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Abstract 
 

Lots of advancements in the database technologies in the last few decades attracted 

researchers to work in this area. Databases which were mostly centralised have been 

changed to distributed databases where data is partitioned and stored at different locations, 

because of the availability of modern technologies, fast network, internet, increased size 

of data and industry demand. Centralised database are also used for creating data ware-

houses and then data mining for getting some useful information for the critical decisions 

in the area of education, medical, commercial and many more. Now, with the increasing 

demand of the distributed databases, mining data ware-house concept is also changing to 

distributed data mining where mining is done on the data partitions stored at different 

locations and then the aggregation or merging the results is done for the global mining.  

Distributed data mining (DDM) has become important research area with the 

increase in large distributed transactional databases and we need to investigate important 

patterns in such databases. On one side distributed processing may increase not only the 

processing capabilities but also increases the cost of communication and storage cost.  The 

work focuses on the distributed data association rules mining for the transactional data. It 

has opened new areas of research to develop the architecture, framework and algorithms 

in the area of distributed data mining. The distributed data partitions where data is created 

or generated at different locations vary in size, and number of  frequent patterns are 

generated at different locations. This area is not very old and little work has been done in 

the distributed data association rules mining. Some new algorithms and new data structures 

are proposed in literature. Algorithms which are available, mostly first partition the 

database, distribute them amongst different sites for parallel processing. In the real life 
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scenario data generated at different sites is not under the control of centralised database 

and the numbers of transactions at each site are highly varied. Due to this, some sites are 

heavily loaded and some sites are comparatively free, research is to be focused on these 

issues. Distributed mining is used in many commercial areas and there is a need to explore 

new commercial applications of the data mining. 

This work focuses on the study of the recent development in this area of distributed 

data association rule mining (DARM). It highlights the  issues and challenges, their co-

relation, available technologies and tools, different  algorithms, real data repositories for 

mining in the area of DARM. On the basis of the study, work focuses on the development 

of new algorithms and developing new application model addressing different issues and 

challenges in the area of DARM. Datasets Mushroom, Connect, T10I40D400K and Chess 

from the fimi data repository are taken for the implementation and testing of the proposed 

algorithms.  Application model is developed and implemented on the actual data of a tour 

& travel company for the last 2 years.  

A new algorithm named as QDFIN(Quick distributed frequent itemset mining 

using nodeset) is proposed in this research which uses the efficient nodeset data structure 

to store the candidate itemsets locally at each site and zero-first technique to balance the 

load and pruning to reduce the candidate sets. The algorithm is implemented and the speed 

performance is compared with some of the existing algorithms FDM and PFIN on 

Mushroom dataset. Results shows that the proposed algorithm not only outperforms other 

algorithms on varying size data partition but also, on uniform distributed data on 4, 5 and 

6 nodes setups.  

A novel approach, size based assignment, is proposed in this work which takes 

care of the database size available at each site while distributing the load for finding the 
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global frequent itemsets. It also reduces the communication load by pruning and no-

broadcasting techniques. The algorithm is compared with FDM and PFIN on execution 

time on mushroom, connect, chess and T10I4D100K datasets. Results show that the new 

technique performed best amongst them in time execution and is best load balancing 

technique.  

The application area chosen for the study is a tour and travel company organizing 

package tours, because tourism industry is growing very fast and small, medium and large 

sized companies are operating in this area. Tourism is a potential application where mining 

can be applied and new association rules can be generated which can help the companies 

to develop new strategies and target potential customer based on the mining outcome. This 

work applies the distributed data mining technique on a medium sized tour & travel 

company for finding the association between age and destination visited parameters. The 

results show that association rules generated by mining are useful and effective for the 

growth of the business and making new strategies. 
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1 INTRODUCTION 

 

1.1 DATA MINING 

Data mining is a process to discover unknown valid patterns and relationships in 

large data. Process of analyzing data, finding correlations or patterns and summarizing 

them are known as Data mining. It is also referred to as knowledge discovery. Data Mining 

involves analyzing and extracting useful information from data. There are many 

applications of data mining such as Fraud Detection, Market Analysis, Biological 

Analysis, Science Exploration etc.  

1.1.1 Data Mining Techniques 

• Association is mining relationships or associations amongst data. It is to find 

interesting and hidden frequent patterns or items and to determine association 

rules. 

• Classification describes the data concepts, groups or classes to predict the class 

of objects for which the class is not known and to judge about the type of 

customer, item, or object. It is used to identify a particular class by describing 

multiple attributes.  

• Clusters - Similar objects in the data are grouped into clusters based on data 

similarity like logical relationships or consumer preferences to identify market 

segments or consumer affinities. 
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• Prediction means to predict the missing or unavailable data values. Generally, 

regression analysis technique is used for prediction. 

• Outlier Analysis is to identify the data objects that do not comply with general 

behaviors of the data available, and it may be used for fraud deduction in credit 

cards. 

• Evolution Analysis is description and model regularities or trends for objects 

whose behavior changes over time.  

• Mining Stream is extracting knowledge from the continuous and rapid data 

records, Time-Series and Sequence Data. 

• Graph Mining - Analysis of real graphs, effect on applications, model to 

generate realistic graphs. 

• Social Media mining - Applying data mining methods to huge data sets can 

improve search results for everyday search engines, realize specified target 

marketing for business, help psychologists study behavior etc.  

• Multi relational Data mining provides the mining in multiple tables directly. In 

MRDM the patterns are available in multiple tables (relations) from a relational 

database. 

1.2 ASSOCIATION RULE MINING  

Association rule mining means finding interesting associations, correlations and 

frequent patterns amongst a large number of items or objects that are contained in a 

transaction database, relational database or some other kind of data repository. It helps in 

decision making process for business purposes like in supermarkets for catalogue design, 
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basket data analysis, planning etc. Various algorithms have been proposed to find the 

frequent itemsets. Association rule mining was first proposed by R. Agrawal [60]. After 

that, a lot of research has been done in this area and new approaches and algorithms have 

been proposed. Association rules mining has many applications and it is now widely used 

in sales, tourism, medical, marketing etc. Globalization has opened new challenges and 

opportunities for the researchers in association rule mining due to the increased volume of 

data and changed characteristics of data. 

 

Figure 1.1 Centralized data Mining 

 

Centralized database environment is created at one centralized location with all the 

resources and nodes accessing the database are connected to this database through 

communication links which is shown in Figure 1.1. Due to the Fast growth and use of the 

information technology in different domain and globalization, not only large amount of 

data is being created but the need for readily available information also increases. It 
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requires more and more processing capabilities, storage and data communication and other 

resources. Doing mining tasks at one location has become inefficient. The use of 

distributed database environment in place of centralized databases is increased, in which 

database is portioned and stored at different locations to share the resources and perform 

parallel processing. 

 

Apriori Algorithm is one of the most popular sequential mining algorithms for 

mining frequent itemsets. Apriori uses prior knowledge of frequent itemset properties. It 

employs an iterative level-wise approach where (k-1)-itemsets are used to explore k-

itemsets. Each frequent k-itemset finding requires a full database scan.  

1.2.1 Distributed Data Mining 

The voluminous amount of data is created at different sites and locations which 

varies in size. It is not feasible to transfer all data onto a centralized database for analysis 

due to the limitation of resource, communication links or sometime due to the policies or 

privacy issues. With the rising size of data and the demand of mining patterns from data, 

there is a need to find a solution to analyse the data as and where it is generated or gathered 

or created and find interesting and useful frequent patterns in the distributed data.  

The solution is Distributed Association Rule Mining (DARM) [23]. In DARM, 

data is stored at different locations or sites and various processors work parallel to provide 

fast and efficient results. Distributed data mining finds local frequent patterns at different 

sites, communicates with other sites and finds the global frequent itemsets. Figure 1.2 

shows a general distributed mining architecture. As compared to centralized frequent 

itemsets mining less number of  algorithms have been proposed in literature for DARM.  
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Several algorithms are available for association rules mining the centralized 

database. These algorithms available for the centralized database mining cannot be used 

directly for DARM. DARM requires local processing at all the sites to find the local 

frequent itemsets, communicate between the sites and finally find frequent global itemsets. 

Parallel frequent mining algorithms are also not fit for that, rather algorithms which 

consider the number of transactions available at each site and distribute the workload to 

all sites are required for optimum use of the computational capabilities available at each 

site. Some DRAM [23] algorithms are proposed in the literature. 

 

 

Figure 1.2 Distributed data mining 

Steps which are generally involved in the DARM are scanning databases for 

finding local frequent itemsets, storage of frequent itemsets, local pruning to reduce the 

candidate sets, sharing local counts amongst different sites, global pruning to reduce the 

itemsets, finding Association rule etc. This requires huge storage space, communication, 

synchronization and processing capabilities and trade-offs between them.  
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1.3 MOTIVATION  

With the massive growth of real time business applications, online transaction 

analysis is very much essential. As the number of transactions increase, it becomes very 

difficult to determine the frequent itemsets with less time and space complexities. Due to 

the high volume and limitation of resources at centralized site, database is not centralized 

but distributed in nature and kept as and where it is created or gathered. With day-to-day 

operations, number of transactions at different sites may vary from a few hundred to lacs 

of transactions which creates imbalance in the data sizes available at different sites and 

also processing load on these sites. It may not be feasible to transfer data from all sites to 

one centralised site for processing. Also, large database mining requires substantial 

processing power and distributed mining processing at each site enhances the processing 

capabilities of the system by dividing the load. In parallel and distributed frequent pattern 

mining algorithms, each site is responsible to extract the knowledge by exchanging or 

broadcasting the data required by other sites. Several algorithms have been proposed for 

association rule mining, but they are ineffective with very large distributed imbalanced 

datasets.  

• There is a need to develop algorithms which focus on the local performance at each 

site by reducing I/O operations and managing data effectively.  

• Algorithms are required that utilise the site resources in a balanced manner by 

allocating load based on the local load.  

• Reducing communication load can improve the overall performance of the 

algorithms, is another factor that is to be addressed.  
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• Association mining is important tool for business growth, particularly in the area 

of market basket analysis, which is commonly used in the business. So, exploiting 

the areas of applications of the distributed data mining for different industries and 

widen its use is also required.  

1.4 PROBLEM STATEMENT AND OBJECTIVES  

The association rule mining on the distributed data has gained popularity because 

of the change in the nature of data which is more and more distributed across the globe. 

Most of the algorithms available for the association rule mining consider that the data 

available at each site is uniformly distributed. The distributed data environment where data 

is created or gathered,  stored at different locations and need to be used without transfer to 

a single centralized site.  Most of the available algorithms are not suitable for the setup 

where data size vary and efficient techniques are needed to take care of the non-uniform 

nature of data.  

There is a need to develop methodology and DARM algorithms for finding 

association rules in the distributed imbalanced transactional data which can improve the 

performance by not only reducing the communication overhead, data scans and storage 

needs but also assign load to less occupied sites in order to get the best utilization of the 

resources.  

Hence the problem statement of the research can be stated as: 

“To build constructive and efficient distributed association rule mining algorithms 
for the varying distributed data partition sizes available at different sites.” 

The problem has been evaluated with the following research objectives:  

• Do a systematic literature review including study the existing Distributed Data 
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Mining (DDM) algorithms, issues and challenges for association rule mining of 

the distributed data. 

• Discuss methodology for the design of distributed data mining tasks and 

applications on distributed data environments addressing the issues. 

• Develop new and effective DDM algorithms for mining association rules with 

reduced cost and improved performance. 

• Implement and compare proposed algorithms with the existing comparative  

algorithms to evaluate the performance. 

• Develop an application model by conducting a business case study, implement on 

a real commercial transactional data and make suitable recommendations for the 

improvement of the business. 

The research focus is on developing efficient algorithms and conducting a case 

study to develop an application model for a business house and recommend a solution. 

1.5 RESEARCH CONTRIBUTION  

The aim of this thesis was to make a contribution to the field of association rule 

mining on the distributed transactional data where the database is partitioned and stored at 

different sites where the actual data is created. The study has evolved the methodology for 

the development of efficient algorithms for association rule mining for the distributed 

database, evaluation and comparison of the same with the existing ones for making 

interesting rules for the business houses.  

The primary contributions of this research are:  
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• Comprehensive review and survey of current association rule mining techniques 

for centralized as well as distributed data environments and the process involved 

in the distributed association rule mining. 

• Study of the issues and challenges in the development of the algorithms of DARM 

and the effect of the issues on the performance of the algorithms. It also highlighted 

the relationships amongst the issues which are directly proportional or inversely 

proportional issues. Addressing one issue may adversely affect the other issue and 

there is a need to have a trade-off between them. 

• Developed techniques to address different issues, and to handle the distributed data 

nature i.e., varying data partitions size in terms of number of transactions at each 

site. 

• Algorithms are proposed based on the techniques developed to improve the 

performance of association rules mining for the distributed data. 

• Experimental evaluations are conducted on the different real and synthetic datasets 

and the results prove that proposed works achieve their aims. The proposed 

algorithms improve the time performance for different setups and different datasets 

by effectively reducing the ideal time of the resources at different sites, reducing 

the communication load and data scans. 

• Theoretical knowledge and formulas are applied to a real-world problem and an 

application model for a business house, as a case study, is developed and important 

useful association rules are recommended. 

1.6 ORGANIZATION OF THESIS 

The rest of the dissertation report is organized as follow:  
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Chapter 2 discusses the review of the literature on the frequent pattern mining 

algorithms including the algorithms of distributed data mining based on the research 

contributions that have been done, up to the date of this research. It shows the different 

issues and challenges and their relation in developing the distributed data mining 

algorithms. It examines the activities involved in any data mining process. Finally, it 

explores the availability of the different data repositories for the mining research.  

Chapter 3 discusses the available and proposed methodologies for addressing 

different challenges and issues involved in the development of the proposed algorithms, 

illustrates them with the help of suitable examples. 

Chapter 4 explains the proposed algorithm “Quick Distributed Frequent Itemset 

Mining using Nodeset” (QDFIN) in detail. It explains the algorithm, its implementation 

and comparison with the existing algorithms. Detail discussion on the results included in 

the chapter. 

Chapter 5 discusses in detail, the steps of the second proposed algorithm “Size 

Based Distributed Association Rule Mining” (SBDARM), its evaluation and comparison 

based on the experiments results. It also compares and discusses both the proposed 

algorithms. 

Chapter 6 presents an application model of DARM based on the case study of a 

medium sized tour and travel company. It implements the model and finds the interesting 

rules for the company for the development and enhancement of the business. 

Chapter 7 concludes the work with recommendations and also presents the future 

scope of the work.  
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2 LITERATURE SURVEY 

 

A lot of research papers have been published in the area of DDM. In the Literature 

review on DDM for finding association rules, more than 80 research papers are reviewed,   

algorithms, their variant and issues are studied. In the literature survey the algorithms for 

the distributed data mining for mining association rule were studied. As a next step in this 

direction, an extensive literature survey in this area was conducted. The survey includes 

detailed study of the algorithms, tools, datasets, issues and challenges, research gap, in 

developing the algorithms and applications in this area. Many surveys have been 

conducted in finding association rules in the database [33].  

2.1 DISTRIBUTED ASSOCIATION RULE MINING 

Association rule mining earned popularity with a publication of Apriori algorithm 

by Agrawal  in 1993 [62] which has been cited more than 22000 times according to google 

scholar. The Apriori based algorithms are of “anti-monotone property” [4]. This is widely 

used in finding the association rules. These algorithms use an approach to create and test 

candidate sets [60]. AprioriTID and AprioriHybrid [60] are two variations of apriori in 

literature. AprioriTID [60] uses the database only once for finding the frequency of the 

items. AprioriHybrid [60] uses both, Apriori initially and AprioriTID at the end. [34] 

proposed FP-Growth algorithm based on a tree structure which is created after database 

scan for mining frequent itemsets, which is used to store the frequent itemsets and this 

algorithm is efficient than apriori algorithm. Algorithm PPC-Tree[87] is proposed in 2012 

which uses a new data structure N-List based on PrePost. N-List is a novel vertical data 
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representation structure and it is originated from a FP-Tree like structure. 

