
Algorithms for Mining Association Rules from
Large Transactional Distributed Data

Submitted in partial fulfilment for the award of the degree of

 DOCTOR OF PHILOSOPHY

 In

Department of Computer Science & Engineering

By

MANOJ SETHI
Roll No. 2k12/PHDCO/05

Under the Supervision of

Prof. (Mrs.) Rajni Jindal
Professor & Head of Department

Department of Computer Science & Engineering,
Delhi Technological University, Delhi – 110042, India

Delhi Technological University,
Shahbad Daulatpur, Main Bawana Road,

Delhi – 110042, India

2021

 i

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI – 110042

Date: ____________________

This is to certify that the work embodied in the thesis titled “Algorithms for Mining

Association Rules from Large Transactional Distributed Data” has been completed by

Manoj Sethi under my supervision and guidance towards fulfilment of the requirements

for the degree of Doctor of Philosophy of Delhi Technological University, Delhi. This

work is based on original research and has not been submitted in full or in part for any

other diploma or degree of any university.

Prof. (Mrs.) Rajni Jindal

Professor & Head,
Department of Computer Science & Engineering,

Delhi Technological University

 ii

Abstract

Lots of advancements in the database technologies in the last few decades attracted

researchers to work in this area. Databases which were mostly centralised have been

changed to distributed databases where data is partitioned and stored at different locations,

because of the availability of modern technologies, fast network, internet, increased size

of data and industry demand. Centralised database are also used for creating data ware-

houses and then data mining for getting some useful information for the critical decisions

in the area of education, medical, commercial and many more. Now, with the increasing

demand of the distributed databases, mining data ware-house concept is also changing to

distributed data mining where mining is done on the data partitions stored at different

locations and then the aggregation or merging the results is done for the global mining.

Distributed data mining (DDM) has become important research area with the

increase in large distributed transactional databases and we need to investigate important

patterns in such databases. On one side distributed processing may increase not only the

processing capabilities but also increases the cost of communication and storage cost. The

work focuses on the distributed data association rules mining for the transactional data. It

has opened new areas of research to develop the architecture, framework and algorithms

in the area of distributed data mining. The distributed data partitions where data is created

or generated at different locations vary in size, and number of frequent patterns are

generated at different locations. This area is not very old and little work has been done in

the distributed data association rules mining. Some new algorithms and new data structures

are proposed in literature. Algorithms which are available, mostly first partition the

database, distribute them amongst different sites for parallel processing. In the real life

 iii

scenario data generated at different sites is not under the control of centralised database

and the numbers of transactions at each site are highly varied. Due to this, some sites are

heavily loaded and some sites are comparatively free, research is to be focused on these

issues. Distributed mining is used in many commercial areas and there is a need to explore

new commercial applications of the data mining.

This work focuses on the study of the recent development in this area of distributed

data association rule mining (DARM). It highlights the issues and challenges, their co-

relation, available technologies and tools, different algorithms, real data repositories for

mining in the area of DARM. On the basis of the study, work focuses on the development

of new algorithms and developing new application model addressing different issues and

challenges in the area of DARM. Datasets Mushroom, Connect, T10I40D400K and Chess

from the fimi data repository are taken for the implementation and testing of the proposed

algorithms. Application model is developed and implemented on the actual data of a tour

& travel company for the last 2 years.

A new algorithm named as QDFIN(Quick distributed frequent itemset mining

using nodeset) is proposed in this research which uses the efficient nodeset data structure

to store the candidate itemsets locally at each site and zero-first technique to balance the

load and pruning to reduce the candidate sets. The algorithm is implemented and the speed

performance is compared with some of the existing algorithms FDM and PFIN on

Mushroom dataset. Results shows that the proposed algorithm not only outperforms other

algorithms on varying size data partition but also, on uniform distributed data on 4, 5 and

6 nodes setups.

A novel approach, size based assignment, is proposed in this work which takes

care of the database size available at each site while distributing the load for finding the

 iv

global frequent itemsets. It also reduces the communication load by pruning and no-

broadcasting techniques. The algorithm is compared with FDM and PFIN on execution

time on mushroom, connect, chess and T10I4D100K datasets. Results show that the new

technique performed best amongst them in time execution and is best load balancing

technique.

The application area chosen for the study is a tour and travel company organizing

package tours, because tourism industry is growing very fast and small, medium and large

sized companies are operating in this area. Tourism is a potential application where mining

can be applied and new association rules can be generated which can help the companies

to develop new strategies and target potential customer based on the mining outcome. This

work applies the distributed data mining technique on a medium sized tour & travel

company for finding the association between age and destination visited parameters. The

results show that association rules generated by mining are useful and effective for the

growth of the business and making new strategies.

 v

DECLARATION

I, Manoj Sethi, Ph.D. student (Roll No. 2k12/PHDCO/05), hereby declare that the thesis

entitled “Algorithms for Mining Association Rules from Large Transactional

Distributed Data” which is submitted for the award of the degree of Doctor of Philosophy

in Computer Science & Engineering, is a record of research work carried out by me in the

Department of Computer Science & Engineering, Delhi Technological University. I

further declare that this work is based on original research and has not been submitted to

any university or institution for any degree or diploma.

Date:

Place: New Delhi

 (Manoj Sethi)

 2k12/PHDCO/05

Department of Computer Science & Engineering

Delhi Technological University (DTU)

New Delhi -110042

 vi

ACKNOWLEDGMENT

First and foremost I am extremely grateful to my supervisor, Prof. Rajni Jindal for

her invaluable advice, continuous support, and patience during my PhD study. Her

immense knowledge and plentiful experience have encouraged me in all the time of my

academic research and daily life. She was always motivating me for the study and giving

useful inputs time to time.

I would also like to thank my colleague friends in the department for their direct

and indirect technical support on my study.

Finally, I would like to express my gratitude to my parents, wife and children.

Without their tremendous understanding and encouragement in the past few years, it would

be impossible for me to complete my study.

Manoj Sethi

 vii

Table of Contents

CERTIFICATE …….. i
ABSTRACT ……….. ii
DECLARATION ………………………………………………………….…………………………………………… v
ACKNOWLEDGEMENT ………………………………………………….…….................................... vi
TABLE OF CONTENTS ………………………………………………………...................................... vii
LIST OF TABLES ………………………………………………………….……....................................... x
LIST OF FIGURES ……………………………………………………….…….………………………………….. xiii
LIST OF ABBREVIATIONS …………………………………………………...................................... xv

1 INTRODUCTION ... 1

1.1 DATA MINING ... 1
1.1.1 Data Mining Techniques .. 1

1.2 ASSOCIATION RULE MINING ... 2
1.2.1 Distributed Data Mining .. 4

1.3 MOTIVATION .. 6

1.4 PROBLEM STATEMENT AND OBJECTIVES ... 7

1.5 RESEARCH CONTRIBUTION .. 8

1.6 ORGANIZATION OF THESIS .. 9

2 LITERATURE SURVEY ... 11

2.1 Distributed ASSOCIATION RULE MINING ... 11
2.1.1 Basic Terms of Frequent Pattern Mining Algorithm .. 16

2.2 DATA SOURCES ... 17

2.3 DATA MINING TOOLS AND SOFTWARE ... 18

2.4 ASSOCIATION RULE MINING ALGORITHMS ... 19
2.4.1 Data Structures Used in Data Mining .. 25
2.4.2 Issues And Challenges .. 26

2.5 APPLICATION MODELS OF DARM .. 28

2.6 RESEARCH GAP ... 31

3 METHODOLOGY .. 33

3.1 DISTRIBUTED DATA MINING PROCESS .. 33
3.1.1 Assumptions .. 33
3.1.2 Process Activities and Definition ... 34

3.2 DISTRIBUTED DATA MINING MODEL ... 36

3.3 CANDIDATE SET REDUCTION BY PRUNING .. 37

3.4 NO BROADCASTING OF FREQUENT ITEMSETS ... 38

 viii

3.5 NODESET DATA STRUCTURE .. 39
3.5.1 POC Tree .. 39
3.5.2 Nodesets .. 40

3.6 ZERO-FIRST TECHNIQUE .. 41

3.7 SIZE BASED ASSIGNMENT TECHNIQUE .. 43

3.8 COMPARISON METRICS .. 45

3.9 SUMMARY .. 47

4 QUICK DISTRIBUTED FREQUENT ITEMSET MINING USING NODESET 48

4.1 PROPOSED ALGORITHMS .. 48
4.1.1 Efficiency of Local Frequent Mining ... 54
4.1.2 Distributed Database and Resources ... 54
4.1.3 Communication Load Reduction ... 55

4.2 EXPERIMENTAL EVALUATION .. 55
4.2.1 Experimental setup .. 56

4.3 PERFORMANCE ANALYSIS ... 57
4.3.1 Comparison on Uniform Data Partition Size .. 57
4.3.2 Comparison on Varying Data Partition Size ... 60

4.4 SUMMARY .. 64

5 SIZE BASED DISTRIBUTED ASSOCIATION RULE MINING 65

5.1 PROPOSED ALGORITHMS .. 65
5.1.1 Efficiency at Each Site .. 68
5.1.2 Low Communication Overhead ... 69

5.2 EXPERIMENTAL EVALUATION .. 70
5.2.1 Experimental setup .. 70

5.3 PERFORMANCE ANALYSIS ... 71
5.3.1 Generating Local Itemsets ... 72
5.3.2 Polling sites assignment ... 74
5.3.3 Discussion .. 76

5.4 COMPARISON OF SBDARM AND QDFIN .. 79
5.4.1 Discussion .. 80

5.5 SUMMARY .. 81

6 APPLICATION MODEL – A CASE STUDY .. 82

6.1 METHODOLOGY .. 82
6.1.1 Distributed Mining of Association Rules .. 82
6.1.2 Assumptions .. 83
6.1.3 Algorithm ... 83

6.2 IMPLEMENTATION AND RESULTS ANALYSIS .. 84
6.2.1 Experiment 1: Minimum support threshold = 0.200 ... 89
6.2.2 Experiment 2: Minimum support threshold = 0.100 ... 91
6.2.3 Relationships Between Local and Global Rules ... 93

6.3 SUMMARY .. 95

7 CONCLUSIONS ... 96

 ix

7.1 FUTURE WORK .. 98

PAPERS PUBLISHED .. 99

REFERENCES ... 100

 x

List of Tables

TABLE 2.1 DATA MINING TOOLS & SOFTWARE 18

TABLE 2.2 INVERSELY PROPORTIONAL ISSUES 28

TABLE 2.3 DIRECTLY PROPORTIONAL ISSUES 28

TABLE 3.1 SAMPLE DATABASE TRANSACTIONS 39

TABLE 3.2 DATASETS AND THEIR SPECIFICATIONS 46

TABLE 4.1 SPECIFICATIONS OF MUSHROOM DATASET 56

TABLE 4.2 UNIFORM DATA PARTITION SIZES AT DIFFERENT
SITES

56

TABLE 4.3 VARYING DATA PARTITION SIZES AT DIFFERENT
SITES

56

TABLE 4.4 EXECUTION TIME ON UNIFORM PARTITION SIZE ON 4
NODES (SECONDS)

58

TABLE 4.5 EXECUTION TIME ON UNIFORM PARTITION SIZE ON 5
NODES (SECONDS)

58

TABLE 4.6 EXECUTION TIME ON UNIFORM PARTITION SIZE ON 6
NODES (SECONDS)

59

TABLE 4.7 EXECUTION TIME ON VARYING PARTITION SIZE ON 4
NODES (SECONDS)

61

TABLE 4.8 EXECUTION TIME ON VARYING PARTITION SIZE ON 5
NODES (SECONDS)

61

TABLE 4.9 EXECUTION TIME ON VARYING PARTITION SIZE ON 6
NODES (SECONDS)

63

TABLE 5.1 SPECIFICATIONS OF THE DATASETS USED 70

TABLE 5.2 DETAILS OF THE DATA PARTITIONS AVAILABLE AT
DIFFERENT SITES FOR DIFFERENT DATASETS

71

TABLE 5.3 LOCAL FREQUENT 1-ITEMSETS GENERATED AT
EACH PARTITION ON MUSHROOM DATASET

72

 xi

TABLE 5.4 LOCAL FREQUENT 1-ITEMSETS GENERATED AT
EACH PARTITION ON CONNECT DATASET

73

TABLE 5.5 LOCAL FREQUENT 1-ITEMSETS GENERATED AT
EACH PARTITION ON CHESS DATASET

73

TABLE 5.6 LOCAL FREQUENT 1-ITEMSETS GENERATED AT
EACH PARTITION ON T10I4D100K DATASET

73

TABLE 5.7 PRUNING SITES ASSIGNMENT BY SBDARM TO LOCAL
FREQUENT 1-ITEMSETS ON MUSHROOM DATASET

74

TABLE 5.8 PRUNING SITES ASSIGNMENT BY SBDARM TO LOCAL
FREQUENT 1-ITEMSETS ON CONNECT DATASET

75

TABLE 5.9 PRUNING SITES ASSIGNMENT BY SBDARM TO LOCAL
FREQUENT 1-ITEMSETS ON CHESS DATASET

75

TABLE 5.10 PRUNING SITES ASSIGNMENT BY SBDARM TO LOCAL
FREQUENT 1-ITEMSETS ON T10I4D100K DATASET

76

TABLE 6.1 TOUR AND TRAVEL COMPANIES’ CLASSIFICATION 84

TABLE 6.2 DATA TABLES USED - BOOKING-MASTER AND
TOURISTS-DETAILS

85

TABLE 6.3 DATA ATTRIBUTES TAKEN FOR ANALYSIS 85

TABLE 6.4 (A) SAMPLE DATA TABLE 86

TABLE 6.4 (B) SAMPLE DATA TABLE AFTER TRANSFORMATION 86

TABLE 6.5 DATASETS SIZES AVAILABLE AT VARIOUS SITES 87

TABLE 6.6 LOCAL SUPPORT COUNT (%) AT EACH SITE 88

TABLE 6.7 SUPPORT AND CONFIDENCE THRESHOLD VALUES 89

TABLE 6.8 CANDIDATE SETS FOR SUPPORT COUNT THRESHOLD
= 0.200

89

TABLE 6.9 GLOBAL SUPPORT AND CONFIDENCE 89

TABLE 6.10 ASSOCIATION RULES FOR SUPPORT THRESHOLD
0.200 AND CONFIDENCE THRESHOLD 0.500

90

TABLE 6.11 ASSOCIATION RULES FOR SUPPORT THRESHOLD
0.200 AND CONFIDENCE THRESHOLD 0.300

90

 xii

TABLE 6.12 CANDIDATE SETS FOR SUPPORT THRESHOLD = 0.100 91

TABLE 6.13 GLOBAL SUPPORT AND CONFIDENCE 91

TABLE 6.14 ASSOCIATION RULES FOR SUPPORT THRESHOLD
0.100 AND CONFIDENCE THRESHOLD 0.500

92

TABLE 6.15 ASSOCIATION RULES FOR SUPPORT THRESHOLD
0.100 AND CONFIDENCE THRESHOLD 0.300

92

 xiii

List of Figures

FIGURE 1.1 CENTRALIZED DATA MINING 3

FIGURE 1.2 DISTRIBUTED DATA MINING 5

FIGURE 3.1 A GENERAL PURPOSE DARM ARCHITECTURE 37

FIGURE 3.2 PROPOSED MODEL FOR DARM 37

FIGURE 3.3 POC TREE CONSTRUCTION 40

FIGURE 4.1 EXECUTION TIME ON UNIFORM PARTITION SIZE ON 4 NODES 58

FIGURE 4.2 EXECUTION TIME ON UNIFORM PARTITION SIZE ON 5 NODES 59

FIGURE 4.3 EXECUTION TIME ON UNIFORM PARTITION SIZE ON 6 NODES 60

FIGURE 4.4 EXECUTION TIME ON VARYING PARTITION SIZE ON 4 NODES 61

FIGURE 4.5 EXECUTION TIME ON VARYING PARTITION SIZE ON 5 NODES 62

FIGURE 4.6 EXECUTION TIME ON VARYING PARTITION SIZE ON 6 NODES 63

FIGURE 5.1 EXECUTION TIME ON MUSHROOM DATASET 77

FIGURE 5.2 EXECUTION TIME ON CONNECT DATASET 77

FIGURE 5.3 EXECUTION TIME ON CHESS DATASET 78

FIGURE 5.4 EXECUTION TIME ON T10I4D100K DATASET 78

FIGURE 5.5 COMPARISON OF SBDARM AND QDFIN ON CHESS DATASET 80

FIGURE 5.6 COMPARISON OF SBDARM AND QDFIN ON T10I40D400K
DATASET

80

FIGURE 6.1 AGE GROUP AND THEIR SUPPORT COUNT 87

FIGURE 6.2 DESTINATIONS FREQUENCY -SUPPORT COUNT 88

FIGURE 6.3 LOCAL SUPPORT COUNT AT VARIOUS SITES AND GLOBAL
SUPPORT

93

 xiv

FIGURE 6.4 LOCAL SUPPORT COUNT AT VARIOUS SITES AND GLOBAL
CONFIDENCE

94

FIGURE 6.5 GLOBAL SUPPORT COUNT AND GLOBAL CONFIDENCE 94

 xv

List of Abbreviations

ARM Association Rule Mining

Can.D Candidate Distribution

CD Count Distribution

CPU Central Processing Unit

CREDLM Chain Retail Enterprise based on Dispersed Learning

CREMLM Chain Retail Enterprise based on Massed Learning

DARM Distributed Association Rule Mining

DD Data Distribution

DDM Distributed Decision Miner

DDM Distributed Decision Mining

DMA Distributed Mining of Association Rules

DMCA Distributed Mining Association Rules with Item Constraints

DMCI Distributed Mine Closed Itemsets

DP3 Distributed PrePostPlus

DPO Frequent Patterns Organization

DRHPDM Data source Relevance-based Hierarchical Parallel Distributed Data
Mining

DT-DPM Decomposition Transaction for Distributed Pattern Mining

e-CRM electronic Customer Relationship Management

Eclat Equivalence Class Clustering and bottom-up Lattice Traversal

FCET Frequent Closed Enumeration Table

FCI Frequent Closed Itemset

FDM Fast Distributed Mining of association rules

FI Frequent Itemset

 xvi

FIMI Frequent Itemset Mining Implementation

FIN Frequent Itemset Mining

FP-Tree Frequent-Pattern Tree

FPO Frequent Patterns Organization

GIS Geographical Information System

MDFI Multi-Relation Data Mining

MR-CIRD Map-Reduce based Consistent and Inconsistent Rule Detection

MRDM Multi-Relation Data Mining

ODAM Optimized distributed association rule mining

PARM Parallel Association Rule Mining

PDM Parallel Data Mining

PFIN Parallel Frequent Itemset Mining

PFP Parallel FP-Growth

POC-Tree pre-order Coding Tree

PPC-Tree Pre-order Post-order Code Trees

QDFIN Quick Frequent Itemset Mining using Nodeset

R-Apriori Reduced-Apriori

SARM Sequential Association Rule Mining

SBDARM Size Based Distributed Association Rule Mining

 1

1 INTRODUCTION

1.1 DATA MINING

Data mining is a process to discover unknown valid patterns and relationships in

large data. Process of analyzing data, finding correlations or patterns and summarizing

them are known as Data mining. It is also referred to as knowledge discovery. Data Mining

involves analyzing and extracting useful information from data. There are many

applications of data mining such as Fraud Detection, Market Analysis, Biological

Analysis, Science Exploration etc.

1.1.1 Data Mining Techniques

• Association is mining relationships or associations amongst data. It is to find

interesting and hidden frequent patterns or items and to determine association

rules.

