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ABSTRACT 

In the process of IC design, lithography can be defined as the process of reprinting the pattern 

of mask on Silicon wafer. Lithography is one of the most important steps in the process as it 

enables Moore’s law to be satisfied, for this feature size needs to be decreased every couple 

of years. This continuous decrease in feature size may lead to printability issues and hence 

hotspots. Presence of hotspots can lead to complete failure of the circuit, so it is very 

important to detect these hotspots with high accuracy. Previously various simulation, machine 

leaning and deep learning based techniques have been implemented to solve this problem. In 

this work, we propose a method to identify hotspots using Vision Transformers. Along with 

this, we also use other deep learning techniques such as CNNs and ANNs for comparison 

purposes. ViTs give an overall accuracy of 98.05% which is 1.39% higher than accuracy of 

CNNs and 2.04% better accuracy of ANNs. Although the ViTs prove the best in terms of 

overall accuracy, but at sub-dataset level its performance can be improved. Two out of five 

sub-datasets have accuracy slightly above 95% and for rest three it is above 99%. In future, 

we wish to improve accuracy for these two sub-datasets by improving our model and 

reducing imbalance in the sub-datasets. 
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CHAPTER 1 

INTRODUCTION 

In the process of IC fabrication we wish to generate patterns on silicon wafer. These patterns 

are first obtained on a mask and then transferred on silicon wafer, through the process known 

as lithography [43]. Lithography is the engine that derives Moore’s law. From lithography 

point of view, in order to make fit more and more transistors in the same area, size of 

transistor needs to get smaller. Hence, in order to continuously follow the trends of Moore’s 

law, patterning solutions need to be developed in cost effective way. In optical lithography 

feature size is directly proportional to wavelength. Mathematically, 

                                                                     !                                                           (1.1) 

Here, f is the feature size, 

C is Rayleigh constant which measures how difficult lithography is, 

 λ is the wave length, 

and n is the numerical aperture. 

The most effective way to reduce feature size is to reduce the wavelength of light. Some 

design rules must be followed by the layout being transferred on the substrate such as 

threshold value of edge widths of a pattern, minimum spacing between two patterns etc. 

should  remain same as mentioned. This reduction of wavelength leads to printability 

problems and degradation in resolution [46]. Fig. 1.1 shows this phenomenon.  

                                             a).                                           b). 

Fig. 1.1  a). Pattern on the mask b). Pattern on the wafer [36] 

f =
C . λ

n
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Many Resolution Enhancement Techniques such as Optical Proximity Correction etc. are 

employed in order to improve the process, but still at some locations differences exist 

between pattern on mask and wafer [43]. Positions where patterns have dimensions more or 

less than the defined threshold are known as hotspots [16]. In electron beam lithography, 

electrons scatter and these scattered electrons may cover a different path than the one drawn 

in mask. This may be a cause of hotspots in electron beam lithography [43]. These hotspots 

may lead to circuit failure, hence detecting them is very important. Fig. 1.2 shows the hotpot 

pattern. 

Fig. 1.2  Hotspot Pattern 

Various Simulations, Pattern Matching, Machine Learning and Deep Learning based 

techniques have been implemented to get rid of hotspots. These techniques have been 

discussed in Chapter 2. In this work, we propose a new technique called Vision Transformer   

(ViT) for detecting lithography hotspots. ViT converts images into patches and then passes 

them through transformer in order to classify them [2]. ViT and lithography are explained in 

detail in Chapter 3. Chapter 4 discusses about datasets and experiments performed. Chapter 5 

results are shown followed by conclusions and future scope in chapter 6. 
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CHAPTER 2 

LITERATURE REVIEW 

For identification of lithography hotspots first of all various Resolution Enhancement 

Techniques (RETs) such as Optical Proximity Correction (OPC) and Sub Resolution Assist 

Feature (SRAF) are applied [16]. After  which different models can be applied, which can be  

divided on two basis: based on methods used for detecting lithography hotspots and based on 

evaluation parameters. 

2.1 Based on methods used for detecting lithography hotspots: 

Based on methods used for detecting lithography hotspots, all the models can be divided in  

five categories, these being: Simulation based methods, Pattern Matching, Machine Learning 

based Methods, Deep Learning based methods and Lithography Hotspot Mitigation. 