Algorithm FIN, Fast mining frequent itemset using Nodeset[85] structure, based 

on the PrePost algorithm is another algorithm proposed in 2014. Nodeset is created using 

POC-Tree but to store information of each node, it makes Nodeset structure using 

postorder or preorder of the node. [57] states that FIN algorithm is the most recent 

algorithm and fast in generating frequent itemsets. DFIN [84] algorithm uses diffnodesets 

structure which is also based on structure nodeset. In 2015 [86] proposed an algorithm 

based on PPC-Tree structure PrePost+. To discover the frequent itemsets, it sets 

enumeration search tree using the N-List structure. Structure linear prefix tree[59] 

composed of array forms was introduced, which minimizes the pointers between the 

nodes. IFIN+ algorithm[74] uses multi-physical computational units whereas [73] 

proposed a shared memory parallelism for improving single machine performance for the 

frequent itemset mining. Nadar proposed a new data structure nagNodeset[53] used in the 

algorithm nagFIN. The algorithm is based on the nodes in the prefix tree. [36] proposed 

an effective algorithm based on optimized matrix computation for multi-party data 

computation having different challenges.  

A parallel algorithm that runs on a distributed database with uniform capabilities 

at different sites requires to divide the workload equally for best load [72]. In E-business 

lots of heterogeneous data is generated and are distributed [42]. Distributed data may be 

incompatible [77] and DDM based on the extension set can solve this problem. An 

optimum solution is obtained [58] from DDM as it is done in parallel. The data streams 

mining [28] is more challenging in the distributed environment. The distributed mining 

has advantage in terms of degree of parallelism and scalability. The issues are load 

balancing, minimizing communication cost and overlapping communication and 
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computation. Performance of any algorithm [9] is also effected by the number of nodes in 

the distributed data system. With the increase of the transactions or nodes, the performance 

improves. Execution time increases when the number of nodes increases but number of 

transactions reduces [31]. 

DDM systems can be classified [13] based on (i) parallel data mining agents to 

enhance working efficiency (ii) meta learning to improve the quality of selection of data 

mining algorithm and (iii) grid to mine in geographically distributed environment. An 

efficient data structure [20] is required to store the information in mining tasks based on 

the algorithms. Count Distribution (CD) [34] is a simple algorithm where data is 

parallelized and apriori algorithm runs parallel where local support count is found for each 

itemset and then communicated to each other site and hence the global frequent itemsets 

are found by all the sites. AprTidRec, an algorithm based on apriori algorithm was 

proposed in 2011 [4]. It is different from Apriori because it deploys only the joint step but 

no pruning step. It creates a record structure called tidRec and has lesser execution time 

than apriori algorithm. FDM [23] finds the locally large itemsets, which are sent to the 

assigned polling sites and then the global counts are found to finally find global frequent 

itemsets. The total support count message exchange is just O(n). It mainly uses apriori and 

CD algorithms.  

DMA [24] is another algorithm for distributed association rule mining, which 

generates a small candidate sets and O(n) messages are exchanged for n sites in a 

distributed database. ODAM (Optimized Distributed Association Rule Mining) algorithm 

for distributed data association rule mining proposed by [83]. After discovering the global 

frequent-1 itemsets, it removes the infrequent ones and inserts the transactions and their 

count in a temporary file which is then used to find the frequent itemsets of larger lengths. 
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The focus of the algorithm is on the communication and synchronization. [19] proposed a 

parallel algorithm PFIN for mining frequent itemsets using data structure nodeset. It 

decomposes a large problem into small tasks executed in parallel. It is using a hash-based 

load balancing strategy for optimize resources.  

DDM pays important role [11] in bioinformatics where database is heterogeneous 

in the distributed environment. A grid can provide accurate representation of available 

resources[14] and effective computational support [80] [43] for DDM where users have 

options to choose the resources and it is future of DDM [12]. 

As the XML system is more complex [69], DDM is more challenging. In data 

mining, rough set theory is a powerful approach [21] [22] which can be used for decision 

making. Frequent closed enumeration table (FCET) structure can save storage space and 

speed up producing the generalized association rules. The information is collected through 

e-CRM system which is mined by DDM and used for business decisions. ODAM 

algorithm proposed by [76], which is improved version of Apriori and based on CD and 

FDM algorithm. In which candidate support counts are not generated from the raw data 

set after the first pass. It removes infrequent itemsets, and places new transactions into 

memory. It reduces the transaction length and also data set size significantly.  

Performance of any algorithm [76] depends on the number of nodes in the 

distributed setup. Execution time improves with increase of number of nodes or 

transactions. When number of nodes increases but number of transactions are less, 

algorithms take longer execution time [31]. FDM optimised with FP-Growth and DiffSet-

data structure [31], a vertical data representation, improves the performance of FDM 

algorithm by reducing the memory requirements. [36] proposed algorithm based on 

“optimized matrix computation for multiparty data computation” which has some 
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challenges. Distributed data mining also helps [70] in maintaining privacy, reducing 

transmission cost, and sharing resources like memory. 

Approaches in Large-scale data analysis [8] are (i) MapReduce and (ii) Parallel 

DBMS. MapReduce is easy, more fault tolerant technique, but large performance penalty 

as compared to parallel DBMS. Using the map-reduce approach, many algorithms can be 

processed in distributed environment, like the MRPrePost [40] algorithm gives the 

processing of prepost algorithm on the Hadoop platform. Many parallel algorithms based 

on the map-reduced technique in distributed environment are proposed in literature,. 

MRPrePost [40] and Prepost [66] algorithms are based on map-reduce where first one 

gives the processing of prepost algorithms whereas second one is cloud implementation 

and apriori map-reduce. The distributed simulations are available and their acceptance is 

very much dependent on their methods and tools [6]. 

A framework DT-DPM (Decomposition Transaction for Distributed Pattern 

Mining) [9] proposed in literature, which integrates Density-Based Spatial Clustering of 

Applications and distributed computing represented, CPU multi-cores and Single CPU for 

solving pattern mining problems. Bin Liu [14] proposed a DDM architecture based on the 

grouping similar data source to reduce communication. Its focus is to “improve the 

openness, cross-platform ability, and intelligence of the DDM system”. [75] proposed 

hybrid architecture by combining parallel and distributed mining which reduces redundant 

database and improves the performance. A framework is developed by [49] to analyse and 

manage the supply chain risk and gives better insight for better decisions. 

Based on the literature survey, some of the popular distributed algorithms, issues 

and challenges, some basic terminologies, available tools and techniques, data sources in 

the field of distributed data mining are explained below.  
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2.1.1 Basic Terms of Frequent Pattern Mining Algorithm 

• Transactional Dataset - Dataset having two columns, named, unique transaction 

ID and set of k-items. 

• Itemset - The sets of items that appear frequently in the transactions of the dataset. 

If I {I1, I2 ... In} be a set of distinct items in the dataset DS. Itemset is a set of 

items, A subset of I. An itemset A with k distinct items is referred as k-itemset 

[37].  

• Support - Frequency of occurrence of an itemset in the transaction. It is defined as 

the percentage of transactions in the dataset DS that includes both itemsets A and 

B. The support count A / B is defined as [35][62] 

Support (A -> B) = Support (A∪B)  

• Minimum Support Threshold – Association rules are considered interesting if they 

satisfy minimum support threshold which is set by users or experts. If an itemset 

satisfies the minimum support threshold, then it is frequent. 

• Local Frequent Itemset - The frequent itemset generated from the local partition of 

database available on a site, having support count more than the local support 

threshold value is local frequent itemset.  

• Global Frequent Itemset - The frequent itemset aggregated from local itemsets 

representing the entire database and having support count greater than the global 

support threshold is global frequent itemset.  

• Confidence - The confidence is relationship between two items. It is the percentage 

of transactions in the dataset DS with itemset A that also contains the itemset B. It 
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is calculated using the conditional probability which is expressed in terms of 

itemset support. [35][62] 

Confidence(A->B) = Support (A∪B)/ Support (A)  

Here, Support (A∪B) is the number of transactions that contain both itemsets A 

and B, and Support (A) is the number of transactions that contain itemset A.  

• Association rule - Finding interesting relationship or correlation amongst the items 

in the dataset with n number of transactions containing a set of items. An 

association rule is represented by A/ B, where A and B are distinct itemsets [62].  

2.2 DATA SOURCES 

There are many real and synthetic datasets available for the researchers in the area 

of data mining. These datasets are transformed and stored at different education or 

company sites working in these areas. Some of the popular data sources are listed below- 

• http://fimi.ua.ac.be/data/ :Actual Data sets [30] for data mining are available for 

research donated/ submitted by different organisation. 

• http://lib.stat.cmu.edu/datasets/ :Provides datasets collected on actual bases by 

different experiments by researchers, industry in the vast deversified areas. 

• http://rdatamining.com/ : There are many datasets available online for free for research 

use for different analysis. 

• https://pslcdatashop.web.cmu.edu/ : Pittsburgh Science of Learning Center Data shop. 

A central repository for research data. 

• http://almaden.ibm.com : Produce synthetic datasets. Used by researches [16]  
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• https://www.ics.uci.edu/ml/ : This is an online repository of large data sets which 

encompasses a wide variety of data types, analysis tasks, and application areas. 

Currently maintain more than 280 data sets for research. Researcher Ailing Wand used 

dataset form this repository. It maintains datasets for variety of applications including 

data mining.  

2.3 DATA MINING TOOLS AND SOFTWARE 

There are many software tools are developed for the different techniques of data 

mining with different feature and facilities. These tools are to be used based on the 

distributed environment suitable for the problem.  

Table 2.1 Data Mining Tools & Software 

Mining tool Features Techniques/Tools 

Weka [25] 

• Based on Parallel & Map 
Reduce  

• Memnory limitation with large 
dataset 

• Visualization 
• Open source 
• Good for developing new 

machine learning schemes 

• Association, Clustering, 
Classification, Regression, 
Pre-processing 

Apache Hadoop 
[81] [78] 

• Single mining task is split into 
many small tasks. 

• Each task runs on on one or 
many computing nodes 

• Batch-oriented parallel 
computing model  

• require Sun JDK 

• Based on MapReduce 
 

RapidMiner 

• Open source data mining tool  
• Transparent data handling 
• Scripting language based on 

XML 

• classification, regression, 
deviation detection, 
clustering, association, 
sequential Pattern analysis 
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• Run on Every major platform  

Oracle Mining 

• operate on relational tables 
• multidimansional data analysis 

• Association, Clustering, 
Classification, Prediction, 
Regression, deviation 
detection 

IBM SPSS 
Modeler / 
Clementine  

• visual programming or data 
flow interface 

• Commercial software 
• Graphical interface 
• can access both structured and 

unstructured data 

• Association, Clustering 
Classification, Prediction 

IBM Intellegent 
Miner  

• Tightly integrated with IBM 
DB2 DBMS 

• Scalable 
• Visualization  

• Association, Clustering, 
Classification, Prediction, 
Regression, sequential 
Pattern analysis 

MOA 
• large data mining  
• open source software 
• use simple XML 

• classifcation, regression, 
clustering and frequent item 
set, frequent graph mining 

Apache 
Spark[65] 

• Distributed computing 
framework 

• Open source cluster computing 
• In memory parallel execution 

• Large scale data processing 
• Association, Clustering, 

Classification, Prediction, 
Regression, sequential 
Pattern analysis 

 

2.4 ASSOCIATION RULE MINING ALGORITHMS 

Association Rule Mining (ARM) algorithms can be classified as sequential, 

parallel, distributed, grid, and cloud based ARM. Initially many ARM algorithms have 

been proposed in the literature. These algorithms run on a single machine with a 

centralized database in sequence. Sequential ARM (SARM) algorithms are based on three 

different techniques namely Apriori [60], FP-Growth [34] and Eclat [45] and Clique. 

Many variant and updates of these algorithms are also proposed in literature like 

partitioning, sampling, H-mine, Eclat [45], FIN [85] etc. The size of the data generated is 
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increasing with time and single CPU and memory cannot handle the huge data and 

intensive computation load. Parallel ARM (PARM) algorithms are proposed to overcome 

these limitations, with ability to scaleup and to speed up the mining tasks. PARM [51] 

environment is tightly coupled system based on type of parallelism – task or data, 

architecture – distributed or shared memory, type of load balancing approaches, data 

layout – horizontal or vertical partitioning etc. PARM is ideal for centralized large 

database systems. Some of the PARM algorithms proposed in literature [68] are CD, DD, 

Can.D, DP3, sampling and other algorithms based on these algorithms. 

For the last more than two decades distributed ARM (DARM) is gaining ground 

with the increase of multiple distributed datasets in place of centralized dataset and it is 

essential to use DARM for distributed datasets [51] where it deals with the loosely-coupled 

system where nodes situated in various sites are connected via LAN or internet. In this setup 

message passing mechanism is used for communication between different nodes. DARM 

provides the scalability, efficiency without the limitations of the centralized system. 

DARM are based on some traditional sequential algorithm and parallelism is achieved. 

The DARM algorithms are proposed in literature which use two approaches based on 

Apriori or Map-Reduce. Some of the DARM algorithms are FDM {23], PDM, CD [61], 

DD[60], ODAM [83], AprTidRec [4], LMatrix [32], PDF, PFIN [19], PPDM [46]  and 

many more. In the resent years most of the DARM algorithms proposed are parallel in 

nature on MapReduce technology or mining on big data.  

Some of the DARM Algorithm proposed in literature for mining association rules 

in distributed data environment are illustrated below: - 

• Fast Distributed Mining of Association Rules (FDM) [23]: This algorithm is based 

on the Apriori algorithm. Two categories of DDM algorithms are Data Distribution 



 21 

(DD) algorithm and Count Distribution (CD) algorithm. Apriori algorithm used at 

each site produces each length frequent itemsets and candidate set. FDM generates 

less number of candidate sets, and messages and it performs better than the 

standard sequential algorithms like CD and Apriori. There are some overheads of 

Parallel Virtual Machine and it needs more synchronization. FDM doesn’t perform 

well with skewed organization of data. 

Variants of FDM are also proposed in literature. FDM-LP[23] uses local pruning, 

FDM-LUP explores local as well as upper bound pruning whereas FDM-LLP 

explores local and polling site pruning. 

• Distributed Mine closed Itemsets (DMCI) [17]: Distributed Frequent Closed 

Mining Algorithm finds the local frequent itemset, communicate with other site to 

collect their support, perform local pruning to generate global Frequent Closed 

Itemset (FCI) where FCI is a small subset of frequent itemset where redundancies 

are discarded and it is more concise and meaningful. The communication load 

between different sites is small, but there is frequent communication between sites. 

FCI mining provides help to take correct decision at each site, but time consuming, 

several data scans. 

• Distributed Mining of Association Rules (DMA) [24]: The mining steps in this 

algorithm are candidate sets generation, local pruning and message optimization. 

The algorithm generates less candidate sets at local sites as compared to Apriori-

gen. Optimization technique eliminates the duplication form the candidate sets. It 

determines the polling site or host site for broadcasting, collecting support counts 

and determine whether X is large for each candidate set X using hash function. It 

does not require to scan the partition again to calculate the support counts. It shows 
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that DMA performed better when the number of nodes is higher. It requires more 

Storage for message and support counts. It uses the nodes having identical schemas 

only. 

