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Preface

The general theory of relativity has far-reaching applications to cosmology, astro-

physics, and particle physics. Consequently, scientists from diverse disciplines have

started working on the applications of general relativity in their respective subjects.

As a result, the general interest in general relativity has increased and is gradually in-

creasing more and more. General relativity has changed our perception of the laws of

the Universe remarkably and has developed a new branch of science called Cosmol-

ogy. Steven Weinberg’s famous book The First Three Minutesand Stephen Hawking’s

book A Brief History of Timehas caused an avalanche of interest in this subject.

The modern cosmology has entered into the era of observational precision which is

changing the frontiers of our knowledge about the Universe very rapidly. The twenti-

eth century has not only witnessed the most exciting discovery of expanding Universe

but it ended with the mysterious discovery through the observations of type Ia super-

nova in 1998 which evidence that the expansion of the Universe is accelerating. The

recent discovery of gravitational waves by the LIGO probe and Black holes are some

of the examples of it. At present, we have data coming from the probes like Type

Ia supernova, Wilkinson Microwave Anisotropy Probe, Baryon Acoustic Oscillations,

Sloan Digital Sky Survey, Planck collaboration, etc.

Nowadays, the quest to understand this late-time cosmic acceleration is one of the

major challenges in cosmology. The standard cosmological model based on Ein-

stein’s general relativity is the most successful model but it does not account for the

observed accelerated expansion of the Universe if the fluid content is taken only the

standard matter and radiation. In fact, it needs to be supplemented by some exotic

matter or modification in general relativity to accommodate the accelerated regime.

Since the discovery of the accelerated expansion of the Universe, several theo-

ries have been proposed to explain the accelerated phenomena. One of them is

the assumption of the existence of a mysterious component with negative pressure,

so-called dark energy(DE). The most natural and successful candidate of dark en-
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ergy is the cosmological constant which was introduced by Einstein to obtain a static

Universe. Many other dark energy candidates like scalar fields, chaplygin gas, holo-

graphic dark energy, Ricci dark energy, etc. have been proposed to explain the accel-

erated expansion of the Universe.

In the past few decades, a number of modified theories of gravity such as Gauss-

Bonnet f (G) theory, f (R) theory, f (R,G) theory, f (T) theory, f (R,T) gravity, etc. have

also been proposed to explain the current epoch of cosmic acceleration. The study of

dark energy models is of great interest in such modified gravity theories.

However, besides these two distinct approaches, in recent years, other alternatives

to describe the current accelerating Universe have attracted special attention. Just

like the early time cosmic acceleration associated with inflation, negative pressure

can be seen as a possible driving mechanism for the late time accelerated expan-

sion of the Universe as well. One of the earliest alternatives that could provide a

mechanism producing such an accelerating Universe is through a negative pressure

produced by viscous and/or matter creation. Some authors have explored that matter

creation might be described equivalently in terms of a bulk viscous pressure in the

cosmological fluid. Despite the fact that bulk viscous and matter creation cosmology

apparently look similar, they have some fundamental differences. Bulk viscous cos-

mology is associated with a generalization of the hydrodynamics of ideal fluids for the

case of non-ideal ones, with constitutive equations describing the viscous pressure

built as additional correction terms to the equilibrium energy-momentum stress ten-

sor. The matter creation process is classically described by a back reaction term in

the Einstein field equations whose negative pressure may provide a self-sustained

mechanism of cosmic acceleration.

Our aim, in this thesis, is to explore the effects of bulk viscosity and matter cre-

ation in holographic dark energy within the framework of a spatially homogeneous

and isotropic flat Friedmann-Lemaître-Robertson-Walker metric. Chapter 1 is intro-

ductory in nature. Chapters 2 – 6 are based on the research work published in the

form of research papers in reputed refereed journals. The abstract at the beginning of

a chapter gives a brief outline of the work carried out in that chapter. I acknowledge

the authors whose articles/research work and books have substantially helped me to

write the thesis in the present form.

Date : (AJAY KUMAR)

Place : DTU, Delhi, India.
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Chapter 1

Introduction

The introductory Chapter contains the fundamental concept of the General theory of

relativity, cosmological principle, Einstein’s field equations, cosmological parameters,

modified theory of gravitation, dark energy, and accelerating Universe. The thermo-

dynamics of the dissipative phenomenon (bulk viscosity and matter creation) are also

studied in this chapter. Some latest observational data, like Type Ia supernova, ob-

servational Hubble data, baryon acoustic oscillations, cosmic microwave background

data are discussed. This chapter also includes a brief discussion on some impor-

tant cosmological and geometrical parameters. Finally, the motivation and plan of the

research work are discussed.

1
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General relativity is the theory of space-time and gravitation introduced by Albert

Einstein in 1915 and published in 1916 [1]. It is one of the most beautiful and rev-

olutionary conceptions of modern science. It describes that gravity is the geometry

of four-dimensional curved space-time. Gravity governs the structure and evolution

of the Universe on the largest scales of space-time. Cosmology is a branch of sci-

ence which deals with the study of the origin of the Universe, its evolution, large scale

structures and their dynamics, and its eventual fate. It is defined in the framework of

General relativity. Therefore, cosmology is one of the most important applications of

General relativity. In recent years, our understanding of the Universe has increased

dramatically-both theoretically and observationally. The great observational progress

in cosmology has revealed the existence of new mysterious components of the Uni-

verse: dark matter and dark energy. In the past twenty years, a standard model of

cosmology, known as Lambda-CDM modelhas become mature, based on which we

are able to describe the evolution of the Universe. However, certain aspects of this

model are puzzling enough that may require new concepts that would go beyond this

standard model. I will highlight some of the important topics in the following sections

which explain the past and present progress in cosmology.

1.1 General Theory of Relativity

In the early twentieth century, Einstein developed two theories of relativity, namely

the Special theory of relativity and the General theory of relativity. The special theory

of relativity (STR) is a relativistic theory of space-time. It explains that the laws of

physics are invariant for all non-accelerating observers. It only takes into account

inertial systems in free space, where gravitational effects can be ignored. The speed

of light is always constant regardless of the motion of the light source or the motion of

the observer. To extend the principle of relativity for non-inertial systems Einstein [1]

presented an extended theory, known as the General theory of relativity (GTR). GTR

tells us that massive objects cause a distortion in space-time which causes gravity.

The key idea of GTR is that gravity is not an ordinary force, but rather a property of

space-time geometry. GTR is based on two basic principles: The principle of general

covariance and the principle of equivalence.

The principle of general covariancestates that the laws of physics remain covariant

independent of the frame of reference. Einstein found tensor calculus an excellent
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tool for the presentation of his general theory of relativity 1. According to this principle,

we must express all the physical laws of nature by means of equations in the covariant

form, which are independent of the coordinate systems. Thus, the laws of nature can

be expressed in the form of tensor equations because a tensor equation has exactly

the same form in all coordinate systems.

The tensorial form of the line element is

ds2 = gµνdxµdxν , (µ, ν = 0,1,2,3), (1.1.1)

where gµν is a metric tensor of rank 2 obeying the transformation law

ḡi j =
∂xµ

∂ x̄i

∂xν

∂ x̄ j gµν , (1.1.2)

where the quantities carrying bar correspond to the new coordinate system. The met-

ric tensor contains all the information about the gravitational field and is a symmetric

tensor satisfying gµν = gνµ . The contravariant tensor gµν corresponding to gµν is de-

fined by gµνgνλ = δ λ
µ , where δ λ

µ is the Kronecker delta with δ λ
µ = 1 when λ = µ and

zero otherwise.

The line element (1.1.1)represents the curved geometry. Thus, according to GTR,

space is curved in a gravitational field. Therefore, the geometry of space in a grav-

itational field is Riemannian which was originally developed by Riemann. In four-

dimensional Riemannian space, the points are labeled by a general coordinate system

xµ = (x0,x1,x2,x3), where x0 = ct (c represents the speed of light) is a time coordinate

and the other three are spatial coordinates. We will employ the ‘space-like convention’

for the metric, such that when it is diagonalized, it has the signature (−,+,+,+). The

metrics with this signature (one minus and the remainder plus) are called Lorentzian.

The principle of equivalenceexplains about ‘equivalence of inertial mass and grav-

itational mass’. Einstein observed that the force due to gravity (gravitational force)

experienced by a person standing on the massive objects (like earth) is equivalent to

the pseudo-force experienced by the observer in the non-inertial frame of reference.

According to local gravity experiments in the solar system, it is known that the equiva-

lence principle between inertial and gravitational masses holds in high precision. The

principle of equivalence is a very powerful tool in the general theory of relativity.

1The principal aim of tensor calculus is to investigate the relations which remain valid when we change from
one coordinate system to any other.
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1.2 Cosmological Principle

The cosmological principle states that the Universe is assumed to be homogeneous

(no change during linear motion) and isotropic (non change during angular motion)

at any instant of cosmic time t, when it is viewed on a large enough scale. It can be

justified on the scales of larger than 100 MPc. Thus, following the Cosmological Prin-

ciple, the Universe looks the same from all positions in space. Let us explain these

two terms in brief.

Homogeneity means that the same observational evidence is available to observers

at different locations in the Universe, i.e., there is no special place in the Universe.

When it is viewed on the larger scales, homogeneity implies that the average density

of matter in all locations in the Universe is around the same and the Universe is fairly

smooth on large scales.

Isotropy means that the same observational evidence is available by looking in any

direction in the Universe. That is, isotropy means there are no special directions to

the Universe. An isotropic Universe also means that the Universe has no ‘center’. A

particular orientation (north and south poles) is formed by the Planet, but the Universe

from every location appears the same. These two concepts sound identical, but they

have very different characteristics.

Thus, according to cosmological principle, the laws of physics are universal. The

same physical laws and models that apply here on the Earth also work in distant

stars, galaxies, and all parts of the Universe. It is to be noted that it is assumed that

physical constants (gravitational constant, the mass of the electron, speed of light)

also do not change from place to place within the Universe, and over time. If we ex-

tend cosmological principle through time we have the ‘perfect cosmological principle’,

i.e., the Universe is isotropic and homogeneous and has been for all time.

1.3 Cosmological Models

Let us begin with the space-time geometry of a homogeneous and isotropic cosmo-

logical model. Friedmann-Lemaître-Robertson-Walker (FLRW) metric, which is now

widely known as Friedmann-Robertson-Walker (FRW) line element, is a metric for a

spatially homogeneous and isotropic Universe. For a local observer, one can approx-
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imate general relativity with the special relativity, described by Minkowski space-time

with metric ηµν = diag(−1,+1,+1,+1). The FLRW metric gµν can be approximated

by gµν ≈ ηµν only locally. The isotropy of the Universe implies that the off-diagonal

terms, gµν vanishes with µ 6= ν, since there are no privileged directions. From the

homogeneity of the Universe, we deduce that gµν (in cartesian coordinates) must be

independent of the spatial coordinates since no position is preferable.

The most general spatially homogeneous and isotropic Friedmann-Lemaître-Robertson-

Walker metric from (1.1.1)in spherical coordinates (r,θ ,φ) can be written as [2]

ds2 =−c2dt2+a2(t)

[

dr2

1−kr2 + r2(dθ2+sin2θdφ2)

]

, (1.3.1)

where k denotes the curvature of the space-time, a(t) is the cosmic scale factor of

the Universe which describes the expansion or contraction of the Universe. Different

values of the curvature k define different geometry of space-time, i.e., a flat Universe

for k= 0, a closed Universe for k= +1 and an open Universe for k= −1 [3, 4]. These

different geometries also define the possible ultimate fate of the Universe. The closed

geometry represents a Universe which collapses at the end and, open and flat ge-

ometries represent an ever expanding Universe. For a flat Universe, the FLRW line

element can be written in the form 2

ds2 =−dt2+a2(t)
[

dr2+ r2(dθ2+sin2θdφ2)
]

. (1.3.2)

1.4 Einstein’s Field Equations

In GTR, the geometry of the space-time is included in the metric tensor gµν , while the

matter content of the Universe is expressed by the energy-momentum tensor Tµν . The

Einstein’s field equation relates the energy-momentum tensor, Tµν with the geometry

of the Universe, Gµν through the equation

Gµν = 8πG Tµν , (1.4.1)

where G is Newton’s gravitational constant and Gµν is the Einstein tensor which is

given by

Gµν = Rµν −
1
2

gµνR, (1.4.2)

2We consider the speed of lightc= 1 throughout the thesis.
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where R and Rµν are the Ricci scalar and Ricci tensor, and are defined as follows:

R= gµνRµν , (1.4.3)

Rµν =
∂Γλ

µν

∂xλ −
∂Γλ

µλ

∂xν +Γλ
µν Γδ

λδ −Γδ
µλ Γλ

νδ , (1.4.4)

where

Γλ
µν =

1
2

gλτ(gτµ,ν +gτν,µ −gµν,τ) (1.4.5)

is the Christoffel symbol. With the help of (1.4.2), Eq. (1.4.1)can be expressed as

Rµν −
1
2

gµνR= 8πG Tµν . (1.4.6)

Equation (1.4.6) is the field equation of general relativity which is known as Einstein’s

equation. Thus, the general relativity says that space-time is a manifold M on which

there is defined a Lorentz metric gµν . The curvature of gµν is related to the matter

distribution in space-time by Einstein’s equation (1.4.6).

By contracting the Bianchi identity, one can deduce that the Einstein tensor Gµν has

zero divergence, i.e., Gµν
;ν =

(

Rµν − 1
2gµνR

)

;ν = 0. Therefore, we see that Einstein’s

equations (1.4.6) are compatible with Tµν
;ν = 0, which is the law of conservation of

mass-energy and momentum. This conservation law is a physical requirement.

The Einstein field equation can also be obtained by varying the Einstein-Hilbert (EH)

action with respect to gµν . The EH action for gravity with the inclusion of matter fields

is given by [2]

S=
∫

d4x
√

g

(

1
2κ

R+Lm

)

, (1.4.7)

where Lm is the matter Lagrangian density of any matter fields and κ = 8πG.

At large scales and with high precision, matter inside a homogeneous and isotropic

Universe can be described as a perfect fluid. It is clear that, if a fluid that is isotropic

in some frame leads to a metric that is isotropic in some frame, the two frames will co-

incide; that is, the fluid will be at rest in comoving coordinates. Its energy-momentum

tensor Tµν contains all the information about the energy content of the Universe and

is solely determined by its energy density ρ(t) and isotropic pressure p(t).

In general relativity, continuous matter distributions and fields are described by a

energy-momentum tensor. The energy-momentum tensor for perfect fluid is defined

as

Tµν = (ρ + p)uµ uν + p gµν , (1.4.8)
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where p is the pressure of the perfect fluid, ρ is the energy density and uµ = dxµ

dt is

the four-velocity normalized as uµuµ = −1. Equation (1.4.8)satisfies the equation of

motion

Tµν
;ν = 0, (1.4.9)

which yield

ρ̇ +3
ȧ
a
(ρ + p) = 0, (1.4.10)

where an overdot denotes derivative with respect to cosmic time t.

1.5 Friedmann Equations and its Solutions

To describe the dynamical evolution of the Universe, let us substitute the space-time

metric (1.3.1)and energy-momentum tensor for perfect fluid (1.4.8)into the Einstein’s

equation (1.4.6). We will get 10 equations corresponding to the 10 independent com-

ponents of a symmetric two-index tensor. However, on account of the space-time sym-

metries , there will be only two independent equations. Thus, the general evolution

equations for homogeneous and isotropic cosmology, which are known as Friedmann

equations [5], can be obtained as

ȧ2

a2 =
8πG

3
ρ − k

a2 , (1.5.1)

2ä
a
+

ȧ2

a2 =−8πGp− k
a2 , (1.5.2)

where an overdot denotes differentiation with respect to cosmic time t. These two

equations connect the evolution of the scale factor a(t) to the content of the Universe

and its curvature. Equation (1.5.1) serves as a definition of the Hubble parameter

H = ȧ
a, which quantifies the relative expansion rate of the Universe.

Using the first Friedmann equation (1.5.1), the acceleration equation (1.5.2)can be

rewritten as
ä
a
=−4πG

3
(ρ +3p), (1.5.3)

which is sometimes called the Raychaudhuri equation. Depending on the sign of ä in

(1.5.3), we can discriminate between an accelerating and a decelerating Universe and

obtain a condition on the matter variables. The Universe decelerates for ρ +3p > 0,

while accelerates for ρ +3p< 0.

We can choose an equation of state(EoS), a relationship between ρ and p to solve
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the field equations. Often the perfect fluid relevant to cosmology obeys the simple

equation of state

p= ωρ , (1.5.4)

where ω is the EoS parameter which is the ratio of pressure to density. For a non-

relativistic (dust-like) perfect fluid, ω = 0 while for a relativistic (radiation-like) fluid,

ω = 1/3. With the help of (1.5.4), the condition from (1.5.3)can be transferred to the

equation of state parameter implying ω > −1/3 for deceleration and ω < −1/3 for

acceleration.

Using (1.5.4), the conservation equation (1.4.10)becomes

ρ̇
ρ
=−3(1+ω)

ȧ
a
. (1.5.5)

If ω is constant, this can be integrated to obtain

ρ ∝ a−3(1+ω). (1.5.6)

Depending on the form of energy content of the Universe, i.e., the value of ω, the

exact evolution of energy density can be determined. For a dust-like fluid, which is

usually referred to as simply matter fluid, we have p = 0 and thus the evolution of

energy density in this case is

ρ ∝ a−3, (1.5.7)

while for a radiation-like fluid p= ρ/3 and thus the energy density evolves as

ρ ∝ a−4. (1.5.8)

It is to be noted that the energy densities for both components depend on the scale

factor. Both components are diluted as the Universe expands giving an a−3 depen-

dence. The extra factor a−1 for the radiation comes from the red shifting of the photons

as they travel through expanding space.

Friedmann equation (1.5.1)can be solved in conjunction with (1.5.6)to find the evolu-

tion of the scale factor as a function of the cosmic time which determines the dynamics

of the Universe at background level. For a flat FLRW Universe

a∝ t
2

3(1+ω) , (1.5.9)
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which reduces to the following equations depending on the values of ω

a∝ t
2
3 , for matter (1.5.10)

a∝ t
1
2 , for radiation (1.5.11)

From (1.5.10)and (1.5.11), one can deduce that a matter-dominated Universe expands

faster than a radiation-dominated Universe, but both of them expands with a deceler-

ated rate as ä< 0 at any time.

1.6 Expanding Universe

Einstein in 1917 proposed a cosmic model based on his general relativistic field equa-

tion which is expressed as

Rµν −
1
2

gµνR+Λgµν = 8πG Tµν , (1.6.1)

where Λ is the cosmological constant.

Einstein added the cosmological constant in his original field equation in order to get

the static Universe. The young mathematician Alexander Friedmann [5] voraciously

studied the theory by assuming the structure of the Universe as a whole. He adopted

Einstein’s assumptions that the Universe was homogeneous and isotropic and that

it had a closed spherical geometry. Then he took a radical step: he did not require

that the Universe is static. With the requirement of a static Universe lifted, Friedmann

found dynamical solutions to Einstein’s equations which described the non-static Uni-

verse.

The Belgian priest Georges Lemaitre rediscovered the expanding Universe models

in 1927, but his work also passed unnoticed [6]. All this changed in the late 1920s

when Edwin Hubble [7] observed that the Universe is indeed expanding which was

arguably the most unexpected discovery in the history of science. Hubble related the

recession velocity of galaxies to their distance from us through Hubble’s law which

can be given in the following form:

v= H0D, (1.6.2)
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where v is the galaxy’s recession velocity, which is usually expressed in Km/s, and D

is the galaxy’s proper distance from the observer, which is measured in megaparsecs

(Mpc). The proportionality factor H0 is the Hubble factor today also called the Hubble

constant. Assuming the homogeneous and isotropic Universe (see Sect. 1.2), Hub-

ble’s law implies that galaxies are receding not only from us but also from each other;

all galaxies are moving apart as the Universe itself expands. Just as the theoretical

cosmology started after Einstein’s model, so did Hubble’s findings launch observa-

tional cosmology which deals with the observational studies of the Universe at the

large-scale.

If the Universe is expanding and all galaxies are moving apart, we can imagine re-

versing time and watching them come together at some moment in the past: the Big

Bang. The time when the condition a = 0 happened is called the Big Bang and the

theory describing the Universe as generating from that moment is known as the Big

Bang theory. According to this theory, the Universe began around 13.8 billion years

ago from an infinite energy density, i.e., in the past, the distances were really small and

all the matter and energy content of the Universe were located into a small amount

of space and consequently, the mean energy (or temperature) was much higher than

the mean energy observed today. The Universe came into existence after the Big

Bang and eventually started to cool as it expanded from a state of higher temperature

and density [2]. The Big Bang theory is indeed in astonishing agreement with obser-

vations and it is considered a perfectly good model of our Universe for times ranging

from few fractions of a second to billions of years (i.e. today) after the Big Bang. The

ΛCDM is the current “standard model” of Big Bang cosmology that can account for

various measurements and observational data.

1.7 Inflationary Universe

The standard Big Bang model has been successful in presenting a theoretical expla-

nation for several important experimental observations. It describes cosmic evolution

starting from a fraction of a second after the Big Bang, accurately predicts the primor-

dial nuclear abundances and the properties of the microwave background radiation,

and explains how galaxies and clusters were formed over billions of years. But we

should note that this model is far from a complete model of the Universe. It is not able

to account for the state of the Universe at much earlier times when it was significantly
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hotter and must assume certain very finely-tuned initial conditions that just clamor for

an explanation. The cosmological inflation theory is not a replacement for the Big

Bang theory, but rather an extra add-on idea that is supposed to apply during some

very early stage of the Universe’s expansion. Before describing the idea of inflation,

let us cover some of the historical motivations which led to its introduction. We start

the discussion by listing some of the unsatisfactory aspects of the Big Bang theory.

• The Horizon Problem: If one regards the fundamental assumption for the

FLRW Universe, then there is a problem with the hot Big Bang model. This

fundamental assumption known as the cosmological principle which states that

the Universe is very homogeneous and isotropic on large scales, which does

indeed seem to agree with the measurements. If one considers two different

parts of the Universe that are outside of each other’s horizons. They are so

far apart that no light signal sent from one at beginning of the Universe could

have reached the other. Yet they are observed to have similar properties. This

suggests their being in thermal contact sometime in the past. Since the radi-

ation from two distant opposite parts could not possibly be causally connected

because information can not travel faster than the speed of light. Nor could the

regions they traveled from even have been in communication. The problem of

horizons originates from the Cosmic Microwave Background radiation (CMB),

the afterglow from the Big Bang, emitted at z≈ 1100. When pointing our instru-

ment to measure the CMB, we obtain the same black body temperature in all

directions. Such a problem is known as the horizon problem.

• The Flatness Problem: The Friedmann equation (1.5.1) in terms of density

parameter is given by

Ω−1=
k
a2 , (1.7.1)

where Ω denotes the density parameter which is defined as Ω = ρ
ρc

. Here, ρc =

3H2/8πG is the critical energy density required for a flat, i.e., k = 0 for a given

value of H. It has been observed that the current density of the Universe is very

close to the critical density. From the current observational data of CMB and

Baryon Acoustic Oscillations (BAO), we know that the Universe is very nearly

spatially flat (|Ω−1|. 0.005) [8], however, in the framework of the standard Big

Bang model, the comoving Hubble radius, (aH)−1, is increasing as the Universe

evolves. As such, Ω = 1 is an unstable critical point, which means that for |Ω−1|
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to have its present observed value Ω must have been extremely close to unity

at much earlier times. This value can only be obtained through extremely fine-

tuning and leaves one questioning why nature would have chosen parameters

so precisely. This is the so-called Flatness Problem.

• The Monopole Problem: The Grand Unified Theory (GUT) of particle physics

also predicts an abundance of ‘relics’, typically leftover from the radiation epoch,

e.g. magnetic monopoles, domain walls, etc. If such relics existed in the early

Universe, then their energy densities would have decreased as a matter compo-

nent, thus they would have been diluted by cosmic expansion much more slowly

than radiation. As such, these massive relics can easily come to dominate the

dynamics of the Universe and would cause it to rapidly close in on itself. This is

not what is observed, and none of these relics have currently been experimen-

tally observed. However, the Big Bang model has no way of disposing of them

without also disturbing conventional matter in the Universe. This is the so-called

Monopole (or Relic) Problem.

To deal with these problems in the Big Bang model an additional theory that provides a

more complete description is needed. To date, the prevailing theory offering solutions

to these problems is that of inflation, initially proposed in 1981 by Alan H. Guth [9]

in his study of the cosmological implications of the grand unified theories (GUTs) of

particle interactions. He suggests that one could solve these problems by introducing

an epoch of accelerated, or inflationary, expansion in the early Universe. The original

motivation for this theory was to explain the non-existence of magnetic monopoles,

and this theory was further developed by Linde [10, 11] and Albrecht and Steinhardt

[12,13]. The idea of inflation is to introduce a phase of decreasing co-moving Hubble

radius, (aH)−1, in the very early Universe,

d
dt
[(aH)−1]< 0. (1.7.2)

Note that this implies that the Universe was subject to an accelerated expansion dur-

ing this period, i.e. ä > 0. With the help of equations (1.7.1)and (1.7.2), we observe

that such an accelerated expansion dynamically drives Ω to unity, and thus the Uni-

verse to spatial flatness. Accordingly, so long as the inflationary period is sufficiently

long, Ω will be forced arbitrarily close to one, such that, despite its value being driven

away from one for the remaining post-inflationary evolution of the Universe, its value
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will remain extremely near to unity up to the present. Thus, inflation provides an ele-

gant solution to the flatness problem.

This is clear from the fact that equation (1.7.2) implies that the comoving Hubble

radius decreases with time, and comoving scales become bigger than the horizon

during inflation. As consequence inflation solves the problem of horizons: The light

cones of different points in the CMB intersected before the ‘Big Bang’. In the context

of inflation, the Big Bang is not understood as the beginning of the Universe, but as

the point of transition between an inflationary Universe, and the Universe of increas-

ing comoving Hubble radius. Finally, Inflation also solves the problem of relics such

as magnetic monopoles since their density can be diluted away during inflation and

quickly become negligible.

Scientists are still not sure about the cause of the inflationary phase, however, it

is believed that there is some kind of a negative “vacuum energy density” which is

triggered by the separation of strong nuclear force from the other elementary forces

at that time. A natural candidate for the driving force of inflation was supposed to be

the scalar field, which decayed into radiation and matter to stop this scenario. During

inflation, the kinetic energy of the scalar field was dominant which allowed de Sitter-

like expansion of the Universe. Inflation happened for a very short time in the very

early Universe during which the Universe experienced a very rapid expansion. Due to

the very rapid expansion of the Universe, the small size Universe was increased to a

much larger size. Thus, the Universe that was able to reach thermal equilibrium prior

to inflation has been expanded to an enormous scale, perhaps much larger than our

observable Universe.

1.8 Accelerating Universe

In the late 1990s, two groups (one led by Adam Riess [14] and the other by Saul

Perlmutter [15]) reported plausible evidence based on supernova explosions that the

expansion of the Universe is not slowing down, as predicted by the simplest models,

but accelerating. “This is not what we expected,” said Riess, who won the Nobel Prize

for physics in 2011 (along with Brian Schmidt and Saul Perlmutter) for his finding.

Thus, the second3 cosmic accelerated phase which is known as the late-time cosmic

acceleration, is assumed to have started after the decelerated phase. This transition

3the first cosmic accelerated phase is the inflationary phase which has been discussed in section 1.7



14

from decelerating phase to the accelerating phase has been confirmed by a number of

observations such as Wilkinson Microwave Anisotropy Probe (WMAP) [16,17], Sloan

Digital Sky Survey (SDSS) [18], Planck collaboration [19, 20], Cosmic Microwave

Background (CMB) [21], the Baryon Acoustic Oscillations (BAO) [22], etc. The only

thing that could be accelerating the expansion (i.e. more than countering the braking

force of the mutual gravitational pull of the galaxies) is space itself, suggesting that

perhaps it is not empty after all but contains some mysterious, repulsive force called

“dark energy” (DE), currently unknown to science.

Since the discovery of the accelerating Universe, people are trying to explain this

observational fact in two different ways - either by introducing some unknown kind of

matter in the framework of Einstein gravity or by modifying the Einstein gravity itself.

The first kind of models is called the DE models whereas the second type of models is

called modified theories of gravity models. Let us study the evolution of the Universe

based on these two concepts.

1.8.1 Dark Energy Models

As discussed in Section 1.8, the discovery of Riess et al. in 1998 [14] and Perlmutter

et al. in 1999 [15] changed the concept about the Universe. They observed that the

distant supernovae at z∼ 0.5 and ∆m∼ 0.25magnitude are fainter than ones expected

for a decelerating Universe in the absence of cosmological constant. This observation

showed that the Universe is currently expanding with accelerating rate. The present

epoch of this evolution is dominated by exotic energy known as ‘dark energy’ (DE),

which has negative pressure and occupies approximately 68.3% of the total energy

density of the Universe and play an important role in the formation and evolution of

the Universe. The rest matter of the Universe is assumed to be dark matter (DM) and

the baryonic matter4, which occupies about 26.8% and 4.9% of total matter density,

respectively.

These observations inspire theorists to understand the mechanism of the accel-

erated expansion of the Universe. Therefore, the theorists have proposed various

cosmological models of dark energy to explain this bizarre phenomenon. Among the

many possible proposals, possibly a cosmological constant (Λ) is the simplest an-

swer to explain the late-time cosmic acceleration [23] because of its weird repulsive

gravity. The cosmological constant provides a pretty good explanation for the expan-

4In cosmology, ‘baryonic matter’ is used to describe protons, neutrons, and electrons.
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sion of the Universe being accelerated. However, this also brings some theoretical

difficulties, which are how to explain its origin, right magnitude, and why it comes to

dominate just now [24–26]. Therefore, it is natural to look for alternative models which

can explain the accelerated expansion of the Universe.

In order to alleviate these problems and explain the accelerated expansion of the

Universe, cosmologists have tried to explore various dynamical dark energy models

like a quintessence, quiessence, K-essence, tachyon, phantom, Chaplygin gas model,

holographic dark energy (HDE), holographic Ricci dark energy (HRDE), etc. A nega-

tive pressure term is always taken into account. Such as, the cosmological constant

model with equation of state ωΛ = pΛ/ρΛ = −1, where pΛ and ρΛ are pressure and

density of the dark energy, respectively, the quiessence whose equation of state is a

constant between −1 and −1/3, and the quintessence which is described in terms of

a scalar field φ . From equation (1.5.3), we understand that for accelerating Universe

we require ä > 0. Thus, in order to explain the current acceleration of the Universe,

we require exotic energy dubbed dark energy with the equation of state satisfying

ω <−1/3.

Nowadays, there are many candidates for dark energy. Considering the purpose

of the works to be presented in this thesis, we would discuss only those candidates,

which are having significant relevance to the thesis. A plethora of literature is avail-

able where various candidates for dark energy have been discussed [27–29]. In a

review paper, Copeland et al. [28] discussed various features of dark energy in an ex-

tensive manner. The standard ΛCDM model and dynamical DE models will be briefly

discussed in the following sections.

The Standard ΛCDM Model

The simplest explanation of the cosmic acceleration of our Universe is given by the

Lambda Cold Dark Matter (ΛCDM) model. The ΛCDM model is a mathematical

parametrization of Big Bang cosmology which is described by general relativity and

FLRW equations. This models assumes that the Universe is photons, neutrinos, or-

dinary matter(baryon) and cold (non-relativistic) dark matter and a cosmological con-

stant, which is responsible for the observed acceleration.

The history of the cosmological constant started when Einstein added a cosmolog-

ical constant to the equations of motion for the metric in general relativity (i.e. to the

Einstein equations) in order to construct a cosmological model for a static Universe.

After the discovery of the expansion of the Universe, the cosmological constant has
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been almost forgotten due to the fact that its contribution is not necessary to achieve

a dynamical expansion in FLRW cosmology. However, after the 1998 observation that

the Universe is accelerating, the cosmological constant has been revived as a model

of dark energy. A cosmological constant, because of its effective negative pressure

has a repulsive effect and could counterbalance ordinary matter and Einstein’s solu-

tion.

One can observe from Einstein’s modified equations (1.6.1) that the cosmological

constant Λ was included in the geometric part of the equations (i.e., in the left-hand

side) to make the cosmological model as static. Now, the cosmological constant is

currently associated with a vacuum energy or dark energy in empty space that is

used to explain the contemporary accelerating expansion of the Universe. Therefore,

it may be considered on right side of field equation (1.6.1), i.e. towards matter part.

As a result, the updated equations (1.6.1)can be written as

Rµν −
1
2

gµνR= 8πG (Tµν +TΛ
µν). (1.8.1)

where TΛ
µν denotes the cosmological constant’s energy–momentum tensor, and the

energy is said to be the energy of space (vacuum). Throughout the evolution, it re-

mains unchanged. The energy–momentum tensor of vacuum energy can be defined

as

T(vac)
µν =−ρΛgµν = TΛ

µν . (1.8.2)

The relation between the vacuum energy density and the cosmological constant is

ρΛ = Λ
8πG. The EoS of the cosmological constant is given by pΛ =−ρΛ, where ω =−1

is the EoS parameter.

The ΛCDM model, while successful at explaining the observational measurements

and providing accurate predictions from large-scale cosmological simulations, faces

theoretical challenges like fine-tuning and cosmic coincidence problems. For the first

time, Steinhardt [30] and Zlatev et al. [31] discussed the cosmological coincidence

problem. The coincidence problem refers to the coincidence of densities of DM and

DE, even though their evolutions are different, and the fine-tuning problem refers to

the discrepancy between the theoretical and the observational value of the vacuum

energy or cosmological constant. The observations predict a very tiny value in com-

parison to the theoretical value leading to the famous and very worrying a discrepancy

of 122 orders of magnitude.
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Dynamical Dark Energy Models

Taking the fine-tuning and coincidence problems into consideration, in recent times

many attempts have been made to tackle these issues, particularly, the dynamical

DE models [28]. ‘Quintessence’ is one of the simplest and most popular candidates

for dynamical DE, proposed immediately after the 1998 discovery of cosmic accel-

eration [31–39]. Unlike the constant ω = −1 equation of state for the cosmological

constant, in the case of dynamical dark energy (or quintessence) the equation of

state dynamically changes with time [40, 41]. The concept of quintessence basically

uses a scalar particle field [42, 43]. The quintessence model provides a solution to

the fine-tuning problem and by means of tracker solutions, it provides a solution to

the coincidence problem also. Quintessence is inspired by the most basic models of

inflation, where a slow-rolling scalar field drives the rapid expansion of the early Uni-

verse [44]. Scalar fields are proposed as a candidate for the CDM, and are thought to

be responsible for the creation of cosmological structures [45].

Due to the remarkable qualitative similarity between the present DE and the pri-

mordial DE that derives inflation in the early Universe, inflationary models based

on scalar fields have also been used to characterise late-time cosmic acceleration

[28,31,35–37,39,46,47]. As a result, in recent years, scalar field cosmological models

have become more common. The evidence from different observational data [48–52]

also predict a possibility of the existence of some strange kind of fields in the Universe

such as the phantom field as proposed by Caldwell [53] with negative kinetic en-

ergy [54,55]. Some other candidates of dynamical DE are also proposed in literature

such as the quintom (a combination of quintessence and phantom scalar fields) [56],

tachyonic field [57–59], k-essence [59–61], Chaplygin gas [62,63], etc.

Using such forms of DE candidates as a responsible agent to explain the evolution

of the Universe is a common issue nowadays [28,39,57,59,63–65]. Apart from these

DE models, there are some other possible candidates using significant properties of

quantum mechanics like HDE, HRDE, agegraphic dark energy, etc. Let us discuss

briefly the theory of HDE and HRDE.

Holographic Dark Energy

As discussed above, a typical candidate of DE is the cosmological constant in GTR.

For the first time in history, theorists are forced to justify not only why the cosmological

constant is small, but also why it is comparable to the critical density [66]. An intrigu-
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ing attempt has been made in recent years to align the vacuum energy density with

the holographic principle [67–69] of quantum gravity. The holographic dark energy

(HDE) model is based on the holographic principle in which the ultra-violet (UV) cutoff

of DE is converted to an infrared (IR) cutoff. It’s worth noting that the UV cutoff is

related to vacuum energy, while the IR cutoff is related to the Universe’s large-scale

structure. The holographic principle says that the information contained in a volume

of space can be represented as a hologram, which corresponds to a theory locating

on the boundary of that space. In other words, the number of degrees of freedom of a

gravity-dominated system must vary along with the area of the surface bounding the

system. In cosmology, one can obtain the upper bound of the entropy contained in the

Universe. Susskind [68] further discussed this principle in the context of string theory.

The HDE is an interesting and simple idea of explaining the observed accelerated

expansion of the Universe.

Cohen et al. [70] stated that for a system with size L, it is required that the total

energy in a region of size L should not exceed the mass of a black hole of the same

size for the quantum zero-point energy density associated with the ultraviolet cutoff,

thus L3ρΛ ≤ LM2
p, where ρΛ is the vacuum energy density caused by UV cutoff, Mp is

the reduced Planck mass given by the relation Mp ∼ 1√
8πG

and L is the infrared cutoff.

In his paper, Li [66] taken the largest possible L to saturate this inequality, we get the

energy density related to HDE given by

ρd = 3b2M2
pL−2, (1.8.3)

where b is a numerical constant and coefficient 3 is for mathematical convenience.

A nice review and the physical basis of the holographic principle is available in a

paper by Canfora and Vilasi [71], in which the authors explained how the holographic

principle could have a prominent role in understanding why the observed value of the

cosmological constant is so smaller than the one computed in quantum field theory.

Several authors have worked to develop the idea of holographic dark energy [72–79]

and the origin of holographic dark energy models have been reviewed by Myung and

Seo [80].

In a paper, Saridakis [81] presented a generalized version of holographic dark en-

ergy in brane cosmology. The holographic dark energy model is an attempt to probe

the nature of dark energy within the framework of a fundamental theory originating

from some considerations of the features of quantum gravity theory [82]. Myung [83]
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proved that holographic dark energy bound to come from the Bekenstein-Hawking

bound for a weakly gravitating system. Setare [84] investigated holographic model of

interacting dark energy to obtain the equation of state for the holographic dark energy

density in a non-flat (closed) Universe. In another paper, Myung [85] investigated the

difference between holographic dark energy, Chaplygin gas, and tachyon model with

a constant potential.

The large scale of the Universe can be taken as, for example, Hubble horizon, event

horizon, particle horizon, or Ricci scalar. The Hubble horizon is a natural candidate

for IR cut–off which is also free from causality but in his paper, Hsu [86] discussed that

the HDE model with Hubble horizon or particle horizon can not derive the accelerated

expansion of the Universe. However, the HDE model with event horizon can derive

the accelerated expansion of the Universe [87]. The drawback with event horizon is

that it is a global concept of space-time and the existence of the Universe depends

on the future evolution of the Universe. HDE model proposed by Li [66] resolves the

fine-tuning problem but it leads to a wrong equation of state (EoS) of dark energy. The

HDE with event horizon is also not compatible with the age of some old high redshift

objects [88]. Later in their paper, Pavón and Zimdahl [89] observed that the identifi-

cation of L with the Hubble horizon, L = H−1 may give a suitable EoS for DE for an

interacting HDE model. It was also shown that there must be a constant ratio of the

energy densities of HDE and DM irrespective of the type of interaction.

In the study of the generalized model of HDE, Nojiri and Odintsov [90] found that

a unified model of the Universe may be achieved and they also claimed that in a

generalized HDE model the coincidence problem may be resolved. Thus, HDE mod-

els may be able to solve the cosmic coincidence problem, giving them an advantage

over other DE models. Different versions of the cut-off, corresponding to various gen-

eralized HDE, have been considered in Refs. [91–100]. The HDE model is able to

explain the current accelerated expansion and is in agreement with the observational

data [101–105]. The HDE is of interest from a phenomenological point of view, since

it can be connected to the observations.

Holographic Ricci Dark Energy

It is important to note that in the literature, various scenarios of HDE have been stud-

ied via considering different system’s infrared (IR) cutoff. Inspired by the holographic

dark energy models, Gao et al. [96] proposed a HDE model in which the future event

horizon is replaced by the inverse of the Ricci scalar curvature so that the dark energy



20

ρΛ ∝ R, where R=−6(2H2+ Ḣ + k
a2 ) and named it as “holographic Ricci dark energy

(HRDE) model”. The energy density for HRDE is given by

ρd = 3α
(

Ḣ +2H2+
k
a2

)

. (1.8.4)

In flat FLRW Universe, k= 0, we have

ρd = 3α
(

Ḣ +2H2) , (1.8.5)

where α is a dimensionless parameter replacing b2 of the Li model [66], H is the

Hubble parameter, a is the scale factor and k is the curvature. An overdot denotes

derivative with respect to cosmic time t. It has been found that this model does not

only avoid the causality problem but also naturally solves the coincidence problem

[106]. HRDE model fits with the observational data and is suitable to describe the

current acceleration of the Universe [107–110]. The HRDE model has been studied

extensively to explain the accelerated expansion of the Universe in refs. [111–125].

Although, the DE models are able to explain the recent cosmic acceleration very well

and also are in agreement with the observational data but the origin and evolution of

DE are still mysterious and unknown. They also suffer from many other problems like

the fine-tuning problem, coincidence problem, etc. These problems with DE models

compel us to think beyond the standard model and other DE models. The modified

gravity models are also suitable candidates to explain such cosmic acceleration. In

the next subsection, let us discuss the modified theories of gravity in detail.

1.8.2 Modified Theories of Gravity

An alternative approach is to modify the laws of gravity itself to explain the cosmic

acceleration. In the past few years, the interest in modified theories of gravity has

been grown up. These theories imply a modification to Einstein’s gravity to study

the behavior of the Universe. A large number of models within modified theories can

explain the DE phenomena. The first modification of Einstein’s GTR was done by Weyl

[126] by proposing the scale-invariant theory, and then Eddington [127] presented his

theory of connections. There are examples of higher dimensional theories such as

Kaluza–Klein theory [128, 129] and string theory [130, 131]. The theories like the

scalar-tensor theories [132, 133] are an example of extra fields included in the field

equations. In the last two decades, considerable developments have been made in
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string theory, which has been considered a potential candidate of quantum gravity.

