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ABSTRACT 

 

Event-triggered control is used for reduction in communication over the feedback link 

without compromising the stability of the system. It is a recent approach in control theory 

which aims at reduction of the communication load, by exchanging information only 

when a certain threshold event condition has been met, over the feedback link. This 

method of control achieves reduction of the communication overhead, by exchanging 

feedback information only when a certain threshold event condition has been met. The 

non-linearity due to integrator windup, causes performance degradation and can lead to 

an unstable system. Therefore, in this paper we study an event-triggered control system 

with continuous input along with saturation non-linearity and dead-zone non-linearity. 

The results with various input signals demonstrate that event triggered system achieves 

desired performance in the presence of non-linearities and output quantization. Stable 

operation at large values of quantization steps demonstrates that the desired system 

performance can also be achieved with fewer bits. The results are illustrated by 

simulations in MATLAB/Simulink. 
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NOTATIONS 

 

Throughout all the chapters in the thesis, a scalar is defined by (𝑥 ∈ ℛ), vector is 

defined by (𝒙 ∈ ℛ𝑛), a matrix is defined as (𝐴 ∈ ℛ𝑛×𝑛 ) and a signal at time 𝑡 ∈  ℛ by 

𝒙(𝑡), wherein the preliminary value of the signal at time 𝑡 = 0 is given by 𝑥0. 

Furthermore, identity matrix of order 𝑛 × 𝑛 is depicted as 𝐼𝑛. 

Additionally, the 𝒊-th element of vector 𝒙 is depicted by 𝒙(𝒊), 𝑨(𝒊) denotes the general 

𝒊 th row of matrix 𝑨, and transpose of the matrices and vectors is given by ()𝑻. 

Absolute value of a scalar quantity is given by |𝒙|, the Euclidean vector norm is given 

by ||𝒙|| and the norm of the matrix is given by ||𝑨||. 

Furthermore, any positive definite matrix 𝑨 is defined as 𝑨 > 0 (𝑨 ≥ 0) and a negative 

definite matrix 𝑨 is defined as 𝑨 < 0 (𝑨 ≤ 0). Additionally, the sum of the diagonal 

matrix i.e., trace of the matrix  𝑨 is depicted by 𝑡𝑟𝑎𝑐𝑒(𝑨). 

The ellipsoids or the elliptical sets denoted by 휀(𝑷, 𝜂) which is defined by 𝑥𝑇𝑷𝑥 ≤

𝜂−1 wherein the term 𝑷 > 𝟎. 
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CHAPTER 1 

2. INTRODUCTION 

 

 

1.1 INTRODUCTION 

 

In recent times, almost all the control systems are coded digitally using a digital 

platform, termed a computer-based control system, wherein the controller used in a 

computer-based control system is software-based which is used to manipulate the plant 

present in the control system in a way its desired. Prior to the development of such a 

system, mostly analog controllers were used. Herein, the analog controllers 

continuously keep a check on the parameters of the plant while keeping constant 

communication within the closed-loop control system. 

The main disadvantage of a closed-loop control system is that giving continuous 

feedback is integral in the way communication occurs between the processor and the 

sensors, and the computation and execution of the controller by the actuator happens at 

regular time intervals. Typically, continuous feedback is provided to the system 

disregarding the fact whether the changes in the plant output requires an adjustment in 

the parameters or not via the feedback. Furthermore, there may be continuous 

implementation of control action by the controller for maintenance of the performance 

and stability of the plant, even when the plant does not have any requirement to do so. 

For instance, in a zero-disturbance plant regulation system, a continuous feedback 

closed-loop system would continue updating the controller parameters even after the 

plant reaches steady state. This might become a critical problem in systems wherein 

limited energy is available to the processors and sensors in the form of batteries. Hence, 

an optimum usage of resources is of utmost importance. 
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Additionally, continuous feedback is quite problematic when used for remote locations 

i.e., when the processors and sensors are topographically distributed. In such a case, the 

exchange of information occurs with the help of wireless control system. Beneficially, 

using a wireless control system offers benefits such as reduced cost of wiring, reduction 

in power and/or energy requirements and being extremely reliable. However, wireless 

control system also offers disadvantages, for instance packet dropouts and transmission 

delays.  

A basic approach to deal with the disadvantages mentioned regarding wireless control 

system and to prevent or minimize wastage of energy is to lower the amount of data 

transmitted continuously via feedback. Notably, this can be achieved when data is 

transmitted only when a certain event has occurred i.e., during event-triggering of a 

control system, which occurs in an aperiodic manner. 

The elementary idea in event-triggered control system is that data is transferred to the 

controller only when it is required. Fundamentally it may be observed that an event-

triggered control mechanism comprises the natural methodology for the control of 

particular systems. An example of a simple event-triggered control system may be that 

of a plant operated by the control action of on-off relay. In such a system, value of the 

control action is not altered unless the error surpasses a threshold value. Furthermore, 

event-triggered control system may also be used in systems where costly control action 

is used. An example for this may be, volumetric production control in a chemical 

processing plant. Herein, the rate of production cannot be changed often on a regular 

basis and should be prevented. Hence, an event-trigger may be applied in such a system, 

wherein the rate of production will not be changed unless the volume of production 

advances either towards the upper limit or towards the lower limit of a tank present in 

the chemical processing plant.  

Mathematically, an exchange of information in an event-triggered control system does 

not take place until an event-triggering condition is reached. The event-triggering 

condition has varied forms and changes according to the nature of the control system. 

In an example, in case of a power grid, a fault occurring on the said power grid may be 

regarded as an event, which will eventually trigger a response in the control system. In 

general terms, in numerous systems, an event may occur just as a control error surpasses 
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a certain event-triggering threshold. In this context, an event detector must be created 

so that an event may be interrupted and the information be released.  

As stated previously, besides the efficient utilization of computation, communication 

and energy and/or power resources, event-triggered control system leads to less traffic 

in data transmission, compared to classical closed-loop control system, computer-based 

control system or wireless control system. 

 

1.2 EVENT-TRIGGERED CONTROL SYSTEM 

Control systems of modern control theory are usually realized digitally with the use of 

a computer in order to implement the controller. Typically, sample and hold devices 

provide the user interface with the plant which is analogous in nature. In the classical 

modern control theory approach, data is transmitted between the components of the 

system, such as for example sensor, plant and actuator, periodically, irrespective of the 

fact that whether or not the changes observed in the plant output requires a new 

controller output or not. However, the exchange or transfer of information occurring 

periodically offers unnecessary demands in communication that might become critical 

in various systems, such as networked or distributed systems, wherein optimum usage 

of the capacity of communication network is of utmost importance. 

Notably, an alternative approach, called the event-triggered control system is offered in 

place of continuous time-driven closed-loop system. Herein, the controller will generate 

a control action only when changes are observed in the plant output, only when the 

observed change surpasses a pre-defined threshold value. Event-triggered control 

systems have been an active research area for the past decade. Herein, the fundamental 

feature of event-triggered based controllers is that they can provide the same 

functioning as a classical control theory approach with the additional benefit of 

reduction of transmission information between the plant of the control system and the 

controller. The significance of this additional benefit is given proof through various 

applications such as control systems operated by batteries and wireless transmission 

used between the controller and the plant. Hence, this kind of system often possess a 

limited amount of energy and memory. 
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In a situation where event-triggering is used, the control system determines when to 

update the output of the control, based on an event-triggering condition which occurs 

real time on the signal to be measured. This often leads to communication occurring in 

an aperiodic manner between the controller and the plant, and takes place on a purely 

requirement basis. Furthermore, the components of the control system do not 

communicate unless and until an event-triggering threshold condition is reached. In 

such a case, this event-triggering condition may be defined in various forms and 

changes according to the nature of the control system. 

Generally, the event-triggering control mechanism is fabricated to update the actuators 

of the control system in case the measured error surpasses the pre-defined threshold 

value. Herein, the measured error is defined as the difference between the current value 

of the output and a recent value of the output. Furthermore, the threshold value may be 

a function of output of the system, or a constant, or a combination of the two. 

Henceforth, an event generator is required to provide the event-triggering condition, 

which should ideally be connected at the output of the plant. 

There are two important facets of an event-triggering control system: 

1) the design of the event-triggered control system should partially resemble the 

performance of a closed-loop control system, and 

2) should make sure that while executing and triggering events successively, enough 

time separation must be present to avoid sampling in excess. 

The second point is quite important to any control system using event-triggering 

mechanism. The main motivation to use event-triggering mechanism is to reduce the 

redundant communication happening between the controller and the plant. However, 

the event-triggering condition should be designed in such a way so as to prevent 

excessive triggering, as the time of execution of the control action is dependent on the 

occurrence of every new event. Therefore, the control system should be analyzed 

properly, and the event-triggering mechanism must be adjusted accordingly. 
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1.3 LITERATURE REVIEW 

In a wired closed loop control system for stable operation, continuous feedback is 

provided. The studies conducted in [1] [2] demonstrated that the stable operation can 

be achieved through limited feedback.  The studies in [3] [4] on event-triggered control 

system aim to reduce the communication overhead over the network required for 

feedback while maintaining a stable operation of the plant. Furthermore, by reducing 

the information exchange to the minimum communication which is necessary to ensure 

the required system performance, an overload on the communication network can be 

avoided. As compared to wired systems, wireless control systems provide advantages 

such as easy installation and maintenance and/or a high degree of flexibility. 

Furthermore, the shortcomings experienced in Networked Control Systems are removed 

in event-triggered control system and allows more efficient usage of bandwidth when 

there is limited bandwidth network. 

The authors in [5] [6] have studied an event-triggered control system using a 

proportional controller. The assumption of a proportional controller enables the study 

to be focused on the stability and the communication properties of the event-triggered 

control system. Furthermore, an event-triggered control system is not always linear in 

nature. In this context, event-triggered control system with a Proportional-Integral 

controller (PI controller) model developed in [7] which achieves reduction of 

communication and computational effort with only a slight degradation in performance. 

Furthermore, the event-triggered control system with PI controller provides a 

framework for better analysis of stationary behavior of the event-triggered control 

system. Therefore, in this paper we have also considered a PI controller. 

Additionally, the actuators used in the plant of the wired closed loop control system 

saturates because of limits, such as for example the maximum limit and the minimum 

limit which acts as a physical constraint. Although, the occurrence of saturation non-

linearity in actuators is a common phenomenon noticeable in practical wired closed loop 

system, its effect on event-triggered control system was observed recently in linear 

systems [8]. Herein, upon simulation of saturation non-linearity in event-triggered 

control loop system, it was observed that the presence saturation non-linearity led to 

drastic results as compared to the ideal event -triggered control loop with only the PI 

controller added in the closed loop control system. 
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Furthermore, dead zone non-linearity is another such non-linearity found commonly 

in practical wired closed loop control system and has a certain influence on the 

performance of the wired closed loop control system. Additionally, compensation of 

dead zone non-linearity is still an outstanding issue [9]. However, none of the studies 

have considered saturation non-linearity along with dead-zone linearity along with their 

compensation in event-triggered control system. 