• Distributed Mining Association Rules with Item Constraints (DMCA) [18]: The 

algorithm integrates the item constraints into the mining process which can acquire 

more efficient algorithms. The candidate sets are reduced, and execution time 

improves as compared to FDM. The item constraints are formalized with boolean 

expression which is used for generating candidate sets satisfying the constraints. 

The algorithm uses the relationships between global and local frequent itemsets 

and saves the local counts in hash tables. It reduces dataset scans and 

communication cost. 

• Distributed Decision Miner  [10]: It is based on the Apriori and CD algorithms. It 

is good for un-skewed data. It verifies that an itemset is large before collecting its 

support counts from all nodes. The algorithm is scalable and data skew robustness 

with low communication overhead, but it requires more storage. 

• Multi-Relation Data Mining (MRDM) [79]: Algorithm is based on the Genetic 

(GA), Apriori and extended Algorithms. It combines multi-relations using genetic 

algorithm. The steps are (i) GA to mine antecedent rules, (ii) mine the consequent 

rule from the rest relational attributes of other tables (iii) produce extended 

association rule using foreign key. It produces finer patterns and contains more 

information. This is suitable for small databases. 

• CREDLM & CREMLM Algorithms [16]: Chain Retail Enterprise based on Massed 

Learning (CREMLM) algorithm refers to the large-scale chain retail enterprises 
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with large bandwidth and small transaction on each branch store with many branch 

stores. It is performing the globally frequent prune at one store so called massed 

learning. The communication frequency is low with complexity O(n) only. It 

requires high data scans, low local efficiency. Performs better with minimum 

support is high. 

Chain Retail Enterprise based on Dispersed Learning (CREDLM) algorithm [16] 

refers to the small-scale chain retail enterprise with small bandwidth and large 

number of transactions on each branch store with few branch stores. It is 

performing the globally frequent prune on many stores so called dispersed 

learning. Communication load impact the performance of algorithm. CREMLM 

has performed better than CREDLM in a larger bandwidth whereas it is reversed 

in smaller bandwidth. Reducing the Data scanning may improve the performance 

of these algorithms.  

• AprTidRec Algorithm [4][5]: This is an extension of the Apriori algorithm. A 

record structure “tidrec” is defined to store each candidate frequent itemset from 

the ordinal distributed data and join is used in place of pruning. It concluded with 

short time complexity and reduced communication cost. The trade-off between 

time and space complexity is needed to get the best results. The same can also be 

applied to non-isomorphic data sources. 

• Count Distribution (CD) [61]: CD algorithm[41] is parallelization the Apriori 

algorithm with horizontally fragmented dataset. The candidate sets generated at 

each site is broadcasted to every other site. It exchanges only counts between sites 

and message exchange is O(n2). Memory not properly utilized by the algorithm 

and it is not much scalable.  
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• LMatrix [32]: Algorithm creates the local LMatrix, an object-by variable 

compressed structure, to calculate local support which saves time to scan the 

database partitions but consumes more memory. A pre-fix tree structure FP-tree is 

used to store compressed information about frequent itemsets. FP-array technique 

is used to improve the performance for FP-tree based for sparse datasets. It is useful 

when the dataset is too large for sequential mining. The algorithm reduces the 

communication cost, size of messages, time to scan the partition. It consumes more 

memory and execution time increases when data size increases and minimum 

support threshold decreases. 

• Frequent Pattern Growth (FP-Growth) algorithm [34]: FP-Growth is an 

improvement of apriori algorithm. This algorithm finds the frequent itemsets in the 

database without generating the candidate sets. FP-growth constructs a compressed 

tree like structure called FP-tree to represents frequent itemsets. It is extension of 

prefix-tree structure which provides a technique to use compact tree data structure 

for data mining to reduce data scans. FP-tree is expensive and may not fit into the 

memory. 

• R-Apriori (Reduced apriori) : R-Apriori is a	parallel	ARM	algorithm	proposed	

by	Rathee	[65]	based	on	Apriori	algorithm	on	horizontal	portioning	of	dataset.	

It	is	a	parallel	algorithm	on	spark	platform	for	the	MapReduce	framework.	It	

is	 not	 mining	 exact	 association	 rule	 but	 it	 mines	 approximate	 association	

rules.	It	reduces	the	computations	in	second	iteration	and	faster	than	Apriori.	

Performance improves with the increase of data size. 

• Optimized Distributed Association Rule Mining (ODAM) [83]: It is an improved 

version of Apriori algorithm. It considers the horizontal partitioning of dataset. It 
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minimises the candidate sets generation so it offers better performance. It sends 

support counts to one site reducing communication. Rules are generated by 

different participating sites are identical ensures synchronization.  

• Parallel Frequent Itemset Mining Algorithm Using Nodesets (PFIN): PFIN is a 

parallel FIM algorithm [19] based on the efficient data structure Nodeset, 

implemented on spark framework. It breaks a large scale problem into small tasks 

and run them parallel. It groups the frequent itemsets and uses hash based load 

balancing technique. It has low communication overheads. 

2.4.1 Data Structures Used in Data Mining  

Data Structures act an important role in DARM. Efficient data structure reduces 

the computational complexity of an algorithm which makes it better. Different data 

structures are proposed in the literature and based on these data structures different DARM 

algorithms are proposed. Using tree based data structures reduces the data scans and stores 

information about the frequent itemsets generated in the frequent patterns mining. Some 

of the popular data structures are given below-  

• Frequent-pattern tree (FP-Tree) is a popular data structure used by the FP-Growth[34] 

algorithm. It is a compact extended prefix-tree structure for storing frequent patterns. 

Database is scanned twice for the construction of the FP-tree. It is an improved version 

of bidirectional prefix tree structure that allows bottom up scanning. For large pattern, 

FP-tree construction complexity is very high and expensive. 

• Nodeset data structure used for mining process of frequent itemsets is based on POC 

tree proposed by [85] and used in FIN algorithm for sequential association rule mining 

in 2014. Nodeset is an efficient data structure[85] which require less memory. It stores 
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only postorder or preorder of nodes in the form of N-info. The database is scanned 

only once and tree is constructed with one root and subtree as children. 

• N-list is a vertical data representation compact data structure proposed in recent years. 

N-List is a structure like FP-tree [87] and stores information obtained from PPC-tree 

about the itemsets using preorder, postorder. It has been proven to be very efficient for 

mining frequent itemsets.	 

• Trie data structure is a prearranged data structure proposed by [29]. It is also known as 

radix tree, digital tree or prefix tree. In Trie structure strings are used to store the keys. 

The trie structure is traversed depth-first, following the links between nodes, which 

represent each character in the key.  

2.4.2 Issues And Challenges  

Issues in designing a DDM algorithms for mining association rules in the 

distributed data environment are to be addressed which are evaluated due to the distributed 

nature of the database. On the one side we are getting the advantage of parallel processing, 

scattered storage requirement at different sites by reducing the load on the centralized 

resources but on the other side there is a need to evolve techniques to find local frequent 

itemsets that can be used to find the global frequent itemsets. It requires (i) local processing 

capabilities and (ii) storage at all the sites, (iii) more data scans (iv) a lot of communication 

between these sites (v) communication with centralized or main site, (vi) synchronization, 

(vii) merging the information etc. Algorithms for DDM for association rules mining 

proposed in literature are addressing these issues. It is to be considered that reducing one 

cost may increase the others. So, algorithm addressing these issues and improving costs 

and performance etc., keeping trade-off between them, is required to suit a particular 
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distributed scenario. Some of important distributed data association rule mining issues 

are:- 

• Number of data scans: Number of data scans [67] require to find frequent 

itemsets and support count and it effects the performance. 

• Number of candidate sets: Candidate sets are generated for finding frequent 

itemsets. Reduce number of candidate sets will reduce the communication 

overhead. 

• Communication cost: Sites communicate FI and support counts. Reducing the 

number of messages between nodes will reduce the communication cost. 

• Memory requirement: Optimum use of the memory is required to store the local 

and global FI, transactions, support counts etc. 

• Pruning : Prune out not frequent candidate sets to reduce the number of frequent 

itemsets which may not be frequent hence reduce the communication load. 

• Synronisation: Needs between the nodes and centralised site. 

• Work load balancing at various nodes: One or all nodes participate in computing 

frequent itemsets. 

• Rule redundancy : Some of the itemsets are frequent at more than one node. 

• Scalability : Some of the algorithms are good for small database only and do not 

scale-up well. 

• Skewness: Data skewness[44] may improve the performance by reducing 

communication. It can also have adverse effect of load imbalance. 

• Data decomposition among nodes: May reduce the candidate sets and redundancy. 

• High Dimensionality: Handling the increase of number of dimensions [50] or items 

These issues and challenges are not independent of each other. There are 
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relationships between these issues in the sense that some are directly proportional and 

some are inversely proportional to others given in Table 2.2 and 2.3. Based on the size of 

the database, number of partitions, communication bandwidth availability, processing 

power and available recourses, trade-off between them are required. 

Table 2.2 Inversely proportional issues 

Number of data scans Memory /storage requirement 

Skewness Pruning 

Pruning candidate sets 

Work load balancing Communication, skewness 

 

Table 2.3 Directly proportional issues 

Number of candidate sets Communication 

Communication Synronisation 

Rule redundancy Communication 

Good Data decomposition among nodes Candidate sets, redundancy, 

 

2.5 APPLICATION MODELS OF DARM 

Applications of association rule mining [3] in large and dispersed database are 

businesses, defence, public safety, GIS, medical diagnosis, Hospital etc. As the database 

is updated on regular basis, so transferring and storing data at one centralised place is not 

feasible and time consuming, and mining data must be up to date [56] otherwise it affects 

the decisions. Distributed computing is important in data mining as mining requires huge 

amounts of resources and data distribution is required for safety, scalability and resource 

sharing [7]. Lot of mining application models and algorithms are developed and used 

effectively for the decision making, expansion and making good strategies by different 
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business houses.  The most popular algorithm for association rule discovery from market, 

sales databases [7] is Apriori algorithm. This algorithm performance is good with sparse 

datasets. Association rules are used to examine the customer buying behaviours for 

different item purchased from the supermarket transaction data. It describes how often the 

items are purchased together[34]. Researcher used uninorms[63] to aggregate support and 

confidence in market basket analysis for UK grocery. Knowing the sales pattern by the 

customer can help to make potential strategies to increase the sales and 

recommendations[82]. 

The main purpose of the research conducted by [71] on Market Basket Analysis of 

beauty products was to find the interrelation of the products in a beauty shop and use the 

outcome for marketing and sales promotion of the products. The researcher used the 

Apriori algorithm for this research. It is observed that there are two type of customers, 

casual and regular, where first who buy a few random items and second who planned and 

buy more. The support and confidence value used in this research were 0.1 and 0.4 

respectively [52]. A case study on analysing market basket was conducted by [2] on an 

electronic store data using FP-Growth[34] and Apriori algorithm and generated useful 

rules. [38] also performed research for customer basket and found items with highest 

correlations. Sales Analysis is performed by [64], same as market basket analysis to target 

prospective customers for the optimizing the profit. The work used product rating in data 

mining Techniques. [1] applied the association mining in finding association between 

different parameters causing the road accident. This study is useful for finding hidden 

association and improving the road safety. 

Liu [15] proposed DDM model “DRHPDM - Data source Relevance-based 

Hierarchical Parallel Distributed data mining Model” for e-business. Its focus was to 
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“improve the openness, cross-platform ability, and intelligence of the DDM system”. 

Norulhidayah [54] proposed applied DDM on daily sales analysis on the data of Chan 

furniture and proposed a strategy for business promotion and marketing. A periodic 

mining, due to the dynamic nature of data in the market basket data, is proposed [48] by 

automate the threshold values by working on the change modelling concept. Study is 

conducted by [39] and a technique is proposed to find associations among items and 

determine better showcase to appeal to customers and increase sales. Map-Reduce based 

Consistent and Inconsistent Rule Detection (MR-CIRD) algorithm is proposed [26] to 

detect the consistent and inconsistent rules from big data and provide useful and actionable 

knowledge to the domain experts. These pruned interesting rules also give useful 

knowledge for better marketing strategy as well. Merouane [47] presented a model for 

distributed association rules mining by combining it with the multi-agent system to run it 

in parallel and distributed manner from the centralized ERP database to provide perfect 

response time. There are many risks also in the supply chain mining due to the different 

technologies used. There are some negative associations[55] along with the positive 

associations that exist in the data which are very significant for the business. Negative 

association is expressed as if there are no common transactions between any two positive 

regular itemsets, then they could be declared as negative regular item set or contradicting 

patterns. A framework is developed by [49] to analyse and manage the supply chain risk 

which gives better insight for better decisions. There are a lot many untouched areas where 

application of data mining can be explored in future.  

Types of Frequent Patterns 

• Itemset[35] 

Example: Bread, Egg and Bread, that appears frequently together in a transactional 
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dataset of Market Basket Analysis. 

• Subsequence[35] 

Example: Buy products in specific order like, buy computer then buy speaker in a 

shopping history. 

• Substructure[35] 

Example: Subgraph and Subtree 

Major Mining Applications 

• Market basket analysis [35] 

• Estimation of financial records 

• Retail business 

• Telecommunication business 

• Biological data scrutiny 

• Data mining for invasion innovation 

• Data mining in other controlled applications 

• Tourism Industry 

2.6 RESEARCH GAP 

Based on the extensive literature review in the area of association rule mining, 

algorithms and techniques, it is observed that the distributed data association rule mining 

is less explored. Most of the research in the area of association rule mining is done on the 

centralized database. Some of the research uses the parallel approach by distributing data 

amongst the sites and perform parallel processing in order to reduce the load on a 

centralized processing capabilities. There is very little research which considers the data 
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already distributed to various sites and the data partition available at sites vary in size. 

Recently some of the new data structures like N-list, Nodeset are proposed for the 

association rule mining but not implemented for the distributed data as such. Due to the 

increase of globalisation and generation of huge data at different locations there is a need 

to explore the applicability of the mining algorithms of the purely distributed data.  
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3 METHODOLOGY 

 

The problem of mining association rules is divided into two subproblems[62]: (i) 

to find all frequent itemsets in the database for the given minimum support threshold value, 

and (ii) to generate the association rules using the frequent itemsets found in (i). As the 

mining association rules cost is mainly involved in (i), the focus is on the evolution of 

some efficient technique for the first subproblem [62]. The proposed algorithm are also 

focused on finding the global frequent itemsets and then an application model is proposed 

for finding the association rules. This chapter explains the DARM  process and 

methodologies used in development of the proposed algorithms. 

3.1 DISTRIBUTED DATA MINING PROCESS 

The DARM process involves a lot of activities to be performed by the algorithm at 

different sites to mine the association rules from the distributed data. These activities are 

not disjoint. In order to perform the mining on a distributed data, some assumptions are 

taken into consideration. 

3.1.1 Assumptions 

• Database is horizontally partitioned and distributed at various sites around the 

globe. 

• Data is generated or captured at different sites. 

• Data is not transferred between nodes due to the resources constraints or policies. 

• Size of each partition i.e., number of transactions stored at each site may differ. 

• Number of candidate sets generated at each site may differ. 
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• All sites may not be equally loaded. 

• The resources and capabilities are similar at various sites. 

3.1.2 Process Activities and Definition 

• Data scanning - scanning transactions in the database to compute frequent itemset 

• Local frequent itemset (FI) - The itemsets that meet a user-specified minimum support 

at each node. A frequent itemset is maximal if it is not subset of any other frequent 

itemset. 