One of the well established and extensively studied theories of gravity are the scalar-

tensor theories, which often used to model Newton’s constant G as a variable.

f (R) theories of gravity, which can be mapped into scalar-tensor theories, have

been extensively studied, where the EH action is generalized by using a more general

function of the Ricci scalar R. To modify GTR, Utiyama and De Witt [134] used higher-

order terms of scalar curvature R. In 1980, an inflationary model using the higher-

order corrections to GTR was presented by Starobinsky [135], which has been a

remarkably successful model of inflation. Buchdahl [136] was first to present a more

general model of modified gravity by considering the general function of Ricci scalar

R in the EH action (1.4.7). This f (R) theory coincide with observations [137–139].

In the recent years, various modified gravity theories have been proposed [139–

148]. Some of modified theories of gravity are: f (R) theories [138,140,144,149,150],

Gauss-Bonnet f (G) theory [151, 152], Brans–Dicke theory [153, 154], Brane world

gravity [155, 156], Horava–Lifshitz gravity [157, 158], f (T) theory [159, 160], f (R,T)

theory [161, 162], etc. However, none of these theories is complete which can solve

the mysteries of the Universe [163]. The search for a complete theory of gravity is

still going on. In this thesis, we have done some work in the framework of modified

f (R,T) gravity theory to discuss the evolution of the Universe. So, let us discuss the

background and field equations of the modified f (R,T) gravity theory.

The Modified f (R,T) Gravity Theory

In 2007, f (R) gravity theory is generalized by Bertolami et al. [164] by assuming the

maximal coupling between Ricci scalar R and matter Lagrangian Lm. In 2008, Harko

[165] extended this model to the case of the arbitrary couplings in both geometry and

matter. Further in 2010, Harko and Lobo [166] proposed a theory, called f (R,Lm)

where the gravitational Lagrangian as an arbitrary function of the Ricci scalar R and

of the matter Lagrangian Lm.

In 2011, Harko et al. [161] proposed a new modified gravity theory, named f (R,T)

theory as an extension to the f (R) theories, where R is the Ricci scalar and T is

the trace of the energy-momentum tensor. This modified theory presents a maximal

coupling between geometry and matter. The reason for choosing T as an argument

for the Lagrangian is from exotic imperfect fluids or quantum effects. The EH action
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for f (R,T) gravity in the unit 8πG= 1 is modified as [161]

S=
∫

d4x
√−g

[

1
2

f (R,T)+Lm

]

, (1.8.6)

where f (R,T) is an arbitrary function of Ricci scalar Rand trace of energy–momentum

tensor T, g is the determinant of the metric tensor gµν and Lm is the matter La-

grangian. The energy–momentum tensor of matter is defined as [167]

Tµν =− 2√−g
δ (

√−gLm)

δgµν , (1.8.7)

and its trace by T = gµνTµν . We assume that the matter Lagrangian density depends

only on the metric tensor components gµν so that

Tµν = gµνLm−2
∂Lm

∂gµν . (1.8.8)

By varying action (1.8.6)with respect to the metric, one obtains the field equations of

f (R,T) theory as

fR(R,T)Rµν −
1
2

f (R,T)gµν +(gµν�−∇µ ∇ν) fR(R,T) = Tµν − fT(R,T)(Tµν +⊖µν),

(1.8.9)

where fR = ∂ f
∂R, fT = ∂ f

∂T . Here � ≡ ▽µ▽µ is the d’Alembert operator and ▽µ is the

covariant derivative. The tensor ⊖µν is defined as

⊖µν ≡ gi j δTi j

δgµν , i, j = 0,1,2,3. (1.8.10)

Using (1.8.8)into (1.8.10), we obtain

⊖µν =−2Tµν +gµνLm−2gi j ∂ 2Lm

∂gµν ∂gi j . (1.8.11)

Due to the coupling of the matter and geometry, this f (R,T) gravity model depends on

a source term which is a function of the matter Lagrangian Lm. Therefore, the choice

of Lm will decide the field equations of the model. Harko et al. [161] proposed that the

matter Lagrangian Lm may be chosen as Lm = −p, where p is the thermodynamical

pressure of matter content of the Universe. Then, Eq. (1.8.11)becomes

⊖µν =−2Tµν − pgµν . (1.8.12)
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As f (R,T) gravity depends on the source term, various theoretical models may be

obtained depending on the choices of different matter sources. In this thesis, we

have assumed the form f (R,T) = R+ f (T), with f (T) being a generic function of T.

Therefore, the field equations (1.8.9)now reduce to

Rµν −
1
2

R gµν = Tµν −2 f ′(T)Tµν −2 f ′(T)⊖µν + f (T)gµν , (1.8.13)

where the prime denotes a derivative with respect to T. Using (1.8.12)the field equa-

tions (1.8.13)become

Rµν −
1
2

R gµν = Tµν +2 f ′(T)Tµν +[2p f ′(T)+ f (T)]gµν , (1.8.14)

Taking the covariant divergence of (1.8.9)and using the following identity

∇µ [ fR(R,T)Rµν −
1
2

f (R,T)gµν +(gµν�−∇µ∇ν) fR(R,T)] = 0, (1.8.15)

We obtain the divergence of Tµν as

▽µTµν =− fT(R,T)
1+ fT(R,T)

[

(Tµν +⊖µν )▽
µ ln fT(R,T)+▽µ ⊖µν −

1
2

gµν▽
µT

]

. (1.8.16)

Thus, one of the common features of this modified gravity is the non-conservation

of the matter EMT. This extra terms is generated by the non-minimal geometry-matter

coupling which is considered as particle production, with the gravitational field acting

as a particle source.

Using the value of ⊖µν defined above, Eq. (1.8.16) for a perfect fluid Tµν = (ρ +

p)uµuν + pgµν with energy density ρ , thermodynamical pressure p and normalized

four velocity uν , satisfying the condition uνuν =−1, gives

ρ̇ +3(ρ + p)H =− fT(R,T)
1+ fT(R,T)

[

(ρ + p)▽µ ln fT(R,T)+▽ν
ρ − p

2

]

. (1.8.17)

Thus, the divergence of the energy-momentum tensor is nonzero. Let us interpret

Eq. (1.8.17)from a thermodynamic point of view as describing adiabatic irreversible

particle creation in a cosmological context. The above equation can be written as

ρ̇ +3(ρ + p)H = (ρ + p) Γ, (1.8.18)
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where

Γ =− fT(R,T)
1+ fT(R,T)

[

▽µ ln fT(R,T)+▽ν
ρ − p

2(ρ + p)

]

, (1.8.19)

describes the particle creation rate.

Many authors have studied modified f (R,T) theory in a different context to explain

the early and late time evolution of the Universe. f (R,T) gravity models have been

investigated by Houndjo et al. [168] to reproduce the four known finite-time future sin-

gularities. A quintessence-like behavior has been obtained with a particular model

f (R,T) = µR+ νT by Pasqua et al. [162] which exhibits a transition from a deceler-

ated to an accelerated phase. Sharif and Zubair [169] investigated thermodynamical

aspects with the apparent horizon in f (R,T) gravity under the FLRW Universe. Az-

izi [170] discussed the wormhole geometries in f (R,T) gravity and showed that the

effective stress-energy may be considered as a possible candidate for violation of the

null energy condition in f (R,T) gravity. By assuming that the conservation equation

holds for f (R,T) gravity, Chakraborty [171] has discussed the energy conditions with

a perfect fluid. The evolution of scalar cosmological perturbations in f (R,T) gravity

has been discussed by Alvarenga et al. [172] in the metric formalism under the as-

sumption of a specific model that guarantees the standard continuity equation. The

dynamics and stability of the model in f (R,T) gravity has been discussed by Baffou

et al. [173]. They showed that the model presents stability for both the de Sitter and

power-law solutions and satisfies the observational data for both the low and high red-

shift regimes.

In their paper, Shabani and Farhoudi [174] have investigated the solar system con-

sequences of the f (R,T) gravity along with the cosmological consequences. In a pa-

per by Fayaz et al. [175], the HDE and new agegraphic DE models were discussed in

the anisotropic cosmological model under the framework of f (R,T) gravity. The gen-

eralization of the conservation equation of f (R,T) gravity is discussed by Harko [176]

by using the concept of irreversible matter creation in open thermodynamic systems.

Many authors [177–180] have successfully explained the history of the Universe by

reconstructing the f (R,T) gravity with various type of matter content. A number of

authors have also discussed the evolution of the Universe in f (R,T) gravity by consid-

ering different energy contents and formalism, see refs. [181–189].

Thus, a number of pioneer papers in the literature have motivated us to analyze

the evolutionary behavior of the Universe in f (R,T) gravity. In this thesis, we will dis-

cuss HRDE in f (R,T) gravity to investigate the different aspects of the evolution of the
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Universe.

1.9 Viscous Cosmology

The perfect fluid in cosmological models constitutes an idealized case, but not always.

A perfect fluid is able to explain many aspects of the evolution of the Universe but

without the investigation of dissipative phenomena arising in the cosmic fluid, some

processes can’t be explained. It is well known that viscosity is a concept in fluid

mechanics which is related to an exotic fluid with some thermodynamical features

such as bulk and/or shear viscosities. In cosmology shear viscosity is related to the

anisotropy of space-time whereas the bulk viscosity usually related to the isotropic

Universe.

The physical origin of bulk viscosity in a system can be traced to deviations from

local thermodynamic equilibrium. In a cosmological fluid, the bulk viscosity may arise

when the fluid expands (or contracts) too fast so that the system does not have enough

time to restore its local thermodynamical equilibrium. The bulk viscosity arises an ef-

fective pressure restoring the system to its thermal equilibrium. So, in an accelerated

expanding Universe it may be natural to assume the possibility that the expansion

process is actually a collection of states out of thermal equilibrium in a small fraction

of time due to the existence of bulk viscosity. It is natural for such a term to exist in

expanding Universe anytime the fluid is out of equilibrium.

Since, the influence of dissipative processes including bulk viscosity, shear viscosity,

and heat transport plays an important role in the cosmic expansion. The introduction

of viscosity coefficients in cosmology has itself a long history. The physical impor-

tance of these phenomenological parameters has traditionally been assumed to be

weak. Viscous cosmology has been investigated to observe the early inflation and

the recent expansion of the Universe. The general theory of dissipation in relativity

was put on a firm foundation by Eckart [190], and, in a somewhat different formulation

by Landau and Lifshitz [191]. This is only the first order deviation from equilibrium

and may have a causality problem. As per Eckart’s theory, if p is the thermodynamic

pressure of matter content and cosmic fluid has viscosity then the effective pressure

is given by

p̃= p+Π, (1.9.1)
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where Π represents the dissipative pressure and is equal to −3ζH. Here, ζ is the

coefficient of bulk viscosity. Now, the energy-momentum tensor (1.4.8)with viscous

fluid modifies to

Tµν = (ρ + p̃)uµ uν + p̃ gµν , (1.9.2)

In this thesis, the homogeneous and isotropic FLRW models have been considered

to study the cosmological models. Therefore, the dissipative process is modeled as

a bulk viscosity in this case [192–199]. In cosmology, the viscosity concept was first

discussed by Misner [200] in 1968.

Israel and Stewart [201] developed a relativistic second-order theory, known as the

full causal theory, which has been studied in the evolution of the early Universe. The

dissipative variables were included in this theory to explain non-equilibrium states,

making it causal and stable. The full Israel-Stewart transport equation is given by [202]

τΠ̇+Π =−3ζH − ετΠ
2

[

3H +
τ̇
τ
− ζ̇

ζ
− Ṫ

T

]

, (1.9.3)

where τ represents relaxation time associated with the dissipative effect.

Scalar dissipation processes in cosmology may be treated via the relativistic theory

of bulk viscosity. To reduce the equilibrium pressure in an expanding Universe bulk

viscosity can be useful. Therefore, the effective pressure could be made negative

using sufficiently large bulk viscous pressure. Thermodynamics states with negative

pressure are detestable and cannot be excluded by any law of nature. These ther-

modynamic states are connected with phase transitions. It is known that there is a

problem of singularity either in GTR or modified gravity models. The bulk viscos-

ity removes the initial singularity as shown by many authors [202–204]. The idea of

modified gravity models with bulk viscosity has been presented in different ways to

understand the evolution of the Universe. However, because of the simple form of

Eckart theory, it has been widely used by several authors to characterize the bulk

viscous fluid. The idea of viscous DE models was presented in different ways to un-

derstand the evolution of the Universe. Many authors [205–222] have studied the DE

phenomenon as an effect of the bulk viscosity in the cosmic medium.

All these cited works are pioneer papers on bulk viscosity which show that, for an

appropriate viscosity coefficient, an accelerated cosmology can be achieved without

the need for a cosmological constant [223]. Since we do not know much about the

nature of the Universe’s content clearly, concern about the bulk viscosity is reason-
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able and practical. To our knowledge, such type possibility has been discussed only

in the context of the primordial Universe, concerning also the search for non-singular

models. But many investigations show that the viscous pressure can play the role of

an agent that drives the present acceleration of the Universe. Therefore, the interest

in viscosity theories in cosmology has increased in recent years, for various reasons,

perhaps especially from a fundamental viewpoint.

1.10 Matter Creation Cosmology

The study of matter creation in the relativistic cosmological models has drawn the

attention of a number of authors. Parker [224] investigated the material content of

the Universe and stated that it might have had its origin in the continuous creation of

radiation and matter from the gravitational field of the expanding cosmos acting on the

quantum vacuum, regardless of the relativistic theory of gravity assumed. However,

these models were never fully realized due to the lack of a well-defined prescription

of how matter creation is to be incorporated in classical Einstein’s field equations.

Prigogine et al. [225, 226] was the first to give a theoretical approach to the adi-

abatic matter creation in the framework of GTR. They proposed an interesting type

of cosmological history including large-scale entropy production by considering the

cosmological thermodynamics of open systems. They used the generalized form of

the first law of thermodynamics to describe the flow of energy from the gravitational

field to the matter field, resulting in the creation of particles. The authors argued that

the creation of particles can occur only as an irreversible process at the expense of

the gravitational field. This phenomenon of matter creation has been studied by many

authors in detail within the context of GTR [227–233].

A model with adiabatic matter creation was proposed in order to interpret the cos-

mological entropy and to solve the Big-Bang singularity problem. However, after the

discovery of the accelerating expansion of the Universe, this model was reconsidered

to explain the expansion of the Universe and got some unexpected results. It has

been pointed out that matter creation can play the role of a dark energy component

and lead to driving the accelerating expansion of the Universe. Because of its ability

to generate an effective negative pressure, several authors [234–240] reconsidered

the idea of irreversible matter development.

The matter formation model has been defined in the literature in terms of a bulk
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viscous stress on a phenomenological level [204, 241]. However, Prigogine et al.

[225, 226] came to the conclusion that bulk viscosity and matter formation are two

separate processes that result in different Universe evolution histories. Further, the

equivalence between bulk viscosity and matter creation is discussed by Triginer and

Pavón [242], and Brevik and Stokkan [243]. Several authors have noted that while

the dynamics of both ideas could be similar, they each had a different thermodynamic

feature of the Universe. In a paper, the observational consequence of matter creation

in the early Universe has been studied by Singh and Beesham [244].

In the gravitationally induced matter creation mechanism, the number of fluid parti-

cles is not conserved, i.e., Nµ
;µ 6= 0. In this case, the particle flux vector Nµ = n uµ is

assumed to satisfy the balance equation [228]

Nµ
;µ ≡ ṅ+3nH = nΓ, (1.10.1)

where N is the total particle number in a comoving volume V, n= N/V is the particle

density and Γ is the rate of matter creation from the gravitational field with dimension

time−1. In principle, Γ > 0 represents the matter creation, Γ < 0 is for matter annihila-

tion, and Γ = 0 is the case when there is no matter creation. The balance equation

can be rewritten as Ṅ
N = Γ, showing that Γ drives the matter creation rate in the comov-

ing volume. In the case of adiabatic particle production, the particles and entropy are

generated but the entropy per particle does not vary. Under such ‘adiabatic condition’,

the creation pressure can be written as [231,234,242,245]:

pc =−
(

ρ + p
3H

)

Γ, (1.10.2)

where pc is the pressure due to the matter creation. Now, we can describe the dy-

namics of the Universe only if the matter creation rate is known. The nature of Γ is

unknown as the associated quantum field theory (QFT) is yet to be developed. In gen-

eral, there is no bound to choose some particular choices for Γ. Therefore, one can

assume some phenomenological but general choices for Γ. In the literature, various

forms of Γ, e.g., Γ = constant[246], Γ ∝ H [247], Γ ∝ H2 [230, 248], and a linear com-

bination [249], have been presented to explain the early and present-day acceleration

of the Universe. However, the linear and quadratic forms of Γ are not compatible with

the current cosmology, i.e., these models do not show transition redshift. Therefore, a

natural extension is to consider the linear combinations of H, H2 . . ., and the derivative
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of the Hubble parameter. Finally, one can use observational data to test the viability

of such models.

The second law of thermodynamics inevitably leads to a change of the energy-

momentum tensor (1.4.8) due to the presence of matter creation. So, the energy-

momentum tensor of perfect fluid (1.4.8) empowered with the mechanism of matter

creation modifies to

Tµν = (ρ + p+ pc)uµ uν +(p+ pc) gµν . (1.10.3)

The entropy flux vector has the form Sµ = nσuµ ≡ suµ , with σ = S/N being the basic

entropy per particle and S= sa3 being the entropy in a comoving amount. The second

law of thermodynamics imposes a relationship

S
µ
;µ = nσ̇ +σnΓ ≥ 0. (1.10.4)

The divergence of Sµ is reduced to S
µ
;µ = σnΓ if the creation process is such that the

specific entropy per particle is constant. However, since matter creation and bulk vis-

cosity are two distinct processes, the viscous term’s specific entropy rate per particle

is calculated as [242]

σ̇ =
ζ θ2

nT
, (1.10.5)

where T is the temperature. It is obvious that the existence of Γ has no bearing on

the production of entropy per particle, which is solely dependent on the nature of bulk

viscosity. As previously stated, if ζ = 0, the entropy per particle is constant.

1.11 Cosmological Parameters

Cosmological parameters play a very important role to understand the evolution of the

Universe. A bunch of terminology is associated with the cosmological parameters,

and we will just go over the basics here.

1.11.1 Hubble Parameter

The expansion rate of the Universe is described by the Hubble parameter, denoted by

H(t), defined as

H(t) =
ȧ(t)
a(t)

. (1.11.1)
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The value of the Hubble parameter at the present epoch is the Hubble constant,

H0. Current measurements lead us to believe that the Hubble constant is 70± 10

kms−1Mpc−1 (Mpc stands for megaparsec, which is 3.09× 1026 m). Since there is

still some uncertainty in this value, we often parameterize the Hubble constant as

H0 = 100h kms−1Mpc−1, so that h≈ 0.7.

The Hubble parameter (1.11.1) is the rate of change of the scale factor a(t) which

provides a way to link the observations with a proposed model using the scale factor.

It is to be noted that we can expect the constant expansion rate throughout its history,

H(t) = H0 only in an empty space.

1.11.2 Critical Density

The density of matter that would be required to halt the expansion of the Universe is

known as critical density. Let us rewrite the Friedmann equation (1.5.1)as

ȧ2

a2 −
k
a2 =

8πG
3

ρ . (1.11.2)

This equation determines how the scale factor of the Universe (essentially the size of

the Universe) changes with time in terms of energy density ρ , and k, a measure of the

curvature of the Universe. The above equation reduces to

H2+
k
a2 =

8πG
3

ρ . (1.11.3)

Dividing by H2 into both sides, we get

k
a2H2 =

8πG
3H2 ρ −1=

ρ
ρc

−1, (1.11.4)

where,

ρc =
3H2

8πG
(1.11.5)

is known as critical density. The critical density of the Universe depends on the Hubble

parameter H. As the Hubble parameter is a time-dependent function, so the critical

density also evolves with time. Using the value of H0, the present value of the critical

density may be calculated. Recent measurements indicate that the actual density of

our Universe is very close to the critical density, and this is achieved if we take k = 0

(the Universe is flat).
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1.11.3 Density Parameter

The density parameter Ω is commonly used to express cosmological quantities and

cosmic field equations. The density parameter is typically defined as the ratio of

matter density to critical density at the same time.

Ω =
8πG
3H2 ρ =

ρ
ρc

, (1.11.6)

where ρ represents the density of matter/DE/scalar field, etc.

Using (1.11.6)into (1.11.4), the Friedmann equation can be written

Ω−1=
k

a2H2 . (1.11.7)

The sign of k is therefore determined by whether Ω is greater than, equal to, or less

than, one. Thus, the density parameter determines the geometry of the Universe, i.e.,

a closed, flat, or open Universe. Determining it observationally is of crucial impor-

tance; recent measurements of the cosmic microwave background anisotropy lead us

to believe that Ω is very close to unity.

The total energy content of the Universe is considered to be matter (Baryonic + Dark

matter) and DE for which the densities can be represented by ρm and ρΛ, respectively.

The total density is given by ρ = ρm+ρΛ. The density parameters for matter and DE

are defined as

Ωm =
ρm

ρc
; ΩΛ =

ρΛ
ρc

; Ω =
ρ
ρc

, (1.11.8)

where Ω = Ωm+ΩΛ.

1.11.4 Deceleration Parameter

An important cosmological quantity is the deceleration parameter (DP) q, which is an

indicator of the accelerating/decelerating nature of the evolution of the Universe. It is

defined as

q=−aä
ȧ2 =− Ḣ

H2 −1 , (1.11.9)

which measures the rate of change of the rate of expansion. The positive value of

q represents the decelerated phase of the Universe whereas the negative value rep-

resents the accelerated phase. Our Universe has gone through two phases: early

time inflation, followed by decelerated expansion, and finally decelerated expansion,
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followed by late-time accelerated expansion. The change in sign of DP shows the

phase transition.

1.11.5 Redshift

The fractional Doppler shift of an object’s emitted light caused by radial motion is

its redshift z. The spectral lines of atoms in light from distant stars and galaxies are

distinct. These spectra are observed to be shifted towards the red end of the spectrum

when analysed. The term “redshift” refers to this shift in the spectrum. In fact, redshift

appears to be a Doppler shift, indicating that almost all galaxies are moving away from

the more distant ones. It is measured by the quantity

z=
λ0−λe

λe
=

νe−ν0

ν0
, (1.11.10)

where ν0 and λ0 are the observed frequency and wavelength, and νe and λe are the

emitted frequency and wavelength, respectively.

The scale factor a(t), or the size of the Universe, is directly related to cosmological

redshift. For an object at redshift z

1+z=
a(t0)
a(te)

, (1.11.11)

where a(t0) is the size of the Universe at the moment the object’s light is observed,

and a(te) is the size of the Universe at the time it was emitted.

1.12 Geometrical Parameters

Since various cosmological parameters show similar results for different DE models

so it is not possible to discriminate them. Therefore, in order to have a better under-

standing of the DE models, higher-order time derivatives of a(t) are required. Rapid

progress in observational cosmology has led to the creation of the first precision cos-

mological model, which includes many of the key cosmological parameters. Geomet-

rical parameters have long been used in cosmology to better understand the evolution

of the Universe and to distinguish between different DE models. In this thesis, we will

address certain geometrical parameters that are used to analyse cosmological phe-

nomena.
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1.12.1 Statefinder Parameter

Various dynamical dark energy models are developed in the recent past to explain

the accelerating expansion of the Universe. In order to differentiate these models, a

diagnostic proposal that makes use of parameter {r,s}, the so-called statefinder, was

introduced by Sahni et al. [250] and Alam et al. [251] and defined as follows:

r ≡
...
a

aH3 and s≡ r −1
3(q−1/2)

. (1.12.1)

In the sense that it is dependent on the expansion factor and thus on the metric rep-

resenting space-time, the statefinder is a “geometrical” diagnostic. These two param-

eters are used to compare the goodness of various dark energy models with ΛCDM

model. This statefinder diagnostic can distinguish various types of dark energy mod-

els because different cosmological models involving dark energy exhibit qualitatively

different evolutionary trajectories in the r−splane. For the spatially flat ΛCDM cosmo-

logical model, the statefinder parameters correspond to a fixed point {r,s}= {1,0} and

SCDMscenario gives a fixed point {1,1} in the statefinder diagnostic pair {r,s} plane,

with which the distance of other DE models from ΛCDM can therefore be established

on the r − s plane [250, 251]. To distinguish between different DE models, we can

plot trajectories in the r −s and r −q planes. In the modern period, when there are a

plethora of DE models available in the literature, the statefinder parameters {r,s} are

crucial in distinguishing between them.

1.12.2 Cosmographic Parameters

The geometrical investigation discussed in previous subsection on the dark energy

model has been further extended by considering the Taylor series expansion of the

scale factor about the present time. As a result some new models independent dimen-

sionless geometrical parameters, called cosmographic parameters (CP), have been

defined as [252,253]

j =
1

aH3

d3a
dt3

, s=
1

aH4

d4a
dt4

, l =
1

aH5

d5a
dt5

. (1.12.2)

The cosmographic parameters defined in (1.12.2)are called as jerk ( j), snap(s), and

lerk (l) parameter, respectively. Here r and j are same; but the s parameter defined

in (1.12.2)is not same with one defined in (1.12.1). The study of the above parame-
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ters for a particular DE model together with the Hubble parameter H and deceleration

parameter q is known as the cosmography of the model. We can deduce from the

equation (1.12.2)that any cosmological model’s cosmography will be true as long as

the Hubble parameter is fourth-order differentiable.

1.12.3 OmDiagnostic

To examine the dynamics of the dark energy models one more diagnostic, called Om,

has been introduced in [254] with the help of Hubble parameter H(z) and redshift z.

Om-diagnostic is used to check different periods of the Universe. Many authors [255–

257] have studied the DE models based on Om(z) diagnostic. We plot the trajectory in

Om(z)−z plane to discriminate the behavior of the DE models. The constant value of

Om(z) tells that DE behaves like a cosmological constant (ΛCDM). The positive slope

of Omdiagnostic means that the model behaves phantom-like while the negative slope

indicates the behavior of the quintessence model. Om(z) parameter for spatially flat

Universe is defined as

Om(z) =

H2(z)
H2

0
−1

(1+z)3−1
. (1.12.3)

Om-diagnostic involves only the first-order derivative of the scale factor thus it is

easier to reconstruct from observational data. We know that the curvature of Om(z)

can reliably distinguish dynamical DE from the cosmological constant, both with and

without matter density as a reference.

1.13 Data Analysis

It has been understood that we live in an expanding Universe since Edwin Hubble

developed Hubble’s law in the late 1920s, which compared the recession velocity of

galaxies to their distance from us. Latest findings, on the other hand, show that not

only is the Universe expanding, but that it is also expanding faster. Since the accel-

eration cannot be accommodated in a Universe made up of radiation and matter, this

section briefly discusses these findings, since they are the foundation of the field of

dark energy. In this thesis, we will study various models that explain the late evolu-

tion of the Universe and test it using the most recent cosmological observations. This

section introduces the statistical methods used to perform the data analysis. Even
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though there are many promising cosmological probes that can be used to fit the cos-

mological models, but we will stick to some of the observations, which are important

in the context of late-time cosmic acceleration. These are the observations of type

Ia supernova, observational measurement of Hubble parameter, the baryon acoustic

oscillation, and the cosmic microwave background radiation.

1.13.1 Supernova type Ia

Thermonuclear explosions of white dwarves in binary systems with red giants are

known as supernova type Ia (SNIa). The red giant extends as it progresses through

stellar stages, eventually expanding beyond its Roche lobe, which determines the

area where matter remains attached to the red giant. As a result, matter begins to

flow from the red giant to the white dwarf. The matter accumulates until the white

dwarf exceeds the Chandrasekhar mass, which is about 1.4 solar masses. It be-

comes unstable at this stage and explodes in a thermonuclear explosion. Since SNIa

are described by the explosion of a 1.4 solar mass white dwarf, one would expect

these supernovae to be regular candles, with the same luminosity every time. SNIa is

one of the best probes for confirming the redshift-distance relation under this hypoth-

esis, as they provide a clear measurement of the luminosity distance independent of

redshift determination. As a result, SNIa can be used to constrain the history of the

Universe’s expansion.

Since, SNIa are used as standard candles, and we can hence infer their distance

from us. They were the objects observed when dark energy was discovered in 1998.

They are still widely used to infer the expansion of the Universe. In this thesis, we

use data from the compressed Joint Light-curve Analysis (cJLA) compilation, which is

composed of 31 binned data points within the range 0.01< z< 1.3 [258]. We measure

the distances of a supernova at different redshift z in the form of distance modulus

µb(z) which is actually the difference between the apparent magnitude mb and the ab-

solute magnitude Mb of the B-band (wavelength band of the blue line) of the observed

spectrum of the supernova and directly tells us about the expansion history.

µb(z) = mb−Mb = 5 log
(

dL(z)
Mpc

)

+M, (1.13.1)
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where M is the normalization parameter. In the above equation dL is the luminosity

distance which is defined by

dL = c(1+z)
∫ z

0

dz′

H(z′,θ)
, (1.13.2)

where c is the speed of light and θ is the representation of model parameters.

We adopt the χ2-statistics in order to estimate the free parameters in cosmologi-

cal models from the observational data. The likelihood is evaluated by using the χ2

statistics:

χ2
SNIa= xTC−1

b x, (1.13.3)

where x= µb−M−5 log10dL and Cb is the covariance matrix of µb for which see Table

F.2 in [258].

1.13.2 Observational Hubble Data

In order to study the expansion timeline of the Universe, the determination of the

Hubble parameter using observational data is the other important part of fitting pa-

rameters. In the recent past, the measurement of Hubble parameter H(z) got much

attention from the researchers due to its model-independent nature. The observa-

tional Hubble data are based on differential ages of the galaxies [259]. Observational

data presents the Hubble parameter estimated at different redshift z. In the statistical

analysis, we have used 43 data points of the Hubble parameter in the redshift range

0< z< 2.5 [260].

The χ2 function is defined as the following

χ2
OHD =

n

∑
i=1

[H(zi)−Hobs(zi,θ)]2

σ2
i

, (1.13.4)

where H(zi) and Hobs(zi,θ) represents the theoretical and observed values of Hubble

parameter, respectively. The standard deviation in the observed value is denoted by

σi .

1.13.3 Baryon Acoustic Oscillations and Cosmic Microwave Background

The measurement of the baryon acoustic scale in the distribution of galaxies on large

scales is another direct expansion background probe. Until recombination, the acous-
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tic oscillations in the baryon-photon fluid imprint a fixed comoving length scale in the

statistics of galaxies distribution, which is provided by the comoving sound horizon at

recombination,

rs(z∗) =
∫ ∞

z∗

cs(z)
H(z)

dz, (1.13.5)

in which cs is the sound speed and z∗ indicates the photons decoupling redshift and

holds the value z∗ = 1090as per the Planck 2015 results [20]. This scale determines

the peak positions in the CMB anisotropy power spectrum. The baryons decouple

from the photons after recombination, and their perturbations evolve under the in-

fluence of only gravity, which is dominated by dark matter due to its density being

around a factor of six higher than the baryon density. Both baryon and dark matter

perturbations eventually adopt the same power spectrum, with the acoustic oscilla-

tions function diluted in comparison to the CMB but still present and observable. The

BAO scale can be used as a (statistical) standard ruler where supernova is standard-

izable candles. The adjustment in the size of this scale can be used to determine the

Universe’s expansion history, making it a useful tool for constraining dark energy.

The BAO systematics are relatively clean in comparison to other probes, with the

key problems being the modelling of the impact of non-linear evolution and galaxy

bias on peak position. One disadvantage is that large samples of galaxies must be

measured in large amounts of space in order to obtain strict constraints. In this the-

sis, we will consider the combined BAO and CMB data from different observational

missions [261]. We have taken the sample of BAO distances measurements from

SDSS(R) [262], the 6dF Galaxy survey [263], BOSS CMASS [264] and three parallel

measurements from WiggleZ survey [265]. We combine these results with the Planck

2015 [20].

In the context of BAO, the angular diameter, dA(z,θ) is defined as

dA(z∗,θ) = c
∫ z∗

0

dz′

H(z′,θ)
, (1.13.6)

where Dv(z,θ) represents the dilation scale which is given by Dv(z,θ) =
(

d2
A(z,θ )cz
H(z,θ )

)1/3
.

The distant redshift dz is given by

dz=
rs(z∗)

Dv(z,θ)
, (1.13.7)
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where rs(z∗) is defined as the co-moving sound horizon at the time when photons

decouple, which is assumed to be the same as it is considered in Ref. [261].

With this information, the χ2 function for BAO/CMB can be written as [261]

χ2
BAO/CMB= ATC−1A (1.13.8)

where A is the matrix

A=





























dA(z∗,θ )
Dv(0.106,θ ) −30.84

dA(z∗,θ )
Dv(0.35,θ ) −10.33

dA(z∗,θ )
Dv(0.57,θ ) −6.72
dA(z∗,θ )

Dv(0.44,θ ) −8.41
dA(z∗,θ )
Dv(0.6,θ ) −6.66
dA(z∗,θ )

Dv(0.73,θ ) −5.43





























and C−1 is the inverse of the covariance matrix [261] given by

C−1 =



























0.52552 −0.03548 −0.07733 −0.00167 −0.00532 −0.00590

−0.03548 24.97066 −1.25461 −0.02704 −0.08633 −0.09579

−0.07733 −1.25461 82.92948 −0.05895 −0.18819 −0.20881

−0.00167 −0.02704 −0.05895 2.91150 −2.98873 1.43206

−0.00532 −0.08633 −0.18819 −2.98873 15.96834 −7.70636

−0.00590 −0.09579 −0.20881 1.43206 −7.70636 15.28135



























We have taken the correlation coefficient from Ref. [16].

1.14 Model Selection Criterion

The reduced chi-squared, denoted by χ2
red, is a very popular method for model assess-

ment, model comparison, convergence diagnostic, and error estimation in astronomy.

If ν is the number of degree of freedom, the reduced χ2 is then defined as

χ2
red =

χ2
min

ν
. (1.14.1)

If N is the data points and d is the free parameters, the number of degree of freedom

ν = N−d. If a model is fitted to data and the resulting χ2
red is larger than one, it is

considered a “bad” fit, whereas if χ2
red is less than one, it is considered an over-fit. The

fit model is that one whose value of χ2
red is closest to one.
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Statistical analysis can be used to decide the models are “better”, taking into ac-

count the number of parameters required and how well the models complement the

data. We use the Akaike Information Criterion (AIC) [266] and the Bayesian or Schwarz

Information Criterion (BIC) [267] to evaluate the goodness of our model in compari-

son to a given reference model and analyse whether our model is favored by these

parameters. The AIC parameter is defined as follows [266]

AIC=−2 lnLmax+2d, (1.14.2)

where Lmax= e−χ2
tot/2 is the maximum likelihood obtained for the cosmological model.

The “preferred model” for this criterion is the one with the smaller value of AIC. We

measure ∆AICkl = AICk−AICl to compare the model k with the model l , which can be

interpreted as “evidence in favor” of the model k over the model l . We have “strong

evidence in favor” of model k for 0≤ ∆AICkl < 2, “average evidence in favor” of model

k for 2 < ∆AICkl < 4, “less evidence in favor” of model k for 4 < AICkl ≤ 7, and “no

evidence in favor” of model k for ∆AICkl > 10 [268].

The bayesian criterion, on the other hand, is established by the relation [267]

BIC=−2 lnLmax+d lnN, (1.14.3)

Similar to ∆AICkl, ∆BICi j = BICi − BICj can be interpreted as “evidence favor” the

model i compared to the model j. For 0 ≤ ∆BICi j < 2 there is “not enough evidence

against” the model i, for 2≤ ∆BICi j < 6 there is “evidence against” the model i and for

6≤ ∆BICi j < 10 there is “strong evidence against” model i [268].

1.15 Motivation

Cosmological observations carried out by many researchers [14–20] show that the

Universe recently went transition from a decelerating to an accelerating expansion.

These data are consistent with a flat FLRW cosmology whose dominant components

at present consist of matter (cold dark matter plus baryons) and a cosmological con-

stant or, equivalently, the energy density of the vacuum; the ΛCDM concordance

model. Radiation and matter predominate early in the Universe’s evolution, result-

ing in decelerating expansion, while the cosmological constant or vacuum energy

portion predominates more recently, resulting in accelerating expansion. The mech-



40

anism or substances behind the present cosmic acceleration, on the other hand, are

unknown, and this poses a difficult problem for modern cosmology. There are primar-

ily two well-known approaches to explain the Universe’s accelerating phase. One is

the introduction of a component known as dark energy, which has a strong negative

pressure and an equation of state ω < −1/3, and the other is modifications to stan-

dard General Relativity.

In relativistic cosmology, an accelerating Universe is obtained by assuming the ex-

istence of a DE component (an exotic fluid endowed with negative pressure in order

to violate the strong energy condition). To investigate the behavior of the DE, several

theoretical cosmological models of the Universe have been proposed. The two most

accepted DE models are that of a cosmological constant(ΛCDM) or a non-zero vac-

uum energy density and a slowly varying rolling scalar field (quintessence models).

The ΛCDM model, on the other hand, faces a number of difficulties. For example, the

data requires a fine-tuned value for the energy density of the vacuum (Ω ≈ 0.26). To

validate and constrain the ΛCDM model, the astronomical community is working on a

number of major observational projects. It’s critical to find and investigate a number

of physical processes that could explain the Universe’s late-time acceleration.

In this regard, it’s worth noting that the existence of negative pressure is a crucial

component for accelerating the expansion. When physical systems deviate from their

thermodynamic equilibrium states, this type of stress occurs naturally in a variety of

situations. In general, such states are connected with phase transitions, and for some

systems, the existence of negative pressure seems to be inevitable.

It has been noted by several works that a bulk viscous fluid can produce an ac-

celerating cosmology without the need for any cosmological constant or dark energy

components. In the context of inflation, some authors [241, 269] studied the effect of

bulk viscosity and found that the bulk viscous fluid is capable of producing an accel-

erated expansion of the Universe. This idea was extended to explain the late-time

acceleration of the Universe [270–275]. Therefore, it is required to analyze a viable

mechanism for the origin of the bulk viscosity. The deviation from the local thermody-

namic equilibrium is the source of bulk viscosity in a physical system. As the cosmic

fluid expands in an expanding Universe, the bulk viscosity can be thought of as a mea-

sure of the pressure needed to restore equilibrium. It’s possible that in an accelerated

expanding Universe, the expansion process is simply a set of states that are out of

thermal equilibrium in a short amount of time. As a result, in a more practical expla-

nation of the accelerated Universe today, it is normal to presume the presence of bulk
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viscosity. Bulk viscosity is the only viscous effect capable of changing the background

dynamics in a homogeneous and isotropic Universe (for detail, see Sec. 1.9).

The macroscopic foundation of the negative pressure accompanying matter cre-

ation can be derived using relativistic non-equilibrium thermodynamics. The second

law of thermodynamics determines how an irreversible process of quantum origin

can be incorporated into classical Einstein’s field equation. It was demonstrated that

the matter creation is an irreversible process completely different from bulk viscosity

mechanism [276]. The irreversible development process is characterised by two new

ingredients in comparison to the standard equilibrium equations: a balance equation

for the particle number density and a negative pressure term in the stress tensor. The

second law of thermodynamics establishes a clear relationship between these quan-

tities. According to this law, matter creation at the cost of the gravitational field can

only take place as an irreversible mechanism limited by the normal non-equilibrium

thermodynamics requirements.

After the discovery of the accelerating Universe the particle creation was reconsid-

ered to explain it and got the unexpected results. The work on matter creation has

recently attracted a lot of interest in cosmology. The matter creation pressure, which

is negative, might play the role of the dark energy component. Lima et al. [276] pre-

sented the late-time evolution of the class of models with matter creation which is

qualitatively very different from that of the standard ΛCDM model. They showed that

it is quantitatively possible to account for a recent transition from decelerated to ac-

celerated expansion in late-time evolution without a cosmological constant.

In recent years, holographic dark energy has been discussed extensively as a pos-

sible candidate for dark energy. The model is built on the basis of the holographic

principle and some features of the theory of quantum gravity. In this principle, the ul-

traviolet cut-off is related to the infrared cut-off. Depending on the infrared cut-off, e.g.,

the Hubble horizon, event horizon, particle horizon, Ricci scalar, or Granda-Oliveros

cut-off, different models have been constructed to study the late-time evolution of the

Universe. The HDE model with different IR cut-off has proven to be a promising dark

energy candidate. Thus, the HDE model attracts a lot of interests in studying the late-

time evolution of the Universe.

Despite these excellent DE cosmological models, we still have some problems to

work out, and the quest for a concrete model continues. This encourages physi-

cists to consider alternative gravity theories. Modified theories of gravity provide a

very promising gravitational alternative to dark energy. These theories present a very
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natural unification of the early-time inflation and late-time cosmic acceleration. The

f (R,T) theory [161] is one of the efficient modified gravity theories to describe the re-

cent accelerated expansion of the Universe. This modified theory presents a maximal

coupling between geometry and matter. It is worth considering the f (R,T) modified

theories of gravity to study the cosmological models.

Since the astronomical community has been working on a number of large obser-

vational projects to test and constrain the standard ΛCDM model, it is critical to define

and investigate a number of physical mechanisms that may also be responsible for

the Universe’s late time acceleration.

In this thesis, we have investigated the effects of dissipative processes (bulk viscos-

ity and matter creation) in the modified theory of gravity and holographic dark energy

within the framework of a flat FLRW metric. We have considered bulk viscosity and

matter creation as independent physical phenomena. Bulk viscosity is associated with

a generalization of the hydrodynamics of ideal fluids for the case of non-ideal ones,

with constitutive equations describing the viscous pressure. The matter creation is

based on the non-equilibrium thermodynamics where the Universe is assumed to be

an open thermodynamical system. The study of bulk viscosity and matter creation

provides us to improve the dynamical cosmic evolution of the existing dark energy

models.

The thesis entitled “Study of Viscous and Matter Creation Effects in Cosmology”com-

prises seven chapters. The bibliography and the list of publications have been given

at the end of the thesis.

Chapter 1 titled “Introduction” provides a brief review of the general theory of rela-

tivity, expanding Universe, inflationary Universe, and accelerating Universe. It gives a

brief overview of the candidates for explaining the Universe’s accelerated expansion

that have been proposed in the literature. The thermodynamics of dissipative pro-

cesses of bulk viscosity and matter creation has been discussed. A brief survey of

modified f (R,T) gravity and holographic dark energy has been carried out. The cos-

mological parameters have been briefly discussed, as they play an important role in

the study of cosmological models. Some of the latest observational data such as Type

Ia supernova (SNe), Observational Hubble parameter data (OHD), Baryon acoustic

oscillations (BAO), and cosmic microwave background (CMB) data are discussed.

The motivation of the work in this thesis has been discussed at the end. Thus, the

current chapter establishes a context, explains the purpose of the thesis work, and
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offers tools for achieving the objectives.

