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Abstract 

For a long time, software defects have been a big problem in the software optimization 

and development processes. Various processes have been hindered in the past due to a 

small defect, which if predicted or corrected at that moment could have resulted in 

exponential efficiency and enormous commercial benefits. With that in mind it is a viable 

option of the current time to come up with a process, service or algorithm that can help 

in software defect prediction. 

In a SDLC, it is a crucial part in the testing phase to identify the areas that are prone to 

problem and may ultimately lead to defects which may cause a very massive problem in 

the later stages of development. These problems may lead to a very important component 

of the algorithm to malfunction and at that stage can also make it costly to repair in terms 

of both finance and efforts. 

Time and cost have both been important development considerations when taking up and 

developing a project and if it is prolonged after the expected deadlines can lead to massive 

drop off in efficiency and vulnerability on the execution side of things. It is always better 

to predict the areas of the problems that may creep in and use algorithms that may help 

do such process in an easier and effective way. Moreover, we can also use these 

algorithms with greater and much accurate results when the training has been done for 

long periods of time as it can make the procedure for training much more robust and 

precise.  

This study helps in the analysis of the previously applied activities in the field of defect 

prediction on a widely known dataset and then focusses to optimize on these techniques 

using complementary methods that have been widely used in other disciplines. Newer 

techniques show promising results. 
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CHAPTER 1 

INTRODUCTION 

1.1  General 

In the industries today, it is important to have a method to gather the information about 

the product or software developed so that all its vulnerabilities and improvements, to 

some extent, are known beforehand. To achieve this goal various software development 

companies and government organisations in such fields, directly or indirectly, research 

on the field of software defect prediction to improve efficiency and reduce the cost of 

development in the long run. 

This process helps them to acquire an understanding of the long-term cost of development 

of a software and provide a keen view of the entire project along with its vulnerabilities 

beforehand. Thus, industries that have a development component attached to them also 

have these studies.  

Majority of the end of previous century and the start of the current century, if taken into 

consideration have increased the size of code manifold. The LOC have increased 

drastically over the years to the point where now the code can be considered to the point 

of unreadable or in case of an error, undetectable. To circumvent these problems there 

needs to be and algorithm, preferably something related to machine learning that can 

traverse through all these LOC and predict with maximum possible accuracy the defects 

that may be present in the provided dataset. 

As shown in the given depiction(fig 1), there has been sharp rise in the lines of code even 

in the past few years to an enormous extent. The average codebase of the given project 

which was named PerfectTablePlan, shows that the LOC has been showing and upward 

trend over the years and if such process continues, it may be the case that the readability 

and correctness of the code may become an issue which, as we know, are the basic pillars 

of an average codebase development and must be at the core of every finished or launched 

product. 
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Fig. 1: LOC vs date Comparison for PerfectTablePlan 

1.2  Problem Formulation 

As much research have been made in the field of machine learning, deep learning, and 

software defect prediction along with prediction algorithms in other domains, there is a 

need to combine all these changes and view them through a singular perspective and come 

up with an approach that makes all these advancements valuable w.r.t the field of software 

defect prediction. 

The problem that formed the core of this study are as follows: 

1. What are the current algorithms used in software defect prediction? 

2. What are the basic empirical metrics used in the previous algorithms? 

3. Are there any processes that can make the existing algorithms better based on the 

same metrics? 

4. Is over training and algorithm leading to better results? 

5. Are there any more empirical studies that can be made on the current data to 

improve its understandability? 

6. Is there a way to provide adjacent study results to the current algorithm so that it 

makes them more efficient? 

0

20000

40000

60000

80000

100000

120000

140000

2005 2006 2007 2008 2009 2010 2011 2012 2013

Lines of Code

Lines of Code



12 
 

1.3  Objectives of the Project 

In this project, the following objectives need to be achieved: 

1. Understanding adjacent studies to find the more efficient way to get the best 

possible results. 

2. Using the pre-defined models in ready to run software. 

3. Developing an algorithm based on the approaches taken into consideration. 

4. Using same metrics as in previous studies to evaluate the developed algorithm so 

that the comparison can be easier. 

5. Addressing the issues and providing solutions that may be present or creep into 

the datasets. 