 

Recently, event-triggered control system modelling was studied with quantization in  

[10]. The authors considered an event-triggered control, wherein the linear system is 

quantized. However, the authors do not take into account the non-linearity due to 

saturation in the actuator. In this paper, we consider a continuous-time event-triggered 

control system in presence of saturation non-linearity and output quantizer. The results 

demonstrate the desired performance can be achieved in the presence of actuator 

saturation and output quantization. 

 

1.4 OBJECTIVES OF PRESENT WORK 

The focus of the present work is 

1) to develop an event-triggering condition to satisfactorily provide results of a control 

system, 

2) to develop a simulation model using MATLAB-Simulink to observe the functioning 

and response of an event-triggered control system, 

3) to subject the control system to non-linearities in order to simulate a real-time plant 

and controller 

4) to observe the results obtained during simulation of the control system when a 

quantizer is connected at the output. 
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CHAPTER 2 

CONTROLLER IN PRESENCE OF NON-LINEARITIES 
 

2.1 INTRODUCTION 
 

This chapter observes a continuous-time control system when subjected to non-

linearities. Herein, the non-linearities introduced in the control system are saturation 

non-linearity and dead zone non-linearity.  

 

2.2 SYSTEM MODEL 
 

In this section, a suitable continuous-time control system is developed which will later 

on be subjected to non-linearities in the following sections. Herein, a general equation 

for continuous-time controller having feedback is given by 

 

 

2.3 SATURATION NON-LINEARITY 
 

In this section, a suitable continuous-time control system representation is shown when 

subjected to saturation non-linearity due to the actuator present in the control system. 

Herein, the controller shown in the Figure 2.1 is part of an extended figure of the plant 

present in the control system. Therefore, general techniques for the analysis of a closed 

loop system are applied. 

�̇�𝑝(𝑡) = 𝑎𝑥𝑝(𝑡) + 𝑏𝑢(𝑡) + 𝑏𝑛𝑛(𝑡),   𝑥𝑝(0) =  𝑥𝑝0  (2.1a) 

𝑦(𝑡) =  𝑥𝑝(𝑡) (2.1b) 
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Figure 2.1 Continuous-time closed loop control system in presence of saturation non-linearity 

 

Conventionally, saturation non-linearity present in the actuator is virtually present in all 

types of practical control systems. Furthermore, the saturation non-linearity acts like a 

constraint within which the control system works and yields maximum result. Herein, 

the saturation linearity may be a physical constraint or a safety constraint. For example, 

a valve is present in a control system. The output from this valve within the control 

system is operating between fully open and fully closed. In case, a controller present in 

the control system wants more or less flow of any fluid, more that permissible levels of 

the valve, saturation non-linearity occurs in the actuator. Hence, saturation non-linearity 

in the actuator leads to restrictions in achieving an optimum performance of the control 

system. Furthermore, saturation of actuators leads to stability issues as well within the 

feedback loop of the control system. 

 

2.3.1 FEEDBACK CONTROLLER 
 

The general formula for a feedback controller acting dynamically in a control system is 

given by 

�̇�𝒄(𝑡) = �̆� 𝒙𝒄(𝑡) +  �̆�𝒄𝒚(𝑡) + �̆�𝒄𝒓𝒓(𝑡),     𝑥𝑐(0) = 0 

𝒗(𝑡) = �̆� 𝒙𝒄(𝑡) + �̆� 𝒚(𝑡) + 𝑫 ̆𝒓(𝑡) 
(2.2) 
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wherein, the state of the controller 𝑥𝑐 ∈  ℛ and the reference signal 𝑟 ∈  ℛ. �̆�, �̆�,

�̆�  and �̆� are real matrices having appropriate dimensions.  

Furthermore, the equation 1.1 for controller and the augmented state vector is given by 

 

Hence, the equation of the plant becomes 

 

wherein,   

 

 

Furthermore, by evaluating the equation (2.2) and the transition matrix given by the 

equation (2.3), the derived output for the controller is given by 

 

 

wherein,  𝑲 and 𝑲𝑟 are given by the matrices 

 

 

Herein, the variation is attainable for a plant which is linear in nature, where the plant 

is further controlled by a continuous-feedback controller which provides output 

dynamically. It further results in a general representation of a system where the 

parameters of the controller are encompassed in the description of the plant equation 

𝒙 =  [
𝒙𝑝

𝒙𝑐
] (2.3) 

�̇�(𝑡) = 𝑨 𝒙(𝑡) + 𝑩 𝒖(𝑡) + 𝑩 𝒏(𝑡) + 𝑩 𝒓(𝑡),     𝑥𝑐(0) = 0 (2.4) 

𝑦(𝑡) = 𝑪 𝑥(𝑡) (2.5) 

𝑨 =  [
�̆� 𝟎

�̆�𝒄�̆� �̆�𝒄
] , 𝑩 =  [ �̆�𝒄

0
] , 𝑩𝒏  =  [ �̆�𝐧

0
] , 𝑩𝑟  =  [

 𝟎
 �̆�𝒄𝒓

], 

𝑪 =  [�̆� 𝟎] 

(2.6) 

𝒗(𝑡)  =  𝑲𝑥(𝑡)  + 𝑲𝑟𝑟(𝑡) (2.7) 

𝑲 =  [�̆�𝒄�̆� �̆�𝒄], 𝑲𝑟 =  �̆�𝒄𝒓 (2.8) 
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(2.4). Thereafter, a control law which is proportional in nature results in the equation 

(2.7). 

 

2.3.2 PROPORTIONAL-INTEGRAL CONTROLLER 
 

Equating the matrices of the plant and controller to each other, and instead of using the 

equations 2.1 and 2.2, the following equation 

 

�̇�𝑐(𝑡) = 𝒚(𝑡) − 𝒓(𝑡),            𝒙𝑐(0) = 0 

along with 

𝒗(𝑡) =  𝑲𝐼𝒙𝑐 +  𝑲𝑃(𝒚(𝑡) − 𝒓(𝑡)) 

is used in order to include PI controllers in the general equation for system 

representation, wherein 𝑛𝑝 = 𝑛𝑐 = 𝑠. Therefore, the matrix in equation 2.6 and the 

matrix in equation 2.8 is given by 

 

 

2.3.3 GENERAL DEPICTION OF CONTINUOUS-TIME CLOSED 

LOOP CONTROL SYSTEM 
 

The function for saturation non-linearity is given by the equation 𝒖(𝑡) = 𝒔𝒂𝒕(𝒗(𝑡)), 

the following depiction of continuous-time closed loop control system is written, 

wherein the actuator comprises saturation non-linearity 

 

 

𝑨 =  [�̆� 𝟎
𝑪 𝟎

] , 𝑩 =  [ �̆�
0

] , 𝑩𝒏  =  [ �̆�𝐧

0
] , 𝑩𝒏  =  [

 𝟎
 �̆�𝒏𝒑

], 

𝑪 =  [�̆� 𝟎], 𝑲 =  [𝑲𝑃𝑪 𝑲𝐼], 𝑲𝒏  =  −𝑲𝑃  

(2.9) 

�̇�(𝑡)  =  𝑨𝑥(𝑡)  +  𝑩 𝑠𝑎𝑡(𝑲𝑥(𝑡)  +  𝑲𝑟 𝑟(𝑡)) + 𝑩𝒏 𝑛(𝑡) + 𝑩𝒓 𝑟(𝑡), 

𝒙(0)  =  𝒙0, 

𝒚(𝑡)  =  𝑪 𝑥(𝑡) 

(2.10) 
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Furthermore, this depiction is shown in Figure 2.2. Hereinafter, all system 

representations and considerations inside this chapter shall be based on the general 

system as depicted by equation 2.10, wherein suitable dimensions of  𝑥 ∈  ℛ, 

𝑛 =  𝑛𝑝+ 𝑛𝑐 , 𝑢 ∈  ℛ, 𝑛 ∈  ℛ, 𝑟 ∈  ℛ, 𝑦 ∈  ℛ and matrices 𝑨, 𝑩, 𝑩𝑛, 𝑩𝑟 , 𝑲, 𝑲𝑟 and 

𝑪 are considered. 

 

2.4 DEAD ZONE NON-LINEARITY 
 

As discussed in the previous sub-topic, the function for saturation non-linearity is 

defined the equation 2.10. In order to generalize the system further to include other non-

linearities i.e., the dead zone non-linearity, the equation 2.10 is changed further using 

𝛷(𝑣(𝑡)) =  𝑠𝑎𝑡(𝑣(𝑡)) − 𝑣(𝑡) (2.11) 

 

 

Figure 2.2 Representation of continuous time control system 

 

with the term  

𝜙(𝑖)(𝑣) = 𝜙(𝑣(𝑖))  =  {

𝑢0(𝑖) − 𝑣(𝑖) 𝑓𝑜𝑟 𝑣(𝑖) > 𝑢(𝑖)

0 𝑓𝑜𝑟 −𝑢𝑚𝑖𝑛(𝑖) ≤  𝑣(𝑖)  ≤  𝑢𝑚𝑖𝑛(𝑖)

−𝑢0(𝑖) − 𝑣(𝑖) 𝑓𝑜𝑟 𝑣(𝑖) <  −𝑢0(𝑖)

 (2.12) 

 

wherein, 𝑖 ∈ {1, … , 𝑚}. Furthermore, the dead zone non-linearity 𝜙(𝑣(𝑖)) is shown in 

FIGURE 2.3, 
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Figure 2.3 Graph of non-linearities 

 

Thereafter, the dead zone non-linearity may be depicted using the general depicted 

equation 2.10 as shown 

�̇�(𝑡) = �̅�𝑥(𝑡) + �̅�𝝓(𝑲𝑥(𝑡) + 𝑲𝒓𝒓(𝑡)) + 𝑩𝑛𝑛(𝑡)

+ (𝑩𝑟 + 𝑩𝑲𝒓)𝒓(𝑡), 

𝑥(0) = 𝑥0, 

𝒚(𝑡) = 𝑪𝒙(𝑡) 

(2.13) 

wherein 

�̅� = 𝑨 + 𝑩𝑲, �̅� = 𝑩 

 

The equation (2.13) may be used for the derivation of stability criterion for continuous 

time and can be extended to the derivation of stability criterion for event-triggered 

closed loop control system. 

