

“Software Defect Prediction with Newer and Efficient

Techniques”

A PROJECT REPORT

SUBMITTED IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted By

Aman Sharma

(2K19/SWE/22)

Under the supervision of

Dr. Ruchika Malhotra

Head of Department

Department of Software Engineering

Delhi Technological University, Delhi

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

JULY, 2021

I

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Aman Sharma, 2K19/SWE/22 student of M.Tech (SWE), hereby declare that the

project entitled “Software Defect Prediction with Newer and Efficient Techniques” which

is submitted by me to the Department of Software Engineering, Delhi Technological

University, Shahbad Daulatpur, Delhi in partial fulfilment of the requirement for the

award of the degree of Master of Technology in Software Engineering, has not been

previously formed the basis for any fulfilment of the requirement in any degree or other

similar title or recognition.

This report is an authentic record of my work carried out during my degree under the

guidance of Dr. Ruchika Malhotra.

Place: Delhi Aman Sharma

Date: 29th July 2021 (2K19/SWE/22)

II

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project entitled “Software Defect Prediction with Newer and

Efficient Techniques” which is submitted by Aman Sharma, 2K19/SWE/22 to the

Department of Computer Science & Engineering, Delhi Technological University,

Shahbad Daulatpur, Delhi in partial fulfilment of the requirement for the award of the

degree of Master of Technology in Software Engineering, is a record of the project work

carried out by the student under my supervision. To the best of my knowledge this work

has not been submitted in part or full for any degree or diploma to this university or

elsewhere.

Place: Delhi Dr. Ruchika Malhotra

Date: (SUPERVISOR)

 (Head Of Department)

 (Associate Dean IRD, DTU)

III

ACKNOWLEDGEMENT

I am very thankful to Dr. Ruchika Malhotra and all the faculty members of the

Department of Computer Science and Department of Software Engineering at DTU. All

of them provided us with immense support and guidance for the project.

I would also like to express my gratitude to the University for providing us with the

laboratories, infrastructure, testing facilities, and environment which allowed us to work

without any obstructions.

I would also like to appreciate the support provided to us by our lab assistants, seniors,

and our peer group who aided us with all the knowledge they had regarding various topics.

 Aman Sharma

(2K19/SWE/22)

IV

Abstract

For a long time, software defects have been a big problem in the software optimization

and development processes. Various processes have been hindered in the past due to a

small defect, which if predicted or corrected at that moment could have resulted in

exponential efficiency and enormous commercial benefits. With that in mind it is a viable

option of the current time to come up with a process, service or algorithm that can help

in software defect prediction.

In a SDLC, it is a crucial part in the testing phase to identify the areas that are prone to

problem and may ultimately lead to defects which may cause a very massive problem in

the later stages of development. These problems may lead to a very important component

of the algorithm to malfunction and at that stage can also make it costly to repair in terms

of both finance and efforts.

Time and cost have both been important development considerations when taking up and

developing a project and if it is prolonged after the expected deadlines can lead to massive

drop off in efficiency and vulnerability on the execution side of things. It is always better

to predict the areas of the problems that may creep in and use algorithms that may help

do such process in an easier and effective way. Moreover, we can also use these

algorithms with greater and much accurate results when the training has been done for

long periods of time as it can make the procedure for training much more robust and

precise.

This study helps in the analysis of the previously applied activities in the field of defect

prediction on a widely known dataset and then focusses to optimize on these techniques

using complementary methods that have been widely used in other disciplines. Newer

techniques show promising results.

V

Contents

Candidate’s Declaration ... I

Certificate ... II

Acknowledgement .. III

Abstract ... IV

Contents ... V

List Of Figures ... VII

List Of Tables .. VIII

List Of Symbols And Abbreviations .. IX

Chapter 1 ... 10

Introduction ... 10

1.1 General .. 10

1.2 Problem Formulation .. 11

1.3 Objectives Of The Project ... 12

Chapter 2 ... 13

Literature Review ... 13

2.1. Xgboost ... 13

2.2. Catboost .. 13

2.3. NB ... 14

2.3.1 BNB .. 14

2.3.2 GNB .. 14

2.3.3 MNB .. 14

2.4. LGBM ... 15

2.5. MLP .. 15

2.6. Neural Networks ... 15

2.6.1 FNN ... 16

2.6.2 RNN .. 16

2.6.3 ANN .. 16

2.6.4 DNN .. 16

Chapter 3 ... 18

Methodology ... 18

3.1 Data Management ... 18

3.1.1 Repository Selection ... 18

3.1.2 Dataset Preparation ... 19

3.1.3 Feature Comprehension .. 20

3.1.4 Feature Extraction ... 20

VI

3.2 The Concept Of Hyperparameter Tuning .. 21

3.3 Technique Implementation .. 22

3.4 Metrics Calculation ... 23

3.5 Empirical Findings .. 23

3.6 Comparative Analysis ... 24

Chapter 4 ... 25

Exprimental Setup ... 25

Chapter 5 ... 26

Empirical Results .. 26

Chapter 6 ... 30

Comparative Analysis ... 30

Chapter 7 ... 33

Analysis .. 33

Chapter 8 ... 35

Observations ... 35

Chapter 9 ... 37

Conclusion .. 37

Chapter 10 ... 38

Prospects ... 38

References ... 39

VII

List of Figures

Fig. 1: LOC vs date Comparison for PerfectTablePlan .. 11

Fig. 2: Methodology followed in this study .. 18

Fig. 3: Basics of Hyperparameter tuning. ... 22

VIII

List of Tables

Table 1: Analysis of datasets present in the NASA Dataset repository 19

Table 2: features of datasets [20] .. 21

Table 3: Experimental Setup used in this study .. 25

Table 4: Confusion Matrix .. 27

Table 5: Volume of each dataset ... 28

Table 6: Average accuracy metric comparison for 80% split ... 28

Table 7: Average accuracy metric comparison for 75% split ... 29

Table 8: Calculation of metrics in the datasets PC1, CM1, JM1, KC1, and KC2 30

Table 9: Comparison between other studies and the proposed approach applied in the