Chapter 2 titled “Holographic Ricci dark energy model with bulk viscosity” deals with

viscosity effect on holographic Ricci dark energy (HRDE) model within the framework

of the standard Eckart theory of relativistic thermodynamics. We assume that the flat

Friedmann-Lemaître-Robertson-Walker Universe is filled with pressureless dark mat-

ter and viscous HRDE. Non-viscous and viscous HRDE models have been discussed.

In the non-viscous model, we have obtained a power-law form of scale factor which

gives a constant value of the deceleration parameter. Thus, the phase transition is not

possible in non–viscous model. The statefinder pair is also constant and it does not

discriminate from ΛCDM model. However, the model shows the transition from the

decelerated phase to the accelerated phase due to the presence of the bulk viscous

term. The viscous HRDE model is compatible with the quintessence- and Chaplygin

gas-like model in early time for small viscous values and approaches to ΛCDM model.

The chapter is based on a published research paper “Ricci dark energy model with

bulk viscosity, The European Physical Journal Plus 133, 312 (2018)”.

In Chapter 3 titled “Holographic Ricci dark energy with bulk viscosity in f (R,T) grav-

ity", we have extended the work of the previous chapter to study the HRDE model

with bulk viscosity in modified f (R,T) gravity. We have assumed that the Universe is

filled with pressureless dark matter and viscous HRDE. The bulk viscous coefficient ζ

has been assumed to be of the form ζ = ζ0+ζ1H, i.e., proportional to the velocity of

the expansion of the Universe. The exact solutions of the field equations have been

obtained by assuming the simplest form of f (R,T) =R+λT with constant and variable

bulk viscous coefficients. We have discussed how the presence of viscous fluid can

cause late-time acceleration. The viscous HRDE model produces a time-dependent

deceleration parameter that demonstrates phase transition. We have discussed the

behavior of the deceleration parameter by constraining ζ . We have plotted the trajec-

tories in r − s, r −q, and Om(z)− z planes to discriminate the viscous HRDE model

from the existing dark energy model.

The thermodynamics of non-viscous and viscous HRDE models have also been

discussed. We have explored the obvious violation of energy-momentum tensor in

f (R,T) gravity and have provided a thermodynamic interpretation of the extra terms

generated by the non-minimal geometry-matter coupling as describing as a particle

production.

The content of this chapter is based on two research papers entitled “Holographic
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Ricci dark energy with constant bulk viscosity in f (R,T) gravity, Gravitation and Cos-

mology 25, 58 (2019)” and “Viscous Ricci dark energy and generalized second law

of thermodynamics in modified f (R,T) gravity, Modern Physics Letters A 33, 1850225

(2018)”.

In Chapter 4 titled “Holographic Dark Energy with matter creation", we have dis-

cussed holographic dark energy model with adiabatic matter creation in the frame-

work of homogeneous and isotropic flat FLRW Universe filled with holographic dark

energy and pressureless dark matter with matter creation. We have discussed the ba-

sic terminology and solved the field equations by considering various forms of particle

creation rate Γ. For the first case, we have taken Γ = 3βH which gives a power-law

form of the scale factor. We have also calculated the deceleration parameter for this

form of Γ which is constant and hence there is no transition redshift throughout the

evolution. The HDE model with Hubble horizon as an infrared cut-off also does not

show the transition regime.

In order to solve such problem we have considered a class of such models where the

particle creation rate is assumed to be of the form Γ = constantand Γ = 3δH0+3βH.

We have discussed the observational analysis in both cases by employing the MCMC

package EMCEE on a different combination of publicly available data sets. The best-

fit values of model parameters have been obtained with different combinations of data

sets. We have analyzed the thermodynamics of matter creation in the HDE model. It

has been observed that the GSL is valid with the apparent horizon as the boundary

under certain conditions.

The chapter is based on two research papers “Observational constraints on holo-

graphic dark energy with matter creation, Astrophysics and Space Science 365, 84

(2020)” and “Holographic dark energy, matter creation, and cosmic acceleration, Phys-

ical Review D 102, 123537 (2020)”.

Chapter 5 titled “Holographic Ricci dark energy model with bulk viscosity and mat-

ter creation”, explores the effect of bulk viscosity and matter creation in holographic

Ricci dark energy model within the framework of a flat FLRW Universe. We have

assumed the bulk viscosity coefficient as ζ = ζ0+ ζ1H and the particle creation rate

as Γ = 3βH to obtain the exact solutions for the scale factor and various physical

quantities. We have considered these two dissipative phenomenons as independent

irreversible processes. It has been observed that the assumption Γ ∝ H does not

describe the present-day Universe (transition phase) in the absence of bulk viscos-
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ity. Therefore, to overcome this problem we have introduced the bulk viscosity along

with matter creation to observe the present-day Universe and we have succeeded to

obtain such a model. We have obtained the function Hubble parameter in terms of

redshift which is used to obtain the free parameters of the HRDE model.

We have performed the statistical analysis for our model using the latest observa-

tional data of SNe, OHD, and combined data of BAO and CMB. We have employed

publicly available EMCEE codes for the implementation of the MCMC method. We

have obtained the best-fit values for the model parameters. Using best-fit values of

model parameters we have presented the evolution of various cosmological parame-

ters and have studied various geometrical diagnostics and cosmographic parameters

analytically and graphically. The deceleration parameter shows a signature flipping

behavior thereby indicating the evolution of the Universe from early deceleration to

present late-time acceleration. We have examined the energy conditions of our model

to analyze the physical viability of the model. It has been observed that the NEC,

WEC, and DEC are satisfied but SEC fails to hold for our model. The best-fitting

results have shown that this HRDE model yields theoretical prediction values at an

acceptable level by working out the numerical processing to the joint observational

data sets of SNe, OHD, and BAO/CMB.

This chapter comprises the result of a research paper “Viscous Ricci dark energy

model with matter creation: exact solution and observational tests, Pramana Journal

of Physics 94, 129 (2020)”.

In Chapter 6 titled “Cosmology of matter creation in FLRW model", we have dis-

cussed the matter-dominated model with matter creation cosmology in FLRW model

as an alternative to explain the cosmic acceleration. As matter creation models are

phenomenological and the literature contains a variety of models, so a generalized

model could be a better choice to start for any study. Thus, we have generalized the

form of particle creation rate Γ in order to produce a clear image about the matter

creation models aiming to realize the early physics and its compatibility with the cur-

rent astronomical data. We have performed the fitting of free parameters using joint

observational data of SNe, OHD, and BAO/CMB.

We have investigated the model analytically and numerically in which the matter

creation process provides the late-time accelerating phase of the cosmic expansion

without the need for any dark energy. We have performed the information criterion of

AIC and BIC to discriminate our model with ΛCDM model. We have discussed the
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thermodynamic behavior of the model by calculating the total entropy for the matter

creation. We have established the general conditions for any matter creation model

that ensure the validity of the generalized second law of thermodynamics. Our analy-

sis shows that the model is close to the standard ΛCDM model.

The work presented in this chapter comprises the result of a published paper,

“Quintessence behavior via matter creation cosmology, The European Physical Jour-

nal C 80, 106 (2020)”.

Chapter 7 titled “Conclusion and Future Scope" presents the conclusion of the thesis

work and future research plan. In the present thesis, we have studied the effects of

bulk viscosity and gravitationally induced matter creation in some of the cosmological

models. In one of the works, we have proposed a new form of particle creation rate Γ

to discuss the early and late-time evolution of the Universe. This form of Γ may play

an important role in the study of the Universe in the framework of other cosmological

models/theories. We believe that this form has a lot of potential in the study of different

cosmic phenomena. We hope to expand the thesis work in the future to include other

modified theories. The cosmological perturbation is also an intriguing field where

dissipative processes could be used to do a lot of work.

Finally, the thesis concludes with a bibliography and a list of the author’s publica-

tions.

****************



Chapter 2

Holographic Ricci Dark Energy Model

with Bulk Viscosity

In this chapter 1, we explore the bulk viscosity in holographic Ricci dark energy

(HRDE) model within the framework of a flat FLRW metric. We obtain the exact

solution for non-viscous and viscous HRDE models, respectively. In the non-viscous

HRDE model, a power-law form of expansion is obtained which gives constant decel-

eration parameter and statefinder pair. In the viscous HRDE model, we consider

all possible forms of bulk viscous coefficient and discuss the cosmological evolu-

tion in detail. We obtain the exponential expansion of scale factor which gives time-

dependent deceleration parameter and statefinder pair. The model shows a transition

from decelerated phase to accelerated phase depending on the values of the vis-

cous term. We plot the evolution of cosmological parameters to observe the physical

behaviors of the viscous model.

1This chapter is based on a published research paper “Ricci dark energy model with bulk viscosity,The
European Physical Journal Plus133, 312 (2018)".

47
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2.1 Introduction

Many observational experiments [14, 15] show that DE plays an important role in

the evolution of the Universe and gives rise to accelerated expansion. These obser-

vations inspire theorists to understand the mechanism of the accelerated expansion

of the Universe. Therefore, the theorists have proposed various cosmological models

of dark energy to explain this bizarre phenomenon. In recent years, an interesting

attempt was developed to link the vacuum energy density with the holographic princi-

ple [67–69] of quantum gravity. This class of model is called holographic dark energy

(HDE) in which the ultra-violet (UV) cutoff of DE is converted to an infra-red (IR) cutoff.

It is to be noted that the UV cutoff is related to the vacuum energy, and the IR cut-

off is related to the large-scale structure of the Universe. The HDE is an interesting

and simple idea of explaining the observed accelerated expansion of the Universe.

Based on the choices of IR cutoff like Hubble horizon, particle horizon, event hori-

zon, or Ricci scalar, different types of HDE models have been proposed in recent past

years. The HDE model suffers the choice of IR cut-off problem. Gao et al. [96] put

forward an HDE model the so-called holographic Ricci dark energy (HRDE)model by

assuming the IR cut-off as a function of Ricci scalar as defined and explained in sec-

tion 1.8.1. Gao et al. [96] showed that this model does not only avoid the causality

problem but also naturally solves the coincidence problem of DE. The HRDE model

has been studied extensively to explain the accelerated expansion of the Universe in

refs. [107,111–125].

In general, various cosmological models have been discussed by considering that

the Universe has to be filled with perfect fluid. Even though, it is most important to

investigate more realistic models in which the dissipative processes due to viscosity

have been taken into account. The influence of dissipative processes including bulk

viscosity, shear viscosity, and heat transport play the important role in the cosmic

expansion. The general theory of dissipation in the relativistic imperfect fluid was

proposed by Eckart [190], and later on, modified by Landau and Lifshitz [191]. Israel

and Stewart [201] developed a relativistic second-order theory, known as full causal

theory. Misner [200] was the first to discuss the viscosity concept in cosmology. He

suggested that the early era neutrino viscosity could have significantly decreased

the current anisotropy of black-body radiation during the evolution process. Murphy

[203] demonstrated that the bulk viscosity in the FLRW model would drive the initial
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singularity to the infinite past.

The general problems associated with viscous cosmology have been discussed in

Refs. [196, 283]. The DE models with the viscous term have been studied in Refs.

[192, 193, 198, 271, 275, 277, 284–290]. The viscous model is also consistent with

astrophysical observations at lower redshifts, and a viscous cosmic model favors a

standard cold dark matter model (SCDM) with cosmological constant (ΛCDM) in the

later cosmic evolution [194]. The viscous model also shows the phantom crossing

behavior, i.e., the transition from quintessence to phantom region [209, 210]. Feng

and Li [206] have investigated the HRDE model with viscous term directly proportional

to the square root of energy density. The authors have analyzed that the age problem

can be alleviated once the viscosity is taken into account.

The motive of this chapter is to study the HRDE model within the framework of a

spatially flat FLRW space-time filled with dark matter and viscous HRDE. We find the

solution for non-viscous and viscous HRDE models, and analyze the evolutionary be-

havior of the scale factor and deceleration parameter. We also discuss the statefinder

and Om diagnostics to discriminate the model with other dark energy models. We plot

the trajectories of this model for the statefinder parameters and Om. It is found that

the HRDE model approaches ΛCDM for different parameters. The Om diagnostic is

carried out to discriminate the model with other DE models.

In addition to the literature surveyed above, this study is largely motivated by the

work of Cataldo et al. [210], which investigate dissipative processes in the Universe

within the framework of the standard Eckart theory of relativistic irreversible thermo-

dynamics, and in the full causal Israel-Stewart-Hiscock theory. Another inspirational

work is the work by Feng and Li [206] who considered HRDE in the presence of bulk

viscosity.

Chapter 2 has been organized as follows: In section 2.2, we have considered the

non-viscous HRDE model containing two perfect fluids, the pressureless DM and

HRDE. The scale factor, deceleration parameter, and statefinder of the HRDE model

have been obtained and their behaviors have been discussed. Section 2.3 has pre-

sented the viscous HRDE model with all possible forms of the viscous term. This

section has been divided into two subsections 2.3.1 and 2.3.2. The scale factor, de-

celeration parameter, statefinder, and Om diagnostic have been obtained and their

behaviors have been discussed in each subsection. We have plotted the trajectories

of deceleration parameter, statefinder, and Om to analyze the effect of bulk viscosity
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on the HRDE model. We have also plotted trajectories to see the effect of the model

parameter on the HRDE model. In the final section 2.4, we have summarized our

results and discuss various problems.

2.2 Non-Viscous HRDE Model

We consider the following spatially homogeneous and isotropic flat FLRW line element

ds2 =−dt2+a2(t)[dr2+ r2(dθ2+sin2 θdφ2)], (2.2.1)

where a(t) is the cosmic scale factor.

The Einstein field equations in the units of 8πG= c= 1 take the usual form

Rµν −
1
2

R gµν = Tµν , (2.2.2)

where the symbols have their usual meaning. The stress-energy-momentum tensor

of perfect fluid is given by

Tµν = (ρ + p)uµuν + p gµν , (2.2.3)

where ρ and p are the energy density and pressure respectively. Let us consider

the Universe filled with DM (excluding the baryon matter) and HRDE. So, we assume

ρ = ρm+ ρd and p = pm+ pd (as we consider the pressureless DM, pm = 0). Here,

ρm and ρd are respectively the energy density of DM and HRDE, pm and pd are the

pressure of DM and HRDE, respectively.

A relation between ρd and pd is given by the equation of state (EoS)

pd = ωdρd, (2.2.4)

where ωd is the EoS parameter of HRDE.

The field equations (2.2.2), for line element (2.2.1) and energy-momentum tensor

(2.2.3), yield the Friedmann equations

3H2 = ρ = ρm+ρd, (2.2.5)
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and

2Ḣ +3H2 =−p=−pd, (2.2.6)

where H = ȧ/a is the Hubble parameter. An overdot stands for derivative with respect

to cosmic time t. The conservation equation is given by

ρ̇ +3H(ρ + p) = 0. (2.2.7)

Gao et al. [96] proposed the IR cutoff of HDE density as a function of the Ricci scalar

which is defined in Eq. (1.8.5). The HRDE density is given by

ρd = 3α(Ḣ +2H2), (2.2.8)

where α is a dimensionless parameter.

Using (2.2.8), the field equations (2.2.5)and (2.2.6)yield

Ḣ +
3(1+2αωd)

(2+3αωd)
H2 = 0. (2.2.9)

The solution of (2.2.9)is given by

H =
1

c0+
3(1+2αωd)
(2+3αωd)

t
, (2.2.10)

where c0 is an integration constant. Equation (2.2.10)can be rewritten as

H =
H0

{

1+ 3H0(1+2αωd)
(2+3αωd)

(t− t0)
} , (2.2.11)

where H0 is the present value of the Hubble parameter at t = t0, the cosmic time where

the HRDE starts to dominate. Integrating the above equation to solve for the scale

factor, we get

a= a0

{

1+
3H0(1+2αωd)

(2+3αωd)
(t− t0)

}

(2+3αωd)
3(1+2αωd)

,α 6=− 1
2ωd

(2.2.12)

where a0 is the present value of the scale factor at t = t0. It is observed that the Uni-

verse expands as power-law, a∝ tm, where m is a positive constant. This form of scale

factor provides phase description of the Universe. For m< 1, the non-viscous HDRE

model expands with decelerated rate, m= 1 gives the marginal inflation whereas the
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model expands with accelerated rate for m> 1. It is possible to identify the constraints

on parameter which correspond to a Universe that would start with a decelerated

epoch, then making a transition into accelerated epoch in late times. The Universe

decelerates for ωd >− 1
3α , accelerates for ωd <− 1

3α or expands with marginal inflation

for ωd =− 1
3α . Equation (2.2.12)shows that when α = 0, i.e., in the absence of HRDE,

the scale factor obeys a = a0(1+ 3
2H0(t − t0))2/3, which corresponds to dark matter

dominated Universe. Hence, one can see that the parameter α plays a significant

role for the evolution of the HRDE.

A second order derivative of the scale factor with time is given by

d2a
dt2

=−(1+3αωd)a0H2
0

(2+3αωd)

[

1+
3H0(1+2αωd)

(2+3αωd)
(t− t0)

]− (4+9αωd)
3(1+2αωd)

. (2.2.13)

This shows that the Universe will undergo an eternal deceleration. The time elapsed

since the Big-Bang, tB, is calculated as

tB = t0−
(2+3αωd)

3H0(1+2αωd)
. (2.2.14)

The result regarding the evolution of the Universe can be further verified by studying

the evolution of the deceleration parameter q, which is defined in equation (1.11.9). For

this model, we get

q=
3(1+2αωd)

(2+3αωd)
−1. (2.2.15)

This equation shows that the value of q is constant and this is due to the power-

law form of scale factor. Therefore, this HRDE model does not show transition phase

throughout the evolution of the Universe. For ωd = − 1
3α , the deceleration parameter

q= 0. The Universe expands with decelerated rate if q> 0, i.e., ωd >− 1
3α and accel-

erated rate for q < 0, i.e., ωd < − 1
3α . The parameter α is the main characteristic of

HRDE model which can be determined only by the observations.

In order to constraint the parameter α in HRDE model, Zhang [117] found the best-

fit result with 1σ and 2σ errors of parameter α = 0.359+0.024
−0.025(1σ)+0.040

−0.040(2σ) for HRDE

model from the latest observational data including the Union sample of 307 type Ia

supernovae, the shift parameter of cosmic microwave background given by the five-

year Wilkinson Microwave Anisotropy Probe observations, and the baryon acoustic

oscillation measurement from Sloan Digital Sky Survey. In the current work, we shall

take the value of α in 2σ range, α = (0.319,0.399), e.g., α = 0.34, EoS parameter
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ωd =− 1
3α gives ωd =−0.9804which is very closed to the result obtained by del Campo

et al [124]. Therefore, for α = 0.34 and ωd = −0.9804, the HRDE model inflates with

marginal rate for which q = 0 whereas for α = 0.34 and ωd > (or <)−0.9804, we get

q> (or <) 0 respectively.

In order to bring about the discrimination between the various contenders, we use

the statefinder pair {r,s} defined by Sahni et al. [250] and Alam et al. [251] as in

(1.12.1). For this model, the statefinder parameter are obtained as

r = 1− 9(1+2αωd)

2(1+ 3
2αωd)

+
9(1+2αωd)

2

2(1+ 3
2αωd)2

(2.2.16)

and

s=
1+2αωd

1+ 3
2αωd

. (2.2.17)

Different models on the r −s plane accordingly show different trajectories, e.g., the

spatially flat ΛCDM scenario corresponds to a fixed point {1,0} and SCDM scenario

gives a fixed point {1,1} in the statefinder diagnostic pair {r,s} plane, with which the

distance of other DE models from ΛCDM can therefore be established on the r − s

plane. From the Eqs. (2.2.16)and (2.2.17), we observe that the HRDE model may

approach to ΛCDM as α →− 1
2ωd

. HRDE model may correspond to {r,s}→ {1,0}, but

there is no such value of parameters which would clearly show the ΛCDM. However,

in the absence of dark energy, i.e., α = 0, the model gives the pair {1,1} of SCDM.

2.3 Viscous HRDE Model

According to the observations, the phase transition plays a vital role in describing

the evolution of the Universe. However, in section 2.2, we have observed that the

non-viscous HRDE model does not show the phase transition as the deceleration

parameter is constant. Therefore, in this section, our aim is to discuss the viscous

HRDE model to find whether it would show the phase transition and act as a possible

candidate for the accelerating Universe.

The stress-energy-momentum tensor (2.2.3)after considering bulk viscosity modi-

fies to

Tµν = (ρ + p)uµuν + p gµν −3ζH hµν , (2.3.1)

where ζ is the bulk viscous coefficient, and hµν = gµν +uµuν is the projection tensor.

Using (2.3.1), the field equations (2.2.5)and (2.2.6)for the viscous RDE model modify
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to

3H2 = ρm+ρd, (2.3.2)

2Ḣ +3H2 =−p̃d, (2.3.3)

where p̃d is an effective pressure with p̃d = pd −3Hζ . On thermodynamical grounds,

ζ is conventionally chosen to be a positive quantity and generically depends on the

cosmic time t, or redshift z, or the scale factor a, or the energy density ρ , or a more

complicated combination form.

It is to be noted that the Eckart theory [190] has some problems in its formulation,

for example, all the equilibrium states in this theory are unstable, another issue is that

signals can propagate through the fluids faster than the speed of light. To correct the

problems of the Eckart theory, Israel and Stewart [201] developed a more consistent

and general theory that avoids these issues from which the Eckart theory is the first-

order limit when the relaxation time goes to zero. In this limit, the Eckart theory is a

good approximation to the Israel-Stewart theory.

In spite of the problems of the Eckart theory, but taking advantage of the equivalence

of both theories at this limit, it has been widely used by several authors because it is

simpler to work with this than with the Israel-Stewart one. In particular, it has been

used to model bulk viscous dark fluids as responsible for the observed acceleration

of the Universe assuming that the approximation of vanishing relaxation time is valid

for this purpose. Moreover, Hiscock and Salmonson [291] have shown that Eckart

theory can be favored over the Israel-Stewart theory, in explaining the inflationary

acceleration of FLRW Universe with a bulk viscous fluid. This motivates us to use

Eckart results, especially when one tries to look at the phenomenon of the recent

acceleration of the Universe. Another compelling reason to use Eckart’s theory is that

Israel-Stewart theory can not produce a recent accelerating epoch as argued by many

authors. Therefore, we study the non-causal approximation of the bulk viscosity in this

chapter.

Following [277], we consider a parameterized bulk viscous coefficient ζ of the form,

ζ = ζ0+ζ1H, (2.3.4)

where ζ0 and ζ1 are positive constants. In Eq. (2.3.4), ζ is a linear combination of

two terms: the first term is a constant ζ0 and the second term is proportional to the

Hubble parameter, which characterizes the dependence of the bulk viscosity on the
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expansion rate of the Universe. The motivation of considering this bulk viscosity is

that by fluid mechanics we know the transport/viscosity phenomenon is involved with

the velocity ȧ, which is related to the expansion θ = 3ȧ/a.

Using linear EoS for DE (2.2.4)and (2.3.4), a linear combination of (2.3.2)and (2.3.3)

gives a single evolution equation for H as

(2+3αωd)Ḣ +3(1+2αωd)H
2−3ζH = 0. (2.3.5)

Equation (2.3.5)may be integrated directly as a function of the bulk viscosity. For

α 6=− 1
2ωd

, the solution has the form

H(t) =
e

3
(2+3αωd)

∫

ζ (t) dt

c1+
3(1+2αωd)
(2+3αωd)

∫

e
3

(2+3αωd)

∫

ζ (t) dt
dt
, (2.3.6)

where c1 is the constant of integration. Thus, for a given ζ (t) we have the expressions

for various physical parameters. In the following subsections, we present different vis-

cous HRDE models arises due to the choice of bulk viscous coefficient ζ .

2.3.1 HRDE Model with Constant Bulk Viscosity

In this case, we parameterize the functional form of ζ as ζ = ζ0 = constantby taking

ζ1 = 0 in equation (2.3.4) (hereafter VHRDE1 model). It is the simplest parameteriza-

tions for bulk viscous coefficient. Using this form of ζ into (2.3.6)and simplifying, we

get

H(t) = H0e
3ζ0(t−t0)
(2+3αωd)

[

1+
H0(1+2αωd)

ζ0

{

e
3ζ0(t−t0)
(2+3αωd) −1

}]−1

. (2.3.7)

The scale factor of the Universe a(t), normalized to unity at the present epoch, evolves

with time as

a=

[

1+
H0(1+2αωd)

ζ0

{

e
3ζ0(t−t0)
(2+3αωd) −1

}]

(2+3αωd)
3(1+2αωd)

, (2.3.8)

where ζ0 6= 0 and α 6=−1/2ωd. From equation (2.3.8), we obtained the Hubble param-

eter in terms of scale factor a as

H(a) =
H0

(1+2αωd)

[

ζ0

H0
+

{

(1+2αωd)−
ζ0

H0

}

a
− 3(1+2αωd)

(2+3αωd)

]

. (2.3.9)
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We observe that the model starts from a non-singular state and constant bulk viscous

coefficient gives rise to exponential expansion. As (t−t0)→ 0, the scale factor reduces

to

a→
[

1+
3H0(1+2αωd)

(2+3αωd)
(t− t0)

]

(2+3αωd)
3(1+2αωd)

, (2.3.10)

which shows power-law expansion in early time. In limiting conditions, as (t− t0)→ ∞,

the scale factor tends to a(t)→ e
3ζ0(t−t0)
(2+3αωd) , which corresponds to acceleration similar to

the de Sitter phase, implies that the VHRDE1 model behaves similar to the cosmo-

logical constant model as (t − t0) → ∞. This shows that the Universe has an earlier

deceleration phase followed by an acceleration phase in the later stage of the evolu-

tion. Equation (2.3.8)reveals that the time elapsed since the Big-Bang is

tB = t0+
(2+3αωd)

3ζ0
ln

(

1− ζ0

H0(1+2αωd)

)

. (2.3.11)

Therefore, the Universe begins with a Big-Bang followed by an eternal expansion and

this expansion begins with a decelerated rate followed by an eternal accelerated one.

Hence, the age of the Universe since Big-Bang is,

t0− tB =−(2+3αωd)

3ζ0
ln

(

1− ζ0

H0(1+2αωd)

)

. (2.3.12)

We can calculate the transition between the decelerated-accelerated expansion de-

pending on the value of ζ0. To compute the scale factor where the transition happens,

we take the derivative of ȧ with respect to a using (2.3.9)to give [272]

dȧ
da

=
H0

(1+2αωd)

[

ζ0

H0
−
{

(1+2αωd)−
ζ0

H0

}(

1+3αωd

2+3αωd

)

a
− 3(1+2αωd)

(2+3αωd)

]

. (2.3.13)

Equating (2.3.13)to zero, we get the transition scale factor atr as [272]

atr =

[

(1+3αωd){(1+2αωd)H0−ζ0}
(2+3αωd)ζ0

]

(2+3αωd)
3(1+2αωd)

. (2.3.14)

The corresponding transition redshift ztr , where a= (1+z)−1, is

ztr =

[

(1+3αωd){(1+2αωd)H0−ζ0}
(2+3αωd)ζ0

]− (2+3αωd)
3(1+2αωd) −1. (2.3.15)

From (2.3.14)or (2.3.15), we observe that for ζ0 =
(1+3αωd)H0

3 , the transition from de-

celerated phase to accelerated phase occurs at atr = 1 or ztr = 0, which corresponds
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Figure 2.1: The evolution of scale factor for different values ofζ0 > 0 with fixedα = 0.34 and
ωd =−0.5 in VHRDE1 model.

to the present time of the Universe. When ζ0 → 0, the value of atr tends to infinity in

the future. If we take the observed value of α = 0.34 with H0 = 1,ωd =−0.5, we obtain

ζ0 = 0.16. So, we observe that for 0< ζ0 ≤ 0.16, the scale factor a expands initially with

decelerated rate and with accelerated in late time and for ζ0 > 0.16, a will accelerates

from early time. This can be verified from the evolution of scale factor as shown in

Fig. 2.1. We can see from Fig. 2.1 that as the values of ζ0 increases, the transition

from deceleration to acceleration occurs in past.

Now, the deceleration parameter q is given by

q=
3
{

(1+2αωd)− ζ0
H0

}

2(1+ 3
2αωd)

e
− 3ζ0(t−t0)

2(1+ 3
2αωd) −1. (2.3.16)

Equation (2.3.16) represents the time-dependent DP, which describes the phase

transition at time t = t0, which is time at which the VHRDE1 starts to dominate. The

DP in terms of scale factor a is given by

q(a) =
3(1+2αωd)−3ζ0

(2+3αωd)





(1+2αωd)

{a
3(1+2αωd)
(2+3αωd) −1}ζ0+(1+2αωd)



−1. (2.3.17)

The DP in terms of redshift z can be written as

q(z) =
3(1+2αωd)−3ζ0

(2+3αωd)





(1+2αωd)

{(1+z)
−3(1+2αωd)
(2+3αωd) −1}ζ0+(1+2αωd)



−1. (2.3.18)
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We can observe that for ζ0 = 0, we have DP (2.2.15)for non-viscous HRDE model.

When the bulk viscous parameter and all other parameters are zero, we get q= 1/2,

which corresponds to a decelerating matter-dominated Universe. As (t − t0)→ 0, we

get q→ (1+3αωd)H0−3ζ0
(2+3αωd)H0

. When ζ0 =
(1+3αωd)H0

3 , i.e., at the value of transition of ζ0, we

have q = 0, i.e., marginal inflation occurs. As (t − t0) → ∞, we have q → −1 that ap-

proaches to de Sitter Universe. Thus, DP is decreasing function with a transition from

positive to negative value of q for the value of scale factor atr given in equation (2.3.14).

From (2.3.17), we get DP at present as q0 = q(a= 1) = (1+3αωd)−3ζ0
(2+3αωd)

. It is to be noted

that when ζ0 =
(1+3αωd)H0

3 , we get q0 = 0, i.e., the transition from decelerated phase to

accelerated phase takes place at present. For ζ0 < (1+3αωd)H0/3 we have q0 > 0,

i.e., the decelerated phase in the present and it would enter the accelerating phase

in future. The current q0 < 0 if ζ0 > (1+3αωd)H0/3 we have an accelerated phase at

present time and it entered this epoch at an early stage.

The variation of q with a for two sets (various values of ζ0 and fixed α, and various

Figure 2.2: The evolution of the deceleration parameterq in terms of the scale factora for
different values ofζ0 > 0 with fixedωd =−0.5 andα = 0.34 in VHRDE1 model.

values of α and fixed ζ0) are shown in Fig. 2.2 and Fig. 2.3, respectively. Fig. 2.2

plot the evolution of DP with a for different values of ζ0 and fixed α = 0.34. We can

observe that as the values of ζ0 increases, the transition occurs in early time. We also

observe that for large α, the transition takes place in early time as shown in Fig. 2.3.

We observe that q changes its sign from positive to negative, i.e., shows the transition

from decelerated to accelerated phase in both the figures. It is also observed that

q→−1 in the late time of evolution.
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Figure 2.3: The evolution of the deceleration parameterq in terms of the scale factora for
different values ofα > 0 with fixedωd =−0.5 andζ0 = 0.05 in VHRDE1 model.

Statefinder analysis

In Section 2.2 for the non-viscous case, we find that the statefinder pair is constant

and is not much of use to discriminate with other models. In this section, we present

our analysis to the VHRDE1 model to distinguish it from other DE models. In VHRDE1

model, the statefinder parameter can be obtained as

r = 1+
9
(

ζ0
H0

− (1+2αωd)
)(

1− (1+2αωd)
(2+3αωd)

)

(2+3αωd)
e
−3ζ0(t−t0)
(2+3αωd) +

9
(

ζ0
H0

− (1+2αωd)
)2

(2+3αωd)2 e
−6ζ0(t−t0)
(2+3αωd) ,

(2.3.19)

and

s=

(

ζ0
H0

− (1+2αωd)
)(

1− 1+2αωd
(2+3αωd)

)

(1+ 3
2αωd)

e
−3ζ0(t−t0)
(2+3αωd) +

(

ζ0
H0

− (1+2αωd)
)2

2(1+ 3
2αωd)2

e
−6ζ0(t−t0)
(2+3αωd)

(

(1+2αωd)− ζ0
H0

)

(1+ 3
2αωd)

e
−3ζ0(t−t0)
(2+3αωd) −1

.

(2.3.20)

The above equations show that in the limit (t − t0)→ ∞, the statefinder parameters

{r,s} → {1,0}, which corresponds to the ΛCDM model. Thus, the present model re-

sembles the ΛCDM model in the future. The {r,s} and {r,q}-planes trajectory of the

present model are shown in Fig. 2.4 and Fig. 2.5, respectively for different values of

ζ0 with fixed ωd = −0.5 and α = 0.34. In Fig. 2.4, the fixed points {r,s} = {1,1} and

{r,s}= {1,0} are shown as SCDMmodel and ΛCDM model, respectively.

In Fig. 2.4, the trajectory is divided into two region. In one of the region on left side

of vertical line, the trajectories for large viscous term in {r,s} plane lie in region r > 1,
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Figure 2.4: The evolution of{r,s} in the r −s plane for different values ofζ0 > 0 with fixed
ωd = −0.5 andα = 0.34 in VHRDE1 model . The curves are coinciding with each otherin
Chaplygin gas and quintessence models. The arrows represent the direction of the evolution
of statefinder diagnostic pair with time.

s< 0, a feature similar to the chaplygin gas (CG) model of DE [278]. In other region

of {r,s} plane on the right side of vertical line, the trajectory for small values of ζ0 in

{r,s} plane lie in the region r < 1, s> 0, a feature similar to the quintessence model

(Q) [250, 251]. The arrows in the figure give the direction of the evolution. In other

words, for 0< ζ0 < 0.66, the trajectories starts in quintessence region during early time

and approaches to ΛCDM in late time. However, the trajectories starts from Chaply-

gin gas model if ζ0 > 0.66 and approaches to ΛCDM in late time. Thus, the VHRDE1

model is compatible with quintessence model for small values of ζ0 whereas it is com-

patible with Chaplygin gas model for large values of ζ0. In both cases, the VHRDE1

model resembles to ΛCDM model in late time. The trajectory in both region are co-

inciding for all different values of ζ0. The VHRDE1 model can also be discriminated

from HDE model with event horizon as the infra-red cut-off, in which the r −s evolution

starts from a region r ∼ 1, s∼ 2/3 and end on the ΛCDM point.

Fig. 2.5 shows the trajectory of evolutionary behavior of VHRDE1 model in {r,q}
plane. The trajectories have been plotted for different values of ζ0 with fixed α = 0.34,

ωd = −0.5 and H0 = 1. The SCDMmodel and steady-state (SS) model correspond to

fixed point {r,q}= {1,0.5} and {r,q}= {1,−1}, respectively. It can be seen that there is

a sign change of q from positive to negative in the quintessence region which explains

the recent phase transition from decelerated to accelerated phase. The trajectories
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Figure 2.5: The evolution of{r,q} in the r −q plane for different values ofζ0 > 0 with fixed
ωd =−0.5 andα = 0.34 in VHRDE1 model. The arrows represent the direction of theevolu-
tion pairr −q with time.

show that VHRDE1 models commence evolving from different points for different val-

ues of ζ0 with respect to ΛCDM which starts from SCDMfixed point. In the phantom

region, the evolution of q starts from negative and tends to q=−1 in late time. There-

fore, the VHRDE1 model always converges to SSmodel as ΛCDM, quintessence,

and phantom models in the late-time evolution of the Universe. Thus, the constant

VHRDE1 model behaves quintessence-like and phantom-like in early time and ΛCDM

in the late time of evolution depending upon the value of ζ0.

The above discussion concludes the effect of the viscous term in the HRDE model.

Let us discuss the model from the viewpoint of model parameter α. Fig. 2.6 and Fig.

2.7 show the trajectories in r −s and r −q planes, respectively, for the different values

of α with constant ωd = −0.5, H0 = t0 = 1 and ζ0 = 0.05. The arrows in the diagram

denote the evolution directions of the statefinder trajectories and r −q trajectories. In

Fig. 2.6, we observe that for the fixed value of ζ0, the VHRDE1 model always cor-

responds to the Q model. It may start from the vicinity of SCDM model in the early

time of evolution for some values of α, e.g., α = 0.34. In the late-time of evolution, the

model always converges to ΛCDM model for any values of α .

Fig. 2.7 shows the time evolution of the r −q trajectories in r −q plane. The horizon-

tal line at r = 1 corresponds to the time evolution of the ΛCDM model. The signature

change from positive to negative in q clearly explains the phase transition of the Uni-

verse. The constant VHRDE1 model may start from the vicinity of the SCDM model

({r,q}= {1,0.5}) for some values of α, e.g., α = 0.34. However, the constant VHRDE1
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Figure 2.6: Ther −s trajectories inr −s plane for different values ofα with ωd = −0.5 and
ζ0 = 0.05 in VHRDE1 model. The arrows represent the direction of theevolutions of the
statefinder diagnostic pair with time.

model approaches the SSmodel as the ΛCDM and Q models in the future. Thus,

the VHRDE1 model is compatible with the ΛCDM and Q models with variable model

parameters and constant value of ζ0.

From the above analysis we conclude that our model corresponds to both Q and

CG models for the different values of viscous coefficient ζ0 whereas for the different

values of model parameters α with respect to the fixed value of ζ0, our model only

corresponds to Q model. We can say that the bulk viscous coefficient and model

parameter play the important role in the evolution of the Universe, i.e., they both de-

termine the evolutionary behavior as well as the ultimate fate of the Universe.

OmDiagnostics

As a complementary to {r,s}, a new diagnostic called Om has been proposed by

Sahni et al. [254] as discussed and defined in section 1.12.3 by Eq. (1.12.3), which

helps to distinguish the present matter density contrast Ω0m in different models more

effectively. This is also a geometrical diagnostic that explicitly depends on redshift
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Figure 2.7: Ther −q trajectories inr −q plane for different values ofα with ωd = −0.5 and
ζ0 = 0.05 in VHRDE1 model. The arrows represent the direction of theevolutions with time.

and the Hubble parameter. Using (2.3.9), the value of Om(z) is given by

Om(z) =

[

ζ0
H0

+{(1+2αωd)− ζ0
H0
}(1+z)

3(1+2αωd)
2+3αωd

]2

− (1+2αωd)
2

(1+2αωd)2[(1+z)3−1]
. (2.3.21)

To analyse evolution of the Om(z) due to viscosity effect, we plot the graph of Om(z)

versus redshift z for different values of ζ0 > 0 by fixing the values of α, ωd and H0 as

shown in Fig. 2.8. It is observed that for 0< ζ0 < 0.66, the Om(z) trajectory shows the

negative slope which corresponds to the quintessence model of dark energy and for

ζ0 > 0.66, we observe the positive slope of Om(z) which corresponds to the phantom.

In Fig. 2.9, we plot the Om(z) trajectory with respect to z for different values of α

to see the contribution from this parameter on the evolution with fixed ζ0 = 0.05,ωd =

−0.5 and H0 = 1. We observe that the Om(z) trajectory shows the negative curva-

ture which corresponds to the quintessence model of DE. For the case of z= −1,

Om(z) = 1− ζ 2
0

H2
0(1+2αωd)2

, which is constant, so it will correspond to ΛCDM.

The above analysis from evolution of scale factor, DP, statefinder pair and Om(z), it

is obvious that the constant bulk viscous coefficient ζ0 (or model parameter α) play

an important role in the evolution of the Universe. The Universe shows transition from

decelerated to accelerated phase and for some values of this coefficient the accelera-

tion starts from past. The VHRDE1 model behaves like quintessence for small ζ0 and

Chaplygin gas like for large values of this parameter. However, the model parameters
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Figure 2.8: The evolution ofOm(z) versus the redshiftz for different values ofζ0 > 0 with
ωd =−0.5, α = 0.34 in VHRDE1 model.

Figure 2.9: The evolution ofOm(z) versus the redshiftzfor different values ofα with ζ0=0.05
andωd =−0.5 in VHRDE1 model.

gives only quintessence like model. In both cases, the VHRDE1 model resembles to

ΛCDM model in late time.

2.3.2 HRDE Model with Variable Bulk Viscosity

In this subsection we consider two cases for bulk viscous coefficient: (i) ζ = ζ1H

and (ii) ζ = ζ0+ζ1H.

Case (i): ζ = ζ1H

The parameterized form of ζ = ζ1H can be obtained from equation (2.3.4)by taking
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ζ0 = 0 (hereafter VHRDE2 model. Using this form in (2.3.5)we get

Ḣ +
3(1−ζ1+2αωd)

(2+3αωd)
H2 = 0. (2.3.22)

On solving above equation we get

H =
H0

{

1+
3H0(1−ζ1+2αωd)

(2+3αωd)
(t − t0)

} . (2.3.23)

The scale factor, normalized to unity at present epoch, can be obtained as

a=

{

1+
3H0(1−ζ1+2αωd)

(2+3αωd)
(t− t0)

}

(2+3αωd)
3(1−ζ1+2αωd)

; for ζ1 6= (1+2αωd), α 6=−2/3ωd

(2.3.24)

Equation (2.3.24)shows that the scale factor is of the power-law form. The behavior

of this model is similar to the model as discussed in section 2.2 for non-viscous HRDE

model. The Universe decelerates for ζ1 < (1+ 3αωd)/3, shows marginal inflation if

ζ1 = (1+ 3αωd)/3 and accelerates for ζ1 > (1+ 3αωd)/3. It is to be noted that for

α = 0, the scale factor reduces to a= a0

{

1+
3H0(1−ζ1)

2
(t− t0)

}
2

3(1−ζ1)

, where ζ1 6= 1.

When ζ1 = 0 we recover the usual matter-dominated Universe. For this model the DP

is given by

q=
3(1−ζ1+2αωd)

(2+3αωd)
−1, (2.3.25)

which is constant. The positive or negative value of q depends on ζ1 < (1+3αωd)/3

or ζ1 > (1+3αωd)/3 respectively. We get q= 0 for ζ1 = (1+3αωd)/3.