 

2.5 ANALYSIS FOR STABILITY 
 

The equation 2.10 is further analyzed using asymptotic stability. Notably, 𝒏(𝑡) = 0 

and 𝒓(𝑡) = 0 and equation from the state representation equation 2.10 becomes 

 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑠𝑎𝑡(𝑲𝑥(𝑡)), (2.14) 
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𝑥(0) = 𝑥0 

 

or can equally be written as 

 

�̇�(𝑡) = �̅�𝑥(𝑡) + �̅�𝝓(𝑲𝑥(𝑡)), 

𝑥(0) = 𝑥0 
(2.15) 

 

Furthermore, a quadratic Lyapunov function is used 

 

𝑉(𝑥)  =  𝒙𝑻𝑷𝒙, 𝑷 = 𝑷𝑻 (2.16) 

 

in conjunction with the equations present as described above, a criterion for stability is 

obtained. Herein, a symmetric positive definite matrix is defined wherein 𝑾 ∈  ℛ , a 

positive definite diagonal matrix is defined wherein 𝑺 ∈  ℛ and a matrix is defined 

wherein 𝒁 ∈  ℛ. The symmetric positive definite matrix, the positive definite diagonal 

matrix and the matrix should satisfy the equation in the matrix given by  

 

[ 𝑾�̅�𝑇 + �̅�𝑾 �̅�𝑺 − 𝑾𝑲𝑇 − 𝒁𝑇

𝑺�̅�𝑇 − 𝑲𝑾 − 𝒁 −2𝑺
] (2.17) 

[
𝑾 𝒁(𝑖)

𝑇

𝒁(𝑖) 𝜂𝑢0(𝑖)2
] (2.18) 

 

Hereinafter, if the matrices satisfy the equations 2.17 and 2.18, then an ellipsoid 휀(𝑷,

𝜂), with 𝑷 =  𝑾−1 and provides the asynptotic stability for the equations 2.14 and 2.15. 

In order to prove equations 2.17 and 2.18, it is assumed that 𝒗 =   𝑲𝒙 and 𝝎 = 𝑲𝒙 +

𝑮𝒙 and is able to satisfy the first inequality 

 

𝜙(𝑲𝑥)𝑇𝑻(𝜙(𝑲𝑥) + 𝑲𝑥 + 𝑮𝑥) ≤ 0 (2.19) 

 

Considering equation 2.16, an ellipsoid is the region which is to be calculated for 

stability. Furthermore, there is a second inequality which can be satisfied 

simultaneously while choosing an appropriate Lyapunov function present in the 
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equation 2.16. If 𝑾 is made equivalent to the inverse of 𝑷 i.e., 𝑾 =  𝑷−1, and 𝒁 is made 

equivalent to the product of 𝑮 and 𝑾, then the first inequality given by the equation 

2.19 can be rewritten in order to procure the equation 2.18. 

Additionally, the derivative of Lyapunov function with respect to time needs to fulfil 

�̇�(𝑥) =  �̇�𝑇𝑃𝑥 +  𝑥𝑇𝑃�̇� < 0 

Moreover, by using equation 2.19, a term in 𝜙 which is quadratic in nature can be added 

according to the equation shown below 

�̇�(𝑥)  ≤  �̇�(𝑥) − 2𝜙𝑇𝑻(𝜙 +  𝑲𝒙 + 𝑮𝒙) < 𝟎 

Herein, the equation is valid for all 𝒙 ∈   휀(𝑷, 𝜂). 

Furthermore, by using equation 2.15, the first equality can be rewritten as 

[
𝑥
𝜙]

𝑇

[ �̅�𝑇𝑷 + 𝑷�̅� 𝑷�̅� − 𝑲𝑇𝑻𝑇 − 𝑮𝑇𝑻𝑇

�̅�𝑇𝑷 − 𝑻𝑲 − 𝑻𝑮 −2𝑻
] [

𝑥
𝜙] < 0 

Additionally, non-linearities are present in the decision variables of the first inequality  

[
𝑥
𝜙]

𝑇

 =  [
𝑥𝑷𝑷−1

𝜙𝑻𝑻−1]
𝑇

, [
𝑥
𝜙]  = [

𝑷−1𝑷𝑥
𝑻−1𝑻𝜙

] 

Also, assuming 𝑾 =  𝑷−1, 𝑺 =  𝑻−1 and 𝒁 = 𝑮𝑾, equation 2.17 is procured. 

Overall, the asymptotic stability of the continuous-time closed loop wherein the actuator 

comprises saturation and dead zone non-linearities ensures that for any 𝒙 ∈   휀(𝑷, 𝜂), 

since �̇�(𝑥) < 0 is true for all values of 𝑡 ≥ 0. 

 

2.6 EXEMPLARY MODEL 
 

An exemplary model is used to explain the methods discussed in this chapter. Herein, 

the equations 2.1(a) and 2.1(b) are transformed into equation 2.4 and equation 2.7. An 

augmented state vector 𝑥 =  [𝑥𝑝 𝑥𝑐]𝑇 is used to modify the equations, thereby giving 

�̇�(𝑡) = [
𝑎 0
1 0

] 𝑥(𝑡)  + [
𝑏
0

] 𝑢(𝑡) + [
𝑏𝑛

0
] 𝑟(𝑡)  + [

0
−1

] 𝑟(𝑡),      𝑥(0)  =  𝑥0, 

𝑦(𝑡)  =  [1 0] 𝑥(𝑡), 
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𝑣(𝑡)  =  [𝑘𝑃 𝑘𝐼] 𝑥(𝑡)  −  𝑘𝑃𝑟(𝑡) 

Herein, the numerical values used are 𝑎 =  0.1, 𝑏 =  1, 𝑏𝑛 =  0.1, 𝑘𝑃  =  −1.6 and 

𝑘𝐼 =  −1.  

Furthermore, a function denoting saturation non-linearity is introduced 𝑢(𝑡)  =

 𝑠𝑎𝑡(𝑣(𝑡)), thereby modifying the above equations 

�̇�(𝑡) = [
𝑎 0
1 0

] 𝑥(𝑡)  + [
𝑏
0

] 𝑠𝑎𝑡([𝑘𝑃 𝑘𝐼]𝑥(𝑡)  − 𝑘𝑃𝑟(𝑡) + [
𝑏𝑛

0
] 𝑟(𝑡)  + [

0
−1

] 𝑟(𝑡),       

𝑥(0)  =  𝑥0, 

And the following matrices are procured using equation 2.10 

𝑨 =  [
𝑎 0
1 0

] , 𝑩 =  [
𝑏
0

] , 𝑲 =  [𝑘𝑃 𝑘𝐼], 𝑲𝑟 =  −𝑘𝑃, 𝑩𝑛 = [
𝑏𝑛

0
] , 𝑩𝑟  =  [

0
−1

]. 

Herein, the signals for noise and reference were not included i.e., 𝑛(𝑡)  =  𝑟(𝑡)  =  0. 

Thereafter, the above equations are written as 

�̇�(𝑡) = [
𝑎 0
1 0

] 𝑥(𝑡) 𝑠𝑎𝑡 ([𝑘𝑃 𝑘𝐼]𝑥(𝑡)) 

𝑥(0) = 𝑥0 

(2.20) 

 

 

 

 

 

3.  

4.  

5.  

6.  

7.  

8.  
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9.  

10.  

11. CHAPTER 3 

EVENT-TRIGGERED CONTROL IN PRESENCE OF 

NON-LINEARITIES 
 

The derivations from Chapter 2 are used to develop a criterion for stability control 

systems which are event-triggered, wherein the actuator comprises saturation non-

linearity in this chapter.  

  

Figure 3.1 Representation of control system with non-linearities 

Figure 3.1 shows the system which is to be considered. Similar to the previous chapter, 

firstly a suitable depiction of the control system is shown.  

 

3.1 SYSTEM MODEL 
 

For a control system which is event-triggered, a suitable depiction of the control system 

needs to be derived. Again, the dynamics of the controller will be added by usage of an 

extended description of the plant so that the methods derived for analysis of stability in 

Chapter 2 is applicable. 

 

3.1.1 FEEDBACK CONTROLLER 
 

The equation of the plant in consideration is given by, 
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�̇�𝑝(𝑡) = �̆�𝒙𝑃(𝑡) + �̆�𝑢(𝑡) + �̆�𝑛𝑛(𝑡), 𝑥𝑝(0) = 𝑥𝑝0 (3.1) 

𝑦(𝑡) = �̆�𝑥𝑝(𝑡) (3.2) 

 

Herein, the plant is controlled by a generalized feedback controller which is dynamic 

and linear in nature. However, the feedback controller keeps receiving information 

about the output of the plant 𝑦(𝑡) only at times when an event occurs 𝑡𝑘, wherein 𝑘 ∈

{0,1,2, … }. Therefore, the description of controller during the time interval [𝑡𝑘, 𝑡𝑘+1) is 

given by 

�̇�(𝑡) = �̆�𝑐𝒙𝑐(𝑡) + �̆�𝑐𝒚(𝑡𝑘) + �̆�𝑐𝑟𝒓(𝑡), 𝒙𝑐(𝑡𝑘) = 𝒙𝑐𝑘 (3.3) 

𝑣(𝑡)  = �̆�𝑐𝒙𝑐(𝑡) + �̆�𝑐𝒚(𝑡𝑘) + �̆�𝑐𝑟𝒓(𝑡) (3.4) 

 

wherein, the state of the integrator used in the controller is 𝑥𝑐 ∈ ℛ is and the reference 

signal 𝑟 ∈  ℛ. Furthermore, �̆�𝑐 , �̆�𝑐 , �̆�𝑐𝑟 , �̆�𝑐, �̆�𝑐  and �̆�𝑐𝑟 are real matrices having 

appropriate dimensions.  

However, this depiction of the controller is valid only during the time interval [𝑡𝑘, 𝑡𝑘+1). 

Therefore, it is essential to create a model which is valid for all time 𝑡 ≥  0 so that the 

methods presented herein may be utilized for analyzing the stability of the control 

system. Hence, an error is introduced at the output given by 

 

ⅇ(𝑡) = 𝒚(𝑡𝑘) − 𝒚(𝑡) (3.5) 

 

with the usage of this error, the controller may be modelled with the purpose of holding 

for all times 𝑡 ≥  0 as shown in the following equations 

 

�̇�(𝑡) = �̆�𝑐𝒙𝑐(𝑡) + �̆�𝑐𝒚(𝑡) + �̆�𝑐ⅇ(𝑡) + �̆�𝑐𝑟𝒓(𝑡), 𝑥𝑐(0) = 𝑥𝑐0 (3.6) 

𝑣(𝑡)  = �̆�𝑐𝒙𝑐(𝑡) + �̆�𝑐𝒚(𝑡) + �̆�𝑐ⅇ(𝑡) + �̆�𝑐𝑟𝒓(𝑡) (3.7) 

 

Furthermore, an augmented vectorized state matrix 

𝑥 = [
𝒙𝑝

𝒙𝐶
] (3.8) 
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along with equation 3.6 can be used to rewrite the equations 3.1 and 3.2 of the plant as, 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑢(𝑡) + 𝑩𝑛𝑛(𝑡) + 𝑩𝑟𝑟(𝑡) + 𝑩𝑒𝑒(𝑡), 𝑥(0) = 𝑥0 (3.9) 

𝑦(𝑡) = 𝑪𝑥(𝑡) (3.10) 

 

along with 

𝑨 = [
�̆� 0

�̆�c�̆� �̆�
] , 𝑩 = [�̆�

0
] , 𝑩𝑛 = [�̆�𝑛

0
] , 𝑩𝑟 = [

0
�̆�𝑐𝑟

] , 𝑩𝑒 = [
0

𝑩𝑐
] (3.11) 

 

Additionally, the output of the controller given by equation 3.7 may now be written as 

 

𝑣(𝑡) = 𝑲𝒙(𝑡) + 𝑲𝑟𝒓(𝑡) + 𝑲𝑒ⅇ(𝑡) (3.12) 

  

wherein 

𝐾 =  [�̆�𝑐�̆� �̆�𝑐], 𝐾𝑟 = �̆�𝑐𝑟 , 𝐾𝑒 = �̆�𝐶 (3.13) 

 

Therefore, a generalized depiction of the plant system comprising the dynamics of the 

controller is procured. Herein, the control law of equation 3.12 is proportional. Notably, 

for every plant which is linear in nature, the transformation achieved above is possible, 

wherein the controller is dynamic and triggered by an event. 