In 1979, first optical lithography simulation method called SAMPLE was introduced. This 

technique provided better results for grids with greater size. In 1985 another method for 

simulation called The Positive Resist Optical Lithography (PROLITH) was introduced, 

which made the process of lithography highly accessible as it was the first time when a model 

could run on a Personal Computer. Various improved versions of PROLITH are still used as 

simulator for optical lithography process. Simulators used for electron beam are 

electromagnetic field simulator ProMAX, Monte Carlo, ProBEAM [29]. Full layout 

simulation is highly accurate way for recognizing hotspots, but it is very expensive in terms 

of computation time and complexity [7]. 
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Fig. 2.1 PROLITH: (a) the DOS version 2.1, circa 1991, and (b) the Windows version 6.0, 

circa 1999 [29] 

To know if some place is a hotspot or not, some design rules must be followed. These designs  

define the minimum distance between two pattens on the same mask, so that they don’t 

overlap, in case of same pattern they define gap between edges etc. Fig represents some basic 

design rules [25]. 

Fig. 2.2 Basic Design Rules for Lithography [25] 

Pattern Matching algorithms like string search, tangent space, transitive closure graph, 

template matching and dual graph first check if each image of the dataset provided follows 

these rules or not, then a search algorithm is applied to look for hotspots [9]. Graph based 

techniques create dual or transitive graph for the layouts provided, layouts with edges or 

adjacent patterns having lesser spacing or greater width etc. than mentioned in  rules are 

considered as hotspots. In this process the chance of non-hotspots being detected as hotspots 

is large [25]. Template matching methods move the pattern to be detected over entire mask 

pixel wise and pattern where some disruptions from mask are seen are termed as faulty or 

with hotspot [21]. The string based methods covert layouts that are two dimensional into a 

single dimension, these single dimensional structures are named strings. Then, search 

operations using distance arrays are done to find strings with hotspots [21, 28, 36]. Although 

the pattern matching based methods are faster than simulations but they fail to detect 

previously unseen hotspots.   

In some machine and deep learning models features need to be extracted before performing 

classification in order to reduce the size of training data, hence leading to increase in speed. 

Many algorithms like Topological Classification combined with Critical feature extraction, 

Concentric Circle Area Sampling (CCAS), Density Based Layout Feature (DBLF), 
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Histogram Oriented Light Propagation (HOLP), Maximal Circle Mutual Information 

(MCMI), Encoder-Decoder based, Matrix based Concentric Circle Sampling (MCCS) etc. 

extract feature from the dataset and check them if they follow design rules or not, and then 

classification process takes place. DBLF technique divides the layout into sub-regions and 

calculates their densities as shown in fig. This information is represented in form of  vectors 

and then can be classified using machine learning [14]. DBLF based models classify layouts 

with same density as shown in fig. in same class, which may cause errors [7]. 

   

Fig. 2.3 DBLF [14] 

Fig. 2.4 DBLF same density [7] 

To overcome weakness of DBLF, HLOP is used, which along with density can also capture 

direction in which light transmits by calculating Histogram Oriented Gradient (HOG) of 

regions obtained after performing Gaussian Blurring on image. HLOP process can be 

understood from following fig. [7]. 
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Fig. 2.5 HOLP [7] 

Topological classification combined with Critical feature extraction is based on deriving 

geometry based i.e topological (preserved) and process based i.e. non-topological feature. 

According to different topologies like distance between edges of a pattern, distance between 

two patterns etc. and non-topologies like number of corners, number of points touching etc. 

clusters are made and an SVM kernel related to each critical feature is constructed. These 

feature specific kernels help to identify hotspots with more accuracy [9]. MCMI is 

Information Theory based technique which extracts features with high information and takes 

care that redundancy is less, making the process fast and efficient [4]. Encoder-Decoder 

feature extractor consists of convolution and deconvolution layers, which helps features to 

transform and makes it easier to work with CNNs [18]. Feature extraction methods lose the 

relations among structures, to solve this issue MCCS is used which stores information in 

form of matrix [13]. 