• Data storage - Storage is required on each site for storing local support counts, 

transactions, frequent itemsets etc. 

• Skewness - Distribution of itemsets among the various partitions. A database’s total 

data skewness is the sum of the skew of all itemsets weighted by their supports. Most 

algorithms require low data skewness for good load balancing. 

• Local purning - Removing the infrequent itemsets from candidate sets at each node. It 

reduces number of candidate sets, cut communication cost. 

• Candidate set generation - Candidates are generated in parallel. Each processor 

generates its own local set. 

• Count polling - A polling site is assigned to itemsets X independent of the site where 

X is locally large. 

• Polling site - responsibility to find whether X is globally large. It broadcasts requests 

to collect local support counts for X and compute global support count. 

• Communicating Local FI -Communication between sites or communicating site with 

other sites sending FI by message passing. 
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• Global pruning -Additional pruning is being done to global frequent itemsets. The 

efficiency of local pruning can be enhanced by global pruning. 

• Finding Association rule - According to the global frequent itemsets and minimum 

support, association rules based on the global database can be acquired. 

The DARM definition is given below as taken from [23] is defined below: 

Let DB is a transaction database with 𝐼 = {𝑖!, 𝑖", … , 𝑖#}   set of items. Transaction 

T of DB is a set of items where 𝑇 ⊆ 𝐼. An itemset 𝑍 ⊆ 𝐼, belongs to T if and only if 𝑍 ⊆

𝑇. An association rule (AR) is represented[23] as ⇒ 𝑌, where 𝑍 ⊆ 𝐼	𝑎𝑛𝑑	𝑌 ⊆ 𝐼	and 𝑍 ∩

𝑌 = ϕ. The AR 𝑍 ⇒ 𝑌	holds in the database with a confidence ‘c’ implies that the 

probability of a transaction in database containing Z also contains Y is ‘c’. The association 

rule 𝑍 ⇒ 𝑌	has support ‘s’ in database implies that the probability of a transaction in 

database contains both Z and Y is ‘s’. The association rules mining is a task to search all 

the association rules in the database where support is greater than the minimum support 

threshold value and confidence is greater than the minimum confidence threshold value. 

For an itemset Z, support is defined as the percentage of transactions in database 

containing Z, and its support count, Z.sup, is total number of transactions in database 

containing Z. An itemset Z is large or frequent occurring if its support is equal or greater 

than the minimum support threshold. An itemset of size k is called a k-itemset. Distributed 

algorithm[23] for mining association rules statement. 

To examine the association rules mining in a distributed database DB with D 

transactions and n-sites 𝑆!, 𝑆", … , 𝑆$ having n-partitioned {𝐷𝐵!, 𝐷𝐵", … , 𝐷𝐵$} 

respectively. Let 	𝐷% be the size of the partitions 𝐷𝐵% 	where i = 1, 2, . . . , n. Z.sup, the 

support counts of an itemset Z in database and 𝑍. 𝑆𝑢𝑝% 	𝑖𝑛	𝐷𝐵%. For each site 𝑆%	, 𝑍. 𝑆𝑢𝑝% 	is 
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the local support count of Z and Z. sup is the global support count. For a specific minimum 

support threshold value ‘s’, Z is also globally large itemset if 𝑍. 𝑠𝑢𝑝	 ≥ 	𝑠	 × 	𝐷; 

correspondingly, Z is locally large itemset at site	𝑆%, if 	𝑍. 𝑠𝑢𝑝	% ≥ 	𝑠	 ×	𝐷%. Let L be the 

globally large itemsets[23] in database, and 𝐿(() the globally large k-itemsets in L. A 

distributed association rule mining algorithm finds the globally large itemsets L. 

3.2 DISTRIBUTED DATA MINING MODEL 

Many DARM architectures are proposed in the literature. The most suitable 

architecture for the distributed data mining is given in Figure 3.1, which was proposed by 

[27] as a general purpose DARM architecture. It consists of distributed data at various 

sites where local mining is performed and then these are aggregated to the global model. 

It is suitable from small as well as large scale distributed system. 

Proposed model with distributed data collection and maintenance at various sites 

without any centralized data repository and without any centralized data mining unit is 

given in the Figure 3.2. There is no centralized database and no centralized data mining 

unit. Data is partitioned and distributed amongst various sites, where data is collected and 

stored. Local mining is done at various sites and frequent itemsets are found. Coordinating 

unit assigns the polling site for the global processing. Number of processing units in 

coordinating unit may vary depending on the load based on the size of the overall data and 

number of sites. There is no centralized processing unit to process the global mining rather 

all sites participate in global mining. This is best suitable model for a large setup and large 

data size with a good amount of load distribution amongst the available resources.  
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Figure 3.1 A general purpose DARM architecture [27] 

 

 
 

Figure 3.2 Proposed model for DARM  

3.3 CANDIDATE SET REDUCTION BY PRUNING 

Pruning is a process of reducing candidate sets[23] generated by data scan for 

itemsets size k=1,2,..n. It eliminates the frequent itemset which are not locally large 
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itemset i.e., having support count less than the minimum support threshold as those may 

not be the global frequent itemsets. This reduces the number of candidate sets for 

communication to other nodes so reduces the communication load over the network and 

enhance the performance.  

Example:  

If frequent size-2 itemset at site -2 {ab, ac, bf, cf}.  

After pruning itemsets having support count less than the minimum support threshold say 

{cf, bf} are removed from the candidate sets.  

The remaining candidate sets {ab, bf} communicated to all other sites.  

3.4 NO BROADCASTING OF FREQUENT ITEMSETS 

Broadcasting of the local frequent itemsets to all sites is a heavy load on the 

communication network. No-broadcasting reduces the load on the network. All local 

frequent itemsets are sent to a dedicated or coordinating site for assignment of polling site 

for finding the global frequent itemsets. There is no-broadcasting of the local frequent 

itemsets by different sites.  

Example: 

 Suppose there are 5 sites then all sites send frequent itemsets to other four sites 

means 5 x 4 = 20 packets but in no-broadcasting all 5 sites send local frequent itemsets to 

one site only so 5 x 1 = 5 packets are being sent on the communication channel. With the 

increase of the number of sites there is a big reduction in the packets communicated over 

network in the no-broadcasting technique and the performance of the algorithm improves. 

Total number of FI messages send are of O(n) only  
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3.5 NODESET DATA STRUCTURE 

Nodeset data structure[85] is a latest, novel and efficient data structure proposed 

for data mining and it is based on the pre-order coding tree called POC-tree.  

3.5.1 POC Tree 

POC tree is constructed with one root and prefix subtrees. Database is scanned for 

frequent size -1 itemsets and their support count.  1-itemset are arranged as per their 

support count in descending order. Create the root of a POC-tree labelled as ‘‘null’’ For 

each transaction in data partition. If Tree has a child M such that M.item-name = item-

name, then increase M’s count by 1;  Otherwise create a new node M, with its count set to 

1, and add it to Tree children-list.  If list is nonempty, insert tree recursively. Scan the 

POC-tree to generate the pre-order of each node by the pre-order traversal. This is an 

efficient data structure, which use POC tree and reduces data scans and increase efficiency. 

Table 3.1 Sample Database Transactions 

TID Items Ordered frequent items 

101 b, e, j, i, p b, i 

102 f, c, b, i b, c, f, i 

103 b, c, h, b, c 

104 f, a, b, c a, b, c, f 

105 a, f, c, g, b a, b, c, f 

 

Ordered frequent items are items having support count >= threshold 

Here support count threshold is considered as 25% and frequent itemsets available 

in each transaction are identified and ordered, shown in Figure 3.3.  
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N-info – pair of preorder and count 

 
Figure 3.3 POC Tree construction 

3.5.2 Nodesets 

Nodeset of frequent item-i is sequence of all n-infos of node i in the POC-tree. Each N-

info of  a node in the POC-tree is count of the number of transactions with item i. 

Therefore, i’s support is the sum of counts of nodes with item i. 

 

Nodeset of frequent itemset & support count 

b   ⟶ {(1,3), (7,2) }   5 

c   ⟶  {(3,2),(8,2)}  4 

f    ⟶  {(4,1),(9, 2)}  3 

i    ⟶ {(2,1),(5,1)}  2 

a    ⟶  {(6,2)}   2 

 

 

Nodeset of frequent 2-itemset & support count 
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The Nodeset of 2-itemset is a subset of i2’s Nodeset  

bc   ⟶ {(3,2),(8,2) }   4 

bf    ⟶ {(4,1),(9,2)}  3 

bi    ⟶ {(2,1),(5,1)}  2 

ac   ⟶ {(8,2)}   2 

 …….. 

Nodeset of frequent 3-itemset & support count 

abc   ⟶  nodeset ac ∩ nodeset of bc 

                 {(8,2)}   2 

3.6 ZERO-FIRST TECHNIQUE 

In the real life scenario database is distributed where data is captured or gathered 

at different locations. The size of the data partitions varies[9] in size from a few hundred 

of transactions on one site to a million of transactions at other site. In the distributed data 

mining, resources are also distributed and there should be a mechanism to utilize all the 

nodes by allocating processing to less occupied nodes. In this work a new technique for 

load balancing Zero-first for distributed data mining is presented. 

Based on the assumptions, Zero-first technique is developed for the assigning 

polling sites to each local FI received by the coordinating site from all other sites. The 

poling site is responsible for finding the globally large itemset from the list of locally large 

itemset. The new technique ensures that the load is assigned to less occupied sites for a 

distributed data association rule mining. 

Definition: Zero-first technique:  

For sites 𝑆 = 	 {𝑆!, 𝑆", … , 𝑆$} and locally large candidate sets {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$} 

received from n sites.  
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𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒	𝑠𝑒𝑡	𝐶𝐺 = 	 {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}  

 max	 _𝐶𝐺 = 	𝑚𝑎𝑥{𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}  

Where max_CG is the max number of candidate sets broadcasted by any site. 

 𝑖𝑓	max	 _𝐶𝐺 > 		𝑎𝑛𝑦𝑜𝑛𝑒{𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$} 

𝑓𝑜𝑟		𝐶𝐺	%	 < max	 _𝐶𝐺	Arrange  

𝑆′ = 	𝑂𝑟𝑑𝑒𝑟{𝑆!, 𝑆", … , 𝑆	$*+}	 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒		𝑆′ = 	𝑂𝑟𝑑𝑒𝑟{𝑆!, 𝑆", … , 𝑆	$}	𝑎𝑙𝑙	𝑠𝑖𝑡𝑒𝑠 

Sites are arranged in the order of size of the candidate sets generated, starting with 

zero, excluding the sites with maximum size of candidate set.  

If the candidate sets sent by each site are not equal, then all the sites are to be 

arranged in the order of the number of candidate sets generated by each site. 

𝐶𝐺′ = complete combined list of all locally large itemsets received from all the sites 

removing duplicates 

𝐶𝐺′ = 	 {𝐶𝐺!	∪ 	𝐶𝐺" 	∪ 	…∪ 	𝐶𝐺$} 

Allocate  𝐶𝐺,	𝑡𝑜		𝑠𝑖𝑡𝑒𝑠	𝑆′  

After arranging the sites in order of their loads, allocation of polling sites to the 

itemset are done in the order of the site occupancy (zero-first order) to check it for globally 

large itemset. [23] If all the frequent itemsets are not assigned then repeat the assignment 

in the same sequence of initial assignment.  

Example: 

Let there are four sites 𝑆!, 𝑆", 	𝑆-,	𝑆/. The candidate sets broadcasted by site 

𝑆!{	}, 𝑆"{𝑎𝑏, 𝑏𝑓	}, 	𝑆-{𝑎𝑏	}, 	𝑆/{𝑏𝑐	}. Applying zero-first technique, the ordered candidate 

set is {𝑎𝑏, 𝑏𝑐, 𝑏𝑓	} and ordered site set is {𝑆!, 	𝑆-,	𝑆/	} leaving most occupied site {𝑆"}. 
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Using the zero-first technique, the first polling site is {𝑆!	} and first locally large itemset 

in the ordered candidate set {ab} is assigned to site {𝑆!}. Similarly {bc} is assigned polling 

site is {𝑆-} and {bf} itemset is assigned to {𝑆/}. Leaving the most occupied sites who sent 

maximum number of locally large itemsets.  

Sites with small data partitions have fewer number of transactions are under-

utilized in terms of the processing, memory and scan time as compared to the sites with 

large data partitions. The Zero-first technique assigns more responsibility to less loaded 

sites and does not assigns any load to the most occupied sites. It ensures load balancing 

across the sites. 

3.7 SIZE BASED ASSIGNMENT TECHNIQUE 

In the distributed setup, data is generated or created at different locations. The 

number of transactions at various sites differ [9] from a few hundred to millions of 

transactions. In this setup, resources at each site is also limited and are distributed. Data 

mining requires great amounts of resources [7] so techniques for flexible distribution of 

work load amongst sites need to be developed. The sites with little number of transactions 

are less occupied as they require less memory, computational capabilities and time for 

maintaining data, scanning for frequent itemsets and maintaining candidate sets.  

New technique SBA is proposed to assign the polling sites to the locally large 

itemsets received by a designated site. The polling site finds the globally large itemsets 

from the itemsets received. Novel technique takes care of the sites with the large data 

partitions and distribute load considering the number of transactions at each site and 

balance the load.  



 44 

Definition: Size Based Assignment Technique:  

For sites 𝑆 = 	 {𝑆!, 𝑆", … , 𝑆$} and candidate sets  {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$} sent by n sites. 

Total Transactions  𝑇𝑇 = 	 {𝑇!, 𝑇", … , 𝑇$} 

For size k-itemsets 

Average Transactions percent per site,   𝐴𝑇 = 			 !00
$

 

Actual number of Transaction in percent at site 

 𝑃𝑆%			 =	
1!
∑ 	1!

	𝑥	100 

Load difference at site in percent  𝑆% 		𝑖𝑠		∆%= 𝐴𝑇 −	𝑃𝑆% 

For all k-sized itemsets, complete candidate set 

𝐶𝐺 = 	 {𝐶𝐺!, 𝐶𝐺", … , 𝐶𝐺$}  

𝐶𝐺′ = Complete Candidate sets received from all sites without any duplicates 

𝐶𝐺′ = 	 {𝐶𝐺!	∪ 	𝐶𝐺" 	∪ 	…∪ 	𝐶𝐺$} 

Average candidate sets at each site in percent  

 𝐴𝐶𝐺 = 		 34
"

$
 

Arrange sites as per the partition size 𝑆′ 

Local frequent itemsets assigned to the polling site 𝑆%		𝑖𝑠	 = 	 ⌈	𝐴𝐶𝐺 +		∆% 	x		𝐶𝐺⌉		 

After finding the average frequent itemsets to be allocated to each site, from site 

list 𝑆′ arranged in the order of their number of transactions, the assignment of polling sites 

to the frequent itemsets is done in this order by assigning upper integer value of average 

candidate set plus load difference. Assignment continues till the entire candidate set 

exhausted. This way the highly loaded sites are assigned nil or very little number of locally 

large itemsets for finding globally large itemsets. This technique assigns the load inversely 

proportional to the site load and hence balance the load of polling station. 



 45 

Example : 

Let there be five sites 𝑆!, 𝑆", 	𝑆-,	𝑆/,𝑆5 having transactions 10% , 15%, 20%, 25% and 30% 

of the total transactions respectively. The frequent itensets sent by sites 𝑆!{	1, 4, },

𝑆"{2, 4	6, }, 	𝑆-{3, 8, 17, 16	}, 		𝑆/{12, 17, 1, 18	}, 		𝑆5{2, 8, 19,11}.	 Applying SBA 

technique, the ordered candidate set is {1, 2, 3, 4, 6, 8, 11,12, 16, 17, 18,19	} with 12 

locally large itemsets and ordered site set is {𝑆!, 𝑆", 	𝑆-,	𝑆/,	𝑆5}  with average transactions 

20% as there are 5 sites.  

