulty 

modules. 

4.2.2 Logistic Regression 

It is a widely used statistical technique applied for predicting the value of dependent variables 

by using independent variables. Here we are using binary Logistic regression to build the 

model as the dependent variable has binary values of either 0 or 1. In this, first data is fit into 

the Linear Regression model as Linear Regression outputs continuous variables, so Logistic 

Regression makes use of the logistic sigmoid function to transform this output into 

probability value and this probability is mapped to target categorical dependent variable. In 

logistic regression, the model should not be correlated means all the independent variables 

should be independent of each other. A detailed description of logistic regression is given by 

Basili et al. (1996) [4] and Hosmer and Lemeshow (1989) [10]. 

On the basis of categories, logistic regression can be classified into the following types: 

a) Binary 

b) Multinomial 

c) Ordinal 

4.2.3 Support Vector Machines 

It is another simple algorithm used for both regression and classification. It is a powerful and 

flexible supervised machine learning algorithm . It is a highly preferred technique as it gives 

the best accuracy with less computation. It divides the whole dataset into two parts by 

constructing an N-dimensional hyperplane. The hyperplane is created in such a way that it 

divides the values of one class of the dependent variable on one side and another class value 

of the dependent variable on another side[26]. Vectors that are nearer to the hyperplane are 
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called support vectors. Support vector machines can handle continuous and categorical 

variables. 

This technique have also been used in face recognition, medical diagnosis, text 

classification[29].  

Support vector machine kernels are used in the implementation of support vector machines. 

These kernels are divided into the following parts: 

a) Linear Kernel 

b) Polynomial Kernel 

c) Radial Basis Function Kernel 

In this study, we have used linear kernels to predict the fault proneness using support vector 

machines. 

4.2.4 K Nearest Neighbor  

It is another simple and clustering techniques used for both regression and classification 

problems. It is also known as the lazy learning technique as there is no specification for 

choosing training data, the whole dataset is considered as training data. It thinks about the k 

most similar instances to classify an instance by calculating the Euclidean distance between 

instances [27]. It is a nonlinear and versatile technique and the computation cost of this 

technique is high as whole data is considered as training data. In pattern recognition, data 

mining, and intrusion detection, K Nearest Neighbor techniques has been used. 

4.2.5 Decision Tree  

In this, we use the REP tree which means reduced error pruning tree. It comes under decision 

tree learner and uses regression logic as it creates trees for every iteration and chooses the 

best one among all. REPTree makes use of information gain to produce classification and 

regression trees and pruning is done with the help of a reduced error pruning algorithms. It 

uses the methods from C4.5 or J48 algorithm. It has also been used in intrusion detection. A 

study done by Zhao and Zhang[33] shows that the C4.5 algorithm or J48 produces decision 

tree arrangement for a given dataset by the recursive division of the data, and using the depth 

first strategy, decision trees are grown. 

4.3 Ensemble Techniques 

The performance of classification algorithms for software fault prediction has been accessed 

by a number of researchers. Therefore, there is no clear agreement in the literature that a 
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classification approach is the best for fault prediction. Recent advances in the field of 

machine learning have introduced the concept of ensemble learning to improve the prediction 

model’s performance. The ensemble’s core idea is to integrate the prediction outputs of 

several learning techniques such that the decision’s overall performance is improved 

compared to the output of the individual techniques[7]. Ensemble model improves the 

performance of individual model by reducing bias and variance. Fig 4.2 shows the types of 

ensemble techniques. The ensemble method can be of two types: homogeneous ensemble 

and heterogeneous ensemble.  

In a homogenous ensemble, learning techniques are of the same type such as bagging, 

boosting, etc [20]. In heterogeneous ensembles, different learning techniques are used. Here 

in this study, we are using two homogeneous ensemble techniques to combine the prediction 

result of some classification techniques to get better prediction accuracy. 

Ensemble methods follows 3 step procedure:  

1. Generation: In this step, all the individual base models are generated using 

classification techniques for the given dataset. 

2. Pruning: In this step, a subset of individual models is selected among all the generated 

individual models. One major advantage of this step is that ensemble of selected 

models gives better results as compare to ensemble of all the generated models. 

3. Integration: In this step, all the selected models in the pruning steps are combined to 

make ensemble.  

 

Fig 4.2 Types of Ensemble Techniques 
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Base classification techniques which we are using here to build an ensemble are Naïve Bayes, 

Support Vector Machine, K Nearest Neighbor, Logistic Regression, and Decision Tree 

(Reduced Error Pruning Tree). Ensemble techniques which we have chosen here for 

implementation are as follows: 

4.3.1 Stacking 

Stacking is a method of putting together classification or regression models with two-layer 

estimators. The base models or models for individual techniques that are used to predict the 

outputs based on test datasets make up the first layer. All the base classifiers work as Level 

0 classifier. The second layer is made up of a Meta-Classifier or Regressor which accepts all 

of the base models prediction as an input and generates new ones. Here in this study, we have 

used logistic regression as meta classifier which is Level 1 classifier. Fig 4.3 shows the 

architecture of stacking method. 

 

Fig 4.3 Stacking architecture 

4.3.2 Voting 

Voting is another way of ensemble technique used for classification models. In this, the 

results are combined based on majority voting and the basis of probability values. There are 

two types of voting: 

1. Hard Voting 

Fig 4.4 shows the architecture of hard voting in which selection of prediction outputs 

is done on the basis of majority voting. In fig 4.4, Class A has two votes so final 

predicted output is Class A. 
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Fig 4.4 Hard voting architecture 

2. Soft Voting 

Fig 4.5 shows the architecture of soft voting in which selection of prediction outputs 

is done on the basis of average of probabilities. In fig 4.5, Class A and Class B has 

some probabilities for all the classifiers. Now Class A has average probability of 0.39 

and Class B has average probability of 0.61 which is greater so final predicted output 

is Class B. 

 

Fig 4.5 Soft voting architecture 

4.3.3 Bagging 

Bagging is the combination of bootstrapping and aggregating. Bagging stands for Bootstrap 

AGGregation. It helps in reducing variance and overfitting. Fig 4.6 shows the bagging 

architecture.  In this type of ensemble, firstly bootstraps are created by choosing the training 

datasets by using replacement policy. After that, individual classification techniques are used 

to build the model and find the prediction for individual techniques. For combining the results 

and choosing the best prediction among all prediction outputs, voting is applied to get the 

final prediction output. 
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Fig 4.6 Bagging architecture 

4.3.4 Boosting 

Boosting is an ensemble method which enhance the capability of weak learners and convert 

them into strong learner. In this method, we train the weak learners sequentially while in 

bagging we train the learners parallelly. In boosting methods, the individual models can have 

unequal importance. Boosting method helps in reducing the bias. Prediction of each models 

are combined using voting method to get final prediction result. There are different types of 

boosting algorithms: 

1. Adaboost 

2. XGBoost 

3. Gradient boosting 

4. LightGBM 

Here we have used Adaboost technique. Figure 4.7 shows boosting architecture. The results 

of Prediction 1, Prediction 2…., Prediction N are combined using voting method to get final 

prediction results. 

 

Fig 4.7 Boosting architecture 
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4.4 Performance Evaluation Measure 

If there is a class imbalance problem in the dataset and we are trying to do classification then 

it is a difficult task to choose the correct performance evaluation measure. In such a scenario, 

AUC is used to estimate the prediction performance. Although the ROC (Receiver Operating 

Characteristics) curve is the accurate measure for prediction performance[18][16], it does not 

give the numeric values to discriminate between the results so AUC is the better choice for 

measuring prediction performance. Fig 4.8 represents confusion matric in which TP 

represents True Positive, FP represents False Positive, TN represents True Negative, and FN 

represents False Negative. AUC is a summarization of the ROC curve. It plots the curve 

between two parameters: 

1. TPR: It stands for true positive rate and is defined as follows: 

TPR=TP/(TP+FN)                                                                   (4.2) 

2. FPR: It stands for false positive rate and is defined as follows: 

 FPR=FP/(FP+TN)                                                                    (4.3) 

   

Fig 4.8 Confusion matrix 

AUC value is the summarization of ROC curve. Value of AUC nearer to 1 shows better 

prediction results and nearer to 0 shows poor prediction results. AUC value is scale-invariant 

and classification threshold invariant. A detailed description of how to calculate AUC values 

is given in Dejaeger et al [18]. 

4.5 Statistical Analysis 

We have used Friedman test with Nemenyi test to check whether the predictive performance 

of several classification and ensemble techniques differ significantly or not. 
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• Friedman Test 

It is a non-parametric test that means this test doesn’t require that data should be normal. This 

test follows a ranking method. Over multiple datasets, this test assigns some ranks to a set of 

classification techniques. The Null and alternative hypothesis for Friedman test is defined as 

follows:  

Null Hypothesis (H0): Performances of the various techniques do not differ significantly. 

Alternative Hypothesis (Ha): Performances of the various techniques differ significantly. 

Friedman test is utilized to check whether the performance of different techniques differs 

significantly or not. In this test, we compare the calculated 𝛘2-statistics value with the 

tabulated chi-square value to check whether the null hypothesis is accepted or rejected. We 

can calculate the 𝛘2-statistics value using the given formula. 

2- statistics= 
12

𝑛(𝑛+1)
∑ 𝑅𝑖

2 − 3𝑛(𝑘 + 1)𝑘
𝑖=1                               (4.4) 

• Nemenyi Test 

This test is utilized to contrast numerous procedures and each other when the sample sizes 

are equivalent. It is a Post hoc test as it is applicable when there is a rejection of the null 

hypothesis when we use the Kruskal Wallis or Friedman test. In this, a comparison between 

critical distance and pairwise difference of average ranks takes place to check whether the 

null hypothesis is accepted or rejected. We can calculate the critical distance value using the 

given formula. 