Lithography Hotspot Mitigation is a process of reducing risk of hotspots by taking some 

preventive measures before lithography process such as during Placement or Routing [28, 

32-34]. Adjacent patterns may interfere during placement process leading to hotspots,  which 

can be avoided by using multiple patterning [28]. Lithography simulation and Edge 

Placement Error (EPE) guided routing [33] help in optimizing the layout after routing process 

and reduce hotspots by a significant amount. EPE map compares the edge shapes of the 

layout to edge shapes that are intended in form of a matrix and then finds hotspots.  
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Machine learning techniques used for hotspot detection purpose are SVM [6, 9, 14, 26, 39] 

Boosting [6, 37], PCA [6, 8], clustering [28, 35, 38, 41], Naive Bayes [35], Bilinear Classifier 

(Combination of SVM and Ada-boost) [13]. Bilinear classifier is used with MCCS feature 

extractor in order to preserve the topological relations [13]. Semisupervised techniques have 

also identified hotspots with high accuracy [24]. Although ML based detectors overcome the 

weakness of Pattern Matching, but false alarms remain a problem , which leads to exhaustive 

and costly post-processing [13, 39].  

These days Deep Learning based techniques involving CNNs [12, 15], ANN architecture 

combined with CNNs [4], GANs [20], CNNs with DBSCAN clustering [22], feature 

extraction followed by CNNs [18, 23] etc. are being used to reduce False Alarms. Following 

fig. shows ANN architecture combined with CNNs [4]. The basic block consists of 3 

interconnected CNN layers and a Max-pooling layer. 

Fig. 2.6 ANN with CNN [4] 

Table 2.1 Lithography hotspot detection methods 

Category Sub-Categories Characterstics Advantages Disadvantages

Simulation

SAMPLE

• First 
technique for 
lithography 
simulation. 

• Only for 
Optical 
Lithography 

• Not Available 
for Personal 
Computer. 

 
Highly Efficient

Expensive in 
terms of 

Computational 
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Simulation

PROLITH

• Only for 
Optical 
Lithography 

• Available for 
Personal 
Computer.

Highly Efficient
terms of 

Computational 
time and 

complexity

ProMAX, Monte 
Carlo, ProBEAM

• Available for 
e beam 
Lithography

Pattern Matching

Graph Based
• Large 

number of 
False Alarms

Faster than 
Simulations

Fail to detect 
previously 

unseen hotspots
Template 
Matching

• High 
Accuracy  

• Time taken is 
high

String Search • Efficient

Lithography 
Hotspot 

Mitigation

Lithography 
Aware Routing 
and Placement

• Makes use of 
EPE and 
Hotspot maps

Reduces risk of 
hotspots very 
significantly

Difficult to 
perform before 

the whole 
process has 
completed 

Category Sub-Categories Characterstics Advantages Disadvantages
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2.2 Based on evaluation parameters: 

Based on evaluation parameters there are two basic methods, accuracy matrix and ROC 

curve. 

In accuracy based evaluation two important parameters are evaluated: accuracy and false 

positives. Accuracy helps us to determine how many hotspots are correctly identified as 

hotspots and false alarm help us to determine number of non-hotspots determined as hotspots. 

Ideally, a high accuracy and low false alarms are desired. Mathematically, these can be 

represented as: 

                                !                                   (2.1) 

                                      !                         (2.2) 

Machine 
Learning

SVM, Boosting, 

PCA, Clustering, 

Semi-supervised 

technique, 

Bilinear 

Classifier, Naive 

Bayes

• Feature 
extraction 
techniques 
like DBLF, 
HOLP etc. 
are used 
before 
classifying 
using these 
techniques

Detects 
previously 

unseen hotspots. 

Accuracy is high.

False Alarms 
remain a problem

Deep Learning

CNNs, GANs, 
CNNs with 

DBSCAN, CNNs  
with ANNs

• Most of the 
techniques 
implemented 
till now make 
use of CNNs

High accuracy 
and low False 

Alarms

Computationally 
expensive

Category Sub-Categories Characterstics Advantages Disadvantages

Accuracy =
Total Hits

Number of actual hotspots

FalseAlar m =
Total Extras

Number of actual hotspots
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Where hits can be defined as a hotspot that has been correctly identified and extra is defined 

as a non-hotspot that has mistakenly been classified as hotspot [9]. 

