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Abstract 

 
Sustainability is the ability of a resource to be viable between generations and not get exhausted or 

affect the nature directly or indirectly. The rapidly increasing demand and the inability of the 

conventionally utilized fossil fuels does not add to the sustainability of the environment. It not only 

pollutes the environment via its fumes but also leaves a large carbon footprint. Renewable energy 

sources are the sources which do not exhaust over time. Solar energy is a widely used source of 

energy due to the abundant availability of sunlight all over the world. 

 

The main objective of any generation activity deals with the maximization of benefits and revenue. 

This revenue depends upon the generation by the plant, which in turn depends on the plant 

performance. Thus, a maximization of the plant performance i.e., the output power is desirable. This 

maximization of power can be obtained from a PV array by operating it at its maximum power point 

i.e., the MPP of the designed array.  

 

Various MPP techniques are employed for this purpose and they vary from each other on the basis 

of their inherent structure, the logic behind the algorithm, the convergence as well as computation 

time. Uniformity of irradiance is a rare phenomenon in the field of solar power generation. However, 

testing of the PV arrays is done at STC i.e., 1000 W/m2 irradiance at a temperature of 25˚C or 298 

K. Conventionally available techniques have been used over years. However, the inherent 

oscillations in their response and the relatively poor tracking speeds have acted as a motivation for 

the development of Artificial Intelligence (AI) based techniques. 

 

The AI based techniques employ the basic input required by the conventional techniques along with 

an additional change in error of these inputs. This gives these techniques an effective direction for 

locating and approaching the MPP at a faster speed within least possible time. The three main AI 

based controllers are Fuzzy Logic Controller (FLC), Artificial Neural Network (ANN) and Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS). Rigorous comparative studies are performed on the 

controllers and a continuous effort is put in to further boost their performance as compared to their 

conventionally available counterparts by incorporating one modification or the other. A simplified 

and optimized FLC (SOFLC) is proposed, designed and tested to approximate the performance of a 

49-rule base FLC which acts as a trade-off between complexity and accuracy by merely 4 rules and 

a compensating polynomial. 
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Chapter 1 

Introduction 

 

1.1   OVERVIEW 

In a world where the demand for electricity reaches a new high on a regular basis, it is worth 

noting that the power generation sector itself contributed to 75% of the total carbon footprint 

in the world [1]. According to the Global Energy & CO2 Status Report 2019, the global CO2 

emissions related to energy rose by 1.7% in 2018 and amounted to two-thirds of the global 

CO2 emissions [2]. A stacked line chart representing the global energy-related carbon dioxide 

emissions has been illustrated in Fig. 1.1. The three main contributing factors to the carbon 

dioxide emissions globally are coal-fired power generation, other coal use and other fossil 

fuels. Thus, it is essential to comply with sustainable measures for energy production.  

 

Fig. 1.1 Global Energy-related Carbon Dioxide Emissions for 2021 
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Various sustainable development goals have been put into action in developed as well as 

developing countries for reducing the carbon emissions from energy generation. Renewable 

energy resources have been a suitable choice for the fulfillment of these sustainable goals. 

Not only do they help meet the energy demands, but they also reduce the effects of climate 

change and reduce the dependence on fossil fuel-based energy consumption [3]. Renewable 

energy resources have an added advantage of getting replenished over time which has not 

possible in the case of fossil fuels. These sources of energy have almost negligible carbon 

footprint and reduce air pollution unlike conventional sources like coal which caused an 

increase in the concentration of Sulphur Dioxide (SO2) and Nitrogen Oxide (NOx).  

Based on the data from the Central Electricity Authority (CEA) and Ministry of New and 

Renewable Energy (MNRE), the installed capacity of India stood at 382.73 GW as on 

28thFebruary 2021 [4]. Of this installed capacity, thermal based fuels, which comprised of 

coal, lignite, gas and diesel, constituted a large portion of 61.5% of the net capacity while 

renewable energy resources (excluding hydroelectric power) had a significant share of 24.5% 

of the total installed capacity. Hydro-electric power had a share of 12.2% while nuclear 

energy contributed 1.8% to the total capacity. This contribution from the various sources of 

energy has been depicted in Fig. 1.2. 

 

Fig. 1.2 Share of Various Sources in Net Installed Capacity based on CEA Report, Feb 2021. 
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Various forms of renewable energy include, but are not limited to, solar energy, wind energy, 

biomass energy, tidal energy, geothermal energy, and small hydro power. A classification of 

the renewable energy sources has been shown in Fig. 1.3. Renewable sources of energy are 

distributed over a large area as compared to conventional sources like coal and diesel which 

are concentrated at certain locations. These non-conventional sources of energy are eco-

friendly and sustainable. This will help the developing nations to bring an overall increase in 

their growth rates of energy generation and not be completely dependent over imported fossil 

fuels. 

 
Fig. 1.3 Types of Renewable Energy Sources 

 

In the Indian scenario, solar energy is preferred over other forms of renewable energy.  

Abundant availability of solar energy in India makes it the most suitable alternative among 

the available renewable sources of power generation. However, high wind velocities also give 

India, a huge potential for wind energy. Due to a large number of rivers and tributaries, small 

hydro power generation is also a possible source. There is also a significant amount of 

generation of energy via biomass in India.  

 

1.2   SOLAR ENERGY 

Solar energy is the one of the most preferable energy sources across the globe. The abundant 

availability along with the sustainable form of power generation makes it a perfect choice for 

domestic as well as industrial applications. The incentives provided by the governments of 

countries all around the world have also provided a boost to the solar based power generation 

as it has made solar more affordable for domestic applications.  

Renewable Energy Sources
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Solar energy is the energy extracted from a solar cell which has been under constant exposure 

of the sun. Solar energy can either be generated using the direct as well as indirect methods. 

Concentrated solar power is an indirect type of power generation technique and is generally 

used for high power applications. Concentrated solar energy can be generated by two 

technologies, which are solar thermal and solar photovoltaic (PV) [5]. 

In solar thermal technology, large sized mirrors and lenses are employed along with efficient 

tracking system in order to track the position of the sun and with the help of the mirrors and 

lenses to concentrate the sun rays in a small area to produce heat. This heat could further be 

used for various applications like water heating and space heating. Usually, parabolic 

concentrators are used for this purpose as they can generate higher temperatures of the order 

of 200-300˚C due to their better focusing capabilities.  

In concentrated solar photovoltaic technology, solar power is concentrated upon PV panels 

for the purpose of electricity generation. A hybrid concentrated solar energy system would 

include the use of both the concentrated solar power-based techniques to generate electricity 

along with heat.  

Solar photovoltaic technology involves the use of PV cells to directly convert light energy in 

the form of sun rays into electrical energy. This technology has emerged as the best 

alternative for remote locations where power from conventional sources of energy or grid is 

unavailable. The grid integration of these PV panels gives a boost not only to the utility but 

also the consumers in general. The consumer is no longer just a consumer for the grid but 

also a potential supplier of energy during peak hours.  

 

1.3   PV CELL 

A PV cell is the smallest building block of a PV module or a PV array. It is an electrical 

device responsible for conversion of incident light into electrical energy [6].  



5 
 
 

 

 

 

 

Fig. 1.4 PV Cell 

The solar cells are considered photovoltaic i.e., producing energy by converting the energy of 

the incident light irrespective of the source of light. The operation of a PV cell includes three 

salient features [7, 8]: 

 Absorption of light which generates electron-hole pair combinations. 

 Separation of charge carriers of opposite polarities. 

 Collection of the oppositely charged carriers through an external circuit.  

 

1.4   MATHEMATICAL MODEL OF A PV CELL 

The datasheets usually offer limited information and the results obtained from the different 

units could vary. Thus, an accurate mathematical model of a PV cell is essential for 

simulating and conducting studies on a PV module. A PV cell can be mathematically 

modeled broadly in two ways: single diode model and double diode model [9]. This 

classification is based on the number of diodes used in the equivalent circuit of the PV cell 

and is shown in Fig. 1.5. 
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(a) 

 

(b) 

Fig. 1.5 (a) Single-diode equivalent model and (b) Double-diode equivalent model of a PV cell 

 

The single diode model of a PV cell is used in this work due to its reduced complexity. The 

ideal equivalent model of a PV cell has been shown in Fig. 1.6 (a). It includes a current 

source connected in parallel with a diode. Even though, the ideal equivalent model is the 

simplest model of a PV cell, it does not take into account the practical conditions. In this 

case, a practical model of a PV cell is used. The practical equivalent model of a PV cell has 

been shown in Fig. 1.6 (b).  
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Fig. 1.6 Practical Equivalent Model of a PV cell 

 

The practical equivalent model consists of a combination of shunt and series resistance 

connected to the ideal equivalent model of the PV cell [10-14]. Thus, the current produced by 

the PV cell, Ipv (A), can be computed as the difference of the sum of diode current, Id (A), and 

the current through the resistor connected in parallel with the cell, Ip (A), from the photo-

current generated by the PV cell, Iph, due to the incident irradiation as shown in eqn. (1.1). 

𝐼௩ = 𝐼 − 𝐼ௗ − 𝐼                   (1.1) 

The photo-current generated by the PV cell depends upon the short-circuit current of the PV 

cell, Isc (A), operating as well as reference temperature (K), Top and Tref respectively, 

operating as well as reference irradiance (W/m2), Gop and Gref respectively. A slight variation 

in the short circuit current is observed with a change in the temperature. This change is taken 

into account in the form of short-circuit temperature coefficient, Ki (%/˚C). Generally, the 

reference values of Gref and Tref are taken as the values at STC i.e., an irradiance of 1000 

W/m2 and a temperature of 25˚C. Thus, the expression for the photo-current can be 

formulated as (1.2). 

𝐼 = 𝐼௦ ൬
ீ

ீೝ
൰ ൣ1 + 𝐾(𝑇 − 𝑇)൧                  (1.2) 
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Meanwhile, the diode current is dependent upon factors such as reverse saturation current, Io 

(A), diode’s ideality factor, A, and the thermal voltage of the diode, VT (V). The diode 

current can thus be computed by (1.3). 

𝐼ௗ = 𝐼 ቆ𝑒
(ೇೡశೃೞ)

ಲೇ − 1ቇ                  (1.3) 

The expression for thermal voltage may be written as (1.4) in the terms of operating 

temperature, Top(K), Boltzmann’s constant (m2 kg s-2 K-1) and the charge on an electron (C). 

𝑉் =
 ்


                    (1.4) 

The current passing through the parallel resistance is calculated using (1.5). 

𝐼 =
ೡାூೡோೞ

ோ
                    (1.5) 

Thus, the expression for output current of the PV cell (Ipv) can be evaluated as (1.6). 

𝐼௩ = 𝐼௦ ൬
ீ

ீೝ
൰ ൣ1 + 𝐾(𝑇 − 𝑇)൧ − 𝐼 ቆ𝑒

(ೇೡశೃೞ)

ಲೇ − 1ቇ −
ೡାூೡோೞ

ோ
            (1.6) 

where the reverse saturation current of the diode, Io (A), can further be computed in the terms 

of reverse current, Irs (A) and energy band gap, Eg in eV as (1.7). 

𝐼 = 𝐼௦ 𝑒𝑥𝑝 ൬
ଵ

்
−

ଵ

்ೝ
൰

ா


൨ ൬

்

்ೝ
൰

ଷ

                (1.7) 

 

1.5   PV ARRAY 

A PV cell is the basic entity of a PV based system. However, the power output for a PV cell 

is very small. In order to increase this output for the cells to be used in various applications, 

the cells are connected in series as well as parallel configurations or a combination of the 

two. This enhances the current and voltage ratings of the overall structure and thus increases 

the output power. 
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A PV module is combination of PV cells connected in series, parallel or series-parallel 

configuration. The number of cells required for a module can be calculated according to the 

required ratings for the module. Number of cells in series can be computed using (1.8). 

𝑁𝑜. 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑠𝑒𝑟𝑖𝑒𝑠 =
௧ ௧  ௧ ௗ௨

    
               (1.8) 

In a similar manner, the number of cells in parallel can be calculated as (1.9). 

𝑁𝑜. 𝑜𝑓 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
௨௧ ௧  ௧ ௗ௨

ூೞ    
              (1.9) 

Similarly, a PV module is the basic entity for a PV array. An electrically connected 

combination of modules adds up to a PV array. The calculations of number of modules to be 

connected in series and parallel can be done using (1.10) and (1.11). 

𝑁𝑜. 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑖𝑛 𝑠𝑒𝑟𝑖𝑒𝑠 =
௧ ௧  ௧ ௬

    ௗ௨
            (1.10) 

𝑁𝑜. 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑖𝑛 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 =
௨௧ ௧  ௧ ௗ௨

ூೞ    ௗ௨
            (1.11) 

For a PV array with Ns modules connected in series and Np modules connected in parallel, 

the output current of the array can be given by (1.12). 

𝐼௩ = 𝑁𝐼 − 𝑁𝐼 ൮𝑒

ೇೡశೃೞቆ
ಿೞ
ಿ

ቇ

ಲೇ − 1൲ −
ೡାூೡோೞ൬

ಿೞ
ಿ

൰

ோ൬
ಿೞ
ಿ

൰
            (1.12) 

 

1.6   TYPES OF PV SYSTEMS 

PV systems can be broadly categorized into three main categories:  

 Stand-alone System 

 Grid-tied System 

 Hybrid System 
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Stand-Alone PV System: A stand-alone PV system employs only the use of solar energy 

generated by the PV arrays. It acts as the best alternative for remote locations where 

extension of power transmission lines would cost even more. This also brings up a self-

sufficient and a self-sustaining system of power generation. In order to ensure a 24x7 

availability of electricity, a battery storage is required. This battery-based storage gets 

charged during the day when abundant sunlight is available and during the night, the battery 

acts as a source for the domestic load. An inverter is used for the conversion of DC output 

from the PV array to supply an AC output. 