6. Trying to train the developed algorithm in different values and observe the results. 
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CHAPTER 2 

LITERATURE REVIEW 

In this section, we will look at the various understandings of algorithms that were 

considered during the development of the current model and the various formulae that 

have been used in those algorithms as well. Later, we will try to conclude the basic points 

upon which the new model can be developed and will also help us to develop the 

methodology for this algorithm. 

We have the popularly used machine learning techniques for software defects prediction: 

 

2.1. Xgboost 

 

1. Xgboost a gradient based decision tree boosting approach developed in 1995 by 

Tianqi Chen. As stated in [20], xgboost can be used to enhance the abilities of 

the machine so that more resources can be available for computing, tuning, and 

enhancing.  

2. The three techniques incurred in boosting using xgboost are: stochastic, 

regularized, and gradient boosting. This method can be applicable on trained 

model’s added data and is Sparse Aware i.e., takes care of any missing value. 

This means if there is any value in the dataset that is missing then this algorithm 

can be applied and an aggregate value from the dataset can be supplemented in 

the datasets and process can take place without any hindrance. 

 

2.2. Catboost 

 

1. Catboost is again a decision tree-based data gradient boosting model. It 

seamlessly integrates with varying datapoints and datasets and gives the result 

that can be used further in the increment of performance and outcome of any 

process. Due to these properties, Catboost is a widely used algorithm for machine 

learning as well as deep learning process. 

2. This process/algorithm was developed by Yandex in 2017 and is opensource so 

can be applied to any dataset across the board to get the desired results. It is 
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fundamentally an algorithm to reduce the complexity of LGBM that would 

provide similar answers in lesser number of iterations. 

 

2.3. NB 

This is a probability-based approach based on the bayes theorem. It contains aggregation 

of simple probability classifiers that can be used in the highly scalable learning problems. 

These problems can include feature and predictor-based requirements which proves 

feasible for our study. Prominent approaches to develop Naïve Bayes algorithm classifiers 

are: 

 

2.3.1 BNB 

 

This is the algorithm present in the scikit machine learning modules and can 

therefore be applied to any available dataset. It is based on the naïve assumption 

of conditional independence between the given value and the variable quantity. It 

is responsible to apply algorithm to multivariate data according to Bernoulli 

distributions. Decision rule for BNB: 

 

P (ai | b) = P (i | b) ai + (1-P (i | b)) (1-ai) 

 

2.3.2 GNB 

 

Much like other prominent algorithms, GNB is also present in the scikit machine 

learning modules and can be directly imported and applied to any dataset to get 

the required metrics. The likelihood of the features is assumed to be Gaussian: 

𝑃(𝑥𝑖 | 𝑦) =  
1

√2𝜋𝑠𝑦
2

  exp (−
(𝑥𝑖 −  𝜇𝑦)2

2𝑠𝑦
2

) 

Here, sy and µy are estimated using maximum likelihood. 

 

2.3.3  MNB 

 

This algorithm is responsible for applying on multinomially distributed data. It 

can also be applied from scikit machine learning modules much like its 

counterparts. 
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The parameters θy is projected by a smoothed version of maximum likelihood, i.e. 

relative frequency counting: 

 

 𝜃𝑦𝑖 =  
𝑁𝑦𝑖 +  𝛼   

𝑁𝑦 +  𝛼𝑛
 

Where 𝑁𝑦𝑖 =  ∑ 𝑥𝑖𝑥∈𝑇  is the number of times feature i appears in a sample of 

class y in the training set T,  

And 𝑁𝑦 =  ∑ 𝑁𝑦𝑖
𝑛
𝑖=1   is the total count of all features for class y. 

 

2.4. LGBM 

 

1. LGBM is another boosting based algorithm based on decision tree gradient 

boosting. This algorithm assumes that when K-Means algorithm uses the one-

pass over input data, it optimizes K-means to increase the production of 

centroids. 

2. It is an ensemble technique that can be used to combine smaller and weaker 

models into a stronger and more robust model. Due to these features this feature 

will also be useful for this study. 

 

2.5. MLP 

 

This is special type of feedforward neural network that can give flexible results 

depending upon the requirements of the dataset and process methodology. 