datasets in this study. (MA-Macro Accuracy, WA- Weighted Accuracy) 31

IX

List of symbols and abbreviations

Abbreviations Full Form

SDLC Software Development Life Cycle

LOC Lines of Code

NB Naïve Bayes

BNB Bernoulli Naïve Bayes

GNB Gaussian Naïve Bayes

MNB Multinomial Naïve Bayes

LGBM Light Gradient Boost Model

MLP Multiplayer Perceptron

FNN Feedforward Neural Network

RNN Recurrent Neural Network

ANN Artificial Neural Networks

DNN Deep Neural Networks

HT Hyperparameter Tuning

10

CHAPTER 1

INTRODUCTION

1.1 General

In the industries today, it is important to have a method to gather the information about

the product or software developed so that all its vulnerabilities and improvements, to

some extent, are known beforehand. To achieve this goal various software development

companies and government organisations in such fields, directly or indirectly, research

on the field of software defect prediction to improve efficiency and reduce the cost of

development in the long run.

This process helps them to acquire an understanding of the long-term cost of development

of a software and provide a keen view of the entire project along with its vulnerabilities

beforehand. Thus, industries that have a development component attached to them also

have these studies.

Majority of the end of previous century and the start of the current century, if taken into

consideration have increased the size of code manifold. The LOC have increased

drastically over the years to the point where now the code can be considered to the point

of unreadable or in case of an error, undetectable. To circumvent these problems there

needs to be and algorithm, preferably something related to machine learning that can

traverse through all these LOC and predict with maximum possible accuracy the defects

that may be present in the provided dataset.

As shown in the given depiction(fig 1), there has been sharp rise in the lines of code even

in the past few years to an enormous extent. The average codebase of the given project

which was named PerfectTablePlan, shows that the LOC has been showing and upward

trend over the years and if such process continues, it may be the case that the readability

and correctness of the code may become an issue which, as we know, are the basic pillars

of an average codebase development and must be at the core of every finished or launched

product.

11

Fig. 1: LOC vs date Comparison for PerfectTablePlan

1.2 Problem Formulation

As much research have been made in the field of machine learning, deep learning, and

software defect prediction along with prediction algorithms in other domains, there is a

need to combine all these changes and view them through a singular perspective and come

up with an approach that makes all these advancements valuable w.r.t the field of software

defect prediction.

The problem that formed the core of this study are as follows:

1. What are the current algorithms used in software defect prediction?

2. What are the basic empirical metrics used in the previous algorithms?

3. Are there any processes that can make the existing algorithms better based on the

same metrics?

4. Is over training and algorithm leading to better results?

5. Are there any more empirical studies that can be made on the current data to

improve its understandability?

6. Is there a way to provide adjacent study results to the current algorithm so that it

makes them more efficient?

0

20000

40000

60000

80000

100000

120000

140000

2005 2006 2007 2008 2009 2010 2011 2012 2013

Lines of Code

Lines of Code

12

1.3 Objectives of the Project

In this project, the following objectives need to be achieved:

1. Understanding adjacent studies to find the more efficient way to get the best

possible results.

2. Using the pre-defined models in ready to run software.

3. Developing an algorithm based on the approaches taken into consideration.

4. Using same metrics as in previous studies to evaluate the developed algorithm so

that the comparison can be easier.

5. Addressing the issues and providing solutions that may be present or creep into

the datasets.

6. Trying to train the developed algorithm in different values and observe the results.

13

CHAPTER 2

LITERATURE REVIEW

In this section, we will look at the various understandings of algorithms that were

considered during the development of the current model and the various formulae that

have been used in those algorithms as well. Later, we will try to conclude the basic points

upon which the new model can be developed and will also help us to develop the

methodology for this algorithm.

We have the popularly used machine learning techniques for software defects prediction:

2.1. Xgboost

1. Xgboost a gradient based decision tree boosting approach developed in 1995 by

Tianqi Chen. As stated in [20], xgboost can be used to enhance the abilities of

the machine so that more resources can be available for computing, tuning, and

enhancing.

2. The three techniques incurred in boosting using xgboost are: stochastic,

regularized, and gradient boosting. This method can be applicable on trained

model’s added data and is Sparse Aware i.e., takes care of any missing value.

This means if there is any value in the dataset that is missing then this algorithm

can be applied and an aggregate value from the dataset can be supplemented in

the datasets and process can take place without any hindrance.

2.2. Catboost

1. Catboost is again a decision tree-based data gradient boosting model. It

seamlessly integrates with varying datapoints and datasets and gives the result

that can be used further in the increment of performance and outcome of any

process. Due to these properties, Catboost is a widely used algorithm for machine

learning as well as deep learning process.

2. This process/algorithm was developed by Yandex in 2017 and is opensource so

can be applied to any dataset across the board to get the desired results. It is

14

fundamentally an algorithm to reduce the complexity of LGBM that would

provide similar answers in lesser number of iterations.

2.3. NB

This is a probability-based approach based on the bayes theorem. It contains aggregation

of simple probability classifiers that can be used in the highly scalable learning problems.

These problems can include feature and predictor-based requirements which proves

feasible for our study. Prominent approaches to develop Naïve Bayes algorithm classifiers

are:

2.3.1 BNB

This is the algorithm present in the scikit machine learning modules and can

therefore be applied to any available dataset. It is based on the naïve assumption

of conditional independence between the given value and the variable quantity. It

is responsible to apply algorithm to multivariate data according to Bernoulli

distributions. Decision rule for BNB:

P (ai | b) = P (i | b) ai + (1-P (i | b)) (1-ai)

2.3.2 GNB

Much like other prominent algorithms, GNB is also present in the scikit machine

learning modules and can be directly imported and applied to any dataset to get

the required metrics. The likelihood of the features is assumed to be Gaussian:

𝑃(𝑥𝑖 | 𝑦) =
1

√2𝜋𝑠𝑦
2

 exp (−
(𝑥𝑖 − 𝜇𝑦)2

2𝑠𝑦
2

)

Here, sy and µy are estimated using maximum likelihood.