 

3.1.2 PROPORTIONAL-INTEGRAL CONTROLLER 
 

Equating the matrices of the plant and controller to each other, and instead of using the 

equations 3.1 and 3.2, the following equation 

�̇�𝑐(𝑡) = 𝒚(𝑡) − 𝒓(𝑡),            𝒙𝑐(𝑡𝑘) = 𝒙𝑐𝑘 

along with 

𝒗(𝑡) =  𝑲𝐼𝒙𝑐 +  𝑲𝑃(𝒚(𝑡𝑘) − 𝒓(𝑡)) 
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is used in order to include PI controllers in the general equation for system 

representation, wherein 𝑛𝑝 = 𝑛𝑐 = 𝑠. Additionally, with the introduction of error in the 

equation 3.5 and with the usage of augmented vectorized state matrix as shown in the 

equation 3.8, the generalized depiction of system denoted by the equations (3.9, 3.12) 

are procured once more. Hence, the respective matrix of equations 3.11 and 3.13 

become 

 

𝑨 = [�̆� 0
�̆� 0

] , 𝑩 = [�̆�
0

] , 𝑩𝑛 = [�̆�𝑛

0
] , 𝑩𝑟 = [

0
−𝑰𝑛𝑝

] , 𝑩𝑒 = [
0

𝑰𝑛𝑝

], 

𝑪 =  [�̆� 0], 𝑲𝑟 = [𝑲𝑃𝑪 𝑲𝐼], 𝐾𝑟 = −𝐾𝑃, 𝐾𝑒 = 𝐾𝑃 

(3.14) 

 

 

3.1.3 GENERAL DEPICTION OF EVENT-TRIGGERED 

CONTROL SYSTEM 
 

With the introduction of the saturation non-linearity using the function 𝑢(𝑡)  =

 𝑠𝑎𝑡(𝑣(𝑡)), a generalized version of the constant feedback control system representation 

for plants is developed which is controlled by a controller which is triggered by events 

and is subjected to non-linearities, which is shown by the following equation 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑠𝑎𝑡(𝐾𝑥(𝑡) + 𝐾𝑟𝑟(𝑡) + 𝐾𝑒𝑒(𝑡)) + 𝐵𝑛𝑛(𝑡)

+ 𝐵𝑟𝑟(𝑡) + 𝐵𝑒𝑒(𝑡), 

𝑥(0) = 𝑥0, 

𝑦(𝑡) = 𝐶𝑥(𝑡) 

(3.15) 

 

Subsequently, Figure 3.2 is a block diagram representing the equation 3.15. Hereinafter, 

all system representations and considerations inside this chapter shall be based on the 

general system as depicted by equation 3.15, wherein suitable dimensions of  𝑥 ∈  ℛ, 

𝑛 =  𝑛𝑝+ 𝑛𝑐 , 𝑢 ∈  ℛ, 𝑛 ∈  ℛ, 𝑟 ∈  ℛ, 𝑦 ∈  ℛ and matrices 𝑨, 𝑩, 𝑩𝑛, 𝑩𝑟 , 𝑩𝑒 ,

𝑲, 𝑲𝑟 , 𝑲𝑒 and 𝑪 are considered. In spite of the supplementary terms of error 𝑒(𝑡), the 

general system of the control system is same as the depiction of continuous-time control 

systems subjected to saturation non-linearity as given by equation 2.10. 
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Figure 3.2 Representation of event-triggered control loop 

Additionally, the dead-zone non-linearity is added as shown by the equation 2.11. With 

the addition of the dead-zone non-linearity, the previous depiction is transformed into a 

new equation given by, 

 

�̇�(𝑡) = �̅�𝑥(𝑡) + �̅�𝝓(𝑲𝑥(𝑡) + 𝑲𝒓𝒓(𝑡) + 𝐾𝑒𝑒(𝑡)) + 𝑩𝑛𝑛(𝑡)

+ (𝑩𝑟 + 𝑩𝑲𝒓)𝒓(𝑡) + (𝐵𝑒 + 𝐵𝑘𝑒)𝑒(𝑡), 

𝑥(0) = 𝑥0, 

𝒚(𝑡) = 𝑪𝒙(𝑡) 

(3.16) 

 

along with 

�̅�  =  𝑨 + 𝑩𝑲, �̅�  =  𝑩. 

 

3.2 ANALYSIS FOR STABILITY 
 

A criterion for stability is derived for a control system which is event-triggered in the 

presence of non-linearities. In order to develop such a criterion for stability, the 

quadratic Lyapunov function, represented by equation 2.16 is used. In this section, 

among all of the exogenous signals, only the error 𝑒(𝑡) will be considered. Hence 

𝒅(𝑡)  =  𝒘(𝑡)  =  0. Therefore, the state equations from the equations 3.15 and 3.16 is 

transformed into 
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�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑠𝑎𝑡(𝑲𝑥(𝑡) + 𝑲𝑒𝑒(𝑡)) + 𝑩𝑒𝑒(𝑡), 𝑥(0) = 𝑥0 (3.17) 

�̇�(𝑡) = �̅�𝑥(𝑡) + �̅�𝜙(𝐾𝑥(𝑡) + 𝑲𝑒𝑒(𝑡)) + (𝑩𝑒 + 𝑩𝑲𝑒)𝑒(𝑡), 

𝑥(0) = 𝑥0 
(3.18) 

 

The equations derived in this section may be used to cover additional noise signals or 

reference signals. This will be further explained in subsequent sections. 

In equation 3.17, only those errors are considered which appear either only outside or 

only inside the non-linearity term (either 𝐾𝑒 or 𝐵𝑒 terms are zero). For a control system 

which is event-triggered in presence of non-linearities, both 𝐾𝑒 and  𝐵𝑒 terms are to 

considered. Hence, the criterion of stability has to be modified to accommodate more 

terms. 

It is important that the error signal 𝑒(𝑡) be a bounded signal. Herein, it is realized that 

the error signal 𝑒(𝑡) is bounded via amplitude by using a quadratic norm. hence, the 

error signal 𝑒(𝑡) is a part of the following set 

 

𝒲(ℛ, 𝛿)  =  {𝑒(𝑡) ∈ ℛ𝑃𝑒𝑇Re ≤ 𝛿−1}, 𝑅 = 𝑅𝑇 >  0, 𝛿 > 0 (3.19) 

 

By properly defining the event generator, the limitations of bounds of the error signal 

may be procured. Notably, an event generator makes sure that the error signal 𝑒(𝑡) is a 

part of the set defined by the equation 3.19 for all the times 𝑡 ≥  0. Furthermore, the 

event generator is defined by the following condition of event triggering 

 

𝑒𝑇Re = 𝛿−1 (3.20) 

 

Furthermore, a symmetric positive definite matric is defined wherein 𝑾 ∈  ℛ , a 

positive definite diagonal matrix is defined wherein 𝑺 ∈  ℛ and a matrix is defined 

wherein 𝒁 ∈  ℛ. The symmetric positive definite matrix, the positive definite diagonal 

matrix and the matrix should satisfy the equation in the matrix given by  
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[

𝑊�̅�𝑇 +  �̅�𝑊 + 𝜏1𝑊 �̅�𝑆 − 𝑊𝐾𝑇 − 𝑍𝑇 𝐵𝑒 + 𝐵𝐾𝑒

𝑆�̅� − 𝐾𝑊 − 𝑍 −2𝑆 −𝐾𝑒

(𝐵𝑒 + 𝐵𝐾𝑒)𝑇 −𝐾𝑒
𝑇 −𝜏2𝑅

] <  0 (3.21) 

[
𝑊 𝑍(𝑖)

𝑇

𝑍(𝑖) 𝜂𝑢0(𝑖)
2 ] ≥ 0, 𝑖 ∈  {1, . . . . , 𝑚} (3.22) 

−𝜏1𝛿 + 𝜏2𝜂 <  0 (3.23) 

 

Herein, when the error signal 𝑒(𝑡)  =  0, then the ellipsoid 휀(𝑷, 𝜂), with 𝑷 =  𝑾−1 and 

provides the asynptotic stability for the equations 3.17 and 3.18. Furthermore, for any 

value of the error signal 𝑒(𝑡) ∈  𝒲(𝑹, 𝛿) and 𝑥0𝜖 휀(𝑷, 𝜂), the trajectories of the non-

linear system of equation 3.17 and equation 3.18 act as bounded signals and are bound 

to the ellipsoid 휀(𝑷, 𝜂). 

In order to prove that the ellipsoid 휀(𝑷, 𝜂) is a positive invariant set with respect to the 

error signal 𝑒(𝑡), the condition �̇�(𝑥) < 0 may be extended as per the following equation 

 

�̇�(𝑥) + 𝜏1(𝑥𝑇𝑃𝑥 − 𝜂−1) + 𝜏2(𝛿−1 − 𝑒𝑇Re) < 0 (3.24) 

 

wherein 𝜏1, 𝜏2 > 0. The relation shown in equation 3.24 makes sure that �̇�(𝑥) < 0 is 

true for all values of 𝒙 which satisfies the condition of 𝒙𝑇𝑷𝒙 ≥ 𝜂−1 for any value of the 

error signal 𝑒(𝑡) ∈  𝒲(𝑹, 𝛿). 

The relation in the equation 3.24 is to be verified at the boundary of the ellipsoid of 휀(𝑷,

𝜂) i.e., at 𝑥(𝑡1)  ∈  𝜕휀(𝑷, 𝜂). In case the error signal 𝑒(𝑡) ∈  𝒲(𝑹, 𝛿) is true, it will 

follow  �̇�(𝑥(𝑡1)) < 0. 

In order to analyze the equations further, the inequality present in the equation 3.24 is 

divided into two inequality equations 

 

−𝜏1𝛿 + 𝜏2𝜂 < 0 (3.25) 

�̇�(𝑥) + 𝜏1(𝑥𝑇𝑃𝑥)  −  𝜏2(𝑒𝑇𝑅𝑒) < 0 (3.26) 
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Furthermore, the state equation in equation 4.18 is used and assuming 𝑾 =  𝑷−1, 𝑺 =

 𝑻−1 and 𝒁 = 𝑮𝑾, equation 3.21 is procured. 