Now, the statefinder parameter can be evaluated as

r = 1− 9(1−ζ1+2αωd)

2(1+ 3
2αωd)

+
9(1−ζ1+2αωd)

2

2(1+ 3
2αωd)2

(2.3.26)

and

s=
1−ζ1+2αωd

1+ 3
2αωd

. (2.3.27)

The above equations show that in the limit ζ1 → (1+2αωd) the statefinder parame-

ters {r,s}→ {1,0} but there is no such values of parameters which would clearly show

ΛCDM. For ζ1 =
αωd

2 , the VHRDE2 model behaves as SCDM, i.e., {r,s}= {1,1}.
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Case (ii): ζ = ζ0+ζ1H

This parameterized form of ζ is the general form involving the combination of two

terms: constant and function of Hubble parameter (hereafter VHRDE3 model). Using

this general form of bulk viscous coefficient into equation (2.3.5), we get

Ḣ +
3(1−ζ1+2αωd)

(2+3αωd)
H2− 3ζ0

(2+3αωd)
H = 0. (2.3.28)

On solving the above equation, we get

H = H0e
3ζ0(t−t0)
(2+3αωd)

[

1+
H0(1−ζ1+2αωd)

ζ0

{

e
3ζ0(t−t0)
(2+3αωd) −1

}]−1

. (2.3.29)

From above equation, the scale factor, normalized to unity at present epoch, evolves

with time as

a=

[

1+
H0(1−ζ1+2αωd)

ζ0

{

e
3ζ0(t−t0)
(2+3αωd) −1

}]

(2+3αωd)
3(1−ζ1+2αωd)

, (2.3.30)

where ζ0 6= 0 and ζ1 6= (1+2αωd). The Hubble parameter in terms of scale factor a is

given by

H =
H0

(1−ζ1+2αωd)

[

ζ0

H0
+

{

(1−ζ1+2αωd)−
ζ0

H0

}

a
−3(1−ζ1+2αωd)

(2+3αωd)

]

, (2.3.31)

When ζ1 = 0, H reduces to equation (2.3.9)which is the case of constant viscosity.

From (2.3.30), we get exponential form of the scale factor which may show transition

from one phase to other. As (t− t0)→ 0, the scale factor behaves as

a→
[

1+
3H0(1−ζ1+2αωd)(t− t0)

(2+3αωd)

]

(2+3αωd)
3(1−ζ1+2αωd)

, (2.3.32)

which shows power-law expansion in early time. On the other hand, if ζ0 =H0(1−ζ1+

2αωd) or (t − t0)→ ∞, we obtain

a(t) = exp

(

3ζ0(t− t0)
(2+3αωd)

)

. (2.3.33)

This case corresponds the de Sitter Universe which shows accelerated expansion

in the later time of evolution. The derivative of ȧ with respect to a can be obtained
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from (2.3.31), which is given by

dȧ
da

=
H0

(1−ζ1+2αωd)

[

ζ0

H0
−
{

(1−ζ1+2αωd)−
ζ0

H0

}(

1−3ζ1+3αωd

2+3αωd

)

a
− 3(1−ζ1+2αωd)

(2+3αωd)

]

.

(2.3.34)

Equating (2.3.34)to zero to get the transition scale factor atr as

atr =

[

(1−3ζ1+3αωd){(1−ζ1+2αωd)H0−ζ0}
(2+3αωd)ζ0

]

(2+3αωd)
3(1−ζ1+2αωd)

. (2.3.35)

The corresponding transition redshift ztr is given by

ztr =

[

(1−3ζ1+3αωd){(1−ζ1+2αωd)H0−ζ0}
(2+3αωd)ζ0

]− (2+3αωd)
3(1−ζ1+2αωd) −1. (2.3.36)

From (2.3.35)and (2.3.36), we observe that for ζ0+ζ1H0 =
(1+3αωd)H0

3 , the transition

from decelerated phase to accelerated phase occurs at atr = 1 or ztr = 0, which cor-

responds to the present time of the Universe. By considering the observational value

α = 0.34 along with ωd =−0.5, H0 = 1, we get (ζ0+ζ1) = 0.16. A plot of the evolution

of the scale factor is given in Fig. 2.10. Thus, for 0< (ζ0+ζ1) ≤ 0.16 the scale factor

has earlier deceleration phase followed by an acceleration phase in later stage of the

evolution. The transition from the decelerated to accelerated expansion depends on

the viscosity coefficient ζ0 and ζ1 as shown above. For (ζ0+ζ1)> 0.16, the transition

takes place in past of the Universe and the scale factor increases with accelerated

rate forever.

Figure 2.10: Plot ofa versust−t0 for different values ofζ0 andζ1 in the range 0< (ζ0+ζ1)≤
0.16 (the bottom curve) and(ζ0+ζ1) > 0.16 (middle and top curves) with fixedωd = −0.5,
H0 = 1 andα = 0.34 in VHRDE3 model.
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The transition may also be discussed through the evolution of DP. In this case, we

get

q=
3
{

(1−ζ1+2αωd)− ζ0
H0

}

2(1+ 3
2αωd)

e
− 3ζ0(t−t0)

2(1+3
2αωd) −1, (2.3.37)

which is a time-dependent value of DP, which may describe the transition phase of

the Universe. It can be observed that DP must change its sign at t = t0. This time can

be achieved if 3(ζ0+ζ1H0) = {1+3αωd}H0. The sign of q is positive for t < t0 and it is

negative for t > t0. The values of ζ0 and ζ1 can be obtained for a given values of ωd

and α which may be obtained from observation, or vice-versa.

From (2.3.30), the DP in terms of scale factor a is given by

q(a) =
3(1−ζ1+2αωd)−3ζ0

(2+3αωd)





(1−ζ1+2αωd)

{a
3(1−ζ1+2αωd)

(2+3αωd) −1}ζ0+(1−ζ1+2αωd)



−1. (2.3.38)

In terms of red shift z, the above equation becomes

q(z) =
3(1−ζ1+2αωd)−3ζ0

(2+3αωd)





(1−ζ1+2αωd)

{(1+z)
−3(1−ζ1+2αωd)

(2+3αωd) −1}ζ0+(1−ζ1+2αωd)



−1.

(2.3.39)

The variation of q with a for varying ζ0 and ζ1 with constant α and others is shown

in Fig. 2.11. We can observe the sign change from positive to negative in q. It is

to be noted that for (ζ0+ ζ1) < 0.16, the transition takes place in late time and for

(ζ0+ζ1)> 0.16, the transition would occur in very early time. If we take higher values

of (ζ0,ζ1), q is always negative, i.e, the model accelerates forever. It is to be noted

that q→−1 in late times for all cases.

We also plot q versus a in Fig. 2.12 for different model parameter α with fixed ζ0, ζ1

and others to observe the effect of α. In this case, we find that q changes its sign from

positive to negative, i.e., there is transition from decelerated to accelerated phase. It

is found that transition takes place in late time or early depending on the values of

model parameter α.

When all the bulk viscous parameters and model parameter are zero, the DP

q = 1/2, which corresponds to a decelerating matter dominated Universe. However,

when only ζ0 = 0 and ζ1 6= 0, the value of q reduces to (2.3.25)of the case ζ = ζ1H,

and when ζ0 6= 0 and ζ1 = 0, equation (2.3.38)reduces to (2.3.17)of the case ζ = ζ0.
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Figure 2.11: Behavior of the deceleration parameterq in terms of the scale factora for different
values ofζ0 > 0 andζ1 > 0 with fixedωd =−0.5 andα = 0.34 in VHRDE3 model.

Figure 2.12: Behavior of the deceleration parameterq in terms of the scale factora for different
values ofα with fixed ωd =−0.5, ζ0 = 0.05 andζ1 = 0.03 in VHRDE3 model.

The present value of DP corresponding to z= 0 or a= 1 is given by

q0 = q(a= 1) =
3(1−ζ1+2αωd)−3ζ0

(2+3αωd)
−1. (2.3.40)

It is observed that if 3(ζ0+ζ1) = [1+3αωd], the deceleration parameter q= 0. This

implies that the transition into the accelerating phase would occur at the present time.

The current DP q0 < 0 if 3(ζ0+ ζ1) > [1+3αωd], implying that the present Universe

is in the accelerating epoch and it entered this epoch at an early stage. But q0 > 0 if

3(ζ0+ζ1)< [1+3αωd] implying that the present Universe is decelerating and it will be

entering the accelerating phase at a future time. For the observational value α = 0.34

with ωd = −0.5 and H0 = 1, we get (ζ0+ ζ1) = 0.16 which gives q0 = 0. Thus for this

value set, the transition into the accelerating phase would occur at present time. If

(ζ0+ ζ1) > 0.16, q0 < 0, i.e., the Universe is in an accelerating phase and it entered
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this epoch at an early stage. If (ζ0+ζ1)< 0.16, q0 > 0, i.e., the Universe is in deceler-

ating epoch and it will enter into the accelerated phase in the future. From the above

discussion, we say that both viscous coefficients and model parameters have their

own role in the evolution of the Universe. Some values of the bulk viscous term give

the accelerated phase from the beginning and continue to be accelerated in late time.

Statefinder analysis

The statefinder parameters {r,s} can be obtained as

r =1+
9
(

ζ0
H0

− (1−ζ1+2αωd)
)(

1− (1−ζ1+2αωd)
(2+3αωd)

)

(2+3αωd)
e
−3ζ0(t−t0)
(2+3αωd) +

9
(

ζ0
H0

− (1−ζ1+2αωd)
)2

(2+3αωd)2 e
−6ζ0(t−t0)
(2+3αωd)

(2.3.41)

and

s=

2
(

ζ0
H0

− (1−ζ1+2αωd)
)(

1− 1−ζ1+2αωd
(2+3αωd)

)

(2+3αωd)e
3ζ0(t−t0)
(2+3αωd)

+
2
(

ζ0
H0

− (1−ζ1+2αωd)
)2

(2+3αωd)2e
6ζ0(t−t0)
(2+3αωd)

2
(

(1−ζ1+2αωd)− ζ0
H0

)

(2+3αωd)e
3ζ0(t−t0)
(2+3αωd)

−1

. (2.3.42)

The above equations show that in the limit (t − t0)→ ∞, the statefinder parameters

{r,s} → {1,0}, which corresponds to the ΛCDM model. Let us observe the effect of

ζ0 and ζ1 in VHRDE3 model. Fig. 2.13 shows that {r,s} trajectory is divided into

two region, namely in r < 1 and s> 0 as we know this is the region of quintessence

(Q) like model [250] and other region is on left side of vertical line which is r > 1 and

s< 0, known as Chaplygin gas model (CG) [278]. The model behaves as Q-model for

0< (ζ0+ζ1)≤ 0.66 and CG model for (ζ0+ζ1)> 0.66. We have assumed H0 = t0 = 1,

α = 0.34 and ωd =−0.5. The arrows show the direction of the evolution of the model.

The trajectory in both regions converge to ΛCDM model in late time of the evolution.

Fig. 2.14 plot the time evolution of {r,q} for different combinations of (ζ0,ζ1) with

H0 = t0 = 1, α = 0.34and ωd =−0.5 The fixed points {r,q} ={1,0.5} and {r,q} ={1,−1}
represent the SCDM and SSmodels, respectively. It can be seen that q changes its

sign from positive to negative showing the transition from decelerated to accelerated

phase. In this figure also, the region is divided into two parts, namely quintessence

and phantom regions. The VHRDE3 model starts from both regions depending on the

values of (ζ0,ζ1). But, it always converges to SSmodel as ΛCDM, Q and CG models
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Figure 2.13: Ther−s trajectories for different values ofζ0> 0 andζ1> 0 with fixedα = 0.34,
ωd =−0.5 in VHRDE3 model. The arrows represent the directions of theevolutions of{r,s}
with time.

converge in late time. Thus, the bulk viscosity is able to behave like Q and CG models

for different combinations of ζ0 and ζ1. It also explain the phase transition of the Uni-

verse.

Let us see the effect of model parameter α with fixed bulk viscous coefficient and

others. Fig. 2.15 and Fig. 2.16 represent the r −s and r −q trajectories for different

values of α with fixed ζ0 = 0.05, ζ1 = 0.03 and ωd =−0.5. The evolutionary directions

in both the figures are shown by arrows. Fig. 2.15 shows that the trajectory lies in the

region r < 1 and s> 0 which behaves like the Q model. Some trajectory for α starts

from the vicinity of SCDM in early evolution. However, all the trajectories approach to

ΛCDM in late time. The r −q trajectory is shown in Fig. 2.16 for various values of

α by fixing other parameters. The sign of q changes from positive to negative which

shows the transition from decelerated to accelerated phase. In late time the VHRDE3

model approaches to SSmodel like ΛCDM and Q models. Thus, we observe that the

VHRDE3 model is compatible with Q and CGmodels in early time with various viscous

coefficients with fixed model parameter whereas the VHRDE3 model behaves like Q

model in early time and SSmodel in late time.
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Figure 2.14: Ther−q trajectories for different values ofζ0> 0 andζ1> 0 with fixedα = 0.34,
ωd =−0.5 in VHRDE3 model. The arrows represent the directions of theevolutions of{r,q}
with time.

Om Diagnostic :

Using the value of the H(z) from equation (2.3.31), we get

Om(z) =

[

ζ0
H0

+{(1−ζ1+2αωd)− ζ0
H0
}(1+z)

3(1−ζ1+2αωd)
2+3αωd

]2

− (1−ζ1+2αωd)
2

(1−ζ1+2αωd)2[(1+z)3−1]
. (2.3.43)

Fig. 2.17 shows the Om(z) trajectory for different values of pair (ζ0,ζ1) with fixed

α = 0.34, ωd = −0.5. For 0< (ζ0+ζ1) < 0.66, the trajectory represents negative cur-

vature, i.e., the VHRDE3 model behaves as quintessence like. The trajectory shows

positive curvature, i.e., phantom like for (ζ0+ζ1) > 0.66. As z→−1, i.e., in late time

we get Om(z) = 1− ζ 2
0

H2
0(1−ζ1+2αωd)2

, which is constant value. This means that VHRDE3

model corresponds to ΛCDM for z→−1.

In Fig. 2.18, we plot the Om(z) trajectory for different values of α with fixed

(ζ0,ζ1) = (0.05,0.03). It is observed that we get negative curvature for any values

of model parameter α. Therefore, the model shows quintessence like behavior for

varying parameter α. Hence we conclude that the bulk viscous RDE model behaves

quintessence and phantom like depending on the quantities of viscous term for fixed

α whereas it behaves quintessence like for varying model parameter by fixing viscous

term. Therefore, both the factors effect the evolution of the Universe.
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Figure 2.15: Ther−s trajectories inr−splane for different values ofα with ωd =−0.5, ζ0 =
0.05 andζ1 = 0.03 in VHRDE3 model. The arrows represent the direction of theevolution of
statefinder diagnostic pair with time.

2.4 Conclusion

We have discussed the behaviors of some viscous HDRE models on the scale factor,

deceleration parameter, the statefinder pair, and Om diagnostics for the purpose to

mimic HRDE characters, with the hope to demonstrate that cosmic viscosity can also

play the role as a possible candidate for DE. For this purpose, we have discussed

non-viscous and viscous HRDE models. In what follows, we summarize the results

obtained in both cases one by one.

In the non-viscous HRDE model, we have calculated the relevant cosmological pa-

rameters and discussed their evolutions. We have obtained the power-law form of

scale factor and explained the evolution by putting the constraint on the physical pa-

rameters. This power-law form gives a constant deceleration parameter which does

not describe the phase transition. The model decelerates or accelerates depending

on the constraint of the model. The statefinder pair is also constant and it does not

discriminate with ΛCDM or SCDM. There are no such values of parameters that would

clearly show ΛCDM. It has been found that the model approaches {r,s} → {1,0} in

the limit α → −1
2ωd

, but this is nonphysical as the scale factor does not allow this value

to exist.
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Figure 2.16: Ther−q trajectories inr−q plane for different values ofα with ωd =−0.5,ζ0 =
0.05 andζ1 = 0.03 in VHRDE3 model. The arrows represent the direction of theevolution of
the pair{r,q} with time.

In section 2.3, we have explored the HRDE model with different forms of bulk viscos-

ity, namely ζ = ζ0, ζ = ζ1H and ζ = ζ0+ζ1H to observe whether the bulk viscosity can

accelerate the Universe and hence possible candidate of DE. Let us discuss these

three cases with their physical significance.

In subsection 2.3.1, we have discussed the viscous HRDE model with a constant

bulk viscous coefficient (VHRDE1 model). We have found the expression of the Hub-

ble parameter in terms of the scale factor. The exact solution of scale factor in terms

of cosmic time t is found which is in the exponential form. In the early time when

(t − t0)→ 0, the scale factor gives power-law form which shows that the model decel-

erates and as (t− t0)→ ∞, it accelerates exponentially. This shows that the VHRDE1

model has an earlier deceleration phase followed by an accelerated phase in the late

time of evolution. The time elapsed and age of the Universe since the Big-Bang have

been calculated. We have also calculated the scale factor atr and corresponding red-

shift ztr , where the transition takes place. We have observed that for 3ζ0 = (1+3αωd),

the transition from decelerated phase to accelerated phase occurs at atr = 1 or ztr = 0.

We have calculated the range in which the VHRDE1 model shows different expansion

history. For 0< ζ0 ≤ 0.16, the scale factor expands initially with decelerated rate and

then with an accelerated rate in late time. As ζ0 > 0.16, the scale factor accelerates

too early and expands as de Sitter-like model as shown in Fig. 2.1. We have calcu-

lated the deceleration parameter in terms of t as well as in a, which is not constant.
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Figure 2.17: The evolution ofOm(z) versus the redshiftz for different values ofζ0 > 0 and
ζ1 > 0 with ωd =−0.5, α = 0.34 in VHRDE3 model.

Figure 2.18: The evolution ofOm(z) versus the redshiftz for different values ofα with ζ0 =
0.05,ζ1 = 0.03 andωd =−0.5 in VHRDE3 model.

This explains the phase transition of the Universe. We have found the present q0 at

atr = 1 from where the transition from deceleration to acceleration begins at present.

We have plotted the evolution of q versus a in Fig. 2.2 for different values of ζ0 with

fixed α and in Fig. 2.3 for different values of α with fixed ζ0. The sign of q changes

from positive to negative depending on ζ0 or α. This means that the VHRDE1 model

shows a transition from decelerated to accelerated phase in some cases early or late

depending on the values of ζ0 or α.

To discriminate the VHRDE1 model with the existing DE models, we have consid-

ered two independent geometrical diagnostics, namely statefinder pair and Om anal-

ysis. Let us first discuss the result obtained in the statefinder pair. We have plotted

the trajectories of {r,s} and {r,q} in r − s and r −q planes, respectively for different

values of ζ0 with fixed α as shown in Fig. 2.4 and Fig. 2.5. The present model re-
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sembles to ΛCDM model as (t − t0)→ ∞, the {r,s} → {1,0}. The region of r −s plane

is divided in two regions as r < 1, s> 0 and r > 1, s< 0. The first region describes

the quintessence region whereas the second region left to vertical line corresponds

to the Chaplygin gas. We see that the evolution starts in both the region depend-

ing on the small or large values of ζ0, but in late time it approaches ΛCDM. This

VHRDE1 model also discriminates from viscous Ricci dark energy [107] where the

value of s is constant. It also discriminates from the HDE model with event horizon as

an infra-red cut-off. Fig. 2.5 shows that q changes its sign from positive to negative.

The plane r −q is divided into two regions, namely quintessence and phantom. The

viscous HRDE with constant bulk viscous coefficient behaves quintessence-like and

phantom-like in early time and resembles SSin late time. We have also discussed

the r − s and r −q with different values of model parameter α with fixed ζ0. In r − s

plane the evolution starts from quintessence region (r < 1, s> 0) during early time and

approaches to {r,s}= {1,0} in late time. In the r −q plane, the trajectory evolves from

the region of SCDM, some may start from the vicinity of SCDMand approaches to SS

model in late time as ΛCDM approaches to SSthrough SCDM.

We have studied Om diagnostic due to viscosity by plotting the trajectory in Om−z

plane in Fig. 2.8 for different values of ζ0 with fixed α = 0.34. It is observed that for

0< ζ0 < 0.66, the Om(z) trajectory shows the negative slope which corresponds to that

VHRDE1 model behaves as quintessence, and for ζ0 > 0.66, we observe the positive

slope of Om(z) which corresponds that VHRDE1 model behaves as the phantom. In

Fig. 2.9, the trajectory of Om has been plotted for different values of model parameter

α for fixed ζ0. In this case, we have found only the negative curvature showing the

behavior of quintessence.

In subsection 2.3.2, we have studied two case: ζ = ζ1H (VHRDE2 model) and

ζ = ζ0+ζ1H (VHRDE3 model). In the case of the VHRDE2 model, we get a power-

law form of expansion of the Universe similar to the non-viscous case in section 2.2.

The DP is constant which does not show the transition of the Universe. The statefinder

pair is also constant. In the case of the VHRDE3 model, we have obtained an expo-

nential form of scale factor which shows that the Universe starts from a finite volume

and expands exponentially. At the beginning as (t − t0)→ 0, the scale factor expands

with power-law form, i.e., with decelerated phase and in late time when (t − t0)→ ∞,

it expands like de Sitter, i.e., with accelerated rate. We have calculated the transi-

tion of scale factor and redshift and found the value of (ζ0+ζ1H) where the transition

takes place at present time. An evolutionary graph of the scale factor is plotted in Fig.
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2.10, which shows that for 0< (ζ0+ζ1)≤ 0.16 the scale factor has an earlier deceler-

ation phase followed by an acceleration phase in the later stage of the evolution. For

(ζ0+ ζ1) > 0.16, the transition takes place in the past of the Universe and the scale

factor increases with accelerated rate forever.

The transition has also been discussed by explaining DP in terms of t, a, and z. The

DP is exponentially time-dependent which shows phase transition. An evolutionary

graph of DP is plotted in q−a plane in Fig. 2.11 for different values of (ζ0,ζ1) with

fixed α, where it shows sign change from positive to negative. It is to be noted that

for (ζ0+ζ1) < 0.16, the transition takes place in late time and for (ζ0+ζ1) > 0.16, the

transition would occur in very early time. For (ζ0+ζ1) = 0.16, the transition occurs at

present time. If we take higher values of (ζ0,ζ1), q is always negative, i.e, the model

accelerates forever. It is to be noted that q →−1 in late time for all cases. We have

also plotted q versus a in Fig. 2.12 for different values of α with fixed ζ0 and ζ1. It

is found that transition takes place in late time or early depending on the values of

model parameter α. We have also calculated the current value of q and discussed the

transition phase in detail in subsection 2.3.2.

At last we have discussed the statefinder and Om diagnostics for VHRDE3 mod-

els when the viscous coefficient is in the form of ζ = ζ0+ ζ1H. To discriminate with

other DE models we have plotted r − s and r − q trajectories in Fig. 2.13 and Fig.

2.14. As discussed in subsection 2.3.2, a detailed comparison has been carried out

and found that the viscous HRDE model behaves quintessence like for small pair of

(ζ0,ζ1) whereas it behaves Chaplygin gas like for large (ζ0,ζ1). The model resembles

ΛCDM in late time from both models. Similarly, in r−q plane, the trajectory starts from

positive q and ends to SSmodel at a late time. Similar behavior can be observed from

phantom side for large (ζ0,ζ1). We have also plotted r −s and r −q as shown in Fig.

2.15 and Fig. 2.16 for different values of α with fixed ζ0 and ζ1 to observe the effect of

model parameter. The model starts from quintessence in early time and approaches

to ΛCDM in late time. In r −q plane, the sign of q changes from positive to negative

which shows the transition from decelerated to accelerated phase. In late time the

VHRDE3 model approaches to SSmodel like ΛCDM and Q models.

We have calculated the Om(z) for ζ = ζ0+ζ1H and analyzed the nature of Om(z).

The trajectory in Fig. 2.17 has positive or negative curvature showing quintessence or

phantom-like depending on the choices of pair (ζ0,ζ1). However, if we vary α by fixing

ζ0 and ζ1, we get only negative curvature and the model behaves like quintessence.

In concluding remarks, we can say that bulk viscosity affects the evolution of the Uni-
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verse. The model shows the transition from decelerated phase to accelerated phase

due to the presence of bulk viscous term. The viscous HRDE model is compatible

with quintessence and Chaplygin gas-like model in early for small viscous values and

approaches to ΛCDM in late time. This work is totally different from the work done

by Feng for viscous Ricci dark energy [107] in which the parameter s of statefinder

pair is constant but here we have obtained a curved trajectory. It also discriminates

from the HDE model with event horizon [278]. In this model, the model parameter α

also plays an important role in the evolution of the Universe and we have observed

that the viscous HRDE model is compatible with quintessence like in early time and

ΛCDM in late time. It is to be noted that this work gives good consistent results with

bulk viscosity.

****************



Chapter 3

Holographic Ricci Dark Energy with Bulk

Viscosity in f (R,T) Gravity

In this chapter 1, we extend the study of previous chapter in the modified f (R,T)

gravity theory within the framework of a flat FLRW model with bulk viscosity. The

exact solution of the field equations is obtained by assuming constant and variable

bulk viscous coefficients. Further, we assume the form of f (R,T) = R+λT, where λ

is a constant. We find the scale factor and deceleration parameter, and classify all

possible evolution of the Universe. The behaviors concerning the cosmic expansion

depend on the coupling parameter of f (R,T) and bulk viscous term. The physical and

geometrical significance of the models is studied in detail. We analyze the time evo-

lution of the total entropy and generalized second law of thermodynamics of viscous

HRDE model in f (R,T) theory inside the apparent horizon.

1Chapter 3 is based ontwo research papers entitled “Holographic Ricci dark energy with constant bulk viscos-
ity in f (R,T) gravity,Gravitation and Cosmology25, 58 (2019)” and “Viscous Ricci dark energy and generalized
second law of thermodynamics in modifiedf (R,T) gravity,Modern Physics Letters A33, 1850225 (2018)”.

79



80

3.1 Introduction

In recent years, various modified gravity theories have been proposed: some of them

are f (R) theories in which the Ricci scalar R is replaced by a general function f (R).

This theory is consistent with the observations [139,279]. Harko et al. [161] proposed

a new modified theory known as f (R,T) gravity theory, where R is the Ricci Scalar and

T stands for the trace of the energy-momentum tensor. This modified theory presents

a maximal coupling between geometry and matter. A brief introduction about mod-

ified f (R,T) gravity theory has already been discussed in Sect.1.8.2 of Chapter 1.

Many authors [171,173,176,180,180,199,280–282,292–294] have studied modified

f (R,T) theory in different context to explain early and late time evolution of the Uni-

verse. Harko and Lobo [295] have reviewed a plethora of modified theories of gravity

with generalized curvature-matter couplings. Chattopadhyay [125] has studied the

HRDE model in modified f (R,T) gravity theory. It is worth considering that the modi-

fied theories have the corresponding description in the fluid-like form, and the study of

HRDE viscous fluids is one of the easiest ways to understand some general features

of such a kind of alternative theory. Therefore, our aim is to study the HRDE model

with bulk viscosity in modified f (R,T) gravity theory to explain the accelerated expan-

sion of the Universe.

Singh and Kumar [198] have studied a cosmological model with bulk viscosity in

modified f (R,T) gravity theory. Here, we have investigated the dynamics of the vis-

cous HRDE model in modified f (R,T) gravity. We have considered that the Universe

is filled with pressureless dark matter and viscous HRDE. We have explored the effect

of bulk viscosity in explaining the early and late time acceleration of the Universe by

assuming the bulk viscous coefficient ζ to be of the form ζ = ζ0+ζ1H, i.e., proportional

to the velocity of the expansion of the Universe. The exact solution of the field equa-

tions has been obtained by assuming the simplest form of f (R,T) = R+λT, where λ

is a constant, with constant and variable bulk viscous coefficients. We have discussed

the expansion history of the Universe for all possible scenarios depending upon the

value of model parameter α and under the constraints on ζ . We have discussed the

behavior of the deceleration parameter for various ranges of λ and constraints on ζ .

We have discussed the presence of finite-time singularity, like Big-Rip. We have also

obtained the statefinder pair and Om to discriminate our model with other existing

DE models. We have also studied the validity of the generalized second law of ther-
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modynamics for a viscous HRDE (VHRDE) in a Universe enveloped by the apparent

horizon.

Chapter 3 has been organized as follows: In Section 3.2, we have presented the

field equations of the VHRDE model in modified f (R,T) gravity theory. Subsection

3.2.1 have presented the solution and physical and geometrical interpretation of the

VHRDE model with the constant bulk viscous coefficient. In Subsection 3.2.2, we

have discussed the VHRDE model with variable bulk viscous coefficient in f (R,T)

gravity. We have also discussed the evolution of the cosmological parameters in de-

tail. The thermodynamical analysis of the model has also been studied. The main

results of both models have been summarized in Section 3.3.

3.2 Viscous HRDE Model in f (R,T) Gravity

Let us consider a homogeneous and isotropic flat FLRW metric defined in equation

(2.2.1). We assume that the Universe is filled with pressureless DM (excluding bary-

onic matter) and viscous HRDE. The existence of viscous fluid leads to modify the

perfect fluid energy-momentum tensor which is given by (2.3.1).

The field equations of modified f (R,T) theory is given by

fR(R,T)Rµν −
1
2

f (R,T)gµν +(gµν�−▽µ▽ν) fR(R,T) = Tµν − fT(R,T)(Tµν +⊖µν),

(3.2.1)

where fR = ∂ f
∂R, fT = ∂ f

∂T . Here � ≡ ▽µ▽µ is the d’Alembert operator and ▽µ is the

covariant derivative. The tensor ⊖µν is defined as ⊖µν =−2Tµν − pgµν .

Assuming the ansatz for the function f (R,T) as f (R,T) = R+ f (T), where f (T) is an

arbitrary function of T. We assume the simple form of f (T) = λT, where λ is an arbi-

trary constant [161]. Such a functional form for f (R,T) has been broadly investigated

and resulted in well-behaved cosmological models. Now, the field equations (3.2.1)

reduce to

Rµν −
1
2

Rgµν = Tµν +λ (Tµν + pgµν)+
1
2

λTgµν . (3.2.2)

When the effective pressure is considered in f (R,T) theory, the matter Lagrangian

is Lm =−p̃d in place of Lm = −p. The tensor ⊖µν modifies to ⊖µν =−2Tµν − p̃dgµν ,

where the trace has now the form of T = ρm+ρd−3p̃d, where p̃d = pd−3ζH.

Using line element (2.2.1)and energy-momentum tensor (2.3.1), the field equations
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(3.2.2)yield

3H2 = ρm+ρd+λ (ρm+ρd+ pd −3Hζ )+
1
2

λT, (3.2.3)

2Ḣ +3H2 =−pd +3Hζ +
1
2

λT. (3.2.4)

If an equation of state (EoS) connecting ρd and pd is chosen in the form pd = ωdρd,

where ωd is the EoS parameter. From equations (3.2.3)and (3.2.4), we get a single

evolution equation for H as

2Ḣ +(1+λ )[ρm+(1+ωd)ρd]−3(1+λ )ζH = 0. (3.2.5)

Using the value of ρd given in (2.3.4)into (3.2.3), we get

ρm =
3

(2+3λ )

[

(λαωd −3λα −2α)Ḣ +2(1−2α −3λα +λαωd)H
2−λζH

]

. (3.2.6)

Using the values of ρm and ρd from equations (3.2.6) and (2.3.4), respectively into

equation (3.2.5), we get

Ḣ + l1l2H2− (1+2λ )l1ζH = 0, (3.2.7)

where l1 = 3(1+λ )/[2+3λ +3α(1+λ )(1+2λ )ωd] and l2 = 1+2αωd+4λαωd.

Let us consider the bulk viscosity [192,273,277] in the form,

ζ = ζ0+ζ1H, (3.2.8)

where ζ0 and ζ1 are positive constants. We define the dimensionless bulk viscous

parameters ξ0, ξ1 and total dimensionless viscous parameter ξ as,

ξ =
ζ
H0

, ξ0 =
ζ0

H0
, ξ1 = ζ1, (3.2.9)

where H0 is the current value of Hubble parameter. Using the above transformation,

we obtain the dimensionless form of bulk viscosity from (3.2.8),

ξ = ξ0+ξ1h, (3.2.10)
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where h= H
H0

is the dimensionless Hubble parameter. Using the above dimensionless

quantities, we obtain a dimensionless equation from (3.2.7)as

h′+ l1l2h− (1+2λ )l1ξ = 0. (3.2.11)

where ′ denote the differentiation with respect to conformal time ln a. In the following

subsections, we consider two different cases of ξ to solve equation (3.2.11).

3.2.1 HRDE Model with Constant Bulk Viscosity

In this section, we assume the bulk viscous coefficient as a constant, i.e., ξ = ξ0 =

constant(hereafter VHRDE4 model).

Solving (3.2.11)with ξ = ξ0, we get

h(a) =
(1+2λ )l1ξ0

l1l2
+
(

1− (1+2λ )l1ξ0

l1l2

)( a
a0

)−l1l2
(3.2.12)

where l1l2 6= 0. On integration of equation (3.2.12), we get the scale factor,

a(t) =

[

1+
l2

(1+2λ )ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1
)

]
1

l1l2

. (3.2.13)

It is observed that the constant bulk viscous coefficient gives rise to exponential ex-

pansion. We can observe the phase transition in the evolution of the Universe. In

early time, the scale factor can be approximated as

a(t)→
[

1+ l1l2H0(t − t0)
]

1
l1l2 , (3.2.14)

which is the power-law expression. In limiting conditions, as (t − t0) → ∞, the scale

factor behaves as

a(t)→ exp
[

(1+2λ )l1ξ0H0(t − t0)
]

(3.2.15)

which corresponds to acceleration similar to the de Sitter phase, implies that the bulk

viscous dark energy behaves similar to the cosmological constant model. This shows

that the Universe has an earlier deceleration phase followed by an acceleration phase

in the later stage of the evolution.

Fig. 3.1 shows the behavior of scale factor with H0(t − t0) for the values of model

parameter α = 0.34 [117], ωd =−0.5 and λ = 0.06. We can also assume the negative
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non-viscous
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Figure 3.1: The scale factor evolution with respect toH0(t − t0) for α = 0.34,ωd =−0.5 and
λ = 0.06 in VHRDE4 model. The dots on each curve denotes the transition time.

value of λ , but the evolution of the scale factor would be similar. The value of the

scale factor at which the transition from the decelerated to the accelerated expansion

occur, is depend on the bulk viscosity coefficient ξ0.

The Hubble parameter in terms of cosmic time t can be obtained as

H(t) =
H0e(1+2λ )l1ξ0H0(t−t0)

[

1+ l2
(1+2λ )ξ0

{

e(1+2λ )l1ξ0H0(t−t0)−1
}

] , (3.2.16)

Taking derivative of ȧ in (3.2.12)with respect to a, to get

dȧ
da

= H0

[(1+2λ )ξ0

l2
+

(

1− (1+2λ )ξ0

l2

)

(1− l1l2)a
−l1l2

]

(3.2.17)

Equating (3.2.17)to zero, we can obtain the transition scale factor atr , which is given

by

atr =
[ (1+2λ )l1ξ0

(l1l2−1)[l1l2− (1+2λ )l1ξ0]

]− 1
l1l2 , (3.2.18)

Using the relation a= (1+z)−1, where z is the redshift, we can obtain the correspond-

ing transition redshift ztr as

ztr =
[ (1+2λ )l1ξ0

(l1l2−1)[l1l2− (1+2λ )l1ξ0]

]
1

l1l2 −1 (3.2.19)

From (3.2.18)and (3.2.19), we observe that for ξ0 =
1+3(1+λ )(1+2λ )αωd

3(1+λ )(1+2λ ) , the transition

from decelerated phase to accelerated phase occurs at atr = 1 or ztr = 0, which corre-

sponds to the present time of the Universe. Especially, substituting the observational

values of model parameter α = 0.34 along with ωd = −0.5, we get the present value
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of ξ0 = 0.11 for λ = 0.06 and ξ0 = 0.233 for λ = −0.06. For ξ0 = 0.11, the transition

takes place at present time and for ξ0 > 0.11, it occurs at early time. For ξ0 < 0.11, the

scale factor has a deceleration phase followed by an accelerated phase in late time

as shown in Fig. 3.1. The first trajectory of a is for non-viscous HRDE model, i.e.,

ξ0 = 0.

Now, the second order derivative of (3.2.13)with respect to t can be obtain as

d2a
dt2

= H2
0e(1+2λ )l1ξ0H0(t−t0)

[

e(1+2λ )l1ξ0H0(t−t0)− l1l2+(1+2λ )l1ξ0

]

×
[

1+
l2

(1+2λ )ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1
)

]
1

l1l2
−2

, (3.2.20)

Equating (3.2.20) to zero to get the transition cosmic time, ttr from decelerated to

accelerated epochs, which is equals to

ttr = t0+
1

(1+2λ )l1ξ0H0
ln

{

l1l2− (1+2λ )l1ξ0

}

. (3.2.21)

In the absence of bulk viscosity, i.e., ξ = 0, one can obtain the scale factor from

(3.2.7)as

a(t) =
[

1+ l1 l2 H0 (t− t0)
]

1
l1 l2 . (3.2.22)

We observe that the scale factor evolves according to power-law form, i.e., a(t) ∝ tm

with m= [2+3λ +3α(1+ λ )(1+2λ )ωd]/3(1+ λ )(1+2αωd + 4λαωd). The Universe

decelerates for m< 1, i.e., 1+3α(1+λ )(1+2λ )ωd > 0 and accelerates for m> 1, i.e.,

1+ 3α(1+ λ )(1+ 2λ )ωd < 0. The Universe shows the marginal inflation for m= 1,

i.e., 1+3α(1+λ )(1+2λ )ωd = 0. Equation (3.2.22)shows that when α = 0, i.e., in the

absence of HRDE, the scale factor reduces to a(t) =
[

1+ 3(1+λ )H0
(2+3λ ) (t − t0)

]

(2+3λ )
3(1+λ ) . In the

absence of parameter λ , we obtain the case of matter-dominated phase in general

relativity as the scale factor becomes a(t) =
[

1+ 3H0
2 (t − t0)

]
2
3
.

Deceleration parameter

The decelerated or accelerated expansion of the Universe is characterized by the

deceleration parameter (DP) q, which is calculated as

q(t) =−1+
{

l1l2− (1+2λ )l1ξ0

}

e−(1+2λ )l1ξ0H0(t−t0). (3.2.23)
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Table 3.1: Variation ofq for ωd =−0.5, α = 0.34

λ Constraints onξ0 q Evolution of the Universe

λ > 2.1277 For allξ0 > 0 Positive Decelerated expansion
0.272≤ λ ≤ 2.1277 For allξ0 > 0 Negative Accelerated expansion

−0.5< λ < 0.272 0< ξ0 <
1−0.51(1+λ )(1+2λ )

3(1+λ )(1+2λ ) +ve to−ve Transition from dec. to acc.

ξ0 ≥ 1−0.51(1+λ )(1+2λ )
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.6865≤ λ ≤−0.5 For allξ0 > 0 Positive Decelerated expansion
−1≤ λ <−0.6865 For allξ0 > 0 Negative Accelerated expansion

−1.7712≤ λ <−1 0< ξ0 <
1−0.51(1+λ )(1+2λ )

3(1+λ )(1+2λ ) −ve to+ve Transition from acc. to dec.

ξ0 ≥ 1−0.51(1+λ )(1+2λ )
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.7712 For allξ0 > 0 Positive Decelerated expansion

The above equation shows that the deceleration parameter is time-dependent, which

may describe the phase transition of the Universe. In the non-viscous HDRE model,

we get q = (l1 l2 − 1), which is constant throughout the evolution of the Universe.

When all parameters are zero, we obtains the matter-dominated Universe with null

bulk viscosity. As (t − t0) → ∞, we find that q → −1. The model shows late time

acceleration.

In terms of the scale factor, Eq. (3.2.23)can be written as

q(a) =−1+
[l1l2− (1+2λ )l1ξ0]

[

1+ (1+2λ )ξ0
l2

(al1l2 −1)
] , (3.2.24)

whereas, in terms of redshift z, it can be obtained as

q(z) =−1+
[l1l2− (1+2λ )l1ξ0]

[

1+ (1+2λ )ξ0
l2

((1+z)−l1l2 −1)
] . (3.2.25)

For z= 0 or a= 1, we get the present value of q as

q0 =−1+[l1l2− (1+2λ )l1ξ0]. (3.2.26)

Tables 3.1–3.3 summarize the behavior of q for ωd =−0.5, ωd =−1 and ωd =−1.215

with α = 0.34, respectively. The behavior of q and evolution have been observed for

different ranges of λ , which put the constraints on ξ0. We observe that the Universe

accelerates, decelerates and shows phase transition for various ranges of λ and a

suitable constraints on ξ0.
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Table 3.2: Variation ofq for ωd =−1, α = 0.34

λ Constraints onξ0 q Evolution of the Universe

λ > 0.6785 For allξ0 > 0 Positive Decelerated expansion
0≤ λ ≤ 0.6785 For allξ0 > 0 Negative Accelerated expansion

−0.5< λ < 0 0< ξ0 <
1−1.02(1+λ )(1+2λ )

3(1+λ )(1+2λ ) +ve to−ve Transition from dec. to acc.

ξ0 ≥ 1−1.02(1+λ )(1+2λ )
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.708≤ λ ≤−0.5 For allξ0 > 0 Positive Decelerated expansion
−1≤ λ <−0.708 For allξ0 > 0 Negative Accelerated expansion

−1.493≤ λ <−1 0< ξ0 <
1−1.02(1+λ )(1+2λ )

3(1+λ )(1+2λ ) −ve to+ve Transition from acc. to dec.

ξ0 ≥ 1−1.1055(1+λ )(1+2λ )
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.493 For allξ0 > 0 Positive Decelerated expansion

Table 3.3: Variation ofq for ωd =−1.215,α = 0.34

λ Constraints onξ0 q Evolution of the Universe

λ ≥ 0.4280 For allξ0 > 0 Positive Decelerated expansion
−0.067≤ λ < 0.4280 For allξ0 > 0 Negative Accelerated expansion

−0.5< λ <−0.067 0< ξ0 <
1−1.239(1+λ )(1+2λ )

3(1+λ )(1+2λ ) +ve to−ve Transition from dec. to acc.

ξ0 ≥ 1−1.239(1+λ )(1+2λ )
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.7174≤ λ ≤−0.5 For allξ0 > 0 Positive Decelerated expansion
−1≤ λ <−0.7174 For allξ0 > 0 Negative Accelerated expansion

−1.4326≤ λ <−1 0< ξ0 <
1−1.239(1+λ )(1+2λ )

3(1+λ )(1+2λ ) −ve to+ve Transition from acc. to dec.