2.3.3 MNB

This algorithm is responsible for applying on multinomially distributed data. It

can also be applied from scikit machine learning modules much like its

counterparts.

15

The parameters θy is projected by a smoothed version of maximum likelihood, i.e.

relative frequency counting:

 𝜃𝑦𝑖 =
𝑁𝑦𝑖 + 𝛼

𝑁𝑦 + 𝛼𝑛

Where 𝑁𝑦𝑖 = ∑ 𝑥𝑖𝑥∈𝑇 is the number of times feature i appears in a sample of

class y in the training set T,

And 𝑁𝑦 = ∑ 𝑁𝑦𝑖
𝑛
𝑖=1 is the total count of all features for class y.

2.4. LGBM

1. LGBM is another boosting based algorithm based on decision tree gradient

boosting. This algorithm assumes that when K-Means algorithm uses the one-

pass over input data, it optimizes K-means to increase the production of

centroids.

2. It is an ensemble technique that can be used to combine smaller and weaker

models into a stronger and more robust model. Due to these features this feature

will also be useful for this study.

2.5. MLP

This is special type of feedforward neural network that can give flexible results

depending upon the requirements of the dataset and process methodology.

Multilayer Perceptron can be easily applied on the current dataset using WEKA

and applying a few extensions within it. MLP can then be used to modify itself to

develop and acquire the structure of the neural network and the metrics can be

recorded accordingly. Multiple layers can be interconnected like in a directed

graph and each layer after the input node layer can have its own independent

functions.

2.6. Neural Networks

16

This are the networks that are used in the digital algorithms to mimic the effects

of biological neural networks present in organic lifeforms.

2.6.1 FNN

This network is responsible to send the signal in a single direction. The signal

can never be sent back wiz. Feedback mechanism is not possible in this

algorithm.

2.6.2 RNN

These networks are an extension to FNN. They can use their internal memory

to process variable inputs.

2.6.3 ANN

These networks are more in line to the fundamental neural networks and

generally inspired by real life neural networks.

2.6.4 DNN

DNN are very distinct neural networks that have multiple intermittent layers

between the input and output layers. Although having same components as

any neural network it resembles more of a multilayer perceptron in its

implementation.

The following concluding points can be gathered from the information gathered above:

1. Initial studies did not use the implementation of some of the newer algorithms that

have been developed over the last half decade.

2. A combination of these algorithms may lead to a better result.

3. Another approach to improve the accuracy of the algorithms mentioned above can be

to apply a data filtration mechanism based on a tree approach.

4. This approach can make a tree of the results that are made at different levels of depth

and the result obtained from such depths can be recorded.

17

5. This result can then be recorded and the result which was the best in terms of time

and closest to the best possible value can be considered as the desired outcome.

6. For developing such a mechanism, a concept of hyper parameter tuning can be given

the spotlight as it can help us to change the depth of the tree at a dynamic rate and

produce the results that can be recorded.

7. Some of the algorithms discussed above may be too taxing in term of cost and

processing and if better results can be obtained with other algorithms, then such costly

algorithms may be discarded from results.

8. As more training is given to the model, it is to be observed whether the change in the

volume of training set by a few points, provide us with a significantly better result or

not.

9. If we want to balance out the data of the datasets (as different datasets have different

volumes), then newer approach such as weighted average can also be taken instead of

just macro average that was taken in the studies that have taken place before.

10. The datasets that are taken into consideration in other studies can then also be taken

out from the current project and a comparative analysis can be assembled.

18

CHAPTER 3

METHODOLOGY

This section process that was used in the implementation of this project along with the

technique outline that were finally considered to be implemented. With the development

of various software development life cycles (SDLC) we can surely follow many

approaches as far as development of the project is concerned. A broad understanding of

the methodology followed in this study is given in Fig. 2.

Fig. 2: Methodology followed in this study

3.1 Data Management

This subsection deals with the data management steps:

3.1.1 Repository Selection

There are two widely used repositories present in the open-source category in relation to

software defect prediction namely: NASA repository and PROMISE repository. Due to

Data Management

Concept of
Hyperparameter Tuning

Technique
Implementation

Metric Calculation

Comparative Analysis

Repository
Selection

Dataset
preparation

Feature
Comprehension

Feature
Extraction

Multilayer Perceptron

BernoulliNB

GaussianNB

MultinomialNB

LGBM with
Hyperparameter Tuning

Precision

Recall

Accuracy

F1-score

19

more implementations and studies conducted in the NASA software engineering

repository, it can be considered as the standard and can therefore be listed for this study.

It is by no means to discredit the other repositories and are also encouraged to use in the

further research process for a comparative analysis.

3.1.2 Dataset Preparation

Unwanted data such as noise and ambiguous data can be removed from the data. The

given dataset is very well organized and is therefore does not have any empty or missing

entries. The dataset does not have any noisy data in and is organized to a recognizable

quality. 12 datasets out of the 13 datasets are selected from the repository. We also need

to ensure that the variable names in the provided dataset does not have any keywords that

can hinder in the execution of the algorithms.

Dataset Name Number of Features Empty Features

CM1 22 none

JM1 22 none

KC1 22 none

KC2 22 none

KC3 40 none

MC1 39 none

MC2 40 none

MW1 38 none

PC1 22 none

PC2 37 none

PC3 38 none

PC4 38 none

Table 1: Analysis of datasets present in the NASA Dataset repository

20

3.1.3 Feature comprehension

To create a uniform environment to unify all the dataset to process through a multitude

of algorithms together. The minimum number of features in the given dataset is 22 as

shown in Table 1.

The datasets have numerous features and from them we get 22 which can be used to

process every dataset. Alternate names for same features are also observed across

datasets.