• Classification describes the data concepts, groups or classes to predict the class

of objects for which the class is not known and to judge about the type of

customer, item, or object. It is used to identify a particular class by describing

multiple attributes.

• Clusters - Similar objects in the data are grouped into clusters based on data

similarity like logical relationships or consumer preferences to identify market

segments or consumer affinities.

 2

• Prediction means to predict the missing or unavailable data values. Generally,

regression analysis technique is used for prediction.

• Outlier Analysis is to identify the data objects that do not comply with general

behaviors of the data available, and it may be used for fraud deduction in credit

cards.

• Evolution Analysis is description and model regularities or trends for objects

whose behavior changes over time.

• Mining Stream is extracting knowledge from the continuous and rapid data

records, Time-Series and Sequence Data.

• Graph Mining - Analysis of real graphs, effect on applications, model to

generate realistic graphs.

• Social Media mining - Applying data mining methods to huge data sets can

improve search results for everyday search engines, realize specified target

marketing for business, help psychologists study behavior etc.

• Multi relational Data mining provides the mining in multiple tables directly. In

MRDM the patterns are available in multiple tables (relations) from a relational

database.

1.2 ASSOCIATION RULE MINING

Association rule mining means finding interesting associations, correlations and

frequent patterns amongst a large number of items or objects that are contained in a

transaction database, relational database or some other kind of data repository. It helps in

decision making process for business purposes like in supermarkets for catalogue design,

 3

basket data analysis, planning etc. Various algorithms have been proposed to find the

frequent itemsets. Association rule mining was first proposed by R. Agrawal [60]. After

that, a lot of research has been done in this area and new approaches and algorithms have

been proposed. Association rules mining has many applications and it is now widely used

in sales, tourism, medical, marketing etc. Globalization has opened new challenges and

opportunities for the researchers in association rule mining due to the increased volume of

data and changed characteristics of data.

Figure 1.1 Centralized data Mining

Centralized database environment is created at one centralized location with all the

resources and nodes accessing the database are connected to this database through

communication links which is shown in Figure 1.1. Due to the Fast growth and use of the

information technology in different domain and globalization, not only large amount of

data is being created but the need for readily available information also increases. It

 4

requires more and more processing capabilities, storage and data communication and other

resources. Doing mining tasks at one location has become inefficient. The use of

distributed database environment in place of centralized databases is increased, in which

database is portioned and stored at different locations to share the resources and perform

parallel processing.

Apriori Algorithm is one of the most popular sequential mining algorithms for

mining frequent itemsets. Apriori uses prior knowledge of frequent itemset properties. It

employs an iterative level-wise approach where (k-1)-itemsets are used to explore k-

itemsets. Each frequent k-itemset finding requires a full database scan.

1.2.1 Distributed Data Mining

The voluminous amount of data is created at different sites and locations which

varies in size. It is not feasible to transfer all data onto a centralized database for analysis

due to the limitation of resource, communication links or sometime due to the policies or

privacy issues. With the rising size of data and the demand of mining patterns from data,

there is a need to find a solution to analyse the data as and where it is generated or gathered

or created and find interesting and useful frequent patterns in the distributed data.

The solution is Distributed Association Rule Mining (DARM) [23]. In DARM,

data is stored at different locations or sites and various processors work parallel to provide

fast and efficient results. Distributed data mining finds local frequent patterns at different

sites, communicates with other sites and finds the global frequent itemsets. Figure 1.2

shows a general distributed mining architecture. As compared to centralized frequent

itemsets mining less number of algorithms have been proposed in literature for DARM.

 5

Several algorithms are available for association rules mining the centralized

database. These algorithms available for the centralized database mining cannot be used

directly for DARM. DARM requires local processing at all the sites to find the local

frequent itemsets, communicate between the sites and finally find frequent global itemsets.

Parallel frequent mining algorithms are also not fit for that, rather algorithms which

consider the number of transactions available at each site and distribute the workload to

all sites are required for optimum use of the computational capabilities available at each

site. Some DRAM [23] algorithms are proposed in the literature.

Figure 1.2 Distributed data mining

Steps which are generally involved in the DARM are scanning databases for

finding local frequent itemsets, storage of frequent itemsets, local pruning to reduce the

candidate sets, sharing local counts amongst different sites, global pruning to reduce the

itemsets, finding Association rule etc. This requires huge storage space, communication,

synchronization and processing capabilities and trade-offs between them.

 6

1.3 MOTIVATION

With the massive growth of real time business applications, online transaction

analysis is very much essential. As the number of transactions increase, it becomes very

difficult to determine the frequent itemsets with less time and space complexities. Due to

the high volume and limitation of resources at centralized site, database is not centralized

but distributed in nature and kept as and where it is created or gathered. With day-to-day

operations, number of transactions at different sites may vary from a few hundred to lacs

of transactions which creates imbalance in the data sizes available at different sites and

also processing load on these sites. It may not be feasible to transfer data from all sites to

one centralised site for processing. Also, large database mining requires substantial

processing power and distributed mining processing at each site enhances the processing

capabilities of the system by dividing the load. In parallel and distributed frequent pattern

mining algorithms, each site is responsible to extract the knowledge by exchanging or

broadcasting the data required by other sites. Several algorithms have been proposed for

association rule mining, but they are ineffective with very large distributed imbalanced

datasets.

• There is a need to develop algorithms which focus on the local performance at each

site by reducing I/O operations and managing data effectively.

• Algorithms are required that utilise the site resources in a balanced manner by

allocating load based on the local load.

• Reducing communication load can improve the overall performance of the

algorithms, is another factor that is to be addressed.

 7

• Association mining is important tool for business growth, particularly in the area

of market basket analysis, which is commonly used in the business. So, exploiting

the areas of applications of the distributed data mining for different industries and

widen its use is also required.

1.4 PROBLEM STATEMENT AND OBJECTIVES

The association rule mining on the distributed data has gained popularity because

of the change in the nature of data which is more and more distributed across the globe.

Most of the algorithms available for the association rule mining consider that the data

available at each site is uniformly distributed. The distributed data environment where data

is created or gathered, stored at different locations and need to be used without transfer to

a single centralized site. Most of the available algorithms are not suitable for the setup

where data size vary and efficient techniques are needed to take care of the non-uniform

nature of data.

There is a need to develop methodology and DARM algorithms for finding

association rules in the distributed imbalanced transactional data which can improve the

performance by not only reducing the communication overhead, data scans and storage

needs but also assign load to less occupied sites in order to get the best utilization of the

resources.

Hence the problem statement of the research can be stated as:

“To build constructive and efficient distributed association rule mining algorithms
for the varying distributed data partition sizes available at different sites.”

The problem has been evaluated with the following research objectives:

• Do a systematic literature review including study the existing Distributed Data

 8

Mining (DDM) algorithms, issues and challenges for association rule mining of

the distributed data.

• Discuss methodology for the design of distributed data mining tasks and

applications on distributed data environments addressing the issues.

• Develop new and effective DDM algorithms for mining association rules with

reduced cost and improved performance.

• Implement and compare proposed algorithms with the existing comparative

algorithms to evaluate the performance.

• Develop an application model by conducting a business case study, implement on

a real commercial transactional data and make suitable recommendations for the

improvement of the business.

The research focus is on developing efficient algorithms and conducting a case

study to develop an application model for a business house and recommend a solution.

1.5 RESEARCH CONTRIBUTION

The aim of this thesis was to make a contribution to the field of association rule

mining on the distributed transactional data where the database is partitioned and stored at

different sites where the actual data is created. The study has evolved the methodology for

the development of efficient algorithms for association rule mining for the distributed

database, evaluation and comparison of the same with the existing ones for making

interesting rules for the business houses.

The primary contributions of this research are:

 9

• Comprehensive review and survey of current association rule mining techniques

for centralized as well as distributed data environments and the process involved

in the distributed association rule mining.

• Study of the issues and challenges in the development of the algorithms of DARM

and the effect of the issues on the performance of the algorithms. It also highlighted

the relationships amongst the issues which are directly proportional or inversely

proportional issues. Addressing one issue may adversely affect the other issue and

there is a need to have a trade-off between them.

• Developed techniques to address different issues, and to handle the distributed data

nature i.e., varying data partitions size in terms of number of transactions at each

site.

• Algorithms are proposed based on the techniques developed to improve the

performance of association rules mining for the distributed data.

• Experimental evaluations are conducted on the different real and synthetic datasets

and the results prove that proposed works achieve their aims. The proposed

algorithms improve the time performance for different setups and different datasets

by effectively reducing the ideal time of the resources at different sites, reducing

the communication load and data scans.

• Theoretical knowledge and formulas are applied to a real-world problem and an

application model for a business house, as a case study, is developed and important

useful association rules are recommended.

1.6 ORGANIZATION OF THESIS

The rest of the dissertation report is organized as follow:

 10

Chapter 2 discusses the review of the literature on the frequent pattern mining

algorithms including the algorithms of distributed data mining based on the research

contributions that have been done, up to the date of this research. It shows the different

issues and challenges and their relation in developing the distributed data mining

algorithms. It examines the activities involved in any data mining process. Finally, it

explores the availability of the different data repositories for the mining research.

Chapter 3 discusses the available and proposed methodologies for addressing

different challenges and issues involved in the development of the proposed algorithms,

illustrates them with the help of suitable examples.

Chapter 4 explains the proposed algorithm “Quick Distributed Frequent Itemset

Mining using Nodeset” (QDFIN) in detail. It explains the algorithm, its implementation

and comparison with the existing algorithms. Detail discussion on the results included in

the chapter.

Chapter 5 discusses in detail, the steps of the second proposed algorithm “Size

Based Distributed Association Rule Mining” (SBDARM), its evaluation and comparison

based on the experiments results. It also compares and discusses both the proposed

algorithms.

Chapter 6 presents an application model of DARM based on the case study of a

medium sized tour and travel company. It implements the model and finds the interesting

rules for the company for the development and enhancement of the business.

Chapter 7 concludes the work with recommendations and also presents the future

scope of the work.

 11

2 LITERATURE SURVEY

A lot of research papers have been published in the area of DDM. In the Literature

review on DDM for finding association rules, more than 80 research papers are reviewed,

algorithms, their variant and issues are studied. In the literature survey the algorithms for

the distributed data mining for mining association rule were studied. As a next step in this

direction, an extensive literature survey in this area was conducted. The survey includes

detailed study of the algorithms, tools, datasets, issues and challenges, research gap, in

developing the algorithms and applications in this area. Many surveys have been

conducted in finding association rules in the database [33].

2.1 DISTRIBUTED ASSOCIATION RULE MINING

Association rule mining earned popularity with a publication of Apriori algorithm

by Agrawal in 1993 [62] which has been cited more than 22000 times according to google

scholar. The Apriori based algorithms are of “anti-monotone property” [4]. This is widely

used in finding the association rules. These algorithms use an approach to create and test

candidate sets [60]. AprioriTID and AprioriHybrid [60] are two variations of apriori in

literature. AprioriTID [60] uses the database only once for finding the frequency of the

items. AprioriHybrid [60] uses both, Apriori initially and AprioriTID at the end. [34]

proposed FP-Growth algorithm based on a tree structure which is created after database

scan for mining frequent itemsets, which is used to store the frequent itemsets and this

algorithm is efficient than apriori algorithm. Algorithm PPC-Tree[87] is proposed in 2012

which uses a new data structure N-List based on PrePost. N-List is a novel vertical data

 12

representation structure and it is originated from a FP-Tree like structure.

Algorithm FIN, Fast mining frequent itemset using Nodeset[85] structure, based

on the PrePost algorithm is another algorithm proposed in 2014. Nodeset is created using

POC-Tree but to store information of each node, it makes Nodeset structure using

postorder or preorder of the node. [57] states that FIN algorithm is the most recent

algorithm and fast in generating frequent itemsets. DFIN [84] algorithm uses diffnodesets

structure which is also based on structure nodeset. In 2015 [86] proposed an algorithm

based on PPC-Tree structure PrePost+. To discover the frequent itemsets, it sets

enumeration search tree using the N-List structure. Structure linear prefix tree[59]

composed of array forms was introduced, which minimizes the pointers between the

nodes. IFIN+ algorithm[74] uses multi-physical computational units whereas [73]

proposed a shared memory parallelism for improving single machine performance for the

frequent itemset mining. Nadar proposed a new data structure nagNodeset[53] used in the

algorithm nagFIN. The algorithm is based on the nodes in the prefix tree. [36] proposed

an effective algorithm based on optimized matrix computation for multi-party data

computation having different challenges.

A parallel algorithm that runs on a distributed database with uniform capabilities

at different sites requires to divide the workload equally for best load [72]. In E-business

lots of heterogeneous data is generated and are distributed [42]. Distributed data may be

incompatible [77] and DDM based on the extension set can solve this problem. An

optimum solution is obtained [58] from DDM as it is done in parallel. The data streams

mining [28] is more challenging in the distributed environment. The distributed mining

has advantage in terms of degree of parallelism and scalability. The issues are load

balancing, minimizing communication cost and overlapping communication and

 13

computation. Performance of any algorithm [9] is also effected by the number of nodes in

the distributed data system. With the increase of the transactions or nodes, the performance

improves. Execution time increases when the number of nodes increases but number of

transactions reduces [31].

DDM systems can be classified [13] based on (i) parallel data mining agents to

enhance working efficiency (ii) meta learning to improve the quality of selection of data

mining algorithm and (iii) grid to mine in geographically distributed environment. An

efficient data structure [20] is required to store the information in mining tasks based on

the algorithms. Count Distribution (CD) [34] is a simple algorithm where data is

parallelized and apriori algorithm runs parallel where local support count is found for each

itemset and then communicated to each other site and hence the global frequent itemsets

are found by all the sites. AprTidRec, an algorithm based on apriori algorithm was

proposed in 2011 [4]. It is different from Apriori because it deploys only the joint step but

no pruning step. It creates a record structure called tidRec and has lesser execution time

than apriori algorithm. FDM [23] finds the locally large itemsets, which are sent to the

assigned polling sites and then the global counts are found to finally find global frequent

itemsets. The total support count message exchange is just O(n). It mainly uses apriori and

CD algorithms.

DMA [24] is another algorithm for distributed association rule mining, which

generates a small candidate sets and O(n) messages are exchanged for n sites in a

distributed database. ODAM (Optimized Distributed Association Rule Mining) algorithm

for distributed data association rule mining proposed by [83]. After discovering the global

frequent-1 itemsets, it removes the infrequent ones and inserts the transactions and their

count in a temporary file which is then used to find the frequent itemsets of larger lengths.

 14

The focus of the algorithm is on the communication and synchronization. [19] proposed a

parallel algorithm PFIN for mining frequent itemsets using data structure nodeset. It

decomposes a large problem into small tasks executed in parallel. It is using a hash-based

load balancing strategy for optimize resources.

DDM pays important role [11] in bioinformatics where database is heterogeneous

in the distributed environment. A grid can provide accurate representation of available

resources[14] and effective computational support [80] [43] for DDM where users have

options to choose the resources and it is future of DDM [12].

As the XML system is more complex [69], DDM is more challenging. In data

mining, rough set theory is a powerful approach [21] [22] which can be used for decision

making. Frequent closed enumeration table (FCET) structure can save storage space and

speed up producing the generalized association rules. The information is collected through

e-CRM system which is mined by DDM and used for business decisions. ODAM

algorithm proposed by [76], which is improved version of Apriori and based on CD and

FDM algorithm. In which candidate support counts are not generated from the raw data

set after the first pass. It removes infrequent itemsets, and places new transactions into

memory. It reduces the transaction length and also data set size significantly.

Performance of any algorithm [76] depends on the number of nodes in the

distributed setup. Execution time improves with increase of number of nodes or

transactions. When number of nodes increases but number of transactions are less,

algorithms take longer execution time [31]. FDM optimised with FP-Growth and DiffSet-

data structure [31], a vertical data representation, improves the performance of FDM

algorithm by reducing the memory requirements. [36] proposed algorithm based on

“optimized matrix computation for multiparty data computation” which has some

 15

challenges. Distributed data mining also helps [70] in maintaining privacy, reducing

transmission cost, and sharing resources like memory.

Approaches in Large-scale data analysis [8] are (i) MapReduce and (ii) Parallel

DBMS. MapReduce is easy, more fault tolerant technique, but large performance penalty

as compared to parallel DBMS. Using the map-reduce approach, many algorithms can be

processed in distributed environment, like the MRPrePost [40] algorithm gives the

processing of prepost algorithm on the Hadoop platform. Many parallel algorithms based

on the map-reduced technique in distributed environment are proposed in literature,.

MRPrePost [40] and Prepost [66] algorithms are based on map-reduce where first one

gives the processing of prepost algorithms whereas second one is cloud implementation

and apriori map-reduce. The distributed simulations are available and their acceptance is

very much dependent on their methods and tools [6].

A framework DT-DPM (Decomposition Transaction for Distributed Pattern

Mining) [9] proposed in literature, which integrates Density-Based Spatial Clustering of

Applications and distributed computing represented, CPU multi-cores and Single CPU for

solving pattern mining problems. Bin Liu [14] proposed a DDM architecture based on the

grouping similar data source to reduce communication. Its focus is to “improve the

openness, cross-platform ability, and intelligence of the DDM system”. [75] proposed

hybrid architecture by combining parallel and distributed mining which reduces redundant

database and improves the performance. A framework is developed by [49] to analyse and

manage the supply chain risk and gives better insight for better decisions.

Based on the literature survey, some of the popular distributed algorithms, issues

and challenges, some basic terminologies, available tools and techniques, data sources in

the field of distributed data mining are explained below.

 16

2.1.1 Basic Terms of Frequent Pattern Mining Algorithm

• Transactional Dataset - Dataset having two columns, named, unique transaction

ID and set of k-items.

• Itemset - The sets of items that appear frequently in the transactions of the dataset.

If I {I1, I2 ... In} be a set of distinct items in the dataset DS. Itemset is a set of

items, A subset of I. An itemset A with k distinct items is referred as k-itemset

[37].

• Support - Frequency of occurrence of an itemset in the transaction. It is defined as

the percentage of transactions in the dataset DS that includes both itemsets A and

B. The support count A / B is defined as [35][62]

Support (A -> B) = Support (A∪B)

• Minimum Support Threshold – Association rules are considered interesting if they

satisfy minimum support threshold which is set by users or experts. If an itemset

satisfies the minimum support threshold, then it is frequent.

• Local Frequent Itemset - The frequent itemset generated from the local partition of

database available on a site, having support count more than the local support

threshold value is local frequent itemset.

• Global Frequent Itemset - The frequent itemset aggregated from local itemsets

representing the entire database and having support count greater than the global

support threshold is global frequent itemset.

• Confidence - The confidence is relationship between two items. It is the percentage

of transactions in the dataset DS with itemset A that also contains the itemset B. It

 17

is calculated using the conditional probability which is expressed in terms of

itemset support. [35][62]

Confidence(A->B) = Support (A∪B)/ Support (A)

Here, Support (A∪B) is the number of transactions that contain both itemsets A

and B, and Support (A) is the number of transactions that contain itemset A.

• Association rule - Finding interesting relationship or correlation amongst the items

in the dataset with n number of transactions containing a set of items. An

association rule is represented by A/ B, where A and B are distinct itemsets [62].

2.2 DATA SOURCES

There are many real and synthetic datasets available for the researchers in the area

of data mining. These datasets are transformed and stored at different education or

company sites working in these areas. Some of the popular data sources are listed below-

• http://fimi.ua.ac.be/data/ :Actual Data sets [30] for data mining are available for

research donated/ submitted by different organisation.

• http://lib.stat.cmu.edu/datasets/ :Provides datasets collected on actual bases by

different experiments by researchers, industry in the vast deversified areas.