The load difference at S1 is 10% so local frequent itemsets to be assigned to site S1 is  

ceiling integer  j!"
5
+ !0

!00
	x	12	k = 4    i.e. { 1, 2, 3, 4} items 

Similarly assignment to S2 is:  ceiling integer  j!"
5
+ 5

!00
	x	12	k = 3  i.e. {6, 8, 11} items 

Assignment to S3  is : ceiling integer j!"
5
+ 0

!00
	x	12	k = 3 i.e. {12, 16, 17} items 

Assignment to S4  is : ceiling integer  j!"
5
+ *5

!00
	x	12	k = 2.	i.e.{18, 19} items 

Assignment to S5 is : Zero items as candidate list exhausts. 

The sites with small data partition or with little number of transactions are not fully 

occupied. These sites have less processing scan and memory needs, as compared to the 

sites with more transactions. Proposed SBA technique assigns load inversely proportional 

to the site occupancy by considering the partition size and balances the load. 

3.8 COMPARISON METRICS  

The proposed algorithms are compared with the popular distributed data mining 

algorithms FDM [23] and PFIN [19]. FDM is one of the most popular distributed data 

mining algorithm and the PFIN is parallel algorithm using nodeset data structure and 

performed better as compared with FIN and PFP two latest algorithms where FIN is 
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sequential algorithm using nodeset data structure and PFP is parallel FP-Growth[34] 

algorithm. 

Experiments are performed on a cluster of 4, 5 and 6 nodes connected with LAN, 

using Intel i5, 64 bit processor running @ 3.3 GHz with 6 GB RAM, 1 TB HDD, running 

on windows 10 OS, having Java JDK 1.7.  

Functionality and performance of the algorithms are tested on four datasets 

including three real datasets mushroom, connect, chess and one synthetic dataset 

T10I4D100K. These datasets are available for research on data mining on the FIMI data 

repository (http://fimi.ua.ac.be) [30]. Mushroom dataset is created using attributes  like 

shape, surface, colour, order, cap etc of 23 species of gilled mushrooms, connect and chess 

datasets are generated from different game steps, and T10I4D100K is a synthetic dataset 

generated using the IBM Quest generator. Datasets specifications are given in Table 3.2.  

Table 3.2 Datasets and their specifications 

Dataset Total Trans. Number of Items Average Length Type File Size 

Mushroom 8124 119 23 Dense 570 KB 

Connect 67557 129 43 Dense 9.3 MB 

Chess 3196 75 37 Dense 342 KB 

T10I4D100K 1,00,000 1000 40 Sparse 4 MB 

 

Support threshold values (in percentage) taken for study  

Mushroom 10, 20, 30, 40, 50 and 60. 

Connect  10, 20, 30, 40, 50 and 60. 

Chess 10, 15, 20, 23, 30, and 35. 
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T10I4D100K 0.1, 0.2,  0.3, 0.4, 0.5 and 0.6 

3.9 SUMMARY 

This chapter explains the methodology used in the development of algorithms and 

application model in the area of distributed association rule mining.  The chapter first gives 

the assumptions taken in development of the algorithms. Then it introduces the DARM 

process and explains the steps involved in the process. It then, describes the no-

broadcasting technique for reducing the load on the communication network, and 

candidate set reduction by pruning techniques for finding the global frequent itemsets. The 

data structure used at each site is explained in detail. New techniques zero-first which 

allocates more polling sites to the sites with little number of candidates, is explained in 

detail. Another technique size-based assignment of the polling sites for assigning load to 

the less loaded sites is explained with an appropriate examples.  
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4 QUICK DISTRIBUTED FREQUENT ITEMSET 

MINING USING NODESET 

 

In this chapter, new algorithm Quick Distributed Frequent Itemset Mining using 

Nodeset (QDFIN) is proposed which uses efficient data structure nodeset at each site and 

construct  POC-tree [85]. It uses local and global pruning technique to reduce the candidate 

sets and zero-first technique for assigning polling site for load balancing. Assignment of 

globally large itemsets computation to the less loaded sites increase the computational 

capacity.  

4.1 PROPOSED ALGORITHMS 

Symbol Description[23] 

s - Support threshold min-sup;  

D - Number of transactions in database;  

𝐿( − Globally large k-itemsets;  

Z.sup - Global support count of Z;  

𝐶𝐴( − Candidate sets generated from 𝐿(;  

𝐷% - Number of transactions in 𝐷𝐵%;  

𝐺𝐿%(() – globally large k-itemsets at 𝑆%; 

𝐶𝐺%(() - Candidate sets produced by FIN algorithm;  

𝐿𝐿%(() - Locally large k-itemsets in 𝐶𝐺%(();  

𝑍. 𝑠𝑢𝑝% − Local support count of Z at 𝑆% 

𝐿𝑃%(() – Local pruning k-itemset at site 𝑆% 	 
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Based on the definition of POC tree given in section 3.2.1 of chapter 3, POC 

construction algorithm -1 is given below. The nodeset data structure using POC tree is 

used by each node for storing the frequent itemsets created for each data partition available 

at each node using the FIN algorithm proposed by Zhi-Hong et. al. [85]. The FIN algorithm 

is given below algorithm-2. Algorithm – 3 is the proposed algorithm of the zero-first 

technique for the assignment of frequent itemsets to the polling sites for generating the 

global frequent itemsets. Finally Algorithm - 4 is the proposed QDFIN algorithm for 

finding association rules in distributed data. 

Algorithm - 4.1: POC-tree Construction 

Input: A database partition and a minimum support s.  

Output: A POC-tree and frequent 1-itemset F1 (the set of frequent 1-itemsets).  

1. [Frequent 1-itemsets Generation]  

Scan the data partition to find 1-termset and support count as per min-sup s  

Arrange 1-itemset as per support count in descending order 

2. [POC Tree] 

Create the root of a POC-tree labelled as ‘‘null’’ For each transaction in data partition 

do Select the FI  and arrange them according to  F1.  

Call insert tree. If Tree has a child M such that M.item-name = item-name, then 

increase M’s count by 1;  Otherwise create a new node M, with its count set to 1, and 

add it to Tree children-list.  If list is nonempty, call insert tree recursively.  

3. [Pre-code Generation] 

Scan the POC-tree to generate the pre-order of each node by  

the pre-order traversal.  
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Algorithm - 4.2 : FIN  
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Algorithm – 4.3: Zero-First Technique 

𝐈𝐧𝐩𝐮𝐭:	size − k	locally	large	itemsets	and	broadcasting	site	list  

𝐒6(i = 1,2, … n)		 

𝐎𝐮𝐭𝐩𝐮𝐭:	polling	site	list	for	size −k itemset. 

1. for	all	site 

2. if	candidate	set	by	sites	are	different	size	C7 

3. arrange	the	sites	in	order	of	the	number	of	 

 locally	large	itemset	broadcasted	Si  

4. remove	the	sites	from	list	with	max. number 

of	locally	large	itemset	broadcasted	LL6(7) 

5. for	all		locally	large	itemsets 

6. arrange	in	order	removing	duplicates	LL6(7) 

7. for	all	ordered	candidates 

8. assign	the	polling	site	in	zero − first	order 

9. if	candidate	set	exausited 

10. return	polling	site	list	for	k − candidate	set  

11. else	 

12. repeat	the	same	order	of	sites	and	 

continue	assignment 

 

Algorithm- 4.4  : QDFIN  

𝐈𝐧𝐩𝐮𝐭:	Partitioned		database	DB6(i = 1,2, … n)		 

𝐎𝐮𝐭𝐩𝐮𝐭:	L:	set	of	all	globally	large	itemsets. 

𝐌𝐞𝐭𝐡𝐨𝐝: Execute	the	code	for	all	k − itemsets	at	all	sites, 

starting	from	k = 1	th	size	greater	than	1 

1) for	all	sites 

2) for	k = 1	 

3) find	the	support	count	T6(!) 

4) construct	the	POC	tree	using	POC	FIN	algo 

5) for	k > 1 
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6) 	find	the	size − 2	itemset	usin	FIN	algo 

7) (scan	the	POC	to	find	size − 2	itemset)	 

8) for	all	itemsets	Z	belongs	to	frequent	itemsets	T6(7) 

9) if	support	count	is	locally	large	then	 

10) for	all	nodes	  

11) insert	itemset	into	locally	large	list		LL6(7) 

12) broadcast	to	all	sites 

13) for	all	sites  

14) for	all	itemsets	Z	belongs	to	locally	large	LL6(7) 

15) insert	itemset	into	local	pruning	set  

16) using	Zero − first, get	the	list	of	polling	sites 

17) for	all	sites, 	 

18) send	locally	large	LL6(7)	to	polling	site	S8 

19) for	all	itemsets	Z	belong	to	local	pruning	LP 

20) send	polling	request	for	itemset	Z	to	all	sites	 

21) all	sites	reply	polling	request	from		�T6(7)� 

22) send	support	counts	Z. sup8 

23) for	all	itemsets	Z	in	the	polling	set	LP6(7)	 

24) receive	support	count	Z. sup8	from	all	sites 

25) for	all	the	itemsets 

26) calculate	global	support	Z. sup by 

sumup	of	all	local	support		where 

27) if	Z. Sup > the	global	support	threshold 

28) Add	toglobal	frequent	itemset	G6(7) 

29)  broadcast	global	frequent	itemset	G6(7)	; 

30) if(k = 1)		remove_infrequent(DB6); 

31)  Generate	set	of	all	globally	large	itemsets 

32) return	globally	large	k − itemset	L(7) for generation of frequent itemset for next 

iteration 
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The steps in the algorithm are explained below: 

(i) Database 𝐷𝐵% for all partitions are scanned, local counts for all items of size-1 are 

found and POC-tree is constructed using FIN algorithm[85]. This is responsible to 

generate candidate set 𝐶𝐺%(() at all sites locally. If k>1 in the next pass, it uses POC-

tree to find the candidate sets using FIN algorithm. If 𝐶𝐺%(() is empty, no k size 

itemsets are found then the process stops. (line 1-6) 

(ii) At all the sites, locally large itemsets of size-k are found by local pruning where the 

count is more than the minimum local support threshold ‘s’ and generate the locally 

large 𝐿𝐿%(() itemset for broadcast.  

The locally large itemset 𝐿𝐿%(() by all the sites are broadcasted to all other sites. This 

information is used for finding the globally large itemsets. (line 7-15) 

(iii) Zero-first algorithm receives list of sites and locally large items communicated by 

each site. It returns the list of all polling sites for size-k locally large itemsets 𝐿𝐿%(() 

which is communicated to all the sites 𝑆% by the coordinating site. (line 16-20) 

(iv) Polling sites store the itemsets in 𝐿𝑃%(() and store the list of sites and itemsets 

Z.large_sites. The polling sites 𝑆% receive these local frequent items 𝐿𝐿%((). All other 

sites send the support counts of itemsets to the polling sites. (line 21-24) 

(v) At the polling sites after receiving all counts, computes the global counts for locally 

large items 𝐿𝐿%((). Then the global count of each itemset is compared with the 

minimum support count condition to find the global large itemsets. The globally 

large itemsets are stored in 𝐺%(() and broadcasted to all other sites. (line 25-29) 

(vi) A home site receives the frequent itemsets. If it is the first pass, then the dataset is 

updated. All the infrequent itemset of size-1 are removed from the database. A final 

set of global large itemsets are returned. To find the 2-itemset, all local large itemsets 

having size greater than 1, repeat the process step 1. Remove all infrequent items 

having count less than minimum the globally large size-1 items. The POC-tree is 

scanned. This generates the 2-itemset and nodeset structure and so on. These local 

large itemsets are sent to respective polling sites. (line 30-32). 
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4.1.1 Efficiency of Local Frequent Mining  

All the sites use efficient Nodeset data structure[85] to find locally large itemsets 

and create an efficient POC-tree. All the frequent 1-itemsets are stored in the POC tree. 

For finding frequent 2-itemsets and nodeset the POC tree is scanned. Then delete the 

infrequent itemsets and initialize the nodesets of all frequent 2-itemsets by null. Using the 

preorder traversal, generate the nodesets of all frequent 2-itemsets. Then the same 

procedure is used to generate the frequent-k itemsets. This reduces the number of database 

scans and improves the performance. The nodeset is an efficient data structure, this helps 

in further reducing the scan time. Table 3.1 is the part of the transaction database for size-

1 items. Figure 3.3 shows the POC tree construction for the data. 

4.1.2 Distributed Database and Resources 

Database is distributed across the globe amongst different sites {𝑆!, 𝑆", … , 𝑆$} so 

called distributed database DBi. Each site finds the local frequent itemset at each site LLi. 

Each site is being used and gives throughput, overall throughput is proportional to the 

number of nodes or sites. There is a trade-off between the communication load for 

processing throughput in order to get the best performance out of the setup depending of 

number of sites. There is not only one centralized site which processes and finds the 

frequent itemsets but all sites behave as home as well as poling site. Sites have small data 

portion only and used for finding local FI. It takes less time to scan and create nodeset, 

also less capabilities and memory to process the small data as compared to sites with large 

data. These nodes are under-utilized. Zero-first technique takes care of the highly loaded 

sites and assign polling first to less loaded sites for generating the globally large itemsets. 

It is a good load balancing technique which utilizes the less loaded sites by effective use 
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of resources. All the sites are involved in processing the support count and finding the 

global frequent itemsets for a specific local large itemset hereby reducing the load to find 

global frequent itemset on one centralized site. In this algorithm all sites participate in the 

process of the local and them global frequent itemsets and good amount of parallelism is 

achieved. 

4.1.3 Communication Load Reduction 

At each site, there is a process of pruning which reduces the size of the candidate 

sets. Whenever any site finds the candidate sets of frequent itemsets, if it is not locally 

large to that particular site, that site remove that itemset from the candidate set by the 

means of local pruning. If frequent size-2 itemset at site -2 {ab, ac, bf, cf}. After pruning 

itemsets having support count less than the minimum support threshold say {cf, bf} are 

removed from the candidate sets. The remaining candidate sets {ab, bc} communicated to 

all other sites. The pruning process reduces the number of candidate sets drastically hence 

reduce the load on the network and communication cost. After finding the global counts 

of the candidate sets, global pruning also reduces the load on the communication load. 

This process makes it network efficient algorithm as small set of data is being 

communicated to all sites. 

4.2 EXPERIMENTAL EVALUATION 

This section deals with the environments used to evaluate the performance of the 

proposed algorithm by comparing it with the popular distributed data mining algorithms 

FDM [23] and PFIN [19].  

 



 56 

4.2.1 Experimental setup 

In the experiments, real dataset mushroom is used, which is often used by many 

researchers in study of frequent itemset mining, for testing the performance of algorithms. 

The specifications of the mushroom dataset are given in Table 4.1. 

Table 4.1 Specifications of Mushroom Dataset 

Dataset Total Trans. Number of Items Average Length Type File Size 

Mushroom 8124 119 23 Dense 570 KB 

 

The dataset mushroom is divided horizontally on 4, 5 and 6 nodes. Two 

experiments are performed, one on uniform data partition sizes at each site and another on 

varying data partition sizes, given in Table 4.2 and 4.3.  