 

Grid-Tied System: A grid-tied system not only utilizes the energy from the sun but also 

avails the benefits of supply from the grid. Thus, the utility grid acts as a virtual battery. 

When there is an abundant generation by the PV panels, the power is fed into the grid and 

thus the consumer of the utility, now acts as the supplier to the utility. However, during the 

time the generation from the PV dips, the domestic load is fed by the grid. Smart meters are 

installed at the consumer premises for recording the net export and import from the grid.  

 

Hybrid System: A hybrid PV system is the combination of the concepts of stand-alone and 

grid-tied systems. They incorporate an additional battery storage component apart from the 

grid-tied system. In other words, it can be described as a stand-alone PV system with utility 

as a backup source for energy.  

 

1.7   I-V & P-V CHARACTERISTICS OF A PV CELL 

A PV cell and its derivables i.e., modules and array have a non-linear I-V and P-V 

characteristics as can be observed in Fig 1.7. The power delivered by the cell can hence be 

derived by the product of the instantaneous voltage and current values. These instantaneous 

values of power can then be plotted against voltage on the x-axis to obtain the P-V 

characteristics of the PV cell. 
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(a) 

 

(b) 

Fig. 1.7   I-V and P-V Characteristics of a combination of PV cells 
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Under open-circuit condition, no load is connected to the cell and thus the current through it 

will be minimum (zero under ideal case) and the voltage across it would be maximum. This 

maximum voltage is termed as the open-circuit voltage of a PV cell. It can be denoted as Voc. 

Similarly, under short-circuit condition, the voltage across the cell takes a minimum value 

(zero under ideal case) and the current through it would be maximum. This maximum current 

is known as the short-circuit current of a PV cell, which is represented as Isc.  

Thus, the PV cell operates in a region enclosed by current ranging from 0 A to Isc A and 

voltage ranging from 0 V to Voc V. However, no power is obtained at either of these 

extremes. But there would be a point between these extreme points where the power obtained 

from the PV cell will be maximum i.e., the maximum power point (MPP). This maximum 

point is obtained at a combination of current and voltage values such that the current at the 

MPP is approximately 0.85 to 0.95 times the short-circuit current Isc and the voltage at the 

MPP is around 0.8 to 0.9 times the open-circuit voltage Voc.  

 

1.8   I-V& P-V CHARACTERISTICS OF A PV ARRAY 

A PV array contains modules connected in series or parallel. This serial and parallel 

connection modifies the overall open-circuit and short-circuit limits. In the case of series 

connection, the voltage across the array terminals increases whereas in the case of parallel 

connection, the current through the array terminals increases. This leads to a change in the 

position of the maximum power point. The MPP now shifts to a position with higher value of 

power. 

 

1.9   VARIOUS PARAMETERS IN A PV PANEL 

A PV panel is characterized by the following factors: 

 Open-circuit Voltage (Voc) 
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The voltage that appears across the terminals of a PV array when it is open-circuited 

i.e., no load is connected to its terminals, is termed as the open-circuit voltage of a PV 

panel. It is 1.11 to 1.25 times the voltage at maximum power point. This voltage 

increases when the PV panels are connected in series and remains constant in case of 

parallel connection. 

 

 Short-Circuit Current (Isc) 

The current that flows through the terminals of a PV array when its terminals are 

short-circuited is termed as the short-circuit current of a PV panel. It is 1.05 to 1.18 

times the current at maximum power point. This current increases when the PV panels 

are connected in parallel and remains constant in case of series connection. 

 
 Maximum Power Point: 

The main objective while generating power from a PV cell is to maximize the 

generation from it. This requires the array to be operated at its maximum power point. 

This point is computed such that the product of instantaneous voltage and current here 

is maximum. These respective voltages and current are termed at voltage at MPP 

(Vmpp) and current at MPP (Impp).  

 
 Fill Factor (FF) 

Fill factor is a parameter for the determination of the quality of a PV cell. It is the 

ratio of the product of Vmpp and Impp w.r.t. the product of Voc and Isc as shown in eqn. 

(1.13). 

 

𝐹𝐹 =
ூ

ூೞ
                 (1.13) 

 

Thus, it is the ratio of the area of the rectangle formed by the maximum power point 

with the voltage and current axes w.r.t. the area of the rectangle formed by the product 

of Voc and Is with the voltage and current axes. The closer the value of fill factor to 1, 
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the better is the quality of the PV cell. A lesser value of fill factor indicates that the 

cell is a degraded one. 

 
 Percentage Efficiency 

Efficiency of a PV array can be determined by the ratio of output power generated by 

the PV array to the incident power on it. This incident power is a function of the 

irradiance of the incident light in W/m2 and the operating temperature of the PV array 

in K. Percentage efficiency can be calculated by multiplying the efficiency with a 

factor of 100 as depicted in eqn. (1.14). 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
ை௨௧௨௧ ௪

ூௗ௧ ௪
× 100                   (1.14) 

 

1.10 MAXIMUM POWER POINT TRACKING (MPPT) 

 

The maximum power point as discussed in the earlier sections, is the point at which if the PV 

cell operates, it will generate the maximum amount of power. The voltage and current 

corresponding to this operating point are termed as voltage at maximum power point (Vmpp) 

and the current at maximum power point (Impp) respectively. The values of Vmpp and Impp are 

lower than the open-circuit voltage and short-circuit current of the PV cell. A control system 

is employed in a PV based system to provide a control action in such a manner that the array 

operates at the maximum power point. 

 

The maximum power point is a desirable point of operation for the PV array and thus acts as 

a set point for the MPP tracking system. The robust the controller, the more efficient is the 

power tracking. It is the time response of the controller i.e., the steady as well as transient 

response of the controller that distinguishes one controller from one other. Thus, a controller 

with a stable, transient-free and a faster response with least overshoot and least settling time 

is desirable for optimal MPP tracking. 
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1.11 EFFECT OF IRRADIANCE & TEMPERATURE ON PV CELL 

The working of a PV based system can be affected by various reasons, environmental as well 

as non-environmental. However, the two main factors which play a major role in determining 

the course of operation of a PV array are irradiance and temperature. The impact of a change 

in irradiance is more significantly observed in the current supplied by the PV array (Ipv) while 

a change in temperature is observed in the voltage across the PV array (Vpv). The graphs 

representing the effect of variation of irradiance as well as temperature for a PV based system 

designed for 1.5 kW have been represented in Fig. 1.8 (a) and (b) respectively. 

 

 

Fig. 1.8 (a) Effect of Irradiance on I-V and P-V Characteristics of a PV Array 

 
 

 

 

Fig. 1.8 (b) Effect of Temperature on I-V and P-V Characteristics of a PV Array 
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From Fig. 1.8 (a), it can be derived that a reduction in the irradiance causes a reduction in the 

current generated by the array. Thus, it can be said that the irradiance over the array is 

directly proportional to the current generated by the PV array. Similarly, in Fig. 1.8 (b), a 

decrease in temperature leads to a rise in the PV array voltage. Thus, concluding that the 

temperature and its impact on the PV array voltage are inversely proportional. 

 

1.12 DESIGN OF MPPT BASED PV SYSTEM 

A PV system consists mainly of a PV array capable of converting the incident radiation into 

electrical energy. A load is connected to the PV array for utilizing the energy generated by 

the PV array. A boost converter is also incorporated for impedance matching of the load with 

the impedance offered by the PV array. The duty cycle of the IGBT switch in the boost 

converter is continuously altered such that the PV based system operates at the maximum 

power point. This control action brings in a variation in the duty cycle according to a change 

in the operating conditions of the PV array. A detailed diagram of the PV based system can 

be seen in Fig. 1.9. 

 

 

Fig. 1.9  PV based MPPT system 
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These operating conditions could either be based on non-electrical quantities or electrical 

quantities. Irradiance and temperature fall into the category of non-electrical quantities which 

could serve as an input for the PV MPPT system. In a similar way, voltage and current act as 

the electrical inputs for the PV MPPT system. But it is observed that using irradiance and 

temperature measuring as well as sensing equipment are comparatively more expensive than 

the ones involving the electrical inputs. Thus, voltage and current in various forms can be 

utilized for the purpose of MPP operation such as the use of dI/dV ratio or further the dP/dV 

or dP/dI ratios, which varies from algorithm to algorithm. Many of these algorithms will be 

discussed and compared in the subsequent sections. The output of the MPPT controller is a 

change in the duty cycle corresponding to a change in the above discussed ratios.  

 

1.13 DESIGN OF BOOST CONVERTER 

A boost converter is an essential component in the PV based MPPT system. It is based upon 

the duty cycle of the boost converter that the entire operation of a PV system depends. The 

higher the switching frequency, the faster is the switching. The basic circuit diagram of a 

boost converter includes an inductor, a diode, a capacitor and a switch. An Insulated Gate 

Bipolar Junction Transistor (IGBT) switch is preferred for this purpose over Bipolar Junction 

Transistor (BJT) and Metal Oxidized Semiconductor Field Effect Transistor (MOSFET) 

because of the trade-off it offers between switching power losses and switching frequency. 

BJT offers low power losses but the switching frequency is significantly low while, MOSFET 

offers a higher switching frequency but at the expense of higher power losses. Thus, it is 

required to keep the switching frequency well within limits in order to limit the associated 

power losses. In this work, a switching frequency of 10 kHz has been selected. 

 

The component design for the boost converter mainly deals with the design of suitable 

inductance and capacitance for the MPPT operation. Assuming an ideal system with its 

output power equivalent to its input power, considering a resistive load, the input power and 

output power for the boost converter can be written as (1.15) and (1.16), respectively. 
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𝑃 = 𝑉𝐼 =


మ

ோ
                (1.15) 

𝑃 = 𝑉𝐼 =


మ

ோ
                 (1.16) 

where Vmpp and Impp indicate the desirable input voltage and current respectively i.e., the 

voltage and current at maximum power point while Rmpp refers to the resistance at the 

maximum power point. For an output resistance of RL, equating the two expressions, we get 

eqn. (1.17). 




= ට

ோ

ோಽ
                             (1.17) 

The duty ratio for a boost converter in terms of its input and output voltage can be calculated 

by eqn. (1.18). Here, since the operation of the array at maximum power is desirable, so the 

voltage at MPP is taken as the input voltage. Further, the duty ratio can be expressed in the 

terms of load resistance. 

𝐷 = 1 −



= 1 − ට

ோ

ோಽ
                (1.18) 

According to [15], the optimum value of the load resistance based on the variation of 

irradiance lies within a limit bound by its value at minimum as well as maximum value of 

irradiance. This limit is also determined by the desirable range of duty ratio. This optimal 

value limit has been indicated in eqn. (1.19). 

𝑅(୫୧୬. ூௗ) ≤ 𝑅(௧௨) ≤ 𝑅(୫ୟ୶. ூௗ)             (1.19) 

Using eqn. (1.18), the expression in eqn. (1.19) can further be written as eqn. (1.20). 

ோ(ೌೣ)

(ଵି)మ ≤ 𝑅(௧௨) ≤
ோ()

(ଵିೌೣ)మ               (1.20) 

According to [16], the inductance for a boost converter can be evaluated using (1.21). 

𝐿 =
×

∆ಽ×
                  (1.21) 
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where Vin is the input voltage to the boost converter, iL is the current flowing through the 

inductor, f is the switching frequency for IGBT switching and D is the duty ratio for the 

converter. This expression can be modified for the MPPT based system in such a way that for 

the MPPT purpose, the voltage across the array at MPP is taken as the input voltage and the 

ripple in the current flowing through the inductor can be taken as the ripple in the current 

generated by the PV array at MPP. Thus, eqn. (1.21) can be re-written in the terms of current 

ripple factor γIL to compute the minimum value of inductor as (1.22): 

𝐿 =
×

ఊಽ
× ூ×

                 (1.22) 

Eqn. (1.22) can further be written in the terms of Rmpp as (1.23). 

𝐿 =
ோ

ఊಽ
×

൬1 − ට
ோ

ோಽ
൰                (1.23) 

For minimum value of inductance, on equating (∂γIL/∂Rmpp) to zero, the expression for Lmin is 

obtained as (1.24). 

𝐿 =
ସ

ଶ

ோಽ

ఊಽ
×

                 (1.24) 

Similarly, the capacitance value of the capacitive component in the boost converter can be 

calculated in terms of voltage ripple factor γVmpp using (1.25). 

𝐶 =


ோಽ×ఊೇ ×
                  (1.25) 

The expression for capacitance in (1.25) can be written in the terms of duty cycle as (1.26). 

𝐶 =
(ଵି)మ

ோ×ఊೇ×
                 (1.26) 

Putting the value of D from eqn. (1.18) in eqn. (1.26), we get (1.27). 

𝐶 =
ଵ

ఊೇ ×
൬

ଵ

ோ
− ට

ோ

ோ
య ൰                (1.27) 

The minimum value of capacitance will thus be (1.28). 
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𝐶 =
ଵ

ఊೇ×
ቆ

ଵ

ோ
− ට

ோ(ౣ)

ோ
య ቇ               (1.28) 

The inductance and capacitance will however be designed for a 25% greater value than their 

minimum values in order to ensure a continuous current operation of the converter.  

 

1.14 ORGANIZATION OF THE THESIS 

This thesis is an effort towards developing optimized AI techniques for MPPT in a designed 

PV based system. Maximum power point plays a significant role in the operation of a PV 

based system. MPP operation helps the array to work up to its full potential i.e., the 

maximum power output it can generate. Thus, maximum power point tracking (MPPT) is 

employed with the PV arrays to maximize their generation. This thesis includes a discussion 

about the prevalent conventional techniques and the three main AI techniques i.e., Fuzzy 

Logic control, Artificial Neural Network (ANN) based control and Adaptive Neuro-Fuzzy 

Inference System (ANFIS) based control. It is found that ANN has a faster computation 

speed and thus, a section of the thesis deals with its optimization via the use of the fastest 

learning algorithm which not only reduces the computation burden but also has a relatively 

better dynamic response. Further, a simplified and optimized model of a FLC is proposed and 

developed and it is observed that it outperforms the existing 49 rule FLC, commonly used by 

researchers as a trade-off between accuracy and computational complexity. 