   𝐶𝐷 = 𝑞𝛼√
𝑘(𝑘+1)

6𝑛
                                                                         (4.5) 

• Effect Size 

Effect size in statistics is the measure of the importance of differences between two groups 

or samples. It is not the same as statistical significance[19]. There is no direct method to 

calculate effect size if we are applying the Friedman test, so we apply Kendall’s W coefficient 

(Coefficient of Cordonance). Kendall’s W coefficient can be calculated as: 

 𝑊 =
2−𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠

𝑛(𝑘−1)
                                                                              (4.6) 

This coefficient value talks about the agreement between the techniques used and the 

coefficient value lies between 0 and 1. If the coefficient value is 0.1 to 0.2, it will be 

considered as a small effect size, if the coefficient value is 0.3 to 0.4, it will be considered as 
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medium effect size and if the value of effect size exceeds 0.5 then it will be considered as 

large effect size. 
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CHAPTER 5 

 

EXPERIMENTAL RESULTS 

 

 

To check whether process metrics outperform static code metrics in case of fault prediction 

results, we analyze the following models using various classification and ensemble 

techniques: 

Model-1: model that solely contains static code metrics. 

Model-2: model that solely contains process metrics. 

Model-3: combination of process and static code metrics. 

In this section, we analyze the results of all three models using various classifiers and 

ensemble techniques based on AUC values. We will analyze three other models also using 

only those classification and ensemble techniques which performs better in combined model. 

Model-4: combination of 1 process metric and all static code metrics  

Model-5: combination of 2 process metrics and all static code metrics 

Model -6: combination of 3 process metrics and all static code metrics and  

Using these 3 models, we can identify which process metric is useful or which pair of process 

metric is more useful in predicting the fault proneness. 

5.1 Naive Bayes Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using naive bayes are presented in this section. Table 5.1 

shows the experimental results of all the three models implemented using naive bayes 

classification techniques. This table shows that in 53.33% of cases combination of both 

metrics gives better AUC values, in 40 % cases process metric gives better AUC values and 

in 6.67% cases static code metric gives better AUC values. As Naïve Bayes gives better 

prediction performance in combined model so we will also analyze model 4, model 5 and 

model 6 using Naïve Bayes classification technique.  
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Table 5.1 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using NB 

Dataset Name Combined Static Code Metric Process Metric 

Ant1.4 0.746 0.668 0.789 

Ant1.5 0.831 0.805 0.800 

Ant1.6 0.862 0.841 0.840 

Ant1.7 0.889 0.846 0.876 

Jedit4.0 0.902 0.826 0.914 

Jedit4.1 0.926 0.837 0.906 

Synapse1.1 0.694 0.707 0.475 

 Synapse1.2 0.761 0.754 0.694 

Xalan2.5.0 0.723 0.621 0.732 

Xalan2.6.0 0.865 0.822 0.810 

Xalan2.7.0 0.973 0.932 0.991 

Xerces 1.2.0 0.737 0.543 0.773 

Xerces1.3.0 0.830 0.786 0.650 

Xerces1.4.4 0.806 0.755 0.713 

 

Table 5.2 shows the experimental results of model 4 implemented using the naïve bayes 

classification technique. This table shows that NR metrics is more useful in predicting the 

fault proneness as in 71.42% of cases the combination of NR metrics with all static code 

metrics gives better AUC values. 

Table 5.2 AUC values of models which contain combination of SC and 1 process metric using NB 

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC 

Ant1.4 0.762 0.705 0.738 0.661 

Ant1.5 0.823 0.821 0.823 0.805 

Ant1.6 0.862 0.850 0.860 0.840 

Ant1.7 0.876 0.865 0.867 0.853 

Jedit4.0 0.879 0.868 0.867 0.833 

Jedit4.1 0.887 0.889 0.888 0.866 

Synapse1.1 0.702 0.705 0.705 0.708 
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Synapse1.2 0.757 0.761 0.763 0.755 

Xalan2.5.0 0.708 0.666 0.709 0.634 

Xalan2.6.0 0.863 0.834 0.858 0.833 

Xalan2.7.0 0.977 0.952 0.953 0.941 

Xerces1.2.0 0.680 0.608 0.634 0.648 

Xerces1.3.0 0.822 0.817 0.809 0.796 

Xerces1.4.4 0.828 0.789 0.784 0.756 

 

Table 5.3 shows the experimental results of model 5 implemented using naïve bayes 

classification technique. This table shows that NR metric combining with NDC metric gives 

better prediction performance as in 57.14% of cases combination of static code metrics, NR 

metrics and NDC metric gives better AUC values. 

Table 5.3 AUC values of models which contain combination of SC and 2 process metrics using NB 

Dataset Name NR+ND

C+SC 

NR+NM

L+SC 

NR+NDP

V+SC 

NDC+NM

L+SC 

NDC+NDP

V+SC 

NML+ND

PV+SC 

Ant1.4 0.766 0.743 0.758 0.753 0.700 0.733 

Ant1.5 0.831 0.824 0.824 0.832 0.820 0.823 

Ant1.6 0.864 0.860 0.861 0.862 0.849 0.858 

Ant1.7 0.885 0.878 0.880 0.878 0.869 0.872 

Jedit4.0 0.900 0.882 0.881 0.890 0.870 0.869 

Jedit4.1 0.912 0.889 0.901 0.911 0.904 0.904 

Synapse1.1 0.700 0.697 0.703 0.694 0.705 0.705 

Synapse 1.2 0.763 0.757 0.758 0.768 0.763 0.765 

Xalan2.5.0 0.711 0.712 0.714 0.713 0.676 0.717 

Xalan2.6.0 0.864 0.864 0.865 0.865 0.842 0.862 

Xalan2.7.0 0.982 0.968 0.980 0.959 0.954 0.955 

Xerces1.2.0 0.685 0.678 0.738 0.653 0.696 0.711 

Xerces1.3.0 0.840 0.807 0.829 0.834 0.825 0.817 

Xerces1.4.4 0.840 0.795 0.826 0.803 0.787 0.784 
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Table 5.4 shows the experimental results of model 6 implemented using naïve bayes 

classification technique. This table shows that NR metric combining with NDC metric and 

NDPV metric gives better prediction performance as in 78.57% of cases combination of static 

code metrics, NR metrics, NDC metric and NDPV metric gives better AUC values. 

Table 5.4 AUC values of models which contain combination of SC and 3 process metrics using NB 

Dataset Name NR+NDC+

NML+SC 

NR+NDC+N

DPV+SC 

NR+NML+N

DPV+SC 

NDC+NML+N

DPV+SC 

Ant1.4 0.750 0.763 0.740 0.747 

Ant1.5 0.831 0.831 0.823 0.831 

Ant1.6 0.863 0.863 0.859 0.861 

Ant1.7 0.886 0.888 0.881 0.881 

Jedit4.0 0.900 0.901 0.883 0.892 

Jedit4.1 0.913 0.925 0.904 0.925 

Synapse1.1 0.694 0.700 0.697 0.702 

Synapse1.2 0.760 0.764 0.758 0.770 

Xalan2.5.0 0.716 0.717 0.720 0.721 

Xalan2.6.0 0.864 0.866 0.865            0.864 

Xalan2.7.0         0.972 0.983 0.969            0.960 

Xerces1.2.0 0.683 0.739 0.733 0.724 

Xerces1.3.0 0.825 0.845 0.814 0.842 

Xerces1.4.4 0.808 0.837 0.794 0.801 

 

5.2 Logical Regression Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using logistic regression are presented in this section. Table 

5.5 shows the experimental results of all the three models implemented using the logistic 

regression classification techniques. Table 5.5 consists of AUC values. This table shows that 

in 86.66% cases static code metrics give better AUC values, in 6.66% case process metric, 

and in the remaining 6.66% cases combined model of both process and static code metric 

gives better AUC values. 
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Table 5.5 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using LR 

Dataset Name Combined Static Code Metric Process Metric 

Ant1.4 0.631 0.751 0.450 

Ant1.5 0.635 0.844 0.596 

Ant1.6 0.725 0.848 0.589 

Ant1.7 0.726 0.856 0.698 

Jedit4.0 0.694 0.819 0.687 

Jedit4.1 0.612 0.856 0.212 

Synapse1.1 0.689 0.717 0.493 

Synapse1.2 0.461 0.737 0.329 

Xalan2.5.0 0.731 0.733 0.677 

Xalan2.6.0 0.833 0.844 0.771 

Xalan2.7.0 0.982 0.956 0.989 

Xerces1.2.0 0.604 0.564 0.523 

Xerces1.3.0 0.604 0.751 0.552 

Xerces1.4.4 0.853 0.867 0.764 

 

5.3 Support Vector Machine Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using a support vector machine are presented in this section. 

Table 5.6 shows the experimental results of all the three models implemented using the 

support vector machine classification technique. Table 5.6 consists of AUC values. This table 

shows that in 66.67% cases combination of both metrics gives better AUC values, in 33.33% 

cases process metric gives better AUC values and in 13.33% cases static code metric gives 

better AUC values. As Support Vector Machine gives better prediction performance in 

combined model so we will also analyze model 4, model 5 and model 6 using Support Vector 

Machine technique. 
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Table 5.6 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using NB 

Dataset Name Combined Static Code Metric Process Metric 

Ant1.4 0.579 0.500 0.589 

Ant1.5 0.616 0.500 0.553 

Ant1.6 0.676 0.606 0.647 

Ant1.7 0.694 0.620 0.669 

Jedit4.0 0.735 0.538 0.748 

Jedit4.1 0.740 0.609 0.723 

Synapse1.1 0.671 0.635 0.499 

Synapse1.2 0.601 0.628 0.546 

Xalan2.5.0 0.651 0.575 0.629 

Xalan2.6.0 0.784 0.695 0.684 

Xalan2.7.0 0.981 0.843 0.981 

Xerces1.2.0 0.540 0.500 0.553 

Xerces1.3.0 0.594 0.519 0.548 

Xerces1.4.4 0.849 0.766 0.679 

 

Table 5.7 shows the experimental results of model 4 implemented using support vector 

machine technique. This table shows that NR metric is more useful in predicting fault 

proneness as in 57.14% of cases combination of NR metrics with static code metrics gives 

better AUC values. 