Multilayer Perceptron can be easily applied on the current dataset using WEKA 

and applying a few extensions within it. MLP can then be used to modify itself to 

develop and acquire the structure of the neural network and the metrics can be 

recorded accordingly. Multiple layers can be interconnected like in a directed 

graph and each layer after the input node layer can have its own independent 

functions. 

 

2.6. Neural Networks 
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This are the networks that are used in the digital algorithms to mimic the effects 

of biological neural networks present in organic lifeforms. 

 

2.6.1 FNN 

 

This network is responsible to send the signal in a single direction. The signal 

can never be sent back wiz. Feedback mechanism is not possible in this 

algorithm. 

 

2.6.2 RNN 

 

These networks are an extension to FNN. They can use their internal memory 

to process variable inputs. 

 

2.6.3 ANN 

 

These networks are more in line to the fundamental neural networks and 

generally inspired by real life neural networks. 

 

2.6.4 DNN 

 

DNN are very distinct neural networks that have multiple intermittent layers 

between the input and output layers. Although having same components as 

any neural network it resembles more of a multilayer perceptron in its 

implementation. 

 

The following concluding points can be gathered from the information gathered above: 

1. Initial studies did not use the implementation of some of the newer algorithms that 

have been developed over the last half decade. 

2. A combination of these algorithms may lead to a better result. 

3. Another approach to improve the accuracy of the algorithms mentioned above can be 

to apply a data filtration mechanism based on a tree approach. 

4. This approach can make a tree of the results that are made at different levels of depth 

and the result obtained from such depths can be recorded. 
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5. This result can then be recorded and the result which was the best in terms of time 

and closest to the best possible value can be considered as the desired outcome. 

6. For developing such a mechanism, a concept of hyper parameter tuning can be given 

the spotlight as it can help us to change the depth of the tree at a dynamic rate and 

produce the results that can be recorded. 

7. Some of the algorithms discussed above may be too taxing in term of cost and 

processing and if better results can be obtained with other algorithms, then such costly 

algorithms may be discarded from results. 

8. As more training is given to the model, it is to be observed whether the change in the 

volume of training set by a few points, provide us with a significantly better result or 

not. 

9. If we want to balance out the data of the datasets (as different datasets have different 

volumes), then newer approach such as weighted average can also be taken instead of 

just macro average that was taken in the studies that have taken place before. 

10. The datasets that are taken into consideration in other studies can then also be taken 

out from the current project and a comparative analysis can be assembled. 
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CHAPTER 3 

METHODOLOGY 

This section process that was used in the implementation of this project along with the 

technique outline that were finally considered to be implemented. With the development 

of various software development life cycles (SDLC) we can surely follow many 

approaches as far as development of the project is concerned. A broad understanding of 

the methodology followed in this study is given in Fig. 2. 

 

Fig. 2: Methodology followed in this study 

 

3.1 Data Management 

 

This subsection deals with the data management steps: 

 

3.1.1 Repository Selection 

 

There are two widely used repositories present in the open-source category in relation to 

software defect prediction namely: NASA repository and PROMISE repository. Due to 
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more implementations and studies conducted in the NASA software engineering 

repository, it can be considered as the standard and can therefore be listed for this study. 

It is by no means to discredit the other repositories and are also encouraged to use in the 

further research process for a comparative analysis. 

 

3.1.2 Dataset Preparation 

 

Unwanted data such as noise and ambiguous data can be removed from the data. The 

given dataset is very well organized and is therefore does not have any empty or missing 

entries. The dataset does not have any noisy data in and is organized to a recognizable 

quality. 12 datasets out of the 13 datasets are selected from the repository. We also need 

to ensure that the variable names in the provided dataset does not have any keywords that 

can hinder in the execution of the algorithms. 

 

Dataset Name Number of Features Empty Features 

CM1 22 none 

JM1 22 none 

KC1 22 none 

KC2 22 none 

KC3 40 none 

MC1 39 none 

MC2 40 none 

MW1 38 none 

PC1 22 none 

PC2 37 none 

PC3 38 none 

PC4 38 none 

 

Table 1: Analysis of datasets present in the NASA Dataset repository 
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3.1.3 Feature comprehension 

 

To create a uniform environment to unify all the dataset to process through a multitude 

of algorithms together. The minimum number of features in the given dataset is 22 as 

shown in Table 1. 

The datasets have numerous features and from them we get 22 which can be used to 

process every dataset. Alternate names for same features are also observed across 

datasets. 