Chapter 2 contains a brief literature review of the MPP based techniques. It discusses the 

challenges faced during the partial shading conditions and the contributions of this thesis to 

the mentioned challenges, mainly the non-linearities introduced due to these conditions. 

Chapter 3 gives an idea about the existing MPPT techniques. The two main discussed 

techniques are Perturb & Observe (P&O) and Incremental Conductance (InC) technique. The 

chapter not only discusses their merits but also considers and presents their demerits. Further, 

the designed system is simulated with the two controllers and based on a comparative 
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analysis, it is observed that the InC algorithm has a lesser computational time and is relatively 

more robust. 

Chapter 4 contains a detailed discussion about the requirement of AI techniques and also 

discusses the three main AI techniques. It contains an in-depth description of their evolution, 

their structure and the design statements in line with this work. A comparison is drawn 

between the three and it is found that though ANFIS based controller gives the best results, 

ANN gives relatively closer results with a faster computational speed. 

Chapter 5 presents an analysis to determine the ANN based learning algorithm that would 

further optimize the ANN operation. Levenberg Marquardt (LM) algorithm is found to be the 

optimum learning algorithm. In this chapter, the training as well as performance-based test 

parameters of the controllers has been discussed in detail. 

Chapter 6 proposes a 4-rule Simplified Optimized Fuzzy Logic Controller (SOFLC). This 

not only approximates the behavior of a 49-rule conventionally used FLC but also reduces the 

memory requirement and the computational burden of the controller. A statistical analysis of 

the simulated controllers is also provided along with their analysis based on the performance 

indices. This provides an optimized solution for a major challenge of high computational 

burden faced by the FLCs. 
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Chapter 2 

Literature Review 

 

This chapter presents a review starting from the conventional MPPT algorithms and the 

journey of technologic advancement thereafter leading to state of art technology in MPPT 

under constant irradiance and strategies to handle partial shading conditions. The growing 

dominance of artificial (AI) techniques in handling complex control objectives of MPPT of 

PV array under partial shading environment is also discussed. Based on the available 

literature, the objectives and scope of proposed work along with author’s contribution is 

presented. 

 

2.1 INTRODUCTION 

Despite lot of developments in the manufacturing technology of PV and other utilization 

related aspects, the low energy conversion efficiency is still a bottleneck, due to which the 

maximum power point tracking (MPPT) of PV array becomes critically important [17]. 

Another challenge in power generation using PV array is posed by the unpredictable 

environmental factors [18]. Therefore, the control algorithm of MPPT scheme should be 

capable enough to address all these issues in order to harness the maximum power from the 

installed PV arrays. 

 

2.2 MPPT-THEN & NOW 

Maximum power point tracking is an area of concern when it comes to utilizing the PV based 

system to its maximum capability [18]. Extensive research has been carried out over the years 

based on the conventionally used techniques in order to further develop newer, efficient 
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algorithms using lesser computational time [19]. This has led to deriving the relationship 

between various parameters of PV array and finding a link between their variation with the 

variation in the operating power [20]. This forms the basis for most of the existing as well as 

upcoming algorithms.  

The P&O algorithm takes into consideration the variation of power with voltage as the 

criteria for determining whether the operating point is the MPP [21-25].Thus, the slope of the 

P-V characteristics plays an important role in order to decide whether the PV array is 

operating at the maximum power point or away from it and if away, then the sign with the 

slope gives a clear idea whether the operating point is to the left of the MPP or to its right. 

Similar is the case with Hill Climbing method, where the above discussed conditions are 

determined based on the slope of the P vs. I characteristics of the PV array[26-28].This gives 

an idea about how a variation in current brings a variation in power. 

Incremental Conductance (InC) method on the other hand, considers the incremental change 

in conductance as a deciding factor for analysing the operating point of the array [29-33]. 

These conventional techniques are well-known and have been used on priority for their less 

complexity.  

However, over the course of time, it has been observed that the AI based techniques have 

emerged with a faster convergence and lesser computation time as compared to the 

conventionally used algorithms and time and again, efforts are being made to further reduce 

this computational time without hampering the performance of the AI based algorithms [34]. 

The three main control techniques popularly used as AI techniques are: Fuzzy Logic, 

Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System (ANFIS) based 

control. Partial shading is a condition when a section of the array is shaded while the 

remaining portion receives either uniform irradiance or a different radiation a compared to 

the shaded portion [35]. This introduces non-linearities in the P-V as well as I-V 

characteristics of the PV array [36]. AI techniques are well known for their capability of 

handling the non-linearities in the system [37]. Thus, AI techniques are a suitable choice for 

the MPP tracking fora PV array during the partial shading conditions.  
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2.3 SCOPE OF WORK AND AUTHOR’S CONTRIBUTION 

After reviewing the existing literature, it is observed that extensive research has been carried 

out on control aspects of MPPT as can be seen in Table 2.1. The control scheme is one of the 

most important aspects governing the performance of PV array under partial shading 

conditions. Most of the proposed control algorithms are based on sensing and measurement 

of voltage and current associated with the PV array. 

Conventionally techniques such as Perturb & Observe (P&O), Hill Climbing and Incremental 

Conductance (InC) Technique are used for effective tracking of maximum power point. The 

performance of these algorithms may adversely suffer under partial shading scenario.  

Therefore, it is proposed to explore the AI techniques for efficient MPPT. 

AI based control techniques are being used to provide solutions to such ill-defined, nonlinear 

and complex control problems. AI techniques include the various nature inspired 

evolutionary algorithms, human intuition and experienced based fuzzy logic controllers, 

biological nervous system motivated artificial neural networks, genetic algorithm, etc.  In this 

thesis fuzzy logic controllers, ANN, ANFIS controllers and an approximation technique to 

reduce the complexity of a large rule FLC are explored to enhance performance of PV array 

operating under partial shading conditions.  

 

Table 2.1 MPPT Techniques based on the Literature Review 

Reference Author MPPT Technique Control 

Variable 

[19] M. Hlaili, H. Mechergui Variable Step Size Open Circuit 

Voltage (VSSOCV) 

Change in 

Reference 

Current 

[20] Haider Ibrahim, Nader Anani Newton-Raphson Method Change in Duty 

Cycle 
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[21] K.H. Hussein, I. Muta, T. 

Hoshino, M. Osakada 

Golden Section Search with DIRECT 

algorithm 

Change in Duty 

Cycle 

[22] C. Hua, J. Lin, C. Shen Voltage Feedback Control & Power 

Feedback Control 

Change in Duty 

Cycle 

[23] C. Hua, J. Lin Voltage Feedback Control & Power 

Feedback Control 

Change in Duty 

Cycle 

[24] N. Femia, G. Petrone, G. 

Spagnuolo, M.Vitelli 

Optimized P&O Change in Duty 

Cycle 

[25] J. Ahmed, Z. Salam Improved P&O Change in 

Operating 

Voltage 

[26] W. Xiao, W. Dunford Modified Hill Climbing Method Switching Duty 

Cycle 

[27] T. Shimizu, O. Hashimoto, G. 

Kimura 

Utility-Interactive Photovoltaic 

Inverter With Generation Control 

Circuit 

Switching Duty 

Cycle 

[28] A. Ahmed, L. Ran, J. Bumby Design strategy based on Hill 

Climbing Method 

Change in Duty 

Cycle 

[29] A. Safari, S. Mekhilef InC with Cuk Converter Change in Duty 

Cycle 

[30] Q. Mei, M. Shan, L. Liu, J. M. 

Guerrero 

Improved variable step-size 

incremental-resistance MPPT method 

Change in 

Reference 

Current 

[31] K. Kobayashi, I. Takano, Y. 

Sawada 

Two stage MPPT Control Change in 

Inverter Input 

Voltage 
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[32] T. K. Soon, S. Mekhilef Fast Varying MPP based on InC Change in Duty 

Cycle 

[33] K. S. Tey, S. Mekhilef Modified Incremental Conductance 

MPPT 

Change in Duty 

Cycle 

[34] S. Chaudhary, A. Singh FLC, ANN and ANFIS based MPPT 

Control 

Change in Duty 

Cycle 

[38] R. Alik, A. Jusoh, T. Sutikno P&O based MPP techniques Change in 

Operating 

Voltage 

 

Artificial Neural Network models are also modelled and tested. The performance of the ANN 

models was also observed to be at par with a large rule FLC. Efforts were made to design a 

lesser complex version with suitable approximation techniques, but the performance did not 

match the expected response with reduction in complexity of the ANN architecture.    

 

ANFIS model though was performing better than the large rule FLC algorithm as well as 

ANN by a slight margin but yet the complex structure and large computation time were the 

main hurdles. 

 

Fuzzy logic controller has come up as a powerful AI tool for handling non-linear and 

randomly varying operating conditions. The FLCs requires large rule base for precise control, 

leading to increased complexity of controller. This increased complexity has results in large 

memory requirement and increased execution time of a specific control action. These 

limitations provide scope to develop some approximation techniques resulting in less 

complex solutions (FLCs) without compromising the compensation objectives. The proposed 

approximation techniques are process-independent and can be implemented to any other 

complex problem.  
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The main contributions of the presented work are: 

 

(i) Design and development of simulation model of a Solar PV array under 

uniform and non-uniform irradiance rigorous simulations are carried out for 

under randomly varying operating conditions. 

 

(ii) Exploration of ANN and ANFIS models with different algorithms under 

partial shading operating scenario of PV array. Efforts are also made to 

approximate their complex models with less complex structures, but the less 

complex models could not meet the control expectations. 

 

(iii) Design of a 49-rule FLC to provide relatively smooth transition of control 

action during transient conditions. The simulations results authenticate the 

design process, with significant improvement in terms of performance indices 

and other parameters.  

 

(iv) The large rule FLC provides precise control action but has limitation of 

increased structural complexity leading to large memory requirement, more 

execution time and slow response. To overcome these issues, less complex 

optimized simplest fuzzy controllers (SOFLC) is designed, which matches the 

control performance of a 49-rule FLC but with a reduced and optimized 

structure. 
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2.4 CONCLUSIONS 

This chapter presents an in-depth review covering the brief overview of research, research 

gaps and their proposed solution. The review summarizes the merits and demerits of the 

discussed contributions, and provides the guidelines for scope of research and helps in 

problem formulation. 
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Chapter 3 

Conventional MPPT Schemes 

 

This chapter gives an insight into the idea behind conventionally prevalent MPPT based 

schemes. A complete discussion regarding the algorithms involved in these MPPT techniques 

has been done along with flowcharts demonstrating the overall working of the algorithm. 

 

3.1   INTRODUCTION 

The maximum power obtained from a PV array depends upon two main factors i.e., the solar 

irradiance and the operating temperature of the array. Various maximum power point 

tracking (MPPT) algorithms are employed in order to obtain maximum output power from 

the array. The conventionally used MPP techniques include, but are not limited to, Perturb 

and Observe (P&O), and Incremental Conductance (InC) algorithms.  

 

3.2   P&O ALGORITHM 

The Perturb and Observe algorithm is the one of the widely used algorithms owing to its easy 

implementation. In the technique, a small perturbation is introduced in the duty cycle such 

that the perturbation has to be continued in the same direction if the power increases and 

reversed if otherwise [38].  

At the MPP, the ratio of incremental change in power to the incremental change in voltage 

i.e. (dP/dV) is equal to zero; towards the left of the MPP, the ratio becomes positive and 

towards the right of the MPP, it takes a negative value. The P-V characteristic illustrated in 
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Fig. 3.1 indicates the three regions of operation and their dP/dV ratios. According to the 

dP/dV ratio, the direction of perturbation to be introduced is determined. 

 

 

Fig. 3.1 Operating Regions of P&O MPPT Technique  

 

The process of perturbation continues until the MPP is reached and the operating point 

oscillates around it. However, P&O suffers with three main disadvantages: long time for 

convergence, higher oscillations about the MPP and the drift due to changing irradiance. A 

flowchart describing the course of perturbation to be introduced according to the algorithm 

has been depicted in Fig. 3.2. 

The voltage across the array and current produced by the array at the present instant are 

measured and the power at the present instant is computed. Similarly, the power at previous 

instant is calculated. The difference between the power at the present instant and the previous 

instant is computed and designated a dP. In a similar manner, the difference between the 

voltages at the present and previous instant is indicated as dV. If the value of dP at any 

instant comes out to be zero, then the PV array is assumed to be operating at the maximum 
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power point. However, if the value of dP is not zero, then the (dP/dV) ratio will determine the 

nature of perturbation in the duty cycle. 

 

 

Fig. 3.2 Flowchart for P&O Algorithm 

 

The nature of perturbation introduced by the algorithm according to different values of 

(dP/dV) has been tabulated in Table 3.1. 
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Table 3.1 Nature of Perturbation in ∆D according to dP/dV Ratio 

dP dV dP/dV Nature of 

Perturbation (∆D) 

+ + + - 

+ - - + 

- + - + 

- - + - 

 

The step size for the change in duty cycle i.e., ∆D plays a crucial role in determining the 

speed of convergence or the time taken by the algorithm to reach the MPP. A higher value of 

step size leads to a larger fluctuation near the MPP while a smaller value leads to smoother 

fluctuations.   

 

3.3   INCREMENTAL CONDUCTANCE (InC) ALGORITHM 

The operation of the Incremental Conductance algorithm is based upon the slope of the P-V 

characteristics of the array [39]. The slope of the P-V characteristic i.e. (dP/dV) is zero at the 

MPP.  