Table 5.7 AUC values of models which contain combination of SC and 1 process metric using SVM 

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC 

Ant1.4 0.595 0.543 0.575 0.527 

Ant1.5 0.540 0.500 0.556 0.500 

Ant1.6 0.634 0.606 0.650 0.617 

Ant1.7 0.656 0.636 0.666 0.617 

Jedit4.0 0.751 0.569 0.633 0.558 

Jedit4.1 0.707 0.662 0.701 0.666 

Synapse1.1 0.674 0.655 0.662 0.627 
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Synapse1.2 0.640 0.645 0.601 0.622 

Xalan2.5.0 0.649 0.627 0.642 0.581 

Xalan2.6.0 0.774 0.728 0.777 0.719 

Xalan2.7.0 0.981 0.881 0.883 0.850 

Xerces1.2.0 0.493 0.500 0.539 0.498 

Xerces1.3.0 0.576 0.527 0.572 0.511 

Xerces1.4.4 0.847 0.846 0.845 0.767 

 

Table 5.8 shows the experimental results of model 5 implemented using support vector 

machine technique. This table shows that NR metric combining with NML metric gives 

better prediction performance as in 50% of cases combination of static code metrics, NR 

metrics and NML metric gives better AUC values. 

Table 5.8 AUC values of models which contain combination of SC and 2 process metrics using SVM 

Dataset Name NR+ND

C+SC 

NR+NM

L+SC 

NR+ND

PV+SC 

NDC+NM

L+SC 

NDC+ND

PV+SC 

NML+ND

PV+SC 

Ant1.4 0.608 0.601 0.610 0.558 0.518 0.558 

Ant1.5 0.540 0.616 0.540 0.587 0.500 0.554 

Ant1.6 0.637 0.683 0.636 0.653 0.612 0.650 

Ant1.7 0.662 0.693 0.663 0.687 0.646 0.680 

Jedit4.0 0.751 0.735 0.751 0.640 0.583 0.638 

Jedit4.1 0.711 0.726 0.715 0.687 0.695 0.694 

Synapse1.1 0.677 0.663 0.654 0.659 0.655 0.665 

Synapse1.2 0.648 0.595 0.645 0.610 0.645 0.601 

Xalan2.5.0 0.648 0.654 0.656 0.634 0.627 0.636 

Xalan2.6.0 0.770 0.789 0.773 0.782 0.740 0.778 

Xalan2.7.0 0.981 0.981 0.981 0.883 0.882 0.883 

Xerces1.2.0 0.493 0.529 0.507 0.523 0.498 0.537 

Xerces1.3.0 0.591 0.601 0.569 0.566 0.527 0.566 

Xerces1.4.4 0.846 0.851 0.847 0.846 0.849 0.845 
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Table 5.9 shows the experimental results of model 6 implemented using support vector 

machine technique. This table shows that NR metric combining with NML metric and NDPV 

metric gives better prediction performance as in 64.28% of cases combination of static code 

metrics, NR metrics, NML metric and NDPV metric gives better AUC values. 

Table 5.9 AUC values of models which contain combination of SC and 3 process metrics using SVM 

Dataset Name NR+NDC+N

ML+SC 

NR+NDC+N

DPV+SC 

NR+NML+ND

PV+SC 

NDC+NML+ND

PV+SC 

Ant1.4 0.570 0.592 0.591 0.556 

Ant1.5 0.600 0.540 0.601 0.571 

Ant1.6 0.677 0.637 0.682 0.652 

Ant1.7 0.690 0.666 0.693 0.691 

Jedit4.0 0.735 0.751 0.735 0.638 

Jedit4.1 0.734 0.720 0.747 0.694 

Synapse1.1 0.679 0.669 0.668 0.651 

Synapse1.2 0.610 0.648 0.604 0.610 

Xalan2.5.0 0.646 0.655 0.656 0.643 

Xalan2.6.0 0.784 0.774 0.786 0.779 

Xalan2.7.0 0.981 0.981 0.981 0.883 

Xerces1.2.0 0.516 0.500 0.544 0.530 

Xerces1.3.0 0.600 0.591 0.594 0.552 

Xerces1.4.4 0.849 0.846 0.851 0.846 

 

5.4 K Nearest Neighbor Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using the K nearest neighbor is presented in this section. Table 

5.10 shows the experimental results of all the three models implemented using K Nearest 

Neighbor technique. Table 5.10 consists of AUC values. This table shows that in 60% of 

cases process metric gives better AUC values, combined model of both metrics gives better 

AUC value in 20% of cases and model that solely contain static code metrics also give better 

AUC values in 20% of cases. 
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Table 5.10 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using KNN 

Dataset Name Combined Static Code Metric Process Metric 

Ant1.4 0.657 0.651 0.762 

Ant1.5 0.665 0.647 0.728 

Ant1.6 0.691 0.728 0.778 

Ant1.7 0.719 0.719 0.785 

Jedit4.0 0.753 0.774 0.868 

Jedit4.1 0.746 0.710 0.820 

Synapse1.1 0.621 0.695 0.428 

Synapse1.2 0.699 0.719 0.630 

Xalan2.5.0 0.705 0.708 0.733 

Xalan2.6.0 0.817 0.801 0.811 

Xalan2.7.0 0.991 0.924 0.990 

Xerces1.2.0 0.700 0.694 0.714 

Xerces1.3.0 0.679 0.759 0.614 

Xerces1.4.4 0.893 0.847 0.812 

 

5.5 Decision Tree Analysis 

The results of analyzing all three models to check the relationship between fault proneness 

and process metrics using a decision tree is presented in this section. Table 5.11 shows the 

experimental results of all the three models implemented using the decision tree classification 

technique. Table 5.11 consists of AUC values. This table shows that in 80% of cases 

combination of both metrics gives better AUC values, in 20% cases process metric gives 

better AUC values and in 13.33% of cases static code metric gives better AUC values.  

Table 5.11 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using DT 

Dataset Name Combined Static Code Metric Process Metric 

Ant1.4 0.676 0.580 0.629 

Ant1.5 0.679 0.646 0.535 
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Ant1.6 0.813 0.809 0.771 

Ant1.7 0.846 0.810 0.814 

Jedit4.0 0.817 0.717 0.871 

Jedit4.1 0.873 0.783 0.790 

Synapse1.1 0.683 0.630 0.494 

Synapse1.2 0.695 0.701 0.612 

Xalan2.5.0 0.797 0.734 0.717 

Xalan2.6.0 0.872 0.848 0.848 

Xalan2.7.0 0.987 0.914 0.989 

Xerces1.2.0 0.732 0.659 0.673 

Xerces1.3.0 0.763 0.712 0.603 

Xerces1.4.4 0.909 0.893 0.795 

 

Table 5.12 shows the experimental results of model 5 implemented using decision tree 

technique. This table shows that NR metric is more useful in predicting fault proneness as in 

35.71% of cases combination of NR metrics with static code metrics gives better AUC 

values. 

Table 5.12 AUC values of models which contain combination of SC and 1 process metric using DT 

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC 

Ant1.4 0.654 0.601 0.572 0.549 

Ant1.5 0.644 0.734 0.603 0.700 

Ant1.6 0.779 0.800 0.794 0.801 

Ant1.7 0.778 0.802 0.798 0.828 

Jedit4.0 0.856 0.836 0.845 0.761 

Jedit4.1 0.786 0.872 0.847 0.768 

Synapse1.1 0.641 0.643 0.681 0.694 

Synapse1.2 0.698 0.691 0.723 0.730 

Xalan2.5.0 0.767 0.765 0.779 0.722 

Xalan2.6.0 0.868 0.865 0.862 0.837 

Xalan2.7.0 0.987 0.961 0.958 0.947 

Xerces1.2.0 0.657 0.672 0.635 0.658 
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Xerces1.3.0 0.710 0.693 0.757 0.689 

Xerces1.4.4 0.939 0.902 0.892 0.863 

 

Table 5.13 shows the experimental results of model 5 implemented using decision tree 

technique. This table shows that NR metric combining with NDC metric gives better 

prediction performance as in 28.57% of cases combination of static code metrics, NR metrics 

and NDC metric gives better AUC values. 

Table 5.13 AUC values of models which contain combination of SC and 2 process metrics using DT 

Dataset Name NR+ND

C+SC 

NR+NM

L+SC 

NR+ND

PV+SC 

NDC+NM

L+SC 

NDC+ND

PV+SC 

NML+N

DPV+SC 

Ant1.4 0.763 0.709 0.644 0.715 0.590 0.541 

Ant1.5 0.713 0.537 0.728 0.704 0.703 0.715 

Ant1.6 0.832 0.828 0.800 0.819 0.790 0.798 

Ant1.7 0.830 0.826 0.804 0.841 0.827 0.823 

Jedit4.0 0.843 0.869 0.823 0.816 0.872 0.801 

Jedit4.1 0.862 0.868 0.811 0.863 0.897 0.824 

Synapse1.1 0.633 0.722 0.624 0.710 0.693 0.695 

Synapse1.2 0.695 0.719 0.704 0.725 0.715 0.740 

Xalan2.5.0 0.768 0.794 0.772 0.787 0.780 0.774 

Xalan2.6.0 0.857 0.855 0.849 0.862 0.867 0.860 

Xalan2.7.0 0.990 0.993 0.992 0.961 0.965 0.961 

Xerces1.2.0 0.658 0.668 0.718 0.688 0.694 0.673 

Xerces1.3.0 0.787 0.697 0.769 0.772 0.763 0.756 

Xerces1.4.4 0.947 0.917 0.931 0.896 0.923 0.879 

 

Table 5.14 shows the experimental results of model 6 implemented using decision tree 

technique. This table shows that NR metric combining with NML metric and NDPV metric 

gives better prediction performance as in 50% of cases combination of static code metrics, 

NR metrics, NML metric and NDPV metric gives better AUC values. 