To make the features viable, we need to see that all the features that are present in the 

minimum dataset are present in one form (variable name) or another in all the datasets. 

To assure this, we needed to find some common attributes between all the datasets with 

different name irrespective of the order and then we can access the different kind of 

feature forms that are present in the dataset. 

As more and more features are added across the dataset, we must comprehend only the 

core 22 as shown in table 2. 

 

3.1.4 Feature Extraction 

 

Out of the provided 22 features which are common for all the datasets, only a few features 

from those are required for the actual implementation that will be expanded upon in the 

following sections are only required for the calculations. Next, we convert each of the 

feature to float explicitly to allow an easier calculation to get the relevant empirical 

results. 

Feature Name Alternate Name Description (numerical %) 

loc LOC_TOTAL McCabe's line count of code 

v(g) CYCLOMATIC_COMPLEXITY McCabe "cyclomatic complexity" 

ev(g) ESSENTIAL_COMPLEXITY McCabe "essential complexity" 

iv(g) DESIGN_COMPLEXITY McCabe "design complexity" 

n HALSTEAD_LENGTH Halstead total operators + operands 

v HALSTEAD_VOLUME Halstead "volume" 

l HALSTEAD_LEVEL Halstead "program length" 
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Table 2: features of datasets [20] 

 

3.2 The concept of hyperparameter tuning 

 

As more and more models are implemented using a singular software like WEKA, the 

result of every algorithm of each dataset tends to be uniform. The process of changing the 

variables present within these algorithms is known hyperparameter tuning. 

Most of the studies that we came across had mostly similar outcome and those outcomes 

were a direct result of implementing the algorithm directly through a given software. 

Using the machine learning libraries of python such as scikit, numpy, pandas etc., one 

can easily change the perimeter within these set algorithms and give a much more 

optimized result as shown in Fig. 2. 

A cross product of all the hyperparameter can be constructed by the introduction on grid 

search algorithm that was present in scikit package but mostly used in the projects 

d HALSTEAD_DIFFICULTY Halstead "difficulty" 

i HALSTEAD_CONTENT Halstead "intelligence" 

e HALSTEAD_EFFORT Halstead "effort" 

b HALSTEAD_ERROR_EST Halstead "Number of bugs" 

t HALSTEAD_PROG_TIME Halstead "time estimator" 

lOCode LOC_EXECUTABLE Halstead's line count 

lOComment LOC_COMMENTS Halstead's count of lines of comments 

lOBlank LOC_BLANK Halstead's count of blank lines 

lOCodeAndComment LOC_CODE_AND_COMMENT Line count for code and comment 

uniq_Op NUM_UNIQUE_OPERATORS unique operators 

uniq_Opnd NUM_UNIQUE_OPERANDS unique operands 

total_Op NUM_OPERANDS total operators 

total_Opnd NUM_OPERANDS total operands 

branchCount BRANCH_COUNT flow graph's branch count 

defects Defective, label Reported defects 
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pertaining to computer vision for the most part. With the introduction of such alternate 

methods, we can define the all the varying values that we require into any algorithm and 

expect the best possible result out of all those values. 

 

Fig. 3: Basics of Hyperparameter tuning. 

For the most part the usage of the computer vision algorithm is limited to parameter 

modification and thus the algorithm retains its originality.  

 

3.3 Technique Implementation 

 

The following techniques will be implemented to the dataset sequentially and the result 

will be recorded. The order of implementation of each model is as follows: 

A. Multilayer Perceptron 

B. BernoulliNB 

C. GaussianNB 

D. MultinomialNB 

E. LGBM after Hyperparameter tuning 

  

Function 
Invoking

Model Selection
Default 
Parameter Entry

Hyperparameter 
Matrix

Model TrainingOptimised Result
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3.4 Metrics Calculation 

 

Based on equations 

 

Precision =  
True Positive

True Positive +False Positive
 

 

Recall  = 
True Positive

True Positive + False Negative
 

Accuracy = 
True Positive + True Negative

True Positive + False Negative + True Negative + False Positive
 

 

F1-Score = 
2∗Precision∗Recall

Precision+Recall
 

 

We can compare the different results from different algorithms when they are 

implemented on a dataset and those result can then be compared with other research 

results so that the most viable option can be chosen for the implementation of any 

algorithm in the future. 