ௗ

ௗ
= 0         at MPP                    (3.1)             

ௗ

ௗ
> 0to the left of MPP                              (3.2)             

ௗ

ௗ
< 0         to the right of MPP                           (3.3)             

As, 

ௗ

ௗ
=

ௗ(ூ)

ௗ
= 𝐼

ௗ

ௗ
+ 𝑉

ௗூ

ௗ
= 𝐼 + 𝑉

ௗூ

ௗ
                 (3.4) 

Equations (3.1), (3.2) and (3.3) can be written as: 
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= −
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         at MPP                    (3.5)             

ௗூ

ௗ
> −

ூ


         to the left of MPP                           (3.6)             

ௗூ

ௗ
< −

ூ


         to the right of MPP                           (3.7)             

Therefore, the MPP can be tracked by a continuous comparison of incremental conductance 

(dI/dV) with the instantaneous conductance (I/V). It can also be comprehended as the sum of 

the former and latter. If the sum of incremental conductance and the instantaneous 

conductance turns out to be zero, the operating point is considered to be the MPP. However, 

if the sum turns out to be positive, then the array is considered to be operating to the left of 

the MPP otherwise, to the right of the MPP as indicated in equations (3.8), (3.9) and (3.10). 

ௗூ

ௗ
+

ூ


= 0         at MPP                   (3.8)             

ௗூ

ௗ
+

ூ


> 0         to the left of MPP                           (3.9)             

ௗூ

ௗ
+

ூ


< 0         to the right of MPP                         (3.10)        

The operating regions of the InC algorithm have been shown in Fig. 3.3.  

 

Fig. 3.3 Operating Regions of InC MPPT Technique 

A flowchart describing the various steps of the InC algorithm has been illustrated in Fig. 3.4. 

The incremental change in voltage and current i.e. dV and dI can be calculated as the 

difference between the values of respective quantities at the present and the previous instant. 
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Fig. 3.4. Flowchart for InC Algorithm 

 

If there is no incremental change in the voltage as well as current or the sum of incremental 

as well as instantaneous conductance is zero, then no change in the duty cycle is introduced. 

However, if the incremental change in voltage is zero but the incremental change in current is 
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positive, then a negative perturbation is introduced in the duty cycle whereas for a negative 

incremental change in current, a positive perturbation of the duty cycle comes into picture. In 

case of a non-zero incremental change in voltage, the sum of incremental and instantaneous 

conductance acts as a deciding factor for the nature of perturbation in the duty cycle. If the 

sum is positive, the duty cycle is decremented; otherwise, the duty cycle is incremented. 

The InC algorithm can lose track of the MPP in the case of rapid change of irradiance. Due to 

rapid change in irradiance, the algorithm can even lose track of the MPP [40]. It performs 

well in the case of step change in irradiance. However, in the case of a change in irradiance in 

the form of a slope, the algorithm may lose track of the MPP due to a continuous change of 

the PV curve to be tracked, which in the case of step change, results in an instantaneous 

change of the PV curve. So, a change in power can be observed not only due to a perturbation 

in voltage but also because of a change in irradiance. Thus, the detection of the reason behind 

the change in power is a challenging task for the conventional algorithms. 

 

3.4   SYSTEM DESIGN 

A PV based system of 1.5 kW has been designed in this work. The arrangement is such that 

there the PV array contains 6 modules connected in a 3×2 series-parallel configuration. The 

parameters involved in the designing of the PV array have been tabulated in Table 3.2. 

Table 3.2 PV Array Design Specifications 

Specification Rating 

Maximum Power of each Module 250.018 W 

Maximum Power of the Array 1500 W 

Open Circuit Voltage (Voc) of the Array 37.45×3 V 

Short-Circuit Current (Isc) of the Array 8.7×2 A 

Voltage at MPP (Vmpp) 91.84 V 

Current at MPP (Impp) 16.32 A 
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Cells per module 60 

Temperature coefficient of Voc (Kv) -0.32 %/˚C 

Temperature coefficient of Isc (Ki) 0.065 %/˚C 

Module Specific Parameters 

Light-generated Current (Iph) 8.7072 A 

Diode Saturation Current (Io) 6.8168×10-11 A 

Diode Ideality Factor 0.95037 

Shunt resistance (Rsh) 406.86 Ω 

Series resistance (Rs) 0.31177 Ω 

 

Apart from the PV array design, the design of the boost converter is also a major 

consideration for the design of a PV based system. The design parameters for the boost 

converter have been tabulated in Table 3.3. 

 

Table 3.3 PV Boost Converter Design Specifications 

Parameter Rating 

Operating Frequency 10 kHz 

Voltage Ripple Factor 1 % 

Current Ripple Factor 10 % 

Inductance 6.3 mH 

Capacitance 218 µF 

 

3.5   PARTIAL SHADING 

Partial shading conditions occur due to an unexpected shade over the modules during 

generation of electricity [41]. This could be due to the construction of new buildings or due to 

the trees near the panel or due to dirt and dust accumulating near the surface of the panel. 
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This not only reduces the power output of the PV array as a whole but also degrades its 

performance over time due to the formation of localized hotspots. This is due to the non-

linearities introduced in the characteristics of the PV array as depicted in Fig. 3.5. 

Such cases are also taken into account during the testing of algorithms to take into 

consideration, the non-ideal conditions i.e., conditions deviating from the STC which is at an 

irradiance of 1 kW/m2 for an operating temperature of 298 K. In order to incorporate these 

cases, the PV system is designed using PV panels receiving variable irradiances. The 

irradiances given to the module are in accordance to their position in the array matrix. For 

example, the module in the first row as well as column will receive an irradiance of Irr11. 

Likewise, the module in the third row as well as second column would receive an irradiance 

of Irr32. Such an arrangement has been shown in Fig. 3.6. 

 

 

Fig. 3.5. Effect of partial shading on I-V and P-V characteristics of PV array 

 

Multiple test cases of uniform as well as non-uniform irradiance have been considered. For 

simplicity, four test cases have been considered. These can be classified as STC, top shading, 

patch shading as well as bottom shading. The STC case represents an irradiance of 1 kW/m2 

at a temperature of 298 K. Since partial shading is being considered, so a variation in 

temperature is avoided and hence, the designed system has been tested for all the cases 

assuming a constant temperature of 298 K.  
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Fig. 3.6 PV array irradiance arrangement for the designed system 

For the three cases of partial shading, eqns. (3.11), (3.12) and (3.13) will hold true since the 

cases are related to a horizontal configuration of system. 

𝐼𝑟𝑟ଵଵ = 𝐼𝑟𝑟ଵଶ = 𝐼𝑟𝑟ଵ                 (3.11)        

𝐼𝑟𝑟ଶଵ = 𝐼𝑟𝑟ଶଶ = 𝐼𝑟𝑟ଶ                 (3.12)        

𝐼𝑟𝑟ଷଵ = 𝐼𝑟𝑟ଷଶ = 𝐼𝑟𝑟ଷ                 (3.13)     

The variation in Irr1, Irr2 and Irr3 has been shown in Fig. 3.7.  

In the second test case i.e., top shading, an irradiance of 0.9 kW/m2 is incident upon the first 

and second row of the modules while a uniform irradiance of 1 kW/m2 is incident upon the 

third row of the modules i.e., Irr1= Irr2= 0.9 kW/m2 and Irr3=1 kW/m2. Similarly, in the third 

test case, patch shading with an irradiance of 0.4 kW/m2 on the intermediate row of the 

modules has been taken into account i.e., Irr2 = 0.4 kW/m2 and Irr1= Irr3=1 kW/m2 while the 

fourth case includes the shading of the bottom set of modules with an irradiance of 0.25 

kW/m2 i.e., Irr1 = 1 kW/m2 and Irr2= Irr3=0.25 kW/m2. 
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Fig. 3.7 Variation of Irradiance in the four test cases 

The P-V and I-V characteristics obtained for the above discussed test case have been 

illustrated in Fig. 3.8. The LMPPs and GMPPs have further been marked in Fig. 3.8. 

 

Fig. 3.8 P-V & I-V characteristic of the designed array under the four test cases 
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3.6   PERFORMANCE ANALYSIS OF P&O AND InC ALGORITHMS 

Based on the designed PV system with corresponding irradiance patterns, the performance of 

P&O and InC algorithms is compared. On applying the irradiance inputs discussed in the 

previous section, the response for the designed PV array is obtained and can be observed in 

comparison with the AI based controllers in the upcoming section. 

Meanwhile, a comparison of the P&O and InC algorithms has been done using some basic 

parameters such as power tracked, settling time, tracking efficiency and computation time in 

Table 3.4 and 3.5 respectively. 

Thus, it can be seen that the even though the tracked power in P&O and InC is nearly same, 

there still exists a difference in their performance with settling time and tracking efficiency as 

the basis. The wide disparity in their computational times significantly proves that InC is a 

better controller. 

 

Table 3.4 Comparative analysis of P&O and InC algorithm 

Control Technique 
Power Tracked 

(W) 
Settling Time 

Tracking Efficiency 
(%) 

Test Case-1 
P&O 1519 0.032 98.73 

InC 1521 0.034 98.6 

 

Test Case-2 
P&O 1398 0.022 98.69 

InC 1395 0.0203 98.91 

 

Test Case-3 
P&O 997.4 0.131 98.92 

InC 997.7 0.131 98.89 

 

Test Case-4 
P&O 475.3 0.132 98.96 

InC 474.3 0.127 99.17 
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Table 3.5 Comparative analysis Computational Time of P&O and InC algorithm 

Control Technique Computation Time (s) 

P&O 726.57 

InC 241.21 

 

 

3.7   CONCLUSIONS 

Perturb & Observe as well as Incremental Conductance are two conventionally used 

techniques. They are widely used for the low complexity MPPT solution they offer. Based on 

the simulated results, it is found that InC takes a smaller computational time.  
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Chapter 4 

AI based MPPT Techniques 

 

 

4.1   INTRODUCTION 

Irradiance and temperature play a key role in determining the performance of a PV array. In 

the case of uniform irradiance, the P-V characteristics of the PV array consist of only one 

peak i.e., at the maximum power point. However, the irradiance conditions may not always 

remain uniform. Partial shading of the PV array may occur when the light incident at 

different locations of the PV array does not reach the panels due to various factors such as 

clouds passing by, shade due to adjacent buildings or trees [42]. 

Due to the phenomenon of partial shading, not only does the power output of the array 

reduces but there is also an introduction of multiple peaks in the PV characteristics of the 

array. Among the multiple peaks, the peak with the overall maximum power is termed as the 

Global Maximum Power Point (GMPP) while remaining peaks are termed as Local 

Maximum Power Points (LMPPs) [43]. This introduction of multiple power peaks in the PV 

characteristics introduces non-linearities in the system, which are to be taken care of by the 

MPPT controllers.  

Thus, the array may operate at a point which is not characterized by the global maximum 

power. This will lead to a decrement in the output power compared to the actual power that 

could have been generated by the array. Bypass diodes are used to reduce the impact of 

shaded PV cells serving as hotspots while in reverse biased mode [44].  
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4.2   FUZZY LOGIC CONTROL 

Fuzzy logic is an area of artificial intelligence that deals with reasoning algorithms that are 

employed in robots to mimic human thinking and decision making. The fuzzy logic controller 

(FLC) is a fuzzy logic-based controller that converts a linguistic control strategy based on 

expert knowledge into an automatic control strategy. The main idea behind this unique 

control paradigm is to design controllers intuitively using the knowledge and expertise of the 

human operator. Control, image processing, signal processing, approximation, modeling, and 

other technical applications have all benefited from fuzzy set theory. Fuzzy control, on the 

other hand, is the most successful and active field. The fuzzy logic control has a number of 

advantages over traditional control [45]: 

(i) the mathematical model of the system to be controlled is not required. 

(ii)  A good non-linear controller can be created without sophisticated mathematics. 

(iii) FLCs can deal with nonlinearity and uncertainty in control systems without having to 

rely on mathematical models. 

 

4.2.1 Evolution of Fuzzy Logic Control 

Since Zadeh [46] proposed fuzzy set theory as a new way to express the ambiguous and 

inexact nature of the real world in 1965, research on the theory and use of fuzzy logic has 

been going on. It has been proved to be a valuable tool in dealing with uncertainties and non-

linearities in control systems, among its numerous applications. Fuzzy control has been 

applied in a variety of industrial applications during the last few decades. 

Thus, fuzzy logic is a strategy for dealing with inaccurate, unclear, or "fuzzy" information 

found in power systems. The phrase "fuzzy logic" has been applied in two ways. Fuzzy logic 

is a logical system that generalizes traditional two-valued logic, which is a multi-valued logic 

extension for reasoning under uncertainty. In a broad sense, fuzzy logic is the theory of fuzzy 

sets as a generalization of ordinary set theory, with graded membership and soft boundaries 
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[47]. The fact that practically all natural classes and notions are fuzzy rather than crisp gives 

rise to fuzzy set theory. With the use of linguistic variables and membership functions, fuzzy 

logic systems provide an ideal foundation for modeling uncertainty and imprecision in human 

thinking. 

For dealing with the heuristics of linguistically stated algorithms, fuzzy theory is a 

sophisticated as well as apt tool. These linguistic algorithms are basic, easy-to-understand 

natural language expressions that represent expert knowledge obtained from years of 

experience by human experts and operators. Furthermore, only a few of these statements are 

required to adequately describe complicated processes [48]. These natural language 

assertions can be categorized into the following categories: 

(i) Deterministic linguistic term (Singleton) 

(ii) Crisp linguistic term (Crisp sets) 

A deterministic linguistic phrase, also known as a singleton, is a natural language statement 

that is used to express an element or variable that has only one interpretation. Natural 

language expressions sometimes refer to a range of values rather than a single value. A crisp 

linguistic phrase or crisp set is the collection of all values in that interval (range). In everyday 

life, it is quite usual to utilize intuitive natural language statements that convey some level of 

uncertainty. Fuzzy notions are used to mediate and communicate information, ideas, and 

understanding. Membership functions (MFs) with a membership value in the interval [0, 1] 

characterize such claims. Fuzzy linguistic terms or fuzzy sets are the names given to these 

uncertain yet precise statements. 

