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Abstract

Infectious diseases impose a critical challenge to humans and remain to be a matter of

global concern. Sometimes contagious diseases that had become rare or had been only

local suddenly start occurring worldwide, for instance, SARS, Ebola, and Zika fever.

The last two decades have seen several large-scale epidemics outbreaks such as Ebola,

SARS, Zika virus, and swine �u, which leads to low socioeconomic status and inadequate

access to health care. The mathematical modeling of infectious diseases has become a

vital tool to understand, predict and control the spread of contagious diseases.

The present thesis aims to discuss the various aspects of transmission dynamics of in-

fectious diseases through time-delayed mathematical epidemic models. The inclusion of

time delay in the study of epidemiology is an important aspect. Persons with asymp-

tomatic infections play an essential role in spreading infectious diseases, especially as

they are unaware of their illness and take no special hygiene precautions. Thus, the

study of disease-transmission dynamics involves time delay, which needs to be consid-

ered for practical purposes. The time delay may arise due to delays caused by the

latency in a vector and delay caused by a latent period in the host. Therefore, this the-

sis comprises the Delay-di�erential equations for formulating the epidemic models. We

have proposed time-delayed epidemic models with di�erent compartments and analyzed

them mathematically for positiveness, boundedness, and stability to provide the control

strategies of emerging or re-emerging infectious diseases. The mathematical analysis and

simulations of the proposed models have been done using the Routh-Hurwitz stability

criterion, Descartes' rule of signs, Lyapunov direct method, and Mathematica 11.

Keywords: Infectious diseases (Epidemic); Delay di�erential equations (DDEs); Latent

period; Nonlinear incidence rates; Nonlinear treatment rates; Stability; Bifurcation.
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Chapter 1

Introduction

Infectious diseases have a substantial impact on community health worldwide and re-

main a signi�cant cause of death and su�ering in developing countries [35]. The human

population's presence is large enough to sustain and amplify parasites, subsequently

contributing to increased disease. As disease agents adapt, survive, and evolve, the

emergence of new diseases and re-emergence of existing diseases have become a signif-

icant worldwide problem [29, 35]. Therefore, controlling infectious diseases has become

an increasingly complex issue in recent years. This introductory chapter provides some

elementary information about the infection mechanisms, the control mechanism of epi-

demics, the role of mathematical models in epidemiology, and the motivation behind the

work carried out in this thesis.

1.1 Infectious diseases

�An infectious disease is a disease due to a speci�c infectious agent or its toxic prod-

ucts that arise through the transmission of that agent or its products from an infected

person, animal, or reservoir to a susceptible host, either directly or indirectly through an

intermediate plant or animal host, vector, or the inanimate environment� [60]. Various

microbes or pathogens cause infectious diseases. Most of them are generally microor-

ganisms, and few of them are observable by naked eyes. The most commonly known

pathogens are di�erent types of viruses and bacteria. Fungi and Protozoa are also known

as pathogens that are responsible for many diseases. Diseases caused by these pathogens
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are termed as �infectious� as these pathogens can be transmitted from one infected per-

son to another non-infected person. The most common and well-known example of such

diseases is in�uenza or �u caused by some kinds of viruses. Pathogens can be transmit-

ted either directly or indirectly. Direct transmission involves the spread of pathogens

by direct body-to-body contact, such as mother to child as exempli�ed with HIV, Zika,

and syphilis, touching (MRSA), kissing (herpes simplex virus), and sexual contact (hu-

man papillomavirus or HPV). Indirect contact transmission occurs when pathogens are

transferred between individuals via a contaminated intermediate person, object, or en-

vironmental surface [53]. Many infectious diseases (for example, HIV, mumps, measles,

rubella, smallpox, malaria) are still prevalent at local or global scales and threaten public

health. An outbreak of an infectious disease a�ecting a disproportionately large number

of individuals in a population, community, or region within a short period is known as

an epidemic.

1.2 Mode of transmission

Infectious diseases can spread in various ways, and pathogens cause infections by dif-

ferent modes of transmission. Contact is one of the most critical and frequent methods

of transmission of infectious diseases. It can be either direct or indirect. Direct contact

involves the physical transfer of microorganisms to a susceptible host from an infected

or colonized person. Direct contact includes a large droplet spread of infectious agents.

Other direct contact transmission examples are kissing, shaking hands or other skin con-

tacts, sexual contact, and soil contact. Indirect contact occurs when organisms from an

infected host or other reservoir are transmitted to a susceptible host via a contaminated

intermediate object. Indirect contact transmission may be airborne, vector-borne, or

vehicle-borne. Many diseases, e.g., in�uenza, SARS, are airborne and can be transmitted

through the air. The airborne infection spreads from an infected person to an uninfected

person through sneezing, cough, and even laughter. The microbes that are discharged

from an infected person may remain on the dust particles or any other medium. Infec-

tion may occur when these microbes are inhaled or reach an uninfected person's mucus

membrane through body contact. Hand-shaking could also be a potential way for trans-

mission of infections.

A substantial number of diseases are sexually transmitted diseases that are trans-

2



mitted through contaminated blood and semen, childbirth, or breastfeeding. HIV and

other sexually transmitted infections such as herpes, gonorrhea, trichomoniasis, syphilis,

and chlamydia cause noteworthy infection and mortality. Many of these diseases, such

as AIDS and Herpes, cannot be cured and last forever, which pose severe social and

economic consequences and are most troublesome to public health. Due to longer in-

fectious life, infected individuals with sexually transmitted diseases may contribute to

increased infections and remain a signi�cant problem in preventing diseases. Another

life-threatening facet of these diseases is that the infected person may not produce any

symptoms; consequently, the infected individual may transmit infection unknowingly.

1.3 Prevention and control of infectious diseases

Preventing infectious diseases is the central goal to minimize the outbreak impact and

spread to a larger population. The two main strategies for controlling epidemics of

contagious illness are reducing the number of cases through preventive activities such

as raising awareness, early case identi�cation, and reducing mortality due to disease

through e�ective therapy. These actions should be instituted quickly and should not

be delayed while waiting for laboratory con�rmation of the disease in question. The

prevention of the spread of infectious diseases can be achieved by reducing contact.

However, in modern life, with increased interactions among individuals, this is not easy

to accomplish. Therefore, awareness, vaccination, and drug therapy are the piers in

preventing and controlling infectious diseases.

1.3.1 Awareness

The last two decades have seen several large-scale epidemics outbreaks such as Ebola,

SARS, Zika virus, and swine �u, which lead to low socioeconomic status, and inadequate

access to health care. People get information about these outbreaks quite quickly due

to signi�cant advances in social media, which can have an insightful e�ect on the actual

epidemic dynamics [69, 121]. Therefore, at the beginning of an epidemic outbreak, the

initial step is to make the individuals aware of the disease and its preventive methods.

Awareness leads to sharing necessary information about the condition to the general

population, getting thought, making the individuals familiar with the disorder, and pro-

viding the most substantial protection against infectious diseases. Thus, awareness about

the spread of a disease is a valuable ally in a�ecting susceptibles' behavior, mitigating
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further infection.

Awareness programs can alert the vulnerable population towards the contagious dis-

ease [99]. Suppose vulnerable individuals have adequate knowledge and accurate infor-

mation about the infection. In that case, they take preventive measures such as regular

hand sanitization, face masks, wear hand gloves, vaccination, and even quarantine, re-

ducing the impact of illness. For instance, ranging from the plague outbreak in the

English village of Eyam in 1665�1666 [34], where the town completely sealed itself o� to

prevent further transmission of plague, to more recent outbreaks of swine in�uenza [69]

and Ebola [121]. During the 2003 SARS outbreak, the Chinese Southern Weekend news-

paper spread the instant message, �There is a fatal �u in Guangzhou� 126 million times

in Guangzhou alone, which a�ected people's behavior to take necessary preventive mea-

sures [49]. This �gure remains a distinct di�erence to the nearly low number of 5,327

cases recorded in the entire China [36].

In rural health services, the challenge of the government health care scheme is that

there are numerous gaps in primary health services, and the health care facilities are

mainly urban-centric. The rural residents may have low health knowledge awareness,

and their receiving way of health knowledge can be traditional and straightforward.

Knowledge level increases with higher education level; thus, education level is one of the

main factors in making people aware and further adopting preventive measures. There-

fore, many people are not fully but partially aware of the spread and control of infectious

diseases. Due to partial awareness, some individuals often medicate themselves adopting

antibiotics, even when advised against doing so, which weakens their immune system and

makes them at a high risk of catching the infection [72]. Therefore, complete awareness

about the cycle of disease and the utilization of appropriate precautions and adequate

decontamination procedures are vital. Full awareness of the disease in humans develops

a habit of taking preventive measures against it. They follow the instructions given by

health workers and the government and lower their risk of becoming infected.

The spread of the disease can also be controlled by vaccination. But, immunizations

can never be completely safe, and there is always a risk of some side-e�ect. Also, it is

di�cult to vaccinate all individuals due to various limitations. Even some fatal diseases

such as AIDS, Malaria, Chikungunya, Plague, and Dengue have no vaccination; only a
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person's awareness can prevent the spread of these diseases e�ciently and e�ectively.

For instance, the habit of using mosquito nets and mosquito coils helps in preventing

Dengue and Chikungunya [93,129].

1.3.2 Drugs

The role of drugs in providing cures for infectious diseases can also signi�cantly reduce

disease transmission. It can be taken either as Pre-Exposure Prophylaxis (PrEP) or

Post-Exposure Prophylaxis (PEP). Healthy people who are likely to expose to infection

are endorsed to take PrEP, while the infected people are recommended to take PEP

to halt or lessen transmission. For instance, in malaria disease, when people intend to

travel to a malaria-infected area, they are recommended to take malaria medication,

which could prevent voyagers from malaria infection during their travel whenever bitten

by a contaminated mosquito [114]. E�ective vaccines have not been developed for many

diseases such as HIV. Typically, vaccination development is a long and complex process.

Drug-oriented interventions can be an elective technique for lessening the contamination

trouble when vaccines are not available. In HIV, notable progress has been accounted

for PrEP and PEP utilization [67, 77, 79, 96]. Genuinely broad outcomes have been

published, showing a huge decrease of viral heaps of HIV-tainted people related with

antiretroviral [79,96]. The expulsion of viral burden is connected to a lower transmission

likelihood. Hence a drug-oriented intervention could be a possible way to deal with

relieving the burden of HIV disease.

1.3.3 Vaccination

One methodology to control the spread of infectious diseases is vaccination. Vaccina-

tion plays a vital role among the health interventions aimed at reducing the spread of

contagious diseases thanks to its safety and cost-e�ectiveness. Indeed, high immuniza-

tion take-up levels have brought about radical decreases in numerous vaccine-preventable

infectious diseases or even their eradication, as in the very notable instance of small-

pox [66]. The cowpox vaccine, introduced by Edward Jenner in 1796, is known as the

�rst vaccine. After this, several e�ective campaigns have been conducted against many

contagious diseases [74]. Vaccines save millions of human lives and serve to be a highly

e�ective method to prevent infectious diseases. In the United States, before introducing

the �rst measles vaccine in 1963, around 400,000 measles occurrences used to be reported
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every year [33]. Child diseases such as Polio, mumps, and rubella also cause extensive

mortality and morbidity. These diseases are no more prolonged epidemic after the im-

plementation of the vaccines [33]. Vaccines against in�uenza transmission also have a

successful history, which is the most common infectious disease worldwide. Before the

development of �u vaccines, controlling an in�uenza pandemic was a terrible mission.

It was assessed that around 20-50 million individuals worldwide died in the Spanish �u

outbreak in 1918-19. A century later, the 2009-10 pandemic global death toll was only

around 300,000 [101]. The development of the vaccine has reduced the casualty rate to

such a level. Nevertheless, a critical aspect of vaccination is its level of safety as far

as viability in preventing the illness and the duration of the induced immunity. Some

vaccines may be highly e�ective, e.g., measles [127], while others may not, as is the case

of varicella [100]. The e�ectiveness and levels of protection provided by a vaccine may

naturally decrease over time because of several medical conditions (medications, aging,

low immune system, etc.) and the alteration and evolution of infectious diseases; for

example, the �u virus [128] can change very rapidly, meaning that last year's �u vaccine

is unlikely to protect individuals from virus strains circulating this year. In contrast, the

measles virus [127] prevented by the measles� mumps�rubella (MMR) vaccine hardly

changes from year to year, indicating that it is as likely to protect individuals today

as it was ten years ago. Some vaccines minimize the infection risk but do not entirely

prevent a vaccinated individual from catching and transmitting the infection. These im-

perfect vaccines may not completely prevent infection but could decrease the likelihood

of becoming infected or reduce its consequences, thereby lessening the infectious disease

burden. We will address the problem of imperfect vaccination exhaustively in Chapter

7.

1.4 Mathematical epidemic model

Infectious diseases remain a signi�cant challenge for human survival. Therefore, it is

indispensable to analyze the dynamics of disease development to control or eliminate

the disease. The dynamics of infectious diseases can be investigated using mathematical

models. The mathematical modeling of infectious diseases is a valuable tool that can

enhance understanding of the disease's spread mechanisms and help make health deci-

sions more cost-e�ective and accurate than the experimental studies. By analyzing the

model, we can foresee the future course of an outbreak up to a large extent to evaluate

6



control methodologies. Many researchers have developed mathematical models in epi-

demiology to facilitate the formation of public health policies [1,4,10,29,31,32,40]. The

basic principle of these mathematical models was to investigate the underlying factors

causing the disease, its development and hence foresee the future course of action. The

mathematical models are categorized into two types: Deterministic and Stochastic. The

deterministic model determines every set of variable states uniquely by parameters and

the initial conditions and provides the same outcome for the same set of parameters

with the same initial conditions. A stochastic model is a mode in which randomness

is present, and variable states are not described by unique values but by probability

distributions. Stochastic models show randomness and provide di�erent outcomes for

the same set of parameters with the same initial conditions. In this thesis, we study the

various aspects of infectious diseases using deterministic modeling. The general idea for

most deterministic models is to look at a so-called compartmental model, in which the

population is divided into compartments based on disease status.

Epidemiological models are also known as compartmental models since they assume

that the entire host population can be divided into compartments. In 1927, Kermack and

McKendrick [1] gave the basic compartmental SIR epidemic model in which they describe

the transmission mechanism of the infectious disease by dividing the total population

into distinct subclasses according to their epidemiological status. Their model involves

three compartments (or classes): Susceptible, Infected, and Recovered. The susceptible

class, usually denoted by S, consists of those individuals who are healthy but can contract

the disease. The infected class I is the class of those individuals who have contracted

the disease and are now infectious and can transmit the disease to susceptibles through

contact. As time progresses, infectious individuals lose the infectivity and move to either

a removed compartment R (by death) or recovered compartment R (either by suitable

treatment or auto-recovery by the immune system). Recovered individuals are resistant

to infectious microbes and thus do not get the infection again in permanent immunity.

Thus, the Kermack's and McKendrick's SIR epidemic model is given by the following
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system of ordinary di�erential equations:

dS(t)
dt

=−βS(t)I(t),

dI(t)
dt

= βS(t)I(t)− γI(t),

dR(t)
dt

= γI(t)

(1.1)

where, β and γ are the transmission and recovery rates, respectively. This model delin-

eates how subpopulations of susceptible, infected, and recovered classes progress without

considering the host population's demography. The researchers have employed the idea

of population compartments broadly in epidemic models [16, 29, 34]. Di�erent epidemic

models, relying upon the invulnerability against the contamination, are developed. For

example, in 1976, Hethcote [7] studied the dynamics of the SIS and SIRS epidemic

models. The SIS model looks at the disease without immunity wherein the recovered

individual will get the infection again and become susceptible. In contrast, the SIRS

model is the case of a disease with temporary immunity.

In the study of the transmission of infectious diseases, the incidence rate has a vital

role as it determines the number of infectives per unit of time. In model (1.1), the term

βS(t)I(t) represents the bilinear (or mass action) incidence rate which is assumed to be

proportional to the product of the infected and susceptible members of the population.

In the bilinear incidence rate, the number of infectives increases linearly, which might

be real for a small population of infected individuals, but impractical for a large number

of infectives. Therefore, several studies are devoted to considering nonlinear incidence

rate for disease transmission dynamics [123, 134�137, 139, 141, 142]. Nonlinear incidence

rate permits the incorporation of social/behavioral changes and prevents unbounded

contact rates. Thus, changing the form of incidence rate can potentially �ll the gap

in studying the disease transmission behavior of the system. We explore some of the

di�erent nonlinear incidences.

(i) Holling type II: This incidence rate was proposed by C. S. Holling in 1959 [3], and

it is also known as the saturated incidence rate. It is of the form f (S, I) = αSI
1+β I ,

where α, β > 0. �In Holling type II, for any disease outbreak, its incidence is

�rst very low and then grows slowly with an increase in infection. Further, when

number of infected individuals is very large, the infection reaches to its maximum

due to crowding e�ect� [123].
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(ii) Beddington-DeAngelis type: This incidence rate was introduced by Beddington et

al. [5] and DeAngelis et al. [6] in 1975 independently. �It is of the form f (S, I) =
βSI

(1+αS+γI) , where β , α, γ > 0. Here β is the transmission rate, α is a measure

of inhibition e�ect, such as preventive measure taken by susceptibles, and γ is a

measure of inhibition e�ect such as treatment to infectives. This incidence rate

considers the impact of inhibition among infectives in case of the low density of

susceptible populations� [123]. Also, we can derive the other incidences from this

incidence, such as bilinear incidence rate if α = γ = 0 ; saturated incidence rate for

the susceptible if γ = 0 ; and saturated incidence rate for the infectives if α = 0.

(iii) Crowley Martin Type: In 1989, P. H. Crowley and E. K. Martin introduced the

incidence rate of the form f (S, I) = αSI
(1+βS)(1+γI) , where α, β , γ > 0. This incidence

rate contains other forms of incidences analogous to the Beddington-DeAngelis in-

cidence form. �The important di�erence between the Beddington-DeAngelis type

and the Crowley-Martin type incidence rate is that the latter considers the ef-

fect of inhibition among infectives even in case of the high density of susceptible

populations while the former neglects the e�ect as mentioned earlier� [123].

Treatment is vital to cure the infection and prevent the development of resistant bac-

teria. Therefore, consideration of the treatment rate in the epidemic model is of great

importance. In 2004, Wang and Ruan [39] studied the SIR epidemic model with bilinear

incidence rate and the constant treatment rate to know the impact of treatment capacity

on disease transmission dynamics. Their model's critical observation is that the periodic

oscillations in diseases can be seen with a constant treatment rate, whereas the model

without the treatment is globally stable. This kind of treatment rate is appropriate

when there are small numbers of infectives and treatment resources are su�cient and

inappropriate when the number of infected individuals is large, and treatment resources

are limited. Therefore, in 2012, Zhou and Fan [102] improved the treatment rate by con-

sidering a saturated treatment rate and explore the SIR epidemic model to understand

the e�ect of the limited medical resources and their supply e�ciency on the transmission

of infectious diseases. To control the disease, most researchers focus on a nonlinear type

treatment rate. Dubey et al. [106, 123, 125] introduced the nonlinear treatment rate as

Holling Type II, Holling Type III, and Holling Type IV in their model and proposed

nonlinear dynamics to control the epidemic. In this thesis, we explore the impact of

various nonlinear treatment rates on disease transmission models.
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Authors have stressed that apart from the nonlinearity in the incidence rate and in-

fection treatment rate, public awareness is also an important tool to reduce the spread

of disease. The impact of information and awareness on the spread of epidemics has

been studied by many authors [54, 84, 86, 94, 111, 112, 115, 119, 122]. Another methodol-

ogy of controlling infectious diseases is vaccination. But, sometimes, vaccination can be

temporary. Therefore, many studies have dealt with epidemic models in mathematical

epidemiology literature, including imperfect vaccination [41, 92, 97, 110, 126]. We will

discuss the impact of awareness and vaccination in detail in Chapters 5, 6, and 7, re-

spectively.

Delay di�erential equation (DDE) plays a signi�cant role in estimating both past and

ongoing epidemics and the structure of future-focused control interventions. It can be

said with a high level of conviction that when a disease emerges, there will be an initial

delay in recognizing it. Thus, the time delay is an in�uential parameter in the dynamical

behavior of infectious diseases, and it can change the dynamical system's behavior. Delay

di�erential equations (DDEs) can have more a�uent dynamics than ordinary di�erential

equations and better �t the real-world situation. Driver [8] gave a solid introduction to

this. Time delays are generally used to model the condition in which an individual may

not be infectious until some time after becoming infected. The latency period of conta-

gious diseases, which is de�ned as the period between exposure and infection since the

pathogen is present in a latent stage without clinical symptoms or signs of infection in

the host, can be modeled by DDE. In the context of epidemiology, various factors cause

the delay. The most prominent reasons for considering time delay are (i) the infection's

latency in a vector and (ii) the infection's latency in an infected host. In these cases,

some time should elapse before the infected host's infection level, or the vector will rise

to an adequately signi�cant level to further transmit the disease. Delay is challenging to

deal with mathematically because straightforward incorporating it into a mathematical

model generally leads to delay di�erential equations which are di�cult to handle math-

ematically. A commonly used palliative comprises an extra compartment such as an

exposed class (E) of the SEIR model held responsible for the delay. While this approach

is mathematically suitable as it prompts a higher-order system of ordinary di�erential

equations rather than an equation with a delay, it is also biologically questionable. It

generally implies an assumption that the delay is exponentially distributed, whereas, in

an epidemiological context, it often appears that an assumption of a constant delay is

more reasonable. Kuang [22] discusses delay and distributed delay di�erential equations
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in the context of population models, including predator-prey systems with logistic-type

equations that can be applied to epidemic models. Brauer and Castillo-Chavez have an

excellent introduction to epidemic models in [32] with extensions to delay systems. Ma

and Song [43], McCluskey [80], and Rost and Wu [63] analyzed the SIR and SEIR models

with discrete delays. Further, Meng et al. [78], Xu and Ma [75], Zhao et al. [58] stud-

ied the delay epidemic models with nonlinear incidence. Most of these studies proved

the global stability of disease-free equilibrium. McCluskey [71, 80] gave excellent proofs

for the endemic equilibrium's global stability for two classes of SIR and SEIR epidemic

models with both �nite time delay and in�nite time delay. In literature, many authors

study the impact of time delay on the epidemic model. Motivated by the work mentioned

above, this thesis studies the impact of time delay as a latent period in the dynamical

study of epidemic models.

1.5 Basic reproduction number

The basic reproduction number is a crucial concept in studying disease transmission

dynamics and one of the most valuable ideas that mathematical thinking has brought

to epidemic theory. It often serves as a threshold parameter that predicts whether an

infection will spread or die out. The basic reproduction number R0 is de�ned as �the

average number of secondary infections caused by one infected individual during their

entire infectious period in a completely vulnerable population� [33]. In this framework,

it is clear that the critical parameter is the number of secondary cases generated by

the initial case. If this number is greater than unity, then there is a positive chance

of a large outbreak a�ecting nearly the total population. Thus, it is essential to know

whether this number is much or a little above the threshold value of one for evaluating

control programs. It will determine the necessary amount of control strategy needed

to reduce the corresponding parameters to achieve a speci�ed goal su�ciently. The

parameter contact rate of susceptible and infective individuals has a signi�cant e�ect on

R0, as higher the in�uential contacts, higher the possibility of a new infection. Another

in�uential factor is the duration of infectiousness. People with extended infectiousness

periods will come in contact with more peoples and therefore possibly infect more peoples.
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1.6 Stability analysis

Mathematical models become increasingly intricate when a higher degree of nonlinear-

ity is considered to mark real-world situations. It becomes almost impossible to �nd a

de�nitive solution to these models. The reasonable approximate solution to these com-

plicated models with �xed parameters can be obtained using numerical simulations, but

the general solution remains unknown. In this situation, the stability analysis plays a

crucial tool in getting a sense of the solution's behavior. Even the long-time behavior

of the model solutions can be assessed by stability analysis. Generally, two types of

stability analysis are extensively used in the literature: local and global. Local stabil-

ity describes the behavior of the model's solution around an equilibrium point, whereas

global stability describes the solution's behavior in the whole domain.

Delay di�erential equations are often of interest to determine whether or not the de-

lay values a�ect a steady-state's stability. Mainly, the delay is treated as a bifurcation

parameter. To determine whether or not a stable steady-state can become unstable by

changing the delay value, we look at the eigenvalues from the roots of characteristic

equations. If all the roots have a negative real part, the steady-state is stable. When we

vary the delay values, if one of the roots changes from having a negative real part to hav-

ing a positive real part because of the delay, it implies that the steady-state will become

unstable. This is equivalent to having the root crossing the imaginary axis (imagine the

root as a graph with a real part on the x-axis and an imaginary part on the y-axis).

Therefore, if the root turns positive, there must be a purely imaginary part (i.e., the

intersection between the graph of the root and the imaginary axis exists).

In this thesis, the Routh-Hurwitz (R-H) criterion and Lyapunov direct method [28] are

mainly used for the stability of model's equilibria. The Routh-Hurwitz (R-H) criterion is

helpful to check the local stability of an equilibrium point. The local stability describes

the qualitative behavior of the solution in a certain neighborhood. It does not give any

information about the behavior of the solution out of that neighborhood. The Lyapunov

direct method can be helpful to study the stability behavior of nonlinear systems. The

physical validity of this method is contained in the fact that the stability of the system

depends on the energy of the system, which is a function of system variables. The

Lyapunov direct method consists of �nding out such energy functions termed Lyapunov
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function, which need not be unique. The major role in this process is played by positive

or negative de�nite functions, which can be obtained in general by the trial of some

particular functions of state variables, and in some cases, with a planned procedure [125].

1.7 Contents of thesis

The thesis entitled �Nonlinear Dynamics and Simulation of Infectious diseases in Hu-

mans� contains eight chapters followed by a conclusion & future scope, and a bibliogra-

phy. The thesis is organized as follows:

Chapter 1 Chapter 1 is introductory, which gives a general background of epidemic mod-

eling theory, basic terminology, essential concepts, and types of models. This chapter

aims to provide the chronological development done in epidemiology and the motivation

behind the thesis's work.

Chapter 2 In chapter 2, the dynamical behavior of a susceptible-infected-recovered (SIR)

epidemic model is being proposed and analyzed by incorporating time delay as the latent

period, the nonlinear incidence rate, and the nonlinear treatment rate. The nonlinear

incidence rate is considered as the Beddington-DeAngelis type functional response. This

incidence rate has a signi�cant role in studying disease transmission dynamics as it

includes inhibition measures taken by both susceptible and infected individuals. If indi-

viduals are familiar with the diseases and are acquainted with the transmission modality

of infection, they can take necessary preventive measures to avoid infections. These

measures are called the measure of inhibition. When a disease emerges, there will be an

initial delay in recognizing it. Therefore, to study the more natural disease transmission

phenomenon, we incorporate the time delay into the Beddington-DeAngelis functional

type incidence rate, which is an essential parameter in the dynamical behavior of infec-

tious diseases and can change the behavior of the dynamical system. The treatment rate

plays a substantial role in preventing and controlling the spread of epidemics. Therefore,

to provide a control strategy for infectious diseases, we consider a nonlinear saturated

functional type treatment rate, which includes the fact of limited treatment availabil-

ity. For the dynamics of the model, we discuss the existence and stability behavior of

the model for equilibriums. The existence of a Hopf bifurcation is also discussed. The

model's numerical results demonstrate the impact of time delay, incidence, and treat-
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ment rates on the infected population.

The work reported in this chapter has been published entitled “A mathematical and

numerical study of a SIR epidemic model with time delay, nonlinear incidence and treat-

ment rates” in Theory in Biosciences, 2019 (Springer).

Chapter 3 This chapter proposes a mathematical SIR epidemic model with Beddington-

DeAngelis type incidence rate with the inclusion of a latent period and a nonlinear

treatment rate to study the dynamics of a SIR model. The treatment rate is considered

as the Holling type II treatment rate, which refers to the condition that when there is

a large number of infected people, then the treatment capacity reaches its maximum

because of limited treatment facilities that mimic the more realistic phenomena. For

an outbreak of epidemic disease, the treatment capacity of Holling type II is initially

very slow, which develops gradually with improved treatment facilities. Stability anal-

ysis is resorted to getting a sense of the behavior of solutions. A precise indication of

the bifurcation phenomenon has been given using center manifold theory, ensuring that

either forward or backward bifurcation occurs. The backward bifurcation demonstrates

that the disease-free equilibrium coexists with the endemic equilibrium when the basic

reproduction number is less than one. It has important qualitative implications since

reducing the basic reproduction number below one is not su�cient to eradicate the dis-

ease from society. Our theoretical results suggest that backward bifurcation depends on

infected individuals' therapeutic treatment, which shows the importance of considering

the Holling type II treatment rate. The nonlinearity in the epidemic model due to the

latent period (time delay) can give rise to periodicity via a Hopf bifurcation. The nu-

merical simulations validate the theoretical results.

The work reported in this chapter has been published entitled “Stability behavior

of a nonlinear mathematical epidemic transmission model with time delay” in Nonlinear

Dynamics, 2019 (Springer).

Chapter 4 In the beginning phase of an outbreak, disease follows either an exponen-

tial or generalized exponential growth. However, it slows down and reaches its maxima

as the increasing number of cases reaches its in�ection point, and the daily incidence

curve reaches its extreme. Thus, the growth pattern departs from the (sub-) exponen-

tial path and follows a logistic growth rate. To capture this situation in the epidemic
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model, in this chapter, we propose the susceptible-infected-recovered (SIR) epidemic

model with the logistic growth of susceptible individuals. We incorporate Crowley Mar-

tin type incidence rate, Holling type III treatment rate, and two explicit time-delays:

a time delay in the incidence rate, which represents the latent period; a time delay in

the nonlinear treatment function, which measures the impact of delay in providing the

appropriate therapy to infectives. The numerical simulations verify the analytical results

and demonstrate the signi�cant role of the following nonlinearities: capturing time lags

between the exposure of disease, onset of its symptoms, and then providing treatment

to infectives; susceptibles' and infectives' protection level against the infectious diseases;

the limitation in the availability of the medical resources. The latent period and the

delay in treating patients have a signi�cant impact on the number of infected individu-

als. These delays result in spreading infections at a high rate, and so, the disease stays

for a longer period. Considering the time delays as the bifurcation parameters can af-

fect the obtained equilibrium's stability. When the delay is suitably small, the system

reaches its steady-state, but as it crosses the critical value, it will produce a limit cycle

and destabilize the endemic stability, making it di�cult to control the spread of infection.

The work presented in this chapter is communicated for publication.

Chapter 5 In this chapter, we investigate the e�ect of awareness during an epidemic.

We propose a time-delayed epidemic model by incorporating a class of aware suscepti-

ble individuals in the SIR compartmental model. We considered the Michaelis-Menten

functional type nonlinear incidence rates for unaware and aware susceptibles with the

latent period and a saturated treatment rate for infectives. Michaelis-Menten func-

tional response type incidence rate is suitable when the number of adequate contacts

per infective in unit time grows less rapidly as the total population increases. We per-

form mathematical analysis that allows long-term qualitative predictions of outbreaks

and the persistence of the disease. The numerical experiments show the signi�cance of

the model's variables and parameters and suggest strategies that could prevent infection.

The work presented in this chapter is communicated for publication.

Chapter 6 This chapter is an extension of Chapter 5. Here, we introduce fully aware

and partially aware susceptible compartments into the SIR epidemic model due to het-

erogeneous protection levels of individuals and extend the epidemic model to include the
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behavioral change of susceptibles, which can change the transmission patterns and reduce

the prevalence of disease to a more extent. We consider three speci�c nonlinear incidence

rates of unaware susceptibles, fully aware susceptibles, and partially aware susceptible,

respectively, with the inclusion of time delay as a latent phase. Also, with awareness,

treatment of infectives is essential to mitigate the infection. Therefore, we consider the

nonlinear saturated treatment rate, which includes limitations in the availability of re-

sources. After formulating the nonlinear time-delayed mathematical epidemic model, we

perform stability analysis to demonstrate the eradication or persistence of the disease

and validate the theoretical results numerically. The results can help to understand the

role of varying protection levels of susceptibles in the transmission pattern of infectious

diseases, suggesting the control strategies to prevent the spread of infections at a massive

scale.

The work reported in this chapter has been published entitled “Nonlinear dynamics

of a time-delayed epidemic model with two explicit aware classes, saturated incidences,

and treatment” in Nonlinear Dynamics, 2020 (Springer).