 

3.5 Empirical Findings 

 

All the empirical result of the given metrics to the respective dataset will be recorded in 

a tabular form for easy foresight and quick review. There will be two splits present in the 

testing of the experimentation to observe the behaviour of the outcomes when datasets 

are split differently. First set of observations will gather all the results of the datasets with 

75% and 25% split between the training and testing of the algorithms, respectively. 

Second set of outcomes will split the datasets in 80% and 20 between training and testing, 

respectively. 

These dual split results will provide flexibility in comparison to other studies and internal 

observation in different splits of the datasets. 
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3.6 Comparative analysis 

 

After all the empirical results are obtained, we can compare these results to the latest 

studies and see which algorithm is efficient for which dataset and publish the results 

accordingly. 
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CHAPTER 4 

EXPRIMENTAL SETUP 

Setups help in the faster output of the program as multiple outputs need to be calculated 

at the same time along with simultaneous processing that needs to take place to gather 

information from each input and handle it to form a comprehensive data and are presented 

in this research as a means of full disclosure. 

 

Name Description 

Central 

Processing 

Unit 

AMD 3900x 12 core processor 

Random 

Access 

Memory 

32gb 2600 MHz 

Graphics 

Processing 

Unit 

Nvidia RTX2070super (not detrimental to this research) 

Software 
Weka for Multilayer Perceptron, Jupyter Notebooks for other 

machine learning algorithms including hyperparameter tuning 

Language Python 

Libraries 

used 

Pandas, numpy, scikit, scipy.io for arff, os, matplotlib.pyplot, 

seaborn, warnings, tqdm, plotly.offline for iplot, plotly.graph_objs 

 

Table 3: Experimental Setup used in this study 
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CHAPTER 5 

EMPIRICAL RESULTS 

The core focus is to make a new and improved algorithm that can help in the long run for 

further research. As there can be problems with a single dimensional checking of the 

developed model. With that in mind table 4 presents the information when the datasets 

are processed through a model with 80% and 20% split between training and testing sets, 

respectively. This is done to check if the testing results improve at a higher training 

partition.  

The second empirical study as shown in table 5 changes this partition to 75% and 25% in 

training and testing, respectively. There are two benefits to do a dual research random 

seed-based module testing: 

1. A direct comparison within the research can be drawn a legible assumption can be made 

about the potency of the developed model. 

 

2. As most of the studies are done on a 75% training split, we can have a straightforward 

comparison of the developed model to the preciously conducted studies and models. 

 

 

3. Analysis for the outcome for both splits can be regarded in the upcoming section. 

 

4. It is to be noted that all the models are kept constant throughout the outcome collection 

to affirm uniformity across all datasets. 

 

As a common knowledge we have the luxury of getting the outcomes and verifying them 

from the confusion matrix provided with the program output. We can compare the results 

we are getting with the confusion matrices and can then calculate the outcome any new 

metric that we desire from these values. Therefore, a confusion matrix plays a crucial role 

in determining the any new metrics and verifying the outcomes that have been calculated 

in the system automatically as represented in table 4. 
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Class Predicted Negative Predicted Positive 

Actual Negative True Negative (TN) False Positive (FP) 

Actual Positive False Negative (FN) True Positive (TP) 

 

Table 4: Confusion Matrix 

Weighted Results 

The study has been conducted keeping in mind the various empirical evidence that have 

to be up to the standard to compare to any available paper and to do that, we need to have 

the results in the form that is incorporating all the intricacies of the given problem with 

respect to its datasets. The problem that can occur with the initial observation of the 

results is that the datasets can be taken as an equal quantity and the metrics that are 

calculated in the empirical evidence can be taken in the absolute value which may provide 

a skewed result of the provided outcome. 

We observe that certain datasets are not even a tenth fraction of some other datasets, and 

this relation can be followed to all the datasets present in this study. Due to this imbalance, 

it might not be advisable to calculate the datasets as is and give them a weighted value 

according to the size of each of them. 

This notion will certainly play on the fact that certain datasets that will have a large 

volume will be given a higher metric value in comparison to another dataset that is 

miniscule. It is with this idea in mind that one such quantity wiz. accuracy has been taken 

into consideration as all the major studies referenced in this paper are compared on that 

metric. To do that, we need to construct a weighted representation of each dataset. 