 

 



 

34 
 

Table 5.14 AUC values of models which contain combination of SC and 3 process metric using DT 

Dataset Name NR+NDC+N

ML+SC 

NR+NDC+N

DPV+SC 

NR+NML+ND

PV+SC 

NDC+NML+ND

PV+SC 

Ant1.4 0.690 0.597 0.603 0.543 

Ant1.5 0.600 0.695 0.658 0.659 

Ant1.6 0.810 0.814 0.831 0.821 

Ant1.7 0.811 0.832 0.784 0.813 

Jedit4.0 0.816 0.833 0.858 0.828 

Jedit4.1 0.862 0.803 0.811 0.847 

Synapse1.1 0.673 0.641 0.683 0.682 

Synapse1.2 0.743 0.716 0.727 0.693 

Xalan2.5.0 0.785 0.769 0.768 0.764 

Xalan2.6.0 0.848 0.854 0.873 0.868 

Xalan2.7.0 0.989 0.985 0.992 0.951 

Xerces1.2.0 0.718 0.718 0.728 0.722 

Xerces1.3.0 0.718 0.737 0.740 0.731 

Xerces1.4.4 0.933 0.941 0.933 0.890 

 

5.6. Stacking Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using naive bayes are presented in this section. Table 5.15 

shows the experimental results of all the three models implemented using stacking ensemble 

technique. Table 5.15 consists of AUC values. This table shows that in 71.42 % of cases 

combination of both metrics gives better AUC values, and in 28.57% cases static code metric 

gives better AUC values. 

Table 5.15 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using stacking 

Dataset Name Combined Static Code Metrics Process Metrics 

Ant1.4 0.767 0.716 0.760 

Ant1.5 0.772 0.802 0.706 

Ant1.6 0.864 0.857 0.850 
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Ant1.7 0.872 0.850 0.856 

Jedit4.0 0.894 0.821 0.888 

Jedit4.1 0.913 0.815 0.911 

Synapse1.1 0.711 0.752 0.453 

Synapse1.2 0.788 0.789 0.664 

Xalan2.5.0 0.797 0.792 0.733 

Xalan2.6.0 0.898 0.867 0.824 

Xalan2.7.0 0.993 0.968 0.991 

Xerces1.2.0 0.797 0.725 0.777 

Xerces1.3.0 0.756 0.777 0.719 

Xerces1.4.4 0.942 0.918 0.817 

 

Table 5.16 shows the experimental results of model 4 implemented using stacking technique. 

This table shows that NR metric is more useful in predicting fault proneness as in 57.14% of 

cases combination of NR metrics with static code metrics gives better AUC values. 

Table 5.16 AUC values of models which contain combination of SC and 1 process metric using stacking 

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC 

Ant1.4 0.797 0.749 0.649 0.724 

Ant1.5 0.786 0.843 0.786 0.787 

Ant1.6 0.881 0.873 0.834 0.853 

Ant1.7 0.882 0.888 0.824 0.864 

Jedit4.0 0.861 0.896 0.872 0.837 

Jedit4.1 0.903 0.904 0.809 0.851 

Synapse1.1 0.737 0.733 0.711 0.749 

Synapse1.2 0.777 0.809 0.779 0.780 

Xalan2.5.0 0.821 0.805 0.801 0.795 

Xalan2.6.0 0.900 0.885 0.891 0.880 

Xalan2.7.0 0.994 0.981 0.979 0.970 

Xerces1.2.0 0.787 0.759 0.692 0.782 

Xerces1.3.0 0.859 0.849 0.769 0.794 
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Xerces1.4.4 0.950 0.934 0.938 0.913 

 

Table 5.17 shows the experimental results of model 5 implemented using stacking technique. 

This table shows that NDC metric combining with NDPV metric gives better prediction 

performance as in 50% of cases combination of NDC metric, NDPV metric and static code 

metrics gives better AUC values. 

Table 5.17 AUC values of models which contain combination of SC and 2 process metrics using stacking 

Dataset Name NR+ND

C+SC 

NR+NM

L+SC 

NR+ND

PV+SC 

NDC+NM

L+SC 

NDC+ND

PV+SC 

NML+N

DPV+SC 

Ant1.4 0.743 0.750 0.778 0.749 0.812 0.662 

Ant1.5 0.783 0.773 0.782 0.775 0.795 0.769 

Ant1.6 0.885 0.857 0.878 0.825 0.863 0.796 

Ant1.7 0.883 0.859 0.886 0.824 0.891 0.823 

Jedit4.0 0.835 0.864 0.846 0.866 0.887 0.839 

Jedit4.1 0.905 0.911 0.916 0.898 0.918 0.844 

Synapse1.1 0.729 0.704 0.707 0.726 0.742 0.730 

Synapse1.2 0.767 0.789 0.778 0.756 0.817 0.819 

Xalan2.5.0 0.825 0.799 0.823 0.808 0.824 0.813 

Xalan2.6.0 0.904 0.901 0.904 0.898 0.887 0.894 

Xalan2.7.0 0.991 0.993 0.992 0.983 0.982 0.980 

Xerces1.2.0 0.791 0.750 0.793 0.761 0.835 0.727 

Xerces1.3.0 0.840 0.784 0.830 0.781 0.828 0.750 

Xerces1.4.4 0.945 0.945 0.947 0.935 0.933 0.937 

 

Table 5.18 shows the experimental results of model 6 implemented using stacking technique. 

This table shows that NR metric combining with NDC metric and NDPV metric gives better 

prediction performance as in 78.57% of cases combination of NR metric, NDC metric, 

NDPV metric and static code metrics gives better AUC values. 
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Table 5.18 AUC values of models which contain combination of SC and 3 process metric using stacking 

Dataset Name SC+NR+NDC

+NML 

SC+NR+NDC

+NDPV 

SC+NR+NML+

NDPV 

SC+NDC+NML

+NDPV 

Ant1.4 0.786 0.812 0.796 0.677 

Ant1.5 0.809 0.820 0.774 0.811 

Ant1.6 0.863 0.886 0.849 0.845 

Ant1.7 0.853 0.890 0.867 0.835 

Jedit4.0 0.843 0.898 0.846 0.844 

Jedit4.1 0.902 0.912 0.914 0.865 

Synapse1.1 0.731 0.732 0.694 0.737 

Synapse1.2 0.753 0.772 0.766 0.762 

Xalan2.5.0 0.802 0.822 0.806 0.792 

Xalan2.6.0 0.899 0.900 0.900 0.894 

Xalan2.7.0 0.993 0.993 0.995 0.981 

Xerces1.2.0 0.738 0.811 0.764 0.780 

Xerces1.3.0 0.754 0.844 0.775 0.768 

Xerces1.4.4 0.949 0.950 0.948 0.938 

 

5.7 Voting Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using naive bayes are presented in this section. Table 5.19 

shows the experimental results of all the three models implemented using stacking ensemble 

technique. Table 5.19 consists of AUC values. This table shows that in 71.42% of cases 

combination of both metrics gives better AUC values, in 14.28% of cases process metrics 

gives better AUC values, and in 14.28% cases static code metric gives better AUC values. 

Table 5.19 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using voting 

Dataset Name Combined Static Code Metrics Process Metrics 

Ant1.4 0.806 0.760 0.811 

Ant1.5 0.832 0.832 0.772 

Ant1.6 0.872 0.857 0.856 
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Ant1.7 0.877 0.862 0.877 

Jedit4.0 0.890 0.845 0.911 

Jedit4.1 0.916 0.855 0.908 

Synapse1.1 0.745 0.797 0.480 

Synapse1.2 0.764 0.794 0.651 

Xalan2.5.0 0.792 0.759 0.735 

Xalan2.6.0 0.899 0.869 0.832 

Xalan2.7.0 0.997 0.963 0.989 

Xerces1.2.0 0.812 0.741 0.797 

Xerces1.3.0 0.818 0.794 0.711 

Xerces1.4.4 0.943 0.897 0.817 

 

Table 5.20 shows the experimental results of model 4 implemented using voting technique. 

This table shows that NR metric is more useful in predicting fault proneness as in 78.57% 

of cases combination of NR metric with static code metrics gives better AUC values. 

Table 5.20 AUC values of models which contain combination of SC and 1 process metric using voting 

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC 

Ant1.4 0.836 0.829 0.760 0.767 

Ant1.5 0.881 0.864 0.802 0.828 

Ant1.6 0.888 0.884 0.849 0.856 

Ant1.7 0.885 0.885 0.840 0.870 

Jedit4.0 0.923 0.912 0.860 0.855 

Jedit4.1 0.932 0.921 0.884 0.871 

Synapse1.1 0.782 0.801 0.777 0.796 

Synapse1.2 0.802 0.830 0.736 0.795 

Xalan2.5.0 0.797 0.805 0.781 0.764 

Xalan2.6.0 0.897 0.878 0.888 0.882 

Xalan2.7.0 0.995 0.979 0.979 0.971 

Xerces1.2.0 0.812 0.789 0.698 0.781 

Xerces1.3.0 0.871 0.843 0.779 0.810 
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Xerces1.4.4 0.954 0.939 0.937 0.902 

 

Table 5.21 shows the experimental results of model 5 implemented using voting technique. 

This table shows that NR metric combining with NDC metric gives better prediction 

performance as in 50% of cases combination of static code metrics, NR metrics and NDC 

metric gives better AUC values. 