 
Experiment-1: Uniform data partitions sizes  

Table 4.2 Uniform Data Partition sizes at different sites 

No. of Nodes DB1 DB2 DB3 DB4 DB5 DB6 

4 2030 2030 2030 2034   

5 1625 1625 1625 1625 1624  

6 1350 1350 1350 1350 1350 1374 

  

Experiment-2: Varying data partition sizes  

Table 4.3 Varying data partition sizes at different sites 

No. of Nodes DB1 DB2 DB3 DB4 DB5 DB6 

4 812 1625 2437 3250   

5 406 1219 1625 2031 2843  

6 244 731 1137 1544 2031 2437 
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4.3 PERFORMANCE ANALYSIS 

The proposed algorithm QDFIN is compared with FDM and PFIN(Parallel 

FIN)[19] algorithms on the basis of execution time. In the proposed algorithm, all sites 

participate in the processing giving better throughput and pruning technique reduces the 

number of candidate sets resulting low communication overhead. It assigns the polling site 

using new presented technique zero-first which further reduces load on the fully occupied 

sites. At each site an efficient data structure nodeset based on POC-tree[85] is used which 

reduces number of data scans and hence improve the performance by reducing the data 

access time.  

The algorithms are run on Mushroom dataset with minimum supports thresholds 

of 10, 20, 30, 40, 50, and 60 percent. Experiments are done on 4, 5, and 6 nodes setups 

and are compared on the basis of execution time. 

The data scan in FDM algorithm is high and its scan the local database at each site 

in every pass for finding support count for k-itemsets, where k = 1,2,….n.  The data scan 

in PFIN and QDFIN algorithms is only once at the beginning for k=1 and they construct 

POC tree. Once the tree is constructed, these algorithms scan the tree to find higher order 

itemsets for k>1 and saves the time to scan the database partitions stored at various sites 

again and improves the performance as compared to FDM algorithm.  

4.3.1 Comparison on Uniform Data Partition Size 

In the first experiment where each site is having uniform data partitions size, 

QDFIN performs better in all 4, 5, and 6 node setups shown in Figures 4.1 - 4.3 and their 

execution time are given in Table 4.4 – 4.6. 
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Table 4.4 Execution time on uniform partition size on 4 nodes ( seconds) 

Min.Support QDFIN FDM PFIN 

10 55.01 67.97 57.03 

20 43.05 52.50 45.92 

30 35.75 41.95 37.08 

40 29.60 33.70 31.11 

50 25.45 28.35 26.40 

60 22.55 25.65 22.75 

 

 

 

Figure 4.1 Execution time on uniform partition size on 4 nodes 

Table 4.5 Execution time on uniform partition size on 5 nodes (seconds) 

Min.Support QDFIN FDM PFIN 

10 32.11 44.02 37.04 
20 25.20 33.35 28.73 
30 22.14 27.25 24.35 
40 19.07 22.80 21.05 
50 16.65 20.19 18.11 
60 15.10 18.25 16.50 
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Figure 4.2 Execution time on uniform partition size on 5 nodes 

Table 4.6 Execution time on uniform partition size on 6 nodes (seconds) 

Min.Support QDFIN FDM PFIN 

10 19.18 30.12 24.04 

20 16.13 23.23 19.45 

30 13.21 19.01 15.90 

40 10.89 15.98 13.37 

50 9.82 14.50 11.76 

60 9.02 13.02 10.60 

 

Figure 4.1 shows in 4-node setup, execution time of QDFIN is close to the 

execution time of PFIN algorithm as both the algorithm use nodesets data structure for 

finding locally large itemsets, which reduces the scan time. But it performs better than the 

FDM algorithm. In the 4-node setup all the sites are producing candidate sets and the 

advantage of the zero-first technique is very small. The same algorithms are also compared 

in the 5-nodes and 6-nodes setups. Figures 4.2 and 4.3 show that the proposed algorithm 

QDFIN performs better in 5 nodes. It further improves in 6-node setup as with the increase 
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of number of nodes, number of locally large k-itemsets further reduces with the increase 

of k. It makes some imbalance in the sites in broadcasting the number of candidate sets 

where some sites become less occupied or free. The zero-first technique assigns the polling 

site in order of their occupancy for finding globally large itemsets. Figures 4.2 and 4.3  

shows the same effect where the performance of the QDFIN is better than the other 

algorithms.  

 

 

Figure 4.3 Execution time on uniform partition size on 6 nodes 

4.3.2 Comparison on Varying Data Partition Size 

In the second experiment, same algorithms are compared with varying size of the 

data partitions on various sites. Tables 4.7-4.9 shows the execution time of all algorithms. 

Figures 4.4, 4.5, and 4.6 show that the performance of the QDFIN is best in all three setups. 
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Table 4.7 Execution time on varying partition size on 4 nodes (seconds) 

Min.Support QDFIN FDM PFIN 

10 41.02 94.13 61.90 

20 31.89 65.63 45.48 

30 26.48 52.44 37.86 

40 21.93 42.13 30.00 

50 18.85 35.44 25.14 

60 16.70 32.06 21.67 

 

 

Figure 4.4 Execution time on varying partition size on 4 nodes 

Table 4.8 Execution time on varying partition size on 5 nodes (seconds) 

Min. Support QDFIN FDM PFIN 

10 18.53 52.00 34.77 

20 14.12 39.02 26.19 

30 12.12 30.96 22.12 

40 10.88 26.08 19.14 

50 9.79 21.89 16.45 

60 8.88 19.00 14.32 
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The time performance of QDFIN is much better due to the reason of load 

balancing. As the data size available at all nodes differ, implies that number of transactions 

differ. The sites with fewer number of transactions produces small candidate sets, takes 

less time to scan the data, use lesser memory, less processing required. QDFIN takes the 

advantage of the load differences and assigns less loaded sites first as polling site. Some 

sites have large number of transactions takes more time and processing capabilities to scan, 

store the data and generate more candidate sets and are highly busy.  

 

Figure 4.5 Execution time on varying partition size on 5 nodes 

The zero-first technique of the proposed algorithm excludes these busy sites from 

the polling site list. Number of sites increases in Figures 4.5, 4.6 and the difference in 

number of candidate sets generated by different sites also increase. Some of the sites 

generate no candidate sets even for k=1 or k=2, this imbalance further increase in case of 

6-node setup as shown in Figure 4.6. It directly effects the load balance, which makes 

QDFIN best amongst the all three algorithms. The performance difference as compared to 
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FDM is even more due to the efficient data structure nodeset is used in QDFIN. It is also 

observed that with low minimum support threshold say 10%, 20%, high number of 

frequent itemsets are generated and all algorithms take more time and QDFIN performs 

better due to the difference of candidate set generations amongst each site. The time 

performance difference reduces for higher minimum support threshold 50%, 60% because 

smaller number of candidate sets are generated, even some sites generate zero frequent 

itemsets and QDFIN performs better by load balancing. 

Table 4.9 Execution time on varying partition size on 6 nodes (seconds) 

Min.Support QDFIN FDM PFIN 

10 11.00 40.09 0.26 

20 8.37 28.93 19.45 

30 6.97 23.11 15.91 

40 6.14 17.97 13.40 

50 5.51 16.01 11.75 

60 4.91 15.06 10.60 

 

 

Figure 4.6 Execution time on varying partition size on 6 nodes 
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QDFIN performs best in lower as well as higher minimum support count in both 

the experiments i.e. with varying or uniform size data partitions in all three setups 4, 5, 

and 6 nodes as compared to the PFIN and FDM algorithms. It also shows that with the 

increase of the number of nodes or decrease in the minimum support threshold QDFIN 

outperforms other similar algorithms specially in varying data size. The size of data has 

impact on the execution time[57]. It uses the advantages of the POC-tree and nodeset data 

structure locally by saving scan time, pruning in reducing communication load and zero-

first technique for load balancing. 

4.4 SUMMARY 

New algorithm QDFIN for varying data partition size for DARM is proposed in 

this chapter.  New efficient data structure nodeset[85] is used in the proposed QDFIN 

algorithm to generate the frequent itemsets at each site, scan dataset once, reduce 

communication load by pruning and balance the load on sites by zero-first technique. The 

algorithm performance evaluation is done on 4-nodes, 5-nodes, and 6-nodes setup with 

different support threshold. Two experiments are performed, one with uniform and other 

with non-uniform data partition sizes available on different sites. The performance of the 

proposed algorithm is compared with similar latest algorithms FDM and PFIN[19]. It 

outperforms the other algorithms in both the experiments.  
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5  SIZE BASED DISTRIBUTED ASSOCIATION RULE 

MINING  

 

This chapter discusses the Size Based Distributed Association Rule Mining 

(SBDARM) algorithm. It uses a novel technique of size based assignment (SBA) of 

polling site for finding globally large itemsets based on the data size available at each site. 

Globally large itemsets are found by sites which are less occupied hence increase the 

overall computational capabilities and improve the performance. It uses local as well as 

global pruning to reduce the candidate sets. There is no-broadcasting of candidate sets 

which further reduces the load on the communication network.  

5.1 PROPOSED ALGORITHMS 

Symbol Description [23] 

s – minimum Support;  

D - Total transactions;  

𝐿( − Globally large k-itemsets;  

Z.sup - Global support count of Z;  

𝐶𝐴( − Candidate sets size k;  

𝐷% -  transactions in partition 𝑆%;  

𝐺𝐿%(() – globally large itemset size k at 𝑆%; 

𝐶𝐺%(() - Candidate sets size k at site 𝑆%;  

𝐿𝐿%(() - Locally large size-k itemsets in 𝐶𝐺%(();  

𝑍. 𝑠𝑢𝑝% − Local support count of  𝑍	𝑎𝑡	𝑆% 

𝐿𝑃%(() – Local pruning k-itemset  at site 𝑆% 	 
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Algorithm-5.1:  Size Based Assignment Technique (SBA) 

Input:  Locally large k-itemsets from each site CG6 and data size of all sites 

	𝐒6(i = 1,2, … n)		 

Output: Assigned Polling sites list  

1. if	k = 1	itemsets 

2.    for	all	site 

3.       find	the	average	number	of	transactions	each	site	in	percentage	AT 

4.       Compute	the	transaction	size	at	each	site		Si	in	percentage	PSi  

5.        Load	difference	at	site	in		Si	in	percent	∆6  

6. for	all		locally	large	itemsets 

7.      arrange	in	order	removing	duplicates	LL6(7)	 

8. 						compute	the	average	candidate	sets	per	site	in	percentage	ACG 

9. for	all	sites	 

10.     for	all	ordered	candidates 

11.         assign	the	polling	site	in	size	based	assignment 

									average	candidates	sets	plus	load	difference	in	percent 

12. broadcast	the	polling	site	list	for	k − candidate	sets  

 

Algorithm- 5.2 : Size Based Distributed Association Rule Mining (SBDARM) 

Input:  database DB6	(i = 1,2, … n)		 

Output: Globally large itemsets.  

Method: Running algorithm for all k-itemsets for k=1..n, on  all partitions  

1. for	all	sites 

2. for	k = 1	 

3. 		find	the	support	count	T6(!) 

4. 		construct	the	POC	tree	using	POC	FIN	algorithm 

5. for	k > 1 

6. 		find	the	size − 2	itemset	usin	FIN	algo 

7. 	(scan	the	POC	to	find	size − 2	itemset)	 

8. for	all	itemsets	Z	belongs	to	k − 	itemsets 

9. 				T6(7)generate	local	pruning	list 
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10. if	support	count	is	locally	large	then	 

11. 		for	all	sites	  

12. 					insert	itemset	into	locally	large	list		LL6(7)	for	all	sites 

13. communicate	locally	large	list		LL6(7)and	data	size	 

						to	coordinating	site	for	assignment	of	polling	site	 

14. for	coordinating	site	call	SBA	get	list	of	polling	sites	 

15. for	all	sites, 	 

16. 			send	locally	large	LL6(7)	to	polling	site	S8 

17. for	all	itemsets	Z	belong	to	local	pruning	LP 

18. 		send	polling	request	for	itemset	Z	to	all	sites	 

19. all	sites	reply	polling	request	from		�T6(7)� 

20. 		send	support	counts	Z. sup8 

21. for	all	itemsets	Z	in	the	polling	set	LP6(7)	 

22. 			receive	support	count	Z. sup8	from	all	sites 

23. for	all	the	itemsets 

24. 			calculate	global	support	Z. sup by 	sumup	of	all	local	support		where 

25. if	Z. Sup > the	global	support	threshold 

26. 			Add	to	global	frequent	itemset	G6(7) 

27.  broadcast	global	frequent	itemset	G6(7)	; 

28. if(k = 1)		remove_infrequent(DB6); 

29.   Generate	set	of	all	globally	large	itemsets 

30. return	globally	large	k − itemset	L(7)  

The steps are discussed below: 

(i) Database 𝐷𝐵% at all sites are scanned, local size 1 itemsets are found and POC tree 

is created. For k>1 local itemsets are found using FIN and nodesets by reverse scan 

of POC tree.  This generates locally itemsets and nodeset structure from all 

partitions (line 1-7) 
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(ii) Local pruning is done to generate candidate sets, locally large k-itemsets 

𝐿𝐿%(()	having the count greater than the minimum support threshold. (line 8-12) 

(iii) The locally large itemset 𝐿𝐿%(() are communicated to the site which assigns the 

polling sites to the locally large itemsets. Size based assignment algorithm receives 

list of sites with number of transactions and locally frequent items communicated 

by each node. SBT communicates the list of polling sites for locally large k-sized 

itemsets 𝐿𝐿%(() sites 𝑆%.(line 13-14, call algorithm 1) 

(iv) All the sites 𝑆% send the local counts for the locally large items 𝐿𝐿%(()	to the polling 

sites assigned in the last step. Polling sites store all information about the itemsets 

in 𝐿𝑃%(() and Z.large_sites. (line 15-20) 

(v) Each Polling site receives counts, computes global counts for assigned locally large 

itemsets 𝐿𝐿%((). It generates the global large itemset, stores in 𝐺%(() after removing 

the itemsets having counts less than the support threshold value. Then globally 

large itemsets are communicated to all sites. (line 21-27) 

(vi) All home site receives the global frequent itemsets, update and remove all 

infrequent 1-itemset. In the next pass home sites find the 2-itemset, i.e., locally 

large size k (k =2…n), repeat the process. Remove all infrequent k-itemsets. (line 

28-30) 

5.1.1 Efficiency at Each Site  

There are n number of sites {𝑆!, 𝑆", … , 𝑆$} where database is partitioned and stored, 

called distributed database DBi. Sites generate the local frequent k-itemset (k= 1..n) using 

efficient algorithm. Polling sites are assigned on the basis of the data partition size, where 

site with less number of transactions are assigned more local frequent itemsets for finding 
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global frequent itemsets and sites handling bigger partition size are assigned less workload 

considering the number of transactions at each site. Sites with small data sizes use less 

memory, capabilities etc in handling the data, so less occupied and the same is taken care 

by the proposed algorithm. Size based assignment technique is developed which considers 

the load on each site while assigning the polling sites for finding the globally large 

itemsets. It allocates less load to the sites have large data partition and more load to less 

occupied sites with small data partition. The proposed technique is best for the unbalanced 

data partitions for the effective use of the resources and balancing the load for finding the 

globally large itemset using locally large itemset. This technique utilises all resources and 

as all the sites participate as per their availability so there is no extra load on a centralized 

or coordinating site and any other site in unbalanced way. This ensures a good amount of 

parallelism in the real distributed database where centralized database has no control on 

the partitions.  

5.1.2 Low Communication Overhead 

The algorithm also takes care of the load on the communication channel by 

reducing the size of the candidate sets by pruning at each site. All the sites first find the 

frequent itemsets and then through pruning process remove non frequent itemsets having 

counts less than the required support counts to become eligible for communication and 

may not be globally frequent.  