Moreover, as for comparison in difference between the macro and weighted average of 

the datasets, a subsequent representation is also constructed and can therefore be used if 

come other study does not wish to follow the concept of weighted results proposed in this 

study. 
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We encourage more and more studies to include such metrics in their research and to do 

that there need to be rigorous metrics focused analysis of the outcome that have come out 

of the approach. 

Dataset Number of Entries 

CM1 498 

JM1 7782 

KC1 2109 

KC2 522 

KC3 194 

MC1 1988 

MC2 125 

MW1 253 

PC1 1109 

PC2 745 

PC3 1077 

PC4 1458 

 

Table 5: Volume of each dataset 

From the tables below all the information provided in the tables above we can gather that 

the percentage split of 75% is better or almost equal to the accuracy metrics across all the 

algorithms’ implementation. 

We can also gather all the information that is gathered for each dataset in every algorithm 

at 80% split as well as 75% split in Table 5 and Table 6, respectively.  

 Macro Accuracy average Weighted Accuracy average 

Multilayer Perceptron 85.33 84.57 

BernoulliNB (HT) 77.83 79.07 

GaussianNB (HT) 95.59 96.29 

MultinomialNB (HT) 85.24 92.25 

LGBM(HT) 99.07 99.32 
 

Table 6: Average accuracy metric comparison for 80% split 
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 Macro Accuracy average Weighted Accuracy average 

Multilayer Perceptron 85.31 84.85 

BernoulliNB (HT) 78.03 79.21 

GaussianNB (HT) 95.38 96.08 

MultinomialNB (HT) 91.08 92.26 

LGBM (HT) 99.43 99.44 
 

Table 7: Average accuracy metric comparison for 75% split 
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CHAPTER 6 

COMPARATIVE ANALYSIS 

As similar studies we made using the same or similar datasets as used in this study, there 

needs to be an analysis with those studies as well so that the results can be compared, and 

an appropriate conclusion can be reached. 

Datasets compared in this study for the various techniques used are PC1, CM1, JM1, KC1 

and KC2. If we want to apply a weighted or macro accuracy comparison upon the datasets 

and compare them straightway with the prominent studies, then we need to have an 

accuracy metric aggregation of these datasets and then provide them for comparison. The 

subsequent table 10 presents the 75% split accuracy metric for both weighted and macro 

aggregation. This table can then be used for comparison to other approaches as presented 

in table 11. As all the other studies in this comparison only use a 75% split for training 

and 25% split for testing, therefore, we only calculate the aggregate average for this split. 

 

 Macro Accuracy average Weighted Accuracy average 

Multilayer Perceptron 85.93 81.9 

BernoulliNB (HT) 77.48 80.69 

GaussianNB (HT) 96.48 96.48 

MultinomialNB (HT) 93.4 92.64 

LGBM(HT) 99.62 99.39 

  

Table 8: Calculation of metrics in the datasets PC1, CM1, JM1, KC1, and KC2 

 

Now we can efficiently and correctly compare the observations in this study to the other 

prominent studies with higher accuracy metric and see how much the new approaches 

hold good in their respect. 
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Authors  Methods  
Accuracy 

(%) 

G. Abaei and A. Selamat 

(Abaei, & Selamat, 2014)  

Decision Tree  79.5 

Random forest  81.14 

Naïve Bayes  80.42 

Immunos2  80.65 

CSCA  80.17 

A. Chug and A. Dhall (Chug, 

& Dhall, 2013)  

Decision Tree  99.36 

Naïve Bayes  94.11 

Random Forest  99.55 

M.M. R. Henein et al. 

(Henein, Shawky, & Abd-El-

Hafiz, 2018)  

K-means + ANN  80.4 

A.S. Abdou and N.R. 