A fuzzy set is a set with variable bounds, as defined by fuzzy theory. Membership values in 

the interval [0, 1] are used to express the items of this set. Elements of fuzzy sets, unlike 

those of traditional sets, do not have to meet all of the set's attributes in order to be a member. 

The fuzzy set converges on the conventional set in the limiting scenario. The membership 

value ‘zero' for an element indicates that it is completely absent from the fuzzy set, whereas 

the value ‘one' indicates that it is fully included. A fuzzy set introduces ambiguity by 

removing the sharp line that separates group members from non-members. As a result, rather 
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than being abrupt, the transition from full membership to non-membership is gradual. As a 

result, fuzzy sets can be thought of as a broadening and expansion of crisp set concepts; 

nonetheless, some theories are unique to the fuzzy framework. 

 

4.2.2 Definition of Crisp and Fuzzy sets 

In a universe of discourse, a set is defined as universal set X. The relationship between a crisp 

set A and a universal set X is represented as (4.1). 

 (4.1)                                 

If an element x is contained in the set A, it is termed a member of the set A, as shown in 

(4.2). 

(4.2) 

Set A with the elements a1, a2,....an as the members of the set is depicted in (4.3).

(4.3) 

To express whether an element x is contained in a set A, membership functions are utilised. 

As a result, the membership function is defined in eqn. (4.4) and (4.5). 

 if and only if  ,     and                                                                                   (4.4) 

 if and only if (4.5) 

Each member of the universal set is assigned a value of 0 or 1 using the membership function 

of a crisp set. The membership function, in other words, maps elements from the universal set 

X to the set {0, 1} which can be written as (4.6). 

(4.6) 

The theory of fuzzy sets can be applied when there is an unclear border. In such a case, the 

membership function maps each element in a fuzzy set to a real number between 0 and 1 as in 

(4.7). 

A X

x A

1 2 nA={a , a  ....a }

1Aμ (x)= x A

0Aμ (x)= x A

: {0,1},Aμ X x X  
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(4.7) 

The probability that an element belongs to set A is indicated by the value allocated to it. 

 

4.2.3 Membership Functions 

A membership function is a shape created by all of the membership degrees associated with a 

fuzzy collection (MFs). A membership function (MF) is a curve that specifies how each point 

in the input space is converted to a membership value (or degree of membership) between 0 

and 1. The membership distribution does not always vary linearly with the universe of 

discourse. As a result, we have a variety of membership distributions known as membership 

functions. Triangular, trapezoidal, sigmoid, exponential, and bell shaped MFs are examples 

of different forms of MFs. 

These MFs can be represented either graphically or functionally. The functional form of MF 

is better suitable for simulations utilizing fuzzy logic tools since it can be changed using 

fuzzy arithmetic. Straight lines are used to create the most basic membership functions. The 

triangle membership function is the simplest of them. It is a triangle formed by 

connecting three points. 

The trapezoidal membership function has a flat top and is essentially a truncated triangle 

curve, which is a subset of the triangular membership function. The advantage of these 

straight-line membership functions is their simplicity. As a result, these two membership 

functions are the most widely employed. The functional description of these functions has 

been represented in (4.8) and (4.9), respectively. 

i) Triangular function 

               (4.8) 

: [0,1], .  Aμ X x X

 

0 for a

( a) (b a) for a b
T ;a,b,c

(c ) (c b) for b c

0 for c


        
 

x

x x
x

x x

x
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where a, b and c form the vertices of the triangular membership function as shown in Fig. 4.1 

(a). 

ii) Trapezoidal function 

               (4.9) 

where a, b, c and d form the vertices of the trapezoidal membership function as shown in Fig. 

4.1 (b). A graphical representation of triangular and trapezoidal functions has been shown in 

Fig. 4.1 (a) and (b) respectively. 

 

(a) 

 

(b) 

Fig. 4.1 (a) Triangular function, and (b) Trapezoidal function 
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4.2.4 Basic Structure of a Fuzzy Logic Controller 

Figure 4.2 depicts the basic setup of a fuzzy logic controller (FLC). A fuzzy logic system, in 

general, maps crisp input into crisp output by an intermediary conversion in fuzzy values 

known as membership functions. It consists of three main modules: 

(i) Fuzzification  

(ii) Knowledge Base and Inference engine  

(iii)Defuzzification  

 

Fig. 4.2 Basic structure of a fuzzy logic based controller 

Fuzzification transforms input data into linguistic values that can be used as fuzzy set labels. 

An FLC's knowledge base is made up of two parts: a data base and a rule base. The database 

contains the definitions that are required for language control rules and fuzzy data. The 

conditional assertions that make up fuzzy logic are expressed using if-then rule statements. 

All of these statements are gathered into a rule base. Instead of a precise mathematical model, 

the rules are a set of linguistic statements based on expert knowledge, including experience 

and heuristics.  

Fuzzification
Interface

Inference Engine Defuzzification
Interface

Knowledge Base

Input Output

Data base Rule base
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Fuzzy logic principles are employed in the fuzzy inference engine to combine fuzzy rules into 

a mapping from fuzzy input sets to fuzzy output sets. Membership functions, fuzzy logic 

operators, and if-then rules are all used in the fuzzy inference process. Fuzzy rule-based 

inference can be thought of as an interpolation system in mathematics since it allows the 

fusion of many fuzzy rules when their requirements are all met to some extent. The fuzzy set 

that is the output of the inference engine is defuzzified to produce a crisp output. The 

subsections that follow provide a more detailed explanation of these modules. 

 

4.2.4.1 Fuzzification 

The fuzzy controller's interpretation of input crisp data is known as the fuzzification process. 

It is made up of two primary parts: 

(i) Labels 

(ii) Membership functions 

The membership function is the function that connects a number to each element x of the 

universe (x). In crisp set theory, an element is either a member of or not a member of a set. 

Many degrees of membership (between 0 and 1) are allowed in fuzzy set theory. As a result, 

a fuzzy set A is associated with a membership function A(x), which transfers every element 

of the universe of discourse X to the interval [0, 1]. 

A fuzzy logic controller collects input data, also known as the fuzzy variable, and analyses it 

using user-defined membership functions during fuzzification. To some extent, every element 

in the world of discourse is a member of a fuzzy set, which may be zero. A fuzzy set such as 

negative, positive, and so on is described by the degree of membership for all of its members. 

Based on how well the input data fits into each membership function, the controller assigns it 

a degree in the range [0, 1]. There are numerous membership functions that can be applied to 

each fuzzy controller input. Each membership function has its own name, which is referred to 

as a label. 
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4.2.4.2 Knowledge Base and Inference Engine 

 

The controller evaluates the input data, as defined by the membership functions, to arrive at a 

control output during fuzzy processing. The processor performs two tasks during this stage: 

(i) Rule assessment 

(ii) Calculation of Fuzzy Outcomes 

Rule evaluation is based on the idea that most complex problems are made up of a series of 

simple problems that can be solved quickly. Fuzzy logic employs an inference process made 

up of IF-THEN statements, each of which provides a response. A rule is activated or 

triggered when an input condition meets the IF section of the rule statement. When the IF 

section of the rule is activated, a control output is generated based on the THEN part of the 

rule statement. 

Many rules may exist in a fuzzy logic system, each of which corresponds to one or more IF 

conditions. A rule can contain many input criteria that are logically linked in an AND or OR 

relationship to trigger the rule's conclusion. In a fuzzy control process, more than one rule 

may be triggered at the same time. The controller in this example examines all of the rules to 

arrive at a single outcome value before moving on to the defuzzification phase. 

 

4.2.4.3 Defuzzification 

 

The defuzzification method used to generate the output corresponding to each label 

determines the fuzzy controller's ultimate output value. The controller turns the fuzzy output 

into crisp data during defuzzification. As a result, defuzzification is the conversion of a fuzzy 

set to a single crisp value. It's the reversal of the fuzzification process. Defuzzification can be 

accomplished in a number of ways. In fuzzy control, the following defuzzification strategies 

have been widely used: 

1. Centre of gravity method 
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2. Mean of maxima method 

3. Centre of sums 

 

4.2.4.3.1 Centre of Gravity method 

The centroid or centre of area defuzzification method is also known as the centre of gravity 

defuzzification method. It is the most often used defuzzification approach since it yields an 

accurate result by combining the weighted values of many output membership functions. The 

weighted average of the elements in the support set is the defuzzified value. For a continuous 

membership function, the crisp output value [49], say x*, is written as (4.10). 

                 (4.10) 

For a discrete membership function, however, the integration is substituted with 

summation, as shown in (4.11). 

                 (4.11) 

where n is the number of samples, xi denotes the elements, and µ(xi) denotes the value of 

membership. 

Although its computing complexity is very high, the centroid method of defuzzification is a 

widely used method. 

 

4.2.4.3.2 Mean of Maxima method 

Choosing the point with the most possibilities, i.e., maximal membership, is an intuitive 

method. On the rule output with the highest membership function grade, the maximum value  
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defuzzification method is used to determine the final fuzzy output value. When many such 

points exit, it is a usual practice to pick the mean of the maxima (MOM). Discrete output 

membership functions are the most common application for this technology. In this situation, 

the defuzzified output is given by (4.12). 

                  (4.12) 

where, M={ xi | μ(xi) is equal to the height of fuzzy set} 

 

4.2.4.3.3 Centre of Sums method 

In the centroid technique, the overlapping area is only considered once, however in the centre 

of sums (COS) method, the overlapping area is calculated twice. In this situation, the 

defuzzified output x* is given by (4.13). 

 

                (4.13) 

 

where, the number of fuzzy sets is n, while the number of fuzzy variables is N. 

This approach is also popular because of its ease of use and quick inference cycles. 
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4.2.5 Control Scheme of FLC based MPPT of PV Array 

The slope of a P-V characteristics is employed as error (e) in the suggested fuzzy control 

method, and change in error (e) is evaluated by subtracting error at the instant prior to the 

present from the error at the present instant of time, as illustrated in (4.14) and (4.15): 

𝑒(𝑘) =
∆()

∆()
                   (4.14) 

∆𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)                 (4.15) 

The FLC produces incremental duty cycle (D) change as its output. As illustrated in Fig. 4.3, 

the duty cycle is continuously regulated by this gradual change in duty cycle. 

 

 

Fig. 4.3 Fuzzy Logic Control Scheme 
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4.2.6 Fuzzy Rule Base Design 

In the designed fuzzy logic controller, a uniform division of the universe of discourse in 

seven levels is considered. These seven levels are: 

 NL (negative large) 

 NM (negative medium) 

 NS (negative small) 

 ZE (zero) 

 PS (positive small) 

 PM (positive medium) 

 PL (positive large) 

Triangular membership functions are used owing to their simplicity. The inputs i.e., e and ∆e 

and the output ∆D are mapped to these seven levels known as the membership functions. 

Thus, for seven possibilities of the membership function of the first input variable and similar 

seven possibilities of the membership function of the second input variable, there will be a 

total of 49 (7×7) possibilities for the output variable. Thus, the membership function plot of 

the designed FLC can be represented as Fig. 4.4. 

-1 1

NL PS
µ
1

0

ZENSNM PLPM

-2/3 -1/3 1/3   2/3
 

Fig. 4.4 Triangular Membership Function for the designed FLC 
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Based on the knowledge of the variation in parameters with a change in the corresponding 

input parameters, a 49-rule base is designed as shown in Table 4.1. 

Table 4.1 49-rule base for the designed FLC 

e/ ∆e NL NM NS ZE PS PM PL 

NL PL PL PM PL PM PL PL 

NM PL PM PS PM PS PM PL 

NS PM PS PS PM PS PS PM 

ZE ZE ZE ZE ZE ZE ZE ZE 

PS NM NS NS NM NS NS NM 

PM NL NM NS NM NS NM NL 

PL NL NL NM NL NM NL NL 

 

Table 4.1 can, for instance, be comprehended as: 

For a NL i.e., negatively large error, e and a NS (negatively small) change in error ∆e, the 

response of the system i.e., ∆D should be PM (positively medium). 

Similarly, for a PM value of error and a PL value of change in error, the response would be 

NL i.e., negative large. 

 

4.3   ARTIFICIAL NEURAL NETWORKS (ANN) BASED CONTROL 

The functioning of an ANN can be compared to that of the human brain. The human brain is 

a complicated, non-linear machine that uses parallel computing [50]. It gains the ability to 

modify the basic structure of the neurons over time, to conduct specific computations, and to 

make decisions based on those computations. An artificial neural network (ANN) is a system 

that mimics how the brain does a specific task. It attempts to emulate the organic nervous 
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system and displays key features such as learning, fault tolerance, and non-linear problem 

solving. 

An artificial neural network is trained using a dataset that includes the output parameters as 

well as the intended target values. For a subset of the dataset, the neural network is tested and 

validated. Due of its ability to generalize, the ANN can predict the output for the new 

dataset, or another subset of the dataset it was not trained for, based upon its past learning 

experience. 

ANNs have features that help it succeed, such as simplicity and a quick response time. They 

do not require detailed system information. They read and examine the system's past data and 

correlate the system's behavior with previously registered information to identify and assess 

the relationship between inputs and outputs. Additionally, NNs can deal with nonlinear 

systems and operate with numerical or analog input, are reasonably significant in terms of 

generating the best answers, and the user does not require basic mathematical understanding. 

 

4.3.1 Basic Structure of an Artificial Neural Network (ANN) 

 

The multiprocessor computing systems used by ANNs are diverse. It is made up of a number 

of very basic and highly interconnected processors known as neurons, which are analogous to 

biological neurons in the brain. A neuron is a data-processing unit that is essential for a 

neural network's functionality. Fig.4.5 shows the fundamental model of a single neuron, 

where x is the input vector, w, the weight vector of the connection, b is the bias, Φ, represents 

the activation function, and y is the output vector. 
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Fig. 4.5 Basic Structure of a Neuron 

 

The output of the neuron based on the basic structure of a neuron can be computed as (4.16). 