 

Fig. 2.7 Hit  and Extra [7] 

After passing the layout through RETs, the number of hotspots left are quiet few in number, 

however these few can cause high damage to our process hence, it is necessary to detect 

these. Since number of non-hotspots is much larger than the number of hotspots, the dataset 

is highly imbalanced. A new technique based on Receiver Operating Characteristics (ROC) 

can be used to handle this dataset imbalance problem [5]. 

For this process, an ROC curve is drawn. This curve should show the relationship between 

the rate of both true positives and true negatives. From this graph AUC and partial AUC 

scores are obtained. AUC determines number of times the True Positive Rate (TPR) has 

higher rank than False Positive Rate (FPR), hence comparing accuracy over entire range. 

Partial AUC takes care of the false alarms. Classifier with higher  will have higher AUC score 

and should be considered better, but as shown in following fig., sometimes that classifier may 

have lesser FPR in a particular region, leading to false positives. Hence AUC score in that 

area or particular area of interest is calculated rather than under complete curve, this is known 

as partial AUC score. For defining these terms mathematically, we can write:  

 !  10



                                 AUC Score = Area under ROC =  �                                     (2.3) 

                    Partial AUC Score = Area under ROC from a to b = !                         (2.4) 

Fig. 2.8 ROC curve for 2 classifiers 

This method showed better results in terms of false alarms as it is spread over whole 

distribution [5].  

∫ ROC

∫
b

a
ROC
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CHAPTER 3 

OVERVIEW 

3.1 Lithography 

Litho means sculpture of a 2-D or 3-D structure made of metals or stones. Reprinting what 

we see somewhere else is known as lithography. In IC fabrication process one of the most 

important steps is lithography a.k.a patterning, which is the process of reprinting the pattern 

of mask on Silicon wafer. In 1960s circuits were in micrometer range, today these are few 

nanometers and it has been possible with the help of patterning. It controls shapes dimensions 

and placement of various components. 

 

Fig. 3.1 Optical Lithography Process 

Based on the type of radiation, there are basically four types of lithography processes: 

• Optical Lithography 

• Electron beam Lithography 

• X-Ray Lithography 
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• Ion Beam Lithography 

Optical lithography, similar to photographic printing, it creates patterns in a layer of 

photoresist that coats a prepared silicon wafer. Light from an illuminator is projected through 

a mask that contains the pattern to be created on the wafer. The light patterns. that pass 

through the mask are reduced by a factor of four by a focusing lens and projected onto the 

photoresist-coated wafer. Process upto this part is temporary and is known as developing and 

is reversible. The photoresist part that is exposed to the light becomes soluble or insoluble 

depending on the type and soluble part is rinsed away, leaving a miniature image of the 

required pattern at each chip location. This part is permanent, hence needs to be done very 

carefully. 

Mask a.k.a. Reticle contains hardcopy of the design that needs to be transferred from mask to 

photoresist. For multilayer design each layer has its own mask. Initially, a composite mask is 

prepared, and later it is broken up in individual mask drawings. It is difficult to design 

complex masks, so many CAD tools are used for this purpose. For preparing mask, a coating 

is applied on the glass and pattern is written on it from digital copy using laser. If feature size 

is greater than 5 microns emulsion coated glass plate is used, if it is less than 5 microns 

chrome coated glass plate is used. The process of making original hard mask is complex and 

may take hours to make, but once it is done the pattern can be quickly transferred to different 

wafers, making it easy to get multiple patterns [43].  

Photoresist is the light sensitive material which is applied on top of Silicon wafer. For this, 

we take one or two drops of photoresist, put it on wafer and spin the wafer really fast so that 

it uniformly spreads. If the exposed part of resist gets softened and becomes soluble, it is 

known as positive photoresist and if it becomes insoluble photoresist is negative type. It is 

made up of two parts a polymer and a photo-sensitive compound. This compound gets 

activated on exposure to radiation, it absorbs that energy and transfers it to polymer. In 

negative photoresist, the polymer after getting energy from photoresist, promotes cross-

linking leading to increase in molecular weight and decreased solubility. Cross-linking does 

not take place in presence of oxygen, so nitrogen is used. Also, in negative photoresist, the 

unexposed regions swell which leads to comparatively poor resolution. In positive 

photoresist, the molecules of polymer break when exposed to light. Hence, the exposed part 
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becomes soluble. To make sure part is properly dissolved, exposure time is high.So, in 

positive photoresist resolution is better, but throughput is high.  