• http://rdatamining.com/ : There are many datasets available online for free for research

use for different analysis.

• https://pslcdatashop.web.cmu.edu/ : Pittsburgh Science of Learning Center Data shop.

A central repository for research data.

• http://almaden.ibm.com : Produce synthetic datasets. Used by researches [16]

 18

• https://www.ics.uci.edu/ml/ : This is an online repository of large data sets which

encompasses a wide variety of data types, analysis tasks, and application areas.

Currently maintain more than 280 data sets for research. Researcher Ailing Wand used

dataset form this repository. It maintains datasets for variety of applications including

data mining.

2.3 DATA MINING TOOLS AND SOFTWARE

There are many software tools are developed for the different techniques of data

mining with different feature and facilities. These tools are to be used based on the

distributed environment suitable for the problem.

Table 2.1 Data Mining Tools & Software

Mining tool Features Techniques/Tools

Weka [25]

• Based on Parallel & Map
Reduce

• Memnory limitation with large
dataset

• Visualization
• Open source
• Good for developing new

machine learning schemes

• Association, Clustering,
Classification, Regression,
Pre-processing

Apache Hadoop
[81] [78]

• Single mining task is split into
many small tasks.

• Each task runs on on one or
many computing nodes

• Batch-oriented parallel
computing model

• require Sun JDK

• Based on MapReduce

RapidMiner

• Open source data mining tool
• Transparent data handling
• Scripting language based on

XML

• classification, regression,
deviation detection,
clustering, association,
sequential Pattern analysis

 19

• Run on Every major platform

Oracle Mining

• operate on relational tables
• multidimansional data analysis

• Association, Clustering,
Classification, Prediction,
Regression, deviation
detection

IBM SPSS
Modeler /
Clementine

• visual programming or data
flow interface

• Commercial software
• Graphical interface
• can access both structured and

unstructured data

• Association, Clustering
Classification, Prediction

IBM Intellegent
Miner

• Tightly integrated with IBM
DB2 DBMS

• Scalable
• Visualization

• Association, Clustering,
Classification, Prediction,
Regression, sequential
Pattern analysis

MOA
• large data mining
• open source software
• use simple XML

• classifcation, regression,
clustering and frequent item
set, frequent graph mining

Apache
Spark[65]

• Distributed computing
framework

• Open source cluster computing
• In memory parallel execution

• Large scale data processing
• Association, Clustering,

Classification, Prediction,
Regression, sequential
Pattern analysis

2.4 ASSOCIATION RULE MINING ALGORITHMS

Association Rule Mining (ARM) algorithms can be classified as sequential,

parallel, distributed, grid, and cloud based ARM. Initially many ARM algorithms have

been proposed in the literature. These algorithms run on a single machine with a

centralized database in sequence. Sequential ARM (SARM) algorithms are based on three

different techniques namely Apriori [60], FP-Growth [34] and Eclat [45] and Clique.

Many variant and updates of these algorithms are also proposed in literature like

partitioning, sampling, H-mine, Eclat [45], FIN [85] etc. The size of the data generated is

 20

increasing with time and single CPU and memory cannot handle the huge data and

intensive computation load. Parallel ARM (PARM) algorithms are proposed to overcome

these limitations, with ability to scaleup and to speed up the mining tasks. PARM [51]

environment is tightly coupled system based on type of parallelism – task or data,

architecture – distributed or shared memory, type of load balancing approaches, data

layout – horizontal or vertical partitioning etc. PARM is ideal for centralized large

database systems. Some of the PARM algorithms proposed in literature [68] are CD, DD,

Can.D, DP3, sampling and other algorithms based on these algorithms.

For the last more than two decades distributed ARM (DARM) is gaining ground

with the increase of multiple distributed datasets in place of centralized dataset and it is

essential to use DARM for distributed datasets [51] where it deals with the loosely-coupled

system where nodes situated in various sites are connected via LAN or internet. In this setup

message passing mechanism is used for communication between different nodes. DARM

provides the scalability, efficiency without the limitations of the centralized system.

DARM are based on some traditional sequential algorithm and parallelism is achieved.

The DARM algorithms are proposed in literature which use two approaches based on

Apriori or Map-Reduce. Some of the DARM algorithms are FDM {23], PDM, CD [61],

DD[60], ODAM [83], AprTidRec [4], LMatrix [32], PDF, PFIN [19], PPDM [46] and

many more. In the resent years most of the DARM algorithms proposed are parallel in

nature on MapReduce technology or mining on big data.

Some of the DARM Algorithm proposed in literature for mining association rules

in distributed data environment are illustrated below: -

• Fast Distributed Mining of Association Rules (FDM) [23]: This algorithm is based

on the Apriori algorithm. Two categories of DDM algorithms are Data Distribution

 21

(DD) algorithm and Count Distribution (CD) algorithm. Apriori algorithm used at

each site produces each length frequent itemsets and candidate set. FDM generates

less number of candidate sets, and messages and it performs better than the

standard sequential algorithms like CD and Apriori. There are some overheads of

Parallel Virtual Machine and it needs more synchronization. FDM doesn’t perform

well with skewed organization of data.

Variants of FDM are also proposed in literature. FDM-LP[23] uses local pruning,

FDM-LUP explores local as well as upper bound pruning whereas FDM-LLP

explores local and polling site pruning.

• Distributed Mine closed Itemsets (DMCI) [17]: Distributed Frequent Closed

Mining Algorithm finds the local frequent itemset, communicate with other site to

collect their support, perform local pruning to generate global Frequent Closed

Itemset (FCI) where FCI is a small subset of frequent itemset where redundancies

are discarded and it is more concise and meaningful. The communication load

between different sites is small, but there is frequent communication between sites.

FCI mining provides help to take correct decision at each site, but time consuming,

several data scans.

• Distributed Mining of Association Rules (DMA) [24]: The mining steps in this

algorithm are candidate sets generation, local pruning and message optimization.

The algorithm generates less candidate sets at local sites as compared to Apriori-

gen. Optimization technique eliminates the duplication form the candidate sets. It

determines the polling site or host site for broadcasting, collecting support counts

and determine whether X is large for each candidate set X using hash function. It

does not require to scan the partition again to calculate the support counts. It shows

 22

that DMA performed better when the number of nodes is higher. It requires more

Storage for message and support counts. It uses the nodes having identical schemas

only.

• Distributed Mining Association Rules with Item Constraints (DMCA) [18]: The

algorithm integrates the item constraints into the mining process which can acquire

more efficient algorithms. The candidate sets are reduced, and execution time

improves as compared to FDM. The item constraints are formalized with boolean

expression which is used for generating candidate sets satisfying the constraints.

The algorithm uses the relationships between global and local frequent itemsets

and saves the local counts in hash tables. It reduces dataset scans and

communication cost.

• Distributed Decision Miner [10]: It is based on the Apriori and CD algorithms. It

is good for un-skewed data. It verifies that an itemset is large before collecting its

support counts from all nodes. The algorithm is scalable and data skew robustness

with low communication overhead, but it requires more storage.

• Multi-Relation Data Mining (MRDM) [79]: Algorithm is based on the Genetic

(GA), Apriori and extended Algorithms. It combines multi-relations using genetic

algorithm. The steps are (i) GA to mine antecedent rules, (ii) mine the consequent

rule from the rest relational attributes of other tables (iii) produce extended

association rule using foreign key. It produces finer patterns and contains more

information. This is suitable for small databases.

• CREDLM & CREMLM Algorithms [16]: Chain Retail Enterprise based on Massed

Learning (CREMLM) algorithm refers to the large-scale chain retail enterprises

 23

with large bandwidth and small transaction on each branch store with many branch

stores. It is performing the globally frequent prune at one store so called massed

learning. The communication frequency is low with complexity O(n) only. It

requires high data scans, low local efficiency. Performs better with minimum

support is high.

Chain Retail Enterprise based on Dispersed Learning (CREDLM) algorithm [16]

refers to the small-scale chain retail enterprise with small bandwidth and large

number of transactions on each branch store with few branch stores. It is

performing the globally frequent prune on many stores so called dispersed

learning. Communication load impact the performance of algorithm. CREMLM

has performed better than CREDLM in a larger bandwidth whereas it is reversed

in smaller bandwidth. Reducing the Data scanning may improve the performance

of these algorithms.

• AprTidRec Algorithm [4][5]: This is an extension of the Apriori algorithm. A

record structure “tidrec” is defined to store each candidate frequent itemset from

the ordinal distributed data and join is used in place of pruning. It concluded with

short time complexity and reduced communication cost. The trade-off between

time and space complexity is needed to get the best results. The same can also be

applied to non-isomorphic data sources.

• Count Distribution (CD) [61]: CD algorithm[41] is parallelization the Apriori

algorithm with horizontally fragmented dataset. The candidate sets generated at

each site is broadcasted to every other site. It exchanges only counts between sites

and message exchange is O(n2). Memory not properly utilized by the algorithm

and it is not much scalable.

 24

• LMatrix [32]: Algorithm creates the local LMatrix, an object-by variable

compressed structure, to calculate local support which saves time to scan the

database partitions but consumes more memory. A pre-fix tree structure FP-tree is

used to store compressed information about frequent itemsets. FP-array technique

is used to improve the performance for FP-tree based for sparse datasets. It is useful

when the dataset is too large for sequential mining. The algorithm reduces the

communication cost, size of messages, time to scan the partition. It consumes more

memory and execution time increases when data size increases and minimum

support threshold decreases.

• Frequent Pattern Growth (FP-Growth) algorithm [34]: FP-Growth is an

improvement of apriori algorithm. This algorithm finds the frequent itemsets in the

database without generating the candidate sets. FP-growth constructs a compressed

tree like structure called FP-tree to represents frequent itemsets. It is extension of

prefix-tree structure which provides a technique to use compact tree data structure

for data mining to reduce data scans. FP-tree is expensive and may not fit into the

memory.

• R-Apriori (Reduced apriori) : R-Apriori is a	parallel	ARM	algorithm	proposed	

by	Rathee	[65]	based	on	Apriori	algorithm	on	horizontal	portioning	of	dataset.	

It	is	a	parallel	algorithm	on	spark	platform	for	the	MapReduce	framework.	It	

is	 not	 mining	 exact	 association	 rule	 but	 it	 mines	 approximate	 association	

rules.	It	reduces	the	computations	in	second	iteration	and	faster	than	Apriori.	

Performance improves with the increase of data size.

• Optimized Distributed Association Rule Mining (ODAM) [83]: It is an improved

version of Apriori algorithm. It considers the horizontal partitioning of dataset. It

 25

minimises the candidate sets generation so it offers better performance. It sends

support counts to one site reducing communication. Rules are generated by

different participating sites are identical ensures synchronization.

• Parallel Frequent Itemset Mining Algorithm Using Nodesets (PFIN): PFIN is a

parallel FIM algorithm [19] based on the efficient data structure Nodeset,

implemented on spark framework. It breaks a large scale problem into small tasks

and run them parallel. It groups the frequent itemsets and uses hash based load

balancing technique. It has low communication overheads.

2.4.1 Data Structures Used in Data Mining

Data Structures act an important role in DARM. Efficient data structure reduces

the computational complexity of an algorithm which makes it better. Different data

structures are proposed in the literature and based on these data structures different DARM

algorithms are proposed. Using tree based data structures reduces the data scans and stores

information about the frequent itemsets generated in the frequent patterns mining. Some

of the popular data structures are given below-

• Frequent-pattern tree (FP-Tree) is a popular data structure used by the FP-Growth[34]

algorithm. It is a compact extended prefix-tree structure for storing frequent patterns.

Database is scanned twice for the construction of the FP-tree. It is an improved version

of bidirectional prefix tree structure that allows bottom up scanning. For large pattern,

FP-tree construction complexity is very high and expensive.

• Nodeset data structure used for mining process of frequent itemsets is based on POC

tree proposed by [85] and used in FIN algorithm for sequential association rule mining

in 2014. Nodeset is an efficient data structure[85] which require less memory. It stores

 26

only postorder or preorder of nodes in the form of N-info. The database is scanned

only once and tree is constructed with one root and subtree as children.

• N-list is a vertical data representation compact data structure proposed in recent years.

N-List is a structure like FP-tree [87] and stores information obtained from PPC-tree

about the itemsets using preorder, postorder. It has been proven to be very efficient for

mining frequent itemsets.	

• Trie data structure is a prearranged data structure proposed by [29]. It is also known as

radix tree, digital tree or prefix tree. In Trie structure strings are used to store the keys.

The trie structure is traversed depth-first, following the links between nodes, which

represent each character in the key.

2.4.2 Issues And Challenges

Issues in designing a DDM algorithms for mining association rules in the

distributed data environment are to be addressed which are evaluated due to the distributed

nature of the database. On the one side we are getting the advantage of parallel processing,

scattered storage requirement at different sites by reducing the load on the centralized

resources but on the other side there is a need to evolve techniques to find local frequent

itemsets that can be used to find the global frequent itemsets. It requires (i) local processing

capabilities and (ii) storage at all the sites, (iii) more data scans (iv) a lot of communication

between these sites (v) communication with centralized or main site, (vi) synchronization,

(vii) merging the information etc. Algorithms for DDM for association rules mining

proposed in literature are addressing these issues. It is to be considered that reducing one

cost may increase the others. So, algorithm addressing these issues and improving costs

and performance etc., keeping trade-off between them, is required to suit a particular

 27

distributed scenario. Some of important distributed data association rule mining issues

are:-

• Number of data scans: Number of data scans [67] require to find frequent

itemsets and support count and it effects the performance.

• Number of candidate sets: Candidate sets are generated for finding frequent

itemsets. Reduce number of candidate sets will reduce the communication

overhead.

• Communication cost: Sites communicate FI and support counts. Reducing the

number of messages between nodes will reduce the communication cost.

• Memory requirement: Optimum use of the memory is required to store the local

and global FI, transactions, support counts etc.

• Pruning : Prune out not frequent candidate sets to reduce the number of frequent

itemsets which may not be frequent hence reduce the communication load.

• Synronisation: Needs between the nodes and centralised site.

• Work load balancing at various nodes: One or all nodes participate in computing

frequent itemsets.

• Rule redundancy : Some of the itemsets are frequent at more than one node.

• Scalability : Some of the algorithms are good for small database only and do not

scale-up well.

• Skewness: Data skewness[44] may improve the performance by reducing

communication. It can also have adverse effect of load imbalance.

• Data decomposition among nodes: May reduce the candidate sets and redundancy.

• High Dimensionality: Handling the increase of number of dimensions [50] or items

These issues and challenges are not independent of each other. There are

 28

relationships between these issues in the sense that some are directly proportional and

some are inversely proportional to others given in Table 2.2 and 2.3. Based on the size of

the database, number of partitions, communication bandwidth availability, processing

power and available recourses, trade-off between them are required.

Table 2.2 Inversely proportional issues

Number of data scans Memory /storage requirement

Skewness Pruning

Pruning candidate sets

Work load balancing Communication, skewness

Table 2.3 Directly proportional issues

Number of candidate sets Communication

Communication Synronisation

Rule redundancy Communication

Good Data decomposition among nodes Candidate sets, redundancy,

2.5 APPLICATION MODELS OF DARM

Applications of association rule mining [3] in large and dispersed database are

businesses, defence, public safety, GIS, medical diagnosis, Hospital etc. As the database

is updated on regular basis, so transferring and storing data at one centralised place is not

feasible and time consuming, and mining data must be up to date [56] otherwise it affects

the decisions. Distributed computing is important in data mining as mining requires huge

amounts of resources and data distribution is required for safety, scalability and resource

sharing [7]. Lot of mining application models and algorithms are developed and used

effectively for the decision making, expansion and making good strategies by different

 29

business houses. The most popular algorithm for association rule discovery from market,

sales databases [7] is Apriori algorithm. This algorithm performance is good with sparse

datasets. Association rules are used to examine the customer buying behaviours for

different item purchased from the supermarket transaction data. It describes how often the

items are purchased together[34]. Researcher used uninorms[63] to aggregate support and

confidence in market basket analysis for UK grocery. Knowing the sales pattern by the

customer can help to make potential strategies to increase the sales and

recommendations[82].

The main purpose of the research conducted by [71] on Market Basket Analysis of

beauty products was to find the interrelation of the products in a beauty shop and use the

outcome for marketing and sales promotion of the products. The researcher used the

Apriori algorithm for this research. It is observed that there are two type of customers,

casual and regular, where first who buy a few random items and second who planned and

buy more. The support and confidence value used in this research were 0.1 and 0.4

respectively [52]. A case study on analysing market basket was conducted by [2] on an

electronic store data using FP-Growth[34] and Apriori algorithm and generated useful

rules. [38] also performed research for customer basket and found items with highest

correlations. Sales Analysis is performed by [64], same as market basket analysis to target

prospective customers for the optimizing the profit. The work used product rating in data

mining Techniques. [1] applied the association mining in finding association between

different parameters causing the road accident. This study is useful for finding hidden

association and improving the road safety.

Liu [15] proposed DDM model “DRHPDM - Data source Relevance-based

Hierarchical Parallel Distributed data mining Model” for e-business. Its focus was to

 30

“improve the openness, cross-platform ability, and intelligence of the DDM system”.

Norulhidayah [54] proposed applied DDM on daily sales analysis on the data of Chan

furniture and proposed a strategy for business promotion and marketing. A periodic

mining, due to the dynamic nature of data in the market basket data, is proposed [48] by

automate the threshold values by working on the change modelling concept. Study is

conducted by [39] and a technique is proposed to find associations among items and

determine better showcase to appeal to customers and increase sales. Map-Reduce based

Consistent and Inconsistent Rule Detection (MR-CIRD) algorithm is proposed [26] to

detect the consistent and inconsistent rules from big data and provide useful and actionable

knowledge to the domain experts. These pruned interesting rules also give useful

knowledge for better marketing strategy as well. Merouane [47] presented a model for

distributed association rules mining by combining it with the multi-agent system to run it

in parallel and distributed manner from the centralized ERP database to provide perfect

response time. There are many risks also in the supply chain mining due to the different

technologies used. There are some negative associations[55] along with the positive

associations that exist in the data which are very significant for the business. Negative

association is expressed as if there are no common transactions between any two positive

regular itemsets, then they could be declared as negative regular item set or contradicting

patterns. A framework is developed by [49] to analyse and manage the supply chain risk

which gives better insight for better decisions. There are a lot many untouched areas where

application of data mining can be explored in future.

Types of Frequent Patterns

• Itemset[35]

Example: Bread, Egg and Bread, that appears frequently together in a transactional

 31

dataset of Market Basket Analysis.

• Subsequence[35]

Example: Buy products in specific order like, buy computer then buy speaker in a

shopping history.

• Substructure[35]

Example: Subgraph and Subtree

Major Mining Applications

• Market basket analysis [35]

• Estimation of financial records

• Retail business

• Telecommunication business

• Biological data scrutiny

• Data mining for invasion innovation

• Data mining in other controlled applications

• Tourism Industry

2.6 RESEARCH GAP

Based on the extensive literature review in the area of association rule mining,

algorithms and techniques, it is observed that the distributed data association rule mining

is less explored. Most of the research in the area of association rule mining is done on the

centralized database. Some of the research uses the parallel approach by distributing data

amongst the sites and perform parallel processing in order to reduce the load on a

centralized processing capabilities. There is very little research which considers the data

 32

already distributed to various sites and the data partition available at sites vary in size.

Recently some of the new data structures like N-list, Nodeset are proposed for the

association rule mining but not implemented for the distributed data as such. Due to the

increase of globalisation and generation of huge data at different locations there is a need

to explore the applicability of the mining algorithms of the purely distributed data.