Darwish (Abdou, & 

Darwish, 2018)  

Naïve Bayes  82.44 

SVM  91.74 

Random forest  93.4 

Logistic  87.4 

Decision tree  89.84 

Safial Islam Ayon (Ayon, 

2019) 

FNN  97.93 

RNN  98.39 

ANN  98.12 

DNN  98.47 

Proposed Approach (Macro 

and Weighted respectively) 

 MA WA 

Multilayer Perceptron 85.93 81.9 

BernoulliNB (HT) 77.48 80.69 

GaussianNB (HT) 96.48 96.48 

MultinomialNB (HT) 93.4 92.64 

LGBM (HT) 99.62 99.39 

 

Table 9: Comparison between other studies and the proposed approach applied in the datasets in this study. (MA-

Macro Accuracy, WA- Weighted Accuracy) 
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While doing the comparison, it is to be kept in mind that the results that are being 

compared to need to use the same datasets and which metric needs to be compared with. 

For uniformity and progression in a linear fashion, this study has focused on comparison 

for accuracy as the metric of comparison between the different studies. We encourage the 

future studies to enhance the comparison even further to other metrics to have an 

extensive analysis of the algorithm on every metric. 
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CHAPTER 7 

ANALYSIS 

From all the observations presented in the above table 11 we can see that the newer 

approaches with hyperparameter tuning are much better in many respects as compared to 

the techniques that were used in the previous studies. For comparison, in this study itself, 

we have included a standard, non-hyperparameter tuned version of a model, multiplayer 

perceptron, which in comparison is better than BernoulliNB model but falls short in 

comparison to other models. In comparison to other studies, the studies that were done 

(Chug, & Dhall, 2013) give promising results as well with the accuracy of Decision tree 

and Random forest techniques but when we get the Light gradient boosting machine in 

the hyperparameter tuned condition, which in turn is an extension of tree-based training 

models, we get better accuracy and can therefore suggest these models for a higher 

accuracy metrics requirement.  

Following the studies based on neural networks done in (Ayon, 2019), we tried a similar 

approach in multilayer perceptron using WEKA libraries and tried to pass the datasets 

with that model. Although the results hold better when compared (Henein, Shawky, & 

Abd-El-Hafiz, 2018), but they could not be as good as the results achieved in that study 

(Ayon, 2019).  

As more and more approaches pointed towards a tree-based learning approach as 

suggested in studies (Abaei, & Selamat, 2014; Chug, & Dhall, 2013; Abdou, & Darwish, 

2018), therefore a more tree-based model was the path that was thought to be better. With 

that approach in consideration, we moved forward with the LGBM and tried to get better 

and accurate results so that more efficient models are gathered and tested. The part of 

hyperparameter tuning can massively compliment the calculation of the results by 

manifold and of the number of iterations is not the issue and there are no processing cycle 

constraints, it is advisable to use this approach in prediction of datasets in the further study 

as well. 

The other approach in the study uses a specific formula that is used to improve the model 

as stated in previous sections and within that there is a chance for improvement and the 

most promising results were shown by GaussianNB among the other naïve bayes 

approaches. If the condition of using a specific formula-based approach is prevalent or in 
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consideration in any of the study, then these naïve bayes approaches are suggested to 

them. As seen in the studies (Abaei, & Selamat, 2014; Chug, & Dhall, 2013; Abdou, & 

Darwish, 2018), the standard naïve bayes approaches were giving results up to 94.11% 

(Chug, & Dhall, 2013) but this study provides an even better result when the parameters 

within the standard process are set for utmost accuracy. We must also suggest that all the 

approach are well within practical range of use but depend more on the type of model that 

needs to be taken into consideration for any study. The usage or application, in that sense, 

is the ultimate decider of what technique to apply in what conditions. 

More research is certainly encouraged in this study as there can be other caveats that may 

have been restricted in this study that could have been considered, but due to some 

limitation, were not contemplated. 

Some of the latest studies have also been taken for comparison in this study to have the 

paper updated and all the nuances are approached with the utmost sincerity but if there 

are some openings that can be explored further, they can be certainly reflected upon in a 

subsequent research.  
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CHAPTER 8 

OBSERVATIONS 

In our study, we observe a split of 80% in training and 20% in testing in table 6. In this 

division we get the results and compare them to the subsequent results of table 7 which 

contains training data of 75% with 25% of testing data. 

As comparison needs to be accomplished, we also need to compare the results considering 

the disbalance in the volume of each dataset. To get that we find the size of each dataset 

as shown in each table 7. When the weight of each dataset is present, then we can compare 

the outcomes of macro vs the weighted accuracy aggregation of all the datasets in this 

study. In see that a phenomenon of “over-training may creep in when the models are 

trained at a higher ratio and the model with 75% training split were similar if not better 

in some respects that the models in the 80% split. As the models are giving promising 

results at a 75% split as well, we can say that this split will be more feasible and maybe 

is the reason that most of the popular studies use this split when doing the training of the 

models. 