Fig. 3.2 Photoresist 

This photoresist is now dipped in developer solution to remove softened part, then etching 

takes place to remove oxide layer, which prepares final wafer. 

Optical Lithography can further be divided into three types: Contact printing, Proximity 

printing and Projection printing. In contact printing wafer is in contact with mask, hence the 

resolution is high. But life of the mask is reduced due to wear and tear because of contact. In 

this type risk of contamination is also there, because if some dirt is present on mask, it is 

transferred on wafer. In Proximity printing mask and wafer are close, but not in contact. In 

this type resolution decreases little bit but life increases. In Projection printing, mask and 

wafer can be as far as we want. In this,  a highly focussed image of the mask is projected on 

wafer, hence resolution is high and wafer life increases. Because of extra optical setup 

required, cost also increases. 
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Fig. 3.3 Types of Optical Lithography [42] 

There are three figures of merit of lithography: 

• Resolution 

• Throughput 

• Depth of focus 

If there is a defined feature size in mask, after transferring it may increase or decrease. The 

closer the feature size to mask, better the resolution. If original feature size is small, it is 

required to be very accurate for good resolution. Throughput defines the number of wafers 

that can be prepared in a given time. It is important because process needs to be cost 

effective. Since, there are multiple patterns in a design, all of these should be properly aligned 

with respect to each other as well as base Silicon wafer. For, this alignment to become easier, 

depth of focus must be good. e.g.: In a simple BJT five masks are required: Active area mask, 

Junction Isolation mask, Base diffusion mask, Emitter diffusion mask, Contact metal mask. 

All these masks must be aligned to each other [43]. 
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Fig. 3.4  a).    Correctly aligned mask                       Fig. 3.4  b). Incorrectly aligned mask 

Lithography enables Moore’s law to be satisfied, which means year by year chip area should 

go down by half and information we wish to store is increasing. For this to happen, transistors  

need to get smaller and we need to understand how resistance and capacitance of the wire 

changes with size. Also 40 to 50 percent of total cost of making chip goes to lithography, so, 

we wish to continue trend of area getting smaller in a cost-effective way. Angle of diffraction 

from mask is sinθ 

                                                                                                (3.1) 

where, sinθ is the angle of diffraction,  

f is the feature size, 

c is constant 

 λ is the wave length, 

0th differential order does not contain any information, so, lens needs to capture at-least first 

differential order to recreate pattern of the mask. Hence, smaller the feature size, bigger the 

diffraction angle, bigger the lens we need. As, the feature size decreases lens needs to get 

bigger and bigger. 

Feature size can be defined mathematically as: 

sinθ =
c . λ

f
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                                                                                                                    (3.2) 

Here, f is the feature size, 

C is Rayleigh constant, 

 λ is the wave length, 

and n is the numerical aperture. 

To reduce f, we can increase n or reduce λ. 

To increase n, water or oil can be used as medium instead of air. It is known as immersion 

lithography. 

To reduce λ instead of UV light used in optical lithography, we use X-rays. It is known as X-

ray lithography and is done using proximity printing. This technique has various advantages 

such as smaller throughput, low proximity effect and high resolution. X-rays don’t absorb dirt 

so the risk of contamination is also less. When electron beam is focussed on water cooled 

palladium target, X-rays are generated. This whole process is done inside Helium chamber as, 

it doesn’t absorb X-rays. Mask used in this technique is a thin membrane made of Aluminium 

Oxide or Silicon or Silicon Nitride, coated with gold (because gold can absorb X-rays). Most 

commonly used mask for this lithography is Poly Methyl Meta Crystal (PMMA), electron 

beam resists can also be used. One limitation of this process is blurring of image on the 

substrate and it depends on the distance between X-ray source and mask and separation of 

mask and wafer [45]. 