 

3.3 MINIMUM TIME BETWEEN EVENTS 
 

In a control system which is event-triggered, it is vital to exclude Zeno behaviour. 

Hence it is essential to calculate a lower limitation of the bounded signal for the time 

elapsed between two consecutive events. Herein, the term Zeno behaviour refers to the 

time elapsed between multiple events which may be triggered in a certain timeframe, 

wherein the timeframe is infinitesimal in quantity. 

Furthermore, the lower limitations of the bounded signal for the time elapsed between 

two events occurring consecutively is termed as minimum inter-event time and is 

denoted by 

𝑇𝑚𝑖𝑛  =  𝑚𝑖𝑛{𝑡𝑘+1  −  𝑡𝑘} 

Herein, the plant given by the equations (2.1, 2.2). Furthermore, the noise signal of the 

plant is not considered. Hence, for 𝑛(𝑡)  =  0, the trajectory of the plant output will be 

given by 

𝑦(𝑡) = �̆�𝑒�̌�𝑡𝒙0 + �̆� ∫ 𝑒�̌�(𝑡−𝜏)�̆�𝑢(𝜏)𝑑𝜏

𝑡

0

 

Additionally, the approximation equation is used 

𝑒𝑇𝑅𝑒 ≤ ‖𝑒‖2‖𝑅‖ 

along with the norm of the error signal 𝑒(𝑡) 

‖𝑒(𝑡)‖ = ‖𝑦(𝑡𝑘) − 𝑦(𝑡)‖ 

Hence, the error signal 𝑒(𝑡) has the upper limits 

‖𝑒(𝑡)‖ = ‖�̆�(𝑒�̌�𝑡 − 𝑰𝑛)𝑥0 + �̆� ∫ 𝑒�̌�(𝑡−𝜏)�̆�𝒖(𝜏)

𝑡

0

‖  ≤  �̆�(𝑡) 

whenever 𝑡𝑘 = 0 and �̆�(𝑡) is given by the equation 
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�̆�(𝑡)  =  max
𝑡

‖�̆�(𝑒�̌�𝑡 − 𝑰𝑛) ‖𝑥max  + ∫ ‖�̆�𝑒�̌�(𝑡−𝜏)�̆�

𝑡

0

‖ 𝑑𝜏𝑢0𝑚𝑎𝑥   

wherein 

𝑥max  =  max
𝑡

 ‖𝑥𝑝‖, 𝑢0𝑚𝑎𝑥  =  𝑚𝑎𝑥
𝑖∈ {1,2,...,𝑚}

𝑢0(𝑖)  

 

Therefore, it is observed that ‖𝑢‖ ≤  𝑢0𝑚𝑎𝑥 and is not dependent on the output of the 

controller 𝑣(𝑡) because of the limitations of the actuator. The events in the control 

system occur when the event condition 𝑒𝑇𝑅𝑒 =  𝛿−1 is reached and satisfied. 

Furthermore, the equation  

𝑇min ≥ �̅� = arg min
𝑡

{𝑒(𝑡) = √
1

𝛿‖𝑹‖
} 

defines the lower limits of the minimum time taken between the events for occurrence. 

Therefore, this shows that the exchange of information using the feedback loop in the 

control system depends on the event generator, which is defined by the terms 𝑹 and 𝛿. 

However, these terms may affect the stability of the control loop as well. 

 

3.4 EXTENSION OF STABILITY ANALYSIS 
 

In this section, the extension of stability criteria obtained in Chapter 2 is extended. 

Herein, the extended version of stability criterion in the present chapter                                                             

includes a different version of the event generator in presence of the noise signal and 

reference signals i.e., n(𝑡)  ≠  0 and 𝑟(𝑡)  ≠  0. 

 

3.4.1 EVENT GENERATOR ALTERNATIVE 
 

It is proposed in Section 3.2m, that the error signal 𝑒(𝑡) is bounded by upper and lower 

limits to create a criterion for stability. Furthermore, the event generator is triggered 

whenever the condition for occurrence of an event is met according to equation 3.20.  
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Hence, an alternative approach to define an event generator must be obtained. Herein, 

the individual output from the plant of the control system 𝑦(𝑖)(𝑖 ∈ {1, . . . , 𝑝}) should be 

bounded by the amplitude, which is useful for practical applications. thereby, 

definitions such as 

𝑒(1)
2 ≤ 𝛿1

−1 , 𝑒(2)
2 ≤ 𝛿2

−1 , . . . , 𝑒(𝑝)
2 ≤ 𝛿𝑝

−1  

defines a cuboid which is p-dimensional and is represented by the figure 3.3, 

 

Figure 3.3 Event conditions based on ellipse and cuboid 

Herein, in the given figure, the elliptical area is introduced by the event condition given 

by the equation (3.20). Furthermore, the event generator is triggered whenever the error 

signal 𝑒(𝑡) reaches the boundary of the cuboid.  

Additionally, Zeno behaviour may be excluded when event conditions are reached using 

the cuboid. In order to calculate the minimum inter-event time, the equations in Section 

3.3 are used along with the revised terms 

 

𝑅 =  [

𝛿1 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ ⋯ 𝛿𝑝

] , 𝛿 = 1. 
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3.4.2 NON-ZERO NOISE SIGNALS 
 

In real time control systems, noises and disturbances affect the plant of the control 

system and cannot be neglected. Henceforth, 𝑛(𝑡) ≠ 0 is considered to find the new 

criterion of stability. Herein, the state equations are given by 

 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑠𝑎𝑡(𝑲𝑥(𝑡) + 𝑲𝑒𝑒(𝑡)) + 𝑩𝑛𝑛(𝑡) + 𝑩𝑒𝑒(𝑡) (3.27) 

 

Or 

�̇�(𝑡) = �̅�𝑥(𝑡) + �̅�𝜙(𝐾𝑥(𝑡) + 𝑲𝑒𝑒(𝑡)) + 𝑩𝑛𝑛(𝑡)

+ (𝑩𝑒 + 𝑩𝑲𝑒)𝑒(𝑡), 
(3.28) 

 

wherein, 𝑥(0) = 𝑥0 for both the equations. Additionally, analogous to the error signal 

𝑒(𝑡), the noise signal 𝑛(𝑡) is bounded by upper and lower limits to derive criterion for 

stability. Furthermore, it is assumed that the noise signal 𝑛(𝑡) is bounded by a quadratic 

norm. Hence, the noise signal 𝑛(𝑡) is part of the set 

𝚅𝑛(𝑄𝑛, 𝜖𝑛)  =  {𝑛 ∈ 𝑅𝑞 , 𝑛𝑇𝑄𝑛𝑛 < 𝜖𝑛
−1}, 𝑄𝑛 = 𝑄𝑛

𝑇  >  0, 𝜖𝑛  >  0 (3.29) 

 

which leads to the inequality 

 

�̇�(𝑥) + 𝜏1(𝑥𝑇𝑃𝑥 − 𝜂−1) + 𝜏2(𝛿−1 − 𝑒𝑇Re) + 𝜏3(𝜖𝑛
−1  − 𝑛𝑇𝑄𝑛𝑛) < 0 

wherein 𝜏1, 𝜏2, 𝜏3 >  0. 

 

Additionally, Zeno behaviour is excluded in case the noise signals 𝑛(𝑡) ≠  0 exist. 

However, the minimum time between occurrence of the events needs to be revised, 

since the output of the plant 𝑦(𝑡) and is affected by the noise signals 𝑛(𝑡). 

Herein, the plant given by the equations (2.1, 2.2), giving the trajectory of the plant 

output will be given by 
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𝑦(𝑡) = �̆�𝑒�̌�𝑡𝒙0 + �̆� ∫ 𝑒�̌�(𝑡−𝜏)(�̆�𝑢(𝜏) + �̆�𝒏𝒅(𝜏))𝑑𝜏
𝑡

0
. 

Furthermore, the norm of the error signal 𝑒(𝑡) has the upper limits 

‖𝑒(𝑡)‖ = ‖�̆�(𝑒�̌�𝑡 − 𝑰𝑛)𝑥0 + �̆� ∫ 𝑒�̌�(𝑡−𝜏)(�̆�𝒖(𝜏) + �̆�𝒏𝒅(𝜏))𝑑𝜏

𝑡

0

‖  ≤  �̆�(𝑡) 

For every value of time 𝑡𝑘 = 0, with �̆�𝑛(𝑡) is given by 

�̆�(𝑡)  =  max
𝑡

‖�̆�(𝑒�̌�𝑡 − 𝑰𝑛) ‖𝑥max  + ∫ ‖�̆�𝑒�̌�(𝑡−𝜏)‖𝑑𝜏(‖�̆�

𝑡

0

‖𝑢0𝑚𝑎𝑥  + ‖�̆�𝒏‖𝑑max  𝑑𝜏 

wherein,  

𝑑max  =  max
n∈𝚅𝑛(𝑄𝑛,𝜖𝑛) 

‖𝑛‖ 

Finally, the equation  

𝑇min ≥ �̅�𝑛 = arg min
𝑡

{𝑒𝑛(𝑡) = √
1

𝛿‖𝑹‖
} 

Hence, the error signals and/or the noise signals which are limited within the upper and 

lower limits may be considered in a straightforward manner as discussed in Section 

3.4.1. Herein, the criterion for stability and the minimum time taken between the 

occurrence of events is changed according to that. 

 

3.4.3 NON-ZERO REFERENCE SIGNALS 
 

In real time control systems, possible reference signals are considered, wherein 𝑟(𝑡) ≠

0. In this section, it is assumed that the noise signals are negligible i.e., 𝑛(𝑡)  =  0. The 

equation is given by 

 

�̇�(𝑡) = 𝑨𝑥(𝑡) + 𝑩𝑠𝑎𝑡(𝑲𝑥(𝑡) + 𝑲𝒓𝑟(𝑡) + 𝑲𝑒𝑒(𝑡)) + 𝑩𝑟𝑟(𝑡)

+ 𝑩𝑒𝑒(𝑡) 
(3.30) 
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�̇�(𝑡) = �̅�𝑥(𝑡) + �̅�𝜙(𝐾𝑥(𝑡) + 𝑲𝒓𝑟(𝑡) + 𝑲𝑒𝑒(𝑡)) + (𝑩𝑟

+ 𝑩𝑲𝑟)𝑟(𝑡) + (𝑩𝑒 + 𝑩𝑲𝑒)𝑒(𝑡) 
(3.31) 

 

wherein, 𝑥(0)  =  𝑥0 in both the equations. The equations for the event generator 

remain the same as is defined in the Section 3.2. 