ξ0 ≥ 1−1.239(1+λ )(1+2λ )
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.4326 For allξ0 > 0 Positive Decelerated expansion

Statefinder diagnostic

Let us investigate the statefinder diagnostic for viscous HRDE model. In this case, we

get

r = 1+
(l1l2−3)(l1l2− (1+2λ )l1ξ0)

e(1+2λ )l1ξ0H0(t−t0)
+

(l1l2− (1+2λ )l1ξ0)
2

e2(1+2λ )l1ξ0H0(t−t0)
(3.2.27)

and

s=
(l1l2− (1+2λ )l1ξ0)

[

2(l1l2−3)+ 2(l1l2−(1+2λ )l1ξ0)

e(1+2λ )l1ξ0H0(t−t0)

]

6(l1l2− (1+2λ )l1ξ0)−9e(1+2λ )l1ξ0H0(t−t0)
(3.2.28)

We get the time-dependent values of the statefinder pair for the viscous model. To

discriminate from other dark energy models, let us plot the r −s and r −q trajectories

as shown in Figs. 3.2, 3.3, 3.4 and 3.5 respectively for different values of ξ0 and fixed
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positive and negative values of λ . We assume α = 0.34 and ωd =−0.5 in both cases.

In Figs. 3.2 and 3.3, the r−s trajectories are divided into two regions through a vertical

line. The region r > 1, s< 0 in r −s plane shows the behavior similar to Chaplygin gas

(CG) [278], whereas the region r < 1, s> 0 shows the behavior similar to quintessence

model (Q−model) [250,251].

In Fig. 3.2, the r −s trajectory for λ = 0.06 shows CG like behavior for larger values

of ξ0, i.e., for ξ0 > 0.55, while it shows Q−model like behavior for the smaller values

of ξ0, i.e., for 0< ξ0 ≤ 0.55. In both the cases, our model approaches to ΛCDM in late

time.

In Fig. 3.3 where λ = −0.06, the r − s trajectory shows the behavior of Q−model

in early time for 0 < ξ0 ≤ 0.79 and approaches to ΛCDM in late time. However, the

model shows behavior of CG in early time for ξ0 > 0.79 and approaches to ΛCDM in

late time.

The trajectory in both regions are coinciding for all different values of ξ0 irrespective

of choice of λ , whether positive or negative. The current values of {r,s} of viscous

HRDE become closer to the ΛCDM model for some values of ξ0.

As a complementary, we plot the evolution trajectory in r −q plane. In Figs. 3.4 and

3.5, the r −q trajectories are divided into two regions through a point (r,q) = (1,−1).

The region r > 1, q<−1 in r −q plane shows the behavior similar to phantom model,

whereas the region r < 1, q > −1 shows the behavior similar to quintessence model

(Q−model).

Figs. 3.4 and 3.5 show the trajectories of evolution behavior of our model in r −q

plane. The trajectories are plotted for λ = 0.06and λ =−0.06, respectively, for different

values of ξ0. In both the figures the stars represents respectively the fixed points

{r,q}= {1,0.5} and {r,q}= {1,−1} of SCDMand Steady State (SS) models. It can be

observed that there is a sign change of q from positive to negative in Q− region for

small values of ξ0, i.e. 0< ξ0 ≤ 0.55 when we take λ = 0.06, and 0< ξ0 ≤ 0.79 when

λ = −0.06. This shows that the viscous HRDE model transits from decelerated to

accelerated phase. The q has always negative value starting from q< −1 and tends

to q = −1 in late time for large values of ξ0, i.e., ξ0 > 0.55 and ξ0 > 0.79 for positive

and negative values of λ , respectively.

It can also be observed from Figs. 3.4 and 3.5 that our model always converges

from both regions to SSmodel in late-time evolution as ΛCDM model starting from

SCDM and tends to SSmodel. In Fig 3.5, it is observed that some trajectories start

from the vicinity of SCDMand approach to SSmodel.
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The present viscous HRDE model can be discriminated from the holographic dark
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Figure 3.2: Evolution trajectories in the statefinderr −s plane for different values ofξ0 with
ωd = −0.5, α = 0.34 andλ = 0.06. The arrows represent the directions of the evolution of
statefinder diagnostic pair with time. The color dots are thelocation of respective current point
of (r,s). The star is theΛCDM andSCDMfixed point.

energy model with event horizon as the infrared cutoff, in which the r − s evolution

starts from a region r ∼ 1, s∼ 2/3 and ends on the ΛCDM point [296]. It can also be

discriminated from Ricci dark energy model [107], in which (r,s) trajectory is a vertical

segment, i.e., s is a constant during the evolution of the Universe.

For the non-viscous HRDE model, {r,s} can be calculated as

r = 1−3 l1 l2+2(l1 l2)
2, s= 2 l1 l2/3. (3.2.29)

We observe that the pair {r,s} is constant and it depends on λ , α and ωd. We find that

the fixed point of SCDM, i.e., {r,s}= {1,1} is obtained for α = λ
(1+λ )(1+2λ )ωd

. The non-

viscous HRDE model does not show the behavior of ΛCDM model, i.e., {r,s}= {1,0}.

Om(z) diagnostic

In addition to statefinder {r,s}, another diagnostic method, Om(z), is obtained using

(3.2.16)into (1.12.3)as

Om(z) =

[

(1+2λ )ξ0
l2

+
(

1− (1+2λ )ξ0
l2

)

(1+z)l1l2
]2

−1

(1+z)3−1
(3.2.30)
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Figure 3.3: Evolution trajectories in the statefinderr −s plane for different values ofξ0 with
ωd =−0.5, α = 0.34 andλ =−0.06. The arrows represent the directions of the evolution of
statefinder diagnostic pair with time. The color dots are thelocation of the respective current
point of (r,s). The star is theΛCDM andSCDMfixed point.

We plot the evolution of Om(z) in Figs. 3.6 and 3.7 to analyze the evolution due

to viscosity effect for different values of ξ0 and fixed positive and negative values

of λ with model parameter α = 0.34 and ωd = −0.5. In Fig. 3.6, for 0 < ξ0 < 0.55,

the negative slope of Om(z) trajectories show quintessence like, whereas, for ξ0 >

0.55, the positive slope of the Om trajectory is observed, i.e., in this range the model

behaves as phantom like.

In Fig. 3.7, we plot the Om(z) trajectories for the negative value of λ (e.g., λ =

−0.06). In this case, we observed that the negative curvature for 0 < ξ0 < 0.8 and

the positive curvature for ξ0 > 0.8. In the late time of evolution when z= −1, we get

Om(z)= 1− (1+2λ )2ξ 2
0

(1+2αωd+4λαωd)2
, which is the constant value of Om(z), i.e., zero curvature.

Thus, for z=−1 the DE corresponds to ΛCDM.

Thermodynamics and local entropy

The EMT of a relativistic fluid with bulk viscosity as the only dissipative phenomena is

given by Eq. (2.3.1). The energy non-conservation equation (1.8.17)in the presence

of bulk viscous dissipative processes in f (R,T) gravity gives

ρ̇ +3(ρ + p̃d)H =− fT(R,T)
1+ fT(R,T)

[

(ρ + p̃d)▽µ ln fT(R,T)+▽ν
ρ − p̃d

2

]

, (3.2.31)
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Figure 3.4: Evolution of trajectories inr −q plane for different values ofξ0 with ωd = −0.5,
α =0.34 andλ =0.06. The black dashed line denotes theΛCDM model. The arrows represent
the directions of the evolution of{r,q} with time. The current points are represented by color
dots for each respective values ofξ0.

where ρ = ρm+ρd and p̃d = pd −3ζH. Using the assumption f (R,T) = R+λT, Eq.

(3.2.31)gives

ρ̇ +3(ρ + p̃d)H =−(ρ + p̃d)

[

λ
2(1+λ )

(ρ̇ − ˙̃pd)

(ρ + p̃d)

]

. (3.2.32)

From the above equation, we find that the particle creation is equivalent to the effec-

tive bulk viscous pressure in the energy-momentum tensor. Hence, the bulk viscous

pressure acts as a particle creation pressure. However, in an open thermodynamic

system, these two terms are different which is associated with the entropy production

rate. Let us now focus on thermodynamics, and especially on the production of en-

tropy. In the FLRW line element, the law of generation of the entropy production is

given by [2,297]

T▽νsν = ζ (▽νuν)2 = 9H2ζ , (3.2.33)

where T is the temperature and ▽νsν is the rate at which entropy is being generated in

unit volume. In the viscous processes, thermodynamic interpretation ▽νsν is quadratic

in creation pressure, i.e., ▽νsν ∝ p2
c/ζT. The second law of thermodynamics can be

written as

T▽νsν ≥ 0, (3.2.34)

which implies from (3.2.33)that 9H2ζ ≥ 0. Since the Hubble parameter H is positive in

an expanding Universe, then ζ = ζ0 has to be positive in order to preserve the validity
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Figure 3.6: TheOm(z) trajectories are plotted for different values ofξ0 with ωd = −0.5,
α = 0.34 andλ = 0.06.

of the second law of thermodynamics. Thus, equation (3.2.34)implies that

ζ = ζ0 ≥ 0. (3.2.35)

Therefore, ζ0 always remains positive throughout the evolution of the Universe as

ζ0 > 0 and hence satisfying the local second law of thermodynamics.

In non-viscous case, we obtain the particle creation rate from (1.8.19)as

Γ =
Γ0

[1+ l1 l2 H0(t − t0)]
, (3.2.36)



93

ξ0 = 0.05
ξ0 = 0.1

ξ0 = 0.5

ξ0 = 0.7

ξ0 = 1.2

ξ0 = 1
ξ0 = 0.9

0.0 0.5 1.0 1.5

-0.5

0.0

0.5

1.0

z

O
m
(z
)

Figure 3.7: TheOm(z) trajectories are plotted for different values ofξ0 with ωd = −0.5,
α = 0.34 andλ =−0.06.

where Γ0 =
l1λ [1+(l1−2)(1+λ )αωd+2l1α2ω2

d(1+λ )(1+2λ )]H0
(1+λ )(1−l1αωd−2l1λαωd)

. From the second law of thermo-

dynamics, the time variation of the entropy is given by [176]

S(t) = S0exp

[

∫ t

0
Γ(t ′)dt′

]

, (3.2.37)

where S0 is an arbitrary constant of integration. Using (3.2.36)into (3.2.37), we get

S(t) = S0[1+ l1 l2 H0(t− t0)]
Γ0

l1 l2 H0 , (3.2.38)

which shows that the entropy varies as power function of t. The entropy production

rate is given by [176]

T▽µS
µ = (ρ + p) Γ. (3.2.39)

Since Γ and (ρ + p) are always positive, therefore, the model satisfies the second law

of thermodynamic, i.e., ▽µS
µ ≥ 0.

3.2.2 HRDE Model with Variable Bulk Viscosity

In this section, we assume the general form of bulk viscous coefficient ξ as given in

(3.2.10)(hereafter VHRDE5 model).

Substituting (3.2.10)into (3.2.11), we obtain

h′+ l3h= (1+2λ )l1ξ0 (3.2.40)
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where l3 = l1l2− (1+2λ )l1ξ1.

On solving (3.2.40), we get

h(a) =
(1+2λ )l1ξ0

l3
+
(

1− (1+2λ )l1ξ0

l3

)( a
a0

)−l3
(3.2.41)

where l3 6= 0. Now, the scale factor is given by

a(t) =

[

1+
l3

(1+2λ )l1ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1
)

]
1
l3
, (3.2.42)

where ξ0 6= 0 and λ 6=−1/2.

Taking a(t) = 0, we obtain the cosmic time tB when the Big-Bang happens

tB = t0+
1

(1+2λ )l1ξ0H0
ln

[

1− (1+2λ )l1ξ0

l3

]

. (3.2.43)

Hence, the age of the Universe since Big-Bang is given by t0− tB. The Hubble param-

eter with respect to t reads

H(t) =
H0e(1+2λ )l1ξ0H0(t−t0)

[

1+ l3
(1+2λ )l1ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1
)

] . (3.2.44)

Differentiating (3.2.41)with respect to a to obtain

dȧ
da

= H0

[(1+2λ )l1ξ0

l3
+

(

1− (1+2λ )l1ξ0

l3

)

(1− l3)a
−l3
]

(3.2.45)

We can obtain the transition scale factor atr by equating (3.2.45)equal to zero, and

Figure 3.8: The evolution of scale factor with respect toH0(t − t0) for different values ofξ0
andξ1 with ωd =−0.5, λ = 0.06 andα = 0.34 in VHRDE5 model.
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given by

atr =
[ (1+2λ )l1ξ0

(l3−1)[l3− (1+2λ )l1ξ0]

]− 1
l3 , (3.2.46)

and its corresponding transition redshift ztr is

ztr =
[ (1+2λ )l1ξ0

(l3−1)[l3− (1+2λ )l1ξ0]

]
1
l3 −1 (3.2.47)

We plot the evolution of scale factor with respect to H0(t − t0) in Fig. 3.8 for the val-

ues of model parameter α = 0.34, ωd =−0.5 and λ = 0.06. We get the similar behavior

if negative value of λ is taken. The transition from decelerated phase to accelerated

phase of the Universe depends on the values of ξ0 and ξ1.

It is observed from Fig. 3.8 that small combinations of (ξ0,ξ1) give late time ac-

celeration whereas large combinations of (ξ0,ξ1) give the early acceleration of the

Universe. The model predicts an eternally expanding Universe that begins with a

Big-Bang followed by a decreasing decelerated expansion until a time when the de-

celeration vanishes and then there is a transition to an accelerated expansion epoch

that is going to continue forever, so that a → ∞ when t → ∞. The dot represents the

time at which the Universe transits from decelerated phase to accelerated phase. The

Universe starts acceleration with finite past for some combination of (ξ0,ξ1). We can

observe the similar behavior for negative value of λ .

Now, we compute the second order derivative of the scale factor a(t) with respect to

cosmic time t as

d2a
dt2

= H2
0e(1+2λ )l1ξ0H0(t−t0)

[

e(1+2λ )l1ξ0H0(t−t0)− l3+(1+2λ )l1ξ0

]

×
[

1+
l3

(1+2λ )l1ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1
)

]
1
l3
−2

, (3.2.48)

Equating (3.2.48)equal to zero, we can obtain the transition cosmic time ttr , given by

ttr = t0+
1

(1+2λ )l1ξ0H0
ln

{

l3− (1+2λ )l1ξ0

}

. (3.2.49)

Future finite-time singularity

Let us examine VHRDE5 model with accelerating cosmological solutions ending at the

future finite-time singularities. The presence of viscous fluids could bring the future
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finite-time singularities. In literature, many authors [207, 279, 290] have studied the

future finite-time singularity. The future finite-time singularities can be classified in to

four types. The detailed classification was firstly developed in Refs. [298,299] and we

now present in brief the essential features of this classification scheme.

• Type I (The Big-Rip Singularity): This singularity occurs when the cosmic time

approaches t → ts, the scale factor a, the effective energy density ρe f f and finally

the effective pressure |pe f f| diverge, that is, a→ ∞, ρe f f → ∞, and |pe f f| → ∞.

• Type II (The Sudden Singularity): This singularity occurs when the cosmic time

approaches t → ts, where only the scale factor a and the effective energy density

ρe f f tend to a finite value, that is, a → as, ρe f f → ρs, but the effective pressure

diverges, |pe f f| → ∞.

• Type III : This singularity occurs when the cosmic time t → ts, a→ as, ρe f f → ∞,

and |pe f f| → ∞.

• Type IV : This singularity is not of the crushing type and it is the most mild

among the four types of finite time cosmological singularities. In this case, as

t → ts, a→ as, ρe f f → 0, and |pe f f| → 0. This also includes the case when pe f f

(ρe f f) or both of them tend to some finite values.

Here, ts, as, and ρs are constants with as 6= 0. Meng et al. [192], Sebastiani [212],

Myrzakul et al. [300] and Khadekar et al. [301] studied finite-time future singularity

in viscous FLRW models. Let us discuss the above four singularities in our viscous

HRDE model.

The total energy density ρ = ρd+ρm is given by

ρ =
3ξ0

(2+3λ )
e(1+2λ )l1ξ0H0(t−t0)

[

−λ l3(e
(1+2λ )l1ξ0H0(t−t0)−1)

+l2
1λαωdξ0H2

0(1+2λ )2+(1+2λ )l1{−λ (H2
0 l3αωd +ξ0)

+(2H2
0(1+λαωd)−λξ1)e

(1+2λ )l1ξ0H0(t−t0)}
]

×
[

1+
l3

(1+2λ )l1ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1

)]−2

(3.2.50)
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The total pressure of the HRDE in the presence of viscosity is pe f f = pd −3ζH, can

be evaluated as

pe f f = 3ξ0e(1+2λ )l1ξ0H0(t−t0)

[

− l3{e(1+2λ )l1ξ0H0(t−t0)−1+ l1H2
0αωd(1+2λ )}

+(1+2λ )l1{(l1H2
0αωd(1+2λ )−1)ξ0+(2H2

0αωd −ξ1)e
(1+2λ )l1ξ0H0(t−t0)}

]

×
[

1+
l3

(1+2λ )l1ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1

)]−2

.

(3.2.51)

Assuming ωd =−0.5 and α = 0.34, we obtain that for −1< λ <−0.686548or 0.78205<

λ < 2.12772 (as calculated by Mathematica software), we have a → ∞, ρ → ∞ and

|pe f f| → ∞, which shows the Type I Big-Rip singularity at a finite-time

ts=
1

(1+2λ )l1ξ0H0
ln

[

1− (1+2λ )l1ξ0

l3

]

+ t0. (3.2.52)

For other values of λ (excluding the mentioned interval), we obtain that at this finite

time a→ 0, ρ → ∞ and |pe f f| → ∞, which shows the Type III singularity.

In the absence of model parameter α, the Big-Rip singularity depends on only λ .

Thus for λ <−2/3 we have a→ ∞, ρ → ∞ and |pe f f| → ∞ at finite-time

ts=
(2+3λ )

3(1+λ )(1+2λ )ξ0H0
ln

(

1− (1+2λ )ξ0

{1− (1+2λ )ξ1}

)

+ t0. (3.2.53)

Evolution of deceleration parameter

The deceleration parameter q in VHRDE5 model is obtained as

q(t) =−1+
{

l3− (1+2λ )l1ξ0

}

e−(1+2λ )l1ξ0H0(t−t0). (3.2.54)

which is time-dependent and may describe the phase transition of the Universe.

In terms of the scale factor a, The q can be written as

q(a) =−1+
[l3− (1+2λ )l1ξ0]

[

1+ (1+2λ )l1ξ0
l3

(al3 −1)
] , (3.2.55)



98

Table 3.4: Variation ofq for ωd =−0.5, α = 0.34

λ Constraints onξ0 andξ1 q Evolution of the Universe

λ > 2.1277 For allξ0,ξ1 > 0 Positive Decelerated expansion
0.272≤ λ ≤ 2.1277 For allξ0,ξ1 > 0 Negative Accelerated expansion

−0.5< λ < 0.272 0< ξ0+ξ1 <
{1−0.51(1+λ )(1+2λ )}

3(1+λ )(1+2λ ) +ve to−ve Transition from dec. to acc.

ξ0+ξ1 ≥ {1−0.51(1+λ )(1+2λ )}
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.6865≤ λ ≤−0.5 For allξ0,ξ1 > 0 Positive Decelerated expansion
−1≤ λ <−0.6865 For allξ0,ξ1 > 0 Negative Accelerated expansion

−1.7712≤ λ <−1 0< ξ0+ξ1 <
{1−0.51(1+λ )(1+2λ )}

3(1+λ )(1+2λ ) −ve to+ve Transition from acc. to dec.

ξ0+ξ1 ≥ {1−0.51(1+λ )(1+2λ )}
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.7712 For allξ0,ξ1 > 0 Positive Decelerated expansion

which can also be written in terms of redshift z as

q(z) =−1+
[l3− (1+2λ )l1ξ0]

[

1+ (1+2λ )l1ξ0
l3

((1+z)−l3 −1)
] . (3.2.56)

The present value of DP which corresponds to z= 0 or a= 1, is

q0 =−1+[l3− (1+2λ )l1ξ0]. (3.2.57)

Now, q0 = 0 gives (ξ0 + ξ1) =
{1+3(1+λ )(1+2λ )αωd}

3(1+λ )(1+2λ ) . The transition into accelerating

phase would occur at present time for this sum of ξ0 and ξ1. Especially, for α = 0.34,

ωd = −0.5 and λ = 0.06, we get ξ0+ξ1 = 0.11 which gives q0 = 0. For ξ0+ξ1 < 0.11,

q> 0, we have decelerating phase today and for ξ0+ξ1 ≥ 0.11, we have q< 0, i.e., the

model expands with acceleration today. In case of λ =−0.06, we get ξ0+ξ1 = 0.23 for

which q= 0.

Table 3.4 gives the evolution and behavior of q for α = 0.34 and ωd =−0.5. We ob-

serve that the Universe shows the deceleration for the ranges λ > 2.1277, −0.6865≤
λ ≤ −0.5 and λ < −1.7712, whereas shows acceleration for the ranges 0.272≤ λ ≤
2.1277 and −1 ≤ λ < −0.6855. The Universe also shows the phase transition from

deceleration to acceleration for small values of ξ0+ξ1 and acceleration for large val-

ues of ξ0+ξ1 in the range −0.5< λ < 0.272and phase transition from acceleration to

deceleration for small values of ξ0+ξ1 and deceleration for large values of ξ0+ξ1 in

the range −1.7712≤ λ <−1.
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Table 3.5: Variation ofq for ωd =−1, α = 0.34

λ Constraints onξ0 andξ1 q Evolution of the Universe

λ > 0.6785 For allξ0,ξ1 > 0 Positive Decelerated expansion
0≤ λ ≤ 0.6785 For allξ0,ξ1 > 0 Negative Accelerated expansion

−0.5< λ < 0 0< ξ0+ξ1 <
{1−1.02(1+λ )(1+2λ )}

3(1+λ )(1+2λ ) +ve to−ve Transition from dec. to acc.

ξ0+ξ1 ≥ {1−1.02(1+λ )(1+2λ )}
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.708≤ λ ≤−0.5 For allξ0,ξ1 > 0 Positive Decelerated expansion
−1≤ λ <−0.708 For allξ0,ξ1 > 0 Negative Accelerated expansion

−1.493≤ λ <−1 0< ξ0+ξ1 <
{1−1.02(1+λ )(1+2λ )}

3(1+λ )(1+2λ ) −ve to+ve Transition from acc. to dec.

ξ0+ξ1 ≥ {1−1.1055(1+λ )(1+2λ )}
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.493 For allξ0,ξ1 > 0 Positive Decelerated expansion

Table 3.6: Variation ofq for ωd =−1.215,α = 0.34

λ Constraints onξ0 andξ1 q Evolution of the Universe

λ ≥ 0.4280 For allξ0,ξ1 > 0 Positive Decelerated expansion
−0.067≤ λ < 0.4280 For allξ0,ξ1 > 0 Negative Accelerated expansion

−0.5< λ <−0.067 0< ξ0+ξ1 <
{1−1.239(1+λ )(1+2λ )}

3(1+λ )(1+2λ ) +ve to−ve Transition from dec. to acc.

ξ0+ξ1 ≥ {1−1.239(1+λ )(1+2λ )}
3(1+λ )(1+2λ ) Negative Accelerated expansion

−0.7174≤ λ ≤−0.5 For allξ0,ξ1 > 0 Positive Decelerated expansion
−1≤ λ <−0.7174 For allξ0,ξ1 > 0 Negative Accelerated expansion

−1.4326≤ λ <−1 0< ξ0+ξ1 <
{1−1.239(1+λ )(1+2λ )}

3(1+λ )(1+2λ ) −ve to+ve Transition from acc. to dec.

ξ0+ξ1 ≥ {1−1.239(1+λ )(1+2λ )}
3(1+λ )(1+2λ ) Positive Decelerated expansion

λ <−1.4326 For allξ0,ξ1 > 0 Positive Decelerated expansion

In Table 3.5, which corresponds to ωd =−1, the behavior of the expansion of the Uni-

verse shows deceleration phase for the ranges λ > 0.6785, −0.708≤ λ ≤ −0.5 and

λ <−1.493, whereas shows acceleration for the ranges 0≤ λ ≤ 0.6785and −1≤ λ <

−0.708. The phase transition from deceleration to acceleration is obtained for small

values of ξ0+ξ1 and acceleration for large values of ξ0+ξ1 in −0.5< λ < 0, whereas

the phase transition from acceleration to deceleration is obtained for small values of

ξ0+ξ1 and deceleration for large values of ξ0+ξ1 in the range −1.493≤ λ <−1.

In Table 3.6, which summarizes the behavior of the Universe for ωd =−1.215, we ob-

serve that the Universe decelerates in the ranges λ ≥ 0.4280, −0.7174≤ λ ≤−0.5 and

λ <−1.4326and accelerates in the ranges −0.067≤ λ <0.4280and −1≤ λ <−0.7174.

It can also be observed that the Universe shows phase transition from deceleration to
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acceleration for small values of ξ0+ξ1 and acceleration for large values of ξ0+ξ1 in

−0.5< λ <−0.067, whereas the phase transition from acceleration to deceleration is

obtained for small values of ξ0+ξ1 and deceleration for large values of ξ0+ξ1 in the

range −1.4326≤ λ <−1.

Statefinder andOm diagnostics

For VHRDE5 model, the statefinder pair is given by

r = 1+
(l3−3)(l3− (1+2λ )l1ξ0)

e(1+2λ )l1ξ0H0(t−t0)
+

(l3− (1+2λ )l1ξ0)
2

e2(1+2λ )l1ξ0H0(t−t0)
(3.2.58)

and

s=
(l3− (1+2λ )l1ξ0)

[

2(l3−3)+ 2(l3−(1+2λ )l1ξ0)

e(1+2λ )l1ξ0H0(t−t0)

]

6(l3− (1+2λ )l1ξ0)−9e(1+2λ )l1ξ0H0(t−t0)
(3.2.59)

The present value of the statefinder pair {r0,s0} can be obtained as

Figure 3.9: Ther−s trajectories are plotted ins− r plane for different values ofξ0 andξ1 with
ωd =−0.5 andλ = 0.06 along with the observational value ofα = 0.34. The arrows represent
the direction of the evolution of statefinder diagnostic pair with time. The dot represents the
present values of{r0,s0}.

r0 = 1+(l3−3)(l3− (1+2λ )l1ξ0)+(l3− (1+2λ )l1ξ0)
2, (3.2.60)
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and

s0 =
2(l3− (1+2λ )l1ξ0) [(l3−3)+(l3− (1+2λ )l1ξ0)]

6(l3− (1+2λ )l1ξ0)−9
. (3.2.61)

From (3.2.58)and (3.2.59), we find that as (t − t0) → ∞, {r,s} → {1,0}, a value cor-

Figure 3.10: Ther −q trajectories are plotted inq− r plane for different values ofξ0 andξ1
with ωd = −0.5 andλ = 0.06 along with the observational value ofα = 0.34. The arrows
represent the directions of the time evolution of pair{r,q} with time. The dot represents the
present values of{r0,q0}.

responding to ΛCDM model. We plot the r − s and r −q trajectories to analyze the

evolution of viscous HRDE model. It is to be noted that {r,s} depends on the choice

of (ξ0,ξ1) and coupling parameter λ . The r −s and r −q trajectories for different com-

binations for (ξ0,ξ1) and λ = 0.06 with ωd = −0.5 and α = 0.34 are shown in Figures

3.9 and 3.10, respectively.

In Fig. 3.9, the dark-box represents the fixed point of the ΛCDM and SCDMmodels

at {r,s}= {1,0} and {r,s}= {1,1}, respectively. The dots represent the present value

{r0,s0} of the statefinders for different combinations of (ξ0,ξ1) and the arrows shows

the direction of the evolution of the statefinders. It is observed that the r −s trajecto-

ries show the behavior similar to the CG for (ξ0+ξ1)> 0.55, and behaves as Q−model

for 0 < (ξ0+ ξ1) ≤ 0.55. The model approaches to ΛCDM in late time from both the

regions.

Fig. 3.10 represents the q− r plane trajectories for different values of (ξ0,ξ1) with

λ = 0.06. The dark-box denote the fixed point {r,q} = {1,0.5} for SCDM and {r,q}=
{1,−1} for Steady State (SS) models, respectively and the arrows represents the di-

rection of the evolution. It can be observed from the figures that q changes its sign
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Figure 3.11: Ther − s trajectories are plotted inr − s plane for different values ofξ0 andξ1
with ωd = −0.5 andλ = −0.06 along with the observational value ofα = 0.34. The arrows
represent the direction of the evolution of statefinder diagnostic pair with time.

from positive to negative for 0< (ξ0+ξ1) ≤ 0.55 which clearly shows the phase tran-

sition from deceleration to acceleration. For (ξ0+ξ1) > 0.55, q is always negative. It

can also be seen that our model always converges to SSmodel in late time from both

the regions as ΛCDM approaches to SSmodel.

A similar trajectories of r −s and r −q can be observed for λ = −0.06 and different

combinations of (ξ0,ξ1) as shown in Figs. 3.11 and 3.12. However, the constraint of

ξ0+ξ1 for quintessence region is 0< (ξ0+ξ1) ≤ 0.79 and for Chaplygin gas model, it

is (ξ0+ξ1)> 0.79. The dot represents the present values of {r0,s0}.

The present VHRDE5 model can also be discriminated from the holographic dark

energy model with event horizon as the infrared cutoff, in which the r − s evolution

starts from a region r ∼ 1, s∼ 2/3 and ends on the ΛCDM point [296]. It can also

be discriminated from Ricci dark energy model in which (r,s) trajectory is a vertical

segment, i.e., s is a constant during the evolution of the Universe [107].

For this model, Om(z) can be calculated as

Om(z) =

[

(1+2λ )l1ξ0
l3

+
(

1− (1+2λ )l1ξ0
l3

)

(1+z)l3
]2

−1

(1+z)3−1
(3.2.62)

We plot the evolution of Om-diagnostic with respect to redshift z in Fig. 3.13 for differ-
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Figure 3.12: Ther −q trajectories are plotted inr −q plane for different values ofξ0 andξ1

with ωd = −0.5 andλ = −0.06 along with the observational value ofα = 0.34. The arrows
represent the direction of the time evolution of pair{r,q} with time.

ent values of (ξ0,ξ1) and fixed positive values of λ , e.g., λ = 0.06. It can be observed

from the figure that the Om(z) trajectories shows positive and negative slopes for dif-

ferent values of (ξ0,ξ1). Fig. 3.13 shows the negative slope of Om(z) trajectories for

0 < (ξ0+ ξ1) ≤ 0.55, which corresponds to Q−model, whereas for (ξ0 + ξ1) > 0.55,

Om(z) trajectories shows positive slope, i.e., model behaves as phantom.

Entropy and generalized second law of thermodynamics

Let us discuss the entropy and generalized second law (GSL) of thermodynamics of

VHRDE5 model. Using (3.2.41)into (3.2.10), we obtain the evolution of bulk viscosity,

ξ (a) = ξ0+ξ1

{

(

1− (1+2λ )l1ξ0

l3

)

a−l3 +
(1+2λ )l1ξ0

l3

}

. (3.2.63)

Since the Hubble parameter H is positive in an expanding Universe, therefore ξ0 and

ξ1 has to be positive in order to preserve the second law of thermodynamics. Fig-

ure 3.14 shows the behavior of ξ with respect to the scale factor for different com-

binations of ξ0 and ξ1 corresponding to the positive value of λ . We observe that

the total bulk viscosity is always positive and decreases to zero for small values of

0< (ξ0+ξ1) ≤ 0.55. These curves have been shown above the line (0,0). Therefore,

the model does not violate the entropy law for these ranges. The figures also show

that the total bulk viscous coefficient is evolving from negative to a positive value for
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Figure 3.13: TheOm−z trajectories are plotted inOm−z plane for different values ofξ0 and
ξ1 with ωd =−0.5 andλ = 0.06 along with the observational value ofα = 0.34.

Figure 3.14: The evolution ofξ (a) for different combinations of(ξ0,ξ1) andλ = 0.06. We
takeωd =−0.5 andα = 0.34.

(ξ0+ ξ1) > 0.55. Thus, the rate of entropy production is negative for large values of

ξ0+ξ1 in the early epoch and positive in the later epoch. Hence the entropy law vio-

lates in the early epoch and obeys in the later epoch.

Let us investigate the generalized second law (GSL) of thermodynamics in the vis-

cous HRDE model in the framework of modified f (R,T) gravity theory at the apparent

horizon of FLRW Universe. The dynamical apparent horizon is derived by the relation

hαβ ∂αr∂β r = 0, which gives radius of apparent horizon for flat FLRW Universe as

rhor =
1

H0h
. (3.2.64)

The entropy of the apparent horizon in f (R,T) gravity is expressed as [302]

Shor =
Ã

4Ge f f
=

8π2r2
hor

1+λ
, (3.2.65)
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where Ge f f is the effective gravitational coupling given by Ge f f = G+
fT(R,T)

8π , which

can be further written as Ge f f =
1+λ
8π for our model and Ã = 4πr2

hor is the area of the

apparent horizon.

Consider Si = Sm+Sd is the amount of entropy of the dark matter-dark energy com-

ponents, where Sm is the entropy of dark matter and Sd is the entropy of DE. As

we know from the first law of thermodynamics that the infinitesimal difference of the

entropy, energy density and volume in modified f (R,T) gravity have the following re-

lation [281].

TidSi = d(ρiV)+ pidV−TidSp, (3.2.66)

where Ti is the temperature, ρi is the sum of densities of matter and DE, Sp is the

entropy production and V represents the volume of the horizon enclosed, which is

given as V = 4
3πr3

hor.

In case of a thermal equilibrium between the fluids and the horizon, we have Ti =

Thor. Using this relation and solving Eq. (3.2.66), we get

Thor(Ṡm+ Ṡd + Ṡp) = 4πr2
hor(ṙhor−1)(ρ +ωdρd−3ξh). (3.2.67)

As we have considered the thermal equilibrium for our system, we take the temper-

ature Thor =
bH0h
2π = b

2πrhor
[303], which is equal to the Hawking temperature of the

horizon with the assumption that the fluid within the horizon is in equilibrium with hori-

zon so that there is no effective flow of fluid towards the horizon [304]. Therefore, we

have

ThorṠhor =
8πb

1+λ
ṙhor, (3.2.68)

According to GSL of thermodynamics, during the evolution of the Universe the rate

of change of the sum of all the entropies of the fluid within the Universe and that of

the horizon must always greater than or equal to zero. Thus, GSL states that

Ṡtot = Ṡm+ Ṡd + Ṡp+ Ṡhor ≥ 0. (3.2.69)
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Figure 3.15: The change in total entropydStot
dt with respect to timet for different combination

of ξ0 andξ1 with α = 0.34,ωd =−0.5, H0 = 72 andλ = 0.06.

Using above equations, the change in total entropy is given by

Ṡtot =
16π2

H0e2(1+2λ )l1ξ0H0(t−t0)

[

1+
l3

(1+2λ )l1ξ0

(

e(1+2λ )l1ξ0H0(t−t0)−1
)

]

×
[

l3− (1+2λ )l1ξ0

1+λ
+

3

(2+3λ )bH2
0

(

(l3− (1+2λ )l1ξ0)

e(1+2λ )l1ξ0H0(t−t0)
−1

)

{

((1+2λ )l1H2
0αωd −1)((1+2λ )l1ξ0− l3)

l1

+

(

(1+2αωd+4λαωd)H
2
0 −

l3+ l1ξ1+2l1λξ1

l1

)

e(1+2λ )l1ξ0H0(t−t0)

}]

(3.2.70)

We plot the evolution of the rate of total entropy Ṡtot with respect to cosmic time t in

Fig. 3.15. It can be observed from the figure that the rate of total entropy is positive

under the constraint ξ0 > 0.03 and ξ1 > 3.7 for λ = 0.06, α = 0.34, ωd = −0.5 and

H0 = 72Km/sec/Mpc. Hence, the GSL of thermodynamics always valid for this model

under some constraints of ξ0 and ξ1 with the apparent horizon. The total rate of

change of entropy approaches to zero in the late time evolution for the larger values

of ξ0 and ξ1.

3.3 Conclusion

In this chapter, we have explored the effect of bulk viscosity in the HRDE model in

the background of modified f (R,T) gravity. We have assumed the simplest form of

f (R,T) = R+λT to solve the field equations. We have found the exact solution of the
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scale factor and have calculated the deceleration parameter, statefinder, and Om(z)

diagnostic parameters. We have plotted the trajectories in r − s, r − q, and Om(z)

planes to discriminate the viscous HRDE model from the existing dark energy model.

The thermodynamics of viscous HRDE models have been discussed. We have also

explored the obvious violation of EMT in f (R,T) gravity and have provided a thermody-

namic interpretation of the extra terms generated by the non-minimal geometry-matter

coupling as describing as a particle production. Let us summarize the results as fol-

lows:

In the VHRDE4 model, the scale factor varies exponentially which gives a time-

dependent deceleration parameter. Fig. 3.1 shows the evolution of the scale factor

for different values of ξ0 and positive λ . We have calculated the transition scale factor

atr and redshift ztr to find the present time transition. It has been observed that the

Universe has an earlier decelerated phase followed by an accelerated phase in the

later stage of the evolution. We have observed that there is early acceleration for

large ξ0 and late-time acceleration for small values of ξ0. We have also calculated the

transition cosmic time for the scale factor. We have discussed the behavior of the de-

celeration parameter which is time-dependent. The DP implies that our model shows

phase transition from one epoch to another. It is also observed that as (t − t0)→ ∞,

we get q→−1. Thus the model accelerates in late time.

We have also discussed the geometrical diagnostics of statefinder and Om(z) in the

VHRDE4 model, which distinguishes it from other DE models. The evolution of the

r −s and r −q trajectories for various values of ξ0 with positive and negative values of

λ have been analyzed as shown in Figs. 3.2–3.5. In Figs. 3.2 and 3.3, we have ob-

served that our model behaves like Q-model for small values of ξ0 whereas it behaves

CG-like for larger values of ξ0 and finally approaches to ΛCDM in late time. From

Figs. 3.4 and 3.5 for r −q trajectories, we have observed that there is a sign change

of q from positive to negative in Q-region for small values of ξ0, which shows that our

model transits from decelerated phase to accelerated phase. Our model always con-

verges to the SSmodel as the ΛCDM model approaches from SCDM in late time. We

have also plotted Om(z)−z trajectories in Fig. 3.6 and 3.7 for different values of ξ0 and

fixed positive and negative values of λ . In Fig. 3.6, the evolution of Om(z)−z trajecto-

ries have negative slope for 0< ξ0 ≤ 0.55, which corresponds to Q−model, whereas

for ξ0 > 0.55, Om(z) trajectories shows positive slope, i.e., model behaves as phantom.

Similarly, the Om(z)−z trajectories show a negative slope for 0< ξ0 ≤ 0.8, which corre-

sponds to Q−model, whereas shows a positive slope for ξ0 > 0.8, i.e., model behaves
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as phantom. We have also discussed the entropy and thermodynamics for the HRDE

model with constant bulk viscosity. We have found that a non-vanishing particle pro-

duction rate is equivalent to a bulk viscous pressure. It has been observed that the

validity of the second law of thermodynamics preserves for ζ0 = ξ0 ≥ 0.

In the case of the VHRDE5 model, we have assumed the bulk viscosity coefficient

as the most general form, ζ = ζ0+ζ1H. We have observed the evolution of the scale

factor time-dependent and varies exponentially. Fig. 3.8 shows the evolution of the

scale factor with respect to H0(t−t0) for different values of ξ0 and ξ1 with positive value

of λ . The Universe has earlier decelerated phase followed by an accelerated phase

in the late time. The transition from decelerated phase to the accelerated phase of

the Universe depends on the values of ξ0 and ξ1. For the present time, the transition

takes place for ξ0+ ξ1 = 0.11. For 0 < (ξ0+ ξ1) < 0.11, the Universe expands with

decelerated rate followed by the accelerated rate in late time. The transition takes

place at early time for (ξ0+ ξ1) > 0.11. We have calculated the cosmic time when

the Big-Bang happens. We have also calculated the transition time when it transits

from decelerated phase to the accelerated phase. We have briefly discussed how the

presence of viscous fluid could produce the finite-time future singularity. It is found

that Big Rip and type III finite-time singularities appear in the viscous HRDE model.

We have evaluated the deceleration parameter which is time-dependent. This means

that it can show the phase transition from one epoch to another. It is observed that

as (t − t0)→ ∞, we get q→−1. Thus the model accelerates in late time. It has been

found that q= 0 at present time t = t0 for (ξ0+ξ1) = 0.11. Thus, at present time when

0< (ξ0+ξ1)< 0.11, q> 0, the Universe would decelerates and when (ξ0+ξ1)> 0.11,

q< 0, it accelerates.

In the VHRDE5 model, we have also discussed the statefinder parameters and Om

and plotted their trajectories for various combinations of ξ0 and ξ1 with positive and

negative values of λ as shown in Figs. 3.9–3.13. In Figs. 3.9 and 3.11, we have found

that our model behaves like Q-model for small values of ξ0+ ξ1 whereas it behaves

CG-like for larger values of ξ0+ξ1. In both cases, our model approaches ΛCDM in late

time. In Figs. 3.10 and 3.12, we have observed from the r −q trajectories that there

is a sign change of q from positive to negative in Q-region for small values of ξ0+ξ1,

which shows that our model changes the phase from deceleration to acceleration.

Our model always converges to the SSmodel as the ΛCDM model approaches from

SCDM in late time. We have also discussed the Om diagnostic in terms of redshift

z. We have plotted the evolution of Om-diagnostic with respect to redshift z in Fig.
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3.13 for different values of (ξ0,ξ1) and fixed positive value of λ , i.e., for λ = 0.06. It

shows negative slope of Om(z) trajectories for 0< (ξ0+ξ1)≤ 0.55, which corresponds

to Q−model, whereas for (ξ0+ξ1)> 0.55, Om(z) trajectories shows positive slope, i.e.,

model behaves as phantom.

We have examined the entropy law in the viscous HRDE model. We have found

that the bulk viscous coefficient is always positive and decreasing to zero for small

values of 0 < ξ0+ ξ1 < 0.55 as shown in Fig. 3.14. Therefore, the model does not

violate the entropy law. However, for large (ξ0+ξ1)> 0.55, ξ (a) evolves from negative

to positive which shows that the entropy law is violated in early time and obeys in late

time. In the last part of our work, we have extended our study to examine the GSL

of thermodynamics for this model in modified theory. We have calculated the rate of

change of total entropy and plotted the evolution with respect to cosmic time t. We

have observed that the rate of entropy is positive in the range of ξ0 > 0.03and ξ1 > 3.7.

Hence, the GSL of thermodynamics always valid with apparent horizon for this model

under some constraint of ξ0 and ξ1.

We conclude that the dark energy phenomena can be explained in the presence of

bulk viscosity, which shows that the accelerated expansion of the Universe strictly de-

pends on the bulk viscosity coefficient. Our work implies a theoretical basis for future

observations to constrain the viscous HRDE model.