Another way of obtaining smaller feature size is by using electron beam lithography. In this 

direct writing on the substrate is possible and mask is not required. Hence, it provides better  

depth of focus, resolution and can be easily automated. To perform this technique e- beam is 

focussed on substrate and focussed beam is scanned on some area of substrate. That area is 

defined as scan field. Beam is turned on or off depending on where pattern is required or not. 

After one scan field is completed, substrate moves. Beam diameter should be small and 

focussed. Ideally minimum feature size is four times the beam diameter and scan field is 200 

times the beam diameter. The time required for this is very high, so it leads to a smaller 

throughput. Another disadvantage of this lithography technique is proximity effect. When 

electron beam is focussed on substrate, scattering of electrons take place so, they go large 

distances away from original pattern. Because of this broadening of actual pattern and feature  

f =
C . λ

n
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size takes place, this is known as proximity effect. Insufficient radiation at corners doesn’t let 

them to fully develop, this effect is known as intra-proximity and over development of certain 

areas due to extra exposure is called inter-proximity [43]. 

Ion-beam can be used in place of electron beam which leads to less scattering and hence, less 

proximity effect. This process is known as Ion-beam lithography. 

Designers are given certain rules such as how much edge to edge distance one should keep, 

how much separation should be there, length and width etc. which must be followed to get 

least errors possible. But sometimes because of decreasing feature size printability issues 

occur, those places with such issues are known as lithography hotspots. 

Table 3.1 Optical Lithography Process [44] 
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Surface Cleaning and Drying of Water Surface Preparation for Resist 
application

Primer application for resist Adhersion HDMS is adhersion parameter 
and is spun on wafer

Resist Coating on wafer
Resist dispensed on wafer and 
spun with speed of 4000 - 8000 

RPM

Pre-bake of Resist
Around 10 to 30 minutes at 

temperature of 90 to 100 degree 
C.

Align wafer then expose the resist Visible or UV light



 

3.2 Vision Transformer 

Today most of the best performing Natural Language Processing models are Transformer 

based, but in computer vision based applications, these are not used to much extent. Till now 

transformers have been used with CNNs, never at their place. Vision Transformers aim to use 

transformers for image classification tasks without involvement of convolutions [3]. 

Ideally, transformers operate on sequences or sets. Transformer applies attention mechanism 

on the sets. Since attention is a quadratic operation, we have to calculate pair-wise inner 

product between each pair of sets, therefore computations and memory required are very 

high. Images are harder because these are composed of many pixels. Even a small image 

consists of  250*250 pixels. Every pixel needs to attend every other pixel, so even for a small 
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image we will need ((250)2)2 operations. This much computations are not possible to achieve 

with hardware [2]. 

Vision transformers make use of transformers by including some extra operations, which are 

explained further. 

Fig. 3.5 Structure of ViT [3] 

First of all, image is partitioned into patches of same shape. These patches may or may not 

overlap, every patch is a small image. Then these patches are vectorized by reshaping tensors 

to vectors, let the output be X1,  X2, …..,Xn. Next dense layer is applied to these vectors,  let the 

outputs be Z1, Z2, …..,Zn, where Zn = w*Xn + b. Then, positional encoding is added to these 

patches, because swapping of patches may lead to information loss. Other than these CLS 

token is passed through embedded layer and its output is used to provide classification 
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output. All these vectors are passed through Transformer encoder network. Its first output is 

feature vector, which is passed through MLP head, which acts as a classifier and provides 

image classification output.  

In transformers we can pay attention to the things which are far away even at beginning from 

end, this is not possible in CNNs.  One feature that has been observed with ViTs is that they 

perform better than ResNETs only when training data is sufficiently large, otherwise they are 

equally or less effective. In CNNs we integrate over a pixel, which connects to its 

neighbourhood. Then that neighbourhood connects to its neighbourhood and so on. This is 

known as local attention. ViTs work on the principle of global attention i.e all the points are 

connected at once [2]. 
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CHAPTER 4 

EXPERIMENTS PERFORMED 

4.1 Dataset Used 

For this research, we have utilized ICCAD-2012 dataset. It has five sub data-sets with 

different types of layouts. First dataset is obtained using 32 nm process and other four have 

been obtained during 28 nm process. Each sub-dataset contains training and test set, detailed 

information of each sub-dataset is provided in the following table. 