Chapter 7 This chapter presents a time-delayed susceptible-vaccinated-infected-recovered-

susceptible (SVIRS) compartmental epidemic model to study the impact of the imper-

fect vaccine. We incorporate the Holling type II incidence rate with a latent period

and saturated treatment rate and perform qualitative analysis through the stability and

bifurcation theory approach using center manifold theory. Our results suggest that the

imperfect vaccine and a saturated treatment rate may lead to backward bifurcation,

but at the same time, we emphasize that these facilities reduce the size of the infected

population. High vaccine take-up levels brought about radical decreases in infectious

diseases. If a vaccine can be made, which is completely e�ective, this plausibility does

not emerge, and a program that reduces the contact rate can moreover control infection

without inciting backward bifurcations.

The work reported in this chapter has been published entitled “A deterministic time-

delayed SVIRS epidemic model with incidences and saturated treatment” in Journal of

Engineering Mathematics, 2020 (Springer).

Chapter 8 This chapter contains the conclusion of the work done and the future scope

of the problems discussed in the thesis.
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Chapter 2

Dynamics of a time delayed nonlinear SIR

epidemic model with

Beddington-DeAngelis incidence and

saturated treatment rates

In this chapter, a novel nonlinear time-delayed Susceptible - Infected - Recovered (SIR)

epidemic model with Beddington-DeAngelis type incidence rate and saturated functional

type treatment rate is proposed and analyzed mathematically and numerically to control

the spread of the epidemic in the society. Analytical study of the model shows that it has

two equilibrium points; disease-free equilibrium (DFE) and endemic equilibrium(EE).

The stability of the model at DFE is discussed with the help of a basic reproduction

number, denoted by R0 and it is shown that if the basic reproduction number R0 is less

than one, the DFE is locally asymptotically stable and unstable if R0 is greater than

one. The stability of the model at DFE for R0 = 1 is analyzed using center manifold

theory, revealing a forward bifurcation. We also derived the conditions for the stability

and occurrence of Hopf bifurcation of the model at endemic equilibrium. Further, to

illustrate the analytical results, the model is simulated numerically.
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2.1 Introduction

Mathematical analysis and modeling of infectious diseases play a crucial role in study-

ing a wide range of infectious diseases to understand the transmission dynamics better

and have the capacity to in�uence expectations; to decide and assess control strate-

gies. Authors around the world have proposed di�erent kinds of epidemic models such

as SI (Susceptible - Infected) [26], SIS (Susceptible - Infected - Susceptible) [25], SIR

(Susceptible - Infected - Recovered) [132], SIRS (Susceptible - infected - Recovered - Sus-

ceptible) [21], SEIR (Susceptible - Exposure - Infected - Recovered) [106, 109], SVEIR

(Susceptible - Vaccinated - Exposure - Infected - Recovered) [51] and many more, to

understand the dynamics of disease transmission. In the mathematical epidemiological

literature, several authors have studied the epidemiological models with latent or incu-

bation period because many diseases have a latent or incubation period, during which

the susceptible individual becomes infected but is not yet infectious. Such latency in

disease transmission can be modeled by a delay di�erential equation. Delay di�erential

equations (DDE) have been a very successful tool to capture the e�ect of a varying in-

fectious period in a range of SIR, SIS, SIRS, and other epidemic models. Hethcote and

van den Driessche [25] studied an SIS epidemic model with constant time delay, which

accounts for the duration of infectiousness. Song and Cheng [44] studied the impact of

time delay on the stability of the positive equilibrium, as a resultant of which, conditions

have been stated for the asymptotical stability of the endemic equilibriumn for all de-

lays. Xu et al. [76], Khalid Hattaf et al. [107] and Kumar and Nilam [131,132, 135, 141]

considered the e�ect of time delay on SIRS and SIR models respectively and provided

the conditions for the stability of their proposed models.

The incidence rate of a disease is the number of new cases per unit time and plays a

crucial role in studying the transmission of disease dynamics. Several authors suggested

di�erent types of incidence rates. Firstly, the bilinear incidence rate βSI [1, 4, 20, 32, 82]

is based on the law of mass action, describes the situation that if the number of suscepti-

bles increases, the number of individuals infected per unit of time increases, which is not

realistic. In reality, however, by the impact of media, open mindfulness, or individual ex-

perience, people apply careful steps that decrease the contact number or the transmission

potential. Since nonlinearity in the incidence rates has been seen in disease transmission

dynamics, it has been proposed that the standard bilinear incidence rate shall be modi�ed
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into a nonlinear incidence rate by numerous authors [12, 52, 135, 139, 141]. Several au-

thors such as Anderson and May [10], Wei and Chen [61], Zhang et al. [62], Li et al. [73],

Li and Muldowney [24], Korobeinikov and Maini [45], Xu and Ma [76], Capasso and

Serio [12] suggested di�erent types of nonlinear incidence rates, and they incorporated

these incidence rates in their model and studied the disease dynamics. In 1975, Bed-

dington [5] and DeAngelis [6] independently introduced nonlinear incidence rate known

as Beddington-DeAngelis type incidence rate. Later, some authors [81, 105, 123] used

this incidence rate in their epidemic models. In the present chapter, we introduce the

incidence rate as Beddington-DeAngelis type to contribute to the nonlinear dynamics

of infectious disease. Since the nonlinear type incidence rate alone can not wholly de-

termine the transmission of the disease dynamics, the inclusion of time delay must be

considered for a more realistic model. Therefore, we incorporate time lag into Bedding-

ton DeAngelis functional type incidence rate and investigate its impact on the disease

dynamics.

It is well known that the treatment rate always plays a substantial role in preventing

and controlling the spread of epidemics. In the classical epidemic model, the treatment

rate was either constant [39] or proportional to the number of infected individuals [47].

This type of treatment rate is suitable in the case when the number of infectives is small

and treatment resources are su�cient, and unsuitable when the number of the infectives

is large, and treatment resources are limited. To control the disease, most researchers

focus on a nonlinear type treatment rate. Dubey et al. [106, 123, 125] introduced the

nonlinear treatment rate such as Holling Type II, Holling Type III, and Holling Type IV

in their model and proposed nonlinear dynamics to control the epidemic. Holling type

III treatment rate (also known as a saturated treatment rate) de�nes the condition in

which removal rate initially becomes quick with increment in infectives, and then it de-

velops gradually and settles down to maximum saturated value. After this, any increase

in infectives won't in�uence the removal rate [106]. Motivated by the work of Dubey et

al. [106], in the present chapter, we take the nonlinear saturated treatment rate of the

form

g(I) =
aI2

bI2 + cI +1
(where I ≥ 0, a,b > 0 and c≥ 0)

The aim is to understand and predict the actual transmission of infectious diseases and

investigate the e�ect of treatment rate to provide an e�ective control strategy. There-

fore, motivated by Dubey et al. [106, 123, 125], we consider a SIR (susceptible-infected-
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recovered) epidemic model setting with a nonlinear Beddington-DeAngelis functional

type incidence rate with the inclusion of time lag (described as the latent period) and

a nonlinear saturated treatment rate to provide a control strategy of the infectious dis-

eases. It is shown that this simple-looking system can exhibit interesting dynamics if this

behavioral response is delayed. For the dynamics of the model, we discuss the existence

and stability behavior of the model for equilibriums. In addition, the existence of a Hopf

bifurcation is also discussed.

2.2 Mathematical framework

This section presents the mathematical model described by the system of delay di�er-

ential equations constructed from the interaction among the compartments: susceptible,

infective, and recovered for the model equation.

2.2.1 The basic model equations

We consider that in the region under consideration, the total population is N(t) at

time t. The total population N(t) is divided into three subclasses; the susceptible class

S(t), the infective I(t), and the recovered individuals R(t). We assume that the disease

can spread due to the direct contact between susceptibles and infectives only. A block

diagram given in Fig. 2.1 illustrates the conceptual description of the model.

Figure 2.1: Transfer diagram for the delayed SIR model with the susceptible class S(t), the
infective class I(t), and the recover class R(t).

The model is presented by the following system of non-linear delay di�erential equa-
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tions:

dS
dt

= π−µS− βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)
,

dI
dt

=
βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)
− (µ +d +θ)I− aI2

bI2 + cI +1
,

dR
dt

= θ I +
aI2

bI2 + cI +1
−µR.

(2.1)

The initial conditions φ = (φ1,φ2,φ3) of (2.1) are de�ned in the Banach space

C+ = {φ ∈C([−ρ,0],R3
+) : φ1(Ω) = S(Ω),φ2(Ω) = I(Ω),φ3(Ω) = R(Ω)},

where, R3
+ = {(S, I,R)∈ R3 : S≥ 0, I ≥ 0,R≥ 0}. Biologically, we assume that φi > 0 (i =

1,2,3).

In model (2.1), we consider the total population N(t) at time t, with the immigration of

susceptible population with a constant rate π. The parameters µ , d, and θ represent the

natural death rate, disease-induced death rate, and recovery rate, respectively. The term

f (S, I) = βS(t−ρ)I(t−ρ)
1+αS(t−ρ)+γI(t−ρ) represents the Beddington-DeAngelis type incidence rate with

time delay ρ . Here, β is the e�ective contact rate (or transmission rate) of susceptibles

with infectives, α is a measure of inhibition e�ect, such as preventive measures taken

by susceptible individuals, γ is a measure of inhibition e�ects taken by infectives, and

the time delay ρ > 0 represents the latent period of the disease. The incidence function

f (S, I) includes some special cases. For instance, if we set α = 0,γ = 0 then the incidence

rate is bilinear [51] and if α = 0 the incidence rate, describing saturated e�ects of the

prevalence of infectious diseases, is used in [75, 83]. The term g(I) = aI2

bI2+cI+1 in model

(2.1) is the saturated treatment rate, where a> 0 represents the treatment rate of infected

individuals (cure rate), b > 0 is the limitation rate in treatment availability and c≥ 0 is

the saturation constant in absence of inhibitory e�ect.

2.2.2 Basic properties of the model

The equations of the model (2.1) monitor populations. From the Proposition 2.1 in

Hattaf et al. [107] and Proposition 2.3. in Yang et al. [124], it can be shown that all state

variables of the model (2.1) are nonnegative. That is, (S, I,R) ∈ R3
+. Also, for ecological

reasons, we suppossed that all parameters π, µ , β , α , γ , d, θ , a, b are positive and c is

nonnegative.

Since N(t) = S(t)+ I(t)+R(t), the governing equations of model (2.1) can be rewritten
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as

dN
dt

= π−µN−dI (2.2)

≤ π−µN (2.3)

Lemma 2.2.1. All solutions of the model (2.1) starting in R3
+ are bounded and eventually enter

a compact attracting set

Φ = {(S, I,R) ∈ R3
+ : S(t)+ I(t)+R(t) = N(t)≤ π

µ
}.

Proof. Continuity of the right-hand side of the model (2.1) and its derivative assure the well-

posedness of the model for N(t) > 0. The invariant region for the existence of the solutions

can be determined as given below:

0 < liminf
t→∞

N(t)≤ limsup
t→∞

N(t)≤ π

µ
.

Since N(t) > 0 on [−ρ,0] by assumption, N(t) > 0 for all t ≥ 0. Therefore, with the help of

Eq. (2.3), it can be seen that for any finite time t, N(t) cannot blow up to infinity. The model

system is dissipative (solutions are bounded), and consequently, the solution exists globally

for all t > 0 in the invariant and compact set

Φ = {(S, I,R) ∈ R3
+ : S(t)+ I(t)+R(t) = N(t)≤ π

µ
}.

As N(t) approaches zero, S(t), I(t), and R(t) also approach zero. Thus, each of these terms

tend towards zero as N(t) does. Thus, it is reasonable to interpret these terms as zero when

N(t) = 0.

Remark 2.2.2. In this region Φ, basic results such as usual local existence, uniqueness and

continuation of solutions are valid for model (2.1). Hence, there exists a unique solution

(S(t), I(t),R(t)) of model (2.1) starting in the interior of Φ that exists on a maximal interval

[0,∞) if solutions remain bounded [22].

2.3 Equilibrium and stability analysis

From the model (2.1), we infer that, since R(t) does not appear in equations for dS
dt and

dI
dt , it is su�cient to analyze the behavior of solutions of (2.1) by the following system of
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DDEs:

dS
dt

= π−µS− βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)

dI
dt

=
βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)
− (µ +d +θ)I− aI2

bI2 + cI +1

(2.4)

with initial conditions φ = (φ1,φ2) of (2.4) are de�ned in the Banach space

C+ = {φ ∈C([−ρ,0],R2
+) : φ1(Ω) = S(Ω),φ2(Ω) = I(Ω)},

where, R2
+ = {(S, I) ∈ R2 : S≥ 0, I ≥ 0}, φi > 0 (i = 1,2).

Now, we obtain the equilibria of the system (2.4). There are only two types of physically,

and in addition biologically, relevant equilibria, namely,

(i) E0 (S0,0) = E0

(
π

µ
,0
)
, disease-free equilibrium (DFE).

(ii) Ee(S∗, I∗), positive or endemic equilibrium (EE), where S∗ and I∗ are given in Sec-

tion 2.3.2.

2.3.1 Disease free equilibrium and its stability

System (2.4) has a disease free equilibria of the form E0

(
π

µ
,0
)
(that is, there is no

infection present in the community and all individuals are susceptible) which is obtained

by setting right hand sides of the system (2.4) to zero. The characteristic equation of

the linearization of model (2.4) near the disease-free equilibrium E0

(
π

µ
,0
)
is given by

(µ +λ )

(
βπe−λρ

µ +απ
− (µ +d +θ)−λ

)
= 0. (2.5)

One of the roots of the Eq. (2.5) is given by λ1 =−µ and other roots can be obtained

from
βπe−λρ

µ +απ
− (µ +d +θ)−λ = 0.

The term βπ

(µ+απ)(µ+d+θ)e
−λρ at ρ = 0, is termed as the basic reproduction number R0.

Thus, the basic reproduction number for the system (2.4) is given by

R0 =
βπ

(µ +απ)(µ +d +θ)
.
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Analysis for R0 6= 1

Clearly, Eq. (2.5) has one negative root λ1 =−µ and other roots can be obtained from

the equation

λ +µ +d +θ − βπ

(µ +απ)
e−λρ = 0.

Let

f (λ ) = λ +µ +d +θ − βπ

(µ +απ)
e−λρ = λ +(µ +d +θ)

(
1−R0e−λρ

)
.

If R0 > 1 , it is readily seen that, for real λ

f (0) = λ +(µ +d +θ)(1−R0)< 0, lim
λ→∞

f (λ ) = +∞

Hence, f (λ ) = 0 and f ′(λ ) > 0. Therefore f (λ ) = 0 has a unique positive real root if

R0 > 1.

If R0 < 1, we assume that Reλ ≥ 0.

We notice that

Reλ =
βπe−(Reλ )ρ cos(Imλ )ρ

(µ +απ)
− (µ +d +θ)<

βπ

(µ +απ)
− (µ +d +θ)< 0,

which contradicts our assumption. Therefore if R0 < 1 then λ will be a root of Eq. (2.5)

with negative real part. The result can be written in form of the theorem, stated below.

Theorem 2.3.1. The disease free equilibrium E0 is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Analysis at R0 = 1 and ρ = 0

In this section, we analyze the behavior of system (2.4) when the basic reproduction

number R0 is equal to one and ρ = 0. We observe that the Jacobian matrix of system

(2.4) evaluated at R0 = 1 and bifurcation parameter β = β ∗= (µ+απ)(µ+d+θ)
π

has a simple

zero eigenvalue and another eigenvalue with negative real part. Since linearization is not

suitable to analyze the stability behaviour of equilibrium points at R0 = 1, therefore

center manifold theory [28] is used. For simplicity, let S = x1 and I = x2, then the system

(2.4) can be written as

dx1

dt
= π−µx1−

βx1x2

1+αx1 + γx2
≡ f1

dx2

dt
=

βx1x2

1+αx1 + γx2
− (µ +d +θ)x2−

ax2
2

x22 +bx2 + c
≡ f2

(2.6)

24



Let J denotes the Jacobian matrix evaluated at R0 = 1, and β = β ∗ then

J =

 −µ − β ∗π
(µ+απ)

0 0

 .
Let w = [w1, w2] and u = [u1, u2]

t be the left and right nullvectors of J corresponding to

the zero eigenvalue. Then, we have

w1 = 0, w2 = 1 and u1 =−
β ∗π

µ(µ +απ)
, u2 = 1.

The nonzero partial derivatives associated with the functions f1 and f2 of the system

(2.6) evaluated at R0 = 1 and β = β ∗ are

(
∂ 2 f2
∂x2

2

)
E0

=−2a− 2πµβγ

(µ+απ)2 ,
(

∂ 2 f2
∂x1∂x2

)
E0

=
(

∂ 2 f2
∂x2∂x1

)
E0

=− παβ µ

(µ+απ)2 +
β µ

µ+απ
and(

∂ 2 f2
∂x2∂β ∗

)
E0

= π

µ+απ
.

From Theorem 4.1 of Castillo-Chavez and Song [40], the bifurcation coe�cients a1 and

b1 are calculated as

a1 =
2

∑
k,i, j=1

wkuiu j

(
∂ 2 fk

∂xi∂x j

)
E0

=− 2β ∗π

(µ +απ)

[
− παβ ∗

(µ +απ)2 +
β ∗

µ +απ

]
−2a− 2µπβ ∗γ

(µ +αµ)2

=− 2β ∗πµ

µ +απ

(
β ∗+π(µ +απ)

(µ +απ)2

)
−2a < 0,

and

b1 =
2

∑
k,i=1

wkui

(
∂ 2 fk

∂xi∂β ∗

)
E0

= w2u2

(
∂ 2 f2

∂x2∂β ∗

)
E0

=
π

µ +απ
> 0.

Sign of a1 determines the nature of the bifurcation at R0 = 1. The local analysis of the

center manifold yields a parameter, a1, whose sign indicates the existence and stability of

a branch of endemic equilibria near the threshold R0 = 1. If a1 is negative, then a branch

of super-threshold endemic equilibria exists, and the bifurcation is supercritical. This

case is frequently alluded to as a forward bifurcation. Thus, with the help of Theorem

4.1(iv) of Castillo-Chavez and Song (2004), the following theorem is being concluded:

Theorem 2.3.2. The disease-free equilibrium (DFE) is locally asymptotically stable if R0 is

slightly less than one and if R0 is slightly greater than one, then the DFE is unstable, and there
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is a locally asymptotically stable positive equilibrium near the DFE. Hence the model system

(2.4) exhibits forward bifurcation at R0 = 1 for ρ = 0.

The bifurcation from the disease-free equilibrium at R0 = 1 is forward, which can be

observed from Fig. 2.2 for the parameter values listed in Table 2.1.
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Figure 2.2: Plot of I(t) versus R0.

2.3.2 Endemic equilibrium and its stability

In this section, we investigate the stability of the system (2.4) at the endemic equilib-

rium Ee(S∗, I∗).

Equating the second equation of the system (2.4) to zero, we get

βS∗I∗

1+αS∗+ γI∗
− (µ +d +θ)I∗− aI∗2

bI∗2 + cI∗+1
= 0. (2.7)

After solving Eq. (2.7), we get S∗ in terms of I∗ as follows:

S∗ =
(1+ γI∗)(p(bI∗2 + cI∗+1)+aI∗)

(β − pα)(bI∗2 +1)+ I∗ (c(β − pα)−aα)
, (2.8)

where,

p = µ +d +θ .

S∗ > 0 if

c(β − pα)−αa > 0. (2.9)

This condition also implies that

β − pα > 0. (2.10)
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Now, on adding the �rst and second equations of the system (2.4) and equate it to zero,

we get

π−µS∗− (µ +d +θ)I∗− aI∗2

bI∗2 + cI ∗+1
= 0. (2.11)

Substituting the value of S∗ from the Eq. (2.8) into the Eq. (2.11), we get the following

equation in I∗:

A0 +A1I∗+A2I∗2 +A3I∗3 +A4I∗4 +A5I∗5 = 0, (2.12)

where,

A0 = p(µ +πα)(1−R0) ,

A1 = a(µ +πα)+(β − pα)(p−2cπ)+ pµ (2c+ γ) ,

A2 = ac(µ +πα)+2pc(β − pα + γµ)+ pµ
(
2b+ c2)+a(β + γµ)

−
(
2α pa+π

(
2b+ c2)(β − pα)

)
,

A3 = ab(µ +πα)+ pc2
γµ +2bpµ (c+ γ)+(β − pα)(c(a+ pc)+2b(p− cπ))

−a2
α−ac(pα− γµ) ,

A4 = ab(β −2pα + γµ)+b(β − pα)(2pc−bπ)+bpµ (b+2cγ) ,

A5 = pb2(β −α p+ γµ).

With the help of Descartes' rule of signs [42], the Eq. (2.12) has a unique positive real

root I∗ if any one of the following holds:

(i) A5 > 0, A4 < 0, A3 < 0, A2 < 0, A1 < 0 and A0 < 0.

(ii) A5 > 0, A4 > 0, A3 < 0, A2 < 0, A1 < 0 and A0 < 0.

(iii) A5 > 0, A4 > 0, A3 > 0, A2 < 0, A1 < 0 and A0 < 0.

(iv) A5 > 0, A4 > 0, A3 > 0, A2 > 0, A1 < 0 and A0 < 0.

(v) A5 > 0, A4 > 0, A3 > 0, A2 > 0, A1 > 0 and A0 < 0.

(2.13)

After determining the value of I∗, we can determine the value of S∗ from Eq. (2.8). Thus,

there exists a unique positive endemic equilibrium Ee(S∗, I∗) if one of the conditions (2.13)

holds.

If conditions (2.13) are not satis�ed, then we obtain the following result:

Proposition 2.3.3. If R0 > 1, then there is either a unique or three or five positive endemic

equilibria if all equilibria are simple roots.
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Proof. Suppose R0 > 1. From Eq. (2.12), we have fifth degree polynomial in I∗:

F(I∗) = A0 +A1I∗+A2I∗2 +A3I∗3 +A4I∗4 +A5I∗5.

Leading coefficient of I∗ is A5 = pb2(β −α p+ γµ)> 0. Hence,

lim
I∗→∞

F(I∗) = +∞.

Also, note that F(0) = A0, and A0 < 0 if R0 > 1. F(I∗) is a continuous function on I∗, and by

the fundamental theorem of algebra, we know that this polynomial can have at most five real

roots.

We now analyze the local stability of endemic equilibrium Ee as follows.

The characteristic equation of the system (2.4) evaluated at Ee is a second degree

transcendental equation:

λ
2 + p0λ +q0 +(p1λ +q1)e−λρ = 0, (2.14)

where,

p0 = 2µ +d +θ +
acI∗2 +2aI∗

bI∗2 + cI∗+1
,

q0 = µ

(
µ +d +θ +

acI∗2 +2aI∗

bI∗2 + cI∗+1

)
,

p1 =
β

(1+αS∗+ γI∗)2 (I
∗ (1+ γI∗)−S∗ (1+αS∗)) ,

q1 =−
µβS∗(1+αS∗)

(1+αS∗+ γI∗)2 +
β I∗(1+ γI∗)

(1+αS∗+ γI∗)2

(
µ +d +θ +

acI∗2 +2aI∗

bI∗2 + cI∗+1

)
.

Theorem 2.3.4. At ρ = 0, Ee is locally asymptotically stable if S∗
I∗ ≤

1+γI∗
1+αS∗ is satisfied.

Proof. The characteristic equation for the endemic equilibrium Ee at ρ = 0 is given by

λ
2 + p0λ +q0 +(p1λ +q1) = 0.

It is easy to verify that if ac−aI∗2

(I∗2+bI∗+c)
2 ≥

βS∗(1+αS∗)
(1+αS∗+γI∗)2 is satisfied, then

p0 + p1 = 2µ +d +θ +
acI∗2 +2aI∗

(bI∗2 + cI∗+1)2 +
β

(1+αS∗+ γI∗)2 (I
∗ (1+ γI∗)−S∗ (1+αS∗))> 0,
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q0 +q1 = µ (µ +d +θ)+
aI∗ (2+ cI∗)

(bI∗2 + cI∗+1)2

(
µ +

β I∗ (1+ γI∗)

(1+αS∗+ γI∗)2

)
+

β

(1+αS∗+ γI∗)2

((d +θ) I∗ (1+ γI∗)+µ (I∗ (1+ γI∗)−S∗ (1+αS∗)))> 0.

Hence, by the Routh-Hurwitz criterion, it is concluded that the endemic equilibrium Ee of the

system (2.4) is locally asymptotically stable when ρ = 0.

Theorem 2.3.5. For ρ > 0, Ee is locally asymptotically stable if the conditions

µ (1+αS∗+ γI∗)2 ≥ β I∗ (1+ γI∗) and 2(µ +d +θ)I∗(1+ γI∗)≥ µS∗ (1+αS∗)

are satisfied simultaneously.

Proof. For ρ > 0, the characteristic equation evaluated at Ee is given by the Eq. (2.14) which

is

λ
2 + p0λ +q0 +(p1λ +q1)e−λρ = 0.

For ρ > 0, by applying Theorem 2.4 in Ruan and Wei [37], it follows that the characteristic

root of (2.14) must pass through the imaginary axis for the occurrence of instability for a fixed

value of time delay ρ . Assume that λ = iη ,η > 0 is the root of the characteristic Eq. (2.14).

Substituting λ = iη in Eq. (2.14), we obtain

(−η
2 +q0 + p1η sinηρ +q1 cosηρ)+ i(p0η + p1η cosηρ−q1 sinηρ) = 0. (2.15)

After separation of real and imaginary parts of Eq. (2.7), we get

p1η sinηρ +q1 cosηρ = η
2−q0, (2.16)

p1η cosηρ−q1 sinηρ =−η p0. (2.17)

On eliminating ρ by squaring and adding Eqs. (2.16) and (2.17), we obtain a biquadratic

polynomial in η as

η
4 +(p2

0−2q0− p2
1)η

2 +(q2
0−q2

1) = 0. (2.18)

Letting η2 = x. Then, Eq. (2.18) becomes

x2 +Ax+B = 0, (2.19)
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where,

A = p2
0−2q0− p2

1, B = q2
0−q2

1.

A =

(
2µ +d +θ +

acI∗2 +2aI∗

bI∗2 + cI∗+1

)2

−2µ

(
µ +d +θ +

acI∗2 +2aI∗

bI∗2 + cI∗+1

)
−

β 2

(1+αS∗+ γI∗)4 (I
∗ (1+ γI∗)−S∗ (1+αS∗))2

= (µ +d +θ)2 +2(µ +d +θ)
acI∗2 +2aI∗

bI∗2 + cI∗+1
+

(
acI∗2 +2aI∗

bI∗2 + cI∗+1

)2

+µ
2−(

β

(1+αS∗+ γI∗)2 (I
∗(1+ γI∗)−S∗(1+αS∗))

)2

,

B = q2
0−q2

1

=

(
µ

(
µ +d +θ +

acI∗2 +2aI∗

bI∗2 + cI∗+1

))2

−(
− µβS∗(1+αS∗)

(1+αS∗+ γI∗)2 +
β I∗(1+ γI∗)

(1+αS∗+ γI∗)2

(
µ +d +θ +

acI∗2 +2aI∗

bI∗2 + cI∗+1

))2

=

(
µ +d +θ +

acI∗2 +2aI∗

bI∗2 + cI∗+1

)2
(

µ
2− β 2I∗2 (1+ γI∗)2

(1+αS∗+ γI∗)4

)
+

2µβ 2S∗(1+αS∗)I∗(1+ γI∗)(acI∗2 +2aI∗)

(1+αS∗+ γI∗)4 (bI∗2 + cI∗+1)
+

µβ 2S∗(1+αS∗)
(1+αS∗+ γI∗)4 (2(µ +d +θ)I∗(1+ γI∗)−µS∗(1+αS∗)) .

A > 0 if and only if µ (1+αS∗+ γI∗)2 ≥ β (I∗ (1+ γI∗)−S∗ (1+αS∗)), and B > 0 if and

only if both the conditions µ (1+αS∗+ γI∗)2 ≥ β I∗ (1+ γI∗) and 2(µ +d +θ)I∗(1+ γI∗)≥

µS∗ (1+αS∗) are satisfied simultaneously.

Note that µ (1+αS∗+ γI∗)2 ≥ β I∗ (1+ γI∗) implies that

µ (1+αS∗+ γI∗)2 ≥ β (I∗ (1+ γI∗)−S∗ (1+αS∗)) .

According to the Routh-Hurwitz criterion, a contradiction arises with the assumption of insta-

bility, i.e., λ = iη . Thus, it can be concluded that the endemic equilibrium Ee of the system

(2.4) is locally asymptotically stable for ρ > 0.
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Hopf bifurcation analysis

If B = q2
0−q2

1 given in Eq. (2.19) is negative, then there is a unique positive η0 satis-

fying Eq. (2.19), i.e., there is single pair of purely imaginary roots ±iη0 to Eq. (2.14).

From Eqs. (2.16) and (2.17), ρn corresponding to η0 can be obtained as

ρn =
1

η0
arccos

(
η2

0 (q1− p0 p1)−q0q1

p2
1η2

0 +q2
1

)
+

2nπ

η0
, n = 0,1,2 . . . (2.20)

Endemic equilibrium Ee is stable for ρ < ρ0 if transversality condition holds, i.e.,
d
dt (Reλ )

∣∣∣
λ=iη0

6=

0.

On di�erentiating Eq. (2.14) with respect to ρ , we get

(
2λ + p0 + p1e−λρ − (p1λ +q1)ρe−λρ

) dλ

dρ
= λ (p1λ +q1)e−λρ . (2.21)

[
dλ

dρ

]−1

=
2λ + p0 + p1e−λρ − (p1λ +q1)ρe−λρ

λ (p1λ +q1)e−λρ

=
2λ + p0

λ (p1λ +q1)e−λρ
+

p1

λ (p1λ +q1)
− ρ

λ

=
2λ + p0

−λ (λ 2 + p0λ +q0)
+

p1

λ (p1λ +q1)
− ρ

λ
.

d
dρ

(Reλ )
∣∣∣
λ=iη0

= Re
(

dλ

dρ

)−1 ∣∣∣
λ=iη0

= Re
(

2iη0 + p0

−iη0(−η2
0 + ip0η0 +q0)

+
p1

−p1η02 + iq1η0
+

iρ
η0

)
=

1
η0

(
2η0(η

2
0 −q0)+ p2

0η0

(p0η0)2 +(η2
0 −q0)2 −

p2
1η0

(p1η0)2 +q2
1

)
=

2(η2
0 −q0)+ p2

0

(p0η0)2 +(η2
0 −q0)2 −

p2
1

(p1η0)2 +q2
1
. (2.22)

Now, on squaring and adding Eqs. (2.16) and (2.17), we get

(p1η0)
2 +q2

1 = (p0η0)
2 +(η2

0 −q0)
2
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So that Eq. (2.22) can be written as

d
dρ

(Reλ )
∣∣∣
λ=iη0

=
2η2

0 +(p2
0−2q0− p2

1)

p2
1η2

0 +q2
1

. (2.23)

Under the condition A = p2
0−2q0− p2

1 > 0, it can be seen that

d
dρ

(Reλ )
∣∣∣
λ=iη0

> 0.

Therefore, the transversality condition holds and Hopf bifurcation occurs at η = η0,

ρ = ρ0.

Summarizing the above analysis, we arrive at the following theorem.

Theorem 2.3.6. If condition q2
0−q2

1 < 0 holds, the endemic equilibrium Ee of the system (2.4)

is asymptotically stable for ρ ∈ [0,ρ0) and it undergoes Hopf bifurcation at ρ = ρ0.

2.4 Numerical simulation

Since it is essential to analyze the dynamical behavior of the model, therefore, in this

section, the system (2.4) is integrated numerically using the set of tested parameters

given in Table 2.1.

Table 2.1: List of parameters

Parameter Interpretation Value Reference

π Recruitment rate of susceptible 2 [125]

α Measure of inhibition taken by susceptibles 0.004 [125]

β Transmission rate 0.00924 Assumed

µ Natural death rate 0.05 [125]

d Disease-induced death rate 0.001 [125]

γ Measure of inhibition taken by infectives 0.002 [125]

θ Recovery rate 0.002 [125]

a Treatment rate of infected individuals/Cure rate 0.002 Assumed

b Limitation rate in treatment availability 0.0005 Assumed

c Saturation constant 0.0002 Assumed
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The computer simulations are performed for S and I for various values of ρ . The tra-

jectory of S and I with initial conditions S(0) = 33, I(0) = 5, approach to the endemic

equilibrium as shown in Fig. 2.3.
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Figure 2.3: Susceptible and infected population for various values of ρ .

Fig. 2.3 shows the e�ect of time delay on susceptible population and infective popula-

tion, respectively, for di�erent values of time delay ρ . It is shown that as the time delay

ρ increases, the number of susceptible starts decreasing, and the number of infectives

starts growing. Due to the interplay between the number of infectives and susceptibles,

infectives settle to their steady-state but never reach zero, which shows that the system

approaches endemic equilibrium Ee(9.8292,18.4177).

Figure 2.4: Behavior of infected population for various values of β at ρ = 1.