To make the features viable, we need to see that all the features that are present in the

minimum dataset are present in one form (variable name) or another in all the datasets.

To assure this, we needed to find some common attributes between all the datasets with

different name irrespective of the order and then we can access the different kind of

feature forms that are present in the dataset.

As more and more features are added across the dataset, we must comprehend only the

core 22 as shown in table 2.

3.1.4 Feature Extraction

Out of the provided 22 features which are common for all the datasets, only a few features

from those are required for the actual implementation that will be expanded upon in the

following sections are only required for the calculations. Next, we convert each of the

feature to float explicitly to allow an easier calculation to get the relevant empirical

results.

Feature Name Alternate Name Description (numerical %)

loc LOC_TOTAL McCabe's line count of code

v(g) CYCLOMATIC_COMPLEXITY McCabe "cyclomatic complexity"

ev(g) ESSENTIAL_COMPLEXITY McCabe "essential complexity"

iv(g) DESIGN_COMPLEXITY McCabe "design complexity"

n HALSTEAD_LENGTH Halstead total operators + operands

v HALSTEAD_VOLUME Halstead "volume"

l HALSTEAD_LEVEL Halstead "program length"

21

Table 2: features of datasets [20]

3.2 The concept of hyperparameter tuning

As more and more models are implemented using a singular software like WEKA, the

result of every algorithm of each dataset tends to be uniform. The process of changing the

variables present within these algorithms is known hyperparameter tuning.

Most of the studies that we came across had mostly similar outcome and those outcomes

were a direct result of implementing the algorithm directly through a given software.

Using the machine learning libraries of python such as scikit, numpy, pandas etc., one

can easily change the perimeter within these set algorithms and give a much more

optimized result as shown in Fig. 2.

A cross product of all the hyperparameter can be constructed by the introduction on grid

search algorithm that was present in scikit package but mostly used in the projects

d HALSTEAD_DIFFICULTY Halstead "difficulty"

i HALSTEAD_CONTENT Halstead "intelligence"

e HALSTEAD_EFFORT Halstead "effort"

b HALSTEAD_ERROR_EST Halstead "Number of bugs"

t HALSTEAD_PROG_TIME Halstead "time estimator"

lOCode LOC_EXECUTABLE Halstead's line count

lOComment LOC_COMMENTS Halstead's count of lines of comments

lOBlank LOC_BLANK Halstead's count of blank lines

lOCodeAndComment LOC_CODE_AND_COMMENT Line count for code and comment

uniq_Op NUM_UNIQUE_OPERATORS unique operators

uniq_Opnd NUM_UNIQUE_OPERANDS unique operands

total_Op NUM_OPERANDS total operators

total_Opnd NUM_OPERANDS total operands

branchCount BRANCH_COUNT flow graph's branch count

defects Defective, label Reported defects

22

pertaining to computer vision for the most part. With the introduction of such alternate

methods, we can define the all the varying values that we require into any algorithm and

expect the best possible result out of all those values.

Fig. 3: Basics of Hyperparameter tuning.

For the most part the usage of the computer vision algorithm is limited to parameter

modification and thus the algorithm retains its originality.

3.3 Technique Implementation

The following techniques will be implemented to the dataset sequentially and the result

will be recorded. The order of implementation of each model is as follows:

A. Multilayer Perceptron

B. BernoulliNB

C. GaussianNB

D. MultinomialNB

E. LGBM after Hyperparameter tuning

Function
Invoking

Model Selection
Default
Parameter Entry

Hyperparameter
Matrix

Model TrainingOptimised Result

23

3.4 Metrics Calculation

Based on equations

Precision =
True Positive

True Positive +False Positive

Recall =
True Positive

True Positive + False Negative

Accuracy =
True Positive + True Negative

True Positive + False Negative + True Negative + False Positive

F1-Score =
2∗Precision∗Recall

Precision+Recall

We can compare the different results from different algorithms when they are

implemented on a dataset and those result can then be compared with other research

results so that the most viable option can be chosen for the implementation of any

algorithm in the future.

3.5 Empirical Findings

All the empirical result of the given metrics to the respective dataset will be recorded in

a tabular form for easy foresight and quick review. There will be two splits present in the

testing of the experimentation to observe the behaviour of the outcomes when datasets

are split differently. First set of observations will gather all the results of the datasets with

75% and 25% split between the training and testing of the algorithms, respectively.

Second set of outcomes will split the datasets in 80% and 20 between training and testing,

respectively.

These dual split results will provide flexibility in comparison to other studies and internal

observation in different splits of the datasets.

24

3.6 Comparative analysis

After all the empirical results are obtained, we can compare these results to the latest

studies and see which algorithm is efficient for which dataset and publish the results

accordingly.

25

CHAPTER 4

EXPRIMENTAL SETUP

Setups help in the faster output of the program as multiple outputs need to be calculated

at the same time along with simultaneous processing that needs to take place to gather

information from each input and handle it to form a comprehensive data and are presented

in this research as a means of full disclosure.

Name Description

Central

Processing

Unit

AMD 3900x 12 core processor

Random

Access

Memory

32gb 2600 MHz

Graphics

Processing

Unit

Nvidia RTX2070super (not detrimental to this research)

Software
Weka for Multilayer Perceptron, Jupyter Notebooks for other

machine learning algorithms including hyperparameter tuning

Language Python

Libraries

used

Pandas, numpy, scikit, scipy.io for arff, os, matplotlib.pyplot,

seaborn, warnings, tqdm, plotly.offline for iplot, plotly.graph_objs

Table 3: Experimental Setup used in this study

26

CHAPTER 5

EMPIRICAL RESULTS

The core focus is to make a new and improved algorithm that can help in the long run for

further research. As there can be problems with a single dimensional checking of the

developed model. With that in mind table 4 presents the information when the datasets

are processed through a model with 80% and 20% split between training and testing sets,

respectively. This is done to check if the testing results improve at a higher training

partition.