Table 4.1 Details of the dataset used 

We can see from table 4.1 that total number of images with hotspot in training set and test set 

are 1303 and 2750 respectively and number of Non-Hotspot images in training and test set 

are 16896 and 142717 respectively. The results provided are after passing our output through 

design will check and hence number of hotspots is much less than number of non-hotspots. 

The data is it is highly imbalanced many techniques have been used to take care of this 

imbalance, some of them being data augmentation and filtering [1]. 

Other problems faced by this dataset is false alarms. It has been seen that using synthetic 

patterns to increase the amount of training data significantly reduces these false alarms [19]. 

TRAINING SET TEST SET

Hotspot Non-Hotspot Total Hotspot Non-Hotspot Total

Sub-dataset 1 99 340 439 226 3869 4095

Sub-dataset  2 174 5285 5459 498 41298 41796

Sub-dataset 3 909 4643 5552 1808 46333 48141

Sub-dataset 4 95 4452 4547 177 31890 32067

Sub-dataset 5 26 2176 2202 41 19327 19368

TOTAL 1303 16896 18199 2750 142717 145467
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Fig. 4.1 Representation of dataset 

Fig. 4.2 Images with Hotspot 

 

Fig. 4.3 Images without Hotspot 
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4.2 Model 

We aim to detect hotspots using ViT, the specifications of model used is as follows: 

Table 4.2 Steps performed for classification using ViT 
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To implement ViT, we loaded a pre-trained transformer model ‘vit_base_patch16_224’ 

provided by Hugging Face. This model is trained on ImageNet21k dataset and then fine-

tuned on ImageNet dataset.  It uses a patch size of 16*16. Chained transformations are used 

to resize images to 224*224 resolution. These resized images are then converted to tensors 

and these tensors are normalized with value of mean and standard deviation = 0.5 for all three 

channels. Model has been created using torch image model library and pre-trained 

transformer model. For generating the model batch size set to a value of 100, learning rate 

with values 1e-2 for datasets  2,3,4,5 and 1e-3 for dataset1 gave the best results. While 

compiling the model, Adam optimizer, cross-entropy loss and accuracy matrix have been 

used and the output of the model is discussed in results section.  

ViT hyper-parameters used: 

• Batch_size = 100 

• Number of epochs = 15 

• Image Size = 224 

• Learning Rate: 1e-3 for sub-dataset 1, 1e-2 for sub-dataset 2,3 and 4, 5e-2 for sub-dataset 

5 

• Epochs < 5 

• Patch size = 16x16 

For comparison purposes we performed the experiment using CNNs and ANNs as well and 

used Tensor flow Keras library. For generating model for CNNs and ANNs Sequential model 

with a batch size of 64 and Images reshaped to 224*224  resolution have been used. For 

generating model for CNNs 3 Convolution layers with 12 filters and Kernel Size = (3,3) , 2 

max-pooling layers with pooling window (2,2) and 2 dense layers give the best results.  For 

ANNs best accuracy has been obtained using 9 dense layers and 8 dropout layers with with 

rate = 0.3. Same parameters have been used while compiling the models for all three 

techniques. Steps performed are same as in case of ViT except that we don’t use pre-trained 

model for CNNs. 
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CNN hyper-parameters used is as follows: 

• Model = Sequential 

• Batch Size = 64 

• Image Shape = 224 

• Number of Convolution layers = 3  

• Number of filters = 12 

• Kernel Size = (3,3) 

• Activation = relu 

• Number of Max-Pooling layers = 2 

• Pooling window = (2,2) 

• Number of dense layers = 2 

• Number Of Epochs <= 10 

• Optmizer = Adam 

• Loss = Sparse Categorical Cross-entropy 

• Metrics = Accuracy 
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Fig. 4.4 Summary of CNN model 

ANN hyper-parameters used is as follows: 

• Model = Sequential 

• Batch Size = 64 

• Image Shape = 224 

• Number of Dense layers = 9 

• Activation = relu for first 8 layers and softmax for last layer 

• Number of Dropout layers = 7 

• Dropout rate = 0.7 

• Number Of Epochs <= 10 

• Optmizer = Adam 

• Loss = Sparse Categorical Cross-entropy 

• Metrics = Accuracy 
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Fig. 4.5 Summary of ANN model 
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CHAPTER 5 

RESULTS 

Table 5.1 Accuracy for all subsets using ViT, CNNs and ANNs 

  

From Table 5.1, Comparing in terms of overall accuracy, we can see that for ViT performs 

better than CNNs and ANNs.  