Fig. 2.4 shows the in�uence of transmission rate β on infected population for ρ = 1.

The higher the e�ective contact rate, the higher will indeed be the possibility of spreading
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the disease. In Fig. 2.4, we note that when the e�ective contact rate β is high, more

people will be infected, and when the e�ective contact rate β is low, then fewer people

are infected.
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Figure 2.5: Infectives I(t) versus treatment rate a.

Fig. 2.5 depicts the behavior of infected population I(t) with respect to cure (treatment)

rate a. From this �gure, it can be seen that the infected population is decreasing with

the increment in treatment rate a.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

2

4

6

8

10

12

Α

IH
tL

2.6.1: Infectives I(t) versus inhibition effect α .
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2.6.2: Infectives I(t) versus inhibition effect γ .

Figure 2.6: Effects of measure of inhibitions.

Fig. 2.6 shows the e�ect of measure of inhibitions taken by susceptible and infectives,

respectively. These �gures show that when the inhibition is less, more people are getting

infected, and when inhibition is more, fewer people are getting infected.
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I(t) with treatment rate

I(t) without treatment rate
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Figure 2.7: Infected population with and without saturated treatment rate at ρ = 1.

Fig. 2.7 shows the e�ect of saturated treatment rate on the infected individuals for

the time lag ρ = 1. The treatment is an imperative strategy to diminish the spread of

diseases. This �gure shows that the saturated treatment rate is reducing the infection.
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2.8.1: Plot of S(t) and I(t) with respect to time t.

2.8.2: I(t) versus S(t).

Figure 2.8: Behavior of susceptible and infected population for the time lag ρ = 12.

In Fig. 2.8.1, plot has been drawn for infected and susceptible population versus time t

for time lag ρ = 12. Fig. 2.8.2 is the phase plot between susceptible S(t) and infected I(t)

population which shows the limit cycle for time lag ρ = 12. It clear from Figs. 2.8.1 and

2.8.2 that Ee = (9.8292,18.4177) is the unique endemic equilibrium. According to the

algorithm given in Eq. (2.20) and Theorem 2.3.6, we compute that ρ0 = 12.5801, p2
0−

2q0− p2
1 = 0.0109139 > 0 and q2

0−q2
1 =−0.000150942 < 0. Clearly, from Fig. 2.8, it can
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be seen that when ρ = 12 < ρ0 = 12.5801 then the endemic equilibrium is asymptotically

stable.

2.5 Discussion

This chapter formulates and analyzes a nonlinear time-delayed SIR mathematical

model with Beddington- DeAngelis type incidence rate and a saturated type treatment

rate. We assume that the time lag is present due to the latency period of pathogens. The

mathematical analysis shows that the model exhibits two equilibria: the disease-free and

endemic equilibrium. The local stability of the disease-free equilibrium is determined by

the basic reproduction number R0. The disease-free equilibrium has been shown to be

stable for R0 < 1, i.e., disease dies out for R0 < 1 and for R0 > 1, it becomes unstable

and the endemic equilibrium exists. We also discuss the stability of disease-free equilib-

rium at R0 = 1 using the center manifold theory. We observe that at R0 = 1, the model

exhibits forward bifurcation and changes its stability as R0 crosses one. The stability

analysis demonstrates that endemic equilibrium is locally asymptotically stable under

certain conditions for the time lag ρ ≥ 0 as stated in Theorem 2.3.4 and Theorem 2.3.5.

Further, system (2.4) has been simulated numerically for the e�ect of time delay ρ and it

is observed that as delay increases, the infected population also increases. Furthermore,

we simulate the model numerically to see the e�ects of transmission rate, inhibitions,

and treatment rate. The graphs show that the infection can be eradicated from society if

the treatment given to the population is managed according to the saturated treatment

rate. Also, analytical and numerical results show that oscillatory behavior of the infected

population would also occur, indicating the existence of a Hopf bifurcation.
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Chapter 3

Stability behavior of a time delayed

nonlinear SIR epidemic transmission

model with Beddington-DeAngelis

incidence and Holling type II treatment

rates

In this chapter, we explore a time-delayed SIR mathematical model along with non-

linear incidence rate and Holling functional type II treatment rate for disease transmis-

sion. The mathematical study of the model demonstrates that the model exhibits two

equilibria, to be speci�c, disease-free equilibrium (DFE) and endemic equilibrium (EE).

We obtain the basic reproduction number R0 and investigate that the model is locally

asymptotically stable at DFE if R0 < 1 and unstable if R0 > 1 for the time lag ρ > 0.

The stability of DFE at R0 = 1 is also investigated for the time lag ρ ≥ 0, and we show

that for ρ > 0, the DFE is linearly neutrally stable whereas, for ρ = 0, the model ex-

hibits backward bifurcation whereby the DFE will coexist with two endemic equilibria,

when R0 < 1. Also, we investigate the stability of the model at the endemic equilibrium

and �nd that oscillatory solution may appear via Hopf bifurcation, taking the delay as

a bifurcation parameter. Further, the global stability of the model equilibria has also

been investigated. Finally, numerical simulations have been presented to illustrate the

analytical studies.
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3.1 Introduction

A major goal of the epidemiological study is to develop an understanding of the trans-

mission of epidemics and interventions that can be taken to prevent and control the

spread of infectious diseases. For the most part, an ideal condition for the elimination of

infection is for the basic reproduction number (BRN) [33] to be less than one whereby

the disease-free equilibrium (DFE) is stable; the unique endemic equilibrium (EE) will

be asymptotically stable as far as when the BRN is greater than one, implies that the

disease-free equilibrium will be unstable. However, many authors have exhibited that it

is feasible for the disease-free equilibrium to exists together with two endemic equilibria

even when the BRN is less than one, leading to the phenomenon of backward bifurca-

tion [91]. More accurately, the phenomenon where the disease-free equilibrium loses its

stability and a stable endemic equilibrium appears as R0 increases through unity is the

case of forward bifurcation, whereas the phenomenon where a stable endemic equilib-

rium coexists with a stable DFE when R0 < 1 is the case of backward bifurcation. It

demonstrates that for disease control and destruction, relying on the BRN to be less

than one is only necessary but no longer su�cient. Therefore, the occurrence of back-

ward bifurcation has important public health implications. Many authors have studied

epidemic models characterized by backward bifurcation for both generic and speci�c dis-

eases [30, 38,40,47].

Inhibitions are e�ective measures to control the spread of infectious diseases but to

control the spread of further infection and eliminate the infection from society, there

is a need for e�ective treatment. The treatment rate has a substantial role in reduc-

ing complications and preventing the transmission of infectious diseases to others. The

appropriate and timely treatment strategy can signi�cantly lessen the e�ect of disease

on society. The basic idea behind any treatment is to cure a disease and to control its

spread. In 2004, Wang and Ruan [39] considered a SIR epidemic model with a constant

treatment rate (i.e., the recovery from infected subpopulation per unit time) as given

below:

h(I) =

 b, I > 0

0, I = 0
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where b is a positive constant and I denotes the number of infected individuals. They in-

vestigated the stability of the model and proposed that their model could exhibit various

bifurcations. This kind of treatment rate is appropriate for a small number of infectives

and su�cient treatment resources but inappropriate when the number of infected indi-

viduals is large and treatment resources are limited. Therefore, Zhang and Liu [55] pre-

sented the improved continuous, di�erentiable nonlinear treatment rate function, which

saturates at its maximum value. This saturated treatment rate is known as the Holling

type II treatment rate [49]. For an outbreak of epidemic disease, the treatment capacity

of Holling type II is initially very slow, which develops gradually with improved treat-

ment facilities. Further, Holling type II treatment rate refers to the condition that when

there is a large number of infected people, then the treatment capacity reaches its max-

imum because of limited treatment facilities, which mimic the more realistic phenomena.

Delay di�erential equation reveals more complex dynamical behavior than an ordinary

di�erential equation. The time delay is an in�uential parameter in the dynamical be-

havior of infectious diseases, and it can change the behavior of the dynamical system.

This chapter studies the e�ect of the latent period on the SIR model and analyzes the

transmission of epidemics into the susceptible host with the impact of inhibitions taken

by both susceptible and infected individuals. We aim to study the e�ect of treatment

rate also. We have considered the limited availability of resources, which allows us to

reach more realistic phenomena. For this, we have considered a SIR epidemic model

along with Beddington DeAngelis functional type incidence rate by incorporating time

delay as latent period and Holling functional type II treatment rate. We derive the

basic reproduction number for the proposed model and study the dynamical behavior

of the model through stability analysis. We give a precise indication of the bifurcation

phenomenon using center manifold theory, ensuring that either forward or backward bi-

furcation occurs. We also discuss the Hopf bifurcation near the endemic equilibrium by

considering time delay as a bifurcation parameter.

3.2 Mathematical model

The fundamental approach in studying epidemic models is to divide the total popu-

lation into mutually exclusive compartments according to epidemic status. We assume

that the total size of the population N is constant. Therefore, the total constant popu-
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lation is divided into three disjoint compartments S(t), I(t), and R(t), where S(t), I(t),

and R(t) denotes the size of compartment of susceptible, infected, and recovered at time

t, respectively. We assume that each population of SIR is well mixed and interacts ho-

mogeneously with each other [137]. That is, N ≡ S(t)+ I(t)+R(t) which means that N

is a �xed population and S(t), I(t) and R(t) may vary at time t.

The model we present is under the framework of the following system of non-linear delay

di�erential equations:

dS
dt

= A−ϑS− βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)
,

dI
dt

=
βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)
− (ϑ +d +ζ )I− aI

1+bI
,

dR
dt

=
aI

1+bI
+ζ I−ϑR.

(3.1)

The model (3.1) is considered with the following initial conditions:

S(θ) = φ1(θ), I(θ) = φ2(θ), R(θ) = φ3(θ) φi(θ)≥ 0, θ ∈ [−ρ,0], φi(θ)> 0 (i = 1,2,3)

(3.2)

where (φ1(θ),φ2(θ),φ3(θ)) ∈C([−ρ,0],R3
+). Here, C denotes the Banach space of con-

tinuous functions mapping the interval [−ρ,0] into R3
+, and ρ > 0 represents the latent

period.

The description of the parameters used in the model (3.1) is as follows: A represents

the recruitment rate of the susceptible population by birth or immigration. ϑ and d are

the natural death rate and disease-induced death rate, respectively. ζ is the recovery

rate of infectives. The term βS(t−ρ)I(t−ρ)
1+αS(t−ρ)+γI(t−ρ) describes the Beddington- DeAngelis type

nonlinear incidence rate, where β is the force of infection, α is the measure of inhibitions

taken by susceptibles, i.e., social awareness among the susceptibles, and γ is the measure

of inhibition taken by infected individuals, i.e., the magnitude of interference among the

infectives. This incidence rate represents the rate at time (t−ρ) at which a susceptible

individual leaves the susceptible compartment and enters the infectious compartment at

time t. The latent period means that the force of infection at present is determined by

the number of infectives in the past. The term h(I) = aI
(1+bI) is the Holling functional

type II treatment term, where a denotes the cure rate of infectives and b denotes the

limitation in the availability of resources.
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3.3 Basic properties

Under the assumption that the population size N is constant, the model (3.1) may be

reduced to a two-dimensional system for analysis purposes only. The equation for R(t) is

traditionally omitted; it is easy to see that under the assumption of constant population

size, this equation is decoupled from the �rst and second equations of the model (3.1).

The condition N = S+ I +R = constant may be used to �nd R [88, 137]. In this manner,

it is equivalent to study the following reduced system:

dS
dt

= A−ϑS− βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)
, (3.3)

dI
dt

=
βS(t−ρ)I(t−ρ)

1+αS(t−ρ)+ γI(t−ρ)
− (ϑ +d +ζ )I− aI

1+bI
(3.4)

with initial conditions

S(θ) = φ1(θ), I(θ) = φ2(θ), φi(θ)≥ 0, θ ∈ [−ρ,0], φi(θ)> 0 (i = 1,2) (3.5)

where, (φ1(θ),φ2(θ)) ∈C([−ρ,0],R2
+). Here, C denotes the Banach space of continuous

functions mapping the interval [−ρ,0] into R2
+.

We assume that Φ(S(t), I(t)) = βS(t)I(t)
1+αS(t)+γI(t) and h(I(t)) = aI(t)

1+bI(t) are always positive, con-

tinuously di�erentiable, and monotonically increasing for all S, I > 0, i.e., the following

postulates are satis�ed:

P1. Φ(S(t), I(t))> 0, Φ′S(S(t), I(t))> 0, Φ′I(S(t), I(t))> 0 for S(t)> 0 and I(t)> 0.

P2. Φ(S(t),0) = Φ(0, I(t)) = 0, Φ′S(S(t),0) = 0, Φ′I(S(t),0)> 0 for S(t)> 0 and I(t)> 0.

P3. h(0) = 0, h′(0)> 0 for I(t)≥ 0.

For biological reasons, we consider that all the parameters of the system (3.3)�(3.4) are

positive, i.e., A, ϑ , β , α, d, γ, ζ , a, b > 0. The equations of the system (3.3)�(3.4)

monitor populations, therefore, it is essential to prove the positivity of the state variables,

i.e., (S, I) ∈ R2
+.

Lemma 3.3.1. Any solution of system (3.3)–(3.4) with φi(θ)> 0, θ ∈ [−ρ,0] remains positive

whenever it exists and bounded in the region

D = {(S, I) ∈ R2
+ : S(t)+ I(t)≤ A

ϑ
}.
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Proof. Note that

dS
dt

+
dI
dt

= A−ϑS− (ϑ +d +ζ )I− aI
1+bI

≤ A−ϑ(S+ I). (3.6)

and so,

lim
t→∞

(S+ I)≤ A
ϑ
. (3.7)

It follows that the system is point dissipative. Without loss of generality, we assume that

S(t)+ I(t) ≤ 2A
ϑ

for all t ≥ −ρ . A consequence of this is that we may assume I is bounded

above, which in turn implies dS
dt is positive for small S, and so S is positive for t > 0 [122].

We now prove the positivity of I(t). Using the variation of constants formula and applying

step by step integration method, for 0 < t ≤ ρ , we integrate the equation (3.4) from 0 to t , we

get

I(t) = I(0) · e(ϑ+d+ζ ) · e
∫ t

0 f (S(ω−ρ),I(ω−ρ),I(ω))dω . (3.8)

We see that I(t) > 0 for all ρ ≤ t ≤ 2ρ . Proceeding in the same way, this process will carry

on. Hence, it is proved that I(t)> 0 for all t > 0.

From (3.7), it follows that (S, I) is bounded in the region

D = {(S, I) ∈ R2
+ : S(t)+ I(t)≤ A

ϑ
}.

Hence, we state the following lemma:

Lemma 3.3.2. The solutions (S(t), I(t)) of the system (3.3)–(3.4) with initial conditions (3.5)

uniquely exists in the region

D = {(S, I) ∈ R2
+ : S(t)+ I(t)≤ A

ϑ
}.

Proof. We already have proved the positivity and the boundedness of solution (S(t), I(t)).

Now, we will prove the existence and uniqueness of this solution. We notice that the right-

hand of the model (3.3)–(3.4) is completely continuous and locally Lipschitzian on D. Then,

it follows that the solution of model (3.3)–(3.4) exists and is unique. This completes the proof

of Lemma 3.3.2.
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3.4 Equilibria and stability analysis

In this section, we show the existence of the equilibria of the system (3.3)�(3.4) and

investigate the local and global stability behavior of the obtained equilibria. We obtain

the equilibrium points of the time-delayed system by setting the right-hand side terms

of the system (3.3)�(3.4) to zero since equilibrium solutions of a system with time delays

are equivalent to the corresponding system with zero delay [109].

3.4.1 The disease-free equilibrium (DFE) and its analysis

The equilibria are acquired by equating the rate of change of all the compartments to

zero. Consequently, we see that the system (3.3)�(3.4) has a unique DFE of the form

E0
( A

ϑ
,0
)
.

The characteristic equation of the system (3.3)�(3.4), evaluated at E0 is as follows:

(ϑ +λ )

(
βA

ϑ +αA
e−λρ −ϑ −d−ζ −a−λ

)
= 0. (3.9)

Eq. (3.9) has one negative real root λ1 =−ϑ and other roots are the solutions of

βA
ϑ +αA

e−λρ −ϑ −d−ζ −a−λ = 0. (3.10)

The term βAe−λρ

(ϑ+αA)(ϑ+d+ζ+a) at ρ = 0, is termed as the basic reproduction number. Hence,

the basic reproduction number for system (3.3) is

R0 =
βA

(ϑ +αA)(ϑ +d +ζ +a)
.

Analysis for R0 6= 1

As mentioned above, Eq. (3.9) has one negative real root λ1 = −ϑ and other roots

satisfy the equation

ζ (λ ) := λ +ϑ +d +ζ +a− βA
ϑ +αA

e−λρ = 0. (3.11)

I. Assuming that R0 > 1, then

ζ (0) = ϑ +d +ζ +a− βA
ϑ +αA

< 0.
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Therefore, ζ (0) < 0. Since limλ→∞ ζ (λ ) = +∞, there exists at least one positive

real root of (3.11) if R0 > 1.

II. Let be R0 < 1.

Our goal is to prove that the characteristic roots cannot reach the imaginary axis

for any values of the parameters. It means that for any values of the parameters

and all delays ρ , it happens that Reλ < 0. On the contrary, suppose that Reλ ≥ 0.

Note that

Reλ =
βA

ϑ +αA
e−Reλρ cos(Imλ )ρ−ϑ −d−ζ −a <

βA
ϑ +αA

−ϑ −d−ζ −a < 0.

a contradiction to our assumption. Hence, if R0 < 1 then all the roots of Eq. (3.11)

must have the negative real part. Using the Routh � Hurwitz criterion, we have

the following result.

Theorem 3.4.1. The DFE E0 is locally asymptotically stable if R0 < 1 and unstable at R0 > 1

for time lag ρ ≥ 0.

Analysis for R0 = 1

We analysis the system (3.3)�(3.4) at R0 = 1 for ρ > 0 and ρ = 0 separately.

(i) ρρρ >>> 000 ::: If R0 = 1, then λ = 0 is a simple characteristic root of Eq. (3.11). Let

λ = α + ιω any of the other solutions, then (3.11) turns into:

α + ιω +ϑ +d +ζ +a− βA
ϑ +αA

e−(α+ιω)ρ = 0. (3.12)

Applying Euler's formula and parting real and imaginary parts, we can write

α +ϑ +d +ζ +a =
βA

ϑ +αA
cos(ωρ)e−αρ , (3.13)

ω =− βA
ϑ +αA

e−αρ sin(ωρ). (3.14)

Observing that R0 = 1 implies βA = (ϑ +αA)(ϑ +d+ζ +a). Moreover, if there ex-

ist roots satisfying both Eqs. (3.13) and (3.14), then they also satisfy the equation

obtained by squaring and adding them member to member, we obtain

(α +ϑ +d +ζ +a)2 +ω
2 = (ϑ +d +ζ +a)2e−2αρ . (3.15)
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For Eq. (3.15) to be veri�ed we must have α ≤ 0. Therefore, DFE E0 is linearly

neutrally stable.

(ii) ρρρ === 000 ::: Note that the system (3.3)�(3.4) evaluated at R0 = 1 and bifurcation pa-

rameter β = β ∗ = (ϑ+αA)(ϑ+d+ζ+a)
A has a simple zero (null) eigenvalue and other

eigenvalue is real and negative. Hence, when R0 = 1, the DFE E0 is a non-hyperbolic

equilibrium. To investigate the stability of DFE at R0 = 1, we use the bifurcation

theory approach based on the center manifold theory [14]. For this, we rede�ne

S = x1 and I = x2 then the system (3.3)�(3.4) can be rewritten as

dx1

dt
= A−ϑx1−

βx1x2

1+αx1 + γx2
, (3.16)

dx2

dt
=

βx1x2

1+αx1 + γx2
− (ϑ +d +ζ )x2−

ax2

1+bx2
(3.17)

Let J(E0,β
∗) denotes the Jacobian matrix of the system (3.16)-(3.17) evaluated at

R0 = 1, and β = β ∗. Then

J(E0,β
∗) =

 −ϑ − β ∗A
(ϑ+αA)

0 0

 .
The left eigenvector u = [u1,u2] of the Jacobian matrix J(E0,β

∗) is given by u ·

J(E0,β
∗). We obtain

u1 = 0, u2 = 1.

The right eigenvector w = (w1, w2)
T of the Jacobian matrix J(E0,β

∗) is given by

is given by J(E0,β
∗) ·w. We obtain

w1 =−
β ∗A

ϑ(ϑ +αA)
, w2 = 1.

Let fi, i = 1,2 denotes the right-hand side of the system (3.16)�(3.17). It can be

checked that:(
∂ 2 f2

∂x1∂x2

)
E0
= β ∗ϑ 2

(Aα+ϑ)2 ,
(

∂ 2 f2
∂x2∂x1

)
E0
= β ∗ϑ 2

(Aα+ϑ)2 ,
(

∂ 2 f2
∂x2

2

)
E0

= 2ab− 2Aβ ∗γϑ

(Aα+ϑ)2 ,
(

∂ 2 f2
∂x2∂β ∗

)
E0
=

A
Aα+ϑ

.

Then, by [40], we obtain the bifurcation constants a1 and b1 as

a1 =
2

∑
k,i, j=1

ukwiw j

(
∂ 2 fk

∂xi∂x j

)
E0
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=
2(ab(Aα +ϑ)3−Aβ ∗ϑ(β ∗+ γ(Aα +ϑ)))

(A α +ϑ)3 ,

b1 =
2

∑
k,i=1

ukwi

(
∂ 2 fk

∂xi∂β ∗

)
E0

=
A

Aα +ϑ
.

It can be seen that b1 is always positive. Therefore, by Theorem 4.1 of Castillo-

Chavez and Song [40] the local dynamics of the system (3.16)�(3.17) depends on

the sign of the bifurcation constant a1. Evaluating a1 at bifurcation constant β ∗,

we get

a1 =−
2(ϑa2 +(−Ab(Aα +ϑ)+ϑ(2d +Aγ +2(ζ +ϑ)))a+ϑ(d +ζ +ϑ)(d +Aγ +ζ +ϑ))

A(Aα +ϑ)
,

=− g(a)
A(Aα +ϑ)

,

where,

g(a) = ϑa2 +(ϑ(2d +Aγ +2(ζ +ϑ))−Ab(Aα +ϑ))a+ϑ(d +ζ +ϑ)(d +Aγ +ζ +ϑ)

= A1a2 +A2a+A3,

(3.18)

with

A1 = ϑ ,

A2 = ϑ(2d +Aγ +2(ζ +ϑ))−Ab(Aα +ϑ),

= ϑ(A(−b+ γ)+2(d +ζ +ϑ))−A2bα,

A3 = ϑ(d +ζ +ϑ)(d +Aγ +ζ +ϑ).

It can be seen that A1 and A3 are always positive. Let D denotes the discriminant

of the quadratic g(a) given in the Eq. (3.18). We obtain that

D = A2
2−4A1A3

= A2
γ

2
ϑ

2 +Ab(Aα +ϑ)(A2bα +ϑ(A(b−2γ)−4(d +ζ +ϑ))).
(3.19)

Let a∗1 and a∗2 be two positive roots of the quadratic Eq. (3.18), given by

a∗1 =
−A2−

√
D

2A1
, and a∗2 =

−A2 +
√

D
2A1

.
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With the help of Theorem 4.1 [40], it can be concluded that if g(a) > 0, a for-

ward bifurcation occurs, whereas if g(a) < 0, the system (3.16)�(3.17) exhibits a

backward bifurcation.

We discuss these two cases separately.

1. Backward bifurcation

The system (3.16)�(3.17) exhibits a backward bifurcation when g(a)< 0. The

existence of a backward bifurcation implies a range that shows the region of

coexistence of DFE and two endemic equilibrium: a smaller endemic equi-

librium (i.e., there is less number of infectives) and a larger endemic equi-

librium (i.e., there is a large number of infectives). In this case, the smaller

endemic equilibrium is unstable, whereas the larger endemic equilibrium is

stable. Thus, the occurrence of backward bifurcation shows that R0 less than

unity does not con�rm the eradication of infection. Therefore, we now �nd

the range of a for which backward bifurcation occurs.

Now, g(a)< 0 if and only if the discriminant D > 0, A2 < 0, and a∗1 < a < a∗2.

Thus the conditions, obtained for the occurrence of backward bifurcation are

stated as below: 
A2 < 0,

D > 0,

a∗1 < a < a∗2.

(3.20)

2. Forward bifurcation

The presence of forward bifurcation con�rms the eradication of the disease

when R0 < 1. It shows that the DFE is stable when R0 < 1 and if R0 crosses

unity, then the model admits a unique stable endemic equilibrium. From

this analysis, we will be able to know that if there is a stable coexistence

equilibrium bifurcating from E0 and E0 changes its stability from stable to

unstable. This behavior is known as forward bifurcation. Therefore, it is very

important to �nd the range for which forward bifurcation occurs. We see that

the system (3.16)�(3.17) exhibits a forward bifurcation if g(a)> 0. g(a)> 0 if

either A2 > 0 or D > 0, A2 < 0, and a < a∗1 or a > a∗2. These cases are described

below: {
A2 > 0 or, b <

(2dϑ +Aγϑ +2ζ ϑ +2ϑ 2)

A(Aα +ϑ)
. (3.21)
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or
A2 < 0,

D > 0,

a < a∗1 or a > a∗2.

(3.22)

These bifurcations are illustrated in Figs. (3.1.1), and (3.1.2). We consider the

parameter values A= 5, α = 1, ϑ = 0.05, d = 0.001, γ = 0.01, ζ = 0.002, b= 0.002.

Most of the parameter values are taken from [125]. At these values of parameters,

we obtain that D = 0.0420559 and A2 =−0.0427. According to (3.20), we have a

backward bifurcation at β = β ∗, for a∗1 = 0.00644085 < a < 0.847559 = a∗2. Setting

a = 0.8, the system (3.16)-(3.17) exhibits a backward bifurcation as shown in Fig.

(3.1.1). A forward bifurcation occurs by choosing a < a∗1 or a > a∗2, as stated in

(3.22). Setting a = 0.005 < a∗1 = 0.00644085, we see the occurrence of forward

bifurcation as shown in Fig. (3.1.2).
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3.1.1: Backward bifurcation.
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3.1.2: Forward bifurcation.

Figure 3.1: Bifurcation diagrams in the plane (R0, I).

Now, in order to satisfy inequality (3.21), we use the parameter A = 5, α =

0.004, γ = 0.01, ϑ = 0.05, d = 0.001, ζ = 0.002, b = 0.002, a = 0.005. At these pa-

rameter values, we see that the inequality (3.21), b = 0.002 < (2dϑ+Aγϑ+2ζ ϑ+2ϑ 2)
A(Aα+ϑ) =

0.0222857 is satis�ed and forward bifurcation occurs as shown in Fig. (3.2).
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Figure 3.2: Forward bifurcation diagram in the plane (R0, I), when the inequality (3.21) holds.

Theorem 3.4.2. The disease-free equilibrium E0 =
( A

ϑ
,0
)

of the system (3.3)–(3.4) at R0 = 1

is linearly neutrally stable for ρ > 0.

Theorem 3.4.3. When R0 = 1, then the system (3.16)–(3.17) exhibits backward (forward)

bifurcation at disease-free equilibrium E0 if and only if g(a)< 0 (> 0).

Remark 3.4.4. The theorem above states that at ρ = 0 and for values of R0 greater than 1

but close to 1, the system admits a unique infected equilibrium, which is locally asymptotically

stable.

3.4.2 Endemic equilibrium and its stability

To investigate the stability of the system (3.3)�(3.4) around the endemic equilibrium

Ee(S∗, I∗), we equate the second equation of the system (3.3)�(3.4) to zero:

βS∗I∗

1+αS∗+ γI∗
− (ϑ +d +ζ )I∗− aI∗

1+bI∗
= 0. (3.23)

After solving Eq. (3.23), we get S∗ as follows

S∗ =
(1+ γI∗)(a+(1+bI∗)p)

(β −αa−α p)+bI∗(β −α p)
, p = ϑ +d +ζ . (3.24)

We see that S∗ > 0 if and only if

β −αa−α p > 0, i.e., β −α p > αa > 0. (3.25)
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Plug in the value of S∗ from Eq. (3.24), into Eq. (3.3), we get the cubic equation in I∗

as follows

H0 +H1I∗+H2I∗2 +H3I∗3 = 0, (3.26)

where,

H0 = (ϑ +αA)(ϑ +d +ζ +a)(1−R0),

H1 =−a2
α− (d +ζ +ϑ)(−β −2bϑ − γϑ +α(d +ζ +ϑ))+a(Abα +β +bϑ + γϑ−

2α(d +ζ +ϑ))+2Ab(−β +α(d +ζ +ϑ)),

H2 = b(−(d +ζ +ϑ)(−2β −bϑ −2γϑ +2α(d +ζ +ϑ)+a(β + γϑ −2α(d +ζ +ϑ)))+

Ab(−β +α(d +ζ +ϑ)),

H3 = b2(d +ζ +ϑ)(γϑ +β −α(ϑ +d +ζ )).

(3.27)

Note that H3 > 0 according to the condition given in Eq. (3.25).

Theorem 3.4.5. If R0 > 1, then there is either a unique or three positive endemic equilibria if

all equilibria are simple roots.

Proof. Suppose that R0 > 1. From (3.27), it follows that H0 is negative. From Eq. (3.26), we

have a third-degree polynomial in I∗:

H0 +H1I∗+H2I∗2 +H3I∗3 = 0.

Since H3 is positive and H0 is negative, we have the following possibilities of signs of H1 and

H2:

(i) H1 > 0, and H2 < 0,

(ii) H1 < 0, and H2 > 0,

(iii) H1 > 0, and H2 > 0,

(iv) H1 < 0, and H2 < 0.

(3.28)

Using Descartes’ rule of signs [42], it follows that Eq. (3.26) has either three positive roots or

a unique positive root. Hence the proof.

To analyze the local stability of endemic equilibrium Ee, we obtain the characteristic
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equation of the system (3.3)�(3.4) at Ee as follows:

λ
2 + p0λ +q0 +(p1λ +q1)e−λρ = 0, (3.29)

where,

p0 = 2ϑ +d +ζ +
a

(bI∗+1)2 ,

q0 = ϑ (ϑ +d +ζ )+
aϑ

(bI∗+1)2 ,

p1 =
β (−S∗(1+S∗α)+ I∗(1+ I∗γ))

(1+S∗α + I∗γ)2 ,

q1 =
β (aI∗(1+ I∗γ)+(1+bI∗)2(I∗(1+ I∗γ)(d +ζ )+(−S∗(1+S∗α)+ I∗(1+ I∗γ))ϑ))

(bI∗+1)2(1+S∗α + yγ)2 .

Theorem 3.4.6. At ρ = 0, Ee is locally asymptotically stable if p0 +q0 > 0, and p1 +q1 > 0.

Proof. The characteristic equation of the system (3.3)–(3.4) evaluated at Ee and ρ = 0 is

λ
2 +(p0 + p1)λ +(q0 +q1) = 0. (3.30)

Using the Routh-Hurwitz criterion, it can be said that the endemic equilibrium Ee of the system

(3.3)–(3.4) is locally asymptotically stable when ρ = 0 if p0 + p1 > 0 and p1 + q1 > 0 are

satisfied simultaneuously.

Theorem 3.4.7. For ρ > 0, Ee is locally asymptotically stable if both p2
0−2q0− p2

1 > 0 and

q2
0−q2

1 > 0 are satisfied simultaneuously.

Proof. For ρ > 0, if instability occurs for a specific value of the time delay ρ , then a charac-

teristic root of (3.29) must cross the imaginary axis [131].

Assume that λ = ιξ , ξ > 0 is a root of the characteristic Eq. (3.29). Substituting λ = ιξ into

equation (3.29), we get

(−ξ
2 +q0 + p1ξ sinξ ρ +q1 cosξ ρ)+ ι(p0ξ + p1ξ cosξ ρ−q1 cosξ ρ) = 0. (3.31)

On separating real and imaginary part of the Eq. (3.31), we get:

p1ξ sinξ ρ +q1 cosξ ρ = ξ
2−q0, (3.32)

p1ξ cosξ ρ−q1 cosξ ρ =−p0ξ . (3.33)
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Eliminating ρ by squaring and adding Eqs. (3.32) and (3.33), we obtain a polynomial in ξ as

follows

ξ
4 +(p2

0−2q0− p2
1)ξ

2 +(q2
0−q2

1) = 0. (3.34)

Letting ξ 2 = x, p2
0−2q0− p2

1 = A, and q2
0−q2

1 = B, Eq. (3.34) becomes

x2 +Ax+B = 0. (3.35)

Using the Routh – Hurwitz Criterion, it can be observed that, the Eq. (3.35) has roots with

negative real part, if A> 0 and B> 0 are satisfied simultaneously. It contradicts the assumption

that Eq. (3.29) has a root λ = ιξ . Hence, the endemic equilibrium Ee of the system (3.3)–(3.4)

is locally asymptotically stable for ρ > 0 if p2
0− 2q0− p2

1 > 0 and q2
0− q2

1 > 0 are satisfied

simultaneuously.