𝑦 = ∅ ቀ൫∑ 𝑤𝑥
,
ୀଵ,ୀଵ ൯ + 𝑏ቁ                                                                                      (4.16) 

The basic structure of an ANN includes three main modules: 

 

1. Synaptic links: 

Each synapse, or connecting link, has its own weight or strength. In particular, the synaptic 

weight wkj is multiplied by a signal xj at the input of synapse j connected to neuron k. The 

subscripts of the synaptic weight wkj must be written in a specific order. The first subscript in 

wkj refers to the neuron in question, while the second subscript refers to the weight's input end 

of the synapse. The synaptic weight possessed by an artificial neuron can fluctuate from 

negative to positive. 

2. Adder: 

The processes described here comprise a linear combiner; an adder for adding the input 

signals, weighted by the different synaptic strengths of the neuron. 

3. Activation Function: 
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An activation function limits the magnitude of a neuron's output. The activation function is 

also known as a squashing function since it reduces the output signal's allowable amplitude 

range to a fixed value. 

 

4.3.2 Activation Functions 

Activation functions are an important element of a neural network's architecture. The hidden 

layer activation function determines how successfully the network ANN based model learns 

the dataset with which the ANN is trained. The type of predictions the model may produce is 

determined by the activation function used in the output layer. Fig. 4.6 represents the various 

type of activation functions. 

 

 

Fig. 4.6 Activation functions (a) Step function (b) Sign function (c) Sigmoid function (d) Linear function 

 

The mathematical representation of various activation functions is as follows: 

 

 Step Function 

𝑦 = ൜
1, 𝑖𝑓 𝑥 ≥ 0
0, 𝑖𝑓 𝑥 < 0

                                                                                                                (4.17) 

 Sign Function 
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𝑦 = ൜
1, 𝑖𝑓 𝑥 ≥ 0

−1, 𝑖𝑓 𝑥 < 0
                                                                                                             (4.18) 

 Sigmoid Function 

𝑦 =
ଵ

ଵାషೣ                                                                                                                            (4.19) 

 Linear Function 

𝑦 = 𝑥                   (4.20) 

 

4.3.3 Multilayer Perceptron Model 

Input layer, hidden layers, and output layer make up the multilayer perceptron model of ANN 

[49]. To generate appropriate output, the input data set is supplied to the input layer, which is 

then processed by the hidden layers and output layer. A graphical representation of the 

multilayer perceptron model has been shown in Fig. 4.7. 

 

Fig. 4.7 Multi-layer Perceptron Model 
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The number of neurons in the input layer is determined by the number of input variables that 

have been used to forecast the output. Hidden layer neurons are chosen in such a way that 

system performance and complexity are balanced. The amount of output parameters to be 

controlled will determine the number of neurons in the output layer. In order to map the input 

pattern with the desired output, the network is trained based on the error in the actual output 

and the desired output. The weights of synaptic connections connecting different levels are 

adjusted to accomplish this. 

 

4.3.4 Types of Learning 

There are two forms of ANN-based machine learning: supervised learning and unsupervised 

learning [51]. The supervised learning is similar to learning by instruction in that the ANN is 

trained using a large number of training sets. To generate a functional mapping between the 

inputs and outputs, the training set takes the system's input characteristics and the output data 

that has been determined earlier by some experimental means or human judgments. The 

performance of the neural network model is checked and monitored during the training phase. 

This function compares the anticipated NN output to the actual output. The ANN continues to 

train each iteration until the error value is reduced to the target value. The ANN is then 

assessed using new data when the training is complete to determine its responsiveness and 

quality. 

The network is enhanced using the unsupervised learning technique based on the nature of 

the inputs and the relationship between the inputs and outputs without the knowledge of the 

target output values. The notion is that comparable data tend to produce similar types of 

output. And, in many cases, unsupervised procedures are simply the first step of a two- or 

three-stage training process, with following phases using supervised learning. For example, 

the first training stage utilizes an unsupervised technique to identify the positions and sizes of 

the fundamental functions. 
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4.3.5 Control Scheme of ANN based MPPT of PV Array 

The ratio of change in P and change in V is employed as error (e) in the ANN based control 

method, and change in error (e) is evaluated by subtracting error at the instant prior to the 

present from the error at the present instant of time, as illustrated in (4.21) and (4.22) similar 

to FLC: 

𝑒(𝑘) =
∆()

∆()
                   (4.21) 

∆𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)                 (4.22) 

 

The controller used in this work requires two inputs and thus utilizes two input neurons. For 

simplicity, only one hidden layer has been used which consists of 10 neurons by default. The 

output is the incremental change in duty cycle, thus there will be only one output neuron in 

the output layer of the controller. The synaptic weights are accordingly adjusted during the 

duration of the training based on the given desirable dataset. Thus, the learning used in the 

designed controller is a type of supervised learning. 

 

4.4  ADAPTIVE NEURO-FUZZY INFERENCE SYSTEMS (ANFIS) 

BASED CONTROL 

A neuro-fuzzy inference system (ANFIS) combines the two approaches previously 

mentioned, namely fuzzy logic and ANN-based controllers. Due to its increased adaptivity to 

manage dynamic and non-linear fluctuations in input circumstances, this combination of the 

two produces a superior response [52]. The block diagram of ANFIS, which combines the 

FLC and ANN modules, is shown in Fig.4.8 [34]. The Sugeno fuzzy model is the most 

frequently used of several FIS models. 
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Fig. 4.8 Basic block diagram of the ANFIS based controller 

 

It is a data-driven method for solving function approximation issues using a neural network 

approach. The majority of data-driven ANFIS network synthesis techniques are based on 

clustering a training set of numerical samples of the unknown function to be approximated. 

ANFIS networks have been effectively used to classification tasks, rule-based process 

control, pattern recognition, and other challenges since their inception. 

 

4.4.1 Evolution of ANFIS 

Jang [53] was the first to introduce the Adaptive Neuro-Fuzzy Inference System (ANFIS). 

ANFIS is a neural network that functions similarly to a Takagi Sugeno type inference model 

however, it is a hybrid intelligent system that combines ANN and fuzzy logic principles in 

one system. The ANFIS is given the capacity to learn from training data by using the ANN 

method to update the parameters of the Takagi Sugeno type inference model. As a result, the 

answers mapped out on a Fuzzy Inference System (FIS) may be expressed linguistically. 

 

4.4.2 Basic Structure of ANFIS 

Five separate layers are utilized to describe the structure of an ANFIS classifier in order to 

illustrate the idea of ANFIS structure. The fuzzification layer is the first layer in the ANFIS 

structure; the rule base layer is the second layer; the normalization of membership functions 
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(MFs) is the third layer; and the defuzzification and summation layers are the fourth and fifth 

layers, respectively as shown in Fig. 4.9. 

 

Fig. 4.9 Basic Structure of the ANFIS based controller 

 

4.4.3 Design of an ANFIS based Controller 

The design of an ANFIS classifier is divided into two parts: development and training. 

Selecting input variables, input space partitioning, picking the number/type of MFs for 

inputs, creating fuzzy rules, premise and conclusion sections of fuzzy rules, and selecting 

starting parameters for MFs are all part of the development process. To develop an ANFIS 

classifier, you must first produce training data patterns. ANFIS classifier inputs and the 

intended output make up these data patterns. However, when data production is an expensive 

endeavor, the size of the input-output data pattern is critical.  

 

4.4.4 Learning Algorithms for ANFIS 

The input-output data must be divided into rule patches before the ANFIS classifier can be 

built. Grid partitioning, subtractive clustering, and fuzzy c means (FCM) are some of the 
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approaches that may be used [54]. Grid partition is only effective for applications with a 

small number of input variables [53]. Traditionally, ANFIS classifiers have been restricted to 

low-dimensional modelling. It's worth noting that a good input partition can reduce the 

number of rules and therefore improve performance in both the learning and application 

stages. A learning method is used to modify the synaptic weights of the neurons in order to 

maximize the classifier's performance. The membership function settings in the training 

section can be changed throughout the learning process. The supervised learning of the input-

output dataset that is supplied to the classifier as training data aids in the modification of 

these parameters. To tackle this training problem, many learning approaches may be 

employed, such as a hybrid-learning algorithm combining the least squares method with the 

gradient descent method. 

 

4.4.5 Control Scheme of ANFIS based MPPT of PV Array 

The ratio of change in P and change in V is employed as error (e) in the ANFIS based control 

method, and change in error (e) is evaluated by subtracting error at the instant prior to the 

present from the error at the present instant of time, as illustrated in (4.23) and (4.24) similar 

to FLC as well as ANN as discussed earlier. 

 

𝑒(𝑘) =
∆()

∆()
                   (4.23) 

∆𝑒(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)                 (4.24) 

 

The hybrid optimization approach was used to design the FIS, which was done through grid 

partitioning [55]. Unlike fuzzy systems, which require manual rule addition, the ANFIS 

controller adjusts its rules to the dataset. The inclusion of the ANN within the ANFIS 

controller is responsible for this intrinsic prediction capacity. The ANFIS controller is 

designed using a Takagi-Sugeno fuzzy inference system (FIS) based on the test dataset. 
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Seven generalized bell membership functions for the inputs as well output were used in this 

study as these membership functions are better at dealing with non-linear distributions. The 

discussed membership functions have been depicted in Fig. 4.10. 

 

 

Fig. 4.10 Membership functions for input variables of ANFIS based controller 

 

4.5   SIMULATION RESULTS & COMPARATIVE ANALYSIS 

The plots obtained for power, voltage, current and duty ratio for the conventional as well as 

AI based controllers have been depicted in Fig. 4.11. The GMPPs for the irradiation sets in 

the format [Irr1; Irr2; Irr3] used in Simulink have been tabulated in Table 4.2. The 

computation times for the five controllers i.e., P&O, InC, fuzzy logic, ANN and ANFIS 

based controllers have been tabulated in Table 4.3. It is observed that the ANN based 
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controller takes the least computation time i.e. approximately 3.31 minutes for a simulation of 

2 s.   

 

Fig. 4.11 Comparative plots for PV power, voltage, current and duty ratio w.r.t. time for the discussed 
controllers. 
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Table 4.2 GMPP for the irradiation test sets 

Irradiation Test Set (W/m2) GMPP (W) 

[1000; 1000; 1000] 1500  

[900; 900; 1000] 1382 

[1000; 400; 1000] 986.29 

[1000; 250; 250] 469.4346 

[1000; 200; 200] 469.4004 

 

 

From Table 4.2, it can inferred that for a shading pattern with uniform irradiance of 1000 

W/m2, the GMPP would be 1500 W. Similarly, for [900; 900; 1000] i.e., Irr1= 900 W/ m2, 

Irr2= 900 W/m2, and Irr3= 1000 W/m2, the GMPP will lie at a value of 1382 W. For the 

patterns, [1000; 400; 1000], [1000; 250; 250] and [1000; 200; 200], the GMPPs will lie at a 

power of 986.29 W, 469.4346 and 469.4004 W respectively. 

 

   Table 4.3 Comparative analysis of Computational Times of Conventional & AI based controllers 

Control Technique Computation Time (s) 

P&O 726.57 

InC 241.21 

FLC 1669.27 

ANN 198.89 

ANFIS 2160.69 

 

Parameters like tracked power, settling time and tracking efficiency for the controllers have 

been compared in Table 4.4.  It  is observed that all the controllers have an efficiency of the 

order of 98 to 99%. However, FLC takes the least settling time in all the 4 test cases i.e. 0.026 

s, 0.001 s, 0.056 s and 0.047 s, respectively. However, the ANN based controller has the 
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highest tracking efficiency of 99.27%, 99.93% and 99.44% in the second, third and fourth test 

case. 

 

Table 4.4 Comparative analysis of Tracking Parameters of Conventional & AI based controllers. 

 Control Technique 
Power Tracked 

(W) 
Settling Time (s) Tracking Efficiency (%) 

Test Case-1 

P&O 1519 0.032 98.73 

InC 1521 0.034 98.6 

FLC 1522 0.026 98.53 

ANN 1521 0.0202 98.6 

ANFIS 1525 0.0292 98.34 

 

Test Case-2 

P&O 1398 0.022 98.69 

InC 1395 0.0203 98.91 

FLC 1394 0.001 98.98 

ANN 1390 0.0024 99.27 

ANFIS 1393 0.0014 99.05 

 

Test Case-3 

P&O 997.4 0.131 98.92 

InC 997.7 0.131 98.89 

FLC 997.1 0.056 98.95 

ANN 987.4 0.064 99.93 

ANFIS 989.1 0.057 99.76 

 

Test Case-4 

P&O 475.3 0.132 98.96 

InC 474.3 0.127 99.17 

FLC 473.7 0.047 99.3 

ANN 473 0.056 99.44 

ANFIS 473 0.053 99.44 

 

 

4.6 CONCLUSIONS 

It is observed that though the conventional algorithms are at par with the AI based technique in 

terms of power tracking, the AI based techniques have an edge over them, when it comes to the 

settling time. The AI based controllers settle in a relatively lesser time. Among the AI based 

controllers, FLC takes the least settling time and ANFIS shows an intermediate performance 
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compared to FLC and ANN. However, large computational time is taken by FLC and ANFIS 

and thus, ANN based controller seems to be a suitable contender. 
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Chapter 5 

ANN based Learning Algorithms 

 

A learning algorithm is the technique utilized for the learning process in an ANN. The 

learning algorithms entail a systematic change of the network's synaptic weights in order to 

attain a certain goal. Levenberg Marquardt (LM), Bayesian Regularization (BR), and Scaled 

Conjugate Gradient (SCG) are the three methods discussed in this work, and they are all 

meant to measure PV output under partial shading situations. Under variable irradiance and 

shade circumstances, the performance of these three learning algorithms is thoroughly 

examined. The error back propagation technique is used in all of the algorithms, in which the 

difference between the actual and intended output is transmitted backward to update the 

weights of the layers in a multilayer neural network. 