For derivation of criterion of stability in the presence of reference signal 𝑟(𝑡), the 

reference signal 𝑟(𝑡) needs to be bounded. Hence, is it assumed that the reference signal 

𝑟(𝑡) is limited with the help of a quadratic norm, wherein  𝑟(𝑡) belongs to a set 

𝚅𝑟(𝑄𝑟, 𝜖𝑟)  =  {𝑟 ∈ 𝑅𝑛𝑐 , 𝑟𝑇𝑄𝑟𝑟 < 𝜖𝑟
−1}, 𝑄𝑟 = 𝑄𝑟

𝑇  >  0, 𝜖𝑟  >  0 (3.32) 

 

Therefore, the inequality given by the equation 

�̇�(𝑥) + 𝜏1(𝑥𝑇𝑃𝑥 − 𝜂−1) + 𝜏2(𝛿−1 − 𝑒𝑇Re) + 𝜏3(𝜖𝑟
−1  − 𝑟𝑇𝑄𝑟𝑟) < 0 

wherein 𝜏1, 𝜏2, 𝜏3 >  0 is derived. 

Moreover, the minimum time taken between the occurrence of events 𝑇min is unaffected 

when the reference signal 𝑟(𝑡)  ≠  0 as only the output of the controller gets affected 

by the reference signal 𝑟(𝑡), wherein the output of the controller is bounded by upper 

and lower limits of the non-linearities present in the control system. 

 

3.5 EXEMPLARY MODEL 
 

The exemplary model discussed in Chapter 2 is used to observe the results presented 

here. Therein, a threshold for event is introduced, from where information is passed on 

only from the event generator to the controller to the control system, only when the 

event condition is met |𝑒(𝑡)| = |𝑦(𝑡𝑘) − 𝑦(𝑡)| = �̅�. Furthermore, the event generator 

is synthesized based on 𝑅 = 1 and 𝛿 = �̅�2 

Hence, the equation 2.8 and equation 2.9 of the controller are given by 

�̇�(𝑡) = 𝑦(𝑡𝑘) − 𝑟(𝑡), 𝑥𝐶(𝑘) = 𝑥𝒄𝑘 

𝑣(𝑡) = 𝑘𝐼𝑥𝑐(𝑡) + 𝑘𝑃(𝑦(𝑡𝑘) − 𝑟(𝑡)) 
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wherein the time is given by 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). Additionally, with the introduction of the 

error signal at the output 𝑒(𝑡) = 𝑦(𝑡𝑘) − 𝑦(𝑡) = 𝑥𝒑(𝑡𝑘) − 𝑥𝒑(𝑡), the augmented state 

vector 𝑥 = [𝑥𝑃 𝑥𝑐]𝑇 as well as the function for saturation non-linearity 𝑢(𝑡) =

𝑠𝑎𝑡(𝑣(𝑡)), the state equation presented in equation 3.15 reads 

𝑥(𝑡) = [
𝑎 0
1 0

] 𝑥(𝑡) + [
𝑏
0

] sat([𝑘𝑃𝑘𝐼])𝑥 (𝑡) −  𝑘𝑃𝑟(𝑡) + 𝑘𝑃𝑒(𝑡) + [
𝑏𝑛

0
] 𝑛(𝑡)

+ [
0

−1
] 𝑟(𝑡) + [

0
1

] 𝑒(𝑡), 𝑥(0) = 𝑥0 

which is true for all the times 𝑡 ≥ 0. Herein, 𝑨, 𝑩, 𝑲, 𝑲𝑟 , 𝑩𝑛 and 𝑩𝑟 are the same matrix 

as mentioned in Section 2.6. The error signal 𝑒(𝑡) comprises matrices given by 

𝑘𝑒 = 𝑘𝑃 , 𝐵𝑒 = [
0
1

]. 

The numerical values of the system parameters are same as mentioned in Section 2.6. 
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12. CHAPTER 4 

 

NON-LINEARITY COMPENSATION 
 

 

As shown in exemplary models in the previous chapters, it has been observed that 

practical control systems comprise integrator windup and the effect due to dead zone 

non-linearity cannot be ignored while using a control system which is event-triggered. 

Hence, this chapter deals with methods to overcome the windup and dead zone present 

in the integrator of the controller. 

 

4.1 INTRODUCTION 
 

Integrator windup is a detrimental effect which occurs whenever an integrator is present 

in the actuators and either the plant or controller of the control systems. Furthermore, 

the non-linearities present in the system creates a difference between the output of the 

actuator 𝑢(𝑡) and the output of the controller 𝑣(𝑡). Herein, the various non-linearities 

impeded the response of the feedback in the control system and causes the state of the 

integrator 𝑥𝑐 to windup. Notably, the presence of saturation non-linearity in the state of 

the controller is a major reason for the occurrence of severe windup, leading to volatile 

behaviour of the system. Additionally, windup of integrator in the control system may 

have detrimental impact when event triggering is used in the control system as only a 

limited amount of information is exchanged between the controller and plant of the 

control system. Hence, past information saved in the controller is used by the controller 

in the absence of new information. 

A solution to deal with such problems is to add an anti-windup compensation block to 

the loop of the controller, which helps to minimize or possibly prevent windup of the 

integrator present in the controller. Typically, the anti-windup compensation is mainly 

constructed when difference between the output of the actuator 𝑢(𝑡) and the output of 
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the controller 𝑣(𝑡) is fed back. Herein, in case saturation of the actuator does not occur, 

then the between the output of the actuator 𝑢(𝑡) and the output of the controller 𝑣(𝑡) is 

zero. Otherwise, between the output of the actuator 𝑢(𝑡) and the output of the controller 

𝑣(𝑡) has some arbitrary value and remedial steps are taken to minimize windup in the 

integrator portion of the controller. 

Hereinafter, in the subsequent sections, an anti-windup structure which is static in 

nature is constructed which is used to augment the performance of the control system. 

 

Figure 4.1 Representation of control system comprising an event generator with a static anti-windup 

block 

 

Dead zone non-linearity is memory-less and static which outlines the insensitive nature 

of components when the signal given as input is a small signal. Furthermore, it might be 

observed as a static relation between u(t) and v(t) which has no value or a zero value for 

a specific input range. Thereafter, after that particular range of input values is crossed, 

u(t) and v(t) showcases a linear relationship. 

Furthermore, the dead zone non-linearity limits the performance of a CLCS, both static 

and dynamic, and leads to the controller not being highly precise. Henceforth, in order 

to compensate the dead zone non-linearity, an inverse dead zone module (IDM) of the 

said non-linearity is implemented, as shown in 
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Figure 4.2 shows that an IDM of the non-linearity is connected before the non-linearity 

in order to compensate its effect. Additionally, the compensation completely cancels the 

effects observed by the non-linearity. Therefore, dead-zone non-linearity in the CLCS is 

fully compensated, and the input signal u(t) is found equivalent to e(k), wherein u(t) is 

the signal going into the IDM and e(k) is the signal coming out of the dead zone block 

after getting compensated. Herein, it is considered that both saturation non-linearity and 

dead zone non-linearity comprises a singular non-linearity. Hence, the output from the 

dead zone non-linearity after compensation shall remain 𝑢(𝑡). 

 

Figure 4.2 Representation of control system comprising an event generator with Inverse Dead zone 

module (IDM) 

 

4.2 COMPENSATION MODEL 
 

The system considered in this section is the same as the one considered in Section 3.1 

of the previous chapter. The difference between the output of the actuator and the 

controller corresponds to the dead zone non-linearity which is given by 

𝑢(𝑡) − 𝑣(𝑡) = sin(𝑣(𝑡) − 𝑣(𝑡)) =  𝜙(𝑣(𝑡)). 

Furthermore, a static gain 𝑲𝐴𝑊 is used, and the difference is fed back as input to the 

controller. Therefore, the general equation written for the controller in equation (3.3) is 

written further as 

�̇�𝑐(𝑡) = �̆�𝑐𝒙𝑐(𝑡) + �̆�𝑐𝒚(𝑡) + �̆�𝑐ⅇ(𝑡) + �̆�𝑐𝑟𝑟(𝑡)+ 𝑲𝐴𝑊 𝜙(𝑣(𝑡)),  𝑥𝑐(0) = 𝑥𝑐0 
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Additionally, an adapted state equation is used to depict the controller, and the following 

general depiction is presented 

�̇�(𝑡) =  �̅�𝒙(𝑡) + �̅�𝜙(𝑲𝑥(𝑡) + 𝑲𝑟𝒓(𝑡) + 𝑲𝑒ⅇ(𝑡))  +  𝑩𝑛𝒏(𝑡)

+ (𝑩𝑟 + 𝑩𝑲𝑟)𝒓(𝑡) + (𝑩𝑒 + 𝑩𝑲𝑒)ⅇ(𝑡), 

𝑥(0) = 𝑥0, 

𝑦(𝑡)  =  𝐶 𝑥(𝑡) 

(4.1) 

wherein 

�̅� = 𝑨 + 𝑩𝑲, �̅� = [
�̆�

𝑲𝐴𝑊
]. 

 

The main difference between the depiction of the control system when it is triggered by 

an event in the presence of anti-windup compensation and IDM as shown in equation 

(4.1) and the depiction of the control system without any non-linearity compensation as 

shown in equation 3.16 is the different description of the matrix term �̅� which comprises 

supplementary degrees of freedom for creation of the closed-loop control system 

through the feedback gain term 𝑲𝐴𝑊. These supplementary degrees of freedom may be 

used to enhance the performance of the controller. For instance, the region of stability 

may be increased by selecting a suitable value of 𝑲𝐴𝑊 as shown in the subsequent 

sections. 

After the adaptation of matrix term �̅�, all the methodologies mentioned in Chapter 3 

can be used as it is in order to calculate the stability regions for loops of the controller 

that are an extension of the anti-windup structure which is static in nature. 

Herein, a symmetric positive definite matrix is defined wherein 𝑾 ∈  ℛ , a positive 

definite diagonal matrix is defined wherein 𝑺 ∈  ℛ and a matrix is defined wherein 𝒁 ∈

 ℛ. The symmetric positive definite matrix, the positive definite diagonal matrix, the 

matrix and positive scalar terms 𝜏1, 𝜏2, 𝜂 should satisfy the equation in the matrix given 

by 

[

𝑾�̅�𝑇 + �̅�𝑾 + 𝜏1𝑾 �̅�𝑺 +  𝑾𝑲𝑇  −  𝒁𝑇 𝑩ⅇ + 𝑩𝑲ⅇ

𝑺�̅�𝑇 − 𝑲𝑾 − 𝒁 −2𝑺 −𝑲ⅇ

(𝑩ⅇ + 𝑩𝑲ⅇ)𝑻 −𝑲ⅇ
𝑻 −𝜏2𝑹

]  <  0 (4.2) 

[
𝑾 𝒁𝑇

(𝑖)

𝒁(𝑖) 𝜂𝑢0(𝑖)
2 ]  ≥ 0 , 𝑖 ∈  {1, . . . . , 𝑚} (4.3) 
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𝜏1𝛿 + 𝜏2𝜂 < 0 (4.4) 

 

Then, when 𝑒 =  0 an ellipsoid 휀(𝑷, 𝜂), with 𝑷 =  𝑾−1 and provides the asynptotic 

stability for the system given by the equation (4.1). Furthermore, for any value of the 

error signal 𝑒(𝑡) ∈  𝒲(𝑹, 𝛿) and 𝑥0𝜖 휀(𝑷, 𝜂), the trajectories of the non-linear system 

of equation (4.1) and equation (4.18) act as bounded signals and are bound to the 

ellipsoid 휀(𝑷, 𝜂). 