Table 5.21 AUC values of models which contain combination of SC and 2 process metrics using voting 

Dataset Name NR+ND

C+SC 

NR+NM

L+SC 

NR+ND

PV+SC 

NDC+NM

L+SC 

NDC+ND

PV+SC 

NML+N

DPV+SC 

Ant1.4 0.846 0.802 0.840 0.777 0.818 0.762 

Ant1.5 0.874 0.847 0.872 0.817 0.858 0.799 

Ant1.6 0.892 0.856 0.886 0.859 0.880 0.853 

Ant1.7 0.892 0.854 0.890 0.846 0.889 0.841 

Jedit4.0 0.924 0.889 0.923 0.865 0.911 0.846 

Jedit4.1 0.934 0.911 0.929 0.894 0.937 0.875 

Synapse1.1 0.785 0.744 0.783 0.757 0.803 0.776 

Synapse1.2 0.807 0.760 0.807 0.753 0.830 0.740 

Xalan2.5.0 0.805 0.791 0.805 0.782 0.808 0.783 

Xalan2.6.0 0.902 0.898 0.899 0.890 0.887 0.889 

Xalan2.7.0 0.994 0.997 0.996 0.982 0.979 0.980 

Xerces1.2.0 0.790 0.765 0.818 0.736 0.843 0.744 

Xerces1.3.0 0.865 0.798 0.868 0.780 0.843 0.786 

Xerces1.4.4 0.954 0.947 0.953 0.937 0.938 0.935 

 

Table 5.22 shows the experimental results of model 6 implemented using voting technique. 

This table shows that NR metric combining with NDC metric and NDPV metric gives better 

prediction performance as in 92.85% of cases combination of NR metric, NDC metric, 

NDPV metric and static code metrics gives better AUC values. 
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Table 5.22 AUC values of models which contain combination of SC and 3 process metric using voting 

Dataset Name SC+NR+NDC+

NML 

SC+NR+NDC

+NDPV 

SC+NR+NML

+NDPV 

SC+NDC+NML

+NDPV 

Ant1.4 0.809 0.840 0.813 0.776 

Ant1.5 0.838 0.865 0.838 0.814 

Ant1.6 0.874 0.890 0.862 0.861 

Ant1.7 0.878 0.891 0.860 0.845 

Jedit4.0 0.894 0.924 0.885 0.853 

Jedit4.1 0.916 0.943 0.912 0.895 

Synapse1.1 0.753 0.787 0.741 0.756 

Synapse1.2 0.765 0.809 0.764 0.758 

Xalan2.5.0 0.790 0.810 0.795 0.787 

Xalan2.6.0 0.898 0.901 0.900 0.888 

Xalan2.7.0 0.997 0.995 0.997 0.982 

Xerces1.2.0 0.750 0.840 0.801 0.782 

Xerces1.3.0 0.798 0.863 0.808 0.794 

Xerces1.4.4 0.949 0.951 0.945 0.936 

 

5.8 Bagging Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using naive bayes are presented in this section. Table 5.23 

shows the experimental results of all the three models implemented using stacking ensemble 

technique. Table 5.23 consists of AUC values. This table shows that in 64.28% of cases 

combination of both metrics gives better AUC values, in 14.28% of cases process metrics 

gives better AUC values, and in 21.42% cases static code metric gives better AUC values. 

Table 5.23 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using bagging 

Dataset Name Combined Static Code Metrics Process Metrics 

Ant1.4 0.808 0.769 0.817 

Ant1.5 0.850 0.858 0.784 

Ant1.6 0.894 0.868 0.859 
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Ant1.7 0.900 0.875 0.877 

Jedit4.0 0.917 0.850 0.920 

Jedit4.1 0.938 0.881 0.906 

Synapse1.1 0.764 0.790 0.494 

Synapse1.2 0.794 0.811 0.660 

Xalan2.5.0 0.803 0.779 0.740 

Xalan2.6.0 0.906 0.876 0.834 

Xalan2.7.0 0.997 0.967 0.992 

Xerces1.2.0 0.814 0.759 0.804 

Xerces1.3.0 0.843 0.831 0.731 

Xerces1.4.4 0.959 0.905 0.823 

 

Table 5.24 shows the experimental results of model 4 implemented using bagging technique. 

This table shows that NR metric is more useful in predicting fault proneness as in 78.57% of 

cases combination of NR metric with static code metrics gives better AUC values. 

Table 5.24 AUC values of models which contain combination of SC and 1 process metric using bagging 

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC 

Ant1.4 0.840 0.815 0.799 0.768 

Ant1.5 0.882 0.869 0.841 0.851 

Ant1.6 0.896 0.891 0.868 0.867 

Ant1.7 0.892 0.892 0.883 0.881 

Jedit4.0 0.918 0.909 0.891 0.858 

Jedit4.1 0.942 0.931 0.913 0.900 

Synapse1.1 0.779 0.785 0.775 0.784 

Synapse1.2 0.802 0.819 0.794 0.808 

Xalan2.5.0 0.806 0.808 0.789 0.785 

Xalan2.6.0 0.904 0.890 0.899 0.887 

Xalan2.7.0 0.996 0.979 0.980 0.971 

Xerces1.2.0 0.800 0.791 0.771 0.807 

Xerces1.3.0 0.870 0.868 0.827 0.839 
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Xerces1.4.4 0.956 0.943 0.947 0.911 

 

Table 5.25 shows the experimental results of model 5 implemented using bagging technique. 

This table shows that NR metric combining with NDC metric gives better prediction 

performance as in 57.14% of cases combination of static code metrics, NR metrics and NDC 

metric gives better AUC values. 

Table 5.25 AUC values of models which contain combination of SC and 2 process metrics using bagging 

Dataset Name NR+ND

C+SC 

NR+NM

L+SC 

NR+ND

PV+SC 

NDC+NM

L+SC 

NDC+ND

PV+SC 

NML+N

DPV+SC 

Ant1.4 0.844 0.813 0.833 0.810 0.806 0.791 

Ant1.5 0.870 0.855 0.866 0.862 0.864 0.840 

Ant1.6 0.895 0.893 0.895 0.874 0.888 0.869 

Ant1.7 0.896 0.893 0.895 0.884 0.896 0.887 

Jedit4.0 0.923 0.915 0.919 0.901 0.909 0.894 

Jedit4.1 0.946 0.936 0.945 0.926 0.940 0.918 

Synapse1.1 0.776 0.766 0.776 0.770 0.778 0.775 

Synapse1.2 0.806 0.791 0.804 0.785 0.821 0.792 

Xalan2.5.0 0.805 0.799 0.812 0.792 0.812 0.793 

Xalan2.6.0 0.906 0.906 0.905 0.899 0.897 0.901 

Xalan2.7.0 0.996 0.997 0.998 0.982 0.980 0.981 

Xerces1.2.0 0.796 0.775 0.838 0.780 0.831 0.809 

Xerces1.3.0 0.871 0.836 0.869 0.858 0.865 0.837 

Xerces1.4.4 0.955 0.959 0.954 0.945 0.943 0.946 

 

Table 5.26 shows the experimental results of model 6 implemented using bagging technique. 

This table shows that NR metric combining with NDC metric and NDPV metric gives better 

prediction performance as in 78.57% of cases combination of NR metric, NDC metric, 

NDPV metric and static code metrics gives better AUC values. 
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Table 5.26 AUC values of models which contain combination of SC and 3 process metrics using bagging 

Dataset Name NR+NDC+NM

L+SC 

NR+NDC+ND

PV+SC 

NR+NML+ND

PV+SC 

NDC+NML+N

DPV+SC 

Ant1.4 0.814 0.836 0.810 0.806 

Ant1.5 0.854 0.866 0.851 0.861 

Ant1.6 0.893 0.898 0.890 0.871 

Ant1.7 0.899 0.898 0.894 0.888 

Jedit4.0 0.920 0.920 0.912 0.898 

Jedit4.1 0.938 0.947 0.937 0.928 

Synapse1.1 0.766 0.773 0.764 0.765 

Synapse1.2 0.793 0.807 0.789 0.785 

Xalan2.5.0 0.800 0.810 0.803 0.795 

Xalan2.6.0 0.907 0.905 0.906 0.900 

Xalan2.7.0 0.998 0.998 0.997 0.982 

Xerces1.2.0 0.778 0.841 0.814 0.812 

Xerces1.3.0 0.841 0.867 0.835 0.859 

Xerces1.4.4 0.961 0.955 0.958 0.946 

 

5.9 Boosting Analysis 

The results of analyzing all the three models to check the relationship between fault 

proneness and process metrics using naive bayes are presented in this section. Table 5.27 

shows the experimental results of all the three models implemented using stacking ensemble 

technique. Table 5.27 consists of AUC values. This table shows that in 71.42% of cases 

combination of both metrics gives better AUC values, and in 28.57% cases static code metric 

gives better AUC values. 

Table 5.27 AUC values of combined model, model solely containing static code metrics and model solely 

containing process metrics using boosting 

Dataset Name Combined Static Code Metrics Process Metrics 

Ant1.4 0.822 0.781 0.759 

Ant1.5 0.835 0.852 0.763 

Ant1.6 0.869 0.871 0.843 
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Ant1.7 0.894 0.873 0.857 

Jedit4.0 0.908 0.857 0.901 

Jedit4.1 0.902 0.844 0.877 

Synapse1.1 0.732 0.758 0.506 

Synapse1.2 0.753 0.796 0.547 

Xalan2.5.0 0.815 0.783 0.718 

Xalan2.6.0 0.899 0.875 0.830 

Xalan2.7.0 0.993 0.967 0.992 

Xerces1.2.0 0.801 0.744 0.772 

Xerces1.3.0 0.819 0.801 0.657 

Xerces1.4.4 0.949 0.904 0.822 

 

Table 5.28 shows the experimental results of model 5.28 implemented using boosting 

technique. This table shows that NR metric is more useful in predicting fault proneness as in 

50% of cases combination of NR metric with static code metrics gives better AUC values. 