The second empirical study as shown in table 5 changes this partition to 75% and 25% in

training and testing, respectively. There are two benefits to do a dual research random

seed-based module testing:

1. A direct comparison within the research can be drawn a legible assumption can be made

about the potency of the developed model.

2. As most of the studies are done on a 75% training split, we can have a straightforward

comparison of the developed model to the preciously conducted studies and models.

3. Analysis for the outcome for both splits can be regarded in the upcoming section.

4. It is to be noted that all the models are kept constant throughout the outcome collection

to affirm uniformity across all datasets.

As a common knowledge we have the luxury of getting the outcomes and verifying them

from the confusion matrix provided with the program output. We can compare the results

we are getting with the confusion matrices and can then calculate the outcome any new

metric that we desire from these values. Therefore, a confusion matrix plays a crucial role

in determining the any new metrics and verifying the outcomes that have been calculated

in the system automatically as represented in table 4.

27

Class Predicted Negative Predicted Positive

Actual Negative True Negative (TN) False Positive (FP)

Actual Positive False Negative (FN) True Positive (TP)

Table 4: Confusion Matrix

Weighted Results

The study has been conducted keeping in mind the various empirical evidence that have

to be up to the standard to compare to any available paper and to do that, we need to have

the results in the form that is incorporating all the intricacies of the given problem with

respect to its datasets. The problem that can occur with the initial observation of the

results is that the datasets can be taken as an equal quantity and the metrics that are

calculated in the empirical evidence can be taken in the absolute value which may provide

a skewed result of the provided outcome.

We observe that certain datasets are not even a tenth fraction of some other datasets, and

this relation can be followed to all the datasets present in this study. Due to this imbalance,

it might not be advisable to calculate the datasets as is and give them a weighted value

according to the size of each of them.

This notion will certainly play on the fact that certain datasets that will have a large

volume will be given a higher metric value in comparison to another dataset that is

miniscule. It is with this idea in mind that one such quantity wiz. accuracy has been taken

into consideration as all the major studies referenced in this paper are compared on that

metric. To do that, we need to construct a weighted representation of each dataset.

Moreover, as for comparison in difference between the macro and weighted average of

the datasets, a subsequent representation is also constructed and can therefore be used if

come other study does not wish to follow the concept of weighted results proposed in this

study.

28

We encourage more and more studies to include such metrics in their research and to do

that there need to be rigorous metrics focused analysis of the outcome that have come out

of the approach.

Dataset Number of Entries

CM1 498

JM1 7782

KC1 2109

KC2 522

KC3 194

MC1 1988

MC2 125

MW1 253

PC1 1109

PC2 745

PC3 1077

PC4 1458

Table 5: Volume of each dataset

From the tables below all the information provided in the tables above we can gather that

the percentage split of 75% is better or almost equal to the accuracy metrics across all the

algorithms’ implementation.

We can also gather all the information that is gathered for each dataset in every algorithm

at 80% split as well as 75% split in Table 5 and Table 6, respectively.

 Macro Accuracy average Weighted Accuracy average

Multilayer Perceptron 85.33 84.57

BernoulliNB (HT) 77.83 79.07

GaussianNB (HT) 95.59 96.29

MultinomialNB (HT) 85.24 92.25

LGBM(HT) 99.07 99.32

Table 6: Average accuracy metric comparison for 80% split

29

 Macro Accuracy average Weighted Accuracy average

Multilayer Perceptron 85.31 84.85

BernoulliNB (HT) 78.03 79.21

GaussianNB (HT) 95.38 96.08

MultinomialNB (HT) 91.08 92.26

LGBM (HT) 99.43 99.44

Table 7: Average accuracy metric comparison for 75% split

30

CHAPTER 6

COMPARATIVE ANALYSIS

As similar studies we made using the same or similar datasets as used in this study, there

needs to be an analysis with those studies as well so that the results can be compared, and

an appropriate conclusion can be reached.

Datasets compared in this study for the various techniques used are PC1, CM1, JM1, KC1

and KC2. If we want to apply a weighted or macro accuracy comparison upon the datasets

and compare them straightway with the prominent studies, then we need to have an

accuracy metric aggregation of these datasets and then provide them for comparison. The

subsequent table 10 presents the 75% split accuracy metric for both weighted and macro

aggregation. This table can then be used for comparison to other approaches as presented

in table 11. As all the other studies in this comparison only use a 75% split for training

and 25% split for testing, therefore, we only calculate the aggregate average for this split.

 Macro Accuracy average Weighted Accuracy average

Multilayer Perceptron 85.93 81.9

BernoulliNB (HT) 77.48 80.69

GaussianNB (HT) 96.48 96.48

MultinomialNB (HT) 93.4 92.64

LGBM(HT) 99.62 99.39

Table 8: Calculation of metrics in the datasets PC1, CM1, JM1, KC1, and KC2

Now we can efficiently and correctly compare the observations in this study to the other

prominent studies with higher accuracy metric and see how much the new approaches

hold good in their respect.

31

Authors Methods
Accuracy

(%)

G. Abaei and A. Selamat

(Abaei, & Selamat, 2014)

Decision Tree 79.5

Random forest 81.14

Naïve Bayes 80.42

Immunos2 80.65

CSCA 80.17

A. Chug and A. Dhall (Chug,

& Dhall, 2013)

Decision Tree 99.36

Naïve Bayes 94.11

Random Forest 99.55

M.M. R. Henein et al.

(Henein, Shawky, & Abd-El-

Hafiz, 2018)

K-means + ANN 80.4

A.S. Abdou and N.R.

Darwish (Abdou, &

Darwish, 2018)

Naïve Bayes 82.44

SVM 91.74

Random forest 93.4

Logistic 87.4

Decision tree 89.84

Safial Islam Ayon (Ayon,

2019)

FNN 97.93

RNN 98.39

ANN 98.12

DNN 98.47

Proposed Approach (Macro

and Weighted respectively)

 MA WA

Multilayer Perceptron 85.93 81.9

BernoulliNB (HT) 77.48 80.69

GaussianNB (HT) 96.48 96.48

MultinomialNB (HT) 93.4 92.64

LGBM (HT) 99.62 99.39

Table 9: Comparison between other studies and the proposed approach applied in the datasets in this study. (MA-

Macro Accuracy, WA- Weighted Accuracy)

32

While doing the comparison, it is to be kept in mind that the results that are being

compared to need to use the same datasets and which metric needs to be compared with.