 33

3 METHODOLOGY

The problem of mining association rules is divided into two subproblems[62]: (i)

to find all frequent itemsets in the database for the given minimum support threshold value,

and (ii) to generate the association rules using the frequent itemsets found in (i). As the

mining association rules cost is mainly involved in (i), the focus is on the evolution of

some efficient technique for the first subproblem [62]. The proposed algorithm are also

focused on finding the global frequent itemsets and then an application model is proposed

for finding the association rules. This chapter explains the DARM process and

methodologies used in development of the proposed algorithms.

3.1 DISTRIBUTED DATA MINING PROCESS

The DARM process involves a lot of activities to be performed by the algorithm at

different sites to mine the association rules from the distributed data. These activities are

not disjoint. In order to perform the mining on a distributed data, some assumptions are

taken into consideration.

3.1.1 Assumptions

• Database is horizontally partitioned and distributed at various sites around the

globe.

• Data is generated or captured at different sites.

• Data is not transferred between nodes due to the resources constraints or policies.

• Size of each partition i.e., number of transactions stored at each site may differ.

• Number of candidate sets generated at each site may differ.

 34

• All sites may not be equally loaded.

• The resources and capabilities are similar at various sites.

3.1.2 Process Activities and Definition

• Data scanning - scanning transactions in the database to compute frequent itemset

• Local frequent itemset (FI) - The itemsets that meet a user-specified minimum support

at each node. A frequent itemset is maximal if it is not subset of any other frequent

itemset.

• Data storage - Storage is required on each site for storing local support counts,

transactions, frequent itemsets etc.

• Skewness - Distribution of itemsets among the various partitions. A database’s total

data skewness is the sum of the skew of all itemsets weighted by their supports. Most

algorithms require low data skewness for good load balancing.

• Local purning - Removing the infrequent itemsets from candidate sets at each node. It

reduces number of candidate sets, cut communication cost.

• Candidate set generation - Candidates are generated in parallel. Each processor

generates its own local set.

• Count polling - A polling site is assigned to itemsets X independent of the site where

X is locally large.

• Polling site - responsibility to find whether X is globally large. It broadcasts requests

to collect local support counts for X and compute global support count.

• Communicating Local FI -Communication between sites or communicating site with

other sites sending FI by message passing.

 35

• Global pruning -Additional pruning is being done to global frequent itemsets. The

efficiency of local pruning can be enhanced by global pruning.

• Finding Association rule - According to the global frequent itemsets and minimum

support, association rules based on the global database can be acquired.

The DARM definition is given below as taken from [23] is defined below:

Let DB is a transaction database with 𝐼 = {𝑖!, 𝑖", … , 𝑖#} set of items. Transaction

T of DB is a set of items where 𝑇 ⊆ 𝐼. An itemset 𝑍 ⊆ 𝐼, belongs to T if and only if 𝑍 ⊆

𝑇. An association rule (AR) is represented[23] as ⇒ 𝑌, where 𝑍 ⊆ 𝐼	𝑎𝑛𝑑	𝑌 ⊆ 𝐼	and 𝑍 ∩

𝑌 = ϕ. The AR 𝑍 ⇒ 𝑌	holds in the database with a confidence ‘c’ implies that the

probability of a transaction in database containing Z also contains Y is ‘c’. The association

rule 𝑍 ⇒ 𝑌	has support ‘s’ in database implies that the probability of a transaction in

database contains both Z and Y is ‘s’. The association rules mining is a task to search all

the association rules in the database where support is greater than the minimum support

threshold value and confidence is greater than the minimum confidence threshold value.

For an itemset Z, support is defined as the percentage of transactions in database

containing Z, and its support count, Z.sup, is total number of transactions in database

containing Z. An itemset Z is large or frequent occurring if its support is equal or greater

than the minimum support threshold. An itemset of size k is called a k-itemset. Distributed

algorithm[23] for mining association rules statement.

To examine the association rules mining in a distributed database DB with D

transactions and n-sites 𝑆!, 𝑆", … , 𝑆$ having n-partitioned {𝐷𝐵!, 𝐷𝐵", … , 𝐷𝐵$}

respectively. Let 	𝐷% be the size of the partitions 𝐷𝐵% 	where i = 1, 2, . . . , n. Z.sup, the

support counts of an itemset Z in database and 𝑍. 𝑆𝑢𝑝% 	𝑖𝑛	𝐷𝐵%. For each site 𝑆%	, 𝑍. 𝑆𝑢𝑝% 	is

 36

the local support count of Z and Z. sup is the global support count. For a specific minimum

support threshold value ‘s’, Z is also globally large itemset if 𝑍. 𝑠𝑢𝑝	 ≥ 	𝑠	 × 	𝐷;

correspondingly, Z is locally large itemset at site	𝑆%, if 	𝑍. 𝑠𝑢𝑝	% ≥ 	𝑠	 ×	𝐷%. Let L be the

globally large itemsets[23] in database, and 𝐿(() the globally large k-itemsets in L. A

distributed association rule mining algorithm finds the globally large itemsets L.

3.2 DISTRIBUTED DATA MINING MODEL

Many DARM architectures are proposed in the literature. The most suitable

architecture for the distributed data mining is given in Figure 3.1, which was proposed by

[27] as a general purpose DARM architecture. It consists of distributed data at various

sites where local mining is performed and then these are aggregated to the global model.

It is suitable from small as well as large scale distributed system.

Proposed model with distributed data collection and maintenance at various sites

without any centralized data repository and without any centralized data mining unit is

given in the Figure 3.2. There is no centralized database and no centralized data mining

unit. Data is partitioned and distributed amongst various sites, where data is collected and

stored. Local mining is done at various sites and frequent itemsets are found. Coordinating

unit assigns the polling site for the global processing. Number of processing units in

coordinating unit may vary depending on the load based on the size of the overall data and

number of sites. There is no centralized processing unit to process the global mining rather

all sites participate in global mining. This is best suitable model for a large setup and large

data size with a good amount of load distribution amongst the available resources.

 37

Figure 3.1 A general purpose DARM architecture [27]

Figure 3.2 Proposed model for DARM

3.3 CANDIDATE SET REDUCTION BY PRUNING

Pruning is a process of reducing candidate sets[23] generated by data scan for

itemsets size k=1,2,..n. It eliminates the frequent itemset which are not locally large

 38

itemset i.e., having support count less than the minimum support threshold as those may

not be the global frequent itemsets. This reduces the number of candidate sets for

communication to other nodes so reduces the communication load over the network and

enhance the performance.

Example:

If frequent size-2 itemset at site -2 {ab, ac, bf, cf}.

After pruning itemsets having support count less than the minimum support threshold say

{cf, bf} are removed from the candidate sets.

The remaining candidate sets {ab, bf} communicated to all other sites.

3.4 NO BROADCASTING OF FREQUENT ITEMSETS

Broadcasting of the local frequent itemsets to all sites is a heavy load on the

communication network. No-broadcasting reduces the load on the network. All local

frequent itemsets are sent to a dedicated or coordinating site for assignment of polling site

for finding the global frequent itemsets. There is no-broadcasting of the local frequent

itemsets by different sites.

Example:

 Suppose there are 5 sites then all sites send frequent itemsets to other four sites

means 5 x 4 = 20 packets but in no-broadcasting all 5 sites send local frequent itemsets to

one site only so 5 x 1 = 5 packets are being sent on the communication channel. With the

increase of the number of sites there is a big reduction in the packets communicated over

network in the no-broadcasting technique and the performance of the algorithm improves.

Total number of FI messages send are of O(n) only

 39

3.5 NODESET DATA STRUCTURE

Nodeset data structure[85] is a latest, novel and efficient data structure proposed

for data mining and it is based on the pre-order coding tree called POC-tree.

3.5.1 POC Tree

POC tree is constructed with one root and prefix subtrees. Database is scanned for

frequent size -1 itemsets and their support count. 1-itemset are arranged as per their

support count in descending order. Create the root of a POC-tree labelled as ‘‘null’’ For

each transaction in data partition. If Tree has a child M such that M.item-name = item-

name, then increase M’s count by 1; Otherwise create a new node M, with its count set to

1, and add it to Tree children-list. If list is nonempty, insert tree recursively. Scan the

POC-tree to generate the pre-order of each node by the pre-order traversal. This is an

efficient data structure, which use POC tree and reduces data scans and increase efficiency.

Table 3.1 Sample Database Transactions

TID Items Ordered frequent items

101 b, e, j, i, p b, i

102 f, c, b, i b, c, f, i

103 b, c, h, b, c

104 f, a, b, c a, b, c, f

105 a, f, c, g, b a, b, c, f

Ordered frequent items are items having support count >= threshold

Here support count threshold is considered as 25% and frequent itemsets available

in each transaction are identified and ordered, shown in Figure 3.3.

 40

N-info – pair of preorder and count

Figure 3.3 POC Tree construction

3.5.2 Nodesets

Nodeset of frequent item-i is sequence of all n-infos of node i in the POC-tree. Each N-

info of a node in the POC-tree is count of the number of transactions with item i.

Therefore, i’s support is the sum of counts of nodes with item i.

Nodeset of frequent itemset & support count

b ⟶ {(1,3), (7,2) } 5

c ⟶ {(3,2),(8,2)} 4

f ⟶ {(4,1),(9, 2)} 3

i ⟶ {(2,1),(5,1)} 2

a ⟶ {(6,2)} 2

Nodeset of frequent 2-itemset & support count

 41

The Nodeset of 2-itemset is a subset of i2’s Nodeset

bc ⟶ {(3,2),(8,2) } 4

bf ⟶ {(4,1),(9,2)} 3

bi ⟶ {(2,1),(5,1)} 2

ac ⟶ {(8,2)} 2

 ……..

Nodeset of frequent 3-itemset & support count

abc ⟶ nodeset ac ∩ nodeset of bc

 {(8,2)} 2

3.6 ZERO-FIRST TECHNIQUE

In the real life scenario database is distributed where data is captured or gathered

at different locations. The size of the data partitions varies[9] in size from a few hundred

of transactions on one site to a million of transactions at other site. In the distributed data

mining, resources are also distributed and there should be a mechanism to utilize all the

nodes by allocating processing to less occupied nodes. In this work a new technique for

load balancing Zero-first for distributed data mining is presented.

Based on the assumptions, Zero-first technique is developed for the assigning

polling sites to each local FI received by the coordinating site from all other sites. The

poling site is responsible for finding the globally large itemset from the list of locally large

itemset. The new technique ensures that the load is assigned to less occupied sites for a

distributed data association rule mining.

Definition: Zero-first technique:

For sites 𝑆 = 	 {𝑆!, 𝑆", … , 𝑆$} and locally large candidate sets {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}

received from n sites.

 42

𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑠𝑒𝑡	𝐶𝐺 = 	 {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}

 max	 _𝐶𝐺 = 	𝑚𝑎𝑥{𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}

Where max_CG is the max number of candidate sets broadcasted by any site.

 𝑖𝑓	max	 _𝐶𝐺 > 		𝑎𝑛𝑦𝑜𝑛𝑒{𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}

𝑓𝑜𝑟		𝐶𝐺	%	 < max	 _𝐶𝐺	Arrange

𝑆′ = 	𝑂𝑟𝑑𝑒𝑟{𝑆!, 𝑆", … , 𝑆	$*+}	

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒		𝑆′ = 	𝑂𝑟𝑑𝑒𝑟{𝑆!, 𝑆", … , 𝑆	$}	𝑎𝑙𝑙	𝑠𝑖𝑡𝑒𝑠

Sites are arranged in the order of size of the candidate sets generated, starting with

zero, excluding the sites with maximum size of candidate set.

If the candidate sets sent by each site are not equal, then all the sites are to be

arranged in the order of the number of candidate sets generated by each site.

𝐶𝐺′ = complete combined list of all locally large itemsets received from all the sites

removing duplicates

𝐶𝐺′ = 	 {𝐶𝐺!	∪ 	𝐶𝐺" 	∪ 	…∪ 	𝐶𝐺$}

Allocate 𝐶𝐺,	𝑡𝑜		𝑠𝑖𝑡𝑒𝑠	𝑆′

After arranging the sites in order of their loads, allocation of polling sites to the

itemset are done in the order of the site occupancy (zero-first order) to check it for globally

large itemset. [23] If all the frequent itemsets are not assigned then repeat the assignment

in the same sequence of initial assignment.

Example:

Let there are four sites 𝑆!, 𝑆", 	𝑆-,	𝑆/. The candidate sets broadcasted by site

𝑆!{	}, 𝑆"{𝑎𝑏, 𝑏𝑓	}, 	𝑆-{𝑎𝑏	}, 	𝑆/{𝑏𝑐	}. Applying zero-first technique, the ordered candidate

set is {𝑎𝑏, 𝑏𝑐, 𝑏𝑓	} and ordered site set is {𝑆!, 	𝑆-,	𝑆/	} leaving most occupied site {𝑆"}.

 43

Using the zero-first technique, the first polling site is {𝑆!	} and first locally large itemset

in the ordered candidate set {ab} is assigned to site {𝑆!}. Similarly {bc} is assigned polling

site is {𝑆-} and {bf} itemset is assigned to {𝑆/}. Leaving the most occupied sites who sent

maximum number of locally large itemsets.

Sites with small data partitions have fewer number of transactions are under-

utilized in terms of the processing, memory and scan time as compared to the sites with

large data partitions. The Zero-first technique assigns more responsibility to less loaded

sites and does not assigns any load to the most occupied sites. It ensures load balancing

across the sites.

3.7 SIZE BASED ASSIGNMENT TECHNIQUE

In the distributed setup, data is generated or created at different locations. The

number of transactions at various sites differ [9] from a few hundred to millions of

transactions. In this setup, resources at each site is also limited and are distributed. Data

mining requires great amounts of resources [7] so techniques for flexible distribution of

work load amongst sites need to be developed. The sites with little number of transactions

are less occupied as they require less memory, computational capabilities and time for

maintaining data, scanning for frequent itemsets and maintaining candidate sets.

New technique SBA is proposed to assign the polling sites to the locally large

itemsets received by a designated site. The polling site finds the globally large itemsets

from the itemsets received. Novel technique takes care of the sites with the large data

partitions and distribute load considering the number of transactions at each site and

balance the load.

 44

Definition: Size Based Assignment Technique:

For sites 𝑆 = 	 {𝑆!, 𝑆", … , 𝑆$} and candidate sets {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$} sent by n sites.

Total Transactions 𝑇𝑇 = 	 {𝑇!, 𝑇", … , 𝑇$}

For size k-itemsets

Average Transactions percent per site, 𝐴𝑇 = 			 !00
$

Actual number of Transaction in percent at site

 𝑃𝑆%			 =	
1!
∑ 	1!

	𝑥	100

Load difference at site in percent 𝑆% 		𝑖𝑠		∆%= 𝐴𝑇 −	𝑃𝑆%

For all k-sized itemsets, complete candidate set

𝐶𝐺 = 	 {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}

𝐶𝐺′ = Complete Candidate sets received from all sites without any duplicates

𝐶𝐺′ = 	 {𝐶𝐺!	∪ 	𝐶𝐺" 	∪ 	…∪ 	𝐶𝐺$}

Average candidate sets at each site in percent

 𝐴𝐶𝐺 = 		 34
"

$

Arrange sites as per the partition size 𝑆′

Local frequent itemsets assigned to the polling site 𝑆%		𝑖𝑠	 = 	 ⌈	𝐴𝐶𝐺 +		∆% 	x		𝐶𝐺⌉		

After finding the average frequent itemsets to be allocated to each site, from site

list 𝑆′ arranged in the order of their number of transactions, the assignment of polling sites

to the frequent itemsets is done in this order by assigning upper integer value of average

candidate set plus load difference. Assignment continues till the entire candidate set

exhausted. This way the highly loaded sites are assigned nil or very little number of locally

large itemsets for finding globally large itemsets. This technique assigns the load inversely

proportional to the site load and hence balance the load of polling station.

 45

Example :

Let there be five sites 𝑆!, 𝑆", 	𝑆-,	𝑆/,𝑆5 having transactions 10% , 15%, 20%, 25% and 30%

of the total transactions respectively. The frequent itensets sent by sites 𝑆!{	1, 4, },

𝑆"{2, 4	6, }, 	𝑆-{3, 8, 17, 16	}, 		𝑆/{12, 17, 1, 18	}, 		𝑆5{2, 8, 19,11}.	 Applying SBA

technique, the ordered candidate set is {1, 2, 3, 4, 6, 8, 11,12, 16, 17, 18,19	} with 12

locally large itemsets and ordered site set is {𝑆!, 𝑆", 	𝑆-,	𝑆/,	𝑆5} with average transactions

20% as there are 5 sites.

The load difference at S1 is 10% so local frequent itemsets to be assigned to site S1 is

ceiling integer j!"
5
+ !0

!00
	x	12	k = 4 i.e. { 1, 2, 3, 4} items

Similarly assignment to S2 is: ceiling integer j!"
5
+ 5

!00
	x	12	k = 3 i.e. {6, 8, 11} items

Assignment to S3 is : ceiling integer j!"
5
+ 0

!00
	x	12	k = 3 i.e. {12, 16, 17} items

Assignment to S4 is : ceiling integer j!"
5
+ *5

!00
	x	12	k = 2.	i.e.{18, 19} items

Assignment to S5 is : Zero items as candidate list exhausts.

The sites with small data partition or with little number of transactions are not fully

occupied. These sites have less processing scan and memory needs, as compared to the

sites with more transactions. Proposed SBA technique assigns load inversely proportional

to the site occupancy by considering the partition size and balances the load.

3.8 COMPARISON METRICS

The proposed algorithms are compared with the popular distributed data mining

algorithms FDM [23] and PFIN [19]. FDM is one of the most popular distributed data

mining algorithm and the PFIN is parallel algorithm using nodeset data structure and

performed better as compared with FIN and PFP two latest algorithms where FIN is

 46

sequential algorithm using nodeset data structure and PFP is parallel FP-Growth[34]

algorithm.

Experiments are performed on a cluster of 4, 5 and 6 nodes connected with LAN,

using Intel i5, 64 bit processor running @ 3.3 GHz with 6 GB RAM, 1 TB HDD, running

on windows 10 OS, having Java JDK 1.7.

Functionality and performance of the algorithms are tested on four datasets

including three real datasets mushroom, connect, chess and one synthetic dataset

T10I4D100K. These datasets are available for research on data mining on the FIMI data

repository (http://fimi.ua.ac.be) [30]. Mushroom dataset is created using attributes like

shape, surface, colour, order, cap etc of 23 species of gilled mushrooms, connect and chess

datasets are generated from different game steps, and T10I4D100K is a synthetic dataset

generated using the IBM Quest generator. Datasets specifications are given in Table 3.2.

Table 3.2 Datasets and their specifications

Dataset Total Trans. Number of Items Average Length Type File Size

Mushroom 8124 119 23 Dense 570 KB

Connect 67557 129 43 Dense 9.3 MB

Chess 3196 75 37 Dense 342 KB

T10I4D100K 1,00,000 1000 40 Sparse 4 MB

Support threshold values (in percentage) taken for study

Mushroom 10, 20, 30, 40, 50 and 60.

Connect 10, 20, 30, 40, 50 and 60.

Chess 10, 15, 20, 23, 30, and 35.

 47

T10I4D100K 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6

3.9 SUMMARY

This chapter explains the methodology used in the development of algorithms and

application model in the area of distributed association rule mining. The chapter first gives

the assumptions taken in development of the algorithms. Then it introduces the DARM

process and explains the steps involved in the process. It then, describes the no-

broadcasting technique for reducing the load on the communication network, and

candidate set reduction by pruning techniques for finding the global frequent itemsets. The

data structure used at each site is explained in detail. New techniques zero-first which

allocates more polling sites to the sites with little number of candidates, is explained in

detail. Another technique size-based assignment of the polling sites for assigning load to

the less loaded sites is explained with an appropriate examples.