Moving forward with the external study comparison, we observe that the studies done 

and research in this experiment are using 5 major datasets to check the accuracy. Thus, 

to do a viable comparison, we get the accuracy aggregation metric of those datasets shown 

in table 10. 

Next, we see that although there is not a massive difference in the macro average of the 

accuracy of a model and the weighted accuracy at higher values but there is certainly a 

huge difference when accuracy is low in comparison i.e., less than 90%. So, we encourage 

any future studies to have a separate representation for the concept of weighted 

aggregation as it gives a clear picture of the metrics that are provided in any model. As 

many existing and future model may or may not have any one of the aggregations, so we 

provide both in table 11. 

Table 11 also provides a straight contrast between other models that were used in previous 

studies with means to achieve accuracy. We realize that the naïve bayes models are 

providing a great machine learning model but fall short in comparison to the tree-based 

approaches in previous studies as well as this study, which makes this study a linear 

progression to its predecessors. Also, we see that when the cartesian product of multiple 

parameters is applied and tested on a particular/existing model i.e., a hyperparameter 
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version of any model is created, the metrics tend to become high, and this can provide an 

even better results than the previously applied models and formula-based machine 

learning approaches. 

It seems like with this model we are at the precipice of flawless prediction which may be 

a misdirection as discussed in the further sections and is the reason why we need more 

studies in the future. The major takeaway from this research and the motive is to get more 

people associated and interested in this topic and create a platform for defect prediction 

discussions and improvements. 
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CHAPTER 9 

CONCLUSION 

This methodology of hyperparameter tuning has been extensively used in other 

disciplines to gather the best possible results and therefore gave us the motivation to apply 

in the highlighted field as well. For comparison we added many relevant studies and 

construct a large image of the empirical results for any further studies. 

In this study, we also touched on the fact of macro and weighted accuracy and the 

difference in the values, though not significant in terms of difference, but can lead to a 

massive improvement in our understanding of the subject at hand. It also catered to the 

imbalance of the size of each dataset and gave us a more holistic view of the different 

datasets used in this study. 

Hyperparameter tuning gave a better result when compared to other prevalent methods 

and the empirical results gained in most other studies. We know that the methods that 

may have been applied in this study may have been used in different studies as well but 

the concept of hyperparameter tuning combined with these techniques certainly showed 

very promising results. 

We have tried to also reduce the threats to this study that may creep in but there may be 

some of the unavoidable factors that may have hindered the optimal results for this study 

that we encourage all the future studies to rectify, if possible. There is also the concept of 

multiple average taken based on distinction in the volume of the datasets that has resulted 

in another dimension which can be investigated in future studies as an area of exploration 

and research  

Lastly, after all the experimentation is done, we also need to mention the need to do more 

study on this subject to create more awareness and have much better results in any metric, 

thus providing us useful information. The purpose of this study which was to try upon the 

existing techniques and improve on the results that were observed in previous studies has 

been achieved and the new results can thus be used in the studies that are yet to be done 

or under development. 
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CHAPTER 10 

PROSPECTS 

As stated, multiple times in this study, we need to have more interest and discussion in 

this field of defect prediction as it helps the software industries to save massive resources 

in terms of both labor and finances. Apart from the industrial impact, in the field of 

research, prediction has been an ever-growing research area and this study acts as a 

droplet in that field. 

Particularly, as presented in this study, prediction can be improved by working upon the 

problem areas and improvements that have been discussed in this paper and the novel 

idea and model development that is yet to come. We not only welcome but encourage 

young minds as well as veterans to collaborate with us to develop an approach that 

provides a win-win situation to the industrial as well as research fraternity. 

We have done the improvement in the metrics in comparison to the previous studies that 

we came across but there may be much more studies that may have some compound 

resultant of development and improvement that may help in developing the study further. 

There need to be an iterative and a regular improvement to the existing models as 

presented in this study and we hope that more people help in this endeavour by 

contributing such and more studies and explore potent prospects 
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