Beneficially, the anti-windup compensation presented in this chapter does not modify 

the minimum time between the occurrence of events, given by 𝑇𝑚𝑖𝑛. Herein, only the 

controller gets affected by the presence of the non-linearities, wherein the state 𝒙𝑐(𝑡) is 

not used for the generation of any event and the output of the controller 𝑣(𝑡) is bounded 

within the upper and lower limits of the saturation non-linearity. 

 

4.3 EXEMPLARY MODEL 
 

The exemplary model from chapter 3 is modified by the presence anti-windup structure 

in which is static in nature. The difference 𝑘𝐴𝑊(𝑢(𝑡) − 𝑣(𝑡)) is communicated as 

feedback to the controller. Furthermore, with the introduction of dead zone 𝜙(𝑣(𝑡)) =

𝑠𝑎𝑡(𝑣(𝑡)) − 𝑣(𝑡), the state equation is rewritten as, 

 

�̇�(𝑡) = [
𝑎 + 𝑏𝑘𝑃 𝑏𝑘𝐼

1 0
] 𝑥(𝑡) + [

𝑏
𝑘𝐴𝑊

] 𝛷([𝑘𝑃𝑘𝐼])𝑥(𝑡) − 𝑘𝑝𝑟(𝑡) + [
𝑏𝑛

0
] 𝑛(𝑡)  

+  [
−𝑏𝑘𝑃

−1
] 𝑟(𝑡)  +  [

𝑏𝑘𝑃

1
] 𝑒(𝑡), 𝑥(0)  =  𝑥0 

 

wherein the same matrices 𝑨, 𝑩, 𝑲, 𝑲𝑟 , 𝑩𝑛, 𝑩𝑟 , 𝑲𝑒 and 𝑩𝑒 as mentioned in Section 4.5 

and 

 

�̅� = [
𝑎 + 𝑏𝑘𝑃 𝑏𝑘𝐼

1 0
] , �̅� =  [

𝑏
𝑘𝐴𝑊

] , 𝑩𝑟 + 𝑩𝑲𝑟 =  [
−𝑏𝑘𝑃

−1
] , 𝑩𝑒 + 𝑩𝑲𝑒  =  [

𝑏𝑘𝑃

1
]. 



35 
 

 

In order to calculate the estimated for the regions of stability, the optimization problem 

is given by 

min{-trace(W)} 

which is used again and solved with the help of YALMIP toolbox for 𝜏1 = 𝜏2 = 0.1.  
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14.  

15.  

16. CHAPTER 5 

 

QUANTIZATION 
 

This chapter emphasizes on quantization of the signal from the plant of the control 

system and using the quantized signal as feedback into the controller. Herein, the 

information given by 𝑦(𝑡𝑘) experiences a certain delay in procuring information 

causing the controller of the control system to depend on prior information for a certain 

amount of time 

 

5.1 NEED FOR QUANTIZATION 
 

Typically, a signal such as for example, 𝑥(𝑡) are usually continuous-time signals. The 

value of time 𝑡 consists of real values over some definite interval such that the value of 

the signal 𝑥(𝑡) is allowed to have real values according to the time 𝑡. Usually, systems 

comprising such signals, other wise known as analog signals are used for feasibility, but 

there are specific situations where digital signals may be used. Herein, the digital signals 

comprise discrete signals which has a finite domain and a range. Furthermore, in digital 

signals, digitization of domain of the discrete signals is performed, which is termed as 

sampling and processing of the digitized range is termed as quantization. 

Most of the devices make use of both analog and digital signals. Moreover, digital 

signals provide robustness to disturbances, high efficiency and are very versatile in 

nature. However, at times the analog signals are suitable and might be even necessary. 

Herein, it is preferred that actuators or sensors in a given control system is interfaced 

with analog signals for convenience of communication. Hence, deriving digital signals 

from analog signals are important for processing of information in many control 

systems. 
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Let intervals between samples of an arbitrary signal be given by 𝑇, wherein the samples 

are equally spaced and are picked off from the analog signal at suitable times. Therefore, 

the sampled or the discrete-time signal 𝑥[𝑛] has the following relation with the 

continuous time signal 

𝑥[𝑛]  =  𝑥(𝑛𝑇) 

However, a practical control system comprises two shortcomings. Firstly, the sensor 

which obtains the samples is not able to collect a value at a single time. In this case, 

some integration occurs over a specific time interval, which means that the sampling 

actually comprises an average value of the analog signal in a definite interval. Secondly, 

a practical control system comprises noise. Hence, even with the integration of all the 

values, the exact value of the analog signal will not be obtained at a time. 

The consequence of quantization are extremely important to select the thresholds of 

event triggering properly. It is possible to design error signals based on the variables of 

quantization which provide with asymptotic stability as compared to non-quantized 

event-triggered control system. Herein, in a control system which is triggered by the 

occurrence of events, communication between the controller and the plant of the control 

system may comprise time delays and loss of information. Furthermore, quantization is 

required for all measurements requiring a sensor and control communication that are 

sent over a wireless digital network. 

The measured state variables are quantized to represent them by a finite number of bits 

in order to use it for operations by the controller and to communicate them over wireless 

digital network. Additionally, there are some important inferences of using quantization 

in control system triggered by events. Firstly, it is typical to set the plant error signal as 

zero whenever an occurrence of event is updated. However, with the use of quantization 

at the output end of the control system, this step no longer holds true as the quantized 

value of the state of the plant is used for updating the state of the controller and the 

value is generally not the same as the original plant state. Secondly, events are typically 

triggered when compared to the norm of the state of the plant to the norm of the error 

signal. However, the control system stability is dependent on the computations of the 

measurements which are non-quantized in nature and are supposed to be identified with 

certainty. 
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Herein, it is aimed to find conditions for event-triggering based on quantization 

variables that are available and also ensure asymptotic stability in existence of 

quantization errors. Notably, a static quantizer is used commonly as it is easier to 

implement in any control system. Hence, a logarithmic quantizer is used as described 

in the following section. Furthermore, Figure 5.1 shows the control system with a 

quantizer at the output of the event-triggered control system 

 

Figure 5.1 Representation of event-triggered control system with quantizer at the output 

 

5.2 QUANTIZATION MODEL 
 

As discussed, a logarithmic quantizer is used to procure quantized variables of the 

control system after triggering of an event in the control system, wherein the logarithmic 

quantizer is defined as a function 𝑞: ℛ𝑛 → ℛ𝑛 comprising the property 

|𝑥 − 𝑞(𝑥)| ≤ 𝛿|𝑥|, 𝑥 ∈ 𝑅, 𝛿 > 0 (5.1) 

 

At instants when the event is triggered and gets updated at instants of time given by 𝑡𝑖, 

wherein 𝑖 ∈ 𝑍+, the state of the controller is updated using the measured quantized 

value given by 

𝑞(𝑥(𝑡𝑖)) → �̂�(𝑡𝑖) (5.2) 

 

Furthermore, the quantization error is defined as 

𝑒𝑞(𝑡) = �̂�(𝑡) − 𝑞(𝑥(𝑡)) (5.3) 
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wherein,  𝑞(𝑥(𝑡)) denotes the quantized value of 𝑥(𝑡) for any value of time, specifically 

𝑡 ≥ 0 using the quantizer as given by equation 5.1. Notably, the variables 𝑞(𝑥(𝑡)) and 

𝑒𝑞(𝑡) are used for computation of condition for triggering of an event in the control 

system. Additionally, 𝑒𝑞(𝑡𝑖) = 0 i.e., the quantization error is set to zero at the instance 

of updating the triggering of an event according to equation 5.2. 
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26.  

27. CHAPTER 6 

 

PRACTICAL IMPLEMENTATION 
 

In this chapter, a set of initial conditions 휀(𝑷, 𝜂) are used to test whether they provide 

a result showcasing the stable behaviour of the control system. In order to carry this out, 

𝑷 𝑎𝑛𝑑  𝜂 are given significant values for the verification of the conditions of stability. 

Herein, two optimization problems are used in order to avoid using random values for 

the initial conditions and preventing inefficiency 

• Maximizing the size of the set of initial conditions 휀(𝑷, 𝜂) which provides with 

a control system comprising a stable behaviour for a given event generator in 

addition with exogenous signal; and 

• Maximizing the size of the error signal 𝒲(𝑹, 𝛿) along with (or not) exogenous 

signals 𝚅𝑛(𝑄𝑛, 𝜖𝑛)/𝚅𝑟(𝑄𝑟 , 𝜖𝑟) providing with a stable behaviour of the control 

system. 

Section 6.1 discusses algorithms related to both the optimization problems 

described above. 

 

6.1 ALGORITHMS 
 

The decision variables denoted by 𝑾, 𝑺, 𝒁 and 𝜂 are included in the conditions for 

determining stability when there is a fixed time constant 𝜏𝑖. Additionally, parameters 

describing the error signal (𝑹, 𝛿), the noise signals (𝑄𝑛, 𝜖𝑛) and the reference signals 

(𝑄𝑟, 𝜖𝑟) are considered to be supplementary variables. 

Herein, exogenous signals 𝚅𝑛(𝑄𝑛, 𝜖𝑛), 𝚅𝑟(𝑄𝑟, 𝜖𝑟) are fixed in both of the algorithms as 

this thesis focuses more on the event-triggering aspect of the control system. 

As discussed above, the first algorithm may be used to derive the maximum stability 

region 휀(𝑷, 𝜂) for a given event generator wherein (𝑹, 𝛿) are fixed. 
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Algorithm 1: Steps to maximize of initial conditions 휀(𝑷, 𝜂) 

1. 𝑹 𝑎𝑛𝑑 𝛿 are already specified, a suitable objective function is chosen 𝑓(휀(𝑷,

𝜂)). 

2. 𝜏1, 𝜏2, 𝜏3 and 𝜏4 is fixed. 

3. The optimization problem is solved for 𝑾, 𝑺, 𝒁 and 𝜂 as shown 

𝑚𝑖𝑛{𝑓(휀(𝑷, 𝜂))} 

 

Thereafter, Algorithm 2 may be used to derive the maximum set of error signal 

𝒲(𝑹, 𝛿). Furthermore, the values of 𝑹 𝑎𝑛𝑑 𝛿 may be used to find conditions of an 

event which provide with a stable behaviour of the control system 

Algorithm 2: Steps to maximize error signal 𝒲(𝑹, 𝛿) 

1. An objective function is chosen 𝑓(𝒲(𝑹, 𝛿)). 

2. 𝜏1, 𝜏2, 𝜏3 and 𝜏4 is fixed. 