 48

4 QUICK DISTRIBUTED FREQUENT ITEMSET

MINING USING NODESET

In this chapter, new algorithm Quick Distributed Frequent Itemset Mining using

Nodeset (QDFIN) is proposed which uses efficient data structure nodeset at each site and

construct POC-tree [85]. It uses local and global pruning technique to reduce the candidate

sets and zero-first technique for assigning polling site for load balancing. Assignment of

globally large itemsets computation to the less loaded sites increase the computational

capacity.

4.1 PROPOSED ALGORITHMS

Symbol Description[23]

s - Support threshold min-sup;

D - Number of transactions in database;

𝐿(− Globally large k-itemsets;

Z.sup - Global support count of Z;

𝐶𝐴(− Candidate sets generated from 𝐿(;

𝐷% - Number of transactions in 𝐷𝐵%;

𝐺𝐿%(() – globally large k-itemsets at 𝑆%;

𝐶𝐺%(() - Candidate sets produced by FIN algorithm;

𝐿𝐿%(() - Locally large k-itemsets in 𝐶𝐺%(();

𝑍. 𝑠𝑢𝑝% − Local support count of Z at 𝑆%

𝐿𝑃%(() – Local pruning k-itemset at site 𝑆% 	

 49

Based on the definition of POC tree given in section 3.2.1 of chapter 3, POC

construction algorithm -1 is given below. The nodeset data structure using POC tree is

used by each node for storing the frequent itemsets created for each data partition available

at each node using the FIN algorithm proposed by Zhi-Hong et. al. [85]. The FIN algorithm

is given below algorithm-2. Algorithm – 3 is the proposed algorithm of the zero-first

technique for the assignment of frequent itemsets to the polling sites for generating the

global frequent itemsets. Finally Algorithm - 4 is the proposed QDFIN algorithm for

finding association rules in distributed data.

Algorithm - 4.1: POC-tree Construction

Input: A database partition and a minimum support s.

Output: A POC-tree and frequent 1-itemset F1 (the set of frequent 1-itemsets).

1. [Frequent 1-itemsets Generation]

Scan the data partition to find 1-termset and support count as per min-sup s

Arrange 1-itemset as per support count in descending order

2. [POC Tree]

Create the root of a POC-tree labelled as ‘‘null’’ For each transaction in data partition

do Select the FI and arrange them according to F1.

Call insert tree. If Tree has a child M such that M.item-name = item-name, then

increase M’s count by 1; Otherwise create a new node M, with its count set to 1, and

add it to Tree children-list. If list is nonempty, call insert tree recursively.

3. [Pre-code Generation]

Scan the POC-tree to generate the pre-order of each node by

the pre-order traversal.

	

 50

Algorithm - 4.2 : FIN

 51

Algorithm – 4.3: Zero-First Technique

𝐈𝐧𝐩𝐮𝐭:	size − k	locally	large	itemsets	and	broadcasting	site	list

𝐒6(i = 1,2, … n)		

𝐎𝐮𝐭𝐩𝐮𝐭:	polling	site	list	for	size −k itemset.

1. for	all	site

2. if	candidate	set	by	sites	are	different	size	C7

3. arrange	the	sites	in	order	of	the	number	of	

 locally	large	itemset	broadcasted	Si

4. remove	the	sites	from	list	with	max. number

of	locally	large	itemset	broadcasted	LL6(7)

5. for	all		locally	large	itemsets

6. arrange	in	order	removing	duplicates	LL6(7)

7. for	all	ordered	candidates

8. assign	the	polling	site	in	zero − first	order

9. if	candidate	set	exausited

10. return	polling	site	list	for	k − candidate	set

11. else	

12. repeat	the	same	order	of	sites	and	

continue	assignment

Algorithm- 4.4 : QDFIN

𝐈𝐧𝐩𝐮𝐭:	Partitioned		database	DB6(i = 1,2, … n)		

𝐎𝐮𝐭𝐩𝐮𝐭:	L:	set	of	all	globally	large	itemsets.

𝐌𝐞𝐭𝐡𝐨𝐝: Execute	the	code	for	all	k − itemsets	at	all	sites,

starting	from	k = 1	th	size	greater	than	1

1) for	all	sites

2) for	k = 1	

3) find	the	support	count	T6(!)

4) construct	the	POC	tree	using	POC	FIN	algo

5) for	k > 1

 52

6) 	find	the	size − 2	itemset	usin	FIN	algo

7) (scan	the	POC	to	find	size − 2	itemset)	

8) for	all	itemsets	Z	belongs	to	frequent	itemsets	T6(7)

9) if	support	count	is	locally	large	then	

10) for	all	nodes	

11) insert	itemset	into	locally	large	list		LL6(7)

12) broadcast	to	all	sites

13) for	all	sites

14) for	all	itemsets	Z	belongs	to	locally	large	LL6(7)

15) insert	itemset	into	local	pruning	set

16) using	Zero − first, get	the	list	of	polling	sites

17) for	all	sites, 	

18) send	locally	large	LL6(7)	to	polling	site	S8

19) for	all	itemsets	Z	belong	to	local	pruning	LP

20) send	polling	request	for	itemset	Z	to	all	sites	

21) all	sites	reply	polling	request	from		�T6(7)�

22) send	support	counts	Z. sup8

23) for	all	itemsets	Z	in	the	polling	set	LP6(7)	

24) receive	support	count	Z. sup8	from	all	sites

25) for	all	the	itemsets

26) calculate	global	support	Z. sup by

sumup	of	all	local	support		where

27) if	Z. Sup > the	global	support	threshold

28) Add	toglobal	frequent	itemset	G6(7)

29) broadcast	global	frequent	itemset	G6(7)	;

30) if(k = 1)		remove_infrequent(DB6);

31) Generate	set	of	all	globally	large	itemsets

32) return	globally	large	k − itemset	L(7) for generation of frequent itemset for next

iteration

 53

The steps in the algorithm are explained below:

(i) Database 𝐷𝐵% for all partitions are scanned, local counts for all items of size-1 are

found and POC-tree is constructed using FIN algorithm[85]. This is responsible to

generate candidate set 𝐶𝐺%(() at all sites locally. If k>1 in the next pass, it uses POC-

tree to find the candidate sets using FIN algorithm. If 𝐶𝐺%(() is empty, no k size

itemsets are found then the process stops. (line 1-6)

(ii) At all the sites, locally large itemsets of size-k are found by local pruning where the

count is more than the minimum local support threshold ‘s’ and generate the locally

large 𝐿𝐿%(() itemset for broadcast.

The locally large itemset 𝐿𝐿%(() by all the sites are broadcasted to all other sites. This

information is used for finding the globally large itemsets. (line 7-15)

(iii) Zero-first algorithm receives list of sites and locally large items communicated by

each site. It returns the list of all polling sites for size-k locally large itemsets 𝐿𝐿%(()

which is communicated to all the sites 𝑆% by the coordinating site. (line 16-20)

(iv) Polling sites store the itemsets in 𝐿𝑃%(() and store the list of sites and itemsets

Z.large_sites. The polling sites 𝑆% receive these local frequent items 𝐿𝐿%((). All other

sites send the support counts of itemsets to the polling sites. (line 21-24)

(v) At the polling sites after receiving all counts, computes the global counts for locally

large items 𝐿𝐿%((). Then the global count of each itemset is compared with the

minimum support count condition to find the global large itemsets. The globally

large itemsets are stored in 𝐺%(() and broadcasted to all other sites. (line 25-29)

(vi) A home site receives the frequent itemsets. If it is the first pass, then the dataset is

updated. All the infrequent itemset of size-1 are removed from the database. A final

set of global large itemsets are returned. To find the 2-itemset, all local large itemsets

having size greater than 1, repeat the process step 1. Remove all infrequent items

having count less than minimum the globally large size-1 items. The POC-tree is

scanned. This generates the 2-itemset and nodeset structure and so on. These local

large itemsets are sent to respective polling sites. (line 30-32).

 54

4.1.1 Efficiency of Local Frequent Mining

All the sites use efficient Nodeset data structure[85] to find locally large itemsets

and create an efficient POC-tree. All the frequent 1-itemsets are stored in the POC tree.

For finding frequent 2-itemsets and nodeset the POC tree is scanned. Then delete the

infrequent itemsets and initialize the nodesets of all frequent 2-itemsets by null. Using the

preorder traversal, generate the nodesets of all frequent 2-itemsets. Then the same

procedure is used to generate the frequent-k itemsets. This reduces the number of database

scans and improves the performance. The nodeset is an efficient data structure, this helps

in further reducing the scan time. Table 3.1 is the part of the transaction database for size-

1 items. Figure 3.3 shows the POC tree construction for the data.

4.1.2 Distributed Database and Resources

Database is distributed across the globe amongst different sites {𝑆!, 𝑆", … , 𝑆$} so

called distributed database DBi. Each site finds the local frequent itemset at each site LLi.

Each site is being used and gives throughput, overall throughput is proportional to the

number of nodes or sites. There is a trade-off between the communication load for

processing throughput in order to get the best performance out of the setup depending of

number of sites. There is not only one centralized site which processes and finds the

frequent itemsets but all sites behave as home as well as poling site. Sites have small data

portion only and used for finding local FI. It takes less time to scan and create nodeset,

also less capabilities and memory to process the small data as compared to sites with large

data. These nodes are under-utilized. Zero-first technique takes care of the highly loaded

sites and assign polling first to less loaded sites for generating the globally large itemsets.

It is a good load balancing technique which utilizes the less loaded sites by effective use

 55

of resources. All the sites are involved in processing the support count and finding the

global frequent itemsets for a specific local large itemset hereby reducing the load to find

global frequent itemset on one centralized site. In this algorithm all sites participate in the

process of the local and them global frequent itemsets and good amount of parallelism is

achieved.

4.1.3 Communication Load Reduction

At each site, there is a process of pruning which reduces the size of the candidate

sets. Whenever any site finds the candidate sets of frequent itemsets, if it is not locally

large to that particular site, that site remove that itemset from the candidate set by the

means of local pruning. If frequent size-2 itemset at site -2 {ab, ac, bf, cf}. After pruning

itemsets having support count less than the minimum support threshold say {cf, bf} are

removed from the candidate sets. The remaining candidate sets {ab, bc} communicated to

all other sites. The pruning process reduces the number of candidate sets drastically hence

reduce the load on the network and communication cost. After finding the global counts

of the candidate sets, global pruning also reduces the load on the communication load.

This process makes it network efficient algorithm as small set of data is being

communicated to all sites.

4.2 EXPERIMENTAL EVALUATION

This section deals with the environments used to evaluate the performance of the

proposed algorithm by comparing it with the popular distributed data mining algorithms

FDM [23] and PFIN [19].

 56

4.2.1 Experimental setup

In the experiments, real dataset mushroom is used, which is often used by many

researchers in study of frequent itemset mining, for testing the performance of algorithms.

The specifications of the mushroom dataset are given in Table 4.1.

Table 4.1 Specifications of Mushroom Dataset

Dataset Total Trans. Number of Items Average Length Type File Size

Mushroom 8124 119 23 Dense 570 KB

The dataset mushroom is divided horizontally on 4, 5 and 6 nodes. Two

experiments are performed, one on uniform data partition sizes at each site and another on

varying data partition sizes, given in Table 4.2 and 4.3.

Experiment-1: Uniform data partitions sizes

Table 4.2 Uniform Data Partition sizes at different sites

No. of Nodes DB1 DB2 DB3 DB4 DB5 DB6

4 2030 2030 2030 2034

5 1625 1625 1625 1625 1624

6 1350 1350 1350 1350 1350 1374

Experiment-2: Varying data partition sizes

Table 4.3 Varying data partition sizes at different sites

No. of Nodes DB1 DB2 DB3 DB4 DB5 DB6

4 812 1625 2437 3250

5 406 1219 1625 2031 2843

6 244 731 1137 1544 2031 2437

 57

4.3 PERFORMANCE ANALYSIS

The proposed algorithm QDFIN is compared with FDM and PFIN(Parallel

FIN)[19] algorithms on the basis of execution time. In the proposed algorithm, all sites

participate in the processing giving better throughput and pruning technique reduces the

number of candidate sets resulting low communication overhead. It assigns the polling site

using new presented technique zero-first which further reduces load on the fully occupied

sites. At each site an efficient data structure nodeset based on POC-tree[85] is used which

reduces number of data scans and hence improve the performance by reducing the data

access time.

The algorithms are run on Mushroom dataset with minimum supports thresholds

of 10, 20, 30, 40, 50, and 60 percent. Experiments are done on 4, 5, and 6 nodes setups

and are compared on the basis of execution time.

The data scan in FDM algorithm is high and its scan the local database at each site

in every pass for finding support count for k-itemsets, where k = 1,2,….n. The data scan

in PFIN and QDFIN algorithms is only once at the beginning for k=1 and they construct

POC tree. Once the tree is constructed, these algorithms scan the tree to find higher order

itemsets for k>1 and saves the time to scan the database partitions stored at various sites

again and improves the performance as compared to FDM algorithm.

4.3.1 Comparison on Uniform Data Partition Size

In the first experiment where each site is having uniform data partitions size,

QDFIN performs better in all 4, 5, and 6 node setups shown in Figures 4.1 - 4.3 and their

execution time are given in Table 4.4 – 4.6.

 58

Table 4.4 Execution time on uniform partition size on 4 nodes (seconds)

Min.Support QDFIN FDM PFIN

10 55.01 67.97 57.03

20 43.05 52.50 45.92

30 35.75 41.95 37.08

40 29.60 33.70 31.11

50 25.45 28.35 26.40

60 22.55 25.65 22.75

Figure 4.1 Execution time on uniform partition size on 4 nodes

Table 4.5 Execution time on uniform partition size on 5 nodes (seconds)

Min.Support QDFIN FDM PFIN

10 32.11 44.02 37.04
20 25.20 33.35 28.73
30 22.14 27.25 24.35
40 19.07 22.80 21.05
50 16.65 20.19 18.11
60 15.10 18.25 16.50

 59

Figure 4.2 Execution time on uniform partition size on 5 nodes

Table 4.6 Execution time on uniform partition size on 6 nodes (seconds)

Min.Support QDFIN FDM PFIN

10 19.18 30.12 24.04

20 16.13 23.23 19.45

30 13.21 19.01 15.90

40 10.89 15.98 13.37

50 9.82 14.50 11.76

60 9.02 13.02 10.60

Figure 4.1 shows in 4-node setup, execution time of QDFIN is close to the

execution time of PFIN algorithm as both the algorithm use nodesets data structure for

finding locally large itemsets, which reduces the scan time. But it performs better than the

FDM algorithm. In the 4-node setup all the sites are producing candidate sets and the

advantage of the zero-first technique is very small. The same algorithms are also compared

in the 5-nodes and 6-nodes setups. Figures 4.2 and 4.3 show that the proposed algorithm

QDFIN performs better in 5 nodes. It further improves in 6-node setup as with the increase

 60

of number of nodes, number of locally large k-itemsets further reduces with the increase

of k. It makes some imbalance in the sites in broadcasting the number of candidate sets

where some sites become less occupied or free. The zero-first technique assigns the polling

site in order of their occupancy for finding globally large itemsets. Figures 4.2 and 4.3

shows the same effect where the performance of the QDFIN is better than the other

algorithms.

Figure 4.3 Execution time on uniform partition size on 6 nodes

4.3.2 Comparison on Varying Data Partition Size

In the second experiment, same algorithms are compared with varying size of the

data partitions on various sites. Tables 4.7-4.9 shows the execution time of all algorithms.

Figures 4.4, 4.5, and 4.6 show that the performance of the QDFIN is best in all three setups.

 61

Table 4.7 Execution time on varying partition size on 4 nodes (seconds)

Min.Support QDFIN FDM PFIN

10 41.02 94.13 61.90

20 31.89 65.63 45.48

30 26.48 52.44 37.86

40 21.93 42.13 30.00

50 18.85 35.44 25.14

60 16.70 32.06 21.67

Figure 4.4 Execution time on varying partition size on 4 nodes

Table 4.8 Execution time on varying partition size on 5 nodes (seconds)

Min. Support QDFIN FDM PFIN

10 18.53 52.00 34.77

20 14.12 39.02 26.19

30 12.12 30.96 22.12

40 10.88 26.08 19.14

50 9.79 21.89 16.45

60 8.88 19.00 14.32

 62

The time performance of QDFIN is much better due to the reason of load

balancing. As the data size available at all nodes differ, implies that number of transactions

differ. The sites with fewer number of transactions produces small candidate sets, takes

less time to scan the data, use lesser memory, less processing required. QDFIN takes the

advantage of the load differences and assigns less loaded sites first as polling site. Some

sites have large number of transactions takes more time and processing capabilities to scan,

store the data and generate more candidate sets and are highly busy.

Figure 4.5 Execution time on varying partition size on 5 nodes

The zero-first technique of the proposed algorithm excludes these busy sites from

the polling site list. Number of sites increases in Figures 4.5, 4.6 and the difference in

number of candidate sets generated by different sites also increase. Some of the sites

generate no candidate sets even for k=1 or k=2, this imbalance further increase in case of

6-node setup as shown in Figure 4.6. It directly effects the load balance, which makes

QDFIN best amongst the all three algorithms. The performance difference as compared to

 63

FDM is even more due to the efficient data structure nodeset is used in QDFIN. It is also

observed that with low minimum support threshold say 10%, 20%, high number of

frequent itemsets are generated and all algorithms take more time and QDFIN performs

better due to the difference of candidate set generations amongst each site. The time

performance difference reduces for higher minimum support threshold 50%, 60% because

smaller number of candidate sets are generated, even some sites generate zero frequent

itemsets and QDFIN performs better by load balancing.

Table 4.9 Execution time on varying partition size on 6 nodes (seconds)

Min.Support QDFIN FDM PFIN

10 11.00 40.09 0.26

20 8.37 28.93 19.45

30 6.97 23.11 15.91

40 6.14 17.97 13.40

50 5.51 16.01 11.75

60 4.91 15.06 10.60

Figure 4.6 Execution time on varying partition size on 6 nodes

 64

QDFIN performs best in lower as well as higher minimum support count in both

the experiments i.e. with varying or uniform size data partitions in all three setups 4, 5,

and 6 nodes as compared to the PFIN and FDM algorithms. It also shows that with the

increase of the number of nodes or decrease in the minimum support threshold QDFIN

outperforms other similar algorithms specially in varying data size. The size of data has

impact on the execution time[57]. It uses the advantages of the POC-tree and nodeset data

structure locally by saving scan time, pruning in reducing communication load and zero-

first technique for load balancing.

4.4 SUMMARY

New algorithm QDFIN for varying data partition size for DARM is proposed in

this chapter. New efficient data structure nodeset[85] is used in the proposed QDFIN

algorithm to generate the frequent itemsets at each site, scan dataset once, reduce

communication load by pruning and balance the load on sites by zero-first technique. The

algorithm performance evaluation is done on 4-nodes, 5-nodes, and 6-nodes setup with

different support threshold. Two experiments are performed, one with uniform and other

with non-uniform data partition sizes available on different sites. The performance of the

proposed algorithm is compared with similar latest algorithms FDM and PFIN[19]. It

outperforms the other algorithms in both the experiments.

 65

5 SIZE BASED DISTRIBUTED ASSOCIATION RULE

MINING

This chapter discusses the Size Based Distributed Association Rule Mining

(SBDARM) algorithm. It uses a novel technique of size based assignment (SBA) of

polling site for finding globally large itemsets based on the data size available at each site.

Globally large itemsets are found by sites which are less occupied hence increase the

overall computational capabilities and improve the performance. It uses local as well as

global pruning to reduce the candidate sets. There is no-broadcasting of candidate sets

which further reduces the load on the communication network.