****************





Chapter 4

Holographic Dark Energy Model with

Matter Creation

In this chapter 1, we study the adiabatic matter creation process in holographic dark

energy (HDE) with the motivation of considering it as an alternative choice to explain

the recent accelerating phase of the Universe. Exact solutions are obtained to dis-

cuss the evolution of the Universe by considering various forms of particle creation

rate Γ. We obtain the best-fit values of the model parameters through the MCMC

method by the use of the EMCEE python package on the latest observational data.

We discuss the cosmographic parameters and Omto distinguish our model from other

standard dark energy models. We analyze the model by applying the Akaike informa-

tion criterion (AIC) and Bayesian information criterion (BIC) based on the penalization

associated with the number of parameters. We also discuss the thermodynamics

of the HDE model with matter creation and find that the model satisfies the GSL of

thermodynamics under certain conditions.

1This chapter is based ontwo research papers “Observational constraints on holographic dark energy with
matter creation,Astrophysics and Space Science365, 84 (2020)” and “Holographic dark energy, matter creation,
and cosmic acceleration,Physical Review D102, 123537 (2020)”.
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4.1 Introduction

As discussed in the earlier chapters, a new candidate to dynamical DE, based on the

holographic principle of quantum gravity, was proposed by ‘t Hooft [67] to overcome

the shortcomings of the standard ΛCDM model like fine-tuning and cosmic coinci-

dence problem [35, 305]. According to the holographic principle, the number of de-

grees of freedom, which is finite in a bounded system, has a relation with the area

of its boundary [68, 70]. This class of model is called the holographic dark energy

(HDE) model in which the UV cutoff of DE is related to an IR cutoff. The HDE models

have been defined and discussed in detail in section 1.8.1. The HDE model suffers

the choice of IR cut-off problem. The HDE model with Hubble horizon as an IR cut-

off is not able to explain the current accelerated expansion [66]. However, the HDE

models with other IR cut-off, e.g., particle horizon, event horizon, apparent horizon,

etc. describe the accelerated phenomena of the evolution of the Universe and are in

agreement with the observational data [66,72,84,86,91–105,306].

Just like the early-time cosmic acceleration associated with inflation, negative pres-

sure can be seen as a possible driving mechanism for the late-time accelerated ex-

pansion of the Universe as well. One of the earliest alternatives that could provide a

mechanism producing such accelerating phase is through a negative pressure pro-

duced by viscous or particle production effects. Adiabatic matter creation is a non-

equilibrium thermodynamical process that makes use of ideas of the thermodynamics

of open systems in the context of cosmology. The merits of the matter creation with

respect to usual DE ideology are (a) the former has a strong physical basis namely

non-equilibrium thermodynamics, while the latter (DE) has not, and (b) the matter cre-

ation mechanism unites the dark sector (DE and DM) since a single dark component

(the dark matter) needs to be introduced into the cosmic fluid and thus it contains only

one free parameter.

In gravitationally induced matter creation, by assuming that dark matter particles

are produced by a time-varying gravitational field, it is possible to obtain a late-time

acceleration composed only by pressureless fluids, like baryons and cold dark mat-

ter [225–229, 307, 308]. The particle creation scenario has a strong physical basis:

non-equilibrium thermodynamics. Additionally, the study of the effects of adiabatic

particle production in the cosmic microwave background level shows a close behavior

to that of ΛCDM [309]. Many authors [230,231] have explored the scenarios of matter
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creation in cosmology, but here we are particularly interested in the gravitationally in-

duced particle creation scenario in which some specific choices of the particle creation

rate have been assumed. Some authors [236,237,239,310–313] have discussed the

matter creation cosmology with different forms of matter creation rate. In these works,

it has been shown that phenomenological particle creation can explain not only the

present era of cosmic acceleration but also provide a viable alternative to the concor-

dance ΛCDM model. Recently, Singh and Kaur [314] have studied matter creation

cosmology in Brans-Dicke theory and constrained the model with a combined set of

observational data.

In this chapter, we consider the cosmological consequences due to adiabatic matter

creation mechanism in HDE model with Hubble horizon as an IR cut-off. It has been

observed that the HDE model with Hubble horizon as an IR cut-off is not consistent

with the current observations. Therefore, instead of assuming other IR cut-offs, we

have included the matter creation mechanism in the HDE model with the same Hub-

ble horizon as an IR cut-off with the possibility that this model would be consistent

with the current observations. We have considered constant and variable particle cre-

ation rates and have solved the field equations to obtain the exact solution. We have

discussed the evolution and dynamics of the model by constraining the model param-

eters through the latest observational data. We have plotted the trajectories of the

scale factor, matter density parameter, and deceleration parameter for best-fit values

of model parameters. We have compared our model with the standard ΛCDM model.

We have also plotted the trajectory of the Hubble evolution of our model and ΛCDM

with an error bar from Hubble data. As a comparison, the models with matter creation

have been examined with the selection criteria of AIC and BIC.

The chapter has been organized as follows: In Section 4.2, we have presented the

HDE model with matter creation. Section 4.3 has divided into three subsections. In

Subsection 4.3.1, we have presented the solution of the HDE model with creation

rate, Γ = 3βH and discussed the evolution of the model. In subsection 4.3.2, we have

discussed the model with constant creation rate. Subsection 4.3.3 has dealt with a

more general form of particle creation rate. Finally, we present the summary of our

work in Section 4.4.
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4.2 HDE Model with Matter Creation

In a spatially flat, homogeneous, and isotropic FLRW line element given by (2.2.1), the

Friedmann and conservation equations can be written, respectively, as

3H2 = ρ , (4.2.1)

and

ρ̇ +3H(ρ + p) = 0, (4.2.2)

where ρ = ρm+ρd and p= pc+ pd are the total energy density and pressure, respec-

tively. Here, ρm is the energy density of dark matter, ρd the energy density of HDE,

pd is the pressure of HDE and pc is the pressure due to the matter creation which is

discussed in section 1.10 and defined by (1.10.2).

We consider that there is no interaction between the two fluids. Therefore, the en-

ergy conservation equation (4.2.2)for dark matter and HDE conserve separately, that

is,

ρ̇m+3ρmH = ρmΓ, (4.2.3)

ρ̇d+3(ρd+ pd)H = 0. (4.2.4)

In this chapter, we consider the IR cut-off as the inverse of Hubble scale (L = H−1) in

the relation ρd = 3b2M2
pL−2 given by (1.8.3)so that the corresponding energy density

is given by [86]

ρd = 3b2H2. (4.2.5)

Cosmic inflation and the accelerated expansion of the Universe can be characterized

by the equation of state (EoS) of dark energy. Since we consider the Universe to

be filled with perfect fluid, therefore, we have a linear EoS, pd = ωdρd for the dark

energy, where ωd is the EoS parameter. The condition for accelerated expansion

ä> 0⇒ p < (−1/3)ρ . It has been observed that the linear dark energy EoS reveals

by Supernova [315].

Therefore, assuming the linear EoS for HDE, and using (1.10.2), (4.2.3) (4.2.4)and

(4.2.5), Eq. (4.2.1)gives the following evolution equation:

Ḣ +
3
2

[

(1−b2)

(

1− Γ
3H

)

+(1+ωd)b
2
]

H2 = 0. (4.2.6)
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Let us discuss how the matter creation rate, Γ modifies the evolution of the HDE

model with matter creation as compared to the case of the HDE model without matter

creation.

As already mentioned, the HDE model has been proposed on the basis of duality

between UV cut-off and IR cut-off. The UV cut-off is related to the vacuum energy, and

the IR cut-off is related to the large scale of the Universe. Hsu [86] studied the HDE

model with Hubble horizon as an IR cut-off and found that the HDE model with Hubble

horizon as an IR cut-off is not able to explain the current accelerated expansion. He

found the dark energy EoS parameter ωd = 0, which is not consistent with the current

observations. In what follows, let us review the HDE model with Hubble scale without

matter creation.

In the absence of matter creation, i.e., taking Γ = 0, Eq. (4.2.6)gives the solution of

the Hubble parameter,

H = H0

(a0

a

)

3k0
2
= H0(1+z)

3k0
2 , (4.2.7)

where k0 = (1+b2ωd). From the above equation, the scale factor can be obtained as

a= a0

[

1+
3k0

2
H0(t− t0)

]
2

3k0
, (4.2.8)

which shows that the expansion of the Universe is of power-law form. The decelera-

tion parameter gives

q= (3k0−2)/2, (4.2.9)

which is constant. Therefore, no transition redshift in the Universe will be achieved

when the Hubble horizon is taken as the IR cut-off. The evolution of the scale factor

is shown in Fig. 4.3, which shows decelerated expansion throughout the evolution.

To remedy the situation, many authors [101, 103, 306] proposed different IR cut-off

like particle horizon, event horizon, Ricci scalar, etc., to discuss the accelerating Uni-

verse. However, the Hubble horizon is a natural choice of cosmological length scale.

Therefore, instead of considering any other IR cut-off or interaction between the fluids

as did by many authors, we restrict ourselves to the Hubble horizon as an infrared cut-

off but in the presence of gravitationally induced matter creation to realize an accel-

erated expansion of the Universe, a transition from the past decelerated expansion to

recent accelerated expansion and cosmic observational compatible model. The main

advantage of considering HDE with matter creation is the introduction of another free

parameter, thus providing an extra degree of freedom in the process of constructing a
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physical interpretation of the solution. The evolution of the matter creation model has

been tested by the latest observational data sets.

4.3 Solution of HDE Model with Matter Creation

In the presence of matter creation, Eq. (4.2.6)can be fully solved once the particle

creation rate Γ is specified. In this chapter, we consider the HDE model driven by

three different forms of the particle creation rate. First, we consider Γ as a function of

the Hubble parameter and then for the second case we consider Γ as some constant,

and finally, for the third case, we consider Γ as a linear combination of the current

value of the Hubble parameter and the Hubble function.

4.3.1 HDE Model with Γ = 3βH

In order to investigate the effect of the particle creation on the Universe dynamics,

we firstly consider the ansatz for the particle creation rate of the form [247] (hereafter

CHDE1 model)

Γ = 3βH, (4.3.1)

where β is a positive constant. Using (4.3.1)into (4.2.6), the solution of Hubble param-

eter in terms of redshift is given by

H(z) = H0(1+z)
3k1
2 , (4.3.2)

where k1 = (1−β +βb2+b2ωd). Integrating (4.3.2), we obtain the scale factor a(t) as

a(t) =

[

1+
3
2

k1H0(t − t0)

]
2

3k1
. (4.3.3)

From the above equation, we can see that the scale factor is of power-law form, i.e.

a ∝ tm for positive constant m. While this model predicts acceleration for k1 < 2/3,

it does not allow a transition from deceleration to acceleration, as required by Type

Ia supernova. Using the value of a(t), the deceleration parameter is given by q =

(3k1−2)/2, which is constant. The constant value of q implies that the CHDE1 model

does not show any transition throughout the evolution. Thus, the CHDE1 model with

Γ = 3βH shows contradiction with Type Ia supernovae observations.
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4.3.2 HDE Model with Γ = 3δH0

According to the observations, the phase transition plays a vital role in describing the

evolution of the Universe. However, we have observed that HDE model with Hubble

horizon as IR cutoff or HDE model with the particle creation rate Γ = 3βH is unable

to give the phase transition. Therefore, in this subsection our purpose is to discuss a

suitable form of Γ that would give the phase transition.

We assume the particle creation rate of the form [246] (hereafter CHDE2 model)

Γ = 3δH0, (4.3.4)

where δ is order unity dimensionless constant and H0 is the present value of the

Hubble parameter.

Using (4.3.4)into (4.2.6), we obtain the following dimensionless equation:

h′+
3
2

k0h=
3
2

δ (1−b2), (4.3.5)

where h= H
H0

is the dimensionless Hubble parameter and a prime denotes d
d ln a.

Considering the relation h(a0)= 1, we can solve equation (4.3.5)analytically to obtain

h(a) =
(1−b2)δ

k0
+

{

1− (1−b2)δ
k0

}(

a
a0

)− 3k0
2

, (4.3.6)

where k0 6= 0. Integrating (4.3.6), we obtain the scale factor a(t) as

a(t) =

[

1+
k0

(1−b2)δ

{

e
3
2(1−b2)δH0(t−t0)−1

}

]
2

3k0
. (4.3.7)

From the above equation, we can see that at the early time (when t → 0), the scale

factor

a(t)→
[

1+
3
2

k0H0(t− t0)

]
2

3k0

which is of power-law form. In the late time (when t → ∞), the scale factor a(t) →

e
(1−b2)δH0(t−t0)

k0 which corresponds to the de Sitter Universe. Thus, the CHDE2 model

can explain early deceleration and late time accelerating phase with constant matter

creation rate.
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The Hubble parameter in terms of redshift z can be given as

H(z)
H0

=

[

(1−b2)δ
k0

+

{

1− (1−b2)δ
k0

}

(1+z)
3
2k0

]

. (4.3.8)

To study the decelerated or accelerated epochs and the transitions between them,

we assume H0(t − t0) = y. The second order derivative of the scale factor a(t) with

respect to y gives

d2a
dy2 ∝

[

2−3(1−δ +δb2+b2ωd)e
3
2(b

2−1)δy
]

(4.3.9)

From (4.3.9), we can check the behavior of the scale factor so that the Universe shows

decelerated expansion in the early time followed by a transition to accelerated expan-

sion in the late time. The conditions satisfying above description are

(b2−1)δ > 0 and (1−3δ +3δb2+3b2ωd)< 0. (4.3.10)

These conditions will be used to find the best fit values of model parameters.

In this model, the deceleration parameters can be obtained as

q=−1+
3
2
[k0− (1−b2)δ ]e

−3
2 (1−b2)δH0(t−t0) (4.3.11)

In terms of redshift z, q is given by

q(z) =−1+
3
2

k0− (1−b2)δ
[

1+ (1−b2)δ
k0

{

(1+z)
−3
2 k0 −1

}] . (4.3.12)

It can be seen that q(z)→−1 as z→−1. In the absence of matter creation (δ = 0), this

expression yields q= (3k0−2)/2, which is same as given in equation (4.2.9). While, in

the absence of dark energy (b= 0), we find

q(z) =−1+
3
2

(1−δ )
[

1+δ
{

(1+z)−
3
2 −1

}] . (4.3.13)

Thus, we find that the existence of a transition redshift at late times depends exclu-

sively on the δ parameter, i.e., on the matter creation. We can find the current value

of q by putting z= 0 in (4.3.12)as

q0 =
(1−3δ +3δb2+3b2ωd)

2
. (4.3.14)
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Let us find the redshift, ztr , at which the Universe transits from the decelerating

phase and enters into the current accelerating phase, i.e., q(z) = 0. It is given by

ztr =−1+

[

1+
k0(1−3δ +3δb2+3b2ωd)

2δ (1−b2)

]

−2
3k0

(4.3.15)

The cosmic time of transition ‘ttr ’ between the decelerated to the accelerated epochs

can be given by

ttr = t0+
2

3(b2−1)δH0
ln

(

2
3(1−δ +δb2+b2ωd)

)

. (4.3.16)

The effective equation of state parameter (EoS), ωeff can be obtained using the

standard relation [316]

ωeff =−1− 1
3

2a
h

dh
da

, (4.3.17)

where h= H/H0 is the weighted Hubble parameter. For this model, ωeff, is given by

ωeff(z) =−1+
k0+(b2−1)δ

[

1+ (1−b2)δ
k0

{

(1+z)−
3
2k0 −1

}] . (4.3.18)

The condition of EoS parameter, ω < −1/3 for acceleration of the present Universe

can be obtained by taking z= 0 in (4.3.18), which is given by

3ωeff+1= (1−3δ +3δb2+3b2ωd)< 0. (4.3.19)

Data analysis and results

We present the statistical analysis to constraint the CHDE2 model with constant mat-

ter creation. In order to extract the observational constraints and incorporate the data

sets statistically, we use the Markov chain Monte Carlo (MCMC) package EMCEE to

perform the numerical analysis of our model [317]. In our analysis, we have consid-

ered the value of the Hubble constant as H0 = 67.8 Km/s/Mpc[20]. We also use the

value of constant b = 0.50 which is in the range b = 0.495± 0.039 obtained by Li et

al. [318] from the Planck constraints on HDE model. Following are the publicly avail-

able data sets that we exploit in our statistical analysis (see, section 1.13 for detail).

• Supernova Type Ia (SNe-JLA):SNe data were the first to indicate that our Uni-

verse is accelerating. For CHDE2 model, we include the latest Joint Light

Curve analysis (JLA) sample comprising 31 data points in the redshift range
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z∈ [0.01,1.3] [258].

• Observational Hubble data (OHD):For OHD data set, we use the 43 measure-

ments of the Hubble parameter values in the interval 0< z< 2.5, see [260].

• Baryon acoustic oscillations and cosmic microwave background (BAO/CMB):We use

the combined BAO/CMB data from different observational missions [261]. We

take the sample of BAO distances measurements from SDSS(R) [262], the

6dF Galaxy survey [263], BOSS CMASS [264] and three parallel measure-

ments from WiggleZ survey [265]. We combine theses results with the Planck

2015 [20].

We use the Chi-square method to find the best fit value of model parameters. The

χ2 is defined in equations (1.13.3), (1.13.4)and (1.13.8)for SNe, OHD and BAO/CMB,

respectively. The parameters space for our model is {δ ,ωd,M}. Here, M is a free

normalization parameter used in SNe Ia observation. We minimize χ2
tot to obtain the

best-fit values of the free parameters. We have presented the observational summary

in Table 4.1 and one of the contour plots is shown in Fig. 4.1 with 1σ(68.3%) and

2σ(95.4%) confidence level.

We assess the viability of CHDE2 model against a given reference model. For

Table 4.1: The data fitting results of the free parameters in the CHDE2 model
Parameter SNe+OHD+BAO/CMB SNe+BAO/CMB SNe+OHD

δ 0.6730.010
−0.010 0.5840.019

−0.021 0.7500.023
−0.038

ωd −0.0020.002
−0.003 −0.0100.007

−0.015 −0.0510.040
−0.085

M 24.9940.018
−0.018 25.0200.017

−0.019 24.9630.019
−0.018

this purpose we use two standard information criteria- Akaike Information Criterion

(AIC) [266] and Bayesian or Schwarz Information Criterion (BIC) [267] defined as in

section 1.13 by Eqs. (1.14.2)and (1.14.3).

We present the obtained results of AIC and BIC in the Table 4.2 with consideration

of the ΛCDM as the referring model. According to the values of ∆AIC and ∆BIC,

we can see that 2 < ∆AIC < 4 for the combined data of SNe+OHD, and hence the

CHDE2 model has average evidence in favor with respect to the reference model of

ΛCDM cosmology corresponding to SNe+OHD. Concerning ∆BIC corresponding to
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Figure 4.1: 1σ and 2σ confidence level contour plots for the CHDE2 model parameters using
the observational data SNe+OHD+BAO/CMB. The labelsal andwd denoteδ andωd param-
eters, respectively.

combined data of SNeand OHD, the CHDE2 model has 2 < ∆BIC < 6 which means

that it has positive evidence against it. For all other cases, the values of ∆AIC and

∆BIC are ruled out completely. The reduced χ2
red = χ2

min/(N−d), where N is the total

number of data and d is the degree of freedom, listed in Table 4.2 shows that the

CHDE2 model provides a very good fit to these data.

Next, we discuss the evolution, cosmographic and Om(z) analysis of HDE model

Table 4.2: Summary of the AIC and BIC values and their differences for CHDE2 model from
the reference model ofΛCDM

Data χ2 χ2
red AIC BIC ∆AIC ∆BIC

SNe+OHD+BAO/CMB 86.72 1.09 90.72 95.50 58.83 59.01
SNe+BAO/CMB 34.45 0.91 38.45 41.72 16.16 16.15

SNe+OHD 33.78 0.46 37.78 42.39 3.33 3.18

with constant matter creation by considering the best-fit values given in Table 4.1.

Evolution of the model

We plot the evolution of the scale factor in Fig. 4.2 for the best-fit model parameters

obtained from different observational data sets. From the figure, it can be observed
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that the expansion starts with an accelerated rate in early time followed by decelera-

tion and then the exponential acceleration in the late time. In Fig. 4.2, the dot on the

trajectory denotes the transition point whose values are listed in Table 4.3.

In Fig. 4.3, we plot the evolution of the scale factor for a different combination

of models to compare their behaviors. The evolution of the HDE with matter cre-

ation (δ 6= 0 and b 6= 0) and matter-dominated model with matter creation (δ 6= 0 and

b = 0) approximately coincide to each other. These two trajectories show that both

the models evolve with early acceleration, medieval deceleration, and then late-time

acceleration. The other two evolutions, the HDE model without matter creation (δ = 0

and b 6= 0) and matter-dominated model (δ = 0 and b= 0) decelerate throughout their

evolutions.

We also introduce the matter density parameter Ωm, which is defined by Ωm= ρm/ρc,

where ρc = 3H2
0 is the critical energy density. Using (4.2.1)and (4.3.8), we obtain

Ωm(a) = (1−b2)

[

(1−b2)δ
k0

+

{

1− (1−b2)δ
k0

}(

a
a0

)
−3
2 k0
]2

, (4.3.20)

where δ 6= 0 and b 6= 0. From the above equation, it is to be noted that for δ = 0

and b = 0, i.e., in the absence of both HDE and matter creation, the matter density

parameter follows Ωm ∼ (a/a0)
−3, which corresponds to the matter dominated phase.

However, in the absence of matter creation only, i.e. putting δ = 0 and b 6= 0, Ωm∼ (1−

b2)
(

a
a0

)
−3
2 k0

. In the presence of matter creation, i.e., δ 6= 0 and b= 0, we have Ωm ∼
[δ +(1−δ )(a/a0)

−3]. The evolution of Ωm with the scale factor for the best fit values

are shown in Fig. 4.4 which shows that how does the matter creation influence the

behavior of Ωm. In each case, as a→ 0, the matter density diverges which indicates

the existence of the Big-Bang at the origin of the Universe.

In Fig. 4.5, we plot the evolution of the deceleration parameter q with respect

to the redshift z for the best-fitted values of the parameters. From the figure, we

can observe that the trajectories of q change in sign from positive to negative as

the redshift decreases. This implies that the CHDE2 model shows transition from

decelerated phase to accelerated phase. In Fig. 4.5, a dot on each trajectory denotes

the current value, q0 at z= 0. The current values of q are given in Table 4.3 for different

set of data, which lies in −1< q< 0.

Using (4.3.18)we plot the trajectory for ωeff with respect to the redshift z as shown

in Fig. 4.6. It is observed that as z→ −1, ωeff → −1, which means that the HDE
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Figure 4.2: Evolution of the scale factor as a function of time for different combinations of
data sets in CHDE2 model. A dot on each trajectory denotes thetransition scale factor,atr .

model with constant matter creation behaves as a de Sitter model in late-time. It is

also observed that the model is free from big-rip singularity as each of the trajectories

does not cross the phantom divide line. A dot on each trajectory in the figure denotes

the current EoS parameter value, ωeff(z= 0). The current values of ωeff for the set of

combined data are listed in Table 4.3.

In Fig. 4.7, we plot the error bars of the Hubble data set to compare our model with

the ΛCDM model. The fitting achieved from our statistical analysis for combined data

SNe+OHD+BAO/CMB is more compatible with the Hubble data for the HDE model

with constant matter creation whereas the cosmic expansion differs appreciably in the

case of SNe+OHD and SNe+BAO/CMB with increasing z. The Hubble function is a

monotonically increasing function of the redshift for all best-fit values of parameters.

Let us calculate the age of the Universe using best-fit values of parameters. The

age of the Universe in terms of redshift is given by t(z) = T(z)/H0, where

T(z) =
∫ ∞

z

dz′

(1+z′)(H(z′)/H0)
. (4.3.21)

For ΛCDM model, the age parameter is [206]

T(z) =
∫ ∞

z

dz′

(1+z′)[Ωm0(1+z′)3+(1−Ωm0)]1/2
(4.3.22)

Using equation (4.3.8) into (4.3.21), we plot the age of the Universe with respect to

the redshift z for the best-fit values as shown in Fig. 4.8. The current ages of the
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Figure 4.3: Evolution of the scale factor as a function of time for different models where the
combined observational data ofSNe+OHD+BAO/CMB is used. A dot on the trajectory
denotes the transition scale factor,atr .

Universe t0 are given in Table 4.3 using different combined set of data. The age of the

Universe corresponding to combined SNe+OHD+BAO/CMB data set is found to be

t0 = 13.393Gyr, which is comparatively same as predicted by ΛCDM model.

Table 4.3: The numerical values ofatr , ztr , q0, ωeff(z= 0) andt0(Gyr) using the best-fit result
of CHDE2 model parameters

Data atr ztr q0 ωeff(z= 0) t0
SNe+OHD+BAO/CMB 0.620 0.611 −0.258 −0.505 13.393

SNe+BAO/CMB 0.737 0.356 −0.161 −0.440 12.691
SNe+OHD 0.504 0.982 −0.363 −0.575 14.414

Cosmographic and Om(z) analysis

Now, we present a comparative study of CHDE2 model with other standard models of

dark energy. Using (4.3.8)in (1.12.1), the statefinder parameters are calculated to

r = 1+
9(δ (1−b2)−k0)

(

1−b2ωd
)

4 e
3
2δ (1−b2)H0(t−t0)

+
9(δ (1−b2)−k0)

2

4 e3δ (1−b2)H0(t−t0)
(4.3.23)

s=

(δ (1−b2)−k0)(1−b2ωd)

2 e
3
2δ (1−b2)H0(t−t0)

+ (δ (1−b2)−k0)
2

2 e3δ (1−b2)H0(t−t0)

(k0−δ (1−b2))e
−3
2 δ (1−b2)H0(t−t0)−1

(4.3.24)

Equations (4.3.23)and (4.3.24)show that in the limit (t − t0)→ ∞, the statefinder pa-

rameters {r,s} → {1,0}, a value corresponding to the ΛCDM model. Therefore, the

HDE model resembles the ΛCDM model in the future. The trajectory for the s−r plane
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Figure 4.4: Evolution of the mass density parameter with thescale factor for different
combinations of best fit values of the CHDE2 model parameterswhere the combined data
SNe+OHD+BAO/CMB is used.

for the best-fit parameters are shown in Fig. 4.9. From the figure, it can be observed

that in early time the trajectories lying in the region corresponding to r < 1,s> 0, which

represents the quintessence region. The model is converging to the ΛCDM model in

the late time of its evolution.

We plot the trajectory of {r,q} in q− r plane for best-fit parameters obtained from

a different set of observational data as shown in Fig. 4.10. The SCDM model

and steady-state (SS) model correspond to fixed points {r,q} = {1,0.5} and {r,q} =

{1,−1}, respectively. The horizontal line at r = 1 corresponds to the ΛCDM model.

We can observe that the trajectories go from a positive value of q to a negative value,

which explains the transition from decelerated phase to the accelerated one. The

CHDE2 model approaches the SS model in late time.

The geometrical investigation discussed above on the dark energy model has been

further extended by considering some new model-independent dimensionless ge-

ometrical parameters, called cosmographic parameters (CP), discussed in section

1.12.2 and defined by equation (1.12.2).

We discuss the variations of the cosmographic parameters with respect to red-

shift z by plotting their trajectories for combined data set of SNe+OHD+BAO/CMBas

shown in Fig. 4.11. From the figure, one can notice that during the entire evolution of

the Universe, the trajectories of j and l remain positive, and for l it decreases sharply

from the high value at the early epoch. The trajectory of s shows that it is negative in

the early phase of the evolution and then gradually increases and becomes positive,
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Figure 4.5: Plot of the deceleration parameterq as a function of redshiftz for the best-fit values
of parameters in CHDE2 model. A dot on each trajectory denotes the current value,q0.
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current value,ωeff(z= 0).
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Figure 4.11: The cosmographic parametersj, s and l are plotted using the combined data of
SNe+OHD+BAO/CMB in CHDE2 model.

hence it shows the transition from negative values to positive values. In the late-time,

j reaches 1 as z approaches to −1 which corresponds to the ΛCDM model. Similarly,

other parameters s and l also approach 1 in the late-time of evolution. So, based on

the cosmographic analysis, we can deduce that the CHDE2 model is different from

the ΛCDM model at the present time z= 0, but in the late-time, it converges to the

ΛCDM model.

One more independent diagnostic parameter, called Om, was discussed in section

1.12.3 to differentiate the dark energy models from ΛCDM. Using (4.3.8) in (1.12.3),

we obtain

Om(z) =

[

(1−b2)δ
k0

+
(

1− (1−b2)δ
k0

)

(1+z)
3
2k0

]2
−1

(1+z)3−1
, (4.3.25)

We plot the trajectories of Om-diagnostic against the redshift z in Fig. 4.12. The

negative slope of the trajectories of Om(z)− z plane indicates the behavior similar to

the quintessence model.

4.3.3 HDE Model with Γ = 3δH0+3βH

Many authors [236, 237, 307, 314] have studied the flat FLRW model by adding the

constant term to Γ = 3βH. The advantage of such form is that it is analytically de-

scribed, and due to this feature we will consider it as an interesting choice for HDE

model. It has been shown that such form of Γ solves the age problem and is also

generically capable of accounting for the Type Ia supernova observation. Therefore,
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we consider the following matter creation rate [236] (hereafter CHDE3 model)

Γ = 3δH0+3βH. (4.3.26)

where the parameter δ and β lies in the interval [0,1]. Using (4.3.26)into (4.2.6), we

obtain the following dimensionless equation:

h′+
3k1

2
h=

3
2

δ (1−b2), (4.3.27)

where k1 = (1−β +βb2+b2ωd). We can solve equation (4.3.27)analytically to obtain

h(a) =
(1−b2)δ

k1
+

{

1− (1−b2)δ
k1

}(

a
a0

)− 3k1
2

. (4.3.28)

To obtain the scale factor a(t), we integrate (4.3.28)in normalized unit at present time

to get

a(t) =

[

1+
k1

(1−b2)δ

{

e
3
2(1−b2)δH0(t−t0)−1

}

]
2

3k1
, (4.3.29)

where k1 6= 0 and b 6=±1. From (4.3.29), we can see that this model shows power-law

form in the early time as the scale factor

a(t)→
[

1+
3k1

2
H0(t− t0)

]
2

3k1
,

which is similar to that of Γ = 3βH. But as t → ∞, the scale factor a(t)→ e
(1−b2)δH0(t−t0)

k1

which corresponds to the de Sitter Universe. This shows that the Universe has an
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early deceleration followed by an accelerating phase in the late time of evolution.

Thus, this form of the particle creation rate unifies the evolution of the Universe, i.e.,

transition from early deceleration to late time acceleration.

The Hubble parameter in terms of redshift z can be written as

H(z) = H0

[

(1−b2)δ
k1

+

{

1− (1−b2)δ
k1

}

(1+z)
3k1
2

]

. (4.3.30)

Next, we find the limiting conditions on the scale factor to study the transition of the

Universe. Assuming H0(t − t0) = y, the second order derivative of the scale factor a(t)

with respect to y as
d2a
dy2 ∝

[

2−3(k1−δ +δb2)e
3
2(b

2−1)δy
]

. (4.3.31)

Now, the appropriate conditions which can explain early deceleration and followed by

a transition to accelerated expansion in the late time, are given by

(1−3δ −3β +3δb2+3βb2+3b2ωd)< 0. (4.3.32)

This condition will be used later on to find the best fit values of model parameters.

The deceleration parameter q is obtained as

q(t) =−1+
3
2
(k1−δ +δb2)e−

3
2(1−b2)δH0(t−t0), (4.3.33)

and in terms of redshift z, it is given by

q(z) =−1+
3
2

(k1−δ +δb2)
[

1+ (1−b2)δ
k1

{

(1+z)
−3k1

2 −1
}] . (4.3.34)

It is evident from Eq. (4.3.34)that q(z) approaches to −1 in future. The present value

of q can be obtained by putting z= 0 in (4.3.34)to get

q0 =
(1−3δ −3β +3δb2+3βb2+3b2ωd)

2
. (4.3.35)

The transition redshift ztr can be obtained by putting q= 0 in (4.3.34)and given by

ztr =

[

2δ (1−b2)

2δ (1−b2)+k1(1−3δ −3β +3δb2+3βb2+3b2ωd)

]

2
3k1

−1. (4.3.36)
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It is to be noted that q(z) = (3k1−2)/2 and ztr = −1 for δ = 0, which shows that the

value of q is constant and there is no transition from deceleration to the acceleration

phase. The transition would take place in infinite future. This gives a contradiction

with Type Ia supernova observation (see, case I). This shows that the transition in

finite late time is possible only if δ 6= 0 or b 6=±1.

The transition time ‘ttr ’ can be obtained as

ttr = t0+
2

3(b2−1)δH0
ln

(

2
3(k1−δ +δb2)

)

. (4.3.37)

The effective equation of state (EoS) parameter can be obtained as

ωeff(z) =−1+
(k1−δ +δb2)

[

1+ (1−b2)δ
k1

{

(1+z)
−3k1

2 −1
}] . (4.3.38)

For the present acceleration, ωeff should satisfy the condition ωeff <−1/3 with z= 0 in

(4.3.38), which is given by

3ωeff +1= (1−3δ −3β +3δb2+3βb2+3b2ωd). (4.3.39)

Using (4.3.32), we find that 3ωeff +1< 0.

Data analysis and results

In this section, we discuss the observational data sets that we employ to constraint the

free parameters. We use the condition (4.3.32)to constraint the model parameters.

Following are the publicly available data sets that we exploit in our statistical analysis.

• Type Ia supernovae (Pantheon data):Data from SNe Ia are an important tool for

understanding the recent evolution of the Universe. For this model, we use the

Pantheon sample, the latest compilation of SNe Ia, comprising 40 binned data

points in the redshift region z∈ [0.014,1.62] [319].

The χ2 for SNe Ia is defined as

χ2
Pantheon= m̄TC−1m̄ (4.3.40)

where m̄= mB−mth with

mth = 5 log10DL +M, (4.3.41)
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and C is the covariance matrix of µobs given in [320]. The luminosity distance dL

is defined by dL = (c/H0)DL, where

DL = (1+zhel)

∫ zcmb

0

H0dz′

H(z′,θ)
(4.3.42)

where θ represents the set of model parameters, zhel is the heliocentric redshift

and zcmb is the redshift of the CMB rest frame.

• Hubble Data (HD):For the study of the cosmic expansion history, the measure-

ment of Hubble parameter H(z) got much attention from the researchers due

to its model independent nature. In this paper, we use the 36 H(z) measure-

ments in which first 31 measurements are obtained from the cosmic chronomet-

ric method [321], three correlated measurements from the BAO signal in galaxy

distribution [322], and the last two measurements determined from the BAO sig-

nal in Ly-α forest distribution alone or cross-correlated with quasistellar objects

(QSOs) [323,324].

The χ2 for 33 Hubble measurement is given by

χ2
CC+Lyα =

33

∑
i=1

[Hobs(zi)−Hth(zi)]
2

σ2
i

, (4.3.43)

where Hth(zi) and Hobs(zi) represents theoretical and observed values respec-

tively and σ2
i the standard deviation of each Hobs(zi).

The χ2 for the 3 galaxy distribution measurements is given by

χ2
gal = ATC−1A (4.3.44)

where C is the covariance matrix given by [322]

C=











3.65 1.78 0.93

1.78 3.65 2.20

0.93 2.20 4.45











and

A=











Hobs(0.38)−Hth(0.38)

Hobs(0.51)−Hth(0.51)

Hobs(0.61)−Hth(0.61)










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Table 4.4: Fitting results for CHDE3 model
Parameters Best-fit values

H0 67.516+1.396
−1.166

b 0.049+0.106
−0.038

δ 0.548+0.025
−0.030

β 0.012+0.022
−0.009

ωd −2.048+1.736
−5.073

M 23.847+0.007
−0.009

χ2
min 36.637

χ2
red 0.516

So, the combined χ2 for HD is

χ2
HD = χ2

CC+Lyα +χ2
gal (4.3.45)

• Local Hubble constant:Furthermore, we also include the recently measured local

H0 given by H0 = 73.5±1.4 km s−1Mpc−1 by SH0ES as reported in [325].

We use the Markov chain Monte Carlo (MCMC) method by employing EMCEE python

package [317] for the model under consideration, and to constrain the free parameters

of the model by utilizing combination of data sets: SNeIa+HD+H0. The parameters

space for the model is {H0,b,δ ,β ,ωd}, with one additional free normalization param-

eter M used in SNe Ia observation. We calculate the best-fit values by minimizing

the combined χ2 function of above defined data sets. Table 4.4 summarizes the main

results of the statistical analysis for CHDE3 model carried out using the set of data

SNeIa+HD+H0. Figure 4.13 shows the 1σ(68.3%) and 2σ(95.4%) confidence con-

tours for this model considering the set of data SNeIa+HD+H0. The overall likelihood

function peaks at δ = 0.548, β = 0.012, b= 0.049, ωd = −2.048with χ2 = 36.637. The

present value of Hubble parameter H0 comes out to be H0 = 67.516which is in good

agreement with the latest obtained value for H0 [8].

Table 4.5 gives a summary of the ICs and χ2
red results. It is easy to observe that

the ΛCDM has lower ICs, so the ∆AIC and ∆BIC are calculated with respect to the

ΛCDM model. According to ICs, we notice a tension between AIC and BIC results:

AIC indicates there is “less evidence in favour" while BIC indicates that there is “ very

strong evidence against" (CHDE3) from current data. The CHDE3 model is punished

by the ICs mainly because of large number of free parameters and thus is not favoured
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Figure 4.13: 1σ(68.3%) and 2σ(95.4%) confidence level contour plot for the CHDE3 model
parameters using the observational dataSNeIa+OHD+H0. The labelsal, bt andwd denote
δ , β andωd parameters, respectively.

Table 4.5: Summary ofχ2, χ2
red, AIC and BIC values and their differences from the reference

modelΛCDM .
Model χ2

min χ2
red AIC BIC ∆AIC ∆BIC

ΛCDM 36.52 0.493 40.52 45.28 0 0

CHDE3 36.64 0.516 46.64 58.29 6.12 13.01

by the current joint data set from a model selection point of view. It is to be noted that

ICs strongly penalizes models when they have more free parameters.

It is observed from Table 4.5 that for ΛCDM model, χ2 = 36.52, and χ2
red = 0.493< 1,

while for CHDE3 model with matter creation, χ2 = 36.64and χ2
red = 0.516< 1. It shows

that CHDE3 model with matter creation gives good fit to the data from reduced chi-

square point of view because the reduced chi-square does not contain the information

of the complexity as ICs have.

Next, we investigate the cosmic history and cosmographic analysis of the CHDE3

model by the best fitting results as given in Table 4.4.
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Table 4.6: The numerical values ofatr , ztr , q0, ωeff(z= 0) andt0 (Gyr) for the best-fitted values
obtained usingSNeIa+HD+H0.

Model atr ztr q0 ωeff(z= 0) t0 (Gyr)

CHDE2 0.48 1.08 −0.39 −0.59 14.64
CHDE3 0.52 0.923 −0.34 −0.56 14.28

Evolution of the model

Let us examine the best fit values through the expansion history of the Universe to

see whether they are consistent with the current data at the background level. Table

4.6 presents the numerical values of transition scale factor atr , transition redshift ztr ,

the current values of q and ωeff, and the age of the Universe. We plot the trajectory of

the scale factor in Fig. 4.14 for all possible models using the best-fit values of model

parameters to compare their evolutions. The inflection points are located at atr = 0.48

for the CHDE2 model whereas it is at atr = 0.52 for the CHDE3 model, slightly higher

than the earlier one. The trajectories of these two models show that both the models

evolve with the accelerated rate in early time followed by deceleration and then the

exponential acceleration at late time. For other models including the general relativity

(GR) case, we get decelerated expansion throughout the evolution as shown in Fig.

4.14.

To observe clearly how to realize cosmic acceleration from these models, we plot

-2 -1 0 1 2
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a
(t
)

dfg with Γ h 3δH0 i 3βH
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HDE with Γ h 3βH
HDE with Γ h 0
GR

Figure 4.14: The evolution of the scale factor as a function of time for the best-fit value of the
model parameters of different HDE models with and without matter creation. The dot denotes
the transition point.

the deceleration parameter q versus redshift z for all possible models using best-fit



137

values of model parameters in Fig. 4.15. As expected, the CHDE2 and CHDE3 mod-

els give negative q at late times, and positive q at an earlier epoch, meaning that the

expansion of the Universe slowed down in the past and speeded up recently. There

are transition redshift ztr = 0.923and ztr = 1.08, respectively between the two epochs

which are substantially higher than the concordance model (ztr = 0.66). The respec-

tive current value of q is q0 = −0.34 and q0 = −0.39, which are respectively higher

than the corresponding WMAP value q0 = −0.60 [326]. These results show that the

HDE model with matter creation cannot be discriminated from the ΛCDM model by

the deceleration parameter due to the insufficient observation accuracy. For the other

models including the GR case, the trajectories do not show a transition from positive

to negative as q has a constant value for each model.

To check the behavior of the effective EoS ωeff, we plot the trajectories with re-
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Figure 4.15: Plot of the deceleration parameterq as a function of redshiftz for the best-fit
value of parameters of different HDE models with and withoutmatter creation. A dot on the
trajectory shows the current value ofq.

spect to the redshift z in Fig. 4.16 for different models using the best fit value of

model parameters. It can be observed that the trajectories for CHDE2 and CHDE3

models show ωeff → −1 in the late-time, which implies that these HDE models con-

verge to de Sitter Universe in late-time. It is to be noted that the best fit value of

CHDE3’s EoS parameter ωd is ωd = −2.048+1.736
−5.073, which shows the phantom behav-

ior. It may be due to the tension with the ΛCDM or maybe the conjunction of chance.

Many authors [117,327,328] have also constrained the HDE and got the best fit value

ωd < −1. However, the effective EoS parameter do not cross the phantom divide

line ωeff < −1. This hint that the quantum vacuum and the particle creation rate may
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indeed result in an effective EoS greater than −1 which shows the quintessence be-

havior. In other words, these HDE models, which are characterized by a particle

production rate that grows throughout cosmic history, today present a significant ef-

fective EoS of quintessence type. The present value of the effective EoS is around

ωeff(z= 0) = −0.59 for CHDE2 model whereas it is ωeff(z= 0) = −0.56 for CHDE3

model. These respective values are comparatively higher than that predicted by the

joint analysis of WMAP+BAO+H0+SNedata, which is around ω(z= 0) =−0.93 [329].