For uniformity and progression in a linear fashion, this study has focused on comparison

for accuracy as the metric of comparison between the different studies. We encourage the

future studies to enhance the comparison even further to other metrics to have an

extensive analysis of the algorithm on every metric.

33

CHAPTER 7

ANALYSIS

From all the observations presented in the above table 11 we can see that the newer

approaches with hyperparameter tuning are much better in many respects as compared to

the techniques that were used in the previous studies. For comparison, in this study itself,

we have included a standard, non-hyperparameter tuned version of a model, multiplayer

perceptron, which in comparison is better than BernoulliNB model but falls short in

comparison to other models. In comparison to other studies, the studies that were done

(Chug, & Dhall, 2013) give promising results as well with the accuracy of Decision tree

and Random forest techniques but when we get the Light gradient boosting machine in

the hyperparameter tuned condition, which in turn is an extension of tree-based training

models, we get better accuracy and can therefore suggest these models for a higher

accuracy metrics requirement.

Following the studies based on neural networks done in (Ayon, 2019), we tried a similar

approach in multilayer perceptron using WEKA libraries and tried to pass the datasets

with that model. Although the results hold better when compared (Henein, Shawky, &

Abd-El-Hafiz, 2018), but they could not be as good as the results achieved in that study

(Ayon, 2019).

As more and more approaches pointed towards a tree-based learning approach as

suggested in studies (Abaei, & Selamat, 2014; Chug, & Dhall, 2013; Abdou, & Darwish,

2018), therefore a more tree-based model was the path that was thought to be better. With

that approach in consideration, we moved forward with the LGBM and tried to get better

and accurate results so that more efficient models are gathered and tested. The part of

hyperparameter tuning can massively compliment the calculation of the results by

manifold and of the number of iterations is not the issue and there are no processing cycle

constraints, it is advisable to use this approach in prediction of datasets in the further study

as well.

The other approach in the study uses a specific formula that is used to improve the model

as stated in previous sections and within that there is a chance for improvement and the

most promising results were shown by GaussianNB among the other naïve bayes

approaches. If the condition of using a specific formula-based approach is prevalent or in

34

consideration in any of the study, then these naïve bayes approaches are suggested to

them. As seen in the studies (Abaei, & Selamat, 2014; Chug, & Dhall, 2013; Abdou, &

Darwish, 2018), the standard naïve bayes approaches were giving results up to 94.11%

(Chug, & Dhall, 2013) but this study provides an even better result when the parameters

within the standard process are set for utmost accuracy. We must also suggest that all the

approach are well within practical range of use but depend more on the type of model that

needs to be taken into consideration for any study. The usage or application, in that sense,

is the ultimate decider of what technique to apply in what conditions.

More research is certainly encouraged in this study as there can be other caveats that may

have been restricted in this study that could have been considered, but due to some

limitation, were not contemplated.

Some of the latest studies have also been taken for comparison in this study to have the

paper updated and all the nuances are approached with the utmost sincerity but if there

are some openings that can be explored further, they can be certainly reflected upon in a

subsequent research.

35

CHAPTER 8

OBSERVATIONS

In our study, we observe a split of 80% in training and 20% in testing in table 6. In this

division we get the results and compare them to the subsequent results of table 7 which

contains training data of 75% with 25% of testing data.

As comparison needs to be accomplished, we also need to compare the results considering

the disbalance in the volume of each dataset. To get that we find the size of each dataset

as shown in each table 7. When the weight of each dataset is present, then we can compare

the outcomes of macro vs the weighted accuracy aggregation of all the datasets in this

study. In see that a phenomenon of “over-training may creep in when the models are

trained at a higher ratio and the model with 75% training split were similar if not better

in some respects that the models in the 80% split. As the models are giving promising

results at a 75% split as well, we can say that this split will be more feasible and maybe

is the reason that most of the popular studies use this split when doing the training of the

models.

Moving forward with the external study comparison, we observe that the studies done

and research in this experiment are using 5 major datasets to check the accuracy. Thus,

to do a viable comparison, we get the accuracy aggregation metric of those datasets shown

in table 10.

Next, we see that although there is not a massive difference in the macro average of the

accuracy of a model and the weighted accuracy at higher values but there is certainly a

huge difference when accuracy is low in comparison i.e., less than 90%. So, we encourage

any future studies to have a separate representation for the concept of weighted

aggregation as it gives a clear picture of the metrics that are provided in any model. As

many existing and future model may or may not have any one of the aggregations, so we

provide both in table 11.

Table 11 also provides a straight contrast between other models that were used in previous

studies with means to achieve accuracy. We realize that the naïve bayes models are

providing a great machine learning model but fall short in comparison to the tree-based

approaches in previous studies as well as this study, which makes this study a linear

progression to its predecessors. Also, we see that when the cartesian product of multiple

parameters is applied and tested on a particular/existing model i.e., a hyperparameter

36

version of any model is created, the metrics tend to become high, and this can provide an

even better results than the previously applied models and formula-based machine

learning approaches.

It seems like with this model we are at the precipice of flawless prediction which may be

a misdirection as discussed in the further sections and is the reason why we need more

studies in the future. The major takeaway from this research and the motive is to get more

people associated and interested in this topic and create a platform for defect prediction

discussions and improvements.

37

CHAPTER 9

CONCLUSION

This methodology of hyperparameter tuning has been extensively used in other

disciplines to gather the best possible results and therefore gave us the motivation to apply

in the highlighted field as well. For comparison we added many relevant studies and

construct a large image of the empirical results for any further studies.