Table 5.28 AUC values of models which contain combination of SC and 1 process metrics using boosting 

Dataset Name NR+SC NDC+SC NML+SC NDPV+SC 

Ant1.4 0.831 0.843 0.802 0.783 

Ant1.5 0.847 0.841 0.798 0.854 

Ant1.6 0.894 0.885 0.865 0.863 

Ant1.7 0.890 0.884 0.857 0.871 

Jedit4.0 0.921 0.906 0.887 0.851 

Jedit4.1 0.940 0.929 0.877 0.887 

Synapse1.1 0.765 0.773 0.761 0.775 

Synapse1.2 0.785 0.834 0.748 0.792 

Xalan2.5.0 0.808 0.811 0.800 0.788 

Xalan2.6.0 0.900 0.881  0.892 0.880 

Xalan2.7.0 0.995 0.982 0.982 0.973 

Xerces1.2.0 0.795 0.809 0.737 0.790 

Xerces1.3.0 0.822 0.855 0.780 0.825 
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Xerces1.4.4 0.954 0.941 0.939 0.901 

 

Table 5.29 shows the experimental results of model 5 implemented using boosting technique. 

This table shows that NDC metric combining with NDPV metric gives better prediction 

performance as in 50% of cases combination of NDC metric, NDPV metric and static code 

metrics gives better AUC values. Also, NR metric combining with NDPV metric gives better 

prediction performance as in 50% of cases combination of NR metric, NDPV metric and 

static code metrics gives better AUC values. 

Table 5.29 AUC values of models which contain combination of SC and 2 process metrics using boosting 

Dataset Name NR+NDC

+SC 

NR+NM

L+SC 

NR+ND

PV+SC 

NDC+NM

L+SC 

NDC+ND

PV+SC 

NML+N

DPV+SC 

Ant1.4 0.824 0.814 0.825 0.799 0.835 0.795 

Ant1.5 0.851 0.834 0.834 0.795 0.839 0.802 

Ant1.6 0.901 0.863 0.891 0.867 0.884 0.864 

Ant1.7 0.889 0.876 0.896 0.856 0.883 0.869 

Jedit4.0 0.920 0.898 0.922 0.890 0.914 0.878 

Jedit4.1 0.934 0.889 0.936 0.892 0.926 0.876 

Synapse1.1 0.759 0.731 0.755 0.749 0.776 0.746 

Synapse1.2 0.815 0.745 0.793 0.754 0.839 0.747 

Xalan2.5.0 0.826 0.807 0.826 0.802 0.821 0.806 

Xalan2.6.0 0.906 0.902 0.903 0.891 0.886 0.889 

Xalan2.7.0 0.996 0.998 0.996 0.982 0.982 0.981 

Xerces1.2.0 0.791 0.743 0.839 0.744 0.841 0.782 

Xerces1.3.0 0.852 0.827 0.842 0.797 0.861 0.779 

Xerces1.4.4 0.954 0.952 0.955 0.937 0.942 0.934 

 

Table 5.30 shows the experimental results of model 6 implemented using boosting technique. 

This table shows that NR metric combining with NDC metric and NDPV metric gives better 

prediction performance as in 92.85% of cases combination of NR metric, NDC metric, 

NDPV metric and static code metrics gives better AUC values. 
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Table 5.30 AUC values of models which contain combination of SC and 3 process metrics using boosting 

Dataset Name NR+NDC+N

ML+SC 

NR+NDC+ND

PV+SC 

NR+NML+ND

PV+SC 

NDC+NML+ND

PV+SC 

Ant1.4 0.819 0.823 0.813 0.802 

Ant1.5 0.823 0.823 0.814 0.796 

Ant1.6 0.867 0.899 0.871 0.864 

Ant1.7 0.877 0.901 0.884 0.865 

Jedit4.0 0.906 0.922 0.905 0.880 

Jedit4.1 0.895 0.937 0.898 0.891 

Synapse1.1 0.730 0.760 0.727 0.754 

Synapse1.2 0.765 0.813 0.758 0.748 

Xalan2.5.0 0.817 0.822 0.810 0.806 

Xalan2.6.0 0.902 0.902 0.898 0.891 

Xalan2.7.0 0.994 0.996 0.996 0.983 

Xerces1.2.0 0.750 0.811 0.792 0.810 

Xerces1.3.0 0.794 0.857 0.834 0.803 

Xerces1.4.4 0.953 0.952 0.953 0.934 
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CHAPTER 6 

 

DISCUSSION ON RESULTS 

 

 

We analyzed various models to check the effectiveness of process metrics on fault proneness 

using various classifiers and ensemble techniques. We also investigated some other models 

for that classifiers in which combination model gives better prediction performance to check 

which process metric or which pair of process metric is useful in prediction. The results of 

the experimental analysis show that the combination model gives better prediction results 

when we are using Naïve Bayes classifiers, Decision Trees and Support Vector Machines. 

Also, the result of all ensemble techniques shows that combination model gives better 

prediction results. NR metric, NDC metric and NDPV metric are most effective process 

metric in almost all the analyzed cases. In this section, we are analyzing the AUC results 

using box plots and statistical test. We are also calculating the effect size if there is a rejection 

of null hypothesis.  

6.1 Naive Bayes Analysis 

If we statistically analyze the results of table 5.1 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 7.429 and the p-value is 0.024. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the models differs significantly with an effect size 

of 0.265 which indicates that the difference among the models has a small effect on the 

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc 

test to check the pairwise comparison of the models. The results show that a significant 

difference exists between the performances of the combined model and model which contain 

static code metric just. 

Fig 6.1 represents the box plot for table 5.1. We can see that combined model of process 

metrics and static code metrics outperforms the models solely containing process metrics and 

model solely containing static code metrics.   
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Fig. 6.1 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using NB 

If we statistically analyze the results of table 5.2 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 19.108 and the p-value is 0.0002. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pair differs significantly with an effect size of 

0.455 which indicates that the difference among the pairs has a small effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contain all static code metric and 1 

process metric. The results show that a significant difference exists between the performances 

of the SC+NR model and SC+NDPV models, also there exist a significant difference between 

SC+NML model and SC+NDPV model. 

Fig 6.2 represents the box plot for table 5.2. We can see that combination of NR metric with 

statis code metric outperforms other pair of process metric and static code metrics. 

 

Fig 6.2 Box plots of models which contain combination of SC and 1 process metric using NB 
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If we statistically analyze the results of table 5.3 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 22.37 and the p-value is 0.0004. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is 

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null 

hypothesis. Hence the performance of at least one of the pairs differs significantly with an 

effect size of 0.319 which indicates that the difference among the pairs has a small effect on 

the prediction performance. As the results differ significantly, we will apply a Nemenyi post 

hoc test to check the pairwise comparison of the models which contains 2 process metrics 

and all static code metrics. The results show that a significant difference exists between the 

performances of the NR+NDC+SC model and NR+NML+SC model, NR+NDC+SC model 

and NDC+NDPV+SC model, and NR+NDPV+SC model and NDC+NDPV+SC. 

Fig 6.3 represents the box plot for table 5.3. We can see that combination of NR metric with 

NDC metric and statis code metric outperforms other pair of process metric and static code 

metrics. 

 

Box plots of models which contain combination of SC and 2 process metrics using NB 

If we statistically analyze the results of table 5.4 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 17.75 and the p-value is 0.0004. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pairs differs significantly with an effect size of 

0.423 which indicates that the difference among the pairs has a small effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 
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check the pairwise comparison of the models which contains 3 process metrics and all static 

code metrics. The results show that a significant difference exists between the performances 

of the NR+NDC+NML+SC model and NR+NDC+NDPV+SC model, 

NR+NDC+NDPV+SC model and NR+NML+NDPV+SC model, and 

NR+NML+NDPV+SC model and NML+NDC+NDPV+SC model. 

Fig 6.4 represents the box plot for table 5.4. We can see that combination of NR metric with 

NDC metric, NDPV metric and statis code metric outperforms other pair of process metric 

and static code metrics. 

 

Fig 6.4 Box plots of models which contain combination of SC and 3 process metrics using NB 

6.2 Logistic Regression Analysis 

If we statistically analyze the results of table 5.5 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 19 and the p-value is 7.4e-05. From 

the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 which 

is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. Hence the 

performance of at least one of the models differs significantly with an effect size of 0.678 

which indicates that the difference among the models has a large effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models. The results show that a significant difference 

exists between the performances of the combined model and model which solely contain 

process metric, and model which solely contain static code metric. 
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Fig 6.5 represents the box plot for table 5.5. We can see that models solely containing static 

code metrics outperforms models solely containing process metrics and combined model of 

process metric and static code metrics and there is one outlier in the combination model.  

 

Fig. 6.5 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using LR 

6.3 Support Vector Machine Analysis 

If we statistically analyze the results of table 5.6 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 12.47 and the p-value is 0.0019. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the models differs significantly with an effect size 

of 0.445 which indicates that the difference among the models has a small effect on the 

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc 

test to check the pairwise comparison of the models. The results show that a significant 

difference exists between the performances of the combined model and model which contain 

static code metric just. 

Fig 6.6 represents the box plot for table 5.6. We can see that the combined model of process 

metric and static code metrics outperforms models solely containing process metrics and 

models solely containing static code metrics and there is one outlier in combined model and 

model containing just process metric. 
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Fig. 6.6 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using SVM 

If we statistically analyze the results of table 5.7 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 23.84 and the p-value is 2.68e-05. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pair differs significantly with an effect size of 

0.567 which indicates that the difference among the pairs has a large effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contain all static code metric and 1 

process metric. The results show that a significant difference exists between the performances 

of the SC+NR model and SC+NDC model, SC+NR model and SC+NDPV models, and 

SC+NML model and SC+NDPV model. 

Fig 6.7 represents the box plot for table 5.7. We can see that the combination of NR metric 

with statis code metrics outperforms other pairs of process metric and static code metrics. 