Let frequent 2-itemset at site 3 be {ad, eg, jg, ht }. After applying pruning process, 

removing not eligible itemsets where support count is less than the minimum support 

threshold i.e. {ad, jg} are removed. The reduced set {eg, ht } after pruning is 

communicated to the site for the assignment of polling sites. The technique reduces the 
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size of the candidates sets to half and reduces the communication overhead. The algorithm 

uses no-broadcasting technique where all sites send candidate sets to the coordinating site 

for polling site assignment, in place of broadcasting it to all sites. If reduces the number of 

candidate set communication to O(n) messages and hence there is less load on the 

communication network. This technique is network efficient with reduced size of the data 

communicated. 

5.2 EXPERIMENTAL EVALUATION 

This section deals with the environments used to evaluate the performance of the 

proposed algorithm SBDARM by comparing it with the distributed data mining algorithms 

FDM [23] and PFIN [19].  

5.2.1 Experimental setup 

Functionality and performance of the algorithms are tested on four datasets 

including three real datasets mushroom, connect, chess and one synthetic dataset 

T10I4D100K. Datasets specifications are given in Table 5.1.  

Table 5.1 Specifications of datasets used 

Dataset Total Trans. Number of Items Average Length Type File Size 

Mushroom 8124 119 23 Dense 570 KB 

Connect 67557 129 43 Dense 9.3 MB 

Chess 3196 75 37 Dense 342 KB 

T10I4D100K 1,00,000 1000 40 Sparse 4 MB 
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Experiments are performed on a cluster of five nodes connected with LAN, using 

Intel i5 64 bit processor running @ 3.3 GHz with 6 GB RAM, 1 TB HDD, running on 

windows 10 OS, having Java JDK 1.7. Database is partitioned and stored at five nodes 

with varying size. Data partitions distributed to each site are based on number of 

transactions, shown in Table 5.2.  

Table 5.2 Details of the data partitions available at different sites for different datasets 

 Partition Size Mushroom Connect Chess T10I4D100K 

DB1 10% 812 6756 320 10000 

DB2 15% 1219 10134 479 15000 

DB3 20% 1625 13511 639 20000 

DB4 25% 2031 16889 799 25000 

DB5 30% 2437 20267 959 30000 

Total 100% 8124 67557 3196 100000 

 

5.3 PERFORMANCE ANALYSIS 

The new proposed algorithm SBDARM implemented and executed for execution 

time performance comparison with some of the existing algorithms FDM and PFIN. In the 

experiments, algorithms are compared on execution time where sites have varying data 

sizes of the data partitions shown in Table 5.2. In the first experiment all algorithms are 

executed on dataset mushroom with varying minimum support threshold values i.e. 10%, 

20%, 30%, 40%, 50%, and 60%. Table 5.3 shows the local frequent 1-itemsets generated 

at each site on the mushroom datasets. Similarly in the second experiment these are run on 

connect dataset with same minimum support threshold 10%, to 60%. Third experiment is 

performed on chess dataset with 10%, 15%, 20%, 25%, 30%, 35% minimum support 
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threshold. Lastly on T10I4D100K dataset with minimum support threshold 0.1%, 0.2%, 

0.3%, 0.4%, 0.5%, and 0.6%. The local frequent 1-temsets generated by the proposed 

algorithm at each site on connect, chess and T10I4D100K datasets are shown in Table 5.4, 

5.5 and 5.6 respectively.  

The SBDARM algorithm effectively uses the resources at all the sites, reduces the 

local load and communication load. It gives best throughput by using pruning techniques 

for reducing candidate sets for communication along with the size based assignment 

technique. There is no-broadcasting of frequent itemsets by all the sites rather all sites 

communicate the frequent itemsets to one coordinating site for the assignment of the 

polling site. The frequent itemset message exchange in proposed algorithm by n nodes to 

one coordinating node n x 1 i.e. O(n) whereas in other algorithms its n nodes sending to n 

nodes, so n x n which is  O(n2). This reduces the number of messages and hence load on 

the communication network. The number of data scans performed by the proposed 

algorithm and PFIN algorithm is only once whereas database is scanned in every pass in 

FDM hence effect the performance due to delay in I/O operations. 

5.3.1 Generating Local Itemsets 

Table 5.3 Local frequent 1-itemsets generated at each partition on Mushroom dataset 

 ---------------- Support Count Threshold (%) ------------------- 

Partition 10 20 30 40 50 60 

DB1 44 34 26 19 16 12 

DB2 48 37 30 25 18 14 

DB3 39 37 26 23 17 15 

DB4 51 38 27 20 18 13 

DB5 50 41 31 22 19 14 
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Table 5.4 Local frequent 1-itemsets generated at each partition on Connect dataset 

 ----- Support Count Threshold (%) ------ 

Partition 10 20 30 40 50 60 

DB1 66 54 46 40 35 33 

DB2 69 56 46 43 38 35 

DB3 69 57 47 42 40 38 

DB4 68 56 49 42 37 37 

DB5 70 56 46 43 40 36 

 

Table 5.5 Local frequent 1-itemsets generated at each partition on Chess dataset 

 ----- Support Count Threshold (%) ----- 

Partition 10 15 20 25 30 35 

DB1 52 50 47 46 44 42 

DB2 52 50 48 46 42 41 

DB3 55 53 48 46 44 41 

DB4 61 58 58 53 50 43 

DB5 66 57 54 52 51 49 

 

Table 5.6 Local frequent 1-itemsets generated at each partition on T10I4D100K dataset 

 ---- Support Count Threshold (%) ------ 

Partition 0.1 0.2 0.3 0.4 0.5 0.6 

DB1 789 736 682 621 559 513 

DB2 793 742 684 630 559 516 

DB3 798 740 689 633 563 520 

DB4 794 738 691 625 566 515 

DB5 794 743 690 628 562 519 

  

The frequent itemsets are sent to one coordinating site only using no-broadcast 

technique for the assignment of the polling sites. In the proposed algorithm the polling site 
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assignment is done using size based assignment technique.  

5.3.2 Polling sites assignment 

Table 5.7-5.10 show that the local frequent 1-itemsets assignment of polling site 

for finding the global frequent itemsets by the SBDARM algorithm. The same process is 

repeated for k-itemsets for all k>1. This assignments balance the load on the sites as it 

allocates the load for finding the global frequent itemsets i.e. assignment of polling sites 

inversely proportional to the partition sizes on sites. In the other two algorithms the 

assignments are not based on the size of the partition rather using some hash function or 

count distribution. The assignment in FDM and PFIN increases the load on the already 

occupied sites and load balancing is poor. This size based assignment technique is 

effective in the distributed data environment with varied data size and it reduces the overall 

time of execution and improves the performance. 

Table 5.7 Pruning sites assignment by SBDARM to local frequent 1-itemsets on 
Mushroom dataset 

 ---- Support Count Threshold (%) ------ 

Partition 10 20 30 40 50 60 

DB1 18 14 10 9 6 6 

DB2 15 12 8 7 5 5 

DB3 12 9 7 6 4 4 

DB4 9 7 5 5 3 3 

DB5 5 3 2 0 2 0 

Total 59 45 32 27 20 17 

Globally Large 56 43 28 21 13 8 
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Table 5.8 Pruning sites assignment by SBDARM to local frequent 1-itemsets on 

Connect dataset 

 ---------- Support Count Threshold (%) --------- 

Partition 10 20 30 40 50 60 

DB1 23 19 15 14 14 13 

DB2 19 16 13 12 11 11 

DB3 15 13 10 9 9 9 

DB4 12 10 8 7 7 7 

DB5 6 5 4 3 3 1 

Total 75 63 50 45 44 41 

Globally Large 73 59 46 41 38 36 

 

 

Table 5.9 Pruning sites assignment by SBDARM to local frequent 1-itemsets on 

Chess dataset 

 ------ Support Count Threshold (%) ------ 

Partition 10 15 20 25 30 35 

DB1 21 19 18 17 17 17 

DB2 17 16 15 14 14 14 

DB3 14 13 12 12 12 11 

DB4 11 10 9 9 9 9 

DB5 5 4 6 4 4 3 

Total 68 62 60 56 56 54 

Globally Large 61 57 54 51 50 45 
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Table 5.10 Pruning sites assignment by SBDARM to local frequent 1-itemsets on 

T10I4D100K dataset 

 -------------- Support Count Threshold (%) ------------- 

Partition 0.1 0.2 0.3 0.4 0.5 0.6 

DB1 240 223 209 189 172 157 

DB2 200 186 174 158 143 131 

DB3 160 149 140 126 115 105 

DB4 120 112 105 95 86 79 

DB5 80 73 68 62 55 50 

Total 800 743 696 630 571 522 

Globally Large 796 740 691 628 568 516 

 

5.3.3 Discussion 

Figures 5.1 – 5.4 show that the performance of the proposed algorithm on all four 

datasets outperforms the other two algorithms in time execution. The time performance of 

SBDARM is best due to the load balancing amongst the sites. Number of transactions at 

each site differ means the resource utilization also differs. The sites with more number of 

transactions takes more time for data scan, use more memory, and more processing and 

pruning time. SBDARM utilises the load differences as edge over other algorithms by 

assigning more load to less loaded sites as compared to highly loaded sites. Some sites 

with less number of transactions, are having less load of processing, data scan, generate 

less number of candidate sets and are comparatively less occupied. This is the best load 

balancing at each site by the assignment of polling sites for finding global frequent itemset 

inversely proportional to the data partition size available at each site. The number of local 

frequent k-itemsets for k> 1, are further reduced and the SBA algorithm further balance 

the load amongst the sites and gets performs better.  
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Figure 5.1 Execution time on Mushroom dataset 

 
 

 

Figure 5.2 Execution time on Connect dataset 
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Figure 5.3 Execution time on Chess dataset 

 
 

 

Figure 5.4 Execution time on T10I4D100K dataset 
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With the increase of the support threshold less number of frequent itemsets are 

generated and execution time of all the algorithms also reduce. The performance of the 

proposed algorithm takes less time, although the time difference reduces as number of 

global frequent itemsets also reduce. The difference in the performance is also due to the 

reduced communication load, local pruning and no-broadcasting technique which reduces 

the load on the network and reduces the time delay. In Figure 5.4 dataset used is sparse so 

when value of k increases to 2,3,…n the number of frequent itemsets generated reduce, 

therefore for low minimum support threshold, the execution time is not very high as 

compared to the execution time for the high minimum support threshold for all the 

algorithms. 

The analysis shows that the proposed algorithm SBDARM performs best in low 

and high minimum support threshold in all four comparisons with PFIN and FDM having 

varying partition sizes. It shows SBDARM outperforms other two algorithms with low 

minimum support threshold. It uses the advantages of the no-broadcasting by reducing 

communication and size based assignment reducing load on heavy loaded sites and 

pruning reducing candidate sets. 

5.4 COMPARISON OF SBDARM AND QDFIN 

Both the proposed algorithms are compared on two datasets Chess and 

T10I4D100K. The assignment made by both use different techniques, QDFIN is based on 

the number of candidate sets generated whereas SBDARM is based on data partition size 

at each site and SBDARM also uses no broadcasting technique. 
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Figure 5.5 Comparison of SBDARM and QDFIN on Chess dataset 

 

Figure 5.6 Comparison of SBDARM and QDFIN on T10I40D400K dataset 

5.4.1 Discussion 

SBDARM performs slightly better than QDFIN. In QDFIN the difference in 

polling site assignment is based on FI generated .i.e.. size of the candidate set, at each site. 

The polling assignment difference between the sites is just one less for the less loaded 
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sites. If the size of the candidate set is equal to the highest frequent itemsets generated by 

any site then that site is not assigned any work. Sites with zero assignment may be more 

than one, which increase load on other sites. Communication overhead is high in QDFIN 

if FI are high. Whereas SBDARM allocates load based on the data size available and better 

load balancing. Communication overhead differs in both the algorithms. In QDFIN all 

sites broadcast FI to all other site whereas in SBDARM it is communicated to the 

coordinating site only using no-broadcasting technique. In the sparse datasets, with high 

support count, a small number of candidate sets are generated and low communication 

overhead in both the algorithms. 

5.5 SUMMARY 

This chapter discusses the proposed algorithm SBDARM. The algorithm steps are 

explained in detail. It is then implemented on four datasets and the results are compared 

for different support count thresholds and discussed. The proposed algorithm performed 

best amongst them due to low communication, load balancing and efficient data structure. 

The algorithm SDDARM is them compared with the other proposed algorithm QDFIN 

and found slightly better than QDFIN. 
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6 APPLICATION MODEL – A CASE STUDY 

 

DARM has many commercial applications and useful for the industry functioning 

in different domains. Many application areas of mining are still not explored well like 

Tourism industry. Tour and Travel companies  would generally have separate branches 

and data is generated at different branches and applying mining may help the travel 

companies to improve their business. This chapter explains the application model 

developed for the tour and travel company by finding the interesting association between 

different parameters on the basis of the data generated by one such company. It analyses 

the results and generates rules which may help the industry to use mining for promotion 

and expanding of their business. 

6.1 METHODOLOGY 

6.1.1 Distributed Mining of Association Rules  

Distributed association rule mining is mainly finding the globally large itemsets 

from the distributed data for finding association rules. In the distributed data mining, data 

Dsi (i=1,2,…,n) are created or gathered or generated at different sites Si (i=1,2,…,n). Let’s 

assume, a virtual dataset DS = ∪Dsi, | Dsi | is the number of transactions in Dsi. | DS | is 

the number of transactions in dataset, for any item A, A.sup is the support count of A in 

DS, and A.supi is the support count of A in Dsi. Given an itemset A, if A.sup ≥ min sup× 

| DS|, A is said to be globally frequent itemset; If A.supi ≥ minsup ×|Dsi |, where A is 

locally frequent itemset on site S. After finding the local frequent itemsets in DARM, 

global frequent itemsets are generated by merging them and then to find the confidence 
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which generates the association rules.  

6.1.2 Assumptions  

• Database is not centralized rather partitioned and distributed amongst sites 

• Data is created, gathered or captured at different sites or locations of the company 

• Data sizes at various sites vary in size and number of transactions 

• There is no centralized database and it is not required or feasible to store data at 

one centralized location 

• There is a coordinating unit having one or more processing units  

• All sites participate in the mining process to improve the performance 

6.1.3 Algorithm   

1. At each site database is scanned to find each combination of parameters age group 

and destination called itemset. 

2. At each site, support count is calculated for each found combination in step 1. 

3. Pruning of the itemsets are done by removing the itemsets having support count less 

than the threshold support count. 

4. The remaining itemsets called candidate sets, are communicated to the coordinating 

site for the assignment of polling sites for finding the global frequent itemsets from 

all candidate itemsets. 

5. Coordinating site assigns the polling sites to all local frequent itemset and 

communicates to all sites 

6. On receiving the polling site details, all sites communicate the local count for the 

itemset to the polling sites 

7. Polling sites calculate the global support count by aggregating the local support 

counts received from all sites for the assigned itemsets. 

8. At the Polling sites, the itemsets having support count less than the global support 

threshold are removed from the list of frequent itemsets to find the final global 

frequent itemsets, called global pruning.  
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9. Polling site then calculate the confidence for the itemsets, perform global pruning 

by removing the itemsets having confidence less than the minimum confidence 

thresholds. 

10. Association rules are created from the global frequent itemsets generated in the 

previous step. 

6.2 IMPLEMENTATION AND RESULTS ANALYSIS  

This research considers a Tour and Travel company “Voyagers Beat” for case 

study and implementation of the DARM techniques. The tour and travel companies can 

be classified as small, medium and large, based on different parameters given in Table 6.1. 