Hopf-bifurcation

If q2
0−q2

1 < 0, then there is a unique positive ω0 satisfying the Eq. (3.35), i.e., there is

a single pair of purely imaginary roots ±ιω0 to Eq. (3.29).

Using Eqs. (3.32) and (3.33), we obtain ρk corresponding to ω0

ρk =
1

ω0
arccos

(
ω2

0 (q1− p0 p1)−q0q1

p2
1ω2

0 +q2
1

)
+

2kπ

ω0
, k = 0,1,2 . . . (3.36)

For ρ < ρ0, the endemic equilibrium E0 is stable if transversality condition holds, That

is,

d
dt (Reλ )

∣∣∣
λ=iω0

6= 0.

Di�erentiating Eq. (3.29) with respect to ρ , we get

(
2λ + p0 + p1e−λρ − (p1λ +q1)ρe−λρ

) dλ

dρ
= λ (p1λ +q1)e−λρ . (3.37)

[
dλ

dρ

]−1

=
2λ + p0 + p1e−λρ − (p1λ +q1)ρe−λρ

λ (p1λ +q1)e−λρ

=
2λ + p0

λ (p1λ +q1)e−λρ
+

p1

λ (p1λ +q1)
− ρ

λ

=
2λ + p0

−λ (λ 2 + p0λ +q0)
+

p1

λ (p1λ +q1)
− ρ

λ
.
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d
dρ

(Reλ )
∣∣∣
λ=ιω0

= Re
(

dλ

dρ

)−1 ∣∣∣
λ=ιω0

= Re
(

2ιω0 + p0

−ιω0(−ω2
0 + ι p0ω0 +q0)

+
p1

−p1ω02 + ιq1ω0
+

ιρ

ω0

)
=

1
ω0

(
2ω0(ω

2
0 −q0)+ p2

0ω0

(p0ω0)2 +(ω2
0 −q0)2 −

p2
1ω0

(p1ω0)2 +q2
1

)
=

2(ω2
0 −q0)+ p2

0

(p0ω0)2 +(ω2
0 −q0)2 −

p2
1

(p1ω0)2 +q2
1

=
2ω2

0 +(p2
0−2q0− p2

1)

p2
1ω2

0 +q2
1

(Using Eqs. (3.32) and (3.33),

(p1ω0)
2 +q2

1 = (p0ω0)
2 +(ω2

0 −q0)
2).

Under the condition p2
0−2q0− p2

1 > 0, we have d
dρ

(Reλ )
∣∣∣
λ=ιω0

> 0. Hence, the transver-

sality condition holds, and Hopf bifurcation occurs at ρ = ρ0 and ω0. Thus, we state the

following theorem:

Theorem 3.4.8. If the condition q2
0−q2

1 < 0 is satisfied, then the endemic equilibrium Ee of the

system (3.3)–(3.4) is asymptotically stable for ρ ∈ [0,ρ0) and it undergoes Hopf bifurcation at

ρ = ρ0.

3.4.3 Global stability analysis

This subsection is devoted to analyzing the global stability behavior of the disease-free

and endemic equilibria.

Global stability of disease-free equilibrium

For the global stability of the disease-free equilibrium E0
( A

ϑ
,0
)
, we assume the follow-

ing postulates:

P4. Φ′I(S(t),0) is increasing with respect to S(t)> 0.

P5. Φ′I(S0,0)
Φ′I(S(t),0)

< 1 for S(t)> S0,
Φ′I(S0,0)

Φ′I(S(t),0)
> 1 for S(t) ∈ (0,S0), where S0 =

A
ϑ
.

P6. Φ(S(t), I(t))≤ I(t)
((

∂Φ(S(t),I(t))
∂ I

)
(S0,0)

−
(

∂H(I)
∂ I

)
I=0

)
+H(I(t)), I(t)> 0,

where H(I(t)) = (ϑ +d +ζ )I(t)+h(I(t))

Under these assumptions, we have the following theorem:

Theorem 3.4.9. Assume that (P1.)–(P6.) are satisfied then, the disease-free equilibrium

E0(S0,0) of the system (3.3)–(3.4) is globally asymptotically stable for any ρ ≥ 0 if R0 ≤ 1.
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Proof. From the conditions (P1.) and (P2.), it follows that the disease-free equilibrium E0(S0,0)

is the only equilibrium of the system (3.3)–(3.4). We define the following Lyapunov func-

tional:

L(t) = L1(t)+L2(t)

where

L1(t) = S(t)−S0−
∫ S(t)

S0

lim
I→0+

Φ(S0, I(t))
Φ(σ , I(t))

dσ + I(t),

L2(t) =
∫

ρ

0
Φ(S(t−ρ), I(t−ρ))dρ.

The postulates (P1.)–(P3.) imply that L1(t) is defined and continuously differentiable for all

S(t)> 0 and I(t)> 0, and L(t) = 0 at E0(S0,0). We will show that dL(t)
dt ≤ 0 for all t ≥ 0. For

this, first we calculate dL1(t)
dt as follows.

dL1(t)
dt

=

(
1− lim

I→0+

Φ(S0, I(t))
Φ(S, I(t))

)
S′(t)+ I′(t)

Since, A−ϑS =−ϑ
(
S− A

ϑ

)
=−ϑ(S−S0), we get

dL1(t)
dt

=

(
1− lim

I→0+

Φ(S0, I(t))
Φ(S, I(t))

)
(−ϑ(S−S0)−Φ(S(t−ρ), I(t−ρ)))+Φ(S(t−ρ), I(t−ρ))−H(I(t)).

We now calculuate dL2(t)
dt as follows.

dL2(t)
dt

=−Φ(S(t−ρ), I(t−ρ))+Φ(S(t), I(t))

Thus, dL
dt is given by:

dL(t)
dt

=
dL1(t)

dt
+

dL2(t)
dt

=

(
1− lim

I→0+

Φ(S0, I(t))
Φ(S, I(t))

)
(−ϑ(S−S0)−Φ(S(t−ρ), I(t−ρ)))+Φ(S(t−ρ), I(t−ρ))

−H(I)−Φ(S(t−ρ), I(t−ρ))+Φ(S(t), I(t))

= ϑ

(
1− lim

I→0+

Φ(S0, I(t))
Φ(S, I(t))

)
(S0−S(t))+Φ(S(t−ρ), I(t−ρ))

(
lim

I→0+

Φ(S0, I(t))
Φ(S, I(t))

−1
)

+Φ(S(t), I(t))−H(I).
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Further, (P4.)–(P6.) implies that

dL(t)
dt
≤ ϑ

(
1− Φ′I(S0,0)

Φ′I(S(t),0)

)
(S0−S(t))+Φ(S(t−ρ), I(t−ρ))

(
Φ′I(S0,0)

Φ′I(S(t),0)
−1
)
+

I(t)

((
∂Φ(S(t), I(t))

∂ I

)
(S0,0)

−
(

∂H(I)
∂ I

)
I=0

)

= ϑ

(
1− Φ′I(S0,0)

Φ′I(S(t),0)

)
(S0−S(t))+Φ(S(t−ρ), I(t−ρ))

(
Φ′I(S0,0)

Φ′I(S(t),0)
−1
)
+

I(t)
(

∂H(I)
∂ I

)
I=0

(R0−1) .

Thus, for R0 ≤ 1, dL(t)
dt ≤ 0 for all t ≥ 0. Also, dL(t)

dt = 0 if S(t) = S0.

Hence, it follows from the system (3.3)–(3.4) that the largest invariant set
{(

S(t), I(t) ∈ R2
+

∣∣∣dL(t)
dt = 0

)}
is singleton set E0(S0,0). From the Lyapunov-LaSalle asymptotic stability theorem [23, 90,

113], E0 is the only equilibrium of the system (3.3)–(3.4) and globally asymptotically sta-

ble.

Global stability of endemic equilibrium

We now study the global stability of the endemic equilibrium Ee(S∗, I∗) of the system

(3.3)�(3.4) by Lyapunov direct method. For this, the following hypothesis has been pro-

posed:

P7.
(

Φ(S∗,I∗)
Φ(S(t),I∗) −

I∗
I(t)

)
≤ 0;

(
Φ(S(t),I(t))

Φ(S∗,I∗) −1
)
≤ 0;

(
Φ(S(t),I∗)

Φ(S(t),I(t)) −
I(t)
I∗

)
≤ 0 for I ≥ I∗.

P8.
(

h(I∗)
h(I(t)) −

I∗
I(t)

) (
I(t)
I∗ −1

)
≤ 0 for I ≥ I∗.

Under these conditions, we have the following theorem:

Theorem 3.4.10. Suppose that the conditions (P1.)–(P3.) and (P7.)–(P8.) are satisfied then

the endemic equilibrium Ee(S∗, I∗) of the system (3.3)–(3.4) is globally asymptotically stable

for any ρ ≥ 0 if R0 > 1.

Proof. We assume the following Lyapunov functional

M(t) = M1(t)+M2(t),

where,

M1(t) = S(t)−S∗−
∫ S(t)

S∗

Φ(S∗, I∗)
Φ(φ , I∗)

dφ + I(t)− I∗− I∗ ln
I(t)
I∗

,
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M2(t) = Φ(S∗, I∗)
∫

ρ

0

(
Φ(S(t−θ), I(t−θ))

Φ(S∗, I∗)
−1− ln

Φ(S(t−θ), I(t−θ))

Φ(S∗, I∗)

)
dθ . (3.38)

By (P1.)–(P3.), M(t)=M1(t)+M2(t) is defined and continuously differentiable for all S(t), I(t)>

0 and M(0) = 0 at Ee(S∗, I∗).

At Ee(S∗.I∗), the system (3.3)–(3.4) has

A−ϑS∗ = Φ(S∗, I∗) = (ϑ +d +ζ )I∗+h(I∗). (3.39)

The time derivative of M1(t) along the solution of system (3.3)–(3.4) is given by

dM1(t)
dt

=

(
1− Φ(S∗, I∗)

Φ(S(t), I∗)

)
S′(t)+

(
1− I∗

I(t)

)
I′(t)

=

(
1− Φ(S∗, I∗)

Φ(S(t), I∗)

)
(ϑS∗−ϑS(t)+Φ(S∗, I∗)−Φ(S(t−ρ), I(t−ρ)))+(

1− I∗

I(t)

)(
Φ(S(t−ρ), I(t−ρ))− (Φ(S∗, I∗)−h(I∗))

I∗
I(t)−h(I(t))

)

= ϑ(S∗−S(t))
(

1− Φ(S∗, I∗)
Φ(S(t), I∗)

)
+Φ(S∗, I∗)

(
1− Φ(S∗, I∗)

Φ(S(t), I∗)
+

Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I∗)

)
− Φ(S(t−ρ), I(t−ρ))

I(t)
I∗+Φ(S∗, I∗)

(
1− I(t)

I∗

)
+

(
h(I∗)− h(I(t))

I(t)
I∗
)(

I(t)
I∗
−1
)

Further, the time derivative of M2(t) is given by

dM2(t)
dt

= Φ(S∗, I∗)
d
dt

∫
ρ

0

(
Φ(S(t−θ), I(t−θ))

Φ(S∗, I∗)
−1− ln

Φ(S(t−θ), I(t−θ))

Φ(S∗, I∗)

)
dθ .

= Φ(S(t), I(t))−Φ(S(t−ρ), I(t−ρ))+Φ(S∗, I∗) ln
Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I(t))
.

Then, we have

dM(t)
dt

=
dM1(t)

dt
+

dM2(t)
dt

= ϑ(S∗−S(t))
(

1− Φ(S∗, I∗)
Φ(S(t), I∗)

)
+Φ(S∗, I∗)

(
1− Φ(S∗, I∗)

Φ(S(t), I∗)
+

Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I∗)

)
− Φ(S(t−ρ), I(t−ρ))

I(t)
I∗+Φ(S∗, I∗)

(
1− I(t)

I∗

)
+

(
h(I∗)− h(I(t))

I(t)
I∗
)(

I(t)
I∗
−1
)

+Φ(S(t), I(t))−Φ(S(t−ρ), I(t−ρ))+Φ(S∗, I∗) ln
Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I(t))
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= ϑ(S∗−S(t))
(

1− Φ(S∗, I∗)
Φ(S(t), I∗)

)
+Φ(S∗, I∗)

(
1− Φ(S∗, I∗)

Φ(S(t), I∗)
+ ln

Φ(S∗, I∗)
Φ(S(t), I∗)

)
+Φ(S(t−ρ), I(t−ρ))

(
Φ(S∗, I∗)

Φ(S(t), I∗)
− I∗

I(t)

)
+Φ(S∗, I∗)

(
1− I(t)

I∗
+ ln

I(t)
I∗

)
+

(
h(I∗)

h(I(t))
− I∗

I(t)

)(
I(t)
I∗
−1
)

h(I(t))+Φ(S∗, I∗)

(
1− Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I(t))
· Φ(S(t), I∗)

Φ(S∗, I∗)
·

I∗

I(t)
+ ln

Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I(t))
· Φ(S(t), I∗)

Φ(S∗, I∗)
· I∗

I(t)

)
+Φ(S∗, I∗)

(
Φ(S(t), I(t))

Φ(S∗, I∗)
−1
)

+Φ(S(t−ρ), I(t−ρ)) · I∗

I(t)

(
Φ(S(t), I∗)

Φ(S(t), I(t))
− I(t)

I∗

)
.

The function Φ(S(t), I(t)) is monotonically increasing for all S(t)> 0. Therefore,

(S∗−S(t))
(

1− Φ(S∗, I∗)
Φ(S(t), I∗)

)
≤ 0. (3.40)

The function f (x) = 1− x+ lnx, (x > 0) has its global maximum f (1) = 0. Hence, for x > 0,

f (x)≤ 0 and we have the following inequalities: (
1− Φ(S∗, I∗)

Φ(S(t), I∗)
+ ln

Φ(S∗, I∗)
Φ(S(t), I∗)

)
≤ 0,(

1− I(t)
I∗

+ ln
I(t)
I∗

)
≤ 0,(

1− Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I(t))
· Φ(S(t), I∗)

Φ(S∗, I∗)
· I∗

I(t)

)
+ ln

Φ(S(t−ρ), I(t−ρ))

Φ(S(t), I(t))
· Φ(S(t), I∗)

Φ(S∗, I∗)
· I∗

I(t)
≤ 0.

(3.41)

Hence, by (P7.)–(P8.) and inequalities (3.40)–(3.41), it follows that dM(t)
dt ≤ 0 for all S(t) ≥

0, I(t) ≥ 0. It can be verified that the largest invariant in
{
(S(t), I(t)) ∈ R2

+ : dM(t)
dt = 0

}
is

singleton {Ee}. By the Lyapunov-LaSalle asymptotic stability theorem [23, 90, 113], Ee is

globally asymptotically stable.

3.5 Numerical simulation

In this section, we present numerical simulations of the proposed model. Parameters

description and values are given in Table 3.1 and the total population size is considered

as N = 100.
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Table 3.1: List of parameters

Parameter Description Value Reference

A Recruitment rate 5 Assumed

α Inhibitions taken by susceptibles 0.004 [125]

β Transmission rate 0.0045 Assumed

ϑ Natural death rate 0.05 [125]

d Disease-induced death rate 0.001 [125]

γ Inhibitions taken by infectives 0.002 [125]

ζ Recovery rate 0.002 [125]

a Cure rate 0.04 Assumed

b Rate of limitation in treatment availability 0.002 Assumed

Initial conditions are given by

S(0) = 90, I(0) = 8, R(0) = 2.

Figure 3.3: Behavior of susceptible-infected-recovered populations at time delay ρ = 1.

Fig. 3.3 shows the behavior of susceptible-infected-recovered populations at time delay

ρ = 1. At the parameters values given in table 3.1, we obtained that S∗ = 23.5845, I∗ =

42.5367. From this S∗, and I∗, R∗ can be evaluated as: R∗=N−S∗− I∗= 100−23.5845−

42.5367 = 33.8788. This is also veri�ed from the Fig. 3.3. This �gure shows that as
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time increases, all the subpopulations reach to their endemic equilibrium (S∗, I∗,R∗) =

(23.5845,42.5367,33.8788).

Figure 3.4: Impact of time delay ρ on susceptible, infected and recovered populations.

Fig. 3.4 shows the e�ect of time delay on the population with respect to time t. In this

�gure, susceptible, infected, and recovered populations are being drawn for the time delay

ρ = 0, 3, and 6 respectively. It can be seen that with the increased values of time delay ρ ,

the infected individuals increases whereas susceptible and recovered individuals decrease

and �nally settles down to their endemic equilibrium (23.5845,42.5367,33.8788). Thus,

the time delay is an in�uential parameter in the transmission dynamics of infection.

Figure 3.5: Infected population with and without Holling type II treatment rate.

Fig. 3.5 depicts the infected population with and without the e�ect of the Holling type

II treatment rate. This �gure shows the signi�cant di�erence between the progression of

treated infected individuals and non-treated infected individuals. When Holling type II
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treatment rate is considered, then the infected individuals �rst increase and then stabilize

to steady-state at a lower level, whereas in the absence of treatment rate, infections

increase at a higher rate and then settle down to steady-state with a big di�erence.

3.6.1: α = 0.004,γ = 0.002. 3.6.2: α = 0.01, γ = 0.01.

Figure 3.6: Graphs depicting the effect of inhibitions taken by both susceptible and infected
individuals.

Fig. 3.6 shows the impact of the measure of inhibitions taken by susceptible and infected

individuals. Figs. 3.6.1 and 3.6.2 show the di�erence between the infected population

with and without inhibition e�ects. The solid red line shows the infected population

without inhibition e�ects. When there is no inhibition taken by susceptible and infec-

tives, then infectives increase at a higher rate. The dashed blue line shows the infected

population when we consider α = 0.004 and γ = 0.002 whereas dashed-purple line shows

the infected population when α = 0.01 and γ = 0.01. Thus, the higher the inhibitions

rate, the higher the decline in the infected population.

3.7.1: S(t) vs. I(t) for ρ = 8. 3.7.2: S(t) vs. I(t) for ρ = 10.
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3.7.3: S(t) vs. I(t) for ρ = 14. 3.7.4: S(t) vs. I(t) for ρ = 18.07.

Figure 3.7: Hopf bifurcation in the plane (S, I) for various values of time delay ρ .

Figs. 3.7 shows the occurrence of Hopf bifurcation at di�erent values of time delay ρ in

the plane (S, I). We �nd that q2
0−q2

1 =−0.0000587362 < 0, p2
0−2q0− p2

1 = 0.00573205>

0, and there is a unique pair of purely imaginary roots ±ιω of characterstic Eq. (3.29)

with ω = ±0.105111. Hence, the hypothesis of the occurrence of Hopf bifurcation is

satis�ed. According to the algorithm given in (3.36), we obtain the value of ρ0 as ρ0 =

18.07. Figs. 3.7.1, 3.7.2, and 3.7.3 show the oscillatory solutions for the time delay ρ =

8, 10, 14 ∈ [0,ρ0], respectively. Theorem 3.4.8 implies that Ee is asymptotically stable

for [0,ρ0) which follows from the Figs. 3.7.1, 3.7.2, and 3.7.3, thus, periodic solution

appears and endemic equilibrium is locally asympotitically stable which converges to

Ee = (23.5845,42.5367). Also, Hopf bifurcation occurs at ρ0 = 18.07 (Fig. 3.7.4) which

con�rms the Theorem 3.4.8.

3.6 Discussion

This chapter investigates the role of time delay and e�ects of inhibition measures and

treatment on the SIR model with a nonlinear Beddington − DeAngelis type incidence

rate and Holling type II treatment rate. We obtain that the model exhibits two equilibria;

disease-free equilibrium E0 and endemic equilibrium Ee. Stability analysis is resorted to

getting a sense of the behavior of solutions. We investigate the local stability of the

model near disease-free equilibrium point E0 by deriving the basic reproduction number

R0. We observe that the disease-free equilibrium E0 is locally asymptotically stable when

the basic reproduction number R0 is less than one, unstable when R0 is greater than one,

and linearly neutrally stable when R0 equals to one for the time delay ρ > 0. By applying
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center manifold theory, we investigate the stability behavior of the undelayed system at

E0 when R0 is one, and show that the model exhibits a backward (forward) bifurcation

under certain conditions. Backward bifurcation plays a relevant role in disease control

and eradication. We �nd the bifurcation range for backward (forward) occurrence, which

depends on the cure rate a. More accurately, if the cure rate a lies in a speci�c range,

a∗1 < a < a∗2, then there is an occurrence of backward bifurcation, and if a is su�ciently

small or su�ciently large, i.e., if a < a∗1 or a > a∗2 then forward bifurcation occurs, as

obtained in the inequalities (3.20) and (3.22). Also, forward bifurcation may occur if

the limitation in the availability of resources is below a certain quantity, as obtained in

the inequality (3.21). This shows that the resource limitation should be minimized for

eradicating the epidemic when R0 < 1. Thus, the Holling type II treatment rate has a

signi�cant role in eradicating disease. Further, we found the conditions for the existence

of endemic equilibrium Ee and investigated the local stability behavior of the system

near-endemic equilibrium Ee and obtained some interesting results. We also discussed

the Hopf bifurcation near-endemic equilibrium by considering delay (ρ) as a bifurcation

parameter, and we obtained that the endemic equilibrium is asymptotically stable for

ρ ∈ [0,ρo) and the model undergoes Hopf bifurcation at the critical value ρ0. Moreover,

the global stability of disease-free and endemic equilibria has been investigated and

obtained that the disease-free equilibrium is globally asymptotically stable when R0 ≤ 1,

as stated in Theorem 3.4.9, whereas the endemic equilibrium is globally asymptotically

stable when R0 > 1, as stated in Theorem 3.4.10, epidemiologically this means that the

disease will die out or persist in a population concerning certain restrictions on the

parameters.

In addition, we present the numerical simulations of the proposed model to illustrate

the theoretical results. We observe that when the time delay is high, the infection occurs

at a higher rate than the situation when there is no delay. Further, when the Holling

type II treatment rate is given to the infected individuals at the appropriate time, there

is a major di�erence in the occurrence of infection. Hence to eliminate the disease, there

is a need to improve medical technology and invest more medicines, beds, etc., in giving

the patients timely treatment. Also, it is depicted that if treatment is not available,

then infection is high even if inhibitions are considered. Therefore, the Holling type

II treatment rate leads to a diminished level of infection. The impact of inhibitions is

also shown in the numerical simulation, which guarantees infection control in society if

inhibitions are taken properly. The data shows that critical value ρ0 is 18.07 and for

the time lag ρ ∈ [0,ρ0), Ee is asymptotically stable as shown in Figs. 3.7.1, 3.7.2, 3.7.3

62



implies that the disease will persist in society, and at ρ = ρ0, periodic solution appears,

which con�rms the occurrence of Hopf bifurcation at ρ0.

The epidemic model without delay shows the backward bifurcation, which demon-

strates that the disease-free equilibrium coexists with the endemic equilibrium when the

basic reproduction number is less than one. It has important qualitative implications

since reducing the basic reproduction number below one is not su�cient to eradicate

the disease from society. Thus, it is vital to explain those components that can con-

trol or maintain a strategic distance from such backward situations. Our theoretical

results suggest that the existence of backward bifurcation depends on the treatment of

infected individuals. Under the point of view of the disease control campaigns, pub-

lic policymakers might try to prevent the dangerous, backward scenario by keeping the

treatments of infected individuals suitably low. In this case, the disease control may

straightly follow the classic road of reducing R0 below 1. If the backward scenario can-

not be avoided, then decreasing contact rate with infected individuals through aimed

public sensitization programs that a�ect individual behaviors can act appropriately to

reduce the disease transmission. The nonlinearity in the epidemic model due to the la-

tent period (time delay) can give rise to periodicity via a Hopf bifurcation, which shows

the oscillatory behavior of the disease at the critical value of time delay.

The �ndings of the model consisting of Beddington-DeAngelis incidence rate with the

latent period as time delay and Holling type II treatment rate are capable of demon-

strating the substantial role of latent period, social awareness among susceptibles, the

magnitude of interference among infectives, and limitation in available facilities. Fur-

thermore, the results can understand the transmission dynamics of the outbreak of newly

emerging diseases and hence further suggest the control strategies to prevent the spread

of diseases at a large scale�for example, the largest ebola outbreak in 2014 in the parts

of West Africa.
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Chapter 4

Stability analysis of a logistic growth SIR

epidemic model with two explicit

time-delays, the nonlinear incidence and

treatment rates

In this chapter, a time-delayed SIR epidemic model with a logistic growth of suscep-

tibles, Crowley-Martin type incidence, and Holling type III treatment rates is proposed

and analyzed mathematically. We consider two explicit time-delays: one in the incidence

rate of new infection to measuring the impact of the latent period, and another in the

treatment rate of infectives to analyzing the e�ect of late treatment availability. The

stability behavior of the model is analyzed for two equilibria: the disease-free equilibrium

(DFE) and the endemic equilibrium (EE). We derive the threshold quantity, the basic

reproduction number R0, which determines the eradication or persistence of infectious

diseases in the host population. Using the basic reproduction number, we show that the

DFE is locally asymptotically stable when R0 < 1, linearly neutrally stable when R0 = 1,

and unstable when R0 > 1 for the time-delayed system. The system without a latent

period reveals the forward bifurcation at R0 = 1, which implies that keeping R0 below

unity can diminish the disease. Further, the stability behavior for the EE is investigated,

demonstrating the occurrence of oscillatory and periodic solutions through Hopf bifurca-

tion concerning every possible grouping of two time-delays as the bifurcation parameter.

To conclude, the numerical simulations in support of the theoretical �ndings are carried
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out.

4.1 Introduction

Infectious diseases are signi�cant reasons for a�iction and mortality in developing

nations. Therefore, understanding the transmission attributes of irresistible ailments

and the surveillance and continuation of control interventions are necessary to maintain

infectious disease control achievements. In the beginning phase of an outbreak, it fol-

lows an exponential or generalized - exponential growth. However, it slows down and

reaches its maximum, as the increasing number of cases reaches its in�ection point, and

the daily incidence curve reaches its most extreme. Thus, the growth pattern departs

from the (sub-)exponential path and follows a logistic growth rate [140]. To capture this

situation, some authors studied the e�ect of the logistic growth rate in their epidemic

models [62, 85, 104, 130]. Wang et al. [85] assumed that the logistic growth governed

the population growth in susceptible individuals and proposed the epidemic model with

bilinear incidence rate, including the incubation period. They investigated the stability

behavior and showed the existence of Hopf bifurcation in their model. Zhang et al. [62]

also studied the logistic growth SIR epidemic model with the saturated incidence rate,

including the incubation time and the inhibitory e�ects of infectives, and studied the dy-

namical behavior of their model. Xue et al. [104] extended the work of Zhang et al. [62]

by incorporating the impact of the latent period in the saturated incidence rate and ob-

tained su�cient conditions for the Hopf bifurcations. Further, Li et al. [130] considered

the logistic growth SIR epidemic model with bilinear incidence and saturated treatment

rates and studied the stability analysis and various bifurcations. They showed that to

eradicate the disease, the government should raise the e�ciency and enlarge treatment

capacity.

An incidence rate is a valuable tool that determines the number of new infection cases

per unit time. A signi�cant assumption in disease transmission models is how individuals

make contact with each other. In 1989, Crowley and Martin [19] introduced an incidence

rate of the form βSI
(1+αS)(1+γI) , which includes the forms of other incidences also, for in-

stance, bilinear incidence rate if α = 0,γ = 0; saturated incidence rate with susceptibles

if γ = 0; Holling-II incidence rate if α = 0. This incidence rate has the critical property
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of including preventive anti-epidemic measures adopted by susceptible and infected pop-

ulations (such as disease surveillance and hygienic standards, social distancing, travel

restrictions, quarantine, case isolation, etc.). It normalizes the in�uence of inhibition on

infectives even in the high density of susceptible populations [125, 139]. Apart from the

preventive measures, treatment of infectives is the most important medical intervention

for reducing disease spread and deaths during an outbreak. The adequacy and e�ective-

ness of the therapy may in�uence the recovery pace of infectives [108].

Although many authors have studied models with time delay or saturated treatment,

to the best of our knowledge, there are not many models that incorporate time de-

lays in both nonlinear incidence and saturated treatment functions. Therefore, in the

present chapter, we study a susceptible-infected-recovered (SIR) epidemic model with

two explicit time-delays, the logistic growth of susceptible individuals, Crowley-Martin

incidence rate, and the Holling type III treatment rate. The logistic growth of sus-

ceptibles comprises the increasing growth of the epidemic initially, but a decreasing

development at a later stage as the number of infections approaches its maximum. To

measure the transmission of infection in susceptibles individuals with the condition of

taking protective anti-epidemic measures by both susceptibles and infected individuals,

and the time-lag between being exposed to a disease and having its symptoms, we have

incorporated the Crowley-martin incidence rate with the latent period. To study the

impact of treatment on infected individuals with limited medical resources and delay in

providing the appropriate therapy to infectives, we have considered the Holling type III

treatment rate with time delay. The two explicit time delays have a signi�cant role in

the present chapter. A delay in identifying the disease leads to a delay in applying the

right protection measures, which allow the virus to spread unseen. If the infection re-

mains undiagnosed after the recognition, this time lag enables the virus to reach capital

cities, where the outbreak grows into large epidemics. Therefore, the latent period and

the delay in providing medical services to infectives let the disease stay for an extended

period and spread faster at a higher rate. By incorporating the above-enlightened facts,

we formate and analyze a mathematical epidemic model. To explore the disease dynam-

ics through equilibrium analysis, we investigate the stability behavior of the disease-free

and endemic equilibria by deriving the basic reproduction number R0. This threshold

quantity determines the eradication or persistence of the disease infection in a host pop-

ulation. The results indicate that for R0 < 1 , there is a unique disease-free equilibrium,

which is locally asymptotically stable; this equilibrium becomes unstable when R0 > 1.
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Meanwhile, if R0 is greater than one, then there exists an endemic equilibrium. The

stability switches may happen near this equilibrium for di�erent ranges of explicit time

delays, and the oscillatory and periodic solutions may appear via Hopf bifurcation. We

discuss the signi�cance of two explicit time delays and other parameters by simulating

the proposed model numerically, revealing the disease's endemic behavior, and suggesting

its control strategies.

4.2 Model description and basic properties

We assume that the total population N(t) at time t is divided into three catogories: sus-

ceptible S(t), infected I(t) and R(t), respectively. The description of the model's param-

eters is as follow: The logistic growth rS(t)
(

1− S(t)
K

)
governs the susceptible population

with a carrying capacity K and a speci�c growth rate r. The term βS(t−ρ1)I(t−ρ1)
(1+αS(t−ρ1))(1+γI(t−ρ1))

represents the Crowley-Martin incidence rate with latent period ρ1, where β denotes the

transmission rate of infection, and α and γ denote the saturating factors representing

the inhibitory e�ects adopted by susceptibles and infectives, respectively. ϑ , d, and θ

are the natural mortality, disease-induced mortality, and recovery rate of infectives, re-

spectively. The term σ I2(t−ρ2)
1+ξ I2(t−ρ2)

represents the Holling type III treatment rate, where σ

is the cure rate (or the maximum treatment rate), ξ is the saturating rate that measures

the e�ect of limited availability of treatment resources, and ρ2 measures the time delay

in giving treatment to infectives. Due to epidemiological reasons, we assume that σ is

non-negative, and all other parameters are positive.

Thus, the model under the assumptions and descriptions mentioned above follows the

following system of delay di�erential equations:

dS
dt

= rS
(

1− S
K

)
− βS(t−ρ1)I(t−ρ1)

(1+αS(t−ρ1))(1+ γI(t−ρ1))
,

dI
dt

=
βS(t−ρ1)I(t−ρ1)

(1+αS(t−ρ1))(1+ γI(t−ρ1))
− (ϑ +θ +d)I− σ I2(t−ρ2)

1+ξ I2(t−ρ2)
,

dR
dt

= θ I +
σ I2(t−ρ2)

1+ξ I2(t−ρ2)
−ϑR.

(4.1)

Let h = max{ρ1,ρ2}. The initial conditions of the model (4.1) are given by

S(Θ) = Φ1(Θ), I(Θ) = Φ2(Θ), R(Θ) = Φ3(Θ), for Θ ∈ [−h,0], (4.2)

where, Φi ∈C
(
[−h,0],R3

+

)
, i = 1,2,3, the space of continuous functions from [−h,0] to
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R3
+, equipped with the sup-norm: ‖Φ‖= supΘ∈[−h,0]Φ(Θ).