 

Fig 6.7 Box plots of models which contain combination of SC and 1 process metric using SVM 
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If we statistically analyze the results of table 5.8 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 22.40 and the p-value is 0.0004. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is 

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null 

hypothesis. Hence the performance of at least one of the pairs differs significantly with an 

effect size of 0.32 which indicates that the difference among the pairs has a small effect on 

the prediction performance. As the results differ significantly, we will apply a Nemenyi post 

hoc test to check the pairwise comparison of the models which contains 2 process metrics 

and all static code metrics. The results show that a significant difference exists between the 

performances of the NR+NML+SC model and NDC+NDPV+SC model, and 

NR+NDPV+SC model and NDC+NDPV+SC model. 

Fig 6.8 represents the box plot for table 5.8. We can see that combination of NR metric with 

NML metric and statis code metric outperforms other pair of process metric and static code 

metrics and there is one outlier in the pair of NR metric, NML metric and static code metric. 

 

Fig 6.8 Box plots of models which contain combination of SC and 2 process metrics using SVM 

If we statistically analyze the results of table 5.9 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 13.736 and the p-value is 0.0032. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pairs differs significantly with an effect size of 

0.327 which indicates that the difference among the pairs has a small effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contains 3 process metrics and all static 
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code metrics. The results show that a significant difference exists between the performances 

of the NR+NML+NDPV+SC model and NDC+NML+NDPV+SC model.  

Fig 6.9 represents the box plot for table 5.9. We can see that combination of NR metric with 

NML metric, NDPV metric and statis code metric outperforms other pair of process metric 

and static code metrics and there is one outlier in the pair SC+NR+NDC+NML. 

 

Fig 6.9 Box plots of models which contain combination of SC and 3 process metrics using SVM 

6.4 K Nearest Neighbor Analysis 

If we statistically analyze the results of table 5.10 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 2.072 and the p-value is 0.354. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 

which is greater than the calculated 𝛘2-statistics so the null hypothesis is accepted.  

Fig 6.10 represents the box plot for table 5.10. We can see that the models solely containing 

process metric outperforms models solely containing static code metric and combined model 

of process metrics and static code metrics. There is one outlier in combined model, one outlier 

in model that solely contains static code metric and one outlier in model that solely contains 

process metric. 
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Fig. 6.10 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using KNN 

6.5 Decision Tree Analysis  

If we statistically analyze the results of table 5.11 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 13.199and the p-value is 0.0013. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the models differs significantly with an effect size 

of 0.471 which indicates that the difference among the models has a small effect on the 

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc 

test to check the pairwise comparison of the models. The results show that a significant 

difference exists between the performances of the combined model and model which contain 

static code metric just, and the combined model and model which contain process metric just. 

Fig 6.11 represents the box plot for table 5.11. We can see that the combined model of process 

metric and static code metrics outperforms models solely containing process metrics and 

models solely containing static code metrics. 
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Fig. 6.11 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using DT 

If we statistically analyze the results of table 5.12 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 1.971 and the p-value is 0.578. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is greater than the calculated 𝛘2-statistics so null hypothesis is accepted.  

Fig 6.12 represents the box plot for table 5.12. We can see that the combination of NR metric 

with statis code metrics outperforms other pairs of process metric and static code metrics. 

 

Fig 6.12 Box plots of models which contain combination of SC and 1 process metric using DT 

If we statistically analyze the results of table 5.13 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 5.286 and the p-value is 0.3819. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is 

11.070 which is greater than the calculated 𝛘2-statistics so null hypothesis is accepted.  
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Fig 6.13 represents the box plot for table 5.13. We can see that combination of NR metric 

with NDC metric and static code metric outperforms other pair of process metric and static 

code metrics. 

 

Fig 6.13 Box plots of models which contain combination of SC and 2 process metrics using DT 

If we statistically analyze the results of table 5.14 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 4.630 and the p-value is 0.2009. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is greater than the calculated 𝛘2-statistics so the null hypothesis is accepted. 

Fig 6.14 represents the box plot for table 5.14. We can see that combination of NR metric 

with NDC metric, NML metric and statis code metric outperforms other pair of process 

metric and static code metrics. 

Fig 6.14 Box plots of models which contain combination of SC and 3 process metric using DT 
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6.6 Stacking Analysis 

If we statistically analyze the results of table 5.15 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 12 and the p-value is 0.0024. From 

the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 which 

is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. Hence the 

performance of at least one of the models differs significantly with an effect size of 0.428 

which indicates that the difference among the models has a small effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models. The results show that a significant difference 

exists between the performances of the combined model and model which contain process 

metric just. 

Fig 6.15 represents the box plot for table 5.15. We can see that the combined model of process 

metric and static code metrics outperforms models solely containing process metrics and 

models solely containing static code metrics and there is one outlier in model solely 

containing process metrics. 

If we statistically analyze the results of table 5.16 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 15.345 and the p-value is 0.0015. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis.  

 

Fig 6.15 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using stacking 
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Hence the performance of at least one of the pair differs significantly with an effect size of 

0.365 which indicates that the difference among the pairs has a large effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contain all static code metric and 1 

process metric. The results show that a significant difference exists between the performances 

of the SC+NR model and SC+NML model, and SC+NDC model and SC+NML model. 

Fig 6.16 represents the box plot for table 5.16. We can see that the combination of NR metric 

with static code metrics outperforms other pairs of process metric and static code metrics. 

 
Fig 6.16 Box plots of models which contain combination of SC and 1 process metric using stacking 

If we statistically analyze the results of table 5.17 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 21.567 and the p-value is 0.0006. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is 

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null 

hypothesis. Hence the performance of at least one of the pairs differs significantly with an 

effect size of 0.308 which indicates that the difference among the pairs has a small effect on 

the prediction performance. As the results differ significantly, we will apply a Nemenyi post 

hoc test to check the pairwise comparison of the models which contains 2 process metrics 

and all static code metrics. The results show that a significant difference exists between the 

performances of the SC+NR+NDPV model and SC+NML+NDPV model, and 

SC+NML+NDPV model and SC+NDC+NDPV model. 
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Fig 6.17 represents the box plot for table 5.17. We can see that combination of NDC metric 

with NDPV metric and statis code metric outperforms other pair of process metric and static 

code metrics. 

 
Fig 6.17 Box plots of models which contain combination of SC and 2 process metrics using stacking 

If we statistically analyze the results of table 5.18 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 21.239 and the p-value is 9.38e-05. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pairs differs significantly with an effect size of 

0.505 which indicates that the difference among the pairs has a large effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contain 3 process metrics and all static 

code metrics. The results show that a significant difference exists between the performances 

of the NR+NDC+NDPV+SC model and NDC+NML+NDPV+SC model.  

Fig 6.18 represents the box plot for table 5.18. We can see that combination of NR metric 

with NDC metric, NDPV metric and static code metric outperforms other pair of process 

metric and static code metrics. 
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Fig 6.18 Box plots of models which contain combination of SC and 3 process metric using stacking 

6.7 Voting Analysis 

If we statistically analyze the results of table 5.19 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 9.148 and the p-value is 0.0103. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the models differs significantly with an effect size 

of 0.326 which indicates that the difference among the models has a small effect on the 

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc 

test to check the pairwise comparison of the models. The results show that a significant 

difference exists between the performances of the combined model and model which contain 

just process metric, and the combined model and model which contain just static code metric. 

Fig 6.19 represents the box plot for table 5.19. We can see that the combined model of process 

metric and static code metrics outperforms models solely containing process metrics and 

models solely containing static code metrics and there is one outlier in model solely 

containing process metrics. 
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Fig 6.19 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using voting 

If we statistically analyze the results of table 5.20 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 27.804 and the p-value is 3.99e-06. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pair differs significantly with an effect size of 

0.662 which indicates that the difference among the pairs has a large effect on the prediction  

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contain all static code metric and 1 

process metric. The results show that a significant difference exists between the performances 

of the SC+NR model and SC+NML model, SC+NR model and SC+NDPV, SC+NDC model 

and SC+NDPV model, and SC+NDC model and SC+NML model. 

Fig 6.20 represents the box plot for table 5.20. We can see that the combination of NR metric 

with static code metrics outperforms other pairs of process metric and static code metrics. 
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Fig 6.20 Box plots of models which contain combination of SC and 1 process metric using voting 

If we statistically analyze the results of table 5.21 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 47.868 and the p-value is 3.77e-09. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is 

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null 

hypothesis. Hence the performance of at least one of the pairs differs significantly with an 

effect size of 0.684 which indicates that the difference among the pairs has a large effect on 

the prediction performance. As the results differ significantly, we will apply a Nemenyi post 

hoc test to check the pairwise comparison of the models which contains 2 process metrics 

and all static code metrics. The results show that a significant difference exists between the 

performances of the NR+NDC+SC model and NR+NML+SC model, NR+NDC+SC model 

and NDC+NML+SC model, NR+NDC+SC model and NML+NDPV+SC model, 

NR+NML+SC model and NDC+NML+SC model, NR+NML+SC model and 

NML+NDPV+SC model, NDC+NML+SC model and NDC+NDPV+SC model, and 

NML+NDPV+SC model and NDC+NDPV+SC model. 

Fig 6.21 represents the box plot for table 5.21. We can see that combination of NR metric 

with NDC metric and static code metric outperforms other pair of process metric and static 

code metrics. 
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Fig 6.21 Box plots of models which contain combination of SC and 2 process metrics using voting 

If we statistically analyze the results of table 5.22 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 29.826 and the p-value is 1.50e-06. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pairs differs significantly with an effect size of 

0.710 which indicates that the difference among the pairs has a large effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contains 3 process metrics and all static 

code metrics. The results show that a significant difference exists between the performances 

of the NR+NDC+NML+SC model and NDC+NML+NDPV+SC model, 

NR+NDC+NDPV+SC model and NR+NML+NDPV+SC model, and NR+NDC+NDPV+SC 

model and NDC+NML+NDPV+SC model.  

Fig 6.22 represents the box plot for table 5.22. We can see that combination of NR metric 

with NDC metric, NDPV metric and static code metric outperforms other pair of process 

metric and static code metrics. 