 

5.1 LEVENBERG MARQUARDT (LM) ALGORITHM 

A frequently used learning algorithm is the Levenberg Marquardt technique. It is a 

combination of the two approaches, namely the Newton's method and the Gradient Descent 

Method. When using Newton's technique, there is a quick convergence around the local or 

global minima, but if the method is poorly developed, there may also be a divergence. The 

Gradient Descent Method, on the other hand, ensures convergence, though it may be slower 

depending on the ideal step-size value used. 

In a second-order function F(w), the ideal weight adjustment that has to be performed to 

parameter vector w is given by (5.1). 

∆𝑤 = [𝐻 + 𝜆𝐼]𝑔                    (5.1) 
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where I is the identity matrix and λ is the regularizing parameter, g, the gradient vector and 

H, the Hessian matrix. The regularizing parameter is a significant variable as when it 

approaches zero, the LM algorithm begins to behave like Newton's technique; but, as it 

approaches a higher number, it begins to behave like the Gradient Descent Method of 

training. As a result, the weight is changed to wk+1. 

Without calculating the Hessian matrix, the LM method is utilized to achieve second-order 

training speed. The Hessian matrix H can be estimated as (5.2) in the terms of Jacobian 

matrix J, for a performance function in the format of sum of squares. 

𝐻 = 𝐽்𝐽                    (5.2) 

The gradient vector can be substituted as (5.3). 

𝑔 = 𝐽்𝑒                      (5.3) 

The error vector e is a matrix containing the difference between the desired and the actual 
outputs where yi represents the actual output of the controller while di represents the desired 
output of the controller. 

𝑒 =
ଵ

ଶ
∑ (𝑑 − 𝑦)

ୀଵ                      (5.4) 

The modified weight wk+1 can thus be written as (5.5). 

𝑤ାଵ = 𝑤 − ∆𝑤                    (5.5) 

The value of the regularizing parameter should be tweaked. If the performance function 

advances toward optimization, its value decreases after each step; otherwise, it increases. 

 

5.2 BAYESIAN REGULARIZATION (BR) ALGORITHM 

The input weights and bias values are adjusted in Bayesian Regularization in a similar manner 

as the LM optimization. In order to obtain greater generalization, BR not only minimizes the 

squared error, but also the network weights. Based on this, the training objective function is 

developed in (5.6). 

𝐹(𝑤) = 𝛼𝐸௪ + 𝛽𝐸                   (5.6) 
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The entire sum of squares of the weights in a network is Ew, the sum of network errors is ED, 

and the objective function parameters are α and β. Based on Bayes' theorem [56], the values of 

the objective functions are computed. The network weights are assumed to be random 

variables in BR, and the weight distribution is assumed to be Gaussian. 

The output of the controller is computed using the activations and synaptic weight estimates 

for the ANN to be developed as shown in (5.7). 

𝑦ො = 𝑏ାଵ + ∑ 𝑤
ାଵℎ


ୀଵ                    (5.7) 

For the optimization purpose, the mean square error i.e., the MSE between the desired and 

obtained output values serves as the cost function. This cost function can be expressed as 

(5.8). 

𝐸 =
ଵ


∑ (𝑦 − 𝑦ො)

ଶ
ୀଵ                    (5.8) 

To avoid the problem of over-fitting as well as under-fitting, regularization is done. A 

parameter γ, known as the regularizing parameter is introduced such that it imposes a penalty 

on the MSE in case of over-fitting and under-fitting to the given dataset. This regularised 

error can be computed as (5.9). 

𝐸ோ = 𝛾𝐸௪ + (1 − 𝛾)𝐸                  (5.9) 

 

5.3 SCALED CONJUGATE GRADIENT (SCG) ALGORITHM 

The search direction is an additional factor in the case of Scaled Conjugate Gradient method 

as compared to the previously discussed algorithms. A reduction in error is desirable such that 

the selected search direction helps the controller proceed towards convergence. Thus, a change 

in the synaptic weight based on the prevalent search direction is introduced as shown in eqn. 

(5.10). 

𝑤ሬሬ⃗ ାଵ = 𝑤ሬሬ⃗  + 𝛼�⃗�                   (5.10) 

However, if no considerable reduction in error is observed, the search direction is updated 

using (5.11). 
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𝑝ାଵ =  −𝑔ାଵ + 𝛽𝑝                   (5.11) 

where g is the gradient of error which, if zero, implies that the desirable extrema has been 

reached. β can be written in the terms of gradient as (5.12). 

𝛽 =
൫|ೖశభ|మିೖశభ

ೖ൯

ೖ
ೖ

                  (5.12) 

Thus, the modified search direction can be expressed in the terms of gradient of error as 
(5.13). 

𝑝ାଵ =  −𝑔ାଵ + ቆ
ቀห𝑔𝑘+1ห

2
−𝑔𝑘+1

𝑇𝑔𝑘ቁ

𝑔𝑘
𝑇𝑔𝑘

ቇ 𝑝                (5.13) 

 

5.4 BASIC ANN BASED CONTROLLER DESIGN WITH LEARNING 

ALGORITHM 

 

Fig. 5.1 Block diagram of ANN based controller 

The designed controllers have two inputs, a hidden layer with ten hidden neurons and an 

output layer as illustrated in Fig. 3. The inputs to the controllers are error, denoted by e, and 

change in error, denoted by ∆e as described in (4.21) and (4.22). 

The controller generates the incremental change in duty cycle (ΔD) as the output. This 

incremental change modifies the present duty cycle ratio and with the help of a PWM 
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generator, generates the switching signals for the boost converter switch. The generated value 

of output ΔD is compared with the desired value of ΔD, which is included in the dataset, and 

an error signal is generated. The error signal acts as the input for the learning algorithm 

which modifies the synaptic weights and biases of the hidden layer and output layer. The 

initial input for the bias is taken as 1. Thus, learning algorithm plays a significant role in 

determining the response of a controller. 

 

5.5 COMPARATIVE SIMULATION RESULTS & ANALYSIS 

 

Fig. 5.2 Variation of Irradiance in the test cases 
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For an irradiance pattern as shown in Fig. 5.2, the designed controllers are tested. Further, a 

comparison is drawn between their testing as well as training performance.  The shading at 

different locations of the array leads to the presence of multiple peaks of power known as local 

MPPs and the global peak is termed as the global MPP. An illustration of the occurrence of 

local and global MPPs is evident from the obtained P-V and I-V characteristics as shown in 

Fig. 5 (a) and (b) respectively. 

 

(a) 

 

(b) 

Fig. 5.3 (a) P-V and (b) I-V characteristics of the PV array under the four test cases 
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Under the four testing conditions, analysis is performed in terms of power, voltage, current 

and duty cycle as represented in Fig. 5.4 (a). The performance of all the designed controllers 

is quite similar in achieving the steady state conditions. However, to observe transient 

analysis closely an enlarged view during transient conditions is presented in Fig. 5.4 (b). This 

section also discusses the transient performance of LM algorithm vs. BR and SCG 

algorithms. Fig. 5.4 (b) depicts the dynamic response of the compared learning algorithms in 

the form of a zoomed version of the Fig. 5.4 (a).  From Fig. 5.4 (b), it can be seen that LM 

algorithm reaches the MPP at a faster rate compared to the BR and SCG algorithms in most 

of the cases. However, SCG leads the LM based algorithm between 0.5 s and 1 s. 

 

Fig. 5.4 (a)Waveforms for PV output power, voltage, current and duty cycle for the test cases 
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A comparative analysis of the performance of the three training algorithms is tabulated in 

Table 5.1 in terms of shading and mismatch losses occurring in the system, the fill factor as 

well as tracking efficiency for all the test cases. From Table 5.1, it is observed that though all 

the three control algorithms are properly designed and are highly efficient with a tracking 

efficiency of the order 98 to 99% and even higher. The Levenberg Marquardt algorithm-

based controller gives the best performance under all the four test cases with an efficiency of 

98.67%, 99.2 %, 99.21% and 99.44% in the first, second, third and fourth test case 

respectively.  

 

 

 

 

Fig. 5.4 (b) Waveform for PV output power for the test cases 
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Table 5.1 Analysis of Tracking & Performance Parameters of a PV Array 

 

It is also observed that the performance of the three algorithms is quite comparable for the 

third and fourth test case i.e., as the irradiation level decreases, the difference between the 

performances of the three controllers drops considerably. LM algorithm-based controller has 

the least amount of shading and mismatch losses as can be observed from Table 5.1. The fill 

factor is an important factor to determine the efficiency of a PV array. The closer the value of 

fill factor approaches to 1, the better is the efficiency of the array. In Table 5.1, the fill factor 

drops considerably as the irradiance decreases from the first test case to the fourth test case. 

 

Cases 
Learning 

Algorithm 

Shading 

Losses(W) 

Shading 

Losses (%) 

Mismatch 

Losses(W) 

Mismatch 

Losses (%) 
Fill Factor 

Tracking 

Efficiency 

(%) 

Case-1 

LM 20 1.34 19.3 1.28 0.753 98.67 

BR 22 1.47 21.3 1.42 0.752 98.53 

SCG 22 1.47 21.3 1.42 0.752 98.53 

Case-2 

LM 129 8.6 46.8 3.3 0.697 99.2 

BR 131 8.74 48.8 3.44 0.696 99.05 

SCG 132 8.8 49.8 3.51 0.695 98.98 

Case-3 

LM 521.42 34.76 221.02 18.43 0.498 99.21 

BR 521.42 34.76 221.02 18.43 0.498 99.21 

SCG 521.42 34.76 221.02 18.43 0.498 99.21 

Case-4 

LM 1032.82 68.85 219.75 31.98 0.237 99.44 

BR 1032.92 68.86 219.85 32 0.238 99.41 

SCG 1032.92 68.86 219.85 32 0.238 99.41 



79 
 
 

 

 

 

Training Performance 

 

Fig. 5.5  MSE vs. Epoch plot for (a) LM, (b) BR and (c) SCG algorithms 

Table 5.2 includes the comparative analysis of training parameters. MSE plays an essential 

role in determining the variation in the obtained output from the target values. A smaller 

value of MSE is desirable. Regression R values are a measure of the correlation between the 

obtained output values and the target values. It is known that the value of R close to 1 shows 

a close relationship among the quantities. A zero value of R indicates a random relationship. 

From Table 5.2, it can be concluded that BR has the least testing MSE of 1.42×10-5, followed 

by SCG and LM having a MSE of 5.7988×10-5 and 5.975×10-5 respectively. The R values for 

testing, in the Table indicate that the output and target share a closer relationship in the case 

of BR based ANN controller with R value of 0.999 and quite similar is the case of LM and 

SCG with R value of 0.998 and 0.971 respectively. 

 

Table 5.2 Analysis of Training Performance Parameters of a PV Array 

Learning 
Algorithm 

MSE (10-5) R Epoch 
Training 
Time (s) 

Performance 

(MSE) 
Gradient 

 Training Validation Testing Training Validation Testing     

LM 4.397 4.263 5.975 0.998 0.997 0.998 18 9 3.8 × 10-5 0.00214 

BR 1.732 0 1.42 0.999 0 0.999 1000 25 1.73 × 10-5 5.7 x 10-5 

SCG 1.076 6.773 5.7988 0.957 0.953 0.971 51 0 94.2 × 10-5 0.00275 
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From Table 5.2, it is clearly evident that the LM based ANN technique takes lesser epochs 

for reaching convergence i.e., 18 epochs; however, it takes a larger time per iteration as 

compared to SCG where 51 epochs are completed in less than a second. The Mean Square 

Normalized Error Performance function for the three controllers has also been compared and 

it can be inferred from Table 5.2 that BR has the least value of the performance function i.e., 

1.73×10-5, followed by LM and SCG with a value of 3.8 × 10-5 and 94.2×10-5 respectively. 

Gradient gives an idea about tuning the parameters in a way which leads to minimization of 

error. Gradient is inversely proportional to the learning rate and hence a smaller value of 

gradient indicates a larger learning rate. Thus, BR has the highest learning rate among the 

three for the given dataset, owing to the least value of gradient i.e., 5.7 ×10-5, as can be 

observed from Table 5.2. 

The MSE vs. Epoch plots for the three algorithms have been depicted in Fig. 5.5. From the 

plots, it can be seen that for LM, the best validation performance is 4.2627×10-5 at epoch 12 

for 18 epochs in all. While for BR algorithm, the best training performance is 1.7325×10-5 at 

epoch 1000. For SCG, the best validation performance obtained is 67.731×10-5 at epoch 45 

for 51 epochs in all.  

 

5.6 CONCLUSIONS 

In this work, the performance of three training algorithms for ANN based controller are 

compared under different test cases of partial shading conditions of PV array. ANN 

controllers handled the non-linear operating environment arising due to partial shading with 

perfection. The performance is compared under randomly varying irradiance condition for 

power tracking, shading losses, mismatch losses, fill factor as well as tracking  efficiency, 

and LM based algorithms is found outperforming the other two counterparts in most of the 

scenarios. The performance is also tested on control parameters, such as performance indices, 

rise time, settling time, peak overshoot/ undershoot etc. Here also, LM based algorithm is 

scoring high in most of the cases and at par with others in very few cases. Rigorous 
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simulation studies have confirmed the effectiveness of LM algorithm as the most potential 

training algorithm for maximum power point tracking under partial shading conditions. 
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Chapter 6 

Simplified Optimised Fuzzy Logic Controller 

 

6.1  INTRODUCTION 

Due of their high adaptability to changes in operating circumstances and improved response 

to non-linearities, fuzzy logic-based controllers have received intriguing attention. The 

amount of time these controllers take for computation has however been a major problem 

[57-58]. By utilizing the proposed simplified as well as optimized version of fuzzy logic 

controller, this computational load might can be minimized. In this chapter, a simplified as 

well as optimized FLC (SOFLC) is presented, which comprises of a 4-rule base FLC along 

with a compensating polynomial, which reduces the FLC's structural complexity, 

computational burden and time. 