By the theory of functional di�erential equations [23], it follows that all the solutions of

model (4.1) with initial condition (4.2) exist and are di�erentiable for all t ≥ 0.

It is noticed that the variable R(t) is not present in the �rst two equations of the model

(4.1); therefore, without loss of generality, for the analysis purpose, we can omit the

third equation and study the following reduced system:

dS
dt

= rS
(

1− S
K

)
− βS(t−ρ1)I(t−ρ1)

(1+αS(t−ρ1))(1+ γI(t−ρ1))
,

dI
dt

=
βS(t−ρ1)I(t−ρ1)

(1+αS(t−ρ1))(1+ γI(t−ρ1))
− (ϑ +θ +d)I− σ I2(t−ρ2)

1+ξ I2(t−ρ2)
.

(4.3)

Lemma 4.2.1. Let νm = min{1,ϑ +θ +d} and Ω = max{S(0),K}. Then the compact set

D =

{
(S, I) ∈ R2

+ : S≤Ω, S+ I ≤ (r+1)Ω
νm

}
is a positively invariant set for the system (4.3).

Proof. From the first equation of the system (4.3), we have

dS
dt
≤ rS(1− S

K
).

Thus, a standard comparison argument gives that

limsup
t→∞

S(t)≤Ω.

On adding first and second equations of the system (4.1), we obtain

d
dt

(S+ I) = rS
(

1− S
K

)
− (ϑ +θ +d)I− σ I2(t−ρ2)

1+ξ I2(t−ρ2)

≤ (r+1)S−S− (ϑ +θ +d)I

≤ (r+1)Ω−νm (S+ I) .

Thus, we get

0≤ (S+ I)≤ (r+1)Ω

νm
for sufficiently large t.
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Hence, all the solutions of the system (4.3) are closed and bounded, and enter the region

D =

{
(S, I) ∈ R2

+ : S≤Ω, S+ I ≤ (r+1)Ω
νm

}
.

Hence, the system (4.3) is well-posed mathematically and epidemiologically.

4.3 Mathematical analysis of the model

In this section, the mathematical analysis of the model is established with the following

steps: the existence of equilibria, the derivation of basic reproduction number, stabil-

ity behavior of obtained equilibria, and the presence of Hopf bifurcation near-endemic

equilibrium regarding the possible combinations of two time-delays.

4.3.1 Existence of model’s equilibria

On substituting the right-hand side of the system (4.3) to zero, we get two equilibrium

points, namely:

(i) The disease-free equilibrium (DFE) E0 (S0, I0) = (K,0),

(ii) The endemic (positive) equilibrium (EE) Ee (S∗, I∗), where S∗ and I∗ are evaluated

in Subsection 4.3.3.

4.3.2 Disease-free equilibrium and its stability analysis

The disease-free equilibrium (DFE) is de�ned as the point at which no disease is

present. The DFE of the system (4.3) lies at E0(S0, I0) = (K,0).

The Jacobian matrix J of the system (4.3) at DFE E0 is given as

J(E0) =


−r −βKe−λρ1

1+αK

0 βKe−λρ1

1+αK − (ϑ +d +θ)

 . (4.4)

The characteristic equation associated with J(E0) is

(λ + r)

(
λ − βKe−λρ1

1+αK
+ϑ +d +θ

)
= 0. (4.5)
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The roots of Eq. (4.5) are λ1 = −r and λ2, where λ2 is a solution of the following

transcendental equation:

T (λ ) := λ − βKe−λρ1

1+αK
+ϑ +d +θ = 0. (4.6)

The term βKe−λρ1

(1+αK)(ϑ+d+θ) at ρ1 = 0 is termed as the basic reproduction number (R0) of

the system (4.3). Thus, R0 of the system (4.3) is

R0 =
βK

(1+αK)(ϑ +d +θ)
.

Now, we state and prove the following results using basic reproduction number R0 for

the local stability behavior of disease-free equilibrium E0(S0, I0).

Theorem 4.3.1. The disease-free equilibrium E0(S0, I0) of the system (4.3) has the following

properties:

1. When R0 > 1, then E0(S0, I0) is unstable for ρ1 > 0.

2. When R0 < 1, then E0(S0, I0) is locally asymptotically stable for ρ1 > 0.

3. When R0 = 1, then E0(S0, I0) is linearly neutrally stable for ρ1 > 0.

4. When R0 = 1 and ρ1 = 0, then the system (4.3) exhibits a forward bifurcation at E0(S0, I0).

Proof. We have

T (λ ) := λ − βKe−λρ1

1+αK
+ϑ +d +θ = 0.

The stability of the disease-free equilibrium E0 is investigated for a different ranges of R0

under the following cases:

1. Assume that R0 > 1. Then, we have

T (0) =− βK
1+αK

+ϑ +d +θ

= (ϑ +d +θ)(1−R0)

< 0.

Also, lim
λ→∞

T (λ ) = +∞.

Note that T (λ ) = 0, T (0) < 0, and lim
λ→∞

T (λ ) = +∞ imply that T (λ ) is a increasing
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function for real λ . Therefore, T (λ ) = 0 has a real positive root when R0 > 1 and hence,

E0 is unstable.

2. Assume that R0 < 1. On the contrary, let T (λ ) has a root λ∗ ∈ C with Re(λ∗)≥ 0. Then,

we have λ∗ =
βKe−λ∗ρ1

1+αK − (ϑ +d +θ).

So, Re(λ∗)≤ βK
1+αK − (ϑ +d +θ) = (ϑ +d +θ)(R0−1)< 0, which is a contradiction

to our assumption. Thus, all the roots of T (λ ) has a negative real part, which proves that

E0 is locally asymptotically stable.

3. Let R0 = 1. When R0 = 1, then we have βK = (1+αK)(ϑ + d + θ) and one root of

T (λ ) = 0 vanishes.

Let λ = m+ in be any other solution of T (λ ) = 0, Then, we have

m+ in− βKe−(m+in)ρ1

1+αK
+ϑ +d +θ = 0. (4.7)

Splitting real and imaginary parts of Eq. (4.7) and using R0 = 1, we obtain:

(ϑ +d +θ)e−mρ1 cosnρ1 = m+ϑ +d +θ , (4.8)

(ϑ +d +θ)e−mρ1 sinnρ1 =−n. (4.9)

Squaring Eqs. (4.8) and (4.9) and then summing up the resultant yields:

(ϑ +d +θ)2e−2mρ1 = (m+ϑ +d +θ)2 +n2. (4.10)

If there exists a root satisfying the Eqs. (4.8) and (4.9), then that root will satisfy Eq.

(4.10) too. For Eq. (4.10) to be verified, we must have m≤ 0. Therefore, E0 is linearly

neutrally stable.

4. In case when R0 = 1 and ρ1 = 0, then one of the eigenvalue of Jacobian matrix J(E0),

given in Eq. (4.4), vanishes. So, the linearization method is not applicable, and we can

resort to center manifold theory [17].

If we consider β as the bifurcation parameter, then the critical value β ∗ can be calculated

as β ∗ = (1+αK)(ϑ+d+θ)
K . We see that J(E0) has a simple zero eigenvalue λ = 0.

The components of right eigenvector V = (V1,V2)
T and the left eigenvector of U =
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(U1,U2) of J(E0) corresponding to λ = 0 are

V1 =−
βk

r(αk+1)
, V2 = 1; U1 = 0, U2 = 1.

Let g = (g1,g2) represents the right hand side of the system (4.3). Using Theorem 4.1

of [40], we calculate the bifurcation constants a1 and b1 as follows:

a1 =
2

∑
k,i, j=1

UkViVj

(
∂ 2gk

∂xi∂x j

)
E0

,

b1 =
2

∑
k,i=1

UkVi

(
∂ 2gk

∂xi∂β ∗

)
E0

where, x1 and x2 represent the susceptible individuals S and the infected individuals I.

The non-zero partial derivatives associated with a1 and b1 are:

∂ 2g2 (E0,β
∗)

∂S∂ I
=

∂ 2g2 (E0,β
∗)

∂ I∂S
=

β ∗

(αK +1)2 ,
∂ 2g2 (E0,β

∗)

∂ I2 =− 2β ∗γK
αK +1

−2σ , and

∂ 2g2 (E0,β
∗)

∂ I∂β ∗
=

K
αK +1

.

So, a1 and b1 take the form

a1 =V1V2

(
∂ 2g2 (E0,β

∗)

∂S∂ I

)
+V2V1

(
∂ 2g2 (E0,β

∗)

∂ I∂S

)
+V 2

2

(
∂ 2g2 (E0,β

∗)

∂ I2

)
=−

2β ∗k
(
γr(αk+1)2 +β ∗

)
r(αk+1)3 −2σ ,

b1 =U2V2

(
∂ 2g2 (E0,β

∗)

∂ I∂β ∗

)
,

=
K

αK +1
.

It can be seen that a1 < 0 and b1 > 0. Thus, using Theorem 4.1(iv) of [40], there exists

a forward bifurcation at R0 = 1. Forward bifurcation means that if some infectives are

introduced into the population then the system will return to the disease-free equilibrium

I = 0. That is, disease will die out if R0 < 1.

The graphical representation of the forward bifurcation is illustrated in the Example

4.1.
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Example 4.1. Forward Bifurcation: We consider the following set of parameters: r = 0.08, K =

100, α = 0.002, γ = 0.001, ϑ = 0.01, d = 0.008, θ = 0.02, σ = 0.004, ξ = 0.009. At these

parameters’ values, the bifurcation parameter is obtained as β = β ∗ = 0.000456. Fig. (4.1)

shows that when R0 < 1 then, there is a stable disease free equilbrium, and when R0 > 1, then

the disease-free equilibrium becomes unstable and there exists a stable endemic equilibrium.

It guarantees the eradication of disease when R0 < 1, whereas the disease will invade when

R0 > 1.

Figure 4.1: Forward bifurcation.

4.3.3 Endemic equilibrium and stability analysis

To establish the existence of endemic equilibrium Ee(S∗.I∗), �rst, we put the right-hand

side term of the second equation of the system (4.3) to zero. We obtain:

S∗ =
(γI∗+1)

((
ξ I∗2 +1

)
(d +θ +ϑ)+σ I∗

)
β (ξ I∗2 +1)− (γI∗+1)(α (ξ I∗2 +1)(d +θ +ϑ)+ασ I∗)

. (4.11)

S∗ > 0 if

β
(
ξ I∗2 +1

)
> (γI∗+1)

(
α
(
ξ I∗2 +1

)
(d +θ +ϑ)+ασ I∗

)
.

On setting the right-hand side term of the �rst equation of the system (4.3) to zero and

putting the value of S∗ using Eq. (4.11), we obtain that I∗ is a solution of the following

seventh-degree equation:

P(I∗) := A0 +A1I∗+A2I∗2 +A3I∗3 +A4I∗4 +A5I∗5 +A6I∗6 +A7I∗7 = 0, (4.12)
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where, the coe�cients A′is, i = 0,1,2, . . . ,7 are given below:

A0 = r(αk+1)(d +θ +ϑ)(1−R0),

A1 = α
2d2k+2d(αk(α(θ +ϑ)−β + γr)+ γr)+ k(β 2−β (2α(θ +ϑ)+ γr)+

α(θ +ϑ)(α(θ +ϑ)+2γr)+αrσ)+ r(2γ(θ +ϑ)+σ),

A3 = α
2d2k

(
γ

2 +2ξ
)
+2d

(
αk
(
α
(
γ

2 +2ξ
)
(θ +ϑ)+2αγσ −2βξ +2γξ r

)
+2γξ r

)
+ k(α2 ((

γ
2 +2ξ

)
(θ +ϑ)2 +4γσ(θ +ϑ)+σ

2)+ασ
(
r
(
γ

2 +ξ
)
−2βγ

)
−4αξ (θ +ϑ)(β − γr)+2βξ (β − γr))+ rσ

(
γ

2 +ξ
)
+4γξ r(θ +ϑ),

A4 = 4α
2
γd2kξ +2α

2dkσ
(
γ

2 +ξ
)
+dξ (2γ(αk(4α(θ +ϑ)−2β + γr)+ γr)+ξ r(αk+1))

+2α
2
γkσ

2 +2σ
(
αk
(
α
(
γ

2 +ξ
)
(θ +ϑ)−βξ + γξ r

)
+ γξ r

)
+ξ (2γ(θ +ϑ)

× (αk(2α(θ +ϑ)−2β + γr)+ γr)+ξ r(θ + k(α(θ +ϑ)−β )+ϑ)),

A5 = α
2d2kξ

(
2γ

2 +ξ
)
+2dξ

(
αk
(
α
(
2γ

2 +ξ
)
(θ +ϑ)+2αγσ −βξ + γξ r

)
+ γξ r

)
+ k(α2 (

ξ
(
2γ

2 +ξ
)
(θ +ϑ)2 + γ

2
σ

2 +4γξ σ(θ +ϑ)
)
+αξ (γσ(γr−2β )

−2ξ (θ +ϑ)(β − γr))+βξ
2(β − γr))+ γξ r(γσ +2ξ (θ +ϑ)),

A6 = γξ (d +θ +ϑ)
(
2α

2dkξ +αk(2α(γσ +ξ (θ +ϑ))−2βξ + γξ r)+ γξ r
)
,

A7 = α
2
γ

2kξ
2(d +θ +ϑ)2.

On analyzing Eq. (4.12), we propose the following theorem:

Theorem 4.3.2. When R0 > 1, then there exists either a unique, three, five, or seven solutions

of the polynomial P(I∗).

Proof. Let R0 > 1. Note that P(0)=A0 < 0 when R0 > 1 and the coefficient A7 =α2γ2kξ 2(d+

θ +ϑ)2 is always positive.

Thus, we have

lim
I∗→∞

P(I∗) = +∞.

The polynomial P(I∗) is a seventh-degree polynomial in I∗, and it is a continuous function of

I∗. Thus, by the fundamental theorem of algebra, P(I∗) can have at most seven roots.

In the present study, we analyze the system for the existence of a unique endemic

equilibrium only. Using Descartes' rules of signs [42], the polynomial P(I∗) can have a
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unique root when R0 > 1, if any of the following conditions is satis�ed:

Ai > 0 (i = 1 to 6),

A1 < 0, Ai > 0 (i = 2 to 6),

A1 < 0, A2 < 0, Ai > 0 (i = 3 to 6),

Ai < 0 (i = 1 to 3), A j > 0 ( j = 4 to 6),

Ai < 0 (i = 1 to 4), A j > 0 ( j = 5 to 6),

Ai < 0 (i = 1 to 5), A6 > 0.

(4.13)

After obtaining the value of I∗, the value of S∗ can be obtained from Eq. (4.11). Thus,

there exists a unique endemic equilibrium Ee(S∗, I∗) if one of the conditions (4.13) holds.

To determine the stability behavior of the endemic equilibrium Ee(S∗, I∗), the character-

istic equation of the system (4.3) at Ee is obtained as:

λ
2 +m1λ +m2 +(n1λ +n2)e−λρ1 +(l1λ + l2)e−λρ2 +o1e−λ (ρ1+ρ2) = 0, (4.14)

where,

m1 = d +θ + r
(

2S∗

K
−1
)
+ϑ ,

m2 =−
r(K−2S∗)(d +θ +ϑ)

K
,

n1 =
β (I∗(γI∗+1)−S∗(αS∗+1))

(αS∗+1)2(γI∗+1)2 ,

n2 =
β
(
K(I∗(γI∗+1)(d +θ +ϑ)+ rS∗(αS+1))−2rS∗2(αS∗+1)

)
K(αS∗+1)2(γI∗+1)2 ,

l1 =
2σ I∗

(ξ I∗2 +1)2 ,

l2 =−
2rσ I∗(K−2S∗)

K (ξ I∗2 +1)2 ,

o1 =
2βσ I∗2

(αS∗+1)2(γI∗+1)(ξ I∗2 +1)2 .

(4.15)

Now, we investigate the stability of Ee for the following possible cases of ρ1 and ρ2:

Case (i) ρ1 = ρ2 = 0.
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In this case, the characteristic equation (4.14) becomes:

λ
2 +m01λ +m11 = 0, (4.16)

where,

m01 = (m1 +n1 + l1) ,

m11 = (m2 +n2 + l2 +o1) .
(4.17)

Using Routh-Hurwitz criteria, it follows that the roots of Eq. (4.16) must have negative

real parts if the condition (H1:) m01 > 0 and m11 > 0. Thus, we state the following

theorem:

Theorem 4.3.3. The endemic equilibrium Ee(S∗, I∗) is locally asymptotically stable for ρ1 =

ρ2 = 0, if the condition (H1) holds.

Case (ii) ρ1 > 0, ρ2 = 0.

The characteristic equation (4.14) at Ee when ρ1 > 0, ρ2 = 0 becomes

λ
2 + l01λ + l11 +(n1λ +n2 +o1)e−λρ1 = 0, (4.18)

where,

l01 = (m1 + l1) ,

l11 = (m2 + l2) .
(4.19)

where, m1,m2,n1,n2, l1, l2 and o1 are given in Eq. (4.15).

From Theorem 4.3.3, we know that all the solutions of Eq. (4.14) have negative real

parts when ρ1 = ρ2 = 0 if (H1) holds. If for a particular value of ρ1 > 0 and �xed ρ2 = 0,

a characteristic root of Eq. (4.18) must pass through the imaginary axis if it lies on the

right half-plane. Hence, on the contrary, suppose that λ = iκ (κ > 0) is a root of the

Eq. (4.18).

Substituting λ = iκ into Eq. (4.18) and separating the real and imaginary parts, we
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obtain:

κ
2− l11 = n1κ sinκρ1 +(n2 +o1)cosκρ1, (4.20)

−l01κ = n1κ cosκρ1− (n2 +o1)sinκρ1. (4.21)

On squaring and adding Eqs. (4.20) and (4.21), we get

κ
4 +A11κ

2 +A12 = 0, (4.22)

where,

A11 =−2l11−n2
1 + l2

01,

A12 = l2
11− (n2 +o1)

2 .

Let κ2 = ζ , then Eq. (4.22) becomes

H(ζ ) := ζ
2 +A11ζ +A12 = 0. (4.23)

Let H2a : A11 > 0, and A12 > 0. Using Routh Hurwitz criterion, we have that Eq. (4.23)

cannot have a positive root, which is a contraction to the fact that ζ = κ2 is such a root.

Thus, we state the following theorem:

Theorem 4.3.4. The endemic equilibrium Ee(S∗, I∗) is locally asymptotically stable for ρ1 > 0

and ρ2 = 0, if H2a holds.

From Theorem 4.3.4, it is inferred that there exists a purely imaginary root iκ of the

characteristic equation at Ee if and only if Eq. (4.18) has a positive real root ζ . On

analyzing the quadratic polynomial H(ζ ) graphically, we see that Eq. (4.23) has at least

one positive root if any of the following conditions hold:

H2b. A12 = l2
11− (n2 +o1)

2 < 0,

H2c. A11 < 0, and A2
11−4A12 > 0.

Without loss of generality, we assume that Eq. (4.23) has two positive roots ζ1 and ζ2,

and let κi =
√

ζi, i = 1,2.
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From Eqs. (4.20) and (4.21), ρ1 j corresponding to κi can be obtained as

ρ
( j)
1i

=
1
κi

arccos

(
κ2

i ((n2 +o1)− l01n1)− l11 (n2 +o1)

n2
1κ2

i +(n2 +o1)
2

)
+

2 jπ
κi

, i = 1,2, j = 0,1,2, . . . .

(4.24)

Let ρ∗1 = ρ
( j0)
1i0

= min
{

ρ
( j)
1i

: i = 1,2, j = 0,1,2, . . . .
}
.

Lemma 4.3.5. Suppose that H1 holds.

1. If either H2b or H2c satisfies, then Eq. (4.18) has all the roots with negative real parts

for ρ1 ∈ [0,ρ∗1 ).

2. If neither H2b nor H2c satisfies, then Eq. (4.18) has all the roots with negative real parts

for ρ1 ≥ 0.

let Γ(κ) = γ(ρ1)+ iκ(ρ1) be the root of Eq. (4.18) such that γ(ρ∗1 ) = 0 and κ(ρ∗1 ) =

κi0 := κ0.

To estabilish the Hopf bifurcation, we show the transversality condition

[
d(Reλ )

dρ1

]
λ=iκ0

6=

0.

Lemma 4.3.6. Suppose that H2d : H ′(κ2
0 ) 6= 0,

then the transversality condition
[

d(Reλ )

dρ1

]
λ=iκ0

6= 0 holds.

Proof. On differentiating Eq. (4.18) with respect to λ (ρ1) and then simplifying, we obtain

[
dλ

dρ1

]−1

=
2λ + l01

−λ (λ 2 + l01λ + l11)
+

n1

λ (n1λ +(n2 +o1))
− ρ1

λ
.

Re
(

dλ

dρ1

)−1 ∣∣∣
λ=iκ0

= Re
(

2iκ0 + l01

−iκ0(−κ2
0 + il01κ0 + l11)

+
n1

−n1κ02 + i(n2 +o1)κ0
+

iρ1

κ0

)
=

1
κ0

(
2κ0(κ

2
0 − l11)+ l2

01κ0

(l01κ0)2 +(κ2
0 − l11)2 −

n2
1κ0

(n1κ0)2 +(n2 +o1)2

)
=

2(κ2
0 − l11)+ l2

01

(l01κ0)2 +(κ2
0 − l11)2 −

n2
1

(n1κ0)2 +(n2 +o1)2 .

From Eqs. (4.20), and (4.21), we get

(n1κ0)
2 +(n2 +o1)

2 = (l01κ0)
2 +(κ2

0 − l11)
2. (4.25)
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Thus, we obtain

sign
{

d
dρ1

(Reλ )
∣∣∣
λ=iκ0

}
= sign

{
Re
(

dλ

dρ1

)−1 ∣∣∣
λ=iκ0

}

= sign
{

2κ2
0 +(l2

01−2l11−n2
1)

n2
1κ2

0 +(n2 +o1)2

}
= sign

{
H ′(κ2

0 )

n2
1κ2

0 +(n2 +o1)2

}
6= 0.

(4.26)

Thus, it follows that
[

d(Reλ )

dρ1

]
λ=iκ0

6= 0 and hence the proof.

From the above analysis, we have the following theorem:

Theorem 4.3.7. Suppose that H1 holds.

1. If neither H2b nor H2c holds, then Ee is locally asymptotically stable for all ρ1 ≥ 0.

2. If either H2b or H2c holds, then Ee is locally asymptotically stable for ρ1 ∈ [0,ρ∗1 ).

3. If either H2b or H2c holds, and H ′(κ2
0 ) 6= 0, then the system (4.3) undergoes a Hopf

bifurcation at Ee when ρ1 = ρ∗1 , and a family of periodic solutions bifurcate from Ee

when ρ1 crosses ρ∗1 .

Case (iii) ρ1 = 0, ρ2 > 0.

The characteristic equation (4.14) at Ee when ρ1 = 0, ρ2 > 0 becomes

λ
2 +m01λ +m02 +(m11λ +m12)e−λρ2 = 0, (4.27)

where,

m01 = m1 +n1,

m02 = m2 +n2,

m11 = l1,

m12 = l2 +o1.

(4.28)

Let λ = iκ be root of Eq. (4.27). On putting λ = iκ in Eq. (4.27) and simplifying, we
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obtain

κ
2−m02 = m12 cosκρ2 +m11κ sinκρ2, (4.29)

m01κ = m12 sinκρ2−m11κ cosκρ2. (4.30)

From Eqs. (4.29) and (4.30), we obtain

κ
4 +B11κ

2 +B12 = 0, (4.31)

where,

B11 =−2m02 +m2
01−m2

11,

B12 = m2
02−m2

12.
(4.32)

Let κ2 = η . Then, Eq. (4.31) becomes

G(η) := η
2 +B11η +B12 = 0. (4.33)

In the same way, as explained in Case (ii), Eq. (4.33) has atleast one postive root when

either of the following conditions holds:

H3a. B12 < 0,

H3b. B11 < 0, and B2
11−4B12 > 0.

Without loss of generality, we assume that Eq. (4.32) has two positive roots η1 and η2,

and let κi =
√

ηi, i = 1,2.

From Eqs. (4.29) and (4.30), ρ2 j corresponding to κi can be obtained as

ρ
( j)
2i

=
1
κi

arccos
(

κ2
i (m12−m01m11)−m02m12

m2
11κ2

i +m2
12

)
+

2 jπ
κi

, i = 1,2, j = 0,1,2, . . . . (4.34)

Let ρ∗2 = ρ
( j0)
2i0

= min
{

ρ
( j)
2i

: i = 1,2, j = 0,1,2, . . . .
}
.

As shown in Case(ii), H3c : G′(κ2
0 ) 6= 0, then the transversality condition

[
d(Reλ )

dρ2

]
λ=iκ0

6=

0 holds, where κ0 = κ(ρ∗2 ). Thus, the following theorem is stated:

Theorem 4.3.8. Suppose that H1 holds.

1. If neither H3a nor H3b satisfies, then Ee is locally asymptotically stable for all ρ2 ≥ 0.
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2. If either H3a or H3b satisfies, then Ee is locally asymptotically stable for ρ2 ∈ [0,ρ∗2 ).

3. If either H3a or H3b satisfies, and G′(κ2
0 ) 6= 0, then the system (4.3) undergoes a Hopf

bifurcation at Ee when ρ2 = ρ∗2 and a family of periodic solutions bifurcate from Ee

when ρ2 crosses ρ∗2 .

Case (iv) ρ1 = ρ2 = ρ .

In this case, the characteristic equation (4.14) becomes

λ
2 +m1λ +m2 +(q1λ +q2)e−λρ +o1e−2λρ = 0, (4.35)

where,

n1 + l1 = q1, and n2 + l2 = q2.

On multiplying Eq. (4.35) by eλρ , we get

eλρ
(
λ

2 +m1λ +m2
)
+(q1λ +q2)+o1e−λρ = 0. (4.36)

Let λ = iκ be root of Eq. (4.36). Then, Eq. (4.36) becomes:

(
−κ

2 +m2 +o1
)

cosκρ−m1κ sinκρ +q2 + i
((
−κ

2 +m2−o1
)

sinκρ +m1κ cosκρ +q1κ
)
= 0.

(4.37)

On separating real and imaginary parts of Eq. (4.37), we obtain

J1(κ)cosκρ− J2(κ)sinκρ = J3(κ), (4.38)

J4(κ)sinκρ + J5(κ)cosκρ = J6(κ), (4.39)

where,

J1(κ) =−κ
2 +m2 +o1, J2(κ) = m1κ, J3(κ) =−q2,

J4(κ) =−κ
2 +m2−o1, J5(κ) = m1κ, J6(κ) =−q1κ.

From Eqs. (4.38), and (4.39), we obtain

cosκρ =
J01(κ)

J00(κ)
, (4.40)

sinκρ =
J02(κ)

J00(κ)
, (4.41)
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where,

J01(κ) = J3(κ)J4(κ)+ J2(κ)J6(κ),

J02(κ) = J1(κ)J6(κ)− J3(κ)J5(κ),

J00(κ) = J1(κ)J4(κ)+ J2(κ)J5(κ).

Eqs. (4.40) and (4.41) implies that

J2
01 + J2

02 = J2
00. (4.42)

Now, assume that, (H4a): Eq. (4.42) has at least one positive root κ0. Then, Eq. (4.36)

has a pair of purely imaginary roots ±iκ0. For κ0, the corresponding critical value of the

time delay ρ is obtained as

ρ j =
1
κ0

arccos
J01(κ0)

J00(κ0)
+

2πæ
κ0

, j = 0,1,2, . . . . (4.43)

Let ρ0 = min
{

ρ j, j = 0,1,2, . . .
}
.

To estabilish Hopf bifurcation, we show that[
d(Reλ )

dρ

]
λ=iκ0

6= 0.

On di�erentiating Eq. (4.36) with respect to λ (ρ), we obtain

dλ

dρ

(
(2λ +m1)eλρ +ρ(λ 2 +m1λ +m2)eλρ +q1−o1ρe−λρ

)
+λ (λ 2+m1λ +m2)eλρ−λo1e−λρ = 0.

(4.44)

[
dλ

dρ

]−1

=
(2λ +m1)eλρ +q1

λ (o1e−λρ − (λ 2 +m1λ +m2)eλρ)
− ρ

λ

=
(2λ +m1)eλρ +q1

λ (2o1e−λρ +q1λ +q2)
− ρ

λ
(using Eq. (4.36)).

[
d(Reλ )

dρ

] −1

λ=iκ0

=
L1L3 +L2L4

L2
3 +L2

4
,
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where,

L1 = m1 cosκ0ρ0−2κ0 sinκ0ρ0 +q1,

L2 = 2κ0 cosκ0ρ0 +m1 sinκ0ρ0,

L3 = 2κ0o1 sinκ0ρ0−q1κ
2
0 ,

L4 = 2κ0o1 cosκ0ρ0 +κ0q2.

If H4b : L1L3+L2L4 6= 0, then
[

d(Reλ )

dρ

] −1

λ=iκ0

6= 0. Thus, the following theorem is stated

using [15]:

Theorem 4.3.9. Suppose that H4a−H4b hold. Then, the endemic equilibrium Ee is locally

asmptotically stable when ρ ∈ [0,ρ0); the system (4.3) undergoes a Hopf bifurcation at Ee

when ρ = ρ0, and a family of periodic solutions bifurcate from Ee near ρ = ρ0.

Case (v) ρ1 > 0, ρ2 > 0 and ρ2 ∈ (0,ρ∗2 ).

We consider Eq. (4.14) with ρ2 lies in stable interval and ρ1 is regarded as the parameter.

Let λ = iκ∗, (κ∗ > 0) be root of Eq. (4.14). Then,

G1 sinκ∗ρ1 +G2 cosκ∗ρ1 = G3, (4.45)

G1 cosκ∗ρ1−G2 sinκ∗ρ1 = G4, (4.46)

where,

G1 = n1κ∗−o1 sinκ∗ρ2,

G2 = n2 +o1 cosκ∗ρ2,

G3 = κ
2
∗ −m2− l1κ∗ sinκ∗ρ2− l2 cosκ∗ρ2,

G4 =−m1κ∗− l1κ∗ cosκ∗ρ2 + l2 sinκ∗ρ2.

From Eqs. (4.45) and (4.46), we obtain

κ
4
∗ −2κ

3
∗ l1 sin(κ∗ρ2)+κ

2
∗
(
−2(l2− l1m1)cos(κ∗ρ2)+ l2

1 +m2
1−2m2−n2

1
)
+2κ∗ sin(κ∗ρ2)

× (−l2m1 + l1m2 +n1o1)+2cos(κ∗ρ2)(l2m2−n1o1)+ l2
2 +m2

2−n2
1−o2

1 = 0.

(4.47)
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H5a : Let Eq. (4.47) has at least �nite positive root. We denote the positive roots of Eq.

(4.47) as κ1∗, κ2∗, κ3∗, . . . ,κk∗. For every κi∗, i = 1,2, . . . ,k, the corresponding critical

value of time delay is

ρ
( j)
1i∗ =

1
κi∗

arccos
{

G1G4 +G2G3

G2
1 +G2

2

}
κ∗=κi∗

+
2π j
κi∗

, j = 0,1,2, . . . . (4.48)

Let ρ∗1 = min
{

ρ
(0)
1i∗

}
,κ∗ = κi∗

ρ1=ρ∗1
, i = 1,2, . . . ,k.

Di�erentiating Eq. (4.14) with respect to ρ1 yields:

[
dλ

dρ1

]−1

=
2λ +m1 +n1e−λρ1 + l1e−λρ2−ρ2(l1λ + l2)eλρ2−o1ρ2e−λ (ρ1+ρ2)

λ
(
(n1λ +n2)e−λρ1 +o1e−λ (ρ1+ρ2)

) − ρ1

λ
.

[
d(Reλ )

dρ1

] −1

λ=iκ∗
=

D1D3 +D2D4

D2
3 +D2

4
,

where,

D1 =−κ
∗l1ρ2 sin(κ∗ρ2)+ l1 cos(κ∗ρ2)− l2ρ2 cos(κ∗ρ2)+m1 +n1 cos(κ∗ρ1)−o1ρ2 cos(κ∗ (ρ∗1 +ρ2)) ,

D2 = 2κ
∗− l1 sin(κ∗ρ2)+ l2ρ2 sin(κ∗ρ2)+κ

∗l1ρ2 (−cos(κ∗ρ2))−n1 sin(κ∗ρ∗1 )+o1ρ2 sin(κ∗ (ρ∗1 +ρ2)),

D3 =−n1κ
∗2 cosκ

∗
ρ
∗
1 +n2κ

∗ sinκ
∗
ρ
∗
1 +o1κ

∗ sinκ
∗(ρ∗1 +ρ2),

D4 = n2κ
∗ cosκ

∗
ρ
∗
1 +n1κ

∗2 sinκ
∗
ρ
∗
1 +o1κ

∗ cosκ
∗(ρ∗1 +ρ2).