The effective EoS for other models has a constant value (ωeff > −1/3), meaning that

the model expands with decelerated rate.

In Fig. 4.17, we plot the reconstructed evolution history of H(z) in the CHDE3
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Figure 4.16: Behavior of effective equation of state parameterωeff with respect to the redshiftz
for the best-fit value of parameters of different HDE models with and without matter creation.
A dot on the trajectory shows the currentωeff.

model, constrained by observational data. We find that the fitting achieved from the

combined observational data of SNeIa+HD+H0 is compatible with the Hubble obser-

vational data.

The age of the Universe in terms of redshift z is discussed by plotting its trajec-

tory. Using equation (4.3.21), we can calculate and plot the age of the Universe with

respect to the redshift z for the best-fit values as shown in Fig. 4.18. The current ages

of the Universe are found to be t0 ∼ 14.64and t0 ∼ 14.28Gyr in the case of CHDE2 and

CHDE3 models, respectively, which are higher than the concordance model (t0 ∼ 13.7

Gyr).
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Figure 4.17: The comparison of thez∼ H(z) curves. The solid grey line corresponds to the
ΛCDM model and the dashed magenta line corresponds to the CHDE3 model. TheHobs(z)
data are also plotted with their error bars.

Cosmographic and Om(z) analysis

This subsection is devoted to the study of various cosmographic parameters for CHDE3

model which we use to discriminate between the various contenders of dark energy

models. Firstly, we discuss geometrical analysis of our models using statefinder pa-

rameters {r,s}, which can be obtained as

r = 1+
9k1(δ −δb2−k1)

4 e
3
2δ (1−b2)H0(t−t0)

+
9(δ −δb2−k1)

2

4 e3δ (1−b2)H0(t−t0)
, (4.3.46)

s=

k1(δ−δb2−k1)

2 e
3
2δ (1−b2)H0(t−t0)

+
(δ−δb2−k1)

2

2 e3δ (1−b2)H0(t−t0)

(k1−δ +δb2)e
−3
2 δ (1−b2)H0(t−t0)−1

. (4.3.47)

Using (4.3.46)and (4.3.47), the trajectory of {r,s} in s− r plane is shown in Fig. 4.19.

The arrow represents the direction of the evolution of the trajectory. It can be ob-

served that the trajectory of {r,s} starts from a region r < 1,s> 0 in early time which

corresponds to the quintessence model and tends to the ΛCDM point in the future.

The current value of {r,s} is found to be {r0,s0}= {0.430,0.225} which is different from

ΛCDM. Thus, the CHDE3 model is obviously different from the ΛCDM model.

The change of sign from positive to negative is observed in the trajectory of {r,q} in

q−r plane as shown in Fig. 4.20, which explains the transition from decelerated phase

to accelerated one. In the q− r plane, the fixed points {r,q}= {1,0.5} represents the
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Figure 4.18: The age of Universe as a function of redshift forbest-fit values of CHDE3 model.
The black solid line represents the age ofΛCDM model whereas blue dashed line represents
the age of CHDE3 model.
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Figure 4.19: The plot of{r,s} in thes− r plane corresponding to the best-fit values of CHDE3
model. The arrow shows the direction of the evolution of the trajectory.

SCDM model of the Universe whereas {r,q} = {1,−1} represents the steady-state

(SS) model. The horizontal line r = 1 represents the ΛCDM model. It is also observed

from the figure that our model approaches the steady-state model in the late-time.

Now, we discuss some more general geometrical cosmological parameters, called

cosmographic parameters (CP) defined by equation (1.12.2). To discuss the nature of

the cosmographic parameters we plot their trajectories with respect to redshift z for

the combined dataset of SNeIa+HD+H0 as shown in Fig. 4.21. It can be observed

from the figure that during the entire evolution of the Universe, the trajectories of j

and l remain positive, and for l it decreases sharply from the high value at the early

epoch. From the trajectory of s with respect to z we observe that it shows a transition

from negative to positive. In the late-time, the trajectory of j approaches the value 1
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Figure 4.20: The plot of{r,q} in theq− r plane corresponding to the best-fitted parameters of
CHDE3 model. The arrow shows the direction of the evolution of the trajectory.

which corresponds to the ΛCDM model. The trajectories of s and l also show similar

behavior to that of j and approach 1 in the late-time of evolution. So, from the above

analysis, we can conclude that at present time CHDE3 model is different from the

ΛCDM model, but converges to the ΛCDM model as z→−1.

Using (4.3.30)in (1.12.3), we can obtain Om-diagnostic as

l

j

|
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Figure 4.21: The cosmographic parametersj, s andl are plotted for best fit values of CHDE3
model.

Om(z) =

[

(1−b2)δ
k1

+
(

1− (1−b2)δ
k1

)

(1+z)
3k1
2

]2
−1

(1+z)3−1
. (4.3.48)

We plot the trajectory of Om-diagnostic against the redshift z using best-fit values
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Figure 4.22: TheOm−z trajectory for best-fit values of CHDE3 model showing quintessence
behavior.

obtained for the CHDE3 model. From Fig. 4.22, we find that the trajectory of Om

shows the negative slope in the Om(z)− z plane indicating that the behavior of the

CHDE3 model is similar to the quintessence model.

Thermodynamics analysis

Let us now consider the entropy behavior of non-equilibrium thermodynamics of mat-

ter creation in CHDE3 model. The thermodynamic of the model depends on the rates

of variation of the entropy per particle and of temperature. In adiabatic particle produc-

tion, the total number of particles, N and entropy, S are produced in the space-time,

but the specific entropy (per particle) σ = S/N, remains constant, i.e., σ̇ = 0. This

implies that
Ṡ

S
=

Ṅ
N
. (4.3.49)

Since N = na3, using (1.10.1)and (4.3.26)into (4.3.49), we have

N = N0a3β e3δH0(t−t0), (4.3.50)

where N0 is the present value of particles. Using (4.3.50)in (4.3.49), we get

S= S0a3β e3δH0(t−t0), (4.3.51)

where S0 is the present entropy. From (1.10.1)and (4.3.26), we get the particle number

density as

n= n0a−3(1−β ) e3δH0(t−t0), (4.3.52)
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where n0 is the present particles number density. It is to be noted that in all the above

equations the value of the scale factor, a is given by equation (4.3.29).

Further, we analyze the validity of generalized second law (GSL) of the CHDE3

model in a region enclosed by the apparent horizon. According to the second law of

thermodynamics, the total entropy of the fluid components of the Universe plus that of

the horizon must be greater than or equal to zero [330], i.e, (Ṡm+ Ṡd + Ṡh)> 0, where

Sm is the entropy of the dark matter, Sd is the entropy of HDE and Sh is entropy of the

apparent horizon.

Now, we consider apparent horizon as the boundary for analyzing the validity of

GSL. The entropy of apparent horizon is given by Sh =
KBÃ
4l2Pl

, where Ã and lPl are the

area of the horizon and Planck’s length, respectively, and KB is the Boltzman constant.

The area of the apparent horizon is given by Ã = 4πr2
h, where the apparent horizon

radius, rh = 1√
(H2+ka−2)

. As we are restricting our analysis to a spatially flat model

(k= 0), this assumption yields rh = H−1 [331]. Therefore, the entropy of horizon reads

as

Sh =
KBπ
l2
PlH

2
. (4.3.53)

Using (4.3.30), the first order derivative of equation (4.3.53)can be written as

Ṡh =
3KBπ
2l2

Pl

H0

H2

[

k1− (1−b2)δ
]

a−3k1/2. (4.3.54)

It can be observed that Ṡh > 0 if k1− (1−b2)δ > 0. The entropy of the fluid within the

horizon of the Universe is related to the Gibb’s relation [332],

TdS= d(ρV)+ pdV, (4.3.55)

where T is the temperature of the fluid within the horizon, where Th = 1/2πrh [333],

and V = 4π
3 r3

h is the spatial volume enclosed by the horizon. From (4.3.55), the change

in entropy for pressureless dark matter is given by

Ṡm =
8π
3

ρmH0

H4

[

3δ +
9
2

(

k1− (1−b2)δ
)

a−3k1/2+3(1−β )
H
H0

]

. (4.3.56)

Again, using (4.3.55), the change of entropy for CHDE3 model is given by

Ṡd =
8π
3

ρdH0

H4

[

9
2

(

k1− (1−b2)δ
)

a−3k1/2+3(1+ωd)
H
H0

]

. (4.3.57)
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As H, ρm and ρ are always positive, adding equations (4.3.54), (4.3.56)and (4.3.57),

we find that the GSL is satisfied at the apparent horizon provided k1− (1−b2)δ > 0.

4.4 Conclusion

In this chapter, we have presented three different HDE models with adiabatic mat-

ter creation process in the framework of homogeneous and isotropic flat FLRW Uni-

verse filled with HDE and pressureless dark matter with matter creation. We have

discussed the basic terminology and solved the field equations by considering three

different forms of particle creation rate Γ. We have discussed the observational anal-

ysis by employing the MCMC package EMCEE on a different combination of publicly

available data sets. The best-fit values of model parameters have been obtained with

different combinations of data sets. Figures 4.1 and 4.13 show the contour plots of

model parameters at 1σ and 2σ confidence level using different observational data

sets. The trajectories of the evolution of the scale factor, matter density parame-

ter, deceleration parameter, Hubble parameter have been plotted with best-fit values

and discussed their evolutions. We have studied the diagnostic parameters, such as

statefinder parameters and Om(z) to distinguish the models from the ΛCDM model.

The cosmography analysis, like jerk, snap, etc., has been discussed to differentiate

the models from other existing DE models. We summarize the result of different mod-

els as below:

• In CHDE1 model , we have assumed the particle creation rate Γ = 3βH to solve

the field equations. This assumption gives a power-law form of the scale factor.

We have also calculated the deceleration parameter for this form of Γ which is

constant and hence there is no transition redshift throughout the evolution. It has

also been noted that the HDE model with Hubble horizon as an infrared cut-off

also does not show the transition regime.

• In CHDE2 model , we have assumed the particle creation rate of the form Γ =

3δH0. The exact solution for the scale factor has been obtained to discuss the

evolution of the model. We have tested the viability of the model by employ-

ing the MCMC package EMCEE on different combinations of publicly available

data sets of SNe, OHD, and BAO/CMB. The best-fit values of model parameters

have been obtained with different combinations of data sets. Fig. 4.1 shows
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the contour plot of model parameters at 1σ and 2σ confidence level using the

observational data SNe+OHD+BAO/CMB. We have also performed the infor-

mation criterion of AIC and BIC to discriminate CHDE2 model with ΛCDM model

and presented in Table 4.2. The analysis of AIC indicates that there is average

support for the CHDE2 model when compared to the ΛCDM model, while those

based on the BIC indicates that there is positive evidence against the model with

respect to the ΛCDM model when we use the combined dataset of SNe+OHD,

while these selection criteria disfavor with other sets of data discussed here.

The reduced χ2
red listed in Table 4.2 shows that the model provides a very good

fit to these data. It has been observed that the age of the Universe is found

to be 13.393Gyr which is very close to the observed value by the concordance

model. In the CHDE2 model, the trajectory for the model deviates slightly from

that of ΛCDM. It indicates that the CHDE2 model could really alleviate the age

problem. This is due to the change in the energy conservation equation by the

addition of matter creation which makes the matter dilution a little bit slower, and

then the age problem is alleviated.

• In CHDE3 model , we have considered the particle creation rate of the form

Γ = 3δH0 + 3βH. The main advantage of considering HDE with this form of

matter creation is the introduction of another free parameter, thus providing an

extra degree of freedom in the process of constructing a physical interpretation

of the solution. The evolution of such a model has been tested by the latest

observational datasets. In this model, we have used the EMCEE python pack-

age to obtain the best-fit values of the model parameters through the MCMC

method as listed in Table 4.4. Figure 4.13 shows the contour plot for the model

parameters at 1σ(68.3%) and 2σ(95.4%) confidence level. We have also used

the selection criterion of AIC and the BIC to assess the viability of our model

against the ΛCDM model and presented the results in Table 4.5. These ICs

tend to favor models that give a good fit with fewer parameters. Using the AIC

and BIC for model comparison, it has been found that the concordance ΛCDM

model remains the best one to explain current data. The HDE model with par-

ticle creation is punished by their large number of parameters, thus not favored

by the ICs from a model selection point of view. However, the HDE model with

matter creation gives a good fit to the data from a reduced chi-square point of
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view because it does not contain the information of the complexity as ICs have.

It has been found that the value ztr = 0.923between the two epochs is substan-

tially higher than the concordance model (ztr = 0.66). The current values of q are

q0 = 0.34, which is higher than the corresponding WMAP value q0 = 0.60. We

have also estimated the present age of the Universe and found it to be around

14.28 Gyr for best-estimate model parameters which are higher than the esti-

mated value of ΛCDM model. We have analyzed the thermodynamics of the

CHDE3 model. It has been observed that the GSL is valid with the apparent

horizon as the boundary under certain conditions.

As the HDE models with a suitable form of particle production rate predicts the late

time acceleration, we have analyzed the HDE models with matter creation using di-

agnostic parameters like statefinder and Om parameters, and some cosmographic

parameters to discriminate from other standard DE models especially from ΛCDM

model. The trajectories of statefinder {r,s} show that the CHDE models lie in the re-

gion which corresponds to the quintessence model in early time and converges to the

ΛCDM model in the late-time. Similar behavior has also been observed from the other

cosmographic parameters which show that at present the CHDE models with matter

creation are different from the ΛCDM model but converges to it in the late-time. The

Om(z) analysis also shows behavior similar to the quintessence model.

In conclusion, the present HDE models with matter creation successfully describe

the expansion history of the evolution of the Universe from early decelerated phase

to late time accelerated phase. The phenomenological model of matter creation as

discussed in this chapter is good exploring. New constraints on the parameters from

complementary observations need to be investigated in order to see whether the mat-

ter creation HDE models studied here provide a realistic description of the observed

Universe.

****************



Chapter 5

Holographic Ricci Dark Energy Model

with Bulk Viscosity and Matter Creation

In this chapter 1, we extend the work carried out in chapter 2 by introducing matter

creation with bulk viscosity to describe the evolution of the HRDE model. We con-

sider bulk viscosity and matter creation as two independent irreversible processes.

Assuming the suitable forms of the bulk viscous coefficient and matter creation rate,

we find the exact solution of the field equations. We carry out fitting analysis on the

cosmological parameters in the model by using SNe, OHD, and BAO/CMB datasets.

We plot the trajectory of cosmological parameters with the best-fit values of model

parameters and discuss all possible (deceleration, acceleration, and their transitions)

evolutions of the model. We further discuss the geometrical diagnostic parameters

such as statefinder, Om, and cosmographic parameters to distinguish the model from

the ΛCDM model. Finally, we discuss the behavior of energy conditions for our model.

1This chapter comprises the result of a research paper “Viscous Ricci dark energy model with matter creation:
exact solution and observational tests,Pramana Journal of Physics94, 129 (2020)”.
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5.1 Introduction

It is well known that the content of the Universe as a perfect fluid is assertive since it

suggests no dissipation, which actually exists widely, and intuitively plays an important

role in the evolution of the Universe. To be more realistic, the Universe is assumed

to be filled with dissipative media, therefore cosmology based on the imperfect fluid is

proposed reasonably. Viscosity is a concept in fluid mechanics which is related to an

exotic fluid with some thermodynamical features such as bulk and/or shear viscosi-

ties. To reduce the equilibrium pressure in an expanding Universe bulk viscosity can

be useful. In cosmology, the viscosity concept was first discussed by Misner [200].

Several authors [99, 100, 193–196, 198, 199, 205–209, 334, 335] have discussed the

effect of bulk viscosity to understand the DE phenomenon.

The study of matter creation in the relativistic cosmological models has drawn the

attention of a number of authors. In the framework of GR, the adiabatic irreversible

matter creation was first time studied by Prigogine et al. [225, 226]. In their papers,

they discussed that the second law of thermodynamics may be modified to accom-

modate the flow of energy from the gravitational field to the created matter field. This

phenomenon of matter creation has been studied by many authors in detail within

the context of standard GR [227–229, 231, 234, 236, 240, 308, 336]. In the context

of the recent acceleration, the concept of irreversible particle creation has been re-

considered due to its capability to produce an effective negative pressure. For more

details, we refer to the Refs. [237, 238, 244, 246, 247, 307, 314, 337–339]. Prigogine

et al. [225, 226] considered the viscous and matter creation processes as two inde-

pendent processes. Some authors [197, 199, 243, 340–345] have studied these two

dissipative processes by considering as two independent phenomena.

In chapter 2, we have discussed the effect of bulk viscosity on the HRDE model

within the framework of the standard Eckart theory of relativistic thermodynamics. In

the present chapter, we have extended our investigation by including gravitationally

induced matter creation with bulk viscosity in the HRDE model within the framework

of FLRW Universe. We have discussed the evolution of the Universe by constraining

the model parameters through combined observational data. We have plotted the tra-

jectory of the Hubble parameter and ΛCDM with an error bar from Hubble data. We

have studied the dynamical properties of our model by calculating the deceleration

parameter, jerk, snap, and lerk parameters analytically and geometrically. We have
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further discussed the statefinder and Omdiagnostics to discriminate the HRDE model

with other standard dark energy models. We have also discussed the behavior of

energy conditions for the HRDE model.

The chapter has been organized as follows: In Section 5.2, we have presented the

Einstein field equations with bulk viscosity and matter creation for the HRDE model in

the framework of a flat FLRW line element. In Section 5.3, we obtain the exact solution

of the field equations to obtain the Hubble parameter and the scale factor. We have

constrained the model parameters to the combined data set of Type Ia Supernovae,

observational Hubble data, and combined data of baryon acoustic oscillations and

cosmic microwave background, and have presented the fitting results in Subsection

5.3.1. Many interesting issues including the age of the Universe have been discussed

in Subsection 5.3.2. We have compared the HRDE model with other DE models by

calculating statefinder parameters, Omdiagnostics, and cosmographic parameters in

Subsection 5.3.3. In Subsection 5.3.4, we have discussed the energy conditions for

our model. Finally, we have summarized our results in Sec. 5.4. It is to be noted

that we have used matter creation and particle creation synonymously throughout the

chapter.

5.2 The Cosmological Model

We consider a homogeneous and isotropic flat FLRW line element given by (2.2.1).

We assume the Universe filled with pressureless dark matter and HRDE. The energy-

momentum tensor in the presence of bulk viscosity and matter creation is given by

[197,242,346]

Tµν = (ρm+ρd+ peff)uµuν + peff gµν , (5.2.1)

where ρm and ρd denote the energy densities of dark matter and HRDE, respectively,

and peff is the effective pressure

peff = pd+ pc+ pv, (5.2.2)

where pd is the pressure of HRDE, pc is the pressure associated with the creation of

particle out of the gravitational field [225,226] and pv represents the viscous pressure

which is assumed as pv = −3ζH, where ζ is bulk viscous coefficient [190]. The bulk

viscous pressure, pv represents only a small correction to the thermodynamical pres-
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sure; it is a reasonable assumption that the inclusion of viscous term in the energy

-momentum tensor does not change fundamentally the dynamics of the cosmic evo-

lution. The pressure and density of HRDE are related by the equation of state (EoS)

pd = ωdρd, where ωd is the EoS parameter of HRDE.

In the background of the metric (2.2.1)in the general theory of relativity, EFEs (2.2.2)

yield the following two independent equations:

3H2 = ρm+ρd, (5.2.3)

2Ḣ +3H2 =−peff =−(pd+ pc−3ζH). (5.2.4)

Let us now assume the particle creation rate Γ to discuss the HRDE model. The

most natural choice is taken to be [231]

Γ = 3βH, (5.2.5)

where β is a constant parameter which lies in the interval 0≤ β < 1. It has been found

that this form of Γ does not favor the epoch in the evolution of the Universe. Lima et

al. [236] have investigated the CDM model with this form of Γ, but with time-dependent

dimensionless parameter β . However, we restrict ourself with β as a constant. We

consider that these bulk viscosity and matter creation have independent physical phe-

nomena as discussed by many others [197,199].

Now, using (5.2.5)into (1.10.2), we obtain

pc =−βρm. (5.2.6)

Using (5.2.5)into (1.10.1), we find the solution for the particle number density

n= n0

(a0

a

)3(1−β )
, (5.2.7)

where n0 is the constant of integration and considered as the present value of par-

ticle number density. In adiabatic particle production, the particles and entropy are

produced in the space-time, but the specific entropy (per particle) σ = S/N, remains

constant. This implies that Ṡ/S= Ṅ/N.

Using (1.8.5)and (5.2.6), a single evolution equation from (5.2.3)and (5.2.4)can be
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obtained as

[2+3α(β +ωd)]Ḣ +3[1−β +2α(β +ωd)]H
2−3ζH = 0. (5.2.8)

In the absence of bulk viscosity and matter creation, i.e., taking ζ = 0 and β = 0, the

solution of (5.2.8)for HRDE model is given by

H = H0

(a0

a

)B1
, (5.2.9)

where B1 = 3(1+2αωd)/(2+3αωd). The solution of the scale factor is obtained as

a= a0 [1+B1H0(t− t0)]
1/B1 . (5.2.10)

The scale factor shows the power-law expansion. The deceleration parameter gives

q= (B1−1). Thus, the value of q is constant. Therefore, the HRDE model itself does

not describe the transition redshift.

Further, let us consider the HRDE model with matter creation in the absence of bulk

viscosity, i.e., ζ = 0. The solution of (5.2.8)in the presence of matter creation is given

by

H = H0

(a0

a

)B2
, (5.2.11)

where B2 = 3[1−β +2α(β +ωd)]/[2+3α(β +ωd)]. The solution of the scale factor is

given by

a= a0(1+B2H0(t− t0))
1/B2 . (5.2.12)

The above equation again shows that the expansion of the Universe is of power-law

form. The constant value of q= (B2−1) shows that the model does not transit from

decelerated phase to accelerated phase. The model decelerates for B2 > 1, marginal

inflation at B2 = 1 and accelerates for B2 < 1. Therefore, the form of Γ defined in

Eq. (5.2.5)does not explain the present-day Universe, i.e., the transition phase in the

absence of bulk viscosity.

In what follows we find the solution of Eq. (5.2.8)with non-zero bulk viscosity and

matter creation by assuming the suitable form of bulk viscous coefficient, ζ .
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5.3 Solution with Viscosity and Matter Creation

Following [192, 273, 277], we consider the bulk viscosity coefficient ζ of the following

form

ζ = ζ0+ζ1H, (5.3.1)

where ζ0 and ζ1 are positive constants. Equation (5.3.1) represents the general as-

sumption as it is a combination of two forms, ζ = ζ0 and ζ ∝ H. This motivation can be

traced in fluid mechanics where the transport/viscosity phenomenon is involved with

velocity ȧ which is related to the expansion rate H. We define the dimensionless bulk

viscous coefficients ξ , ξ0 and ξ1 as

ξ =
ζ
H0

, ξ0 =
ζ0

H0
and ξ1 = ζ1, (5.3.2)

where H0 is the current value of the Hubble parameter. Using the above transformation

in (5.3.1), we obtain the dimensionless form of bulk viscosity as ξ = ξ0+ ξ1h, where

h= H/H0 is the dimensionless Hubble parameter.

Using the relation d
dt =

ȧ
a

d
d ln a in (5.2.8), a dimensionless evolution equation for h=

H/H0 is given by

ψ2h′+3ψ1h−3ξ0 = 0, (5.3.3)

where ψ1 = [1−β −ξ1+2α(β +ωd)], ψ2 = [2+3α(β +ωd)] and a prime denotes the

differentiation with respect to the conformal time ln a.

Integration of Eq. (5.3.3)gives

h(a) =
ξ0

ψ1
+

(

1− ξ0

ψ1

)(

a
a0

)− 3ψ1
ψ2

, ψ1 6= 0. (5.3.4)

Now, using the relation a0
a = (1+z), we can write the Hubble parameter H in terms of

redshift z as

H(z) = H0

[

ξ0

ψ1
+

(

1− ξ0

ψ1

)

(1+z)
3ψ1
ψ2

]

. (5.3.5)

We derive the t −z relationship, which comes out as

t(z) = t0+
ψ2

3ξ0H0
ln

[

1+
ξ0

ψ1

{

(1+z)
−3ψ1

ψ2 −1

}]

. (5.3.6)
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From (5.3.5), the scale factor a(t) is obtained as

a(t) = a0

[

1+
ψ1

ξ0

(

e
3ξ0H0(t−t0)

ψ2 −1
)

]

ψ2
3ψ1

, ξ0 6= 0, ψ1 6= 0 (5.3.7)

For a better understanding of the evolution of the scale factor, we have plotted the

graph of a(t) with respect to H0(t− t0) in Fig. 5.1 for the best-fitted values of the model

parameters. The best fit values of the model parameters from the observations are

given in Table 5.1 (discussed in subsect. 5.3.1). From Fig. 5.1, it is observed that

the accelerated expansion starts earlier in the HRDE model with bulk viscosity and

matter creation (magenta trajectory) than the HRDE model with bulk viscosity (blue

trajectory) during the evolution of the Universe.

The Hubble parameter H(t) in terms of t can be written as

-1 0 1 2 3 4 5

0

5
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15

20

H0(t-t0)

a

ξ = �� β = 0
ξ ≠ �� β = 0
ξ = �� β ≠ 0
ξ ≠ �� β ≠ 0 (present model)

Figure 5.1: The evolution of the scale factor with respect toH0(t − t0) for the best-fit values
of free parameters. The dot denotes the transition value. The grey and green trajectories of
the scale factor show decelerated expansion whereas blue and magenta trajectories show the
accelerated expansion after the transition point.

H(t) = H0 e
3ξ0H0(t−t0)

ψ2

[

1+
ψ1

ξ0

(

e
3ξ0H0(t−t0)

ψ2 −1

)]−1

. (5.3.8)

The effective dark energy density ρeff and effective pressure peff are respectively given

as

ρeff = 3H2
0 e

6ξ0H0(t−t0)
ψ2

[

1+
ψ1

ξ0

(

e
3ξ0H0(t−t0)

ψ2 −1

)]−2

, (5.3.9)
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and

peff =−
3H2

0ξ0 e
3ξ0H0(t−t0)

ψ2

[

ψ2 e
3ξ0H0(t−t0)

ψ2 +2(ξ0−ψ1)

]

ψ2

[

1+ ψ1
ξ0

(

e
3ξ0H0(t−t0)

ψ2 −1

)]2 . (5.3.10)

5.3.1 Parameters Estimation

We use the Hubble parameter obtained in equation (5.3.5) and estimate the best

fit of the model parameters ξ0, ξ1, β , ωd and α using the combined data set, con-

sisting of the Type Ia supernova (SNe) data set, Observational Hubble Data (OHD)

and the combined baryon acoustic oscillation (BAO) and cosmic microwave back-

ground (CMB) data, discussed in section 1.13. In order to figure out the observational

constraints, we employ publicly available EMCEE codes [317] for implementing the

Markov chain Monte Carlo (MCMC) method. We choose the current Hubble constant

value as H0 = 67.8Km/s/Mpc from Planck 2015 results [20].

Considering these cosmological data sets together, i.e. SNe+OHD+BAO/CMB, the

total χ2 function is then given by

χ2 = χ2
SNe+χ2

OHD+χ2
BAO/CMB, (5.3.11)

where χ2
SNe, χ2

OHD and χ2
BAO/CMB are given by equations (1.13.3), (1.13.4)and (1.13.8),

respectively. The best fit values for the model parameters obtained by minimizing total

χ2 are given in Table 5.1 and the contour plot is shown in Fig. 5.2 with 1σ(68.3%) and

2σ(95.4%) confidence level.

Table 5.1: The best-fit values of the free parameters of HRDE model with bulk viscosity and
matter creation usingSNe+OHD+BAO/CMBsamples

Parameters Best-fit values
ξ0 5.223
ξ1 0.485
β 0.777
ωd −0.240
α 8.078
M 24.95

χ2
min 58.79

χ2
red 0.77
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Figure 5.2: The contour plot for the free parameters using the observational data
SNe+OHD+BAO/CMB for HRDE model with bulk viscosity and matter creation. The la-
belse0, e1, b, wd andal denoteξ0, ξ1, β , ωd andα parameters, respectively.

5.3.2 Evolution of Cosmological Parameters

The Hubble parameter in equation (5.3.4)shows a decreasing behavior with the scale

factor. It can have infinitely large value in the early stages and decreases as the

Universe expands and finally saturated to a constant value as a→ ∞. Fig. 5.1 shows

the behavior of the scale factor with cosmic time. The transition point is found to be

atr = 0.936where the model transits from decelerated phase to accelerated phase.

The deceleration parameter q is a geometric parameter which measures the state

of acceleration/deceleration of the Universe. Using (5.3.7), we obtain

q(t) =−1+
3(ψ1−ξ0)

ψ2
e
−3ξ0H0(t−t0)

ψ2 . (5.3.12)
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Thus, the deceleration parameter (DP) in terms of z can be obtained as

q(z) =−1+
3(ψ1−ξ0)

ψ2





ψ1

ψ1+ξ0{(1+z)
−3ψ1

ψ2 −1}



 . (5.3.13)

The present value of deceleration parameter, q0 corresponding to z= 0 is given by

q0 =−1+
3(ψ1−ξ0)

ψ2
. (5.3.14)

For best fit values of parameters, q0 =−0.362, which is higher than the corresponding
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Figure 5.3: Theq−z relation diagram for best-fitted values of model parameters. The dot de-
notes the transition point from where the model transits from decelerated phase to accelerated
phase. The horizontal red and grey trajectories show the constant deceleration values whereas
the transition trajectories (blue and magenta) are due to the HRDE model with bulk viscosity,
and the HRDE model with bulk viscosity and matter creation, respectively.

WMAP value q0 = −0.60 [326]. In Fig. 5.3, we plot the deceleration parameter q(z)

relation with the cosmic redshift z for best-fitted values of the HRDE model. It is

observed that q changes its sign from positive to negative showing the transition from

decelerated phase to accelerated phase. The transition redshift, ztr is found to be

ztr =0.68 for HRDE model, which is within the range of the transition redshift ztr =0.45–

0.73 in the concordance ΛCDM model [347].

We can obtain the effective equation of state parameter (EoS), ωeff as

ωeff =−1+
2(ψ1−ξ0)

ψ2





ψ1

ψ1+ξ0{(1+z)
−3ψ1

ψ2 −1}



 . (5.3.15)
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Figure 5.4: Theωeff −z relation diagram for the best-fitted model parameters.

It can be observed that in the late-time as z→−1, ωeff →−1 which can also be verified

from the Fig. 5.4. The late-time value ωeff = −1 implies that our model converges to

ΛCDM model in future. It is also observed that the HRDE model does not cross

phantom divide line and thus is free from big-rip singularity.

The present value of ωeff can be found as

ωeff(z= 0) =−1+
2(ψ1−ξ0)

ψ2
. (5.3.16)

The present value ωeff(z= 0) =−0.575can be calculated for the best-fit values of pa-

rameters. This value is comparatively higher than that predicted by the joint analysis

of WMAP+BAO+H0+SNedata which is around −0.93.

We can calculate and plot (Fig. 5.5) the age of the Universe with respect to the

redshift z using equation (5.3.5) into equation (4.3.21)for the best-fit values. The cur-

rent age of the Universe is found to be t0 = 13.397 Gyr corresponding to combined

SNe+OHD+BAO/CMBdata set, which is comparatively same as predicted by ΛCDM

model.

The fitting achieved from our statistical analysis for combined data SNe+OHD+

BAO/CMB is compatible with the Hubble observational data for the HRDE model as

shown in Fig. 5.6.

Also, the reduced χ2
red = χ2

min/(N− d), where N is the number of data and d is

the degree of freedom, is calculated for our model and found to be χ2
red = 0.77 which

shows that our HRDE model provides a very good fit to the considered observational

data.
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Figure 5.5: The age of Universe as a function of redshift where black line represents the age
of ΛCDM model whereas blue dashed line represents the age of HRDEmodel.

Figure 5.6: The best fit curves for HRDE model (dashed magenta) andΛCDM model (black
line). The navy blue points with uncertainty bars correspond to the OHD sample.

Using (5.3.5), we obtain the evolution of bulk viscosity as

ξ = ξ0+ξ1

[

ξ0

ψ1
+

(

1− ξ0

ψ1

)

(1+z)
3ψ1
ψ2

]

(5.3.17)

The trajectory of the bulk viscous coefficient for best-fit values of model parameters

(see, Table 5.1) is shown in Fig. 5.7. It can be observed that the bulk viscosity is

negative at higher redshift (early time) and positive at lower redshift (late time) in

the HRDE model with bulk viscosity (dashed blue curve). This means that the rate

of entropy production is negative in the early epoch and positive in the later epoch.

Hence, the entropy law violates in the early epoch and obeys in the later epoch.

However, the bulk viscosity decreases at low redshift but always positive in the HRDE

model with bulk viscosity and matter creation (solid magenta curve). Thus the model

does not violate the law of entropy.
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Figure 5.7: The behavior of bulk viscous coefficient with redshift for best-fit values of model
parameters.

5.3.3 Geometrical Diagnostics

An important tool for investigating dark energy model characters nowadays is by the

introduction of some geometry quantities, for instance the statefinder diagnostic pa-

rameters, defined by Eq. (1.12.1). The statefinder parameter pair {r,s} of the model

concerned is calculated explicitly to demonstrate the behavior of the HRDE model

with bulk viscosity and matter creation which is obtained as

r = 1+
9(ξ0−ψ1)

(

1− ψ1
ψ2

)

ψ2 e
3ξ0H0(t−t0)

ψ2

+
9(ξ0−ψ1)

2

ψ2
2 e

6ξ0H0(t−t0)
ψ2

(5.3.18)

s=

2(ξ0−ψ1)
(

1−ψ1
ψ2

)

ψ2 e
3ξ0H0(t−t0)

ψ2

+
2(ξ0−ψ1)

2

ψ2
2 e

6ξ0H0(t−t0)
ψ2

2(ψ1−ξ0)

ψ2 e
3ξ0H0(t−t0)

ψ2

−1
(5.3.19)

By using (5.3.18)and (5.3.19), we plot the r −s plane in Fig. 5.8 which shows that the

trajectory starts evolving from the region r > 1,s< 0, which represents the behavior

of the dark energy with chaplygin gas and evolves through the region r < 1,s> 0,

which represents the quintessence model of dark energy and eventually approaches

to the point of ΛCDM model represented by the point {1,0}. Thus, the HRDE model

with bulk viscosity and matter creation discriminates with the ΛCDM model in early
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Figure 5.8: Evolution trajectory inr −s plane to demonstrate the Universe evolution for best-
fitted HRDE model. The fixed point(0,1) corresponds to theΛCDM model. The arrow shows
the direction of the evolution of the trajectory.

time. However, the model behaves like ΛCDM model in the late time evolution of the

Universe.

To illustrate more details for the HRDE model different from the ΛCDM model we

also plot the function trajectory in the r −q plane as shown in Fig. 5.9. The dashed

line shows the time evolution of the ΛCDM model. The dashed line of the ΛCDM

model divides the plane into two parts in which the upper part represents the phantom

evolution of the model whereas the lower part represents the non-phantom phase. We

can see that the model shows the phase transition from deceleration to acceleration

as q changes its sign from positive to negative.

To examine the dynamics of the dark energy models one more diagnostic, called

Om, is obtained with the help of Eq. (1.12.3)as

Om(z) =
[ξ0+(ψ1−ξ0)(1+z)

3ψ1
ψ2 ]2−ψ2

1

ψ2
1 [(1+z)3−1]

(5.3.20)

From the Fig. 5.10 we can observe that the negative slope of the trajectory of

Om(z)−z plane indicates the behavior similar to the quintessence model.

To study more about the evolution of the Universe we extend our study to the cos-

mographic parameters (CP), defined by Eq. (1.12.2). For our model, the variations

of the jerk j, snap s and lerk l parameters is discussed by plotting their trajectories

against the redshift z as shown in Fig. 5.11.

From the Fig. 5.11, we notice that the jerk parameter throughout remains positive
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Figure 5.9: Evolution trajectory inr −q plane to demonstrate the Universe evolution for best-
fitted HRDE model. The horizontal dashed line indicates theΛCDM model evolution trajec-
tory. The arrow shows the direction of the evolution of the trajectory.

Figure 5.10: TheOm(z)−zdiagram for HRDE model corresponding to the best-fit parameters.
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Figure 5.11: The evolution of the cosmographic parameters jerk j, snaps and lerkl for the
best-fit model parameters.
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and converges to 1 as z tends to −1 which corresponds to ΛCDM model. This may

indicate that at present time our model is different from the ΛCDM model but at the

late time converging to the ΛCDM model. The trajectory of snap parameter s shows

the transition from negative to positive i.e. at the early time s takes the negative value

whereas it becomes positive and approaches 1 in the late time evolution. The tra-

jectory of l remains positive without any transition throughout the evolution and also

approaches 1.

5.3.4 Energy Conditions

In general theory of relativity, the study of singularity theory of spacetime was based

on energy conditions (ECs). The ECs take the form of various linear combinations of

the stress-energy tensor components in such a way that the energy remains positive,

or at least nonnegative [348]. The famous Raychaudhuri’s equation for the expansion

nature gives rise to the ECs [349]. Here it is to be noted that the Raychaudhuri’s

equation is purely geometric and it makes no reference to any gravitational theory

under consideration. In FLRW Universe, the ECs takes the following forms:

NEC ⇔ ρeff+ peff ≥ 0, (5.3.21)

WEC ⇔ ρeff ≥ 0 and ρeff+ peff ≥ 0, (5.3.22)

SEC ⇔ ρeff+3 peff ≥ 0 and ρeff+ peff ≥ 0, (5.3.23)

DEC ⇔ ρeff ≥ 0 and ρeff ≥ |peff|, (5.3.24)

where NEC, WEC, SEC and DEC correspond to the null, weak, strong and dominant

energy conditions, respectively. Also in the Refs. [350–352], authors have analyzed

the ECs in the general theory of relativity.

One can observe from the Figs. 5.12, 5.13, 5.14 and 5.15 that the NEC, WEC and

DEC satisfied for our model while SEC is violated.

5.4 Conclusion

In the present chapter, we have discussed the holographic Ricci dark energy model

while considering the effects of bulk viscosity and adiabatic matter creation within the

framework of flat FLRW Universe. We have assumed the bulk viscosity coefficient as
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Figure 5.12: The plot of NEC againstz for the best-fit model parameters.

Figure 5.13: The plot ofρ againstz for the best-fit model parameters.

Figure 5.14: The plot of SEC againstz for the best-fit model parameters.
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Figure 5.15: The plot of DEC againstz for the best-fit model parameters.

ζ = ζ0+ζ1H and the particle creation rate as Γ = 3βH to obtain the exact solutions for

the scale factor and various physical quantities. We have considered these two dis-

sipative phenomenons as independent irreversible processes. It has been observed

that the assumption Γ ∝ H does not describe the present-day Universe (transition

phase) in the absence of bulk viscosity. Also, the HRDE model without bulk viscosity

and matter creation does not show transition redshift. Therefore, to overcome this

problem we have introduced the bulk viscosity along with matter creation to observe

the present-day Universe and we have succeeded to obtain such a model. We have

obtained the function Hubble parameter in terms of redshift which is used to obtain

the free parameters of the HRDE model.

We have performed the statistical analysis for our model in Sect. 5.3.1 using the

latest observational data of SNe, OHD, and combined data of BAO and CMB. We

have employed publicly available EMCEE codes for the implementation of the MCMC

method. We have obtained the best fit values for the model parameters (see Ta-

ble 5.1). Using best fit values we have found the transition value of the scale factor

(atr = 0.936), the current value of the deceleration parameter (q0 = −0.362) and EoS

parameter (ωeff =−0.575).

To get further information about the behavior of the model we have presented the

evolution of various cosmological parameters and studied various geometrical diag-

nostics and cosmographic parameters analytically and graphically. The deceleration

parameter shows a signature flipping behavior thereby indicating the evolution of the

Universe from early deceleration to present late-time acceleration (see Fig. 5.3). The

behavior of effective EoS parameters (see Fig. 5.4) shows that the HRDE model be-
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haves like de Sitter Universe in the late-time of evolution. It has also been observed

that the trajectory of ωeff does not cross the phantom divide line and thus is free from

a big-rip singularity. Fig. 5.5 shows the age of the Universe with respect to redshift z

for the best-fit values of the model parameters. The age of the Universe is found to be

13.397Gyr which is very close to that predicted by the ΛCDM model. From Fig. 5.6,

it has been observed that these best-fit values of the model parameters are in good

agreement with the predictions of the standard model. The reduced χ2
red obtained for

the HRDE model provides a very good fit to the considered observational data.

Furthermore, we have performed the statefinder diagnostic analysis to this HRDE

model with bulk viscosity and matter creation to discriminate from the ΛCDM model.

In Fig. 5.8, we have plotted the r − s trajectory and observed that our model is fi-

nally approaching ΛCDM while in Fig. 5.9 there is a sign change of q from positive to

negative which shows that our model changes the phase from deceleration to accel-

eration. In both the figures arrows show the direction of the trajectories in the plane.

The Omdiagnostic which is obtained from the Hubble parameter shows the negative

slope in Om(z)−z plane trajectory (Fig. 5.10) i.e. it shows the behavior similar to the

quintessence model. We have also discussed cosmographic parameters like jerk j,

snap s, lerk l to compare our model with the ΛCDM model. From the Fig. 5.11, we

can observe from the trajectory of jerk j that at present our model is different from

the ΛCDM model but in the late time, it converges to ΛCDM. We can observe from

the trajectory of snap parameter s that it changes its sign from negative to positive

during the evolution and finally converges to 1. Similarly, the lerk parameter l shows

no transition with respect to z and reaches 1 in the late future.

Finally, we have examined the energy conditions of our model to analyze the physi-

cal viability of the model. It has been observed from the Figs. 5.12–5.15 that the NEC,

WEC and DEC satisfied but SEC fails to hold for our model.

****************





Chapter 6

Cosmology of Matter Creation in FLRW

Model

In this chapter 1, we propose a new generalized form of the matter creation rate,

Γ = 3δH0+3βH +3γ
(

Ḣ
H +H

)

to discuss the evolution of the Universe. The best fit

of the model parameters is obtained from Markov Chain Monte Carlo (MCMC) analy-

sis using the observational data of SNe, OHD, BAO/CMB. We apply Akaike informa-

tion criterion (AIC) and Bayesian information criterion (BIC) to discriminate the model

based on the penalization associated with the number of parameters. We also discuss

the thermodynamics of the model.