In this study, we also touched on the fact of macro and weighted accuracy and the

difference in the values, though not significant in terms of difference, but can lead to a

massive improvement in our understanding of the subject at hand. It also catered to the

imbalance of the size of each dataset and gave us a more holistic view of the different

datasets used in this study.

Hyperparameter tuning gave a better result when compared to other prevalent methods

and the empirical results gained in most other studies. We know that the methods that

may have been applied in this study may have been used in different studies as well but

the concept of hyperparameter tuning combined with these techniques certainly showed

very promising results.

We have tried to also reduce the threats to this study that may creep in but there may be

some of the unavoidable factors that may have hindered the optimal results for this study

that we encourage all the future studies to rectify, if possible. There is also the concept of

multiple average taken based on distinction in the volume of the datasets that has resulted

in another dimension which can be investigated in future studies as an area of exploration

and research

Lastly, after all the experimentation is done, we also need to mention the need to do more

study on this subject to create more awareness and have much better results in any metric,

thus providing us useful information. The purpose of this study which was to try upon the

existing techniques and improve on the results that were observed in previous studies has

been achieved and the new results can thus be used in the studies that are yet to be done

or under development.

38

CHAPTER 10

PROSPECTS

As stated, multiple times in this study, we need to have more interest and discussion in

this field of defect prediction as it helps the software industries to save massive resources

in terms of both labor and finances. Apart from the industrial impact, in the field of

research, prediction has been an ever-growing research area and this study acts as a

droplet in that field.

Particularly, as presented in this study, prediction can be improved by working upon the

problem areas and improvements that have been discussed in this paper and the novel

idea and model development that is yet to come. We not only welcome but encourage

young minds as well as veterans to collaborate with us to develop an approach that

provides a win-win situation to the industrial as well as research fraternity.

We have done the improvement in the metrics in comparison to the previous studies that

we came across but there may be much more studies that may have some compound

resultant of development and improvement that may help in developing the study further.

There need to be an iterative and a regular improvement to the existing models as

presented in this study and we hope that more people help in this endeavour by

contributing such and more studies and explore potent prospects

39

REFERENCES

[1] Abaei, G., & Selamat, A. (2014). A survey on software fault detection based on

different prediction approaches. Vietnam Journal of Computer Science, 1(2), 79-

95.

[2] Abdou, A. S., & Darwish, N. R. (2018). Early prediction of software defect using

ensemble learning: A comparative study. International Journal of Computer

Applications, 179(46), 29-40.

[3] Agrawal, A., & Menzies, T. (2018, May). Is" Better Data" Better Than" Better

Data Miners"?. In 2018 IEEE/ACM 40th International Conference on Software

Engineering (ICSE) (pp. 1050-1061). IEEE.

[4] Aleem, S., Capretz, L. F., & Ahmed, F. (2015). Benchmarking machine learning

technologies for software defect detection. arXiv preprint arXiv:1506.07563.

[5] Aquil, M. A. I., & Ishak, W. H. W. (2020). Predicting Software Defects using

Machine Learning Techniques. International Journal, 9(4).

[6] Ayon, S. I. (2019, May). Neural network based software defect prediction using

genetic algorithm and particle swarm optimization. In 2019 1st International

Conference on Advances in Science, Engineering and Robotics Technology

(ICASERT) (pp. 1-4). IEEE.

[7] Cheng, M., Wu, G., Yuan, M., & Wan, H. (2016). Semi-supervised software

defect prediction using task-driven dictionary learning. Chinese Journal of

Electronics, 25(6), 1089-1096.

[8] Chug, A., & Dhall, S. (2013). Software defect prediction using supervised

learning algorithm and unsupervised learning algorithm.

[9] D'Ambros, M., Lanza, M., & Robbes, R. (2010, May). An extensive comparison

of bug prediction approaches. In 2010 7th IEEE Working Conference on Mining

Software Repositories (MSR 2010) (pp. 31-41). IEEE.

[10] Dejaeger, K., Verbraken, T., & Baesens, B. (2012). Toward comprehensible

software fault prediction models using bayesian network classifiers. IEEE

Transactions on Software Engineering, 39(2), 237-257.

[11] Endres, A., & Rombach, H. D. (2003). A handbook of software and systems

engineering: Empirical observations, laws, and theories. Pearson Education.

[12] Emam, K. E., & Melo, W. (1999). The Prediction of Defect Classes Using Object-

Oriented Design Metrics. Technical report: NRC 43609.

40

[13] Erturk, E., & Sezer, E. A. (2015). A comparison of some soft computing methods

for software fault prediction. Expert systems with applications, 42(4), 1872-1879.

[14] Fagan, M. (2002). Design and code inspections to reduce errors in program

development. In Software pioneers (pp. 575-607). Springer, Berlin, Heidelberg.

[15] Fu, W., & Menzies, T. (2017, August). Revisiting unsupervised learning for defect

prediction. In Proceedings of the 2017 11th joint meeting on foundations of

software engineering (pp. 72-83).

[16] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature

selection. Journal of machine learning research, 3(Mar), 1157-1182.

[17] Hall, M. A., & Holmes, G. (2003). Benchmarking attribute selection techniques

for discrete class data mining. IEEE Transactions on Knowledge and Data

engineering, 15(6), 1437-1447.

[18] Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2011). A systematic

literature review on fault prediction performance in software engineering. IEEE

Transactions on Software Engineering, 38(6), 1276-1304.

[19] Hassan, A. E. (2009, May). Predicting faults using the complexity of code

changes. In 2009 IEEE 31st international conference on software

engineering (pp. 78-88). IEEE.

[20] He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive

synthetic sampling approach for imbalanced learning. In 2008 IEEE international

joint conference on neural networks (IEEE world congress on computational

intelligence) (pp. 1322-1328). IEEE.

[21] Henein, M. M., Shawky, D. M., & Abd-El-Hafiz, S. K. (2018). Clustering-based

Under-sampling for Software Defect Prediction. In ICSOFT (pp. 219-227).