For Sub-datasets 1, 2, 3, 4 and 5 it gives the best results. CNNs perform moderately well for 

sub-datasets 1, 2, 4 and 5 and worst for sub-dataset 3. ANNs perform poorest for sub-datasets 

1, 2, 4, 5 and moderately for sub-dataset 3. 

In terms of overall accuracy ViTs give 1.39% better accuracy than CNNs and 2.04% better 

accuracy than ANNs.  

Table 5.2  Comparison with other works 

Model

Accuracy 
Overall 
Average 
AccuracySub-

Dataset 1
Sub-

Dataset 2
Sub-

Dataset 3
Sub-

Dataset 4
Sub-

Dataset 5

ViT 95.48 99.37 95.77 99.83 99.80 98.05

CNN 94.37 98.81 90.91 99.45 99.79 96.666

ANN 89.58 97.73 94.58 98.68 99.48 96.01

Model

Accuracy 
Overall 
Average 
AccuracySub-

Dataset 1
Sub-

Dataset 2
Sub-

Dataset 3
Sub-

Dataset 4
Sub-

Dataset 5

Ours (ViT) 95.48 99.37 95.77 99.83 99.80 98.05

Y.Yu et.al, 
[9] 93.81 98.2 91.88 85.94 92.86 92.538
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Table 5.2 shows comparison of our ViT model with other researches. In terms of overall 

accuracy ViT model gives the best result. In terms of sub-datasets, for sub-dataset 4 and 5, 

ViT gives the best accuracy. For sub-dataset 2, accuracy is not the best of all, but it is 

comparable to best performing models. For sub-dataset 1, [35] and [37] provide the best 

results and for sub-dataset 3, [15] gives the best accuracy. 

H.Yang 
et.al, [15] 99.6 99.8 97.8 96.4 95.1 97.74

H.Zhang 
et.al, [35] 100 99.4 97.52 97.74 95.12 97.956

T. 
Matsunaw
a et. al [37]

100 98.6 97.2 87.1 92.68 95.116

Model

Accuracy 
Overall 
Average 
AccuracySub-

Dataset 1
Sub-

Dataset 2
Sub-

Dataset 3
Sub-

Dataset 4
Sub-

Dataset 5
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CHAPTER 6 

CONCLUSION & FUTURE SCOPE 

6.1 Conclusion 

In this work we have detected lithography hotspots using Vision Transformers. To see if this 

proposed technique gives better results than the already existing deep learning techniques, we 

applied CNNs and ANNs to solve this problem as well. From table 5.1, we can see that in 

terms of overall accuracy ViT give 1.39% better accuracy than CNNs and 2.04% better 

accuracy than ANNs. Considering sub-datasets wise accuracies, ViT performs better or as 

good as CNNs for each sub-dataset. For three out of five sub-datasets accuracy on the test set 

is more than 99% and for other two it is more than 95%. We also compared our work to 

already existing works and it can be see from table 5.2 that in terms of overall accuracy, ViT 

gives the best results and at sub-dataset level for three out of five, it provides best or 

comparable results but lags for two sub-datasets. From the results we can conclude that 

although the proposed technique performs better than a lot of already existing state of the art 

techniques, it fails to supplant all the existing methods for all the sub-datasets. ViTs can be 

seen as an new and alternate method for the purpose of identifying hotspots in lithography. 

Since the technique is very novel, many improvements lie for it in the coming future. With 

the improvements in technique, increase in accuracy and lower time can also be expected for 

our problem statement. 

6.2 Future Scope 

Presence of hotspots can lead to complete failure of the circuit. In order to avoid this we wish 

to obtain as high accuracy as possible. Our aim for future researches remains to reduce the 

iteration time in this technique and improve accuracy for sub-datasets 1 and 3 by improving 

our model and modifying the dataset using techniques like mirror flipping, upsampling etc. to 

reduce the imbalance in it and at the same time increasing training data. 
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