1The work presented in this chapter comprises the results of aresearch paper entitled “Quintessence behavior
via matter creation cosmology,The European Physical Journal C80, 106 (2020)”.
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6.1 Introduction

In general relativistic cosmology, the presence of negative pressure is the key ingredi-

ent to accelerate the expansion. This kind of stress occurs naturally in many different

contexts when the physical systems depart from thermodynamic equilibrium states.

In this connection, as first pointed out by Zeldovich [353], the process of cosmological

particle creation at the expense of the gravitational field can phenomenologically be

described by negative pressure and the associated entropy production. Prigogine et

al. [225, 226] were first to put forward the self-consistent macroscopic formulation of

the matter creation process. They used the generalized form of the first law of thermo-

dynamics to describe the flow of energy from the gravitational field to the matter field,

resulting in the creation of particles. The authors argued that the creation of matter

can occur only as an irreversible process at the expense of the gravitational field.

It was also shown that matter creation, at the expense of the gravitational field, can

effectively be discussed in the realm of relativistic non-equilibrium thermodynamics. It

was also demonstrated that the matter creation is an irreversible process completely

different from bulk viscosity mechanism [227, 354]. This formalism gives a balance

equation for the number of created particles along with Einstein field equations. The

combination of this equation with the second law of thermodynamics yields an ad-

ditional negative pressure that depends on the rate of matter creation. Calvao et

al. [228] proposed a generalization of this result to include the variation of specific

entropy through a covariant formulation.

A model with adiabatic matter creation was proposed in order to interpret the cos-

mological entropy and to solve the Big-Bang singularity problem. However, after the

discovery of the accelerating expansion of the Universe, this model was reconsidered

to explain the expansion of the Universe and got some unexpected results. It has

been pointed out that the matter creation can play the role of a dark energy compo-

nent and lead to driving the accelerating expansion of the Universe.

In this context, Many authors [227, 229, 231, 244, 337, 355–358] have discussed

FLRW line element with matter creation cosmology and analyzed the results through

the observations. It has been shown that the matter creation models are consistent

with the observations. Zimdahl et al. [359] tested the matter creation models with SNe

data and got the result of accelerating Universe. Yuan et al. [360] studied the models

with adiabatic matter creation and showed that the model is consistent with SNe data.
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Many phenomenological models with matter creation have been proposed in the liter-

ature [237,248,310–312,361] to study the late-time evolution of the Universe.

We are mainly interested in the paper of Prigogine and collaborators [225], in which

the authors have applied the thermodynamics of open systems to cosmology, allow-

ing both particle and entropy productions. Recently, it has been found that the matter

creation cosmology successfully explains the current accelerated expansion [313].

Therefore, this field is very appealing as many important observations are carried out

during the past many years with matter creation.

In this chapter, we have presented a matter-dominated cosmological model with

matter creation within the framework of the FLRW line element. We have proposed

a generalized form of matter creation rate and investigated the evolution equations

by independent/combined observational data of SNe, OHD, and BAO/CMB. We have

observed that the best-fit values of the model parameters give a smooth transition

from decelerating phase to the accelerating phase. We have studied two independent

diagnostic tests, namely, the statefinder parameter and the Om diagnostic to discrim-

inate our model from the ΛCDM. We have applied AIC and BIC to discriminate the

model. We have also performed a thermodynamic analysis based on the generalized

second law (GSL) of thermodynamics and explore the restrictions on the free param-

eters of the cosmological model to satisfy the GSL.

The chapter has been organized as follows. In Section 6.2, we have presented a

brief review of matter creation cosmology and the field equations. The solution of

the field equations has been discussed in Section 6.3. In Section 6.4, we have pre-

sented the result and discussion of the model for the obtained best-fit values of the

model parameters. In Section 6.5, we have discussed the model selection criteria to

discriminate the model. We have discussed the thermodynamic of the model based

on the generalized second law of thermodynamics in Section 6.6. Finally, we have

summarized our findings in Section 6.7. It is to be noted that throughout the chapter,

we use particle creation and matter creation synonymously.

6.2 Field Equations with Matter Creation

Let us start with the homogeneous and isotropic flat Friedmann-Lemaître-Robertson-

Walker (FLRW) line element given by (2.2.1). The energy-momentum tensor for per-
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fect fluid with particle creation is given by

Tµν = (ρ +P)uµuν +P gµν , (6.2.1)

satisfying the covariant conservation equation Tµν
;ν = 0. In (6.2.1), uµ is the fluid

four-velocity, ρ is the energy density and P is the dynamics pressure which is given by

P= p+ pc, (6.2.2)

where p is the equilibrium pressure and pc is the pressure due to the matter creation.

The particle flux vector has the form

Nµ = nuµ , (6.2.3)

where N is the total particle number in a comoving volume V, n= N/V is the particle

density and uµ is the usual four velocity vector of the created particles. In the grav-

itationally induced particle creation mechanism, (6.2.3) satisfies the balance equa-

tion [225]

Nµ
;µ = Γ, (6.2.4)

where Γ is the rate of matter creation from the gravitational field. In principle, Γ > 0

represents the matter creation, Γ < 0 is for matter annihilation, and Γ = 0 is the case

when there is no matter creation. In general, the exact form of Γ is unknown, but it

should be determined in the context of quantum processes in curved space time.

In this background, the field equations (2.2.2)for line element (2.2.1)and EMT (6.2.1)

are given by [227,228]

3H2 = ρ , (6.2.5)

2Ḣ =−(ρ + p+ pc) , (6.2.6)

where ρ and p are energy density and pressure, respectively, of matter existing in

the Universe in the form of cold dark matter during matter dominated era, and pc is

the pressure due to the matter creation. The dot denotes derivative with respect to

cosmic time t. The energy conservation law is given by

ρ̇ +3(ρ + p+ pc)H = 0. (6.2.7)
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As the particle number is not conserved (i.e., Nµ
;µ 6= 0), the conservation equation

(6.2.4)takes the form
Ṅ
N

=
ṅ
n
+3H = Γ. (6.2.8)

It is to be noted that the creation pressure pc must be defined in terms of the creation

rate and other physical quantities. In the case of adiabatic particle production, the

particles and entropy are generated but the entropy per particle does not vary. Under

such ‘adiabatic condition’, the creation pressure can be written as [237]

pc =− Γ
3H

(ρ + p). (6.2.9)

In what follows, we present the solution of the model with matter creation.

6.3 Solution of Field Equations

The discussion in previous section 6.2 shows that we can describe the dynamics

of the Universe only if the matter creation rate is known. The nature of Γ is unknown

as the associated quantum field theory (QFT) is yet to be developed. Steigman et

al. [236,237] proposed a class of particle creation driven model of the form Γ = 3δH0+

3βH to study the late-time evolution of the Universe.

In this chapter, we propose a new class of Γ(t) cosmology in a spatially flat FLRW

Universe where Γ(t) is assumed to be the function of Hubble rate and its cosmic

derivative. We cover a series of Γ(t) (equivalently, Γ(H0,H, Ḣ)) model in order to see

their dynamical evolutions and viabilities. We propose the following general form of Γ:

Γ = 3δH0+3βH +3γ
(

Ḣ
H

+H

)

, (6.3.1)

which is a linear combination of three terms: the first term is a constant, the second

term is proportional to the Hubble parameter, which characterizes the dependence of

the matter creation on expansion rate, and the third term is proportional to ä/ȧ, char-

acterizing the effect of acceleration of the expansion. Here, δ , β and γ are dimension-

less free parameters lying in the interval [0,1] to be determined by observations, H0 is

the present value of the Hubble parameter and the factor 3 has been maintained for

mathematical convenience.

The motivation of considering this form of Γ comes from the matter creation ther-

modynamics. We know that the transport phenomena is related to velocity, which is
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related to the Hubble parameter, and the acceleration. Since we don’t know the ex-

act form of Γ, so a linear combination of three terms of parametrization of Γ is more

physical. The existence of a transition redshift at late time also determines the form

of matter creation rate.

We are interested in processes that occurred after radiation-dominated phase. There-

fore, we neglect radiation and baryons, and consider only the presence (and creation)

of pressureless (p = 0) dark matter particles. In this case, Eq. (6.2.9) reduces to

pc =−ρ Γ/3H for which equation (6.2.7)reduces to

ρ̇
ρ
+3

(

1− Γ
3H

)

H = 0, (6.3.2)

Combining (6.2.5)and (6.3.2), and using (6.3.1), we obtain the following dimensionless

equation
ḣ
h
+

3(1−β − γ)
(2−3γ)

H0 h=
3δ

(2−3γ)
H0, (6.3.3)

where h= H/H0 is the dimensionless Hubble parameter. Using d
dt =

ȧ
a

d
d lna, the above

equation can be written as

h′+
3(1−β − γ)
(2−3γ)

h=
3δ

(2−3γ)
, (6.3.4)

where a prime denotes the derivative with respect to conformal time ln a. Using

h(a0) = 1, (6.3.4)gives the solution as

h(a) =
δ

(1−β − γ)
+

(

1− δ
(1−β − γ)

)(

a
a0

)− 3(1−β−γ)
(2−3γ)

. (6.3.5)

Equation (6.3.5) shows that when δ , β and γ are all zero, the Hubble parameter,

H = H0(a/a0)
−3/2 which corresponds to the ordinary matter dominated Universe. On

integration of (6.3.5), the scale factor a(t) (or the redshift, z), normalized to unity at

present epoch, evolves with time as

a(t) =
1

(1+z)
=





(1−β − γ)e
3δH0
(2−3γ) (t−t0)−1+(δ +β + γ)

δ





(2−3γ)
3(1−β−γ)

, (6.3.6)

where (β + γ) 6= 1. We can study three different cases: 0< δ +β + γ < 1, δ +β + γ = 1

and δ + β + γ > 1. In the case 0 < δ + β + γ < 1, we observe that in the early time

as t → 0, the scale factor a(t)→
[

1+ 3(1−β−γ)H0
(2−3γ) (t− t0)

]

(2−3γ)
3(1−β−γ) , which corresponds to
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an early decelerated expansion and in the late time as t → ∞, the scale factor a(t)→
e

3δH0
(2−3γ) (t−t0), corresponding to de Sitter like Universe. The model predicts a Big-Bang

in the past at cosmic time: tB = t0+
(2−3γ)
3δH0

ln
(

1−(δ+β+γ)
1−β−γ

)

.

The transition time can be obtained by equating to zero the second derivative of

scale factor given in (6.3.6)with respect to time which is given by

ttr = t0+
(2−3γ)H−1

0

3δ
ln

(

(3−3(δ +β + γ))
(2−3γ)

)

. (6.3.7)

The Hubble parameter in terms of redshift z, where 1+z= a−1, reads

H(z) = H0

[

δ
(1−β − γ)

+

(

1− δ
(1−β − γ)

)

(1+z)
3(1−β−γ)
(2−3γ)

]

. (6.3.8)

When γ = 0, i.e., Γ = 3δH0+3βH (See, Ref. [236]), (6.3.6)and (6.3.8)reduce to (14)

and (13) of [236]. Further, In the limit δ → 0, the above equation reduces to (16)

in [355].

To obtain the transition scale factor atr where the transition from decelerated phase

to accelerated phase takes place, we take the derivative of (6.3.5)with respect to a,

dȧ
da

=

[

δ
1−β − γ

+
(3β −1)(1−δ −β − γ)
(2−3γ)(1−β − γ)

a−
3(1−β−γ)

2−3γ

]

. (6.3.9)

Equating (6.3.9)to zero, we obtain the transition scale factor, atr as

atr =

[

(1−3β )(1−δ −β − γ)
δ (2−3γ)

]

2−3γ
3(1−β−γ)

. (6.3.10)

It is clear that for δ + β + γ = 1 or β = 1/3, the transition from decelerated phase

to accelerated phase occurs at a time corresponding to atr → 0 closer to Big-Bang.

In this case, a = exp(H0(t − t0)), corresponds to de Sitter Universe. In this case the

model predicts an accelerated expansion from the beginning. For (δ +β + γ) < 1, the

transition occurs in late-time whereas for (δ +β + γ) > 1, there is no transition and in

this case the model always accelerates from very early time.

An important cosmological quantity is the deceleration parameter q, which is an

indicator of the accelerating/decelerating nature of the evolution of the Universe. It is

straightforward to show from (6.3.6)that the deceleration parameter takes the following
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form in terms of cosmic time t:

q=−1+
3(1−δ −β − γ)

2−3γ
e−

3δH0
2−3γ (t−t0). (6.3.11)

The redshift dependence of the deceleration parameter is obtained as

q=−1+
3(1−δ −β − γ)

(2−3γ)
[

1+ δ
1−β−γ

(

(1+z)−
3(1−β−γ)

2−3γ −1

)] . (6.3.12)

It can be observed that q(z) → −1 as z→ −1, i.e., q(z) approaches to −1 in future

and for z= 0, we get q0 =
1−3(δ+β )

2−3γ . This shows that for δ +β = 1/3, the deceleration

parameter q0 = 0. This implies that the transition into accelerating phase would occur

at the present time. In the absence of matter creation, i.e., for δ = β = γ = 0, we get

q= 0.5, a value of q in matter-dominated model. Putting q= 0 in (6.3.12), the transition

redshift is given by

ztr =

[

δ (2−3γ)
(1−3β )(1−δ −β − γ)

]

2−3γ
3(1−β−γ)

−1. (6.3.13)

It is to be noted that for δ = 0, we get ztr = −1, i.e., the transition would be in future

which gives the contradiction with SNe data. From (6.2.5)and (6.3.5), we obtain the

mass density parameter Ωm= ρ/ρc and ρc = 3H2
0 as,

Ωm(a) =





(

1− δ
1−β − γ

)(

a
a0

)− 3(1−β−γ)
2−3γ

+
δ

1−β − γ





2

. (6.3.14)

We observe that for δ = β = γ = 0, the mass density parameter reduces to Ωm ∼ a−3,

which corresponds to the matter dominated phase with null matter creation. It is also

noted that as a→ 0, the mass density diverges.

In what follows we constrain the free parameters of the model coming from the

background tests.

6.4 Parameter Estimation and Analysis

In this section we briefly present some details of the statistical method and obser-

vational sample that we adopt in order to constrain the model. We normalized H(z)

using the latest Planck data H0 = 67.8±0.9 kms−1Mpc−1 [20].
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Using the observational data of SNe, OHD, BAO/CMB as discussed in section 1.13,

we test the cosmological model with adiabatic matter creation, assuming a spatially

flat Universe. We perform a global fitting to determine the model parameters using

the MCMC method. We adopt a Python implementation of the ensemble sampler

for MCMC, the ‘emcee’, introduced by Foreman-Mackey et al. [317]. The best fitting

results of parameters are listed in Table 7.1. In our statistical analysis, the model pa-

rameters can be determined through the χ2 minimization method. We minimize the

function χ2 of individual from (1.13.3), (1.13.4), (1.13.8)and jointly. A joint likelihood

analysis is given by

χ2
total = χ2

SNe+χ2
OHD+χ2

BAO. (6.4.1)

In statistical analysis, we find the best-fit values of model parameters at 1σ(68.3%)

Table 6.1: The best-fit results of model parameters and free normalization parameterM ob-
tained from the analysis with different combinations of thedata sets

Data set δ β γ M

SNe 0.263+0.187
−0.170 0.249+0.155

−0.161 0.166+0.180
−0.113 24.942+0.023

−0.028

SNe+OHD 0.423+0.080
−0.117 0.068+0.075

−0.048 0.322+0.097
−0.084 24.946+0.018

−0.020

SNe+BAO/CMB 0.438+0.087
−0.153 0.074+0.088

−0.058 0.303+0.113
−0.077 24.936+0.022

−0.022

SNe+OHD+BAO/CMB 0.431+0.077
−0.131 0.069+0.078

−0.048 0.274+0.112
−0.076 24.952+0.017

−0.018

and 2σ(95.4%) of confidence level, respectively, satisfying the constraints 0 < δ < 1,

0 < β < 1, 0 < γ < 1 and 0 < (δ +β + γ) < 1. We can test the reliability by compar-

ing the result with spatially flat ΛCDM model. We observe that the model provides

a very good fit to these data. Figures 6.1–6.4 show confidence contours and the

marginalized likelihood function of model at 1σ(68.3%) (inner contour) and 2σ(95.4%)

(outer contour) using observational data of SNe, SNe+OHD, SNe+BAO/CMB and

SNe+OHD+BAO/CMB, respectively.

It can be observed from Table 7.1 that the result of the free parameters obtained

from SNedata is a little different from SNe+OHD, SNe+BAO/CMB and SNe+OHD+

BAO/CMB. The error bars of free parameters are relatively large in the case of SNe

data.

Figure 6.5 shows the evolution of the scale factor for best-fit values of model param-

eters. The trajectory of the best-fit values shows that the Universe starts its expansion
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Figure 6.1: The contour map of matter creation model using data fromSNewith marginalized
probability for the parameters. The associated 1σ(68.3%) and 2σ(95.4%) confidence con-
tours are shown. In Fig. the symbolse0, e1 ande2 denote the model parametersδ , β andγ,
respectively.

at an accelerated rate at very early times for the best-fit values of model parameters

obtained from different individual/combined observational data set. The trajectory

(dotted curve) is also shown for a matter-dominated model in the absence of matter

creation which shows decelerated expansion. The dots denote the transition point

where the transition from decelerated phase to accelerated phase occurs. Using the

best-fit values, the transition scale factor, atr and the corresponding redshift transition

values, ztr are listed in Table 6.2. It is observed that the value of ztr = 2.8619obtained

from SNeand ztr = 1.0147from SNe+BAO/CMB for the model are substantially higher

than the values of ztr from SNe+OHD, SNe+OHD+BAO/CMB and ΛCDM model.

The evolution of the deceleration parameter, q with redshift for best-fit values is

shown in Fig. 6.6. The deceleration parameter is a monotonically increasing function

of z. It is observed that there is a sign change in each trajectory of q(z) from positive

to negative showing that the Universe transits from decelerated phase to accelerated

phase (positive values of q indicate decelerating expansion while negative values indi-

cate an accelerating evolution). We find that the model transits at around ztr = 0.8386

and ztr = 0.8633 through joint analysis of SNe+OHD and SNe+OHD+BAO/CMB,

respectively. These results are in good agreement with the concordance of Λ cosmol-
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Figure 6.2: The contour map of matter creation model based onjoint analysis ofSNe+ OHD
showing contours of 1σ(68.3%) and 2σ(95.4%) regions with marginalized probability for
the parameters. In Fig. the symbolse0, e1 ande2 denote the model parametersδ , β andγ,
respectively.

ogy [362]. The present-day value of q0 and the transition redshift ztr are listed in Table

6.2. The values of q0 lie in range −1≤ q0 < 0 through each observational data set.

The effective equation of state (EoS) parameter, ωeff, can be obtained by using

(6.3.5)into (4.3.17)as

ωeff =−1+
2(1−δ −β − γ)

(2−3γ)
[

1+ δ
1−β−γ

(

(1+z)−
3(1−β−γ)

2−3γ −1

)] . (6.4.2)

As z→−1, (a→ ∞), we get ωeff →−1, which can also be observed from Fig. 6.7. This

can also be obtained if we take δ +β + γ = 1. It means that the model corresponds

to ΛCDM in future time. The EoS parameter does not cross the phantom divide line

ω ≤−1 which shows that the matter creation model is free from big-rip singularity.

The present value (h= 1) of ωeff is found to be

ωeff(z= 0) =−1+
2(1−δ −β − γ)

(2−3γ)
. (6.4.3)

The present values of ωeff are listed in Table 6.2 using different observational data
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Figure 6.3: The contour map of matter creation model based onjoint analysis ofSNe+
BAO/CMBshowing contours of 1σ(68.3%) and 2σ(95.4%) regions with marginalized prob-
ability for the parameters. In Fig. the symbolse0, e1 ande2 denote the model parametersδ ,
β andγ, respectively.

set. These values are comparatively higher than that predicted by the joint analysis of

WMAP+BAO+H0+SNedata which is around −0.93 [21].

Using (6.3.8) into (4.3.21), the trajectory of the age of the Universe with redshift

for the best estimates of model parameters is shown in Fig. 6.8. The current age of

the Universe is t0 ≃ 13.9 Gyr while the transition point is located at atr ≃ 0.58 (hence

at redshift ztr ≃ 0.72. The ages of the Universe corresponding to SNe+OHD and

SNe+OHD+BAO/CMB are found to be 13.9 Gyr. So, the age predicted by the present

model is agreeing with the age deduced from ΛCDM model.

We compare our model with the ΛCDM model with the error bar plots of Hubble

dataset in the range z∈ (0,2) as shown in Fig. 6.9. Although at the low redshifts,

the cosmological evolution is practically independent on the best-fit values, at higher

redshifts there is a significant effect of the parameter values on the cosmic expan-

sion as can be observed from Fig. 6.9. The cosmic expansion of SNe+OHD and

SNe+OHD+BAO/CMB differ appreciably in the case of SNeand SNe+BAO/CMB.

It is possible to get a good fit using joint statistical analysis of SNe+OHD and SNe+

OHD+BAO/CMB. The Hubble function is a monotonically increasing function of the

redshift (monotonically decreasing function of time) for all best-fit values of parame-
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Figure 6.4: The contour map of matter creation model based onjoint analysis ofSNe+ OHD
+ BAO/CMB, showing contours of 1σ(68.3%) and 2σ(95.4%) regions with marginalized
probability for the parameters. In Fig. the symbolse0, e1 ande2 denote the model parameters
δ , β andγ, respectively.

ters.

Now, we present our analysis on comparing the present model with other standard

models of DE using the statefinder parameters {r,s}. For our model, {r,s} are given by

r = 1+
9(1−δ −β − γ)2

(2−3γ)2 e
6δH0(t−t0)

2−3γ

+
9(1−δ −β − γ)(−1−β +2γ)

(2−3γ)2 e
3δH0(t−t0)

2−3γ

, (6.4.4)

s=
2(1−δ −β − γ)

[

(1+β −2γ)− (1−δ −β − γ) e
−3δH0(t−t0)

2−3γ

]

(2−3γ)
[

(2−3γ) e
3δH0(t−t0)

2−3γ −2(1−δ −β − γ)
] . (6.4.5)

From the above equations, we observe that as (t − t0) → ∞, {r,s} → {1,0} which

coincide with the ΛCDM model. This can also be achieved by assuming δ + β +

γ = 1 which gives the de Sitter behavior. The s− r plane trajectory of the model for

best-estimated values of parameters obtained by observational data set are shown

in Fig. 6.10. The direction of trajectories is shown by the arrows. The trajectory

obtained through SNelies in the region r < 1, s> 0, which is the general behavior of

any quintessence model. The other trajectories from SNe+OHD, SNe+BAO/CMB
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Figure 6.8: The age of the Universe as a function of redshift for best-fit values of model
parameters.
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Table 6.2: The numerical values ofatr , ztr , q0, ωeff(z= 0) andt0 using best-fit results of model
parameters

Data atr ztr q0 ωeff(z= 0) t0
SNe 0.2589 2.8619 −0.356 −0.5712 16.4 Gyr

SNe+OHD 0.5438 0.8386 −0.457 −0.6382 13.8 Gyr

SNe+BAO/CMB 0.4963 1.0147 −0.424 −0.6608 14.5 Gyr

SNe+OHD+BAO/CMB 0.5366 0.8633 −0.491 −0.6162 13.98 Gyr
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Figure 6.11: The trajectory of{r,q} in q− r plane for the best-fitted parameters. The arrow
shows the direction of the evolution of the trajectory.

and SNe+OHD+BAO/CMB start from the Chaplygin gas region (r > 1,s< 0) at the

early time and in intermediate time pass through quintessence and then ultimately

approach to ΛCDM in late time.

The {r,q} trajectory of the model is shown in Fig. 6.11. The SCDM model and

steady state (SS) model correspond to fixed points {r,q}= {1,0.5} and {r,q}= {1,−1},

respectively. The horizontal line at r = 1 corresponds to the time evolution of ΛCDM

model. Our model approaches to the standard model like ΛCDM and quintessence

model (Q−model) [254] in late time.

The Om is another diagnostic approach to distinguish dark energy. Using (6.3.8)into

(1.12.3), we can write the expression of Om(z). Figure 6.12 exhibits the evolution of

different trajectories of the function Om(z) with respect to the redshift z, corresponding

to different best-fit values of model parameters. The negative slope of each trajectory
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Figure 6.12: The trajectory ofOm(z)for the best fitted parameters.

shows that the model behaves like quintessence.

6.5 Model Selection

We use two information criteria, namely the Akaike Information Criterion (AIC) and

the Bayesian Information Criterion (BIC) to assess the model as discussed in section

1.13. For a cosmological model with d degrees of freedom in which N number of

data points have been used to fit the model, the AIC and BIC parameters are defined

through the relation (1.14.2)and (1.14.3).

Table 6.3 shows the χ2
mins, χ2

reds, AICs, BICs of the matter creation model with

Table 6.3: Summary of the reducedχ2
red, ∆AIC and∆BIC for ΛCDM model and matter cre-

ation model
Model Data set χ2

min χ2
red AIC BIC ∆AIC ∆BIC

ΛCDM SNe 17.027 0.587 21.027 23.894 0 0
SNe+OHD 27.901 0.387 31.907 36.509 0 0

SNe+BAO/CMB 18.131 0.518 22.131 25.352 0 0
SNe+OHD+BAO/CMB 30.443 0.385 34.443 39.232 0 0

Matter creation SNe 17.417 0.622 23.417 27.718 2.390 3.824
model SNe+OHD 27.521 0.387 33.512 40.433 1.614 3.924

SNe+BAO/CMB 17.416 0.512 23.416 28.249 1.285 2.897
SNe+OHD+BAO/CMB 29.766 0.381 35.766 42.950 1.323 2.718

consideration of the ΛCDM as the referring model. It can be observed that the values

of χ2
min, AIC and BIC for matter creation model are very close to the values of ΛCDM

model. Thus, the observational data strongly favor and support the matter creation

model from AIC and BIC. The reduced χ2
red also shows that it is very close to the

values of ΛCDM model, which is less than one (the model is “over fitting” the data).
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6.6 Thermodynamical Analysis

In this section, we find the condition of the thermodynamic stability for the present

particle creation model. In [363], it has been demonstrated that cosmological apparent

horizons are also endowed with thermodynamic properties. It can relate temperature

and entropy to the apparent horizon like to the black hole event horizon.

According to the generalized second law (GSL) of thermodynamic, the total entropy

S is the sum of entropy of all sources. Therefore, in this model the total entropy is

contributed from the entropy of the apparent horizon (Sh) and entropy of fluid (S f )

inside the apparent horizon, i.e., S= Sh+S f . The entropy of apparent horizon is given

by Sh = κBÃ/4l2
pl [364], where κB is the Boltzmann’s constant, Ã= 4πr2

h is the area of

horizon in which rh = H−1 is the horizon radius for flat FLRW Universe and lpl is the

Planck’s length.

Differentiating Sh with respect to cosmic time and using (6.3.8), we obtain

Ṡh =−2πκB

l2
pl

Ḣ
H3 =

6πκB

l2
plH

2

H0(1−δ −β − γ)
(2−3γ)

a
− 3(1−β−γ)

(2−3γ) . (6.6.1)

It is observed from the above equation that Ṡh ≥ 0 for (δ +β + γ)≤ 1 and γ < 2/3.

Now, the Gibb’s equation for the fluid is written as

TdS f = d(ρV)+ pdV=Vρ̇ +ρV̇ + pdV, (6.6.2)

where V = 4πr3
h/3 is the spatial volume enclosed by the horizon and T is the fluid

temperature. Note that we are studying matter-dominated model p= 0. Using (6.3.8),

the above equation gives

Ṡ f =
24π2H0

H2

(1−δ −β − γ)
(2−3γ)

a−
3(1−β−γ)

2−3γ , (6.6.3)

where T = Th = 1/2πrh , i.e., the temperature of the fluid becomes equal to that of

the temperature of the horizon [333]. For Ṡ f ≥ 0, we must have (δ +β + γ) ≤ 1 and

γ < 2/3.

Thus, from (6.6.1) and (6.6.3), we observe that Ṡ = Ṡh+ Ṡ f ≥ 0 for (δ + β + γ) ≤ 1

and γ < 2/3. So, the entropy of the horizon plus fluid is an increasing function of the

cosmic time.
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Differentiating (6.6.1)again with respect to cosmic time, we get

S̈h =
18πκBH0

l2
pl

(1−δ −β − γ)
(2−3γ)2 a−

3(1−β−γ)
2−3γ

[

2H0

H2 a−
3(1−β−γ)

2−3γ − (1−β − γ)
H

]

. (6.6.4)

Similarly, differentiating (6.6.3)with respect to cosmic time, we get

S̈ f = 72π2H0
(1−δ −β − γ)

(2−3γ)2 a−
3(1−β−γ)

2−3γ

[

2H0

H2 a−
3(1−β−γ)

2−3γ − (1−β − γ)
H

]

. (6.6.5)

Adding (6.6.4)and (6.6.5), one obtains

S̈ = S̈h+ S̈ f

=

(

18πκB

l2
pl

+72π2

)

(1−δ −β − γ)H0

(2−3γ)2H
a−

3(1−β−γ)
2−3γ ×

[

2H0

H
a−

3(1−β−γ)
2−3γ − (1−β − γ)

]

. (6.6.6)

The sign of S̈ is determined by last bracket in (6.6.6)and δ +β + γ < 1. Therefore, we

find that the generalized second law of thermodynamics is always valid and hence the

model is stable under the above constraints.

It is also interesting to discuss the model with adiabatic matter creation like irre-

versible process. In adiabatic process, the total entropy S increases, but, the specific

entropy (per particle), σ = S/N, remains constant, i.e., σ̇ = 0 which implies that

Ṡ

S
=

Ṅ
N
. (6.6.7)

Using (6.3.1)into the relation Ṅ
N = ṅ

n +3H = Γ, we get

N = N0a3β (ȧ)3γ e3δH0(t−t0), (6.6.8)

where N0 is the present number of particles. Now, from (6.6.7), we get

S= S0a3β (ȧ)3γ e3δH0(t−t0), (6.6.9)

where S0 is the present entropy of matter fluid. It is to be noted that if δ = β = γ, i.e., if

there is no particle creation, we get S= S0, i.e., the standard conserved quantities are

recovered.
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6.7 Conclusion

We have discussed the matter-dominated model with matter creation cosmology as

an alternative to explain the cosmic acceleration. As matter creation models are phe-

nomenological and the literature contains a variety of models, so a generalized model

could be a better choice to start for any study. Hence, in the present chapter, we have

generalized the form of matter creation rate assumed by Lima et al. [236].

The assumption Γ = 3βH [229] always gives accelerating model for β > 1/3 or de-

celerating for β < 1/3, that is, there is no transition redshift from a decelerating to an

accelerating regime as required by observational data. In another paper, Abramo and

Lima [248] proposed the form of Γ as Γ = 3βH2, however, it also gives no transition

redshift. In order to cure such difficulty, a constant term is added to this expression,

i.e., Γ = 3δH0+ 3βH [236] to get the transition redshift. Basilakos and Lima [307]

have also used the same form to constraints the model. They observed that the age

of the Universe to be t0 ∼ 14.8 Gyr while the inflection point is located atr ≃ 0.44 which

corresponds to ztr ≃ 1.26. They have found that this form of matter creation rate is

endowed with severe difficulties even for the set of background tests because it is

unable to adjust simultaneously the observational data at low and high redshift.

In this chapter, we have generalized the form of Γ in order to produce a clear image

about the matter creation models aiming to realize the early physics and its compati-

bility with the current astronomical data. It covers different matter creation rate, for in-

stance, Γ ∝ H0, Γ ∝ H and Γ ∝ ä/ȧ. Lima et al. [236] have performed best-fit of the free

parameters using only SNedata and best-fit values are β = 0 and δ = 0.65. We have

performed the fitting of free parameters using joint observational data of SNe, OHD,

and BAO/CMB in which none free parameters is zero. However, In our model, the age

of the Universe is found to be 13.9 Gyr from SNe+OHD and SNe+OHD+BAO/CMB,

but it is higher with SNeand SNe+BAO/CMB. Also, the transition redshift is less than

one with SNe+OHD and SNe+OHD+BAO/CMB, which are a good fit with the ΛCDM

model. Our model also generalizes the work of the above references and it can be

observed from the observational tests that our model gives best-fit values from joint

observation of SNewith OHD, and OHD and BAO/CMB and fit the data very well with

ΛCDM model. We have investigated the model analytically and numerically in which

the matter creation process provides the late-time accelerating phase of the cosmic

expansion without the need for any dark energy.
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We have obtained the exact solutions for the scale factor, Hubble parameter, and

deceleration parameter. These results have then contrasted with the ones obtained

at the background level to find the model parameters. For the background tests, we

have used SNein combination with OHD and BAO/CMB at different redshifts. The

nature of the cosmological evolution is strongly dependent on the numerical values of

the model parameters. The best-fit values of model parameters have been listed in

Table 7.1. Figure 6.1–6.4 show the confidence regions of parameters δ , β and γ for

different sets of joint observational data. It has been found that the results of SNeand

SNe+BAO/CMB data are a little different from the other two data. However, the joint

analysis of SNe+OHD and SNe+OHD+BAO/CMB constrain the model parameters

very well and are in good agreement with observational data of the ΛCDM model. In

what follows we summarize the results:

The evolution of the scale factor for best-fit values of model parameters have been

plotted in Fig. 6.5. It has been observed that the model predicts early deceleration

and late-time acceleration. The transition points atr where the Universe transits from

decelerated phase to accelerated phase have been listed in Table 6.2.

Figure 6.6 plots the evolution of deceleration parameter with redshift for best-fit

values obtained from independent/combined analysis of observational data. The

present-day value of q and transition redshift ztr have been listed in Table 6.2. The

best-fit values of parameters obtained from different observational data give q0 in the

range of −1≤ q0 < 0. In general, q→−1 as z→−1, which corresponds to the de Sitter

Universe. The deceleration parameter is time-dependent and hence shows the tran-

sition from positive to negative. The evolution of the Universe begins from a higher

redshift, from a decelerating phase, with q > 0. The expansion of the Universe ac-

celerates, and at a finite value of z it reaches the value q = 0, corresponding to the

transition to the accelerated phase. The evolution of q is strongly dependent on the

numerical values of the model parameters.

We have obtained the EoS parameter to discuss the evolution of the model. Figure

6.7 plots the evolution of the EoS parameter with redshift for best-fit values of pa-

rameters. It has been observed that the EoS does not cross the phantom-divide line

ω = −1. Irrespective of the values of parameters, ωeff →−1 as z→−1 which shows

that the model behaves like ΛCDM in late time. The present values of ωeff obtained

from independent/combined observational data are listed in Table 6.2. These values

are comparatively higher than that predicted by the joint analysis of WMAP+BAO+

H0+SNedata which is around −0.93.
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We have discussed the age of the Universe by plotting the trajectory with best-fit

values of parameters as shown in Fig. 6.8. The trajectory shows that the age of the

Universe obtained by SNe+OHD and SNe+OHD+BAO/CMB data are found to be

approximately 13.9 Gyr. So, the age-predicted by the present model is agreeing with

the age deduced from the ΛCDM model.

The Hubble function with the error bar fits into the ΛCDM model for best-fit values

and has been plotted in Fig. 6.9. It has been observed that the curves coincide at low

redshifts and differ appreciably at high redshifts. However, it is possible to get a good

fit using joint analysis of SNe+OHD and SNe+OHD+BAO/CMB.

We have studied two diagnostics parameters, namely, statefinder and Om(z) pa-

rameters to compare our model with ΛCDM model. In Fig. 6.10, the trajectories of

{r,s} have been plotted in s− r plane for best-fit values obtained from different ob-

servational data set. The model corresponds to the ΛCDM model in late-time. The

model also approaches the standard model in late time as shown in the q− r plane

(Fig. 6.11). The trajectory of Om(z) in Fig. 6.12 shows that the model behaves like

quintessence.

We have performed the information criterion of AIC and BIC to discriminate our

model with the ΛCDM model. The values of reduced Chi-square, ∆AIC and ∆BIC are

calculated and have been listed in Table 6.3. The analysis based on the AIC and BIC

indicates that there is positive support for the matter creation model when compared

to the ΛCDM model. The reduced χ2
red is less than one in each data points which

shows that the model gives the best-fit values of model parameters and good support

to ΛCDM model.

We have discussed the thermodynamic behavior of the model by calculating the

total entropy for the matter creation. We have established the general conditions for

any matter creation model that ensure the validity of the generalized second law of

thermodynamics.

****************





Chapter 7

Conclusion and Future Scope

7.1 Conclusion

In the thesis, we have studied the effects of bulk viscosity and matter creation on

various cosmological models. In chapter 2, we have explored the possibility of bulk

viscosity as a possible candidate of dark energy to explain the accelerating Universe.

We have discussed the dissipative processes in the HRDE model within the frame-

work of the standard Eckart theory of relativistic thermodynamics. We have observed

that the accelerated expansion may be possible for a non-viscous case but the phase

transition is not possible. For the viscous HRDE model, We have obtained the ex-

ponential expansion of the scale factor which gives the time-dependent deceleration

parameter and statefinder pair. It is observed that the model shows the transition from

the decelerated phase to the accelerated phase depending on the values of the vis-

cous term and the results show that the recent acceleration is well explained with the

viscous term.

In chapter 3, we extend the study of chapter 2 in the framework of modified f (R,T)

gravity theory. We have obtained the exact solutions of the field equations by as-

suming the simplest form of f (R,T) = R+λT with constant and variable bulk viscous

coefficients. It is found that the behaviors concerning the cosmic expansion depend

on the coupling parameter of f (R,T) and bulk viscous term. Using statefinder param-

eters and Omdiagnostic, it has been found that our model shows a similar behavior as

the quintessence model and Chaplygin gas model for different values of the viscosity

coefficient. We have also analyzed the time evolution of the total entropy and gener-

alized second law of thermodynamics of the viscous HRDE model in f (R,T) theory

191
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inside the apparent horizon.

Further, chapter 4 deals with the adiabatic matter creation process in the HDE model

with the motivation of considering it as an alternative choice to explain the recent

accelerating phase of the Universe. We have considered three different forms of

matter creation rate to discuss the evolution of the Universe. We have constrained

the model parameters through the MCMC method by the use of the EMCEE python

package on the latest observational data to discuss various cosmological parameters.

We have used cosmographic parameters and Omto discriminate our model with other

dark energy models. We have analyzed the model by applying information criterion

AIC and BIC based on the penalization associated with the number of parameters.

The generalized second law of thermodynamics is found to be valid for this model

under certain conditions.

In chapter 5, we have explored the effect of bulk viscosity and matter creation in the

HRDE model to observe the current accelerated phase. In the literature, both phe-

nomena have been treated as the same cosmological phenomena and some papers

treat both as different phenomena. We have considered these two dissipative phe-

nomenons as independent irreversible processes. With the help of best-fitted model

parameters, we have discussed the evolution of various cosmological parameters and

also used geometric parameters to distinguish the model from other standard dark

energy models. The behavior of energy conditions has also been discussed for the

HRDE model. The result shows that the HRDE model with bulk viscosity and matter

creation is in good agreement with current observational data.

Chapter 6 discusses the matter-dominated model with matter creation cosmology

in the FLRW model as an alternative to explain the cosmic acceleration. We have

proposed a new form of matter creation rate, which generalizes some of the previ-

ous models in the literature. We have performed the statistical analysis to obtain the

best-fit values of the model parameter by employing the MCMC package EMCEE on a

different combination of publicly available data sets of SNe, OHD, and BAO/CMB. Ex-

act solutions of the scale factor and deceleration parameters have been obtained and

discussed their evolution for the best-fit values of model parameter which shows the

phase transition from deceleration to recent acceleration. We have also distinguished

this model from other existing dark energy models using two geometrical diagnos-

tics: statefinder parameter and Omdiagnostic. We also used information criterion AIC

and BIC to compare our model with the standard ΛCDM model. The thermodynamic
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behavior have been discussed for this model by calculating the total entropy for the

matter creation.

Table 7.1: Comparison of different models carried out in thethesis with theΛCDM model
Model ztr q0 ωeff(z= 0) t0 (Gyr)

ΛCDM 0.66 −0.60 −0.93 13.7

HDE with Γ = 3δH0 0.61 −0.26 −0.50 13.39

HDE with Γ = 3δH0+3βH 0.92 −0.34 −0.56 14.28

HRDE withζ = ζ0+ζ1H, Γ = 3βH 0.68 −0.36 −0.57 13.40

FLRW model with matter creation 0.86 −0.49 −0.62 13.98

7.2 Future Scope

This thesis as a whole can be considered as an extensive review on bulk viscosity and

matter creation effects on cosmological models in the framework of GTR and mod-

ified f (R,T) gravity theory, where not only detailed references to the literature have

been furnished, but also new and original results have been obtained. We have ana-

lyzed the concepts of bulk viscosity and matter creation in HDE, HRDE, and matter-

dominated models in GTR as well as in f (R,T) gravity theory.

We have considered the bulk viscous coefficient as ζ = ζ0+ζ1H in this thesis, how-

ever a second-order bulk viscous coefficient as ζ = ζ0+ζ1H+ζ2(
Ḣ
H +H) may be con-

sidered to describe the late time evolution. In the forthcoming paper, we will try to

assume such a form of ζ in GTR as well as in modified f (R,T) gravity theory. The

conservation of energy-momentum tensor is one of the main problems in f (R,T) grav-

ity. Harko has tried to explain the conservation equation through the thermodynamics

of particle creation. We will try to resolve this problem in the future.

We have assumed various forms of particle creation rate Γ in our study of matter-

dominated model and HDE model in this thesis. We have also proposed a new form

of particle creation rate, Γ = 3δH0+3βH +3γ( Ḣ
H +H) to discuss the evolution of the

Universe in flat FLRW line element. Therefore, it opens door to study the cosmological

implications of this form in other aspects of evolution.
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The modified f (R,T) gravity theory presents a maximal coupling between matter

and geometry which may be useful to explain the accelerated expansion of the Uni-

verse. Several cosmological models have been presented in f (R,T) theory but there

is a scope to do more work. We have studied only the first order Eckart theory of

bulk viscosity in GTR and f (R,T) gravity, therefore, it may be worthy to discuss the

full causal theory of bulk viscosity which may provide better and more general results.

Considerable discussion on observational cosmology also has not been discussed

in this theory so there is a scope to do that. The study of structure formation and

perturbation theory is another main field where considerable work can be done.

The field of cosmology is definitely worth following over the next decade since ev-

erything points toward significant advances. To ensure maximum benefit from future

surveys, we still need to improve our theoretical understanding of cosmological mod-

els, and this thesis is one of many steps toward achieving this.

****************
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