H5b : D1D3 +D2D4 6= 0.

If H5b holds, then

[
d(Reλ )

dρ1

] −1

λ=iκ∗
6= 0. Thus, using the Hopf bifurcation theorem in [15],

we state the following theorem:

Theorem 4.3.10. If the conditions H5a−H5b hold and ρ2 ∈ (0,ρ∗2 ), then the endemic equi-

librium Ee of system (4.3) is locally asymptotically stable for ρ1 ∈ [0,ρ∗1 ), undergoes a Hopf

bifurcation at ρ1 = ρ∗1 and a branch of periodic solutions bifurcate from Ee near ρ1 = ρ∗1 .

4.4 Numerical simulation

In this section, the analytical results are illustrated numerically using Mathematica

11.
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Example 4.2. Let r = 0.08, K = 100, β = 0.0012, α = 0.002, γ = 0.001, ϑ = 0.01, d =

0.008, θ = 0.02.

Figure 4.2: Delay effects on I(t).

Fig. 4.2 is plotted for σ = 0.004 and ξ = 0.009, which shows the effect of two time delays ρ1

and ρ2 on the infected population I(t). It depicts that when there is no delay, i.e., ρ1 = ρ2 = 0,

the infected individuals will increase and settle down to a steady state after a duration. If there

is a time delay in incidence, i.e., ρ1 6= 0, for instance, ρ1 = 10, then the infective will appear

with oscillation and persist at a high level and stabilize after a long period. Lastly, if there

are time delays in both incidence and treatment rates, i.e., ρ1 > 0, and ρ2 > 0, for instance,

ρ1 = 10 and ρ2 = 25, then the disease will spread at a higher rate with higher oscillation. It

shows the significance of considering both the time delays in studying the spread and control

of an epidemic.

4.3.1: I(t) versus α . 4.3.2: I(t) versus γ .

Figure 4.3: Effects of measure of inhibitions α and γ on infectives I(t).

Fig. 4.3 shows the effects of anti-epidemic preventive measures taken by susceptibles and

infectives (recalling that α represents the rate of preventive measures adopted by susceptibles
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and γ is the rate of preventive measures adopted by infectives ). The responsible actions

taken by susceptibles and infectives will have different effects and impacts on how rapidly and

extensively the infectious diseases will spread. It can be concluded that if both susceptibles

and infectives follow effective protection measures, it can significantly increase the ability to

control infectious diseases and prevent epidemics.

4.4.1: I(t) versus σ for ξ = 0.001. 4.4.2: I(t) versus ξ for σ = 0.008.

Figure 4.4: Effects of cure rate σ and resouces limitation rate ξ on the infected individuals
I(t).

Fig. 4.4.1 is drawn to see the effect of the cure rate σ on the infectives, whereas Fig. 4.4.2

reflects the impact of limited cure resources on the infected community. It shows that the

availability of the treatment can substantially control the disease spread and the inadequate

access to treatment creates significant obstacles for eliminating the infection.

Example 4.3. Let r = 0.08, K = 100, β = 0.0012, α = 0.002, γ = 0.001, ϑ = 0.01, d =

0.008, θ = 0.02, σ = 0.004, ξ = 0.009. Using these values of parameters, we obtain that

R0 = 2.63158 > 1 and the endemic equilibrium Ee(S∗, I∗) = (45.554,41.237).

We illustrate the Case (ii) of Section 4.3.3, i.e., ρ1 > 0 and ρ2 = 0. We evaluate that A12 =

l2
11− (n2 + o1)

2 = −3.51368× 10−6 < 0 and H ′(κ2
0 ) = 0.00405708 > 0 which confirms the

hypothesis H2b of Theorem 4.3.7. We calculate the critical value of ρ1 as ρ∗1 = 14.7333.

As exhibited in subfigures 4.5.1–4.5.4, the endemic equilibrium Ee(45.554,41.237) is locally

asymptotically stable when ρ1 < ρ∗1 = 14.7333, and when the value of ρ1 crosses the critical

value ρ∗1 , then the periodic solutions bifurcates from Ee, which confirms the results of Theorem

4.3.7.
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4.5.1: Time series solution of S(t) and I(t) for ρ1 =
ρ2 = 0. 4.5.2: Phase plot of S(t) and I(t) for ρ1 = ρ2 = 0.

4.5.3: Time series solution of S(t) and I(t) for ρ1 =
14 and ρ2 = 0. 4.5.4: Phase plot of S(t) and I(t) for ρ1 = 14 and

ρ2 = 0.

4.5.5: Time series solution of S(t) and I(t) for ρ1 =
15 and ρ2 = 0. 4.5.6: Phase plot of S(t) and I(t) for ρ1 = 15 and

ρ2 = 0.

Figure 4.5: Plots of Hopf bifurcation, illustrating case (ii) of Section 4.3.3.

Example 4.4. To illustrate the Case (iii) of Section 4.3.3, i.e., ρ1 = 0 and ρ2 > 0, we con-

sider the following parameters: r = 0.08, K = 100, β = 0.004, α = 0.002, γ = 0.001, ϑ =
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0.01, d = 0.008, θ = 0.02, σ = 0.004, ξ = 0.009. We evaluate that R0 = 8.77193 > 1,

Ee(S∗, I∗)= (14.7911,17.8592), B12 =m2
02−m2

12 = 0.0000122401> 0, B2
11−4B12 = 5.03027∗

10−7 > 0, and G′(κ2
0 ) = 0.117404 > 0. Thus, the hypothesis H3b of the Theorem 4.3.8 holds.

The critical value of ρ2 is calculated as ρ∗2 = 8.17751.

4.6.1: Time series solution of S(t) and I(t) for ρ1 =
0 and ρ2 = 7.

4.6.2: Phase plot of S(t) and I(t) for ρ1 = 0 and
ρ2 = 7.

Figs. 4.6.1 and 4.6.2 show the presence of periodic solutions, where the trajectories of S(t)

and I(t) reach to the steady-state Ee(14.7911,17.8592), when the delay value ρ2 is less than

its critical value ρ∗2 .

4.6.3: Time series solution of S(t) and I(t) for ρ1 =
0 and ρ2 = 10.

4.6.4: Phase plot of S(t) and I(t) for ρ1 = 0 and
ρ2 = 10.

Figure 4.6: Presence of Hopf bifurcation, illustrating case (iii) of Section 4.3.3.
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Figs. 4.6.3 and 4.6.4 are plotted for ρ2 > ρ∗2 , which shows that the periodic solutions appear

and the trajectories of S(t) and I(t) go away from Ee and destabilization of the system (4.3) at

Ee.

Example 4.5. We consider the case (iv) of Section 4.3.3 (i.e., ρ1 = ρ2 = ρ) with the same

values of parameters as taken in Example (4.3). The critical value of delay ρ is obtained as

ρ0 = 14.3942. The time series solutions and the phase plane of S(t) and I(t) are plotted in the

Figs. 4.7.1 and 4.7.2 for the delay ρ = 12, where the trajectories reaches to the stable endemic

equilibrium Ee. On the other hand, Figs. 4.7.3 and 4.7.4 show the instability of Ee when the

time delay is higher than its critical values.

4.7.1: Time series solution of S(t) and I(t) for ρ =
ρ1 = ρ2 = 12. 4.7.2: Phase plot of S(t) and I(t) for ρ = ρ1 = ρ2 =

12.

4.7.3: Time series solution of S(t) and I(t) for ρ =
ρ1 = ρ2 = 16. 4.7.4: Phase plot of S(t) and I(t) for ρ = ρ1 = ρ1 =

16.

Figure 4.7: Plots of Hopf bifurcation, illustrating case (iv) of Section 4.3.3.

Example 4.6. In this example, Case (v) of Section 4.3.3 is illustrated with the same values

of parameters as taken in Example (4.3). We fix ρ2 = 7. The critical value of ρ1 is obtained

as ρ∗1 = 14.2. Cleary, the impact of both the delay parameters ρ1 and ρ2 can be seen. Figs.
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4.8.1 and 4.8.2 show the oscillatory trajectories of S(t) and I(t), which stabilized to endemic

equilibrium Ee. Figs. 4.8.3 and 4.8.4 show the stable periodic solutions and a stable limit cycle,

which destabilized the endemic equilibrium Ee. It shows that the infectious diseases continue

to proliferate periodically as ρ1 crosses ρ∗1 . Thus, the consideration of both the delays majorly

affects the number of infectives and the spread of infection.

4.8.1: Time series solution of S(t) and I(t) for ρ1 =
13.5 and ρ2 = 7. 4.8.2: Phase plot of S(t) and I(t) for ρ1 = 13.5 and

ρ2 = 7.

4.8.3: Time series solution of S(t) and I(t) for ρ1 =
19.1 and ρ2 = 7. 4.8.4: Phase plot of S(t) and I(t) for ρ1 = 19.1 and

ρ2 = 7.

Figure 4.8: Plots of Hopf bifurcation, illustrating case (v) of Section 4.3.3.

4.5 Discussion

A time-delayed SIR epidemic model is proposed and analyzed mathematically with the

logistic growth of susceptible individuals. The Crowley �Martin type nonlinear incidence

rate is incorporated to examine the transmission of infectious diseases from the infected

population to the susceptible population. The Holling type III treatment function is

considered for the treatment of infectives, which incorporates the limited availability of
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medical resources such as ICU (intensive care unit) beds, medications, ventilators, hos-

pital conditions, etc. We include two explicit time-delays in the present model: a time

delay in the incidence rate, which represents the latent period; a time delay in the nonlin-

ear treatment function, which measures the impact of delay in providing the appropriate

therapy to infectives. We obtain the model's feasible equilibria, namely, disease-free

equilibrium (DFE) and the endemic equilibrium (EE). The basic reproduction number

R0 is derived. We show that the DFE of the delayed system is locally asymptotically

stable when R0 is less than unity, unstable when R0 is greater than unity, and neutrally

stable when R0 is equal to unity. When there is no latent period, then the DFE for R0 = 1

reveals the presence of forward bifurcation. The occurrence of forward bifurcation has

an important implication in the epidemic models. It shows that the necessary and su�-

cient condition to eliminate the disease is to bring the basic reproduction number below

unity. Further, the prerequisite for the existence of EE is obtained, and the stability of

the EE is investigated. Hopf bifurcation near EE is shown for di�erent possible cases

of time delays, and the explicit formulas for the critical values of time-delays are derived.

Further, the numerical simulations verify the analytical results and show the impor-

tance of considering nonlinearity and time delays. The latent period and the delay in

treating patients have a signi�cant impact on the number of infected individuals (Fig.

4.2). These delays result in spreading infections at a high rate, and so, the infection stays

for a longer period. Considering the time delays as the bifurcation parameters can a�ect

the equilibrium's stability (Figs. 4.5�4.8). When the delay is suitably small, the system

reaches its steady state, but stabilizing the system to its equilibrium will be out of con-

trol as it crosses the critical value. The course will produce a limit cycle and destabilize

the endemic stability, making it di�cult to control the spread of infection. The e�ect of

preventive measures adopted by susceptibles and infectives has been shown numerically

(Fig. 4.3). It shows that human behavior towards the disease exerts a powerful in�uence

on pathogen invasion dynamics. A better understanding of risk factors for developing

infectious disease in the general public is a requirement for disease prevention. Increas-

ing knowledge, changing attitudes, and reducing risky behaviors towards the disease can

reduce the death rate, disability due to illness, and epidemic growth. The e�ects of cure

rate and limitation in medical resources are also shown numerically (Fig. 4.4). It is

observed that increasing medical resource acquisition has e�ects on eliminating infection

from society. A reasonable and timely treatment can speed up the recovery process and

prevent disease completely, whereas the limited medical resources availability increases
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the number of infected people. Thus, timely treatment and resource accessibility need

to be readily available. The earlier treatment accessibility in the disease process can

mitigate the disease spread and save human lives.
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Chapter 5

A nonlinear time-delayed epidemic model

with aware individuals class,

Michaelis-Menten incidences, and

nonlinear treatment

Awareness plays a vital role in informing and educating the public about infection risk

during an outbreak and further modifying their behavior, which in�uences the incidence

pattern. Therefore, this chapter presents a time-delayed epidemic model incorporating

a class of aware susceptible individuals in the SIR compartmental model, contributing

to public policy development in controlling disease spread. We have considered the

Michaelis-Menten functional type nonlinear incidence rates for unaware and aware sus-

ceptibles with the latent period and a saturated treatment rate for infectives. We analyze

the model mathematically to describe disease transmission dynamics using the stability

theory of delay di�erential equations for two obtained equilibria; disease-free (DFE) and

endemic (EE). Moreover, numerical simulations validate the analytical �ndings.

5.1 Introduction

When a disease emerges, changes in people's behavior concerning that disease can

change the development of the pathogen. Individuals who are aware of the illness's spread
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take precautions to diminish their susceptibility, which can suppress disease transmission

in society. Many authors have studied the e�ect of awareness on the epidemic models

(for instance, [54, 56, 59]). Funk et al. [70] deliberate the in�uence and signi�cance of

awareness programs on the spread and control of the outbreak. Misra et al. and Dubey

et al. [94,115] studied a nonlinear mathematical model to discuss the e�ects of awareness

programs on the transmission of infectious diseases. Kumar et al. [136] incorporated the

alert individuals class into the SIR epidemic model and studied the e�ect of alertness in

infectious disease transmission dynamics.

A signi�cant factor in the dynamical study of infectious disease is the incidence rate

by which infection transmits to susceptible individuals. Therefore, numerous authors

are keen to deliberate nonlinear incidence rates to study the transmission dynamics of

infectious diseases (e.g., [10, 12, 61, 62, 73, 134, 142]). The Michaelis�Menten type func-

tional response also has a nonlinear form. In this incidence rate, the number of adequate

contacts per infective in unit time grows less rapidly as the total population increases.

Michaelis-Menten contact rate is of the form g(I) = βσ I/(1+ I). It combines the bilinear

and standard incidence rate approaches by assuming that if the number of infectives I is

low, the number of actual per capita infectives g(I) is proportional to I, whereas if the

number of infected individuals I is large, there is a saturation e�ect which makes the

number of actual infectives constant [32,57].

A�ordable and safe medical treatments are also necessary, which leads to a decline in

the number of infected individuals. When a disease emerges, medical facilities and sub-

sequent treatments may need some time to develop and implement; therefore, choosing

a reasonable treatment rate is essential. Due to the limited medical resources, providing

treatment to all the infectives puts a tremendous burden on public health associations.

Thus, considering a reasonable treatment rate in the disease transmission and control

epidemic models is essential. The saturating treatment rate makes the epidemic model

more realistic, as, in this treatment rate, the treatment capacity tends to a �nite limit

as the number of infected individuals increases. [106,116,125].

Motivated by the work and facts as mentioned above, in this chapter, we present an

infectious disease transmission compartmental model comprising four subpopulations:

fully susceptible population, aware susceptible population, infected population, and re-

covered population and formulate a time-delayed epidemic mathematical model that

incorporates two explicit nonlinear incidences with a latent period and a nonlinear treat-

ment rate for the infected individuals. We have considered the Michaelis�Menten type
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nonlinear incidence rate that prevents the unboundedness of the infected individuals and

the saturating treatment rate for infected people, including the limited accessibility of

treatment resources. At the beginning of the infectious disease, there is a time known

as the latency period, before an infected person can transmit the infection to another

person. Therefore, the inclusion of the latent period in the incidence pattern makes the

present model more realistic. After formulating the model, we perform a mathematical

analysis that allows long-term qualitative predictions of outbreaks and the persistence of

the disease. We derive the basic reproduction number and estimate how an infection can

spread in a population. Using R0, the local and global stability behavior of two obtained

equilibria, namely, disease-free and endemic, is investigated, revealing the persistence or

eradication of infection. The global stability behavior of both the equilibria is estab-

lished by constructing Lyapunov functionals and using the Lyapunov-LaSalle invariance

approach. The Hopf bifurcation regarding the time-delay as a bifurcation parameter is

established, which shows the oscillatory and periodic solutions near-endemic equilibrium.

The numerical experiments show the signi�cance of the model's variables and parameters

and suggest strategies that could prevent infection.

5.2 Model derivation

Let P denotes the total population and the transmission of infectious diseases involves

four types of subpopulations: Susceptible individuals Sp(t), Aware individuals Ap(t), In-

fected individuals Ip(t), and Recovered individuals Rp(t). That is, P = Sp(t)+Ap(t)+

Ip(t) +Rp(t), which means that the individuals categorized in Sp(t), Ap(t), Ip(t) and

Rp(t) may vary with time t and P is a �xed population. It is assumed that each sub-

population of the SAIR model is well mixed and interact homogeneously with each other.

Let κ denotes the constant recruitment rate of susceptibles. ξ is the awareness rate

in susceptible individuals, and thus the term ξ Sp enters the class Ap(t). We consider

Michaelis�Menten type two explicit nonlinear incidence rates with the following inter-

pretation: the term Ψ(Sp(t−ρ), Ip(t−ρ)) =
βσSp(t−ρ)Ip(t−ρ)

1+Ip(t−ρ) represents the incidence rate

when susceptible individuals catch the infection from infected individuals, and the term

Λ(Ap(t−ρ), Ip(t−ρ)) =
γσAp(t−ρ)Ip(t−ρ)

1+Ip(t−ρ) represents the incidence rate when aware indi-

viduals catch the infection from infectives. Here, β and γ denote the force of infection

among susceptible and aware individuals, respectively, and σ denotes the average num-
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ber of contact partners. We assume that γ < β , as the aware individuals are at a lower

risk of getting infected than fully susceptible individuals. The parameter ρ > 0 denotes

the time delay representing the latent phase having a �xed duration. During the latent

period, a host may or may not show symptoms, but the host cannot infect other hosts

in both cases. Thus, the latent period signi�cantly in�uences the spreading dynamics

of an infectious disease or epidemic. Since the aware individuals can also become in-

fected, perhaps at a lower rate than fully susceptibles, they also have some behavioral

responses and have a latency phase due to immunological reasons. Thus, the time delay

ρ is the constant latency time and represents the time taken by the fully susceptible

and aware individuals, that, infected at a time t can infect other susceptible and aware

individuals at time t +ρ only. The parameters ϑ represents the natural death rate, d

represents the disease-induced death rate, and θ represents the recovery rate of infected

individuals. The nonlinear term h(Ip(t)) =
aI2

p
bI2

p+cIp+1 represents the saturated treatment

rate of infectives, where a denotes the maximum treatment (cure) rate, b denotes the

rate of limitations in treatment availability, and c denotes the saturation constant. The

transition diagram of the model (5.1) is shown in Fig. 5.1 and the description of the

parameters is given in Table 5.1.

Figure 5.1: Block diagram of the model (5.1).
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Table 5.1: Symbolizations of variables and parameters.

Notation Description

P Total constant population

Sp(t) Susceptible subpopulation (full vulnerable)

Ap(t) Aware subpopulation

Ip(t) Infected subpopulation

Rp(t) Recovered subpopulation

ρ Time delay

κ Susceptibles’ recruitment rate

β Rate of transmission of susceptible class to infected class

γ Rate of transmission of aware class to infected class

σ Average contact partners

ξ Awareness rate in susceptibles

ϑ Natural mortality rate

d Death rate due to disease

θ Recovery rate

a Cure rate

b Limitations rate in treatment availability

c Saturation constant

Ψ(Sp(t), Ip(t)) Michaelis–Menten incidence rate among susceptibles

Λ(Sp(t), Ip(t)) Michaelis–Menten incidence rate among aware individuals

h(Ip(t)) Saturated treatment rate of infected individuals
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The novel mathematical disease transmission and control model based on the above

assumptions is presented under the following system of delay di�erential equations:

dSp

dt
= κ−ϑSp−

βσSp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
−ξ Sp,

dAp

dt
= ξ Sp−ϑAp−

γσAp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
,

dIp

dt
=

βσSp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
+

γσAp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
− (ϑ +d +θ)Ip−

aI2
p

bI2
p + cIp +1

,

dRp

dt
= θ Ip−ϑRp +

aI2
p

bI2
p + cIp +1

.

(5.1)

subject to the initial conditions φ = (φ1,φ2,φ3,φ4) de�ned in the Banach space

C+= {φ ∈C([−ρ,0],R4
+) : φ1(Ω)= Sp(Ω),φ2(Ω)=Ap(Ω),φ3(Ω)= Ip(Ω),φ4(Ω)=Rp(Ω)},

(5.2)

where R4
+ = {(Sp,Ap, Ip,Rp) ∈ R4 : Sp ≥ 0,Ap ≥ 0, Ip ≥ 0,Rp ≥ 0}. Biologically, it is as-

sumed that φi > 0 (i = 1,2,3,4).

We observe that the incidence functions Ψ(Sp(t − ρ), Ip(t − ρ)), Λ(Ap(t − ρ), Ip(t − ρ))

and the treatment rate function h(Ip(t)) are continuously di�erentiable, positive, and

monotonically increasing for all Sp(t), Ap(t), Ip(t)> 0. That is, the following postulates

hold:

P1. Ψ(Sp(t), Ip(t))> 0, Ψ′Sp
(Sp(t), Ip(t))> 0, Ψ′Ip

(Sp(t), Ip(t))> 0 for Sp(t)> 0,

Λ(Ap(t), Ip(t))> 0, Λ′Ap
(Ap(t), Ip(t))> 0, Λ′Ip

(Ap(t), Ip(t))> 0 for Ap(t)> 0 and Ip(t)> 0.

P2. Ψ(Sp(t),0) = Ψ(0, Ip(t)) = 0, Ψ′Sp
(Sp(t),0) = 0, Ψ′Ip

(Sp(t),0) > 0 for Sp(t) > 0,

Ip(t)> 0 and,

Λ(Ap(t),0) = Λ(0, Ip(t)) = 0, Λ′Ap
(Ap(t),0) = 0, Λ′Ip

(Ap(t),0)> 0 for Ap(t)> 0, Ip(t)> 0.

P3. h(0) = 0, h′(0)> 0 for Ip(t)≥ 0.
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5.3 Basic properties

For biological reasons, we assume that all the parameters of the model (5.1) are posi-

tive. That is, κ, ϑ , β , σ , ξ , γ, d, θ , a, b, c > 0.

Positivity: We see that the positivity of the above initial conditions for Sp, Ap, Ip and

Rp in [−ρ,0] imply positivity for all solutions (Sp(t),Ap(t), Ip(t),Rp(t)), t > 0 of model

(5.1). We further note that Sp(t) can never vanish since at each time t > 0 where Sp(t)

vanishes, it is
dSp
dt = κ > 0.

We prove the following lemma.

Lemma 5.3.1. The compact set

D = {(Sp,Ap, Ip,Rp) ∈ R4
+ : Sp(t)+Ap(t)+ Ip(t)+Rp(t)≤

κ

ϑ
}

is globally attractive and invariant for the solutions of (5.1).

Proof. Since the right-hand side of the model (5.1), and its derivatives are continuous, there-

fore, it assures the wellpossness of the model (5.1). Summing up all the equations of the model

(5.1) results to

d
dt
(Sp(t)+Ap(t)+ Ip(t)+Rp(t)) = κ−ϑ(Sp +Ap + Ip +Rp)−dI

≤ κ−ϑ(Sp +Ap + Ip +Rp).

(5.3)

Thus, we obatin

0 < Sp(t)+Ap(t)+ Ip(t)+Rp(t)≤
κ

ϑ
−
(

Sp(0)+Ap(0)+ Ip(0)+Rp(0)−
κ

ϑ

)
e−ϑ t (5.4)

Thus, the invariant region for the existence of the solutions is given as

0 < lim
t→∞

(Sp(t)+Ap(t)+ Ip(t)+Rp(t))≤
κ

ϑ
. (5.5)

Hence, the model (5.1) has closed and bounded solutions.

5.4 Mathematical analysis

This section obtains the disease-free equilibrium (DFE), then the basic reproduction

number R0, and investigates the system's stability at DFE. We show the existence of
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the endemic equilibrium (EE) and examine its stability and show the presence of Hopf

bifurcation around it. Also, the global stability behavior of the DFE and EE is investi-

gated with the help of R0.

We observe that the �rst three equations of the model (5.1) are free from R(t); therefore,

without loss of generality, the following reduced system of the delay di�erential equations

is su�cient to study for the analysis purpose:

dSp

dt
= κ−ϑSp−

βσSp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
−ξ Sp,

dAp

dt
= ξ Sp−ϑAp−

γσAp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
,

dIp

dt
=

βσSp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
+

γσAp(t−ρ)Ip(t−ρ)

1+ Ip(t−ρ)
− (ϑ +d +θ)Ip−

aI2
p

bI2
p + cIp +1

.

(5.6)

Taking the system (5.6) into rest, we �nd that the system (5.6) exhibits two equilibria:

(i) The disease-free equilibrium (DFE): E0 (S0,A0, I0) = E0

(
κ

ϑ+ξ
, κξ

ϑ(ϑ+ξ )
,0
)
.

(ii) The positive or endemic equilibrium (EE): Ee(S∗p,A
∗
p, I
∗
p), where S∗p, A∗p and I∗p are

obtained in Subsection 5.4.2.

5.4.1 Disease-free equilibrium and stability

The system (5.6) has a disease-free equilibrium (DFE) of the form E0(S0,A0, I0) =

E0

(
κ

ϑ+ξ
, κξ

ϑ(ϑ+ξ )
,0
)
, and at E0, the characteristic equation is obtained as

(−ϑ −ξ −λ )(−ϑ −λ )

(
κσe−λρ

ϑ(ϑ +ξ )
(βϑ +ξ γ)− (ϑ +d +θ)−λ

)
= 0. (5.7)

The roots of the Eq. (5.7) are λ1 =−ϑ −ξ , λ2 =−ϑ , and the remaining roots are the

solutions of the transcendental equation

κσ

ϑ(ϑ +ξ )
(βϑ +ξ γ)e−λρ − (ϑ +d +θ)−λ = 0. (5.8)

Assume that

g(λ ) := λ +ϑ +d +θ − κσ(βϑ +ξ γ)e−λρ

ϑ(ϑ +ξ )
= 0. (5.9)
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We de�ne the term κσ(βϑ+ξ γ)e−λρ

ϑ(ϑ+ξ )(ϑ+d+θ)
at ρ = 0 as the basic reproduction number R0 of the

system (5.6). Thus, the system (5.6) has R0 of the form

R0 =
κσ(βϑ +ξ γ)

ϑ(ϑ +ξ )(ϑ +d +θ)
.

Analysis for R0 6= 1

The roots λ1 and λ2 of Eq. (5.7) preserve negative signs. Therefore, the analysis is

now based on the Eq. (5.9).

Note that

g(0) = ϑ +d +θ − κσ(βϑ +ξ γ)

ϑ(ϑ +ξ )
= (ϑ +d +θ)(1−R0). (5.10)

If R0 > 1, then g(0)< 0. Also,

g′(λ ) = 1+ρ
κσ(βϑ +ξ γ)e−λρ

ϑ(ϑ +ξ )
> 0. (5.11)

Hence, g(0) < 0 and g′(λ ) > 0 imply that g(λ ) = 0 has a unique and positive real root

when R0 > 1.

Now, when R0 < 1, then

Reλ =
κσ(βϑ +ξ γ)cos(Imλ )ρ

ϑ(ϑ +ξ )
e−(Reλ )ρ − (ϑ +d +θ)<

κσ(βϑ +ξ γ)

ϑ(ϑ +ξ )
− (ϑ +d +θ)< 0.

(5.12)

Therefore, R0 < 1 implies that λ is a root of equation (5.7) with negative real part. Thus,

the following theorem is stated:

Theorem 5.4.1. The disease-free equilibrium (DFE) E0 is locally asymptotically stable if R0 <

1 and unstable if R0 > 1 for ρ ≥ 0.

Analysis at R0 = 1

Now we analyze the system (5.6) at E0 and R0 = 1 for ρ > 0 and ρ = 0, seperately.

Case (i) ρρρ >>> 000

When R0 = 1, then Eq. (5.9) has a simple characteristic root λ = 0. It is also noticed

that R0 = 1 gives κσ(βϑ +ξ γ) = ϑ(ϑ +ξ )(ϑ +d +θ).
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Let λ = p+ iq be the other solution of Eq. (5.9), then we get:

p+ iq+d +ϑ +θ − (cosqρ− i sinqρ)(d +ϑ +θ)e−pρ = 0. (5.13)

Using Euler's formula and on splitting real and imaginary parts of Eq. (5.13), we get

p+d +ϑ +θ = e−pρ (d +ϑ +θ) cosqρ,

q =−(d +ϑ +θ) e−pρ sinqρ.
(5.14)

A root satisfying both the equations of (5.14) must be a solution to the equation attained

by squaring and adding these two equations. Hence, we get

(p+d +ϑ +θ)2 +q2 = (d +ϑ +θ)2 e−2pρ . (5.15)

For Eq. (5.15) to hold, we must have p≤ 0. Thus, E0 is linearly neutrally stable.

Case (ii) ρρρ === 000

In this case, we study the qualitative behavior of the undelayed system (5.6) (i.e.,

ρ = 0) through the stability analysis near critical points, i.e., at E0 and R0 = 1, using

the bifurcation theory approach [40], depending upon the center manifold theory [17].

For simplicity, let Sp = x1, Ap = x2, and Ip = x3. So, the system (5.6) reduces to

dx1

dt
= κ−ϑx1−

βσx1(t)x3(t)
1+ x3(t)

−ξ x1 ≡ f1,

dx2

dt
= ξ x1−ϑx2−

γσx2(t)x3(t)
1+ x3(t)

≡ f2,

dx3

dt
=

βσx1(t)x3(t)
1+ x3(t)

+
γσx2(t)x3(t)

1+ x3(t)
− (ϑ +d +θ)x3−

ax2
3

bx2
3 + cx3 +1

≡ f3.

(5.16)

Observe that R0 = 1 ⇐⇒ the bifurcation parameter σ = σ∗ = ϑ(ϑ+ξ )(ϑ+d+θ)
κ(βϑ+ξ γ)

.

The Jacobian matrix J(E0, σ∗) of (5.16) obtained at E0 and σ∗ is

J(E0,σ
∗) =


−ϑ −ξ 0 −βσ∗κ

ϑ+ξ

ξ −ϑ − γσ∗κξ

ϑ(ϑ+ξ )

0 0 0

 .

The eigenvalues of J(E0, σ∗) are λ1 = −ϑ − ξ , λ2 = −ϑ , and λ3 = 0. Clearly, λ1 and

λ2 are negative eigenvalues and λ3 is a simple zero eigenvalue. Hence, when R0 = 1, the
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DFE E0 is a non-hyperbolic equilibrium.

The right eigenvector v = (v1,v2,v3) corresponding to λ3 = 0 of the Jacobian matrix

J(E0, σ∗) is obtained as

v1 =−
βκσ∗

(ϑ +ξ )2 ,

v2 =−
κϑξ σ∗(β + γ)+ γκξ 2σ∗

ϑ 2(ϑ +ξ )2 ,

v3 = 1.

The left eigenvector w = (w1,w2,w3) of the Jacobian matrix J(E0, σ∗) corresponding to

λ3 = 0 is obtained as

w1 = 0,

w2 = 0,

w3 = 1.

Let fk's represent the right-hand side of the system (5.16). The bifurcation co�cients a1

and b1 de�ned in Theorem 4.1 of Castillo �Chavez and Song [40] are given by:

a1 =
3

∑
k,i, j=1

wkviv j

(
∂ 2 fk

∂xi∂x j

)
E0

,

b1 =
3

∑
k,i=1

wkvi

(
∂ 2 fk

∂xi∂σ∗

)
E0

.

The non-zero partial derivative associated with the functions fk's calculated at E0 are

evaluated as

(
∂ 2 f3

∂x3∂x1

)
E0

= βσ∗,
(

∂ 2 f3
∂x3∂x2

)
E0

= γσ∗,
(

∂ 2 f3
∂x1∂x3

)
E0

= βσ∗,
(

∂ 2 f3
∂x2∂x3

)
E0

= γσ∗,
(

∂ 2 f3
∂x2

3

)
E0

=

−2a−2βσ∗
(

κ

ϑ+ξ

)
−2γσ∗

(
κξ

ϑ(ϑ+ξ )

)
, and

(
∂ 2 f3

∂x3∂σ∗

)
E0

= βκϑ+γκξ

ϑ(ϑ+ξ )
.

Thus, the coe�cients a1 and b1 are computed as

a1 =−
2(aϑ 2(ϑ +ξ )2 +κσ∗(β 2 ϑ 2σ∗+ γξ (ϑ +ξ )(ϑ + γ σ∗)+βϑ(ϑ 2 +ϑξ + γξ σ∗)))

ϑ 2(ϑ +ξ )2 ,

b1 =
βκϑ + γκξ

ϑ(ϑ +ξ )
.