5.1 PROPOSED ALGORITHMS

Symbol Description [23]

s – minimum Support;

D - Total transactions;

𝐿(− Globally large k-itemsets;

Z.sup - Global support count of Z;

𝐶𝐴(− Candidate sets size k;

𝐷% - transactions in partition 𝑆%;

𝐺𝐿%(() – globally large itemset size k at 𝑆%;

𝐶𝐺%(() - Candidate sets size k at site 𝑆%;

𝐿𝐿%(() - Locally large size-k itemsets in 𝐶𝐺%(();

𝑍. 𝑠𝑢𝑝% − Local support count of 𝑍	𝑎𝑡	𝑆%

𝐿𝑃%(() – Local pruning k-itemset at site 𝑆% 	

 66

Algorithm-5.1: Size Based Assignment Technique (SBA)

Input: Locally large k-itemsets from each site CG6 and data size of all sites

	𝐒6(i = 1,2, … n)		

Output: Assigned Polling sites list

1. if	k = 1	itemsets

2. for	all	site

3. find	the	average	number	of	transactions	each	site	in	percentage	AT

4. Compute	the	transaction	size	at	each	site		Si	in	percentage	PSi

5. Load	difference	at	site	in		Si	in	percent	∆6

6. for	all		locally	large	itemsets

7. arrange	in	order	removing	duplicates	LL6(7)	

8. 						compute	the	average	candidate	sets	per	site	in	percentage	ACG

9. for	all	sites	

10. for	all	ordered	candidates

11. assign	the	polling	site	in	size	based	assignment

									average	candidates	sets	plus	load	difference	in	percent

12. broadcast	the	polling	site	list	for	k − candidate	sets

Algorithm- 5.2 : Size Based Distributed Association Rule Mining (SBDARM)

Input: database DB6	(i = 1,2, … n)		

Output: Globally large itemsets.

Method: Running algorithm for all k-itemsets for k=1..n, on all partitions

1. for	all	sites

2. for	k = 1	

3. 		find	the	support	count	T6(!)

4. 		construct	the	POC	tree	using	POC	FIN	algorithm

5. for	k > 1

6. 		find	the	size − 2	itemset	usin	FIN	algo

7. 	(scan	the	POC	to	find	size − 2	itemset)	

8. for	all	itemsets	Z	belongs	to	k − 	itemsets

9. 				T6(7)generate	local	pruning	list

 67

10. if	support	count	is	locally	large	then	

11. 		for	all	sites	

12. 					insert	itemset	into	locally	large	list		LL6(7)	for	all	sites

13. communicate	locally	large	list		LL6(7)and	data	size	

						to	coordinating	site	for	assignment	of	polling	site	

14. for	coordinating	site	call	SBA	get	list	of	polling	sites	

15. for	all	sites, 	

16. 			send	locally	large	LL6(7)	to	polling	site	S8

17. for	all	itemsets	Z	belong	to	local	pruning	LP

18. 		send	polling	request	for	itemset	Z	to	all	sites	

19. all	sites	reply	polling	request	from		�T6(7)�

20. 		send	support	counts	Z. sup8

21. for	all	itemsets	Z	in	the	polling	set	LP6(7)	

22. 			receive	support	count	Z. sup8	from	all	sites

23. for	all	the	itemsets

24. 			calculate	global	support	Z. sup by 	sumup	of	all	local	support		where

25. if	Z. Sup > the	global	support	threshold

26. 			Add	to	global	frequent	itemset	G6(7)

27. broadcast	global	frequent	itemset	G6(7)	;

28. if(k = 1)		remove_infrequent(DB6);

29. Generate	set	of	all	globally	large	itemsets

30. return	globally	large	k − itemset	L(7)

The steps are discussed below:

(i) Database 𝐷𝐵% at all sites are scanned, local size 1 itemsets are found and POC tree

is created. For k>1 local itemsets are found using FIN and nodesets by reverse scan

of POC tree. This generates locally itemsets and nodeset structure from all

partitions (line 1-7)

 68

(ii) Local pruning is done to generate candidate sets, locally large k-itemsets

𝐿𝐿%(()	having the count greater than the minimum support threshold. (line 8-12)

(iii) The locally large itemset 𝐿𝐿%(() are communicated to the site which assigns the

polling sites to the locally large itemsets. Size based assignment algorithm receives

list of sites with number of transactions and locally frequent items communicated

by each node. SBT communicates the list of polling sites for locally large k-sized

itemsets 𝐿𝐿%(() sites 𝑆%.(line 13-14, call algorithm 1)

(iv) All the sites 𝑆% send the local counts for the locally large items 𝐿𝐿%(()	to the polling

sites assigned in the last step. Polling sites store all information about the itemsets

in 𝐿𝑃%(() and Z.large_sites. (line 15-20)

(v) Each Polling site receives counts, computes global counts for assigned locally large

itemsets 𝐿𝐿%((). It generates the global large itemset, stores in 𝐺%(() after removing

the itemsets having counts less than the support threshold value. Then globally

large itemsets are communicated to all sites. (line 21-27)

(vi) All home site receives the global frequent itemsets, update and remove all

infrequent 1-itemset. In the next pass home sites find the 2-itemset, i.e., locally

large size k (k =2…n), repeat the process. Remove all infrequent k-itemsets. (line

28-30)

5.1.1 Efficiency at Each Site

There are n number of sites {𝑆!, 𝑆", … , 𝑆$} where database is partitioned and stored,

called distributed database DBi. Sites generate the local frequent k-itemset (k= 1..n) using

efficient algorithm. Polling sites are assigned on the basis of the data partition size, where

site with less number of transactions are assigned more local frequent itemsets for finding

 69

global frequent itemsets and sites handling bigger partition size are assigned less workload

considering the number of transactions at each site. Sites with small data sizes use less

memory, capabilities etc in handling the data, so less occupied and the same is taken care

by the proposed algorithm. Size based assignment technique is developed which considers

the load on each site while assigning the polling sites for finding the globally large

itemsets. It allocates less load to the sites have large data partition and more load to less

occupied sites with small data partition. The proposed technique is best for the unbalanced

data partitions for the effective use of the resources and balancing the load for finding the

globally large itemset using locally large itemset. This technique utilises all resources and

as all the sites participate as per their availability so there is no extra load on a centralized

or coordinating site and any other site in unbalanced way. This ensures a good amount of

parallelism in the real distributed database where centralized database has no control on

the partitions.

5.1.2 Low Communication Overhead

The algorithm also takes care of the load on the communication channel by

reducing the size of the candidate sets by pruning at each site. All the sites first find the

frequent itemsets and then through pruning process remove non frequent itemsets having

counts less than the required support counts to become eligible for communication and

may not be globally frequent.

Let frequent 2-itemset at site 3 be {ad, eg, jg, ht }. After applying pruning process,

removing not eligible itemsets where support count is less than the minimum support

threshold i.e. {ad, jg} are removed. The reduced set {eg, ht } after pruning is

communicated to the site for the assignment of polling sites. The technique reduces the

 70

size of the candidates sets to half and reduces the communication overhead. The algorithm

uses no-broadcasting technique where all sites send candidate sets to the coordinating site

for polling site assignment, in place of broadcasting it to all sites. If reduces the number of

candidate set communication to O(n) messages and hence there is less load on the

communication network. This technique is network efficient with reduced size of the data

communicated.

5.2 EXPERIMENTAL EVALUATION

This section deals with the environments used to evaluate the performance of the

proposed algorithm SBDARM by comparing it with the distributed data mining algorithms

FDM [23] and PFIN [19].

5.2.1 Experimental setup

Functionality and performance of the algorithms are tested on four datasets

including three real datasets mushroom, connect, chess and one synthetic dataset

T10I4D100K. Datasets specifications are given in Table 5.1.

Table 5.1 Specifications of datasets used

Dataset Total Trans. Number of Items Average Length Type File Size

Mushroom 8124 119 23 Dense 570 KB

Connect 67557 129 43 Dense 9.3 MB

Chess 3196 75 37 Dense 342 KB

T10I4D100K 1,00,000 1000 40 Sparse 4 MB

 71

Experiments are performed on a cluster of five nodes connected with LAN, using

Intel i5 64 bit processor running @ 3.3 GHz with 6 GB RAM, 1 TB HDD, running on

windows 10 OS, having Java JDK 1.7. Database is partitioned and stored at five nodes

with varying size. Data partitions distributed to each site are based on number of

transactions, shown in Table 5.2.

Table 5.2 Details of the data partitions available at different sites for different datasets

 Partition Size Mushroom Connect Chess T10I4D100K

DB1 10% 812 6756 320 10000

DB2 15% 1219 10134 479 15000

DB3 20% 1625 13511 639 20000

DB4 25% 2031 16889 799 25000

DB5 30% 2437 20267 959 30000

Total 100% 8124 67557 3196 100000

5.3 PERFORMANCE ANALYSIS

The new proposed algorithm SBDARM implemented and executed for execution

time performance comparison with some of the existing algorithms FDM and PFIN. In the

experiments, algorithms are compared on execution time where sites have varying data

sizes of the data partitions shown in Table 5.2. In the first experiment all algorithms are

executed on dataset mushroom with varying minimum support threshold values i.e. 10%,

20%, 30%, 40%, 50%, and 60%. Table 5.3 shows the local frequent 1-itemsets generated

at each site on the mushroom datasets. Similarly in the second experiment these are run on

connect dataset with same minimum support threshold 10%, to 60%. Third experiment is

performed on chess dataset with 10%, 15%, 20%, 25%, 30%, 35% minimum support

 72

threshold. Lastly on T10I4D100K dataset with minimum support threshold 0.1%, 0.2%,

0.3%, 0.4%, 0.5%, and 0.6%. The local frequent 1-temsets generated by the proposed

algorithm at each site on connect, chess and T10I4D100K datasets are shown in Table 5.4,

5.5 and 5.6 respectively.

The SBDARM algorithm effectively uses the resources at all the sites, reduces the

local load and communication load. It gives best throughput by using pruning techniques

for reducing candidate sets for communication along with the size based assignment

technique. There is no-broadcasting of frequent itemsets by all the sites rather all sites

communicate the frequent itemsets to one coordinating site for the assignment of the

polling site. The frequent itemset message exchange in proposed algorithm by n nodes to

one coordinating node n x 1 i.e. O(n) whereas in other algorithms its n nodes sending to n

nodes, so n x n which is O(n2). This reduces the number of messages and hence load on

the communication network. The number of data scans performed by the proposed

algorithm and PFIN algorithm is only once whereas database is scanned in every pass in

FDM hence effect the performance due to delay in I/O operations.

5.3.1 Generating Local Itemsets

Table 5.3 Local frequent 1-itemsets generated at each partition on Mushroom dataset

 ---------------- Support Count Threshold (%) -------------------

Partition 10 20 30 40 50 60

DB1 44 34 26 19 16 12

DB2 48 37 30 25 18 14

DB3 39 37 26 23 17 15

DB4 51 38 27 20 18 13

DB5 50 41 31 22 19 14

 73

Table 5.4 Local frequent 1-itemsets generated at each partition on Connect dataset

 ----- Support Count Threshold (%) ------

Partition 10 20 30 40 50 60

DB1 66 54 46 40 35 33

DB2 69 56 46 43 38 35

DB3 69 57 47 42 40 38

DB4 68 56 49 42 37 37

DB5 70 56 46 43 40 36

Table 5.5 Local frequent 1-itemsets generated at each partition on Chess dataset

 ----- Support Count Threshold (%) -----

Partition 10 15 20 25 30 35

DB1 52 50 47 46 44 42

DB2 52 50 48 46 42 41

DB3 55 53 48 46 44 41

DB4 61 58 58 53 50 43

DB5 66 57 54 52 51 49

Table 5.6 Local frequent 1-itemsets generated at each partition on T10I4D100K dataset

 ---- Support Count Threshold (%) ------

Partition 0.1 0.2 0.3 0.4 0.5 0.6

DB1 789 736 682 621 559 513

DB2 793 742 684 630 559 516

DB3 798 740 689 633 563 520

DB4 794 738 691 625 566 515

DB5 794 743 690 628 562 519

The frequent itemsets are sent to one coordinating site only using no-broadcast

technique for the assignment of the polling sites. In the proposed algorithm the polling site

 74

assignment is done using size based assignment technique.

5.3.2 Polling sites assignment

Table 5.7-5.10 show that the local frequent 1-itemsets assignment of polling site

for finding the global frequent itemsets by the SBDARM algorithm. The same process is

repeated for k-itemsets for all k>1. This assignments balance the load on the sites as it

allocates the load for finding the global frequent itemsets i.e. assignment of polling sites

inversely proportional to the partition sizes on sites. In the other two algorithms the

assignments are not based on the size of the partition rather using some hash function or

count distribution. The assignment in FDM and PFIN increases the load on the already

occupied sites and load balancing is poor. This size based assignment technique is

effective in the distributed data environment with varied data size and it reduces the overall

time of execution and improves the performance.

Table 5.7 Pruning sites assignment by SBDARM to local frequent 1-itemsets on
Mushroom dataset

 ---- Support Count Threshold (%) ------

Partition 10 20 30 40 50 60

DB1 18 14 10 9 6 6

DB2 15 12 8 7 5 5

DB3 12 9 7 6 4 4

DB4 9 7 5 5 3 3

DB5 5 3 2 0 2 0

Total 59 45 32 27 20 17

Globally Large 56 43 28 21 13 8

 75

Table 5.8 Pruning sites assignment by SBDARM to local frequent 1-itemsets on

Connect dataset

 ---------- Support Count Threshold (%) ---------

Partition 10 20 30 40 50 60

DB1 23 19 15 14 14 13

DB2 19 16 13 12 11 11

DB3 15 13 10 9 9 9

DB4 12 10 8 7 7 7

DB5 6 5 4 3 3 1

Total 75 63 50 45 44 41

Globally Large 73 59 46 41 38 36

Table 5.9 Pruning sites assignment by SBDARM to local frequent 1-itemsets on

Chess dataset

 ------ Support Count Threshold (%) ------

Partition 10 15 20 25 30 35

DB1 21 19 18 17 17 17

DB2 17 16 15 14 14 14

DB3 14 13 12 12 12 11

DB4 11 10 9 9 9 9

DB5 5 4 6 4 4 3

Total 68 62 60 56 56 54

Globally Large 61 57 54 51 50 45

 76

Table 5.10 Pruning sites assignment by SBDARM to local frequent 1-itemsets on

T10I4D100K dataset

 -------------- Support Count Threshold (%) -------------

Partition 0.1 0.2 0.3 0.4 0.5 0.6

DB1 240 223 209 189 172 157

DB2 200 186 174 158 143 131

DB3 160 149 140 126 115 105

DB4 120 112 105 95 86 79

DB5 80 73 68 62 55 50

Total 800 743 696 630 571 522

Globally Large 796 740 691 628 568 516

5.3.3 Discussion

Figures 5.1 – 5.4 show that the performance of the proposed algorithm on all four

datasets outperforms the other two algorithms in time execution. The time performance of

SBDARM is best due to the load balancing amongst the sites. Number of transactions at

each site differ means the resource utilization also differs. The sites with more number of

transactions takes more time for data scan, use more memory, and more processing and

pruning time. SBDARM utilises the load differences as edge over other algorithms by

assigning more load to less loaded sites as compared to highly loaded sites. Some sites

with less number of transactions, are having less load of processing, data scan, generate

less number of candidate sets and are comparatively less occupied. This is the best load

balancing at each site by the assignment of polling sites for finding global frequent itemset

inversely proportional to the data partition size available at each site. The number of local

frequent k-itemsets for k> 1, are further reduced and the SBA algorithm further balance

the load amongst the sites and gets performs better.

 77

Figure 5.1 Execution time on Mushroom dataset

Figure 5.2 Execution time on Connect dataset

 78

Figure 5.3 Execution time on Chess dataset

Figure 5.4 Execution time on T10I4D100K dataset

 79

With the increase of the support threshold less number of frequent itemsets are

generated and execution time of all the algorithms also reduce. The performance of the

proposed algorithm takes less time, although the time difference reduces as number of

global frequent itemsets also reduce. The difference in the performance is also due to the

reduced communication load, local pruning and no-broadcasting technique which reduces

the load on the network and reduces the time delay. In Figure 5.4 dataset used is sparse so

when value of k increases to 2,3,…n the number of frequent itemsets generated reduce,

therefore for low minimum support threshold, the execution time is not very high as

compared to the execution time for the high minimum support threshold for all the

algorithms.

The analysis shows that the proposed algorithm SBDARM performs best in low

and high minimum support threshold in all four comparisons with PFIN and FDM having

varying partition sizes. It shows SBDARM outperforms other two algorithms with low

minimum support threshold. It uses the advantages of the no-broadcasting by reducing

communication and size based assignment reducing load on heavy loaded sites and

pruning reducing candidate sets.

5.4 COMPARISON OF SBDARM AND QDFIN

Both the proposed algorithms are compared on two datasets Chess and

T10I4D100K. The assignment made by both use different techniques, QDFIN is based on

the number of candidate sets generated whereas SBDARM is based on data partition size

at each site and SBDARM also uses no broadcasting technique.

 80

Figure 5.5 Comparison of SBDARM and QDFIN on Chess dataset

Figure 5.6 Comparison of SBDARM and QDFIN on T10I40D400K dataset

5.4.1 Discussion

SBDARM performs slightly better than QDFIN. In QDFIN the difference in

polling site assignment is based on FI generated .i.e.. size of the candidate set, at each site.

The polling assignment difference between the sites is just one less for the less loaded

 81

sites. If the size of the candidate set is equal to the highest frequent itemsets generated by

any site then that site is not assigned any work. Sites with zero assignment may be more

than one, which increase load on other sites. Communication overhead is high in QDFIN

if FI are high. Whereas SBDARM allocates load based on the data size available and better

load balancing. Communication overhead differs in both the algorithms. In QDFIN all

sites broadcast FI to all other site whereas in SBDARM it is communicated to the

coordinating site only using no-broadcasting technique. In the sparse datasets, with high

support count, a small number of candidate sets are generated and low communication

overhead in both the algorithms.

5.5 SUMMARY

This chapter discusses the proposed algorithm SBDARM. The algorithm steps are

explained in detail. It is then implemented on four datasets and the results are compared

for different support count thresholds and discussed. The proposed algorithm performed

best amongst them due to low communication, load balancing and efficient data structure.

The algorithm SDDARM is them compared with the other proposed algorithm QDFIN

and found slightly better than QDFIN.

 82

6 APPLICATION MODEL – A CASE STUDY

DARM has many commercial applications and useful for the industry functioning

in different domains. Many application areas of mining are still not explored well like

Tourism industry. Tour and Travel companies would generally have separate branches

and data is generated at different branches and applying mining may help the travel

companies to improve their business. This chapter explains the application model

developed for the tour and travel company by finding the interesting association between

different parameters on the basis of the data generated by one such company. It analyses

the results and generates rules which may help the industry to use mining for promotion

and expanding of their business.

6.1 METHODOLOGY

6.1.1 Distributed Mining of Association Rules

Distributed association rule mining is mainly finding the globally large itemsets

from the distributed data for finding association rules. In the distributed data mining, data

Dsi (i=1,2,…,n) are created or gathered or generated at different sites Si (i=1,2,…,n). Let’s

assume, a virtual dataset DS = ∪Dsi, | Dsi | is the number of transactions in Dsi. | DS | is

the number of transactions in dataset, for any item A, A.sup is the support count of A in

DS, and A.supi is the support count of A in Dsi. Given an itemset A, if A.sup ≥ min sup×

| DS|, A is said to be globally frequent itemset; If A.supi ≥ minsup ×|Dsi |, where A is

locally frequent itemset on site S. After finding the local frequent itemsets in DARM,

global frequent itemsets are generated by merging them and then to find the confidence

 83

which generates the association rules.