 

65 
 

 

Fig 6.22 Box plots of models which contain combination of SC and 3 process metric using voting 

6.8 Bagging Analysis 

If we statistically analyze the results of table 5.23 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 9 and the p-value is 0.011. From 

the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 which 

is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. Hence the 

performance of at least one of the models differs significantly with an effect size of 0.321 

which indicates that the difference among the models has a small effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models. The results show that a significant difference 

exists between the performances of the combined model and model which contain just 

process metric, and the combined model and model which contain just static code metric.  

Fig 6.23 represents the box plot for table 5.23. We can see that the combined model of process 

metric and static code metrics outperforms models that solely contains process metrics and 

models that solely contains static code metrics and there is one outlier in model that solely 

contains process metrics. 
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Fig 6.23 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using bagging 

If we statistically analyze the results of table 5.24 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 20.61 and the p-value is 0.0001. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pair differs significantly with an effect size of 

0.490 which indicates that the difference among the pairs has a small effect on the prediction  

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contain all static code metric and 1 

process metric. The results show that a significant difference exists between the performances 

of the SC+NR model and SC+NML model, SC+NR model and SC+NDPV, and SC+NDC 

model and SC+NDPV model. 

Fig 6.24 represents the box plot for table 5.24. We can see that the combination of NR metric 

with static code metrics outperforms other pairs of process metric and static code metrics. 
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Fig 6.24 Box plots of models which contain combination of SC and 1 process metric using bagging 

If we statistically analyze the results of table 5.25 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 35.74 and the p-value is 1.069e-06. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is 

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null 

hypothesis. Hence the performance of at least one of the pairs differs significantly with an 

effect size of 0.511 which indicates that the difference among the pairs has a large effect on 

the prediction performance. As the results differ significantly, we will apply a Nemenyi post 

hoc test to check the pairwise comparison of the models which contains 2 process metrics 

and all static code metrics. The results show that a significant difference exists between the 

performances of the NR+NDC+SC model and NDC+NML+SC model, NR+NDC+SC model 

and NML+NDPV+SC model, NR+NDPV+SC model and NDC+NML+SC model, and 

NR+NDPV+SC model and NML+NDPV+SC model. 

Fig 6.25 represents the box plot for table 5.25. We can see that combination of NR metric 

with NDC metric and static code metric outperforms other pair of process metric and static 

code metrics. 

If we statistically analyze the results of table 5.26 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 29.826 and the p-value is 1.50e-06. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pairs differs significantly with an effect size of 
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Fig 6.25 Box plots of models which contain combination of SC and 2 process metrics using bagging 

0.710 which indicates that the difference among the pairs has a large effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contains 3 process metrics and all static 

code metrics. The results show that a significant difference exists between the performances 

of the NR+NDC+NML+SC model and NR+NDC+NDPV+SC model, NR+NDC+NML+SC 

model and NDC+NML+NDPV+SC model, NR+NDC+NDPV+SC model and 

NDC+NML+NDPV+SC model, and NR+NDC+NDPV+SC model and 

NR+NML+NDPV+SC model.  

Fig 6.26 represents the box plot for table 5.26. We can see that combination of NR metric 

with NDC metric, NDPV metric and static code metric outperforms other pair of process 

metric and static code metrics. 

 
Fig 6.26 Box plots of models which contain combination of SC and 3 process metrics using bagging 
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6.9 Boosting Analysis 

If we statistically analyze the results of table 5.27 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 14.285 and the p-value is 0.0007. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 2 is 5.99 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the models differs significantly with an effect size 

of 0.510 which indicates that the difference among the models has a large effect on the 

prediction performance. As the results differ significantly, we will apply a Nemenyi post hoc 

test to check the pairwise comparison of the models. The results show that a significant 

difference exists between the performances of the combined model and model which contain 

just process metric. 

Fig 6.27 represents the box plot for table 5.27. We can see that the combined model of process 

metric and static code metrics outperforms models that solely contains process metrics and 

model that solely contains static code metrics. 

 
Fig 6.27 Box plots of combined model, model solely containing static code metrics and model solely 

containing process metrics using boosting 

If we statistically analyze the results of table 5.28 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 18.625 and the p-value is 0.0003. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pair differs significantly with an effect size of 

0.444 which indicates that the difference among the pairs has a small effect on the prediction  
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performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contain all static code metric and 1 

process metric. The results show that a significant difference exists between the performances 

of the SC+NR model and SC+NML model, SC+NR model and SC+NDPV, and SC+NDC 

model and SC+NML model. 

Fig 6.28 represents the box plot for table 5.28. We can see that the combination of NR metric 

with static code metrics outperforms other pairs of process metric and static code metrics. 

 

Fig 6.28 Box plots of models which contain combination of SC and 1 process metrics using boosting 

If we statistically analyze the results of table 5.29 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 45.04 and the p-value is 1.423e-08. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 5 is 

11.070 which is less than the calculated 𝛘2-statistics so there is a rejection of the null 

hypothesis. Hence the performance of at least one of the pairs differs significantly with an 

effect size of 0.643 which indicates that the difference among the pairs has a large effect on 

the prediction performance. As the results differ significantly, we will apply a Nemenyi post 

hoc test to check the pairwise comparison of the models which contains 2 process metrics 

and all static code metrics. The results show that a significant difference exists between the 

performances of the NR+NDC+SC model and NR+NML+SC model, NR+NDC+SC model 

and NML+NDC+SC model, NR+NDC+SC model and NML+NDPV+SC, NR+NML+SC 

model and NR+NDPV+SC model, NR+NDPV+SC model and NDC+NML+SC model, 

NR+NDPV+SC model and NML+NDPV+SC model, NDC+NML+SC model and 

NDC+NDPV+SC model, and NDC+NDPV+SC model and NML+NDPV+SC model. 
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Fig 6.29 represents the box plot for table 5.29. We can see that combination of NR metric 

with NDC metric and static code metric outperforms other pair of process metric and static 

code metrics. 

 

Fig 6.29 Box plots of models which contain combination of SC and 2 process metrics using boosting 

If we statistically analyze the results of table 5.30 using Friedman test at the 0.05 significance 

level, then results show that the calculated 𝛘2-statistics is 24.860 and the p-value is 1.65e-05. 

From the chi-square table, 𝛘2 value at significance level 0.05 and degree of freedom 3 is 7.815 

which is less than the calculated 𝛘2-statistics so there is a rejection of the null hypothesis. 

Hence the performance of at least one of the pairs differs significantly with an effect size of 

0.592 which indicates that the difference among the pairs has a large effect on the prediction 

performance. As the results differ significantly, we will apply a Nemenyi post hoc test to 

check the pairwise comparison of the models which contains 3 process metrics and all static 

code metrics. The results show that a significant difference exists between the performances 

of the NR+NDC+NML+SC model and NR+NDC+NDPV+SC model, 

NR+NDC+NDPV+SC model and NDC+NML+NDPV+SC model, and 

NR+NDC+NDPV+SC model and NR+NML+NDPV+SC model.  

Fig 6.30 represents the box plot for table 5.30. We can see that combination of NR metric 

with NDC metric, NDPV metric and static code metric outperforms other pair of process 

metric and static code metrics. 
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Fig 6.30 Box plots of models which contain combination of SC and 3 process metrics using boosting 
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CHAPTER 7 

 

CONCLUSION AND FUTURE WORK 

 

 

7.1 Conclusion 

Various types of models exist and are researched in the field of software fault prediction. 

Many of them utilize static code metrics to predict faulty modules. Here we are analyzing the 

effectiveness of process metrics on fault prediction results using different classification 

techniques and ensemble techniques. We have analyzed the results based on AUC values, 

boxplots and statistical test (Friedman test with Nemenyi post hoc test). We can conclude 

that when we are using logistic regression, models containing only static code metrics give 

the best result. When we are using K nearest neighbor, models containing only process 

metrics give the best result, and combination of process metric and static code metric gives 

the best result in the case of naive bayes, decision tree, support vector machines, stacking, 

voting, bagging and boosting. The answer to the research questions are as follows: 

RQ1: Is process metric as effective as static code metrics in checking software fault 

proneness? 

Process metrics are good predictors as the results of most of the classification techniques and 

ensemble techniques show that the combination of process metric and static code metric gives 

better prediction results based on experimental analysis, boxplot analysis and statistical 

analysis. 

RQ2: Which classification technique gives best outcome for combined model? 

As compare to other classification techniques, the results of Naïve Bayes, Support Vector 

Machine and Decision tree shows the better prediction outcome for combined model based 

on experimental analysis, boxplot analysis and statistical analysis. 

RQ3: To check whether ensemble techniques improve the prediction performance as 

compared to individual classification techniques or not? 
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As compare to individual classification technique results, ensemble techniques (Stacking, 

Voting, Bagging and Boosting) gives better AUC values for combined model in almost all 

the analyzed dataset. 

RQ4: Which process metric is more effective among all selected process metrics? 

To answer this research question, we have analyzed the prediction results of model 4, model 

5 and model 6 based on AUC values, box plots and Friedman test with Nemenyi post hoc 

test. The results are as follows: 

If we analyze the results of model 4 which is a combined model of 1 process metric and all 

static code metric then the result of most of the techniques based on experimental analysis, 

boxplot analysis and statistical analysis shows NR metric is more effective. 

If we analyze the model 5 which is a combined model of 2 process metric and all static code 

metric then the result of most of the techniques based on experimental analysis, boxplot 

analysis and statistical analysis shows NR+NDC pair is more effective. 

If we analyze the model 6 which is a combined model of 3 process metric and all static code 

metric then the result of most of the techniques based on experimental analysis, boxplot 

analysis and statistical analysis shows NR+NDC+NDPV pair is more effective. 

7.2 Future Work 

This work can be extended to analyzing other process metrics using classification techniques 

and ensemble techniques. Also, we can predict number of defects using regression technique 

considering same dataset used in this work. Also, instead of bugs, we can consider effort or 

maintainability as dependent variable. 
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