It can be seen that the bifurcation coe�cients a1 < 0, and b1 > 0. Therefore, the bifur-
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cation is forward.

Figure 5.2: Ip(t) vs. R0, revealing forward bifurcation.

Fig. 5.2 illustrates the forward bifurcation with the following set of parameters: κ =

2, β = 0.09, ξ = 0.12, σ = 0.08, ϑ = 0.01, γ = 0.009, d = 0.08, θ = 0.03, a = 0.005, b=

0.01, c = 0.03.. This �gure provides the qualitative description of infectives when the

basic reproduction number R0 varies from unity. It shows that when R0 crosses unity

from below, a small positive asymptotically stable endemic equilibrium exists, and E0

changes its stability from stable to unstable.

In concluding, we state the following theorem.

Theorem 5.4.2. The disease-free equilibrium E0 at R0 = 1 of the system (5.6) is linearly

nuetrally stable for ρ > 0, and when ρ = 0, then the undelayed system (5.6) exhibits a forward

bifurcation at E0 and R0 = 1.

5.4.2 Endemic equilibrium and stability

Now, we determine the conditions for endemic equilibrium existence. For that, assum-

ing that Sp, Ap, Ip 6= 0 and setting the system (5.6) to zero, we get:

κ−ϑSp−
βσSpIp

1+ Ip
−ξ Sp = 0, (5.17)

ξ Sp−ϑAp−
γσApIp

1+ Ip
= 0, (5.18)

βσSpIp

1+ Ip
+

γσApIp

1+ Ip
− (ϑ +d +θ)Ip−

aI2
p

bI2
p + cIp +1

= 0. (5.19)
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On obtaining Sp from Eq. (5.17) and Ap from Eq. (5.18), and then substituting it in

(5.19), the following biquadratic equation in Ip is obtained:

F(Ip) := K0 +K1Ip +K2I2
p +K3I3

p +K4I4
p = 0, (5.20)

where,

K0 = ϑ(ϑ +ξ )(d +ϑ +θ)(1−R0),

K1 = ϑ(a+(2+ c)(d +θ +ϑ))(ϑ +ξ )+(ϑ(d(β + γ)+ γ(θ +ϑ)+β (θ − (1+ c)κ +ϑ))+

γ(d +θ − (1+ c)κ +ϑ)ξ )σ −βγκσ
2,

K2 = ϑ(2a+(1+b+2c)(d +θ +ϑ))(ϑ +ξ )+(ϑ(a(β + γ)+(1+ c)d(β + γ)+βθ + cβθ + γθ+

cγθ −bβκ− cβκ +(1+ c)(β + γ)ϑ)+ γ(a+(1+ c)d +θ −bκ +ϑ + c(θ −κ +ϑ))ξ )σ+

βγ(d +θ − cκ +ϑ)σ2,

K3 = a(ϑ +ξ +βσ)(ϑ + γσ)+ c(d +θ +ϑ)(ϑ +ξ +βσ)(ϑ + γσ)+b(2ϑ(d +θ +ϑ)(ϑ +ξ )+

(ϑ(d(β + γ)+ γ(ϑ +θ)+β (θ +ϑ −κ))+ γ(θ +d−κ +ϑ)ξ )σ −βγκσ
2),

K4 = b(σγ +ϑ)(d +θ +ϑ)(σβ +ϑ +ξ ).

(5.21)

For the positive root I∗p of polynomial F(Ip), we can make

S∗p =
(1+ I∗p)κ

σ I∗pβ +(1+ I∗p)(ϑ +ξ )
> 0. (5.22)

and

A∗p =
(1+ I∗p)

2κξ

(σ I∗pγ +ϑ + I∗pϑ)(σ I∗pβ +(1+ I∗p)(ϑ +ξ ))
> 0. (5.23)

So, Ee(S∗p,A
∗
p, I
∗
p) is an endemic equilibrium of the system (5.6).

Theorem 5.4.3. When R0 > 1, there is either a unique or three positive endemic equilibria if

all equilibria are simple roots.

Proof. Let R0 > 1. We see that the coefficient K4 is always positive. On the other hand, K0 < 0

when R0 > 1. From Eq. (5.20), we have a fourth-degree polynomial in Ip, given below:

F(Ip) := K0 +K1Ip +K2I2
p +K3I3

p +K4I4
p = 0.
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The following possibilities for the signs of K1, K2, and K3 exist:

U1 : K1 > 0, K2 > 0, and K3 > 0,

U2 : K1 < 0, K2 < 0, and K3 > 0,

U3 : K1 < 0, K2 > 0, and K3 > 0,

U4 : K1 < 0, K2 < 0, and K3 < 0,

U5 : K1 > 0, K2 > 0, and K3 < 0,

U6 : K1 > 0, K2 < 0, and K3 > 0,

U7 : K1 > 0, K2 < 0, and K3 < 0,

U8 : K1 < 0, K2 > 0, and K3 < 0.

Using Descartes’ rule of signs [42], F(Ip) can have either a unique or three positive roots. If

any of the conditions U1–U4 holds, then there is unique endemic equilibrium, whereas for the

existence of three endemic equilibria, any one of the conditions U5–U8 must satisfy.

Theorem 5.4.4. Assume that any of the conditions H1: (U1–U4, and R0 > 1) hold, then the

system (5.6) has a unique endemic equilibrium.

For the present study, we consider the case of unique endemic equilibrium only. There-

fore, we investigate the stability behavior of the unique endemic equilibrium.

At Ee, the characteristic equation of the system (5.6) is obtained as

λ
3 +L2λ

2 +L1λ +L0 +
(
M2λ

2 +M1λ +M0
)

e−λρ +(N1λ +N0)e−2λρ = 0, (5.24)

where,

L2 = d +
aI∗p(2+ cI∗p)

(1+ I∗p(c+bI∗p))2 +θ +3ϑ +ξ ,

L1 = 2θϑ +3ϑ
2 +θξ +2ϑξ +d(2ϑ +ξ )+

a(2ϑ +ξ )I∗p(2+ cI∗p)
(1+ I∗p(c+bI∗p))2 ,

L0 = ϑ

(
d +

aI∗p(2+ cI∗p)
(1+ I∗p(c+bI∗p))2 +θ +ϑ

)
(ϑ + ξ ),

M2 =
(−S∗pβ −A∗pγ + I∗p(1+ I∗p)(β + γ))σ

(1+ I∗p)2 ,

M1 =
aI∗2p (2+ cI∗p)(β + γ)σ

(1+ I∗p)(1+ I∗p(c+bI∗p))2 +
I∗p((β + γ)(d +θ +2ϑ)+ γξ )σ

1+ I∗p
−

(S∗pβ +A∗pγ)(2ϑ +ξ )σ

(1+ I∗p)2 ,
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M0 =
I∗p(d +θ +ϑ)(βϑ + γ( ϑ +ξ ))σ

1+ I∗p
+

aI∗2p (2+ cI∗p)(βϑ + γ(ϑ +ξ )) σ

(1+ I∗p)(1+ I∗p(c+bI∗p))2 −

(S∗pβ +A∗pγ) ϑ (ϑ +ξ ) σ

(1+ I∗p)2 ,

N1 =
I∗p(−A∗p−S∗p + I∗p + I∗2p )βγσ2

(1+ I∗p)3 ,

N0 =
I∗pβγ(−(A∗p +S∗p)ϑ + I∗p(1+ I∗p)(d +θ +ϑ))σ2

(1+ I∗p)3 +
aI∗3p (2+ cI∗p)βγσ2

(1+ I∗p)2(1+ I∗p(c+bI∗p))2 .

Multiplying Eq. (5.24) by eλρ , we get

M2λ
2 +M1λ +M0 +

(
λ

3 +L2λ
2 +L1λ +L0

)
eλρ +(N1λ +N0)e−λρ = 0. (5.25)

When ρ = 0, Eq. (5.25) becomes

λ
3 +L00λ

2 +L01λ +L02 = 0, (5.26)

where,

L00 = M2 +L2,

L01 = M1 +L1 +N1,

L02 = M0 +L0 +N0.

Using the Routh-Hurwitz criterion, Eq. (5.26) has all the roots with negative real parts

under the following inequalities:

H2: L00 > 0, L02 > 0, and L00L01 > L02. (5.27)

Hence, we state the following Theorem:

Theorem 5.4.5. Assume that H2 holds. Then, the endemic equilibrium Ee is locally asmptoti-

cally stable at ρ = 0.

Now, for ρ > 0, let iω (ω > 0) be root of Eq. (5.25). Then, replacing λ with iω (ω > 0)

in Eq. (5.25) and splitting real part and imaginary part, we obtain

B1(ω)cosωρ−B2(ω)sinωρ = B3(ω), (5.28)

B4(ω)sinωρ +B5(ω)cosωρ = B6(ω). (5.29)
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where,

B1(ω) =−L2ω
2 +L0 +N0,

B2(ω) = ω(L1−N1)−ω
3,

B3(ω) = M2ω
2−M0,

B4(ω) =−L2ω
2 +L0−N0,

B5(ω) = (L1 +N1)ω−ω
3,

B6(ω) =−M1ω.

(5.30)

From Eqs. (6.48) and (5.29), we obtain

sinωρ =
B01(ω)

B00(ω)
, (5.31)

cosωρ =
B02(ω)

B00(ω)
, (5.32)

where,

B00 = L2
0−N2

0 +(L2
1−2L0L2−N2

1 )ω
2 +(−2L1 +L2

2)ω
4 +ω

6,

B01 = (L1M0−L0M1−M1N0 +M0N1)ω +(−M0 +L2M1−L1M2−M2N1)ω
3 +M2ω

5,

B02 =−L0M0 +M0N0 +(L2M0−L1M1 +L0M2−M2N0 +M1N1)ω
2 +(M1−L2M2)ω

4.

(5.33)

On squaring Eqs. (5.31) and (5.32), and then adding, we obtain

B2
01(ω)+B2

02(ω)−B2
00(ω) = 0. (5.34)

Suppose that (H3:) Eq. (5.34) at least one positive root ω0, i.e., Eq. (5.25) has a pair

of purely imaginary roots ±iω0.

For ω0, we obtain the corresponding critical value of the time delay ρk as follows:

ρk =
1

ω0
arccos

(
B02(ω0)

B00(ω0)

)
+

2kπ

ω0
, k = 0,1,2,3, . . . . (5.35)

To estabish Hopf bifurcation, we must have Re
[

dλ

dρ

]−1

λ=iω0

6= 0.
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On di�erentiating Eq. (5.25) with respect to ρ , we get

[
dλ

dρ

]−1

=
2λM2 +M1 +N1e−λρ + eλρ(3λ 2 +2λL2 +L1)

λ
(
(N1λ +N0)e−λρ − (λ 3 +L2λ 2 +L1λ +L0)

)
eλρ
− ρ

λ
.

From Eq. (5.25), we have

−(λ 3 +L2λ
2 +L1λ +L0)eλρ = M2λ

2 +M1λ +M0 +(N1λ +N0)e−λρ .

Thus, we obtain

[
dλ

dρ

]−1

=
2λM2 +M1 +N1e−λρ + eλρ(3λ 2 +2λL2 +L1)

λ
(
2(N1λ +N0)e−λρ +(M2λ 2 +M1λ +M0)

) − ρ

λ
.

So,

Re
[

dλ

dρ

]−1

λ=iω0

=
Y

P2 +Q2 ,

where,

Y =ω0(−M2
1ω0 +2M0M2ω0−2N2

1 ω0−2M2
2ω

3
0 +ω0(−L1M1 +4M2N0−3M1N1 +3M1ω

2
0+

2L2(M0−M2ω
2
0 ))cosρω +2ω(2L2N0−L1N1 +3N1ω

2
0 )cos2ρω +(−M0N1−3M0ω

2
0+

5M2N1ω
2
0 +3M2ω

4
0 +2M1(N0 +L2ω

2
0 )+L1(M0−M2ω

2
0 ))sinρω +2(L1N0+

(−3N0 +2L2N1)ω
2
0 )sin2ρω),

P =−M1ω
2
0 −2N1ω

2
0 cosρω0 +2N0ω0 sinρω0,

Q = M0ω0−M2ω
3
0 +2N0ω0 cosρω0 +2N1ω

2
0 sinρω0.

Obviously, if H4: Y 6= 0, then Re
[

dλ

dρ

]−1

λ=iω0

6= 0.

Thus, the following theorem is stated:

Theorem 5.4.6. Suppose (H1-H4) holds. Then, the endemic equilibrium Ee(S∗p,A
∗
p, I
∗
p) of the

system (5.6) is

1. locally asmptotically stable when ρ ∈ [0,ρ0),

2. undergoes a Hopf bifurcation when ρ = ρ0, and a family of periodic solutions bifurcate

from Ee(S∗p,A
∗
p, I
∗
p).
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5.4.3 Global stability

In this subsection, we establish the global stability of the DFE and EE.

Global stability of disease-free equilibrium

We now investigate the global stability behavior of DFE E0 (S0,A0, I0)= E0

(
κ

ϑ+ξ
, κξ

ϑ(ϑ+ξ )
,0
)

for R0 ≤ 1 by constructing a suitable Lyapunov function. For this, the following postu-

lates are proposed:

P4. Ψ′Ip
(Sp(t),0) is increasing for Sp(t)> 0 and Λ′Ip

(Ap(t),0) is increasing for Ap(t)> 0.

P5.
Ψ′Ip(S0,0)

Ψ′Ip(Sp(t),0)
< 1 for Sp(t)> S0,

Ψ′Ip(S0,0)

Ψ′Ip(Sp(t),0)
> 1 for Sp(t) ∈ (0,S0),

Λ′Ip(A0,0)

Λ′Ip(Ap(t),0)
< 1 for Ap(t)> A0,

Λ′Ip(S0,0)

Λ′Ip(Ap(t),0)
> 1 for Ap(t) ∈ (0,A0).

P6. Φ(Sp(t), Ip(t))+Λ(Ap(t), Ip(t))≤ Ip(t)
((

∂Φ(Sp(t),Ip(t))
∂ Ip

)
(S0,0)

+
(

∂Λ(Ap(t),Ip(t))
∂ Ip

))
(A0,0)

−(
∂H(Ip)

∂ Ip

)
Ip=0

+H(Ip(t)), where H(Ip(t)) = (ϑ +d +ζ )Ip(t)+h(Ip(t)) and Ip(t)> 0.

P7. Sp
S0

>
Ap
A0

if
Sp
S0

> 1 and
Sp
S0

<
Ap
A0

if
Sp
S0

< 1.

Under these postulates, the following theorem is proposed:

Theorem 5.4.7. Suppose that (P1.)–(P7.) and R0 ≤ 1 hold. Then, the disease-free equilibrium

E0(S0,A0,0) of the system (5.6) is globally asymptotically stable for ρ ≥ 0.

Proof. (P1.) and (P2.) establish that E0(S0,A0,0) is the only equilibrium of the system (5.6).

We define the following Lyapunov functional

V (t) =V1(t)+V2(t),

where,

V1(t) = Sp(t)+Ap(t)−S0−A0−
∫ Sp(t)

S0

lim
Ip→0+

Ψ(S0, Ip(t))
Ψ(ε, Ip(t))

dε−
∫ Ap(t)

A0

lim
Ip→0+

Λ(A0, Ip(t))
Λ(ε, Ip(t))

dε + Ip(t),

V2(t) =
∫

ρ

0
(Ψ(Sp(t−ρ), Ip(t−ρ))+Λ(Ap(t−ρ), Ip(t−ρ)))dρ.

Using the postulates (P1.)–(P3.), it follows that V1(t) is well-defined and continuously differ-

entiable function for all Sp(t) > 0, Ap(t) > 0, Ip(t) > 0, and V (t) = 0 at E0(S0,A0,0). Now,
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we show that dV (t)
dt ≤ 0 for all t ≥ 0. First, we compute dV1(t)

dt as follows:

dV1(t)
dt

=

(
1− lim

I→0+

Ψ(S0, I(t))
Ψ(Sp, Ip(t))

)
S′p(t)+

(
1− lim

Ip→0+

Λ(A0, Ip(t))
Λ(Ap, Ip(t))

)
A′p(t)+ I′p(t)

=

(
1− lim

Ip→0+

Ψ(S0, Ip(t))
Ψ(Sp, Ip(t))

)(
κ−ϑSp−Ψ(Sp(t−ρ), Ip(t−ρ))−ξ Sp

)
+

(
1− lim

Ip→0+

Λ(A0, Ip(t))
Λ(Ap, Ip(t))

)(
ξ Sp−ϑAp−Λ(Ap(t−ρ)Ip(t−ρ))

)
+Ψ(Sp(t−ρ), Ip(t−ρ))

+Λ(Ap(t−ρ)Ip(t−ρ))− (ϑ +d +θ)Ip−
aI2

p

bI2
p + cIp +1

.

Since κ− (ϑ +ξ )Sp = (ϑ +ξ )(S0−Sp), thus, we obtain:

dV1(t)
dt

=

(
1− lim

I→0+

Ψ(S0, Ip(t))
Ψ(Sp, Ip(t))

)(
(ϑ +ξ )(S0−Sp)−Ψ(Sp(t−ρ), Ip(t−ρ))

)
+

(
1− lim

Ip→0+

Λ(A0, Ip(t))
Λ(Ap, Ip(t))

)(
(ξ Sp−ϑAp)−Λ(Ap(t−ρ)Ip(t−ρ))

)
+Ψ(Sp(t−ρ), Ip(t−ρ))

+Λ(Ap(t−ρ)Ip(t−ρ))−H(Ip(t)).

We now obtain the derivative of V2(t) as below:

dV2(t)
dt

=−Ψ(Sp(t−ρ), Ip(t−ρ))+Ψ(Sp(t), Ip(t))−Λ(Ap(t−ρ), Ip(t−ρ))+Λ(Ap(t), Ip(t)).

Thus, the derivative of V (t) is obtained as:

dV (t)
dt

=
dV1(t)

dt
+

dV2(t)
dt

=

(
1− lim

Ip→0+

Ψ(S0, Ip(t))
Ψ(Sp, Ip(t))

)(
(ϑ +ξ )(S0−Sp)−Ψ(Sp(t−ρ), Ip(t−ρ))

)
+

(
1− lim

Ip→0+

Λ(A0, Ip(t))
Λ(Ap, Ip(t))

)(
(ξ Sp−ϑAp)−Λ(Ap(t−ρ)Ip(t−ρ))

)
+Ψ(Sp(t−ρ), Ip(t−ρ))

+Λ(Ap(t−ρ)Ip(t−ρ))−H(Ip(t))−Ψ(Sp(t−ρ), Ip(t−ρ))+Ψ(Sp(t), Ip(t))

−Λ(Ap(t−ρ), Ip(t−ρ))+Λ(Ap(t), Ip(t)).
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The postulates P4–P6 imply that

dV (t)
dt
≤ (ϑ +ξ )

(
1−

Ψ′Ip
(S0,0)

Ψ′Ip
(Sp(t),0)

)
(S0−Sp)+Ψ(Sp(t−ρ), Ip(t−ρ))

(
Ψ′Ip

(S0,0)

Ψ′Ip
(Sp(t),0)

−1

)

+

(
1−

Λ′Ip
(A0,0)

Λ′Ip
(Ap(t),0)

)
(ξ Sp−ϑAp)+Λ(Ap(t−ρ), Ip(t−ρ))

(
Λ′Ip

(A0,0)

Λ′Ip
(Ap(t),0)

−1

)

+
Ip(t)

ϑ +d +θ
(R0−1)

= ϑ

(
1−

Ψ′Ip
(S0,0)

Ψ′Ip
(Sp(t),0)

)
(S0−Sp)+ξ S0

(
1−

Sp

S0

)
A0

Ap

S0

Sp

(
Sp

S0
−

Ap

A0

)

+Ψ(Sp(t−ρ), Ip(t−ρ))

(
Ψ′Ip

(S0,0)

Ψ′Ip
(Sp(t),0)

−1

)
+ϑ (A0−Ap)

(
1−

Λ′Ip
(A0,0)

Λ′Ip
(Ap(t),0)

)

+Λ(Ap(t−ρ), Ip(t−ρ))

(
Λ′Ip

(A0,0)

Λ′Ip
(Ap(t),0)

−1

)
+

Ip(t)
ϑ +d +θ

(R0−1) .

Thus, R0 ≤ 1 implies that dV (t)
dt ≤ 0 for all t ≥ 0. Also, dV (t)

dt = 0 if Sp(t) = S0, Ap(t) =

A0, and Ip(t) = 0.

Hence, from the system (5.6), it follows that the largest invariant set
{(

Sp(t),Ap(t), Ip(t) ∈ R3
+

∣∣∣dV (t)
dt = 0

)}
is singleton set {E0}. Using the Lyapunov-LaSalle asymptotic stability theorem [23, 90, 113],

E0 is the only equilibrium of the system (5.6) and it is globally asymptotically stable.

Global stability of endemic equilibrium

Now, we investigate the global stability of Ee(S∗,A∗, I∗) of the system (5.6) by construct-

ing a Lyapunov functional and employing the Lyapunov direct method. To proceed, we

propose the following postulates:

P7.
(

Φ(S∗p,I
∗
p)

Φ(Sp(t),I∗p)
− I∗p

Ip(t)

)
≤ 0;

(
Φ(Sp(t),Ip(t))

Φ(S∗p,I∗p)
−1
)
≤ 0;

(
Φ(Sp(t),I∗p)

Φ(Sp(t),Ip(t))
− Ip(t)

I∗p

)
≤ 0;(

Λ(A∗p,I
∗
p)

Λ(Ap(t),I∗p)
− I∗p

Ip(t)

)
≤ 0;

(
Λ(Ap(t),Ip(t))

Λ(A∗p,I∗p)
−1
)
≤ 0;

(
Λ(Ap(t),I∗p)

Λ(Ap(t),Ip(t))
− Ip(t)

I∗p

)
≤ 0 for Ip ≥ I∗p.

P8.
(

h(I∗p)
h(Ip(t))

− I∗p
Ip(t)

) (
Ip(t)

I∗ −1
)
≤ 0 for Ip ≥ I∗p.

P9. Sp
S∗p
− Ap

A∗p
> 0 for

Sp
S∗p

> 1 and
Sp
S∗p
− Ap

A∗p
< 0 for

Sp
S∗p

< 1.

The following theorem is proposed under these postulates:

Theorem 5.4.8. Suppose that (P1.)–(P3.), (P7.)–(P9.), and R0 > 1 hold. Then, the endemic

equilibrium Ee(S∗p,A
∗
p, I
∗
p) of the system (5.6) is globally asymptotically stable for ρ ≥ 0.
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Proof. We define the following Lyapunov functional

W (t) =W1(t)+W2(t),

where,

W1(t) = Sp(t)−S∗p−
∫ Sp(t)

S∗p

Ψ(S∗p, I
∗
p)

Ψ(φ , I∗p)
dφ +Ap(t)−A∗p−

∫ Ap(t)

A∗p

Λ(A∗p, I
∗
p)

Λ(Λ, I∗p)
dφ + Ip(t)− I∗p− I∗p ln

Ip(t)
I∗p

,

W2(t) = Φ(S∗p, I
∗
p)
∫

ρ

0

(
Φ(Sp(t−θ), Ip(t−θ))

Φ(S∗p, I∗p)
−1− ln

Φ(Sp(t−θ), Ip(t−θ))

Φ(S∗p, I∗)

)
dθ

+Λ(A∗p, I
∗
p)
∫

ρ

0

(
Λ(Ap(t−θ), Ip(t−θ))

Λ(A∗p, I∗p)
−1− ln

Λ(Ap(t−θ), Ip(t−θ))

Λ(A∗p, I∗p)

)
dθ .

(P1.)–(P3.) imply that, W (t) =W1(t)+W2(t) is defined and continuously differentiable for all

Sp(t), Ap(t), Ip(t)> 0 and W (0) = 0 at Ee(S∗p,A
∗
p, I
∗
p).

The derivative of W1(t) with respect to time t is computed as

dW1(t)
dt

=

(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
S′p(t)+

(
1−

Λ(A∗p, I
∗)

Λ(Ap(t), I∗p)

)
A′p(t)+

(
1−

I∗p
Ip(t)

)
I′p(t)

=

(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)(
(ϑ +ξ )(S∗p−Sp(t))+Ψ(S∗p, I

∗
p)−Ψ(Sp(t−ρ), Ip(t−ρ))

)
+

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
(ξ Sp−ϑAp−Λ(Ap(t−ρ), Ip(t−ρ)))+

(
1−

I∗p
Ip(t)

)
×
(

Ψ(Sp(t−ρ), Ip(t−ρ))+Λ(Ap(t−ρ), Ip(t−ρ))−
(
Ψ(S∗p, I

∗
p)+Λ(A∗p, I

∗
p)−h(I∗p)

)
I∗p

Ip(t)

−h(Ip(t))
)

= (ϑ +ξ )

(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
(S∗p−Sp(t))+Ψ(S∗p, I

∗
p)
(

1−
Ψ(S∗p, I

∗
p)

Ψ(Sp(t), I∗p)

+
Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), I∗p)

)
+(ξ Sp−ϑAp)

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
−Λ(Ap(t−ρ), Ip(t−ρ))

I∗p
Ip(t)

+
Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Ap(t), I∗p)
Λ(A∗p, I

∗
p)−

I∗p
Ip(t)

Ψ(Sp(t−ρ), Ip(t−ρ))+Ψ(S∗p, I
∗
p)

(
1−

Ip

I∗p

)

+Λ(A∗p, I
∗
p)

(
1−

Ip

I∗p

)
+

(
h(I∗p)−

h(Ip(t)I∗p)
Ip(t)

)(
Ip(t)

I∗p
−1

)
.
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Since ξ S∗p−ϑA∗p−Λ(A∗p, I
∗
p) = 0, or, −ξ S∗p +ϑA∗p +Λ(A∗p, I

∗
p) = 0, thus we have

dW1(t)
dt

= (ϑ +ξ )

(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
(S∗p−Sp(t))+Ψ(S∗p, I

∗
p)
(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)
+

Ψ(Sp(tρ), Ip(t−ρ))

Ψ(Sp(t), I∗p)

)
−

I∗p
Ip(t)

Ψ(Sp(t−ρ), Ip(t−ρ))+Ψ(S∗p, I
∗
p)

(
1−

Ip

I∗p

)
+

ξ (Sp−S∗p)

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
−Λ(Ap(t−ρ), Ip(t−ρ))

I∗p
Ip(t)

+Λ(A∗p, I
∗
p)

(
1−

Ip

I∗p

)
+

ϑ
(
A∗p−Ap

)(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
+Λ(A∗p, I

∗
p)

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)
+

Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Ap(t), I∗p)

)
.

Now, we compute the derivative of W2(t) as follows:

dW2

dt
= Ψ(Sp(t), Ip(t))−Ψ(Sp(t−ρ), Ip(t−ρ))+Ψ(S∗p, I

∗
p) ln

Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), Ip(t))

+Λ(Ap(t), Ip(t))−Λ(Ap(t−ρ), Ip(t−ρ))+Λ(A∗p, I
∗
p) ln

Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Sp(t), Ip(t))
.

Thus, the time derivative of W (t) is obtained as follows:

dW
dt

=
dW1

dt
+

dW2

dt

= (ϑ +ξ )

(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
(S∗p−Sp(t))+Ψ(S∗p, I

∗
p)
(

1−
Ψ(S∗p, I

∗
p)

Ψ(Sp(t), I∗p)
+

Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), I∗p)

)
−

I∗p
Ip(t)

Ψ(Sp(t−ρ), Ip(t−ρ))+Ψ(S∗p, I
∗
p)

(
1−

Ip

I∗p

)
+

ξ (Sp−S∗p)

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
−Λ(Ap(t−ρ), Ip(t−ρ))

I∗p
Ip(t)

+Λ(A∗p, I
∗
p)

(
1−

Ip

I∗p

)
+

ϑ
(
A∗p−Ap

)(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
+Λ(A∗p, I

∗
p)

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)
+

Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Ap(t), I∗p)

)
+

Ψ(Sp(t), Ip(t))−Ψ(Sp(t−ρ), Ip(t−ρ))+Ψ(S∗p, I
∗
p) ln

Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), Ip(t))
+Λ(Ap(t), Ip(t))−

Λ(Ap(t−ρ), Ip(t−ρ))+Λ(A∗p, I
∗
p) ln

Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Sp(t), Ip(t))
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= ϑ(S∗p−Sp)

(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
+ϑ(A∗p−Ap)

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)

+Ψ(S∗p, I
∗
p)

(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)
+ ln

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
+Ψ(S∗p, I

∗
p)

(
1−

Ip

I∗p
+ ln

Ip

I∗p

)

+Λ(A∗p, I
∗
p)

(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)
+ ln

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
+Λ(A∗p, I

∗
p)

(
1−

Ip

I∗p
+ ln

Ip

I∗p

)

+Ψ(S∗p, I
∗
p)
(

1−
Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), Ip(t))
Ψ(Sp(t), I∗p)

Ψ(S∗p, I∗p)
I∗p

Ip(t)

+ ln
Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), Ip(t))
Ψ(Sp(t), I∗p)

Ψ(S∗p, I∗p)
I∗p

Ip(t)

)
+Λ(A∗p, I

∗
p)
(

1−
Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Ap(t), Ip(t))
Λ(Ap(t), I∗p)

Λ(A∗p, I∗p)
I∗p

Ip(t)

+ ln
Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Ap(t), Ip(t))
Λ(Ap(t), I∗p)

Λ(A∗p, I∗p)
I∗p

Ip(t)

)
+Ψ(Sp(t−ρ), Ip(t−ρ))

(
Ψ(S∗p, I

∗
p)

Ψ(Sp(t), I∗p)
−

I∗p
Ip(t)

)
+Ψ(S∗p, I

∗
p)

(
Ψ(Sp(t), Ip(t))

Ψ(S∗p, I∗p)
−1

)

+Λ(A∗p, I
∗
p)

(
Λ(Ap(t), Ip(t))

Λ(A∗p, I∗p)
−1

)
+Ψ(Sp(t−ρ), Ip(t−ρ))

I∗p
Ip(t)

(
Ψ(Sp(t), I∗p)

Ψ(Sp(t), Ip(t))
−

Ip(t)
I∗p

)

+Λ(Ap(t−ρ), Ip(t−ρ))
I∗p

Ip(t)

(
Λ(Ap(t), I∗p)

Λ(Ap(t), Ip(t))
−

Ip(t)
I∗p

)
+Λ(Ap(t−ρ), Ip(t−ρ))

( Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

−
I∗p

Ip(t)

)
+ξ S∗p

(
1−

Sp

S∗p

)(
Sp

S∗p
−

Ap

A∗p

)
A∗p
Ap

S∗p
Sp

+

(
h(I∗p)

h(Ip(t))
−

I∗p
Ip(t)

)(
Ip(t)

I∗p
−1

)
h(Ip(t)).

The functions Ψ(Sp(t), Ip(t)) and Λ(Ap(t), Ip(t)) are monotonically increasing for all Sp(t)>

0, and Ap(t)> 0. Therefore,

(
S∗p−Sp

)(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
≤ 0,

(
A∗p−Ap

)(
1−

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
≤ 0.

(5.36)

The function g(y) = 1−y+ lny, (y > 0) has global maximum at y = 1. Henceforth, for y > 0,

g(y)≤ 0 and the resulting inequalities are as follows:
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(
1−

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)
+ ln

Ψ(S∗p, I
∗
p)

Ψ(Sp(t), I∗p)

)
≤0,(

1−
Ip

I∗p
+ ln

Ip

I∗p

)
≤0,(

1−
Λ(A∗p, I

∗
p)

Λ(Ap(t), I∗p)
+ ln

Λ(A∗p, I
∗
p)

Λ(Ap(t), I∗p)

)
≤0,(

1−
Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), Ip(t))
Ψ(Sp(t), I∗p)

Ψ(S∗p, I∗p)
I∗p

Ip(t)
+ ln

Ψ(Sp(t−ρ), Ip(t−ρ))

Ψ(Sp(t), Ip(t))
Ψ(Sp(t), I∗p)

Ψ(S∗p, I∗p)
I∗p

Ip(t)

)
≤0,(

1−
Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Ap(t), Ip(t))
Λ(Ap(t), I∗p)

Λ(A∗p, I∗p)
I∗p

Ip(t)
+ ln

Λ(Ap(t−ρ), Ip(t−ρ))

Λ(Ap(t), Ip(t))
Λ(Ap(t), I∗p)

Λ(A∗p, I∗p)
I∗p

Ip(t)

)
≤0.

(5.37)

Thus, using (P7.)–(P9.) and the inequalities (5.36)–(5.37), it follows that dW (t)
dt ≤ 0 for all

Sp(t) ≥ 0, Ap(t) ≥ 0, Ip(t) ≥ 0. Thus, it is easy to verify that the largest invariant set in{
(Sp(t),Ap(t), Ip(t)) ∈ R3

+ : dW (t)
dt = 0

}
is singleton {Ee}. Hence, by the Lyapunov-LaSalle

asymptotic stability theorem [23, 90, 113], the endemic equilibrium Ee is globally asymptoti-

cally stable.