6.1.2 Assumptions

• Database is not centralized rather partitioned and distributed amongst sites

• Data is created, gathered or captured at different sites or locations of the company

• Data sizes at various sites vary in size and number of transactions

• There is no centralized database and it is not required or feasible to store data at

one centralized location

• There is a coordinating unit having one or more processing units

• All sites participate in the mining process to improve the performance

6.1.3 Algorithm

1. At each site database is scanned to find each combination of parameters age group

and destination called itemset.

2. At each site, support count is calculated for each found combination in step 1.

3. Pruning of the itemsets are done by removing the itemsets having support count less

than the threshold support count.

4. The remaining itemsets called candidate sets, are communicated to the coordinating

site for the assignment of polling sites for finding the global frequent itemsets from

all candidate itemsets.

5. Coordinating site assigns the polling sites to all local frequent itemset and

communicates to all sites

6. On receiving the polling site details, all sites communicate the local count for the

itemset to the polling sites

7. Polling sites calculate the global support count by aggregating the local support

counts received from all sites for the assigned itemsets.

8. At the Polling sites, the itemsets having support count less than the global support

threshold are removed from the list of frequent itemsets to find the final global

frequent itemsets, called global pruning.

 84

9. Polling site then calculate the confidence for the itemsets, perform global pruning

by removing the itemsets having confidence less than the minimum confidence

thresholds.

10. Association rules are created from the global frequent itemsets generated in the

previous step.

6.2 IMPLEMENTATION AND RESULTS ANALYSIS

This research considers a Tour and Travel company “Voyagers Beat” for case

study and implementation of the DARM techniques. The tour and travel companies can

be classified as small, medium and large, based on different parameters given in Table 6.1.

Voyagers Beat is a medium sized organization for the study with booking office at multiple

locations and multiple designations within the country having a few lakhs of transactions.

The Company has head office in Delhi and has booking offices in 13 cities for organizing

package tours for various destinations in India. For the analysis purpose 3 booking sites or

distributed database locations are considered. A few destinations are chosen and are

grouped into three broad destinations. For experiments two years, 2017 and 2018 booking

datasets are considered. Data tables in given in Table 6.2 are taken for analysis.

Table 6.1 Tour and travel companies’ classification

Location Destinations Database type Yearly -number of
transactions

Single single centralized Few thousand
single multiple centralized Few thousand
multiple single centralized Few thousand
multiple multiple centralized Few thousand
multiple multiple distributed Few thousand to lakhs
multiple Inter-national distributed Few lakhs
Inter-national Inter-national distributed Lakhs

 85

Table 6.2 Data tables used - Booking-Master and Tourists-Details

Booking Master Table Tourists_Details Table

Booking_ID Booking_ID

Date Name

Booking_Name Age

Address

Phone_no

Destination

Date_from

Date_to

Tot_Amount

Advance_received

Mode_Payment

Attributes Used: Above tables are combined and three attributes are taken for the analysis

from the above tables. Final attributes taken for analysis from three data sites are given in

the Table 6.3.

Table 6.3 Data attributes taken for analysis

Attributes Values Descriptions

ID Integer Booking-ID

Age A1(18-30), A2(31-45), A3(>45) Tourist-age

Destination D1(Himachal), D2(Rajasthan), D3(UP) Place-visited

ID. Identification of the tourist, who is travelling. This attribute is used for reference only

and not participating in the mining process.

 86

Age. This attribute is the age of the tourist. This attribute is considered for the analysis by

grouping age into three categories i.e. 18 years to 30 years named as A1 group, 31

years to 45 years named as A2 and age greater than 45 is a third group A3.

Destination. There are many destinations where the company operates. Three broad

destinations are considered Himachal which includes Kasol, Manali etc., Rajasthan

includes Jaipur, Pushkar, Jodhpur etc. and third destination UP by grouping

Kanpur, Agra etc.

Some of the destinations are preferred by youngsters and some by elderly people.

The study is an attempt to find the association between these two attributes age and

destination. Accordingly, the dataset is taken for the analysis and the sample data before

and after transformation are shown in the following Tables 6.4.

Table 6.4 (a) Sample data table (b) Sample data table after transformation

ID Age Destination

ID Age Destination

1 24 Kasol

1 A1 D1
2 54 Agra

2 A3 D3

3 25 Pushkar

3 A1 D2
4 48 Kanpur

4 A3 D3

5 22 Manali

5 A1 D1
6 35 Agra

6 A2 D3

7 29 Shimla

7 A1 D1
8 38 Manali

8 A2 D1

9 47 Jaipur

9 A3 D2

For the analysis, data from the three sites or locations are chosen. The number of

transactions at each site and the total transactions in the database for this research is given

in the Table 6.5. Data mining technique is applied independently at each site and the local

frequent 1-itemset are found.

 87

Table 6.5 Datasets sizes available at various sites

 Site 1 Site 2 Site 3 Total

Total Transactions 20872 14273 18370 53515

Figure 6.1 Age groups and their support count

The support of each age group and destination is calculated. Figure 6.1 shows the

dataset having transaction with age group A2 is 41%, A1 is 33% and A3 is 26% only.

Whereas Most preferred destination is D1 at 53%, then D2 at 24% and D3 at 23% shown

in Figure 6.2 below. D2 and D3 are almost equally preferred whereas D1 is most visited

destination. Then the 2-itemset with the combination of age groups and destination groups

and their local support counts at all sites are found see Table 6.6.

 88

 Figure 6.2 Destinations frequency -support count

Table 6.6 Local support count (%) at each site

 Site 1 Support Site 2 Support Site 3 Support

Age A1 - Dest. D1 0.261 0.198 0.159

Age A1 - Dest. D2 0.068 0.072 0.106

Age A1 - Dest. D3 0.030 0.014 0.016

Age A2 - Dest. D1 0.281 0.221 0.150

Age A2 - Dest. D2 0.078 0.055 0.094

Age A2 - Dest. D3 0.042 0.029 0.081

Age A3 - Dest. D1 0.025 0.073 0.045

Age A3 - Dest. D2 0.044 0.063 0.078

Age A3 - Dest. D3 0.127 0.098 0.158

To test the model and develop the association rules, two experiments are conducted

with minimum threshold support 0.200 and 0.100 given in Table 6.7.

 89

Table 6.7 Support and Confidence threshold values

 Support Confidence

Experiment 1 0.200 0.500 & 0.300

Experiment 2 0.100 0.500 & 0.300

6.2.1 Experiment 1: Minimum support threshold = 0.200

Local pruning- In this experiment local frequent itemsets are calculated. The itemsets

whose support counts is more than 0.200 at least one of the sites, are the candidate

sets and are communicated for finding the global frequent itemsets given in Table

6.8.

Global Pruning- The itemsets having global support count less than 0.200 are eliminated.

The global support and confidence are calculated for the global frequent itemsets,

given in Table 6.9.

Table 6.8 Candidate sets for support count threshold = 0.200

Site 1

Support

Site 2

Support

Site 3

Support

Age A1 - Dest. D1 0.261

Age A2 - Dest. D1 0.281 0.221

Table 6.9 Global support and confidence

 Global Support Global Confidence

Age A1 -> Dest. D1 0.209 0.625

Age A2 -> Dest. D1 0.220 0.536

Dest. D1 -> Age A1 0.209 0.441

Dest. D1 -> Age A2 0.220 0.464

 90

(i) Association rules for confidence threshold 0.500

Table 6.10 Association rules for support threshold 0.200 and

confidence threshold 0.500

 Global Support Global Confidence

Age A1 -> Dest. D1 0.209 0.625

Age A2 -> Dest. D1 0.220 0.536

These rules in Table 6.10 show that the destination D1 (Himachal) is the preferred

destination for age groups A1 (18-30) and A2(31-45).

(ii) Association rules for confidence threshold 0.300

The rules in Table 6.11 show that the destination D1 (Himachal) is the preferred

destination for age groups A1 (18-30) and A2(31-45). Secondly The destination D1

(Himachal) is mostly visited by the young tourists and not by elderly tourists.

Table 6.11 Association rules for support threshold 0.200 and

confidence threshold 0.300

Global Support Global Confidence

Age A1 -> Dest. D1 0.209 0.625

Age A2 -> Dest. D1 0.220 0.536

Dest. D1 -> Age A1 0.209 0.441

Dest. D1 -> Age A2 0.220 0.464

 91

6.2.2 Experiment 2: Minimum support threshold = 0.100

Local pruning- In this experiment local frequent itemsets are calculated. The itemsets

whose support counts is more than 0.200 at least one of the sites, are the candidate

sets and are communicated for finding the global frequent itemsets given in Table

6.12.

Global Pruning- The itemsets having global support count less than 0.100 are eliminated.

The global support and confidence are calculated for the global frequent itemsets,

given in Table 6.13.

Table 6.12 Candidate sets for min. support threshold = 0.100

Site 1

Support

Site 2

Support

Site 3

Support

Age A1 - Dest. D1 0.261 0.198 0.159

Age A1 - Dest. D2 0.106

Age A2 - Dest. D1 0.281 0.221 0.150

Age A3 - Dest. D3 0.127 0.158

Table 6.13 Global support and confidence

Global

Support

Global

Confidence

Age A1 -> Dest. D1 0.209 0.625

Age A2 -> Dest. D1 0.220 0.536

Age A3 -> Dest. D3 0.130 0.510

Dest. D1 -> Age A1 0.209 0.441

Dest. D1 -> Age A2 0.220 0.464

Dest. D3 -> Age A3 0.130 0.641

 92

(i) Association rules for confidence threshold 0.500

Table 6.14 Association rules for support threshold 0.100 and

confidence threshold 0.500

Global

Support

Global

Confidence

Age A1 -> Dest. D1 0.209 0.625

Age A2 -> Dest. D1 0.220 0.536

Age A3 -> Dest. D3 0.130 0.510

Dest. D3 -> Age A3 0.130 0.641

These rules show that the destination D1 (Himachal) is a preferred destination for

age groups A1 (18-30) and A2(31-45). Also, age A3 group prefers to go to destination D3,

and D3 is mostly visited by A3 shown in Table 6.14.

(ii) Association rules for confidence threshold 0.300

Table 6.15 Association rules for support threshold 0.100 and

confidence threshold 0.300

Global

Support

Global

Confidence

Age A1 -> Dest. D1 0.209 0.625

Age A2 -> Dest. D1 0.220 0.536

Age A3 -> Dest. D3 0.130 0.510

Dest. D1 -> Age A1 0.209 0.441

Dest. D1 -> Age A2 0.220 0.464

Dest. D3 -> Age A3 0.130 0.641

These rules in Table 6.15 clearly indicate that there is a strong association between

age A1, A2 and destination D1 where confidence is high implies tourists up to middle age

 93

like to visit destination Himachal, and Himachal is mostly visited by youngsters and

middle aged tourists. On the other side A3 age group preference is UP and vice versa as

there is a good association between age A3 and destination D3.

6.2.3 Relationships Between Local and Global Rules

The relationship between the local support, global support and confidence are also

shown in Figure 6.3-6.5 and discussed below. It also shows some interesting relationships

amongst them.

Figure 6.3 Local support count at various sites and global support

 94

Figure 6.4 Local support count at various sites and global confidence

Figure 6.5 Global support count and global confidence

Figure 6.3 shows that global support is proportional to the average of the local

supports at different sites whereas global confidence can be high for low as compared to

 95

support count as the case of D3 -> A3 in Figure 6.5. It is observed in Figure 6.4 that support

count of A1->D1 is high at site 1 & 2 and not on site 3 but the confidence is high. Whereas

support D3-A3 is little high at site 3 only but confidence is quite high. Similarly support

D2->A1is not high at all sites. This shows that the support at each site can’t be sufficient

to make the global rules. At the same time if the company needs the local association rules

for any site, that can be generated from the local frequent itemsets and this may be different

from the global rules. Local rules are also important to make local strategies in different

states or locations.

This case study developed the distributed data association rule mining model for a

tour and travel company. Based on the study many association rules are generated. The

results show that the tourists of age group A1 and A2 are more as compared to A3 hence

gives the travelling habit based on the age. Similarly, the destination D1 preferred over

destination D2 and D3 by the tourists. Whereas destination D3 is visited mostly by age

group A3.

6.3 SUMMARY

Distributed association mining based application model for Voyagers Beat, a tour

and travel company is proposed and implemented in this chapter. The data from three sites

are taken for the analysis. Datasets are transformed for the analysis and association rules

between age and destination visited by the tourists are generated. Two experiments are

conducted for different minimum support threshold values and further different confidence

threshold values. Based on the analysis, interested and useful rules are generated.

Relationship between local and global findings are also compared.

 96

7 CONCLUSIONS

This work illustrates some of the algorithms proposed in the literature for mining

association rules in centralized and distributed data mining domain and proposes solutions

addressing some of the DDM issues. Apriori algorithm is the most popular algorithm for

the centralized database. CD and FP-growth[34] are other popular algorithms in data

mining. Most of the proposed algorithms in literature used the concept of Apriori, CD, FP-

growth[34] algorithms and their variant for finding local frequent itemsets at different

sites and used different techniques for further improvement in reducing data scan, storage

cost and communication cost. Some of the algorithms and proposed techniques for

reducing such costs are illustrated in this work. In different implementations, resources

like storage, processing capabilities, communication bandwidth, data volume etc. vary and

the challenge is to find the best suited algorithm and trade-off between them for a particular

distributed scenario. For mining data, different data mining tools are available with

implementation of different data mining algorithms..

In this research, new DARM algorithm QDFIN is proposed for the setup where

data partition sizes are not uniform. The proposed algorithm uses the novel data structure,

nodeset[85] based on POC tree to generate the local frequent itemsets by each node. It

deploys pruning of data to reduce communication load and proposes methodology zero-

first technique which balances the load on each node. Execution time performance of the

proposed algorithm is evaluated on 4-nodes, 5-nodes, and 6-nodes setup and with varying

support threshold. Two experiments are performed, one with uniform and other with non-

uniform data partition sizes available on different nodes. The performance of the proposed

algorithm is compared with similar latest algorithms FDM and PFIN[19].

 97

The QDFIN outperforms the other two algorithms in the execution time

comparisons in all three setups, especially when the data is not uniformly available in all

4, 5, and 6 nodes setups. It scans database only once and creates POC tree. The new zero-

first technique is effective in the situation when the data is skewed i.e. data sizes available

at various sites differ and not feasible or required to move data from one site to other site

to balance the skewness. The performance of the algorithm further improves with the

increase of number of sites or nodes as it overcomes the disadvantage of the varying data

sizes.

Algorithm SBDARM is proposed for finding frequent itemsets in the distributed

data where size of the partitions are varying in size. The proposed algorithm applies the

technique of local pruning, no-broadcasting and size based assignment of the polling sites.

The algorithm performance is evaluated on four datasets on the 5-nodes setup with varying

minimum support threshold. The experiments are performed on the data partitions with

varying number of transactions on each site. The execution time of the algorithm is

compared with the PFIN and FDM algorithm for distributed data mining.

 Algorithm SBDARM outperforms other algorithms on the time of

execution comparisons. The new size based assignment technique is effective in the

distributed environment where data is generated at different sites and data is skewed. i.e.

highly imbalanced in terms of number of transactions at each site. It performs best as the

data skewness is not effecting the performance and is well adjusted. In addition to the

reduction in candidate sets by pruning, the proposed no-broadcasting technique reduces

the communication load and improves the execution time of the proposed algorithm.

Performance of both the proposed algorithms are compared on real and synthetic

datasets. The performance of both are very close, but the SBDARM performs better on all

 98

four datasets.

In this research, distributed association rule mining application model is proposed

for tour and travel industry to find the interesting facts and relationship between age and

destination visited by the tourists. A medium level company is chosen for the study having

a few offices in the country. This study can help the company to take decision about

opening new booking office and focus on the age of the tourists and adding new

destinations. This research may help in expanding the business by adding different

destinations, more booking offices in different locations and targeting the potential

customers. This study shows that the mining is useful in the tourism industry and can give

useful information.

7.1 FUTURE WORK

The research can be further extended for mining in larger setup with more number

of sites and large datasets for scalability. The resources and the capabilities available at

each site can also be considered while allocating load to different sites for further

improvement. It can be further used with the heterogeneous datasets and big data.

There are many more parameters which can affect the tourism industry like

weather, gender, customer place of living etc. which can also be considered for mining

new facts. The mining can be applied to the bigger sized international company.

 99

PAPERS PUBLISHED

Details of Publications in Scopus Indexed Journals and presented in International

Conferences-

• Manoj Sethi and Rajni Jindal, “Distributed association mining for discovering

interesting rules for tours and travel company”, 2nd International Conference on

Artificial Intelligence: Advances and Applications (ICAIAA 2021), March 2021

(Presented). The after-conference proceeding of the ICAIAA 2021 will be published

in Springer Book Series, ‘Algorithms for Intelligent Systems’.

• Manoj Sethi and Rajni Jindal, “Distributed frequent itemset mining using size based

assignment technique”, International Journal of Emerging Trends in Engineering

Research, ISSN: 2347-3983, vol. 8. no. 10, pp. 6765-6773, 2020.

doi: 10.30534/ijeter/2020/248102020 (Scopus).

• Manoj Sethi and Rajni Jindal, “Distributed association rules mining of varying data

partition size using Nodesets”, International Journal of Advanced Trends in Computer

Science and Engineering, ISSN: 2278–3091, vol. 9, no. 4, pp. 5433-54331, 2020.

doi: 10.30534/ijatcse/2020/181942020 (Scopus).

• Manoj Sethi and Rajni Jindal, “Distributed data association rule mining: tools and

techniques”, in Proc. IEEE 10th INDIACom; INDIACom-2016 3rd International

Conference on Computing for Sustainable Global Development- BVICAM, New

Delhi, March 2016. (Presented).

 100

REFERENCES

1. A. Ait-Mlouk, F. Gharnati, T. Agouti, “An improved approach for association rule mining

using a multi-criteria decision support system: a case study in road safety”, European

Transport Research Review, vol.9, no.40, 2017, doi:10.1007/s12544-017-0257-5.

2. A. Mehay, K. Singh, N. Sharma, “Analyse market basket data using fp-growth and apriori

algorithm”, International Journal on Recent and Innovation Trends in Computing and

Communication, vol.1, no. 9, pp. 693-696, 2013.

3. A. Pavithra, and S. Dhanaraj, “Comparative study of effective performance of association

rule mining in different databases”, in Proc. of International Conference on Data Science

and Analytics, ICDSA 17, 2017.

4. Ailing Wang, "An improved distributed mining algorithm of association rules”, Journal of

Convergence Information Technology, vol. 6, no. 4, pp.118-122, 2011.

5. Ailing Wang, "Research on mining association rules in distributed system", International

Conference on Business Intelligence and Financial Engineering (IEEE), pp. 472-475, 2009,

doi: 10.1109/BIFE.2009.113.

6. Alois Ferscha, Janes Johnson and Stephen J. Turner, “Simulation performance data mining”,

Elsevier: Future Generation Computer Systems, vol. 18 pp. 157-174, 2001,

doi:10.1016/S0167-739X(01)00050-4.

7. Ammar Alhaj Ali, Pavel Varacha, Said Krayem, Petr Zacek and Andrzej Urbanek,

“Distributed data mining systems: techniques, approaches and algorithms”, MATEC Web

Conf., 22nd International Conference on Circuits, Systems, Communications and Computers

(CSCC 2018), 210, 04038, 2018.

8. Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. Dewitt, Samuel

Madden, Michael Stonebraker, "A comparison of approaches to large-scale data analysis",

in Proc. of the 35th SIGMOD International Conference on Management of Data, (SIGMOD

'09), pp. 165-178, July 2009, doi:10.1145/1559845.1559865.

 101

9. Asma Belhadi, Youcef Djenouri, Jerry Chun-Wei Lin and Alberto Cano, “A general-purpose

distributed pattern mining system”, Springer-Applied Intelligence, vol. 50, pp. 2647–2662,

2020.

10. Assaf Schuster and Ran Wolff, "Communication-efficient distributed mining of association

rules", in Proc. of the 2001 ACM SIGMOD international conference on Management of data

(SIGMOD '01), pp. 473-484, May 2001, doi:10.1023/B:DAMI.0000015870.80026.6a.

11. Azra Shamim, Maqbool Uddin Shaikh, Saif Ur Rehman Malik, "Intelligent data mining in

autonomous heterogeneous distributed bio databases”, in Proc. of the ICCEA 2010: Second

International Conference on Computer Engineering and Applications, IEEE Computer

Society Washington, DC, USA, vol. 1 pp. 6-10, 2010, doi: 10.1109/ICCEA.2010.9.

12. Bagrudeen Bazeer Ahamed and Shanmugasundaram Hariharan, "A survey on distributed

data mining process via grid", International Journal of Database Theory and Application,

vol. 4, no. 3, September, 2011.

13. Bin Liu, Shu-Gui Cao, Qing-Chun Li and Qi Li, “A hierarchical distributed data mining

architecture”, in Proc. of the 11th International Conference on Machine Learning and

Cybernetics (ICMLC), IEEE Guilin, vol. 1, pp. 40-44, July 2011,

doi: 10.1109/ICMLC.2011.6016720.

14. Bin Liu, Shu-Gui Cao, Xiao-Li Jia Zhao-Hua Zhi, “Data mining in distributed data

environment”, in Proceeding of the Ninth International Conference on Machine Learning

and Cybernetics (ICMLC), IEEE, pp. 421-426, July 2010,

doi: 10.1109/ICMLC.2010.5581024.

15. Bin. Liu, S.G. Cao, W. He, “Distributed data mining for e-business”, Information and

Technology and Management, vol. 12, pp. 67–79, 2011.

16. C. Ju and Dongjun Ni, “Distributed mining model and algorithm of association rules for

chain retail enterprise”, IEEE: ISECS International Colloquium on Computing,

Communication, Control, and Management, 2008, doi: 10.1109/CCCM.2008.129.

17. C. Ju and Dongjun Ni, “Mining frequent closed Itemsets from distributed dataset”,

International Symposium on Computational Intelligence and Design, IEEE Computer

Society, 2008, doi: 10.1109/ISCID.2008.24.

 102

18. C. Wang, Houkuan Huang and Honglian Li, “A fast distributed mining algorithm for

association rules with item constraints”, IEEE International Conference on Systems, Man,

and Cybernetics, Nashville, vol. 3, pp. 1900-1905, TN, 2000,

doi: 10.1109/ICSMC.2000.886390.

19. Chen Lin and Junzhong Gu, “PFIN: A parallel frequent itemset mining algorithm using

nodesets”, International Journal of Database Theory and Application, vol. 9, no.6, pp. 81-

92, 2016.

20. Chieh-Ming Wu and Yin-Fu Huang, “An effective data structure for mining generalized

association rules”, IEEE Fifth International Conference on Fuzzy Systems and Knowledge

Discovery, 2008, doi: 10.1109/FSKD.2008.609.

21. Dan Hu, Xianchuan Yu and Yuanfu Feng, “Distributed mining core of attributes on

horizontally partitioned data”, IEEE Pacific-Asia Workshop on Computational Intelligence

and Industrial Application, 2008, doi: 10.1109/PACIIA.2008.114.

22. Dan Hu, Xianchuan Yu and Yuanfu Feng, “Distributed mining reducts of attributes on

horizontally partitioned data”, IEEE Second International Symposium on Intelligent

Information Technology Application IITA, 2008, doi: 10.1109/IITA.2008.398.

23. David W. Cheung, Jiawei Han, Vincent T. Ng, Ada W. Fu and Yongjian Fu, “A fast

distributed algorithm for mining association rules“, in Proc. of the fourth international

conference on Parallel and distributed information systems, IEEE Computer

Society Washington, DC, USA, pp. 31-43, 1996, doi: 10.1109/PDIS.1996.568665.

24. David W. Cheung, Vincent T. Ng, Ada W. Fu and Yongjian Fu, “Efficient mining of

association rules in distributed databases”, IEEE Transactions On Knowledge And Data

Engineering, vol. 8, no, 6, pp. 911-922, Dec. 1996, doi: 10.1109/69.553158.

25. Dennis Wegener, Michael Mock, Deyaa Adranale and Stefan Wrobel, "Toolkit-based high-

performance data mining of large data on MapReduce clusters", in Proc. of the 2009 IEEE

International Conference on Data Mining Workshops (ICDMW '09), pp. 296-301, 2009,

doi: 10.1109/ICDMW.2009.34.

26. Dinesh J. Prajapati, Sanjay Garg, N.C. Chauhan, “Interesting association rule mining with

consistent and inconsistent rule detection from big sales data in distributed environment”

 103

Future Computing and Informatics Journal, vol. 2, no.1, pp.19-30, 2017,

doi:10.1016/j.fcij.2017.04.003.

27. E. Cesario and D. Talia, “Distributed Data Mining Models as Services on the Grid”, 2008

IEEE International Conference on Data Mining Workshops, Pisa, TBD, Italy, pp. 486-495,

Dec. 2008.

28. E. Cesario, Antonio Grillo, Carlo Mastroianni and Domenico Talia, “A sketch-based

architecture for mining frequent items and itemsets for distributed data streams”, 11th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, 2011, doi:

10.1109/CCGrid.2011.45.

29. F. Bodon and L. Rónyai, “Trie: An alternative data structure for data mining algorithm”,

Mathematical and Computer Modelling, vol. 38, no. 7–9, pp. 739-751, 2003.

30. Fimi Dataset Repository: Available at http://fimi.ua.ac.be/data/ .

31. G. Gatuha and Tao Jiang, “Smart frequent itemsets mining algorithm based on FP-tree and

DIFFset data structures”, Turkish Journal of Electrical Engineering & Computer Sciences,

vol. 25, pp. 2096-2107, 2017.

32. J. Arokia Renjit and K. L. Shunmuganathan, “Mining the Data from Distributed Database

Using and Improved Mining Algorithm”, International Journal of Computer Science and

Information Security (IJCSIS), vol.7, no.3, March 2010.

33. J. Han, et al., "Frequent pattern mining: current status and future directions”, Data Mining

and Knowledge Discovery, vol. 15, no.1, pp. 55-86, 2007.

34. J. Han, H. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation” in

Proc. Conf. on the Management of Data (SIGMOD’00, Dallas, TX). ACM Press, New York,

NY, USA, vol.29, no.2, pp.1-12, 2000.

35. J. Han, M. Kamber, J. Pie, “Data mining concepts and techniques”, in San Francisco,

Morgan Kaufmann Publishers, 2011.

36. Jun Liu, Yuan Tian, Yu Zhou, Yang Xiao and Nirwan Ansari, “Privacy preserving

distributed data mining based on secure multi-party computation”, Computer

Communications, vol. 153, pp. 208-216, 2020.

 104

37. K. Srikumar, B. Bhasker, “Metamorphosis: mining maximal frequent sets in dense

domains”, International Journal on Artificial Intelligence Tools, vol.14, no.3, pp. 491-506,

2005, doi:10.1142/S0218213005002223.

38. Kouzis-loukas, M., “Analysing Customer Baskets- A Business to Business Case Study”,

Financial Economics, 2014.

39. Kwang-Il Ahn, “Effective product assignment based on association rule mining in retail”,

Expert Systems with Applications, vol.39, no.16, pp. 12551–12556, 2012,

doi:10.1016/j.eswa.2012.04.086.

40. Liao, Jinggui, Yuelong Zhao and Saiqin Long., "MRPrePost—A parallel algorithm adapted

for mining big data", IEEE Workshop on Electronics, Computer and Applications(IWECA),

2014.

41. Lijuan Zhou, Shuang Li and Mingsheng Xu, "Research on Algorithm of Association Rules

in Distributed Database System", in Proc. 2nd International Asia Conference on Informatics

in Control, Automation and Robotics (IEEE), pp. 216-219, 2010,

doi: 10.1109/CAR.2010.5456669.

42. Longyi Li and Lihua Tao, “Study of e-CRM based on Distributed Data Mining”,

International Conference on Management and Service Science, MASS 2009. IEEE

Computer Society, 2009, doi: 10.1109/ICMSS.2009.5302106.

43. M. Cannataro, A. Congiusta, Andrea Pugliese and Domenico Talia, “Distributed Data

Mining on Grids: Services, Tools and Applications”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol.34, no.6, 2004,

doi: 10.1109/TSMCB.2004.836890.

44 M. E. Otey, C. Wang, S. Parthasarathy, A. Veloso and W. Meira Jr., "Mining Frequent

Itemsets in Distributed and Dynamic Databases", in Proc. of the Third IEEE International

Conference on Data Mining (ICDM’03), Nov. 2003.

45. M. J. Zaki, S. Parthasarathy, and W. Li, “A localized algorithm for parallel association

mining”, in Proc. of the ninth annual ACM symposium on Parallel algorithms and

architectures, ACM, pp. 321–330, 1997.

 105

46. M. Kantarcioglu and C. Clifton, “Privacy preserving distributed mining of association rules

on horizontally partitioned data”, IEEE transactions on knowledge and data engineering,

vol.16(9), pp. 1026–1037, 2004.

47. M. Zoubeidi , O. Kazar, S. Benharzallah, N. Mesbahi, A. Merizig, D. Rezki, “A new

approach agent-based for distributing association rules by business to improve decision

process in ERP systems”, International Journal of Information and Decision Sciences, vol.

12, no.1, pp. 1-35, 2020.

48. Manpreet Kaur and Shivani Kang, “Market Basket Analysis: Identify the changing trends of

market data using association rule mining”, International Conference on Computational

Modelling and Security (CMS 2016) in Procedia Computer Science 85, pp. 78 – 85, 2016

doi:10.1016/j.procs.2016.05.180.

49. Merve Er Kara, Seniye Ümit Oktay Fırat, Abhijeet Ghadge, “A data mining-based

framework for supply chain risk management”, Computers & Industrial Engineering, vol.

139, 105570, 2020, doi:10.1016/j.cie.2018.12.017.

50. Mohammed J. Zaki, "Parallel and distributed association mining: a survey", Journal of IEEE

Concurrency, vol. 7, no. 4, pp. 14-25, October 1999, doi: 10.1109/4434.806975.

51. Mohammed. J. Zaki, “Parallel and distributed data mining: An introduction”, in Large-Scale

Parallel Data Mining, Lecture Notes in Computer Science, vol.1759, Springer, Heidelberg,

pp.1–23, 2000. doi: 10.1007/3-540-46502-2_1.

52. N. Isa, N.A. Kamaruzzaman, M.A. Ramlan, N.Mohamed, M.Puteh, “Market Basket

Analysis of Customer Buying Patterns at Corm Café”, International Journal of Engineering

and Technology, vol. 7, no. 4.42, 2018, doi:10.14419/ijet.v7i4.42.25692.

53. Nader Aryabarzan, Behrouz Minaei-Bidgoli and Mohammad Teshnehlab, “negFIN: An

efficient algorithm for fast mining frequent itemsets”, Expert System and Applications, vol.

105, pp. 129-143, 2018.

54. Norulhidayah Isa, Nur Syuhada Mohd Yusof, Muhammad Atif Ramlan, “The

Implementation of Data Mining Techniques for Sales Analysis using Daily Sales Data”,

International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no.

1.5, pp. 74 – 80, 2019, doi:10.30534/ijatcse/2019/1681.52019.

 106

55. NVS Pavan Kumar, Dr. J K R Sastry and Dr. K Raja Sekhara Rao, “Mining distributed

databases for negative associations from regular and frequent patterns”, International

Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 4, pp. 1449-

1463, 2019.

56. NVS Pavan Kumar, JKR Sastry and K Raja Sekhara Rao, “Mining negative frequent regular

itemsets from data streams” International Journal of Emerging Trends in Engineering

Research, vol. 7(8), pp. 85 – 98, 2019.

57. P. Naresh and Dr. R. Suguna, “Association rule mining algorithms on large and small

datasets: a comparative study”, in Proc. International Conference on Intelligent Computing

and Control Systems (ICICCS 2019), IEEE: CFP19K34-ART, pp. 587-592, 2019.

58. Pallavi Dubey, “Association Rule Mining on Distributed Data” International Journal of

Scientific & Engineering Research, vol. 3, no. 1, Jan. 2012.

59. Pyun, Gwangbum, Unil Yun, and Keun Ho Ryu, "Efficient frequent pattern mining based

on linear prefix tree”, Knowledge-Based Systems, vol. 55, pp. 125-139, 2014.

60. R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", in Proc.

International Conference on Very Large Scale Data Base, 1994, pp. 487-499.

61. R. Agrawal, and C. Shafer John, "Parallel mining of association rules", in IEEE Transactions

on Knowledge & Data Engineering, vol. 8, Issue 6, pp. 962-969, 1996.

62. R. Agrawal, T. Imielinski , A. Swami, “Mining association rules between sets of items in

large databases”, In Proc. of International Conference of ACM-SIGMOD on Management

of Data, pp. 207-216, 1993.

63. R. Moodley, F. Chicilana, F. Caraffini, J. Carter, “Application of Uninorms to Market Basket

Analysis”, International Journal of Intelligent Systems, vol.34, no.1, pp. 39-49, 2019,

doi:10.1002/int.22039.

64. S. Bhagwat, V. Jethliya, A. Pandey, L. Islam, “Sales analysis using product rating in data

mining techniques”, International Journal of Research in Engineering and Technology, vol.

4, no.2, 189-191, 2015.

 107

65. S. Rathee, M. Kaul and A. Kashyap, “R-Apriori: an efficient apriori based algorithm on

spark”, in Proc. of the 8th workshop on Ph.D. workshop in information and knowledge

management, PIKM 15, Melbourne: ACM, pp. 27–34, 2015.

66. Sanket Thakare, Sheetal Rathi, and R. R. Sedamkar, "An improved Prepost algorithm for

frequent pattern mining with Hadoop on cloud”, in Procedia Computer Science, vol. 79, pp.

207-214, 2016.

67. Sotiris Kotsiantis and Dimitris Kanellopoulos, "Association Rules Mining: A Recent

Overview", GESTS International Transactions on Computer Science and Engineering,

vol.32, no.1, pp. 71-82, 2006.

68. Sudarsan Biswas, Neepa Biswas, Kartick Chandra Mondal, “Parallel and distributed

association rule mining algorithms: a recent survey”, Information Management and

Computer Science (IMCS), vol. 2(1), pp. 15-24, 2019

69. Sujni Paul, “An Optimized Distributed Association Rule Mining Algorithm in Parallel and

Distributed Data Mining with XML Data for Improved Response Time”, International

Journal of Computer Science and Information Technology, vol.2, no.2, 2010.

70. V. Devasekhar, and P. Natarajan, “Multi-agent distributed data mining: challenges and

research directions” International Journal on Emerging Technologies, vol. 11, no.4, pp.

233–239, 2020.

71. V. Gancheva, “Market basket analysis of beauty products”, M.S. Thesis, Erasmus School of

Economics, Erasmus University Rotterdam, 2013.

72. Van Quoc Phuong Huynh and Josef Küng, “FPO Tree and DP3 algorithm for distributed

parallel frequent Itemsets mining”, Expert Systems With Applications, vol. 140, 112874,

2020.

73. Van Quoc Phuong Huynh, Josef Küng and Tran Khanh Dang, “A Parallel incremental

frequent itemsets mining IFIN+: improvement and extensive evaluation”, Transactions on

Large-Scale Data-and Knowledge-Centered Systems XLI, pp. 78-106, 2019.

74. Van Quoc Phuong Huynh, Josef Küng, Markus Jäger and Tran Khanh Dang, “IFIN+ a

parallel incremental frequent itemsets mining in shared- memory environment”, in Proc.

International Conference on Future Data and Security Engineering FDSE 2017, pp. 121-

138, 2017, doi: 10.1007/978-3-319-70004-5_9.

 108

75. Vasoya A., Koli N., “Mining of association rules on large database using distributed and

parallel computing” Procedia Computer Science, 79, pp. 221 – 230, 2016.

76. Vinaya Sawant and Ketan Shah, “Performance evaluation of distributed association rule

mining algorithms”, 7th International Conference on Communication, Computing and

Virtualization, Procedia Computer Science 79, pp. 127-134, 2016.

77. Vuda Sreenivasarao, Rallabandi Srinivasu, Prof. G.Ramaswamy, Nagamalleswara Rao

Dasari and Dr. S Vidyavathi, “The Research of Distributed Data Mining Knowledge

Discovery Based on Extension Sets”, International Journal of Computer Applications (0975

– 8887), vol.8, no.2, Oct. 2010, doi: 10.5120/1187-1658.

78. Wei Fan and Albert Bifet, "Mining Big Data: Current Status and Forecast to the Future",

ACM SIGKDD Explorations Newsletter, vol. 14, no. 2, pp. 1-5, Dec. 2012,

doi:10.1145/2481244.2481246.

79. Wenxiang Dou, Jinglu Hu, Kotaro Hirasawa and Gengfeng Wu, “Distributed Multi-

Relational Data Mining Based on Genetic Algorithm”, IEEE Congress on Evolutionary

Computation, pp. 744-75, 2008, doi: 10.1109/CEC.2008.4630879.

80. Wu-Shan Jiang and Ji-Hui Yu, “Distributed Data Mining on the Grid”, in Proc. of the fourth

International Conference on Machine Learning and Cybernetics, IEEE, 2005,

doi: 10.1109/ICMLC.2005.1527275.

81. Xindong Wu, X. Zhu, G. Wu and W. Ding, "Data mining with big data", IEEE Transactions

on Knowledge and Data Engineering, vol. 26, no. 1, Jan. 2014,

doi: 10.1109/TKDE.2013.109.

82. Y. Kurnia, Y. Isharianto, Yo Ceng Giap, A. Hermawan, Riki, “Study of application of data

mining market basket analysis for knowing sales pattern (association of items) at the O! Fish

restaurant using apriori algorithm", Journal of Physics: Conference Series, vol.1175

012047, 2018.

83. Z. Ashrafi Mafruz, D. Ashrafi, D. Taniar, and K. Smith, “ODAM: An Optimized Distributed

Association Rule Mining Algorithm” Distributed Systems Online, IEEE, vol.5, no. 3, 2004,

doi: 10.1109/MDSO.2004.1285877.

84. Zhi-Hong Deng, "DiffNodesets: An efficient structure for fast mining frequent

itemsets”, Applied Soft Computing, vol. 41, pp. 214-223, 2016.

 109

85. Zhi-Hong Deng, and Sheng-Long Lv., "Fast mining frequent itemsets using

Nodesets”, Expert Systems with Applications, vol. 41, no. 10, pp. 4505-4512, 2014.

86. Zhi-Hong Deng, and Sheng-Long Lv., "PrePost+: An efficient N-lists-based algorithm for

mining frequent itemsets via children–parent equivalence pruning”, Expert Systems with

Applications, vol. 42, no.13, pp. 5424-5432, 2015.

87. ZhiHong Deng, ZhongHui Wang, and JiaJian Jiang, "A new algorithm for fast mining

frequent itemsets using N-lists”, Science China Information Sciences, vol.55, no. 9, pp.

2008-2030, 2012.