 

6.2  PROPOSED CONTROLLER 

In order to reduce the structural complexity of the designed controller, an FLC with least 

number of rules is designed. Since there are two inputs to the controller i.e., error and change 

in error, the least or minimum rules for the controller will be 4 i.e., 2×2. The rule base for a 4 

rule FLC is tabulated in Table 6.1. The membership functions for the 4 rule FLC inputs and 

output have been shown in Fig. 6.1 and Fig. 6.2 respectively. 

Table 6.1 Rule Base for a 4-rule FLC 

e/ ∆e N P 

N P ZE 

P ZE N 
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Fig. 6.1 Triangular membership function for inputs of 4 rule FLC 

 

 

Fig. 6.2 Triangular membership function for output of 4 rule FLC 

 

The strategy for the design of this least complex controller is such that the proposed 

controller should be able to produce a response equivalent to that of a 49-rule base controller. 

Thus, the response of the proposed controller is plotted against the response of the 49-rule 

base FLC as shown in Fig. 6.3. 
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Fig. 6.3 Response mapping of 49 and 4 rule FLC 

However, it is found that there is a wide gap between the two responses. To eliminate this 

difference between the two responses and to approximate the SOFLC with a performance 

equivalent to a 49-rule base FLC, a compensating polynomial is introduced as depicted in 

Fig. 6.4. This compensating polynomial can be evaluated using the polynomial fitting 

function.  

 

Fig. 6.4 Proposed SOFLC 

The computed compensating polynomial is computed as (6.1). 

∆𝐷ଶ(𝑡) = −34.5386 ∆𝐷ଵ
(𝑡) + 36.1298 ∆𝐷ଵ

ହ(𝑡) − 12.6371∆𝐷ଵ
ଷ(𝑡) + 2.8466 ∆𝐷ଵ(𝑡)(6.1) 
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The MSE obtained for different orders of polynomials, as shown in Fig. 6.5, is used to pick 

the 7th order polynomial. Beyond order 7, the MSE is very low, therefore the 7th order 

polynomial gives the optimum balance between performance and complexity. The other error 

based performance parameters have been shown in Table 6.2. 

 

 

Fig. 6.5 MSE vs Order of the Polynomial plot for the Compensating Polynomial 

 

Table 6.2 Error based Performance Parameters 

Order of 
the 

Polynomial 

SSE MSE 

 

RMSE S.D. Variance MAE MPE 

(%) 

MAPE 

(%) 

0 6.71 0.3193 0.565 0 0 0.517 117 117 

1 0.343 0.0163 0.127 0.55 0.303 0.116 36.04 42.16 

2 0.343 0.0163 0.127 0.55 0.303 0.116 36.04 42.16 
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3 0.152 0.0072 0.085 0.559 0.312 0.067 29.87 34.69 

4 0.152 0.0072 0.085 0.559 0.312 0.067 29.87 34.69 

5 5.456 0.2598 0.509 1.029 1.059 0.351 -15.07 74.19 

6 5.456 0.2598 0.509 1.029 1.059 0.351 -15.07 74.19 

7 0.067 0.0032 0.056 0.562 0.316 0.04 28.29 33.9 

8 0.067 0.0032 0.056 0.562 0.316 0.04 28.29 33.9 

9 0.054 0.0026 0.051 0.563 0.317 0.04 29.29 33.9 

10 0.054 0.0026 0.051 0.563 0.317 0.04 29.29 33.9 

 

With the introduction of the compensating polynomial, the mapping of the SOFLC response 

is done w.r.t. the mapping of a 49 rule FLC as plotted in Fig. 6.6. 

 

Fig. 6.6 Response mapping of 49 and 4 rule SOFLC 

The output surface of the 49 as well as 4 rule FLC with respect to the inputs e and ∆e has 

been plotted in Fig. 6.7 (a) and (b). 
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Fig. 6.7 Output Surface of the (a) 49 rule and (b) 4 rule FLC  

6.3  SIMULATION RESULTS FOR THE PROPOSED CONTROLLER 

The variation in Irr1, Irr2 and Irr3 has been shown in Fig. 6.8.  

 

Fig. 6.8 Variation of Irradiance in the four test cases. 
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The P-V and I-V characteristics obtained for the above discussed test case have been 

illustrated in Fig. 3.8. The LMPPs and GMPPs have further been marked in Fig. 6.9. 

 

 

Fig. 6.9 P-V & I-V characteristic of the designed array under the four test cases. 

 

The response plots for the proposed and conventional 49 rule FLC have been plotted in Fig. 

6.10. They include the power output, the output voltage and current as well as the duty ratio 

of the controllers under comparison. 

The MPP is being tracked by both the controllers i.e., the proposed 4 rule SOFLC and the 49 

rule FLC. During MPPT, however, it can be seen that the SOFLC settles quicker than the 49-

rule base FLC. Therefore, it can be inferred that SOFLC has a reduced rising time. 
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Fig. 6.10  Response plots for the (a) 49 rule and (b) 4 rule SOFLC  

 

6.4  COMPARATIVE ANALYSIS  

The comparative analysis of the proposed as well as conventional controller can be done in 

two ways i.e., the analysis based on the performance indices as well as the statistical analysis. 
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6.4.1 Analysis based on Performance Indices 

A comparative analysis of the performance indices is presented in Table 6.2. A low value of 

these error based performance indices is desirable for an effective and efficient control 

system.  

From Table 6.3, it can be observed that the 4 rule FLC has the highest value of the 

performance indices and thus is the most inefficient one among the controllers being 

compared here. The proposed SOFLC has the least range of these indices and thus appears to 

be the most suitable choice. The 49 rule base FLC has intermediate values of the indices; 

however the values approach towards the SOFLC as compared to the 4-rule FLC. Thus, the 

designed SOFLC shows slightly better performance w.r.t 49-rule FLC and much better as 

compared to 4-rule FLC.  

Table 6.3  Comparative Analysis of Performance Indices 

Controller IAE 

 

ITAE 

 

ISE 

(104) 

ITSE 

(104) 

49-rule FLC 93.42 139.8 1.998 2.352 

4-rule FLC 591.3 1323 30.15 70.49 

SOFLC 86.04 123.9 1.831 1.945 

 

6.4.2 Statistical Analysis of Controller Performance 

A comparative statistical analysis of the 4-rule FLC and SOFLC has been tabulated in Table 

6.4. It consists of the mean square error (MSE), standard deviation (S.D.), Variance, Mean 

Absolute Error (MAE) and Mean Percentage Error (MPE). These values are calculated with 

respect to the error between the response of the respective controllers and the 49-rule base 

FLC. 

Mean square error (MSE) is the mean of the squared sum of errors. It is a measure of the 

closeness of the response obtained by the controller in comparison with the response obtained 

by the 49 rule FLC. From Table 6.4, it can be analysed that the SOFLC has a smaller MSE of 
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0.0032 and thus is a better approximated version of the 49-rule FLC as compared to its 4-rule 

counterpart.  

The standard deviation (S.D.) and variance are  indicative of the spread of the data around the 

mean value. The higher the value of S.D. and variance, the higher is the spread of the 

response around the mean value. Thus, SOFLC offers a wider range of control. 

Mean absolute error (MAE) is a statistical tool for the calculation of the arithmetic mean of 

the absolute value of errors. SOFLC has a smaller value of MSE i.e., 0.04, which is desirable 

as compared to 4 rule FLC with a MAE of 0.222. Mean percentage error (MPE) is reduced in 

the case of SOFLC by a larger percentage of 17.46 % compared to the 4-rule FLC. 

A plot of the absolute deviation with respect to error and change in error has been plotted in 

Fig. 6.11 to illustrate the large reduction in error due to the introduction of the compensating 

polynomial in the case of SOFLC. 

Table 6.4 Comparative Statistical Analysis 

Controller MSE S.D. Variance MAE MPE (%) 

4-rule FLC 0.0525 0.36 0.129 0.222 45.75 

SOFLC 0.0032 0.56 0.316 0.04 28.29 

 

 

Fig. 6.11  Plot of absolute deviation in PV Performance Parameters   
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Memory Requirement and Computational Efficiency 

 

The main stages of processing in a general FLC are fuzzification, fuzzy inference system 

(FIS) as well as knowledge base and de-fuzzification. The memory requirement for 

fuzzification and defuzzification modules is dependent on number of inputs and output 

variables, membership functions used for each variable and memory units required per 

membership function. For FIS and knowledge base module memory requirement is a function 

of number of rules, number of antecedents and consequents. However, in the case of SOFLC, 

due to the compensating polynomial, additional memory is required for processing apart from 

that of the general FLC. Due to the reduction in rules by a great extent, the memory 

requirement of a 4-rule FLC and proposed SOFLC with a compensating polynomial are quite 

less than the 49-rule FLC. However, the performance of proposed SOFLC is much better than 

4-rule FLC and approximates a 49-rule FLC quite effectively. 

A comparative analysis of memory requirement and computational time has been 

tabulated in Table 6.4. Memory requirement of the 49-rule base is (21m0+686) units, where 

m0 is the memory requirement of each membership function. A 4-rule FLC takes the least 

memory i.e., (7m0+32) units but to have an improved performance and to approximate the 

49-rule FLC action, the SOFLC is used which has a slightly more memory requirement i.e. 

(7m0+47) units. The computation time is a major issue in the case of FLCs. The simulations 

were performed on Intel(R) Core (TM) i5-1035G1 CPU with the processor base frequency of 

1 GHz for a duration of 3 seconds under continuously varying irradiance. The SOFLC 

reduced the computation time of the 49-rule FLC by 2.5 times. 

Table 6.5 Comparative Analysis of Memory Requirement & Computational Time 

Controller 
Memory Requirement 

(units) 
Ratio of Computational Time 
with respect to 49-rule FLC 

49 rule FLC 21m0+686 1:1 

4-rule FLC 7m0+32 0.40:1 

SOFLC 7m0+47 0.40:1 
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Thus, it is observed that the proposed SOFLC will be highly effective as compared to the 

conventional 49 rule FLC with a significant reduction in the computational burden as well as 

time. 

 

6.5   CONCLUSIONS 

Based on the analysis of the designed MPP techniques, Table 6.5 has tabulated. It is observed 

that the conventional MPP techniques offer a high tracking efficiency but take a higher 

computational as well as settling time compared to their AI counterparts. The least 

complexity, low memory requirement and no training data requirement of the conventional 

MPPs is a value addition to their case.  

Table 6.6 Comparative Analysis of the Designed MPPT Techniques 

Controller MPP 

Tracking 

Efficiency 

Computational 

Time 

Settling 

Time 

Complexity Memory 

Requirement 

Training Data 

Requirement 

P&O High High Very 

High 

Least Low Nil 

InC High Low High Least Low Nil 

49 rule FLC Higher High Low High High Nil 

4 rule FLC High Low Low Least Least Nil 

Proposed 

SOFLC 

Higher Low Least Low Low Nil 

LM based 

ANN 

Higher Least Low Low Low High 

BR based 

ANN 

Higher Least Low Low Low High 

SCG based 

ANN 

Higher Least Low Low Low High 

ANFIS Highest Very High Low High High Very High 
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FLCs and ANNs have a higher tracking efficiency. On one hand, the ANNs have a low 

computational time but on the other hand, their training data requirements are large. While 

FLCs, due to their inherent adaptivity and user-defined rules about the process require no 

training data. However, the 49 rule FLC which is modelled as a tradeoff between the 

complexity and accuracy of the control action has a high computational burden compared to 

the ANN. In the case of ANFIS based controllers, the highest tracking efficiency is offered at 

a low settling time owing to the hybrid combination of the two main AI based controllers i.e., 

FLCs and ANNs. But, the memory requirement and thus the computational burden is the 

highest. Additionally, the ANFIS based controller also require a training data set. Thus, a 4 

rule FLC is developed and it is observed that though it offers a lesser tracking efficiency 

compared to the 49 rule FLC, it offers a less complex structure and thus a reduced 

computational burden and least computational time without the requirement of any training 

data. Thus, an attempt is made to develop a 4-rule FLC with a compensating polynomial. 

This controller with a cascaded compensating polynomial has been named as Simplified 

Optimized FLC (SOFLC) due to its simplified structure and optimized performance. SOFLC 

offers an approximate control action as a 49 rule FLC with a reduced complexity in the 

structure. It takes a low computational time and the least settling time. There is a low memory 

requirement for a SOFLC and no requirement of training data adds to their case. 
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Chapter 7 

Conclusion & Future Scope of Work 

 

7.1   CONCLUSION 

AI based techniques have an edge over the conventionally established techniques like P&O 

and InC MPP techniques. This is due to their inherent capability of handling non-linearities in 

a better and effective manner. However, further improvement in the existing AI techniques 

can be incorporated in an attempt to optimize as well as simplify the complex structure of the 

AI based control models. In such an attempt, a simplified as well as optimized FLC with 

merely 4 rules has been proposed and developed. This not only approximates the response of 

a 49 rule FLC but also reduced the complex structure and henceforth, reduces the 

computational time and burden of the existing AI based MPP techniques.  

It is also observed that with proper tuning of the incremental duty, even the conventional 

techniques like P&O and InC are able to track the MPP. However, there still lies a gap 

between the conventional and AI techniques due to the large tracking time taken by the 

conventional MPP techniques as compared to their counterparts. 

 

7.2   FUTURE SCOPE OF WORK 

The future scope of work may include but not be limited to: 

 Extension of the proposed work to Type-II Fuzzy systems 

 Use of the proposed technique to ANNs to have a faster and robust controller. 

 Grid integration of the designed system using the proposed AI technique. 

 Experimental verification of simulated techniques 
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