Voyagers Beat is a medium sized organization for the study with booking office at multiple 

locations and multiple designations within the country having a few lakhs of transactions. 

The Company has head office in Delhi and has booking offices in 13 cities for organizing 

package tours for various destinations in India. For the analysis purpose 3 booking sites or 

distributed database locations are considered. A few destinations are chosen and are 

grouped into three broad destinations. For experiments two years, 2017 and 2018 booking 

datasets are considered. Data tables in given in Table 6.2 are taken for analysis. 

Table 6.1 Tour and travel companies’ classification 

Location Destinations Database type Yearly -number of 
transactions 

Single single centralized Few thousand 
single multiple  centralized Few thousand 
multiple single centralized Few thousand 
multiple multiple centralized Few thousand 
multiple multiple distributed Few thousand to lakhs 
multiple Inter-national distributed Few lakhs 
Inter-national Inter-national distributed Lakhs 
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Table 6.2 Data tables used - Booking-Master and Tourists-Details 

Booking Master Table Tourists_Details Table 

Booking_ID Booking_ID 

Date Name 

Booking_Name Age 

Address  

Phone_no  

Destination  

Date_from  

Date_to  

Tot_Amount  

Advance_received  

Mode_Payment  

 

Attributes Used: Above tables are combined and three attributes are taken for the analysis 

from the above tables. Final attributes taken for analysis from three data sites are given in 

the Table 6.3.  

Table 6.3 Data attributes taken for analysis 

Attributes Values Descriptions 

ID Integer Booking-ID 

Age A1(18-30), A2(31-45), A3(>45) Tourist-age 

Destination D1(Himachal), D2(Rajasthan), D3(UP) Place-visited 

 

ID.  Identification of the tourist, who is travelling. This attribute is used for reference only 

and not participating in the mining process. 
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Age. This attribute is the age of the tourist. This attribute is considered for the analysis by 

grouping age into three categories i.e. 18 years to 30 years named as A1 group, 31 

years to 45 years named as A2 and age greater than 45 is a third group A3.  

Destination. There are many destinations where the company operates. Three broad 

destinations are considered Himachal which includes Kasol, Manali etc., Rajasthan 

includes Jaipur, Pushkar, Jodhpur etc. and third destination UP by grouping 

Kanpur, Agra etc.  

Some of the destinations are preferred by youngsters and some by elderly people. 

The study is an attempt to find the association between these two attributes age and 

destination. Accordingly, the dataset is taken for the analysis and the sample data before 

and after transformation are shown in the following Tables 6.4. 

Table 6.4 (a) Sample data table          (b) Sample data table after transformation 

ID Age Destination 
 

ID Age Destination 

1 24 Kasol 
 

1 A1 D1 
2 54 Agra 

 
2 A3 D3 

3 25 Pushkar 
 

3 A1 D2 
4 48 Kanpur 

 
4 A3 D3 

5 22 Manali 
 

5 A1 D1 
6 35 Agra 

 
6 A2 D3 

7 29 Shimla 
 

7 A1 D1 
8 38 Manali 

 
8 A2 D1 

9 47 Jaipur 
 

9 A3 D2 

 

For the analysis, data from the three sites or locations are chosen. The number of 

transactions at each site and the total transactions in the database for this research is given 

in the Table 6.5. Data mining technique is applied independently at each site and the local 

frequent 1-itemset are found.  
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Table 6.5 Datasets sizes available at various sites  

 Site 1 Site 2 Site 3 Total 

Total Transactions 20872 14273 18370 53515 

 
 

 

Figure 6.1 Age groups and their support count 

 

The support of each age group and destination is calculated. Figure 6.1 shows the 

dataset having transaction with age group A2 is 41%, A1 is 33% and A3 is 26% only. 

Whereas Most preferred destination is D1 at 53%, then D2 at 24% and D3 at 23% shown 

in Figure 6.2 below. D2 and D3 are almost equally preferred whereas D1 is most visited 

destination. Then the 2-itemset with the combination of age groups and destination groups 

and their local support counts at all sites are found see Table 6.6. 
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         Figure 6.2 Destinations frequency -support count 

 

Table 6.6 Local support count (%) at each site 

  Site 1 Support Site 2 Support Site 3 Support 

Age A1 - Dest. D1 0.261 0.198 0.159 

Age A1 - Dest. D2 0.068 0.072 0.106 

Age A1 - Dest. D3 0.030 0.014 0.016 

Age A2 - Dest. D1 0.281 0.221 0.150 

Age A2 - Dest. D2 0.078 0.055 0.094 

Age A2 - Dest. D3 0.042 0.029 0.081 

Age A3 - Dest. D1 0.025 0.073 0.045 

Age A3 - Dest. D2 0.044 0.063 0.078 

Age A3 - Dest. D3 0.127 0.098 0.158 

 

To test the model and develop the association rules, two experiments are conducted 

with minimum threshold support 0.200 and 0.100 given in Table 6.7. 
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Table 6.7 Support and Confidence threshold values 

 Support Confidence 

Experiment 1 0.200 0.500 & 0.300 

Experiment 2 0.100 0.500 & 0.300 

 

6.2.1 Experiment 1: Minimum support threshold = 0.200  

Local pruning- In this experiment local frequent itemsets are calculated. The itemsets 

whose support counts  is more than 0.200 at least one of the sites, are the candidate 

sets and are communicated for finding the global frequent itemsets given in Table 

6.8.  

Global Pruning- The itemsets having global support count less than 0.200 are eliminated. 

The global support and confidence are calculated for the global frequent itemsets, 

given in Table 6.9. 

Table 6.8 Candidate sets for support count threshold = 0.200 

  
Site 1 

Support 

Site 2 

Support 

Site 3 

Support 

Age A1 - Dest. D1 0.261   

Age A2 - Dest. D1 0.281 0.221  

 

Table 6.9 Global support and confidence 

  Global Support Global Confidence 

Age A1 -> Dest. D1 0.209 0.625 

Age A2 -> Dest. D1 0.220 0.536 

Dest. D1 -> Age A1 0.209 0.441 

Dest. D1 -> Age A2 0.220 0.464 
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(i) Association rules for confidence threshold 0.500 

Table 6.10 Association rules for support threshold 0.200 and  

confidence threshold 0.500 

  Global Support Global Confidence 

Age A1 -> Dest. D1 0.209 0.625 

Age A2 -> Dest. D1 0.220 0.536 

 

These rules in Table 6.10 show that the destination D1 (Himachal) is the preferred 

destination for age groups A1 (18-30) and A2(31-45). 

 
(ii) Association rules for confidence threshold 0.300  

The rules in Table 6.11 show that the destination D1 (Himachal) is the preferred 

destination for age groups A1 (18-30) and A2(31-45). Secondly The destination D1 

(Himachal) is mostly visited by the young tourists and not by elderly tourists. 

Table 6.11 Association rules for support threshold 0.200 and  

confidence threshold 0.300 

 
Global Support Global Confidence 

Age A1 -> Dest. D1 0.209 0.625 

Age A2 -> Dest. D1 0.220 0.536 

Dest. D1 -> Age A1 0.209 0.441 

Dest. D1 -> Age A2 0.220 0.464 
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6.2.2 Experiment 2: Minimum support threshold = 0.100  

Local pruning- In this experiment local frequent itemsets are calculated. The itemsets 

whose support counts  is more than 0.200 at least one of the sites, are the candidate 

sets and are communicated for finding the global frequent itemsets given in Table 

6.12.  

Global Pruning- The itemsets having global support count less than 0.100 are eliminated. 

The global support and confidence are calculated for the global frequent itemsets, 

given in Table 6.13. 

Table 6.12 Candidate sets for min. support threshold = 0.100 

 
Site 1 

Support 

Site 2 

Support 

Site 3 

Support 

Age A1 - Dest. D1 0.261 0.198 0.159 

Age A1 - Dest. D2   0.106 

Age A2 - Dest. D1 0.281 0.221 0.150 

Age A3 - Dest. D3 0.127  0.158 

 

Table 6.13 Global support and confidence 

 
Global 

Support 

Global 

Confidence 

Age A1 -> Dest. D1 0.209 0.625 

Age A2 -> Dest. D1 0.220 0.536 

Age A3 -> Dest. D3 0.130 0.510 

Dest. D1 -> Age A1 0.209 0.441 

Dest. D1 -> Age A2 0.220 0.464 

Dest. D3 -> Age A3 0.130 0.641 
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(i) Association rules for confidence threshold 0.500 

Table 6.14 Association rules for support threshold 0.100 and 

confidence threshold 0.500 

 
Global 

Support 

Global 

Confidence 

Age A1 -> Dest. D1 0.209 0.625 

Age A2 -> Dest. D1 0.220 0.536 

Age A3 -> Dest. D3 0.130 0.510 

Dest. D3 -> Age A3 0.130 0.641 

 

These rules show that the destination D1 (Himachal) is a preferred destination for 

age groups A1 (18-30) and A2(31-45). Also, age A3 group prefers to go to destination D3, 

and D3 is mostly visited by A3 shown in Table 6.14. 

(ii) Association rules for confidence threshold 0.300  

Table 6.15 Association rules for support threshold 0.100 and 

confidence threshold 0.300 

 
Global 

Support 

Global 

Confidence 

Age A1 -> Dest. D1 0.209 0.625 

Age A2 -> Dest. D1 0.220 0.536 

Age A3 -> Dest. D3 0.130 0.510 

Dest. D1 -> Age A1 0.209 0.441 

Dest. D1 -> Age A2 0.220 0.464 

Dest. D3 -> Age A3 0.130 0.641 

 

These rules in Table 6.15 clearly indicate that there is a strong association between 

age A1, A2 and destination D1 where confidence is high implies tourists up to middle age 
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like to visit destination Himachal, and Himachal is mostly visited by youngsters and 

middle aged tourists. On the other side A3 age group preference is UP and vice versa as 

there is a good association between age A3 and destination D3. 

6.2.3 Relationships Between Local and Global Rules 

The relationship between the local support, global support and confidence are also 

shown in Figure 6.3-6.5 and discussed below. It also shows some interesting relationships 

amongst them. 

 
 

 

Figure 6.3 Local support count at various sites and global support 
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Figure 6.4 Local support count at various sites and global confidence 

 

 

Figure 6.5 Global support count and global confidence 

 

Figure 6.3 shows that global support is proportional to the average of the local 

supports at different sites whereas global confidence can be high for low as compared to 
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support count as the case of D3 -> A3 in Figure 6.5. It is observed in Figure 6.4 that support 

count of A1->D1 is high at site 1 & 2 and not on site 3 but the confidence is high. Whereas 

support D3-A3 is little high at site 3 only but confidence is quite high. Similarly support 

D2->A1is not high at all sites. This shows that the support at each site can’t be sufficient 

to make the global rules. At the same time if the company needs the local association rules 

for any site, that can be generated from the local frequent itemsets and this may be different 

from the global rules. Local rules are also important to make local strategies in different 

states or locations. 

This case study developed the distributed data association rule mining model for a 

tour and travel company. Based on the study many association rules are generated. The 

results show that the tourists of age group A1 and A2 are more as compared to A3 hence 

gives the travelling habit based on the age. Similarly, the destination D1 preferred over 

destination D2 and D3 by the tourists. Whereas destination D3 is visited mostly by age 

group A3. 

6.3 SUMMARY  

Distributed association mining based application model for Voyagers Beat, a tour 

and travel company is proposed and implemented in this chapter. The data from three sites 

are taken for the analysis. Datasets are transformed for the analysis and association rules 

between age and destination visited by the tourists are generated. Two experiments are 

conducted for different minimum support threshold values and further different confidence 

threshold values. Based on the analysis, interested and useful rules are generated. 

Relationship between local and global findings are also compared.  
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7 CONCLUSIONS 

This work illustrates some of the algorithms proposed in the literature for mining 

association rules in centralized and distributed data mining domain and proposes solutions 

addressing some of the DDM issues. Apriori algorithm is the most popular algorithm for 

the centralized database. CD and FP-growth[34] are other popular algorithms in data 

mining. Most of the proposed algorithms in literature used the concept of Apriori, CD, FP-

growth[34]  algorithms and their variant for finding local frequent itemsets at different 

sites and used different techniques for further improvement in reducing data scan, storage 

cost and communication cost. Some of the algorithms and proposed techniques for 

reducing such costs are illustrated in this work. In different implementations, resources 

like storage, processing capabilities, communication bandwidth, data volume etc. vary and 

the challenge is to find the best suited algorithm and trade-off between them for a particular 

distributed scenario. For mining data, different data mining tools are available with 

implementation of different data mining algorithms.. 

In this research, new DARM algorithm QDFIN is proposed for the setup where 

data partition sizes are not uniform. The proposed algorithm uses the novel data structure, 

nodeset[85] based on POC tree to generate the local frequent itemsets by each node. It 

deploys pruning of data to reduce communication load and proposes methodology zero-

first technique which balances the load on each node. Execution time performance of the 

proposed algorithm is evaluated on 4-nodes, 5-nodes, and 6-nodes setup and with varying 

support threshold. Two experiments are performed, one with uniform and other with non-

uniform data partition sizes available on different nodes. The performance of the proposed 

algorithm is compared with similar latest algorithms FDM and PFIN[19].  
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The QDFIN outperforms the other two algorithms in the execution time 

comparisons in all three setups, especially when the data is not uniformly available  in all 

4, 5, and 6 nodes setups. It scans database only once and creates POC tree. The new zero-

first technique is effective in the situation when the data is skewed i.e. data sizes available 

at various sites differ and not feasible or required to move data from one site to other site 

to balance the skewness. The performance of the algorithm further improves with the 

increase of number of sites or nodes as it overcomes the disadvantage of the varying data 

sizes.  

Algorithm SBDARM is proposed for finding frequent itemsets in the distributed 

data where size of the partitions are varying in size. The proposed algorithm applies the 

technique of local pruning, no-broadcasting and size based assignment of the polling sites. 

The algorithm performance is evaluated on four datasets on the 5-nodes setup with varying 

minimum support threshold. The experiments are performed on the data partitions with 

varying number of transactions on each site. The execution time of the algorithm is 

compared with the PFIN and FDM algorithm for distributed data mining.  

 Algorithm SBDARM outperforms other algorithms on the time of 

execution comparisons. The new size based assignment technique is effective in the 

distributed environment where data is generated at different sites and data is skewed. i.e. 

highly imbalanced in terms of number of transactions at each site. It performs best as the 

data skewness is not effecting the performance and is well adjusted. In addition to the 

reduction in candidate sets by pruning, the proposed no-broadcasting technique reduces 

the communication load and improves the execution time of the proposed algorithm.  

Performance of both the proposed algorithms are compared on real and synthetic 

datasets. The performance of both are very close, but the SBDARM performs better on all 
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four datasets. 

In this research, distributed association rule mining application model is proposed 

for tour and travel industry to find the interesting facts and relationship between age and  

destination visited by the tourists. A medium level company is chosen for the study having 

a few offices in the country. This study can help the company to take decision about 

opening new booking office and focus on the age of the tourists and adding new 

destinations. This research may help in expanding the business by adding different 

destinations, more booking offices in different locations and targeting the potential 

customers. This study shows that the mining is useful in the tourism industry and can give 

useful information.  

7.1 FUTURE WORK 

The research can be further extended for mining in larger setup with more number 

of sites and large datasets for scalability. The resources and the capabilities available at 

each site can also be considered while allocating load to different sites for further 

improvement. It can be further used with the heterogeneous datasets and big data. 

There are many more parameters which can affect the tourism industry like 

weather, gender, customer place of living etc. which can also be considered for mining 

new facts. The mining can be applied to the bigger sized international company.  
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