3. The optimization problem is solved for 𝑾, 𝑺, 𝒁 and 𝜂 as shown 

𝑚𝑖𝑛{𝑓(휀(𝑷, 𝜂))} 

 

6.2 FUNCTIONS FOR OPTIMIZATION 
 

A suitable criterion for deciding the size has to be found for maximization of the 

respective set with the use of algorithms are described previously. There are many 

possibilities which renders into various objective functions 𝑓(휀(𝑷, 𝜂)) out of which 

two examples are: 

• 𝑓(휀(𝑷, 𝜂))  =  𝑛 log(𝜂) + log(det(𝑷)) which refers to the maximization of 

volume. 

• 𝑓(휀(𝑷, 𝜂))  =  𝛽0𝜂 + 𝛽1𝑡𝑟𝑎𝑐𝑒(𝑷) comprising the weight parameters 𝛽0 and 𝛽1 

which constructs homogenous ellipsoids which are homogenous in all 

directions. 

Still, the transformation 𝑷 = 𝑾−1 leads to the non-linearity of the objective 

functions. Consequently, the objective functions are transformed: 

• 𝑓(휀(𝑾−𝟏, 𝜂))  =  𝑛 𝑙𝑜𝑔(𝜂) + 𝑙𝑜𝑔(𝑑𝑒𝑡(𝑾))  

• 𝑓(휀(𝑾−𝟏, 𝜂))  = 𝛽0𝜂 + 𝛽1𝑡𝑟𝑎𝑐𝑒(𝑾) 
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6.3 IMPLEMENTATION 
 

The implementation of the algorithms is performed in MATLAB/Simulink software, 

wherein the software comprises tools which conveniently help to simulate the behaviour 

of the loop in the control system. However, the tools offered by the software are based 

on LMI conditions are inconvenient for solving of optimization problems. Herein, a 

toolbox like YALMIP or CVX may be used to get rid of the issues and allow an 

implementation which is simple in nature and executes both the algorithms as described 

previously in this chapter. 

Herein, the YALMIP toolbox is used for the derivation of stability regions of the control 

system. 

6.4 SIMULATION 
 

In this section, the results obtained for various objective functions are discussed for 

different time constants 𝜏𝑖 of the control system 

ALGORITHM 1: The results for the first algorithm is shown in Figure 6.1 for various 

objective functions. Furthermore, the error signal belongs to the set 𝑒(𝑡) ∈ 𝒲(ℛ, 𝛿), 

the noise signals and the reference signal is not considered, 𝑛(𝑡)  =  𝑟(𝑡)  =  0 and the 

values of the time constants are given by 𝜏1 = 𝜏2 = 0.1. Additionally, it is observed 

that the functions including the following terms −𝑡𝑟𝑎𝑐𝑒(𝑾) or −𝑙𝑜𝑔(𝑑𝑒𝑡(𝑾)) provide 

almost synonymous results. Moreover, the objective function comprising 𝜂 provides 

conventional result. It is also observed that 𝛽0𝜂 + 𝛽1𝑡𝑟𝑎𝑐𝑒(𝑾) provides with the same 

result as the objective function −𝑡𝑟𝑎𝑐𝑒(𝑾) when the weight parameters 𝛽0 and 𝛽1 are 

made equivalent to 1 i.e., 𝛽0 = 𝛽1 = 1. Though, the result becomes conventional with 

the increment of 𝛽0. However, those objective functions comprising the term 𝑛 log(𝜂) 

are not solvable with the use of YALMIP toolbox in MATLAB/Simulink. 
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Figure 6.1 Results of Algorithm 1 using various objective functions 

 

Figure 6.2 Results of Algorithm 1 for different 𝜏1 (with no anti-windup compensation) 
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Figure 6.3 Results of Algorithm 1 for different 𝜏1 (with anti-windup compensation) 

 

Figure 6.4 Result of Algorithm for different 𝜏2 
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All of the ellipsoids as seen in Figures 6.2, 6.3 and 6.4 were derived by considering 

−𝑡𝑟𝑎𝑐𝑒(𝑾) as the objective function. Herein, Figure 6.2 and 6.3 portrays the 

significance of 𝜏1 in both with and/or without anti-windup compensation. As observed, 

the first algorithm is feasible for 𝜏1 ∈  [0.04, 1.4]. Furthermore, as seen, the size of the 

stability region keeps varying according to the different values of 𝜏1. For instance, in 

figure 6.3, the maximum is observed to be around 𝜏1 ≈ 0.04. 

However, in Figure 6.4 it is observed that the stability region is the same for a varied 

range of 𝜏2, wherein the values of 𝜏1 vary in the range 𝜏1 ∈  [0.04, 1.4],. Hence, it is 

feasible for the first algorithm to be unaffected. This happens because, a visible change 

in 𝜏2 steers towards a different scaling between 𝑷 𝑎𝑛𝑑 𝜂. Herein, both the terms are 

related to each other based on the inequality, 𝑥𝑇𝑷𝑥 ≤ 𝜂−1, thereby successfully 

describing the ellipsoid 휀(𝑷, 𝜂). 

 

ALGORITHM 1: The second algorithm is used for the maximization of 𝒲(ℛ, 𝛿) so 

as to recover ℛ 𝑎𝑛𝑑 𝛿 which are used for the definition of event generator. As discussed 

in Section 3.5, an event generator which is scalar in nature is used. Herein, 𝑹 = 1 and 

𝛿 is denoted as the target function which is to be used. Furthermore, the relation 

|𝑒(𝑡)| ≤ �̅� is held with respect to �̅� = √𝛿−1. 

Figures 6.5 and 6.6 shows the significance of 𝜏1 on the size of the stability region for 

both with anti-windup compensation and without anti-windup compensation. Herein, it 

is observed that the second algorithm is feasible when the value of 𝜏1 lies in the range, 

𝜏1 ∈  [10−5, 1.4]. Table 6.1 shows the values for resulting �̅�. As shown in the table, it 

is observed that there is a maximum for �̅� at around 𝜏1 ≈  0.5. 

 

𝜏1 0.005 0.01 0.05 0.1 0.5 0.9 1.4 

�̅� 0.038 0.053 0.112 0.149 0.215 0.201 0.120 

TABLE 6.1 

 

Additionally, in Figure 6.7, it is observed that the results are unaffected for a varied 

range of 𝜏2 when 𝜏1 =  0.1. Furthermore, the threshold of the events i.e., �̅� is unaffected 

with the change in 𝜏2 as observed in Table 6.2 
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𝜏1 0.005 0.005 0.005 0.1 0.1 0.1 0.9 0.9 0.9 

𝜏2 0.001 0.1 1000 0.001 0.1 1000 0.001 0.1 1000 

�̅� 0.038 0.038 0.038 0.149 0.149 0.149 0.112 0.112 0.112 

TABLE 6.2 

 

 

Figure 6.5 Result of Algorithm 2 for different 𝜏1 (no anti-windup compensation) 
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Figure 6.6 Result of Algorithm 2 for different 𝜏1 (with anti-windup compensation) 

 

Figure 6.7 Result of Algorithm 2 for different values of 𝜏2 (with anti-windup compensation) 
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DESIGN OF THE CONTROLLER: The stability region of the ellipsoids is dependent 

on the design of the controller as well as shown in Figure 6.8, wherein the values of 𝑘𝑃 

and 𝑘𝐼 are varied. As observed from the figure, the size of the stability region increases 

as the ratio of  
𝑘𝑃

𝑘𝐼
 increases. This is because the influence of 𝑘𝐼 is lower because of the 

potential windup of the integrator. Hence, suitable designs of the controller may also be 

used to make the stability region size bigger. 

 

Figure 6.8 Regions of stability for different controller parameters 

Furthermore, the following block diagram is constructed in MATLAB/Simulink which 

impersonates a real-time Tank reservoir system which is triggered by events. Herein, 

the controller, the actuator and the sensor are assumed to be connected wirelessly. The 

system further comprises an event generator, from where new information is carried 

forward to the controller only when event condition is met, wherein the event condition 

is given by 

|𝜕𝑥𝑃(𝑡𝑘) − 𝜕𝑥𝑃(𝑡)| = �̅� 

Additionally, the controller sends the output 𝑣(𝑡) to the actuator after meeting the 

appropriate event conditions. 
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Figure 6.9 Simulation of Tank reservoir system 

 

Herein, the reservoir fills the tank whenever the event generator reaches the event 

triggering condition e̅. Herein, the system becomes a closed loop CLCS and starts 

providing continuous feedback to the reservoir to resume filling up of the tank.  

The reservoir is given a step signal of 50 units and the tank is given a step output of 10 

units. Furthermore,  a saturation block is connected to denote the saturation non-

linearity in the actuator, wherein the maximum and minimum saturation values are ±5 

units. Subsequently, an Inverse Dead zone block is connected prior to the dead zone 

non-linearity block in order to compensate the non-linearity in the plant. Additionally, 

the dead zone non-linearity block has the units ±0.5 units. The simulation is performed 

with a quantizer connected at the output of the event-generator, wherein the quantizer 

has definite steps of quantization, for instance 0.005. Additionally, the threshold for 

event triggering is chosen to be 10 units. When the difference of controller input and 

input to the event generator is 10, then the event is triggered. Error! Reference source 

not found..9 shows the simulation model for the event-triggered control system in 

MATLAB-Simulink. 

 

6.5 RESULTS 
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Figure 6.10 Event-triggered Controller Output vs Plant Output with saturation non-linearity and 

compensation 

 

Figure 6.11 Event-Triggered CLCS with non-linearities (saturation and dead zone non-linearity) and 

their compensation 
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Figure 6.12 Event-triggered CLCS with quantizer output 

 

In Figure 6.10 and Figure 6.11 the simulated results are observed for saturation and 

dead zone non-linearities along with its compensation, when the CLCS is subjected to 

event triggering. Herein, the reservoir produces the output of the controller and the tank 

produces output from the plant. From Figure 6.10, Figure 6.11 and Figure 6.12, it may 

be seen that the event is triggered whenever the event threshold reaches a difference of 

10 units between the controller input and the output of the event generator. Meanwhile 

quantizing the output value obtained from the event generator helps in further reduction 

of the communication overload. Subsequently, event triggering at only those moments 

where the threshold is met helps in overcoming the feedback losses faced in a wired 

control system comprising a feedback loop. 
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CONCLUSION 
 

This thesis was based on the influence of non-linearities of a practical system on 

stability of a closed loop system which is triggered by events. It comprises calculation 

of stability regions for the control loop which is based on triggering of events. 

Furthermore, in order to overcome the possibility of degradation of performance of the 

control system due the windup of the integrator, the conditions of stability are extended 

to add a structure for anti-windup structure and inverse dead zone non-linearity. 

Subsequently, improvement in the control behavior of the control system is observed 

and the size of the stability region may be respectively increased. 

Furthermore, it is observed that exchange of information over feedback comprises upper 

limit and lower limit for all methodologies considered with the derivation of lower 

limits on the minimum time taken between two simultaneous events. 

The size of the determined stability regions depends on the conditions of the event as 

well as the parameters of the controller, exogenous signals, quantization and 

optimization functions. The results are illustrated with the help of simulations. 
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