[22] Kamei, Y., Monden, A., Matsumoto, S., Kakimoto, T., & Matsumoto, K. I. (2007,

September). The effects of over and under sampling on fault-prone module

detection. In First International Symposium on Empirical Software Engineering

and Measurement (ESEM 2007) (pp. 196-204). IEEE.

[23] Kamei, Y., Shihab, E., Adams, B., Hassan, A. E., Mockus, A., Sinha, A., &

Ubayashi, N. (2012). A large-scale empirical study of just-in-time quality

assurance. IEEE Transactions on Software Engineering, 39(6), 757-773.

[24] Kaur, J., & Sandhu, P. S. (2011). A K-Means based approach for prediction of

level of severity of faults in software systems. In Proceedings of International

Conference on Intelligent Computational Systems (pp. 1897-1901).

41

[25] Kocaguneli, E., Menzies, T., Bener, A., & Keung, J. W. (2011). Exploiting the

essential assumptions of analogy-based effort estimation. IEEE transactions on

software engineering, 38(2), 425-438.

[26] Lessmann, S., Baesens, B., Mues, C., & Pietsch, S. (2008). Benchmarking

classification models for software defect prediction: A proposed framework and

novel findings. IEEE Transactions on Software Engineering, 34(4), 485-496.

[27] Li, Z., Jing, X. Y., & Zhu, X. (2018). Progress on approaches to software defect

prediction. Iet Software, 12(3), 161-175.

[28] Malhotra, R. (2015). A systematic review of machine learning techniques for

software fault prediction. Applied Soft Computing, 27, 504-518.

[29] Malhotra, R., & Kamal, S. (2019). An empirical study to investigate oversampling

methods for improving software defect prediction using imbalanced

data. Neurocomputing, 343, 120-140.

[30] Malhotra, R., & Khanna, M. (2017). An empirical study for software change

prediction using imbalanced data. Empirical Software Engineering, 22(6), 2806-

2851.

[31] McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software

Engineering, (4), 308-320.

[32] Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., & Bener, A. (2010).

Defect prediction from static code features: current results, limitations, new

approaches. Automated Software Engineering, 17(4), 375-407.

[33] Nagappan, N., Murphy, B., & Basili, V. (2008, May). The influence of

organizational structure on software quality. In 2008 ACM/IEEE 30th

International Conference on Software Engineering (pp. 521-530). IEEE.

[34] Nam, J., Fu, W., Kim, S., Menzies, T., & Tan, L. (2017). Heterogeneous defect

prediction. IEEE Transactions on Software Engineering, 44(9), 874-896.

[35] Nam, J., & Kim, S. (2015, November). Clami: Defect prediction on unlabeled

datasets (t). In 2015 30th IEEE/ACM International Conference on Automated

Software Engineering (ASE) (pp. 452-463). IEEE.

[36] Prabha, C. L., & Shivakumar, N. (2020, June). Software defect prediction using

machine learning techniques. In 2020 4th International Conference on Trends in

Electronics and Informatics (ICOEI)(48184) (pp. 728-733). IEEE.

[37] Rodriguez, D., Herraiz, I., Harrison, R., Dolado, J., & Riquelme, J. C. (2014,

May). Preliminary comparison of techniques for dealing with imbalance in

42

software defect prediction. In Proceedings of the 18th International Conference

on Evaluation and Assessment in Software Engineering (pp. 1-10).

[38] Rodríguez, D., Ruiz, R., Riquelme, J. C., & Aguilar–Ruiz, J. S. (2012). Searching

for rules to detect defective modules: A subgroup discovery

approach. Information Sciences, 191, 14-30.

[39] Seliya, N., Khoshgoftaar, T. M., & Van Hulse, J. (2010, November). Predicting

faults in high assurance software. In 2010 IEEE 12th international symposium on

high assurance systems engineering (pp. 26-34). IEEE.

[40] Shivaji, S., Whitehead, E. J., Akella, R., & Kim, S. (2012). Reducing features to

improve code change-based bug prediction. IEEE Transactions on Software

Engineering, 39(4), 552-569.

[41] Singh, P. D., & Chug, A. (2017, January). Software defect prediction analysis

using machine learning algorithms. In 2017 7th International Conference on

Cloud Computing, Data Science & Engineering-Confluence (pp. 775-781). IEEE.

[42] Tan, X., Peng, X., Pan, S., & Zhao, W. (2011, October). Assessing software

quality by program clustering and defect prediction. In 2011 18th working

conference on Reverse Engineering (pp. 244-248). IEEE.

[43] Tosun, A., Bener, A., & Kale, R. (2010, July). Ai-based software defect

predictors: Applications and benefits in a case study. In Twenty-Second IAAI

Conference.

[44] Wang, S., Liu, T., & Tan, L. (2016, May). Automatically learning semantic

features for defect prediction. In 2016 IEEE/ACM 38th International Conference

on Software Engineering (ICSE) (pp. 297-308). IEEE.

[45] Wang, S., & Yao, X. (2013). Using class imbalance learning for software defect

prediction. IEEE Transactions on Reliability, 62(2), 434-443.

[46] Wang, T., Zhang, Z., Jing, X., & Zhang, L. (2016). Multiple kernel ensemble

learning for software defect prediction. Automated Software Engineering, 23(4),

569-590.

[47] Zheng, J. (2010). Cost-sensitive boosting neural networks for software defect

prediction. Expert Systems with Applications, 37(6), 4537-4543.

[48] Zimmermann, T., & Nagappan, N. (2008, May). Predicting defects using network

analysis on dependency graphs. In Proceedings of the 30th International

Conference on Software Engineering (pp. 531-540).

43

[49] Zimmermann, T., Premraj, R., & Zeller, A. (2007, May). Predicting defects for

eclipse. In Third International Workshop on Predictor Models in Software

Engineering (PROMISE'07: ICSE Workshops 2007) (pp. 9-9). IEEE.