5.5 Numerical simulation

This section presents the numerical results to show the signi�cance of the analytical

�ndings and varying parameters.

Example 5.1. We use the following set of experimental data: κ = 2, β = 0.09, ξ = 0.12, σ =

1, ϑ = 0.01, γ = 0.009, d = 0.08, θ = 0.03, a = 0.005, b = 0.01, c = 0.03. At these values

of parameters, the endemic equilibrium of the system (5.6) is Ee(9.47806, 62.8333, 9.01515)

and the basic reproduction number is R0 = 25.3846 > 1.

Fig. 5.3 shows the qualitative behavior of all the subpopulations for a time delay ρ = 1.

Fig. 5.3.1 shows that the susceptible population decreases over time and settles down to their

steady-state after a fixed time. Fig. 5.3.2 shows that initially, a large population gets aware of

the disease, and as time passes, they become less serious and finally settle down to a steady

state. Fig. 5.3.3 elucidates that initially, infectives increase at a high rate and then start de-

creasing and eventually reach their steady-state. Finally, Fig. 5.3.4 shows the behavior of

recovered individuals. Infected individuals recover at high speed and stabilize to their steady
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state over time.

5.3.1: Susceptible population Sp(t). 5.3.2: Aware population Ap(t).

5.3.3: Infected population Ip(t). 5.3.4: Recovered population Rp(t).

Figure 5.3: The temporal behavior of subpopulations at time-delay ρ = 1.

Figure 5.4: Ip(t) for various values of time-delay ρ .
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Fig. 5.4 indicates the impact of latent period ρ on infected population Ip(t). We can see the

variation in the number of infectives for higher values of time delay. This figure confirms that

the longer the time delay, the higher the spread of infection, which shows the importance of

considering time delay in studying infectious disease’s dynamical behavior.

5.5.1: Ip(t) vs. β 5.5.2: Ip(t) vs. γ

Figure 5.5: Influence of transmission rates β and γ , on infecetd population Ip(t) for ρ = 2.

Fig. 5.5 shows the influence of transmission rates β of susceptibles and γ of aware individ-

uals on infectives. The higher the transmission rates, the higher the possibility of spreading

infection. Therefore, it is imperative to minimize the contact rate of susceptible and aware

individuals with infected individuals.

Figure 5.6: Impact of cure rate (a) on infected individuals (Ip(t)).

Fig. 5.6 shows the effect of the cure rate in decreasing the infected population. An increased
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cure rate can reduce the infection level efficiently. Thus, the accessibility of treatment re-

sources and adequate treatment is significant in reducing the number of infected individuals.

Figure 5.7: Effect of saturating treatment rate H(Ip(t)) on infected population Ip(t).

Fig. 5.7 demonstrates the impact of nonlinear saturating treatment rate on infected individuals.

The infected population is being drawn for the cure rate a = 0.05, revealing the significance

of the availability of treatment to infected people. If the health system has sufficient treatment

facilities, then the spread of infection can be controlled on a large scale.

Figure 5.8: Awareness effects on Ip(t) for ρ = 2, .

Fig. 5.8 depicts awareness effects on the SIR epidemic model. It shows the difference between

the number of infected individuals with and without aware individuals’ classes, deliberating

that unaware individuals are becoming infected faster than those familiar with the disease

spread. It shows the relationship between human awareness and the spread of infection. The

graph of infected individuals with awareness class is drawn for the awareness rate ξ = 0.6,
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revealing that a considerable value of awareness rate causes more individuals to be safe from

illnesses. Awareness makes them alert about the spread of disease and helps them take neces-

sary protection measures, reducing infection. It is worth saying that public awareness plays a

significant role in making people alert of the disease’s risk and reducing its spread.

Figure 5.9: Effect of Awareness class Ap(t) and saturated treatment rate on Ip(t) for ρ = 2.

Fig. 5.9 depicts the number of the infected population for the cases: neither awareness nor

treatment is available (shown by the solid purple line); people are aware of the disease, but

treatment to infectives is not available (indicated by the dotted red line); and when both treat-

ment and awareness are present (indicated by the dashed blue line). This figure captures the

impact of both awareness and treatment on infectives. When awareness and treatment are ab-

sent, the infected population stabilizes at a high level. If the treatment is not available, then the

awareness among people reduces the spread of infection with a big difference. For eradicating

disease or lowering it at the lowest level, the presence of both awareness among susceptibles

and sufficient treatment availability has a vital role.
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Example 5.2. The following numerical experimental data is considered to show the occurrence

of Hopf bifurcation:

κ = 6.5, ξ = 0.001, ϑ = 0.01, β = 0.009, γ = 0.0009, σ = 10. d = 0.08, θ = 0.03, a =

0.005, b = 0.01, c = 0.03.

5.10.1: Sp− Ip−Rp at ρ = 16. 5.10.2: Sp− Ip−Rp at ρ = 19.2.

5.10.3: Sp− Ip−Rp at ρ = 19.5. 5.10.4: Sp− Ip−Rp at ρ = 19.6.

Figure 5.10: The phase portraits of susceptible, infected and recovered individuals.
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5.11.1: Ap−Sp− Ip at ρ = 16. 5.11.2: Ap−Sp− Ip at ρ = 19.2.

5.11.3: Ap−Sp− Ip at ρ = 19.5. 5.11.4: Ap−Sp− Ip at ρ = 19.6.

Figure 5.11: The phase portraits of susceptible-aware-infected individuals.

Figs. 5.10 and 5.11 ensure the presence of Hopf bifurcation. Fig. 5.10 is plotted for suscep-

tible, infected, and recovered classes, whereas Fig. 5.11 is plotted for susceptible, infected,

and aware individuals for the time delay ρ = 16, 19.2, 19.5, and 19.6, respectively. These fig-

ures show that oscillatory and periodic solutions may appear via Hopf bifurcation, considering

time delay as the bifurcation parameter. Figs. 5.10.1, 5.10.2, 5.11.1, and 5.11.2 are plotted for

the time delay ρ = 16 and 19.2, respectively, revealing that the endemic equilibrium is stable
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and the orbit spirals to it. Figs. 5.10.3 and 5.11.3 are plotted for ρ = 19.5, whereas 5.10.4

and 5.11.4 are plotted for ρ = 19.6. These figures reveal that the orbits spiral go away from

endemic equilibrium as time delay ρ crosses its critical value, and the endemic equilibrium

becomes unstable. Thus, the time delay can increase the periodicity of the prevalence of the

infection, and it may be a foremost aspect in maintaining the oscillation.

5.6 Discussion

During an outbreak, awareness about the transmission routes and interventions of a

disease can alert individuals regarding the infection risk, resulting in a change in human

behavior and disease transmission patterns. Therefore, the present chapter studies a

mathematical epidemic model with awareness e�ects to study disease transmission and

control dynamics. We comprised four dynamical variables in our model: susceptible,

aware, infected, and recovered individual; and proposed a nonlinear time-delayed SAIR

epidemic model by incorporating Michaelis-Menten type incidences with latent period

and a saturating treatment rate. We assume that aware individuals can also become

infected, probably at a lower rate than fully vulnerable individuals. We analyze the

model mathematically, revealing two equilibria: the disease-free equilibrium (complete

eradication of infection) and the endemic equilibrium (persistence of disease). We ob-

tain the model's threshold quantity, the basic reproduction number R0, and perform

the stability analysis to determine whether the disease eliminates or persists. The basic

reproduction number determines the potential for an infectious agent to start an out-

break, the degree of transmission without control measures, and the capacity of control

measures to diminish spread. The delayed system analysis reveals that the disease-free

equilibrium is locally asymptotically stable when R0 is less than unity, unstable when R0

is greater than unity, and neutrally linearly stable when R0 is equal to unity. However,

the undelayed system exhibits a forward bifurcation at R0 = 1 using the center man-

ifold theory approach, indicating that reducing the basic reproduction number below

unity is su�cient to eradicate society's infection. Further, we investigate the endemic

equilibrium's local stability, revealing the existence of oscillatory and periodic solutions

near-endemic equilibrium via Hopf bifurcation, regarding time-delay as the bifurcation

parameter. Furthermore, the global stability behavior of the disease-free and endemic

equilibria is performed using the Lyapunov functionals by employing the Lyapunov di-

rect method. It is shown that the disease-free equilibrium is globally asymptotically
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stable when R0 < 1, and the endemic equilibrium is globally asymptotically stable when

R0 > 1.

The numerical simulations validate the e�ectiveness of theoretical �ndings and show the

impact of the model's parameters. It is seen that the higher the time delay, the higher

the number of individuals who catch the infection. The oscillatory solutions for various

values of time delay establish Hopf bifurcations near-endemic equilibrium. Moreover, if

the time delay crosses its critical value, then the trajectories of the solutions bifurcate

from endemic equilibrium and destabilize the system at endemic equilibrium. We show

that the number of infected individuals is much higher in the SIR model (i.e., without

awareness) than the number of infected in the SAIR model (i.e., with awareness). If

susceptible individuals are aware of infection risk, they will be on high alert and choose

not to go to crowded areas, avoid unnecessary contact with infected individuals, and

implement other anti-epidemic inhibition measures which reduce the infection spread

e�ectively. The numerical result shows the impact of saturating treatment rate, which

reveals that adequate treatment availability is crucial in controlling infection spread. If

the treatment facilities are not enough, individuals' awareness and willingness to adopt

anti-epidemic measures are the only way to reduce infection. Together with su�cient

treatment facilities for infectives, individuals' awareness can reduce even eradicate the

infectious disease from society.

The present study consisting of nonlinear incidences of unaware and aware suscepti-

bles with the latent period, and saturated treatment rate, signi�es the substantial role of

the latent period in the disease transmission process, susceptibles' behavior in prevent-

ing disease spread, and limitation in treatment facilities in curing infectives. The results

indicate that awareness about the spread of infection in susceptible individuals is vital

in preventing disease transmission and is a potential strategy for controlling the disease

spread in the absence of treatment availabilities. The public health authorities and the

government have a signi�cant contribution to raising awareness among people and en-

couraging them to adopt anti-epidemic measures. For example, the government enforced

di�erent non-pharmaceutical interventions to obstruct COVID-19 transmission due to

the absence of proper therapeutics or vaccines. In addition, several countries focus on

raising awareness through media advertising campaigns to encourage people to maintain

social distancing, wear a face mask, adopt healthy sanitation practices, frequent hand

washing, etc. These behaviors urge people to reduce contact with others and adopt all
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possible preventive measures, consequently suppressing disease burden. Thus, to eradi-

cate infectious diseases, programs related to knowledge about the infection spread and

its harm to the public and health care workers can improve their general attitude toward

it. Awareness about the disease with the encouragement of adopting preventive measures

and appropriate treatment facilities to infectives can e�ciently reduce disease spread.
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Chapter 6

Nonlinear dynamics of a time-delayed

epidemic model with two explicit aware

classes, saturated incidences, and

treatment

This chapter presents and analyzes a time-delayed epidemic model in which the class of

susceptible individuals is divided into three subclasses: unaware susceptibles, fully aware

susceptibles, and partially aware susceptibles to the disease, respectively, which empha-

sizes to consider three explicit incidences. The saturated type of incidence rates and

treatment rate of infectives are deliberated herein. The mathematical analysis shows

that the model has two equilibria: disease-free and endemic. We derive the basic re-

production number R0 of the model and study the stability behavior of the model at

both disease-free and endemic equilibria. Through analysis, it is demonstrated that

the disease-free equilibrium is locally asymptotically stable when R0 < 1, unstable when

R0 > 1, and linearly neutrally stable when R0 = 1 for the time delay ρ > 0. Further, an

undelayed epidemic model is studied when R0 = 1, which reveals that the model exhibits

forward and backward bifurcations under speci�c conditions, which also has important

implications in the study of disease transmission dynamics. Moreover, we investigate

the stability behavior of the endemic equilibrium and show that Hopf bifurcation occurs

near-endemic equilibrium when we choose time-delay as a bifurcation parameter. Lastly,

numerical simulations are performed in support of the analytical results.
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6.1 Introduction

The last two decades have seen several large-scale epidemics outbreaks. People get

information about these outbreaks quite quickly due to signi�cant advances in social

media, which can have an insightful e�ect on the actual epidemic dynamics [69, 121].

The impact of information and awareness on the spread of epidemics has been studied

by many authors [54, 84, 86, 94, 111, 112, 115, 119, 122]. Funk et al. [84] considered the

aware susceptible and aware infected populations in their epidemic model, on the as-

sumption that the aware susceptibles will be at a lower rate of catching the infection

than the unaware susceptibles, and studied that disease dynamics in a well-mixed popu-

lation. Kiss et al. [86] studied the e�ect of information transmission on the dynamics of

sexually transmitted diseases. They assumed that the entire population is aware of the

risk of infection; however, only a speci�c portion decides to react by constraining their

contact with contaminated people. Misra et al. and Dubey et al. [94, 115] investigated

the impact of awareness programs on the transmission dynamics of infectious diseases in

their nonlinear epidemic models. Some researchers studied the impact of awareness on

the disease transmission dynamics along with the in�uence of time delay. Zuo et al. [119]

introduced a time delay in the media variable to emphasize the delay in reporting cases of

infections. Zhao et al. [111] studied the SIRS epidemic model by incorporating time de-

lay in media coverage. Zuo and Liu [112] studied the e�ect of awareness programs driven

by media and the delay on the prevalence of infectious disease. In all these models, the

study reveals that the disease-free equilibrium (DFE) is stable when a basic reproduction

number R0 is less than one, unstable when R0 > 1, irrespective of the value of the time

delay and has a stable endemic equilibrium for time delay equals to zero. In the study of

Zuo et al. [119], Zhao et al. [111], and Misra et al. [94], the occurrence of Hopf bifurcation

is shown for the particular value of the time delay. Greenhalgh et al. [122] included two

delays, one in reporting of infected cases and another delay represents the loss of disease

awareness after a �xed period. Their study reveals the reduction in infected individuals

with an increment in the duration of awareness. It is also shown that both the time

delays can produce oscillations and destabilize the endemic equilibrium.
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The public is a coalition of many subgroups of individuals with vastly di�erent social,

educational, and economic backgrounds. During an outbreak, people adopt full or partial

awareness, depending on how they perceive risks and communicate about the e�ective-

ness of protective measures. Therefore, instead of going directly from susceptible to

infected class, we introduce fully aware and partial aware susceptible compartments into

the SIR epidemic model due to heterogeneous protection level and extend the epidemic

model to include the behavioral change of susceptibles, which can change the transmis-

sion patterns and reduce the prevalence of disease to the more extent. The precaution

level of susceptible individuals is heterogeneous as they may take di�erent levels of pre-

cautions to protect themselves from being infected based on the severity of epidemics

or their characteristics. We consider three speci�c nonlinear incidence rates of unaware

susceptibles, fully aware susceptibles, and partially aware susceptible, respectively, with

the inclusion of time delay as a latent phase having a �xed duration. In the considered

incidence rates, the interaction term is of the form Sg(I), where, g(I) = β I/(1+ εI),

β I measures the force of infection, and 1/(1+ εI) measures the inhibition e�ect of the

behavioral change of the susceptibles when their number increases and the crowding ef-

fect of the infective individuals [12, 98]. In this incidence rate, the number of infectives

depends on the nonlinear bounded map g(I), which tends to saturation level β/ε when

I gets large. It prevents the unboundedness of the contact rate as it includes the psy-

chological e�ects and, thus, more realistic than the bilinear incidence rate. Also, with

awareness, treatment of infectives is essential to mitigate the infection. Therefore, we

deliberate the Holling type II treatment rate (also called saturated treatment rate) and

study the e�ect of treatment rate with limited medical resources in the current epidemic

model. A detailed explanation of Holling type II treatment rate is given in Chapter two.

We formulate the nonlinear time-delayed mathematical epidemic model and perform the

stability analysis to demonstrate the eradication or persistence of the disease with the

help of the basic reproduction number R0 for the time delay ρ ≥ 0. The bifurcation

theory approach using the center manifold theory is performed, revealing the existence

of backward and forward bifurcations. Further, choosing time delay as a bifurcation

parameter, the periodic and oscillatory solutions appear via Hopf bifurcation. Moreover,

the numerical experiments show the importance of considering full and aware susceptible

individuals and nonlinear terms such as time delay, incidences, and treatment.
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6.2 Mathematical model and basic properties

We assume that N denotes the total constant population, and it is divided into �ve

compartments according to the disease status: unaware susceptible class S(t), fully aware

class AF(t), partially aware class AP(t), infected individuals class I(t), and removed in-

dividuals class R(t). The unaware susceptible class consists of those individuals who are

vulnerable to the disease and taking no precautions against it. A fully aware susceptibles

class involves those individuals who have adequate knowledge and proper information

about the spread of the disease and taking precautionary measures against it. Partially

aware susceptibles consist of those individuals who have an incomplete understanding

of the spread and prevention of the disease and have low resources available to escape

from the infection. Including a behavioral response among unaware susceptibles would

unavoidably call for response among fully aware susceptibles and partially aware suscep-

tibles. Therefore, we have considered three explicit same functional forms of saturated

incidence rates describe below:

(i) F1(S(t−ρ), I(t−ρ)) = (β1S(t−ρ)I(t−ρ))/(1+εI(t−ρ)), representing the saturated

incidence rate among unaware susceptibles,

(ii)F2(AF(t−ρ), I(t−ρ)) = (β2AF(t−ρ)I(t−ρ))/(1+ εI(t−ρ)), representing the satu-

rated incidence rate among fully aware susceptibles,

(iii) F3(AP(t−ρ), I(t−ρ)) = (β2AF(t−ρ)I(t−ρ))/(1+εI(t−ρ)), representing the satu-

rated incidence rate among partially aware susceptibles.

In these incidences, ρ denotes the time delay, representing the latent period. The

latent period is de�ned as the period between exposure and infection, since the pathogen

is present in a latent stage, without clinical symptoms or signs of infection in the host.

The delay term in S(t), AF(t), and AP(t) is introduced because people, who are unaware,

fully aware, or partially aware of the disease, may consider themself in their respective

classes after becoming infected. We assume that such individuals are in the latent period.

Let κ denotes the constant rate of in�ow of new unaware susceptibles due to the re-

cruitment of new members by the current members or immigration. Let δ1 denotes

the rate at which unaware susceptibles S(t) become fully aware. δ2 denotes the rate at

which S(t) becomes partially aware of the disease. The parameters β1, β2, and β3 are

the transmission rates of infection of unaware, fully aware, and partially aware suscep-

tible populations, respectively. We suppose that all the susceptible classes can become

infected by contact with infected individuals, but the fully aware class has less chance
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to be infected as compared to the unaware susceptible, and partially aware suscepti-

ble individuals [122]. Therefore, it is assumed that β1 and β3 are greater β2. The

parameter ε represents the behavioral changes or measures of inhibition adopted by in-

fectives. ϑ denotes the natural mortality rate of all individuals, whereas d and θ denote

the disease-induced mortality rate and recovery rate of the infectives, respectively. The

function h(I(t)) = aI/(1+ bI) represents the treatment rate of infectives, where a and

b denote the cure rate and limitation rate in the availability of resources, respectively.

The symbols and description of the parameters and state variables are given in Table

6.1 brie�y.

Table 6.1: Notations of model’s variables and parameters.

Symbol Description

N Total constant population

S(t) Unaware susceptibles

AF(t) Fully aware susceptibles

AP(t) Partially Aware susceptibles

I(t) Infected population

R(t) Removed population

ρ Latent period (time delay)

κ Constant recruitment rate of unaware susceptibles

β1 Transmission rate of susceptibles to infected individuals

β2 Transmission rate of fully aware to infected individuals

β3 Transmission rate of partially aware to infected individuals

ε Inhibition measures by infectives

δ1 Rate of full awareness in unaware susceptibles

δ2 Rate of partial awareness in unaware susceptibles

ϑ Natural death rate

d Disease-induced death rate

θ Recovery rate

a Cure rate

b Rate of limitations in treatment availability

The �ow diagram of the proposed epidemic model is given in Fig. 6.1 and the model
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Figure 6.1: Flow diagram of the model (6.1).

is represented mathematically under the following system of delay di�erential equations:

dS
dt

= κ−δ1S−δ2S− β1S(t−ρ)I(t−ρ)

1+ εI(t−ρ)
−ϑS,

dAF

dt
= δ1S− β2I(t−ρ)AF(t−ρ)

1+ εI(t−ρ)
−ϑAF ,

dAP

dt
= δ2S− β3I(t−ρ)AP(t−ρ)

1+ εI(t−ρ)
−ϑAP,

dI
dt

=
β1S(t−ρ)I(t−ρ)

1+ εI(t−ρ)
+

β2I(t−ρ)AF(t−ρ)

1+ εI(t−ρ)
+

β3IAP(t−ρ)

1+ εI(t−ρ)
− (d +θ +ϑ)I− aI

1+bI
,

dR
dt

= θ I +
aI

1+bI
−ϑR.

(6.1)

Suppose that the initial conditions of the model (6.1) takes the form

S(ν) = χ1(ν), AF(ν) = χ2(ν), AP(ν) = χ3(ν), I(ν) = χ4(ν), R(ν) = χ5(ν),

χi(ν). ν ∈ [−ρ, 0], χi(0)> 0 (i = 1,2,3,4,5),
(6.2)

where, (χ1(ν),χ2(ν),χ3(ν),χ4(ν),χ5(ν)) ∈C
(
[−ρ, 0], R5

+

)
, which is the Banach space

of continuous functions mapping the interval [−ρ, 0] into R5
+, where,

R5
+ = {(S,AF ,AP, I,R)/S≥ 0,AF ≥ 0,AP ≥ 0, I ≥ 0,R≥ 0} .

Using Proposition 2.3. in [124] and proposition 2.1 in [107], it follows that all state

134



variables of the model (6.1) are nonnegative, i.e., (S,AF ,AP, I,R) ∈ R5
+. For biological

reasons, we assume that the model's parameters κ , δ1, δ2 β1, β2, β3, ε , ϑ , θ , d, a, b are

positive. By the fundamental theory of functional di�erential equations [23], the model

(6.1) has a unique solution (S(t)AF(t),AP(t), I(t),R(t)) satisfying the initial conditions

(6.2).

Lemma 6.2.1. The compact set

Ω =
{
(S(t),AF(t),AP(t), I(t),R(t)) ∈ R5

+ : S(t)+AF(t)+AP(t)+ I(t)+R(t)≤ κ

ϑ

}
is invariant for the solutions of the model (6.1).

Proof. Since the right-hand side of the model (6.1), and its derivatives are continuous, there-

fore, it assures the wellpossness of the model (6.1).

On adding the equations of the model (6.1), we get

d
dt

(S(t)+AF(t)+AP(t)+ I(t)+R(t)) = κ−ϑ(S(t)+AF(t)+AP(t)+ I(t)+R(t))−dI

≤ κ−ϑ(S(t)+AF(t)+AP(t)+ I(t)+R(t)).

(6.3)

Thus, the invariant region for the existence of the solutions is given as

0 < lim
t→∞

(S(t)+AF(t)+AP(t)+ I(t)+R(t))≤ κ

ϑ
. (6.4)

Hence, the solution of the model (6.1) are compact.

In the next section, we obtain the model's equilibria and perform stability analysis to

investigate the behavior of the equilibrium points.

6.3 Mathematical analysis

Since R(t) does not appear in the �rst four equations of the model (6.1), therefore,

without loss of generality, it is su�cient to consider �rst four equations of the model for
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the analysis purpose:

dS
dt

= κ−δ1S−δ2S− β1S(t−ρ)I(t−ρ)

1+ εI(t−ρ)
−ϑS,

dAF

dt
= δ1S− β2I(t−ρ)AF(t−ρ)

1+ εI(t−ρ)
−ϑAF ,

dAP

dt
= δ2S− β3I(t−ρ)AP(t−ρ)

1+ εI(t−ρ)
−ϑAP,

dI
dt

=
β1S(t−ρ)I(t−ρ)

1+ εI(t−ρ)
+

β2I(t−ρ)AF(t−ρ)

1+ εI(t−ρ)
+

β3IAP(t−ρ)

1+ εI(t−ρ)
− (d +θ +ϑ)I− aI

1+bI
.

(6.5)

For the existence of model's equilibrium, we set the right hand side terms of the system

(6.5) to zero and obtain that the model (6.5) has two equilibria given below:

1. Disease-free equilibrium E0(S0,AF0,AP0,0) (represents the eradication of infected

individuals, i.e. I ≡ 0 for all t > 0), discussed in subsection 6.3.1.

2. Endemic equilibrium Ee(S∗,A∗F ,A
∗
P, I
∗) (represents the persistence of infected indi-

viduals above a certain positive level, i.e., I > 0 for all t > 0), discussed in subsection

6.3.2.

6.3.1 Disease-free equilibrium

The system (6.5) has a disease-free equilibrium of the form E0(S0,AF0 ,AP0,0), where,

S0 =
κ

δ1 +δ2 +ϑ
, AF0 =

δ1κ

ϑ(δ1 +δ2 +ϑ)
, AP0 =

δ2κ

ϑ(δ1 +δ2 +ϑ)
.

The characteristic equation of the system (6.5) at disease-free equilibrium is obtained as

(−ϑ −λ )2 (−δ1−δ2−ϑ −λ )
(

λ +(ϑ +d +θ +a)− (β1S0 +β2AF0 +β3AP0)e−λρ

)
= 0.

(6.6)

Eq. (6.6) is fourth degree transcendental equation in λ with roots λ1 = −ϑ , λ2 =

−ϑ , λ3 =−(δ1 +δ2 +ϑ) and the other roots are the solution of

λ +(ϑ +d +θ +a)− (β1S0 +β2AF0 +β3AP0)e−λρ = 0. (6.7)

On simpli�cation, Eq. (6.7) can be written as

X(λ ) := λ +(ϑ +d +θ +a)− κ (β1ϑ +β2δ1 +β3δ2)

ϑ (δ1 +δ2 +ϑ)
e−λρ = 0. (6.8)
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The term κ(β1ϑ+β2δ1+β3δ2)
ϑ(ϑ+d+θ+a)(δ1+δ2+ϑ)e

−λρ at ρ = 0 is de�ned as the basic reproduction number

of the system (6.5). Thus, the basic reproduction number of the system (6.5) is

R0 =
κ (β1ϑ +β2δ1 +β3δ2)

ϑ (ϑ +d +θ +a)(δ1 +δ2 +ϑ)
.

Analysis for R0 6= 1

As mentioned above, Eq. (6.6) has three negative real roots λ1 =−ϑ , λ2 =−ϑ , λ3 =

−(δ1 +δ2 +ϑ), and other roots are the solutions of the Eq. (6.8).

Note that

X(0) = (ϑ +d +θ +a)(1−R0). (6.9)

If R0 > 1, then X(0)< 0. Also,

X ′(λ ) = 1+
κ (β1ϑ +β2δ1 +β3δ2)

ϑ (δ1 +δ2 +ϑ)
e−λρ

ρ > 0. (6.10)

Thus, lim
λ→∞

X(λ ) = +∞.

Hence, X(λ ) = 0, X(0) < 0, X ′(λ ) > 0, and lim
λ→∞

X(λ ) = +∞ indicate that there always

exists a unique and positive real root of X(λ ) = 0 if R0 > 1.

Now, if R0 < 1, then

Reλ =
κ (β1ϑ +β2δ1 +β3δ2)e−(Reλ )ρ cos(Imλ )ρ

ϑ (δ1 +δ2 +ϑ)
− (ϑ +d +θ +a)

<
κ (β1ϑ +β2δ1 +β3δ2)

ϑ (δ1 +δ2 +ϑ)
− (ϑ +d +θ +a)

= (ϑ +d +θ +a)(R0−1)

< 0.

(6.11)

Therefore, R0 < 1 implies that λ is a root of Eq. (6.6) with negative real part.

Analysis at R0 = 1

In this subsection, the system (6.5) is analyzed at E0(S0,AF0 ,AP0,0) and R0 = 1 for the

time-delay ρ ≥ 0.

Case (i) ρρρ >>> 000

If R0 = 1, then λ = 0 is a simple characteristic root of Eq. (6.8). Note that R0 = 1
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implies that κ (β1ϑ +β2δ1 +β3δ2) = ϑ (ϑ +d +θ +a)(δ1 +δ2 +ϑ).

Let λ = r+ is be any of the other solutions, then (6.8) becomes:

r+ is+(ϑ +d +θ +a)− (ϑ +d +θ +a)e−rρ (cossρ− i sinsρ) = 0. (6.12)

By applying Euler's formula and splitting real and imaginary parts, Eq. (6.12) can be

written as

r+ϑ +d +θ +a = (ϑ +d +θ +a)cossρ e−rρ ,

s =−(ϑ +d +θ +a)sinsρ e−rρ .
(6.13)

On squaring and adding both the equations of Eq. (6.13), we obtain

(r+ϑ +d +θ +a)2 + s2 = (r+ϑ +d +θ +a)2 e−2rρ . (6.14)

If there exists a root satisfying both the equations of (6.13), then this root also satis�es

the Eq. (6.14) obtained by squaring and adding these equations. For Eq. (6.14) to be

veri�ed, we must have r ≤ 0. Therefore, E0 is linearly neutrally stable.

Case (ii) ρρρ === 000

We now analyze the qualitative behavior of the system (6.5) without time delay, i.e.,

we take ρ = 0. This analysis has an interest in itself and will also allow getting some

information on the stability of the coexistence equilibrium in the case with delay [120].

The bifurcation theory approach obtained in [40], which is based on the center manifold

theory [17], has been used to decide the local stability of a nonhyperbolic equilibrium (i.e.,

linearization matrix has at least one eigenvalue with zero real part) near the criticality

E0 and R0 = 1. It allows us to clarify the direction of the bifurcation and describes the

local behavior of disease-free equilibrium near R0 = 1. For simplicity, we rede�ne the

state variables as S = x1, AF = x2, AP = x3, and I = x4. So, the system (6.5) takes the
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form:

dx1

dt
= κ−δ1x1−δ2x1−

β1x1x4

εx4 +1
− x1ϑ ≡ g1,

dx2

dt
=− β2x2x4

εx4 +1
−ϑx2 +δ1x1 ≡ g2,

dx3

dt
=− β3x3x4

εx4 +1
−ϑx3 +δ2x1 ≡ g3,

dx4

dt
=

β1x1x4

εx4 +1
+

β2x2x4

εx4 +1
+

β3x3x4

εx4 +1
− (d +θ +ϑ)x4−

ax4

bx4 +1
≡ g4.

(6.15)

We observe that when R0 = 1, the chosen bifurcation parameter β2 takes the form

β2 = β
∗
2 =

δ2 (ϑ(a+d +θ +ϑ)−β3κ)+ϑ (δ1 +ϑ)(a+d +θ +ϑ)+β1κ(−ϑ)

δ1κ
.

The Jacobian matrix J(E0, β ∗2 ) of the system (6.15) obtained at criticality (that is, at

E0 and β ∗2 ) is

J(E0,β
∗
2 ) =


−ϑ −δ1−δ2 0 0 − κβ1

ϑ+δ1+δ2

δ1 −ϑ 0 − κβ ∗2 δ1
ϑ(ϑ+δ1+δ2)

δ2 0 −ϑ − κβ3δ2
ϑ(ϑ+δ1+δ2)

0 0 0 0

 .

The eigenvalues of the Jacobian matrix J(E0,β
∗
2 ) are λ1 = −ϑ , λ2 = −ϑ , λ3 = −ϑ −

δ1−δ2, λ4 = 0. We see that λ1,λ2, and λ3 are real and negative eigenvalues and λ4 = 0

is a simple zero eigenvalue (since, the algebraic multiplicity of λ4 = 0 is 1) of J(E0,β
∗
2 ).

Thus, when R0 = 1, the DFE E0 is a non-hyperbolic equilibrium.

The right eigenvector v = (v1,v2,v3,v4) of J(E0,β
∗
2 ) corresponding to λ4 = 0 is obtained

as

v1 =−
β1κ

(δ1 +δ2 +ϑ)2 ,

v2 =−
δ1κ (β2 (δ1 +δ2 +ϑ)+β1ϑ)

ϑ 2 (δ1 +δ2 +ϑ)2 ,

v3 =−
δ2κ (β3 (δ1 +δ2 +ϑ)+β1ϑ)

ϑ 2 (δ1 +δ2 +ϑ)2 ,

v4 = 1.

The left eigenvector w = (w1,w2,w3,w4) of J(E0, β ∗2 ) corresponding to λ4 = 0 is obtained
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as

w1 = 0,

w2 = 0,

w3 = 0,

w4 = 1.

Let gk's, k = 1,2,3,4, denote the right-hand side of the system (6.15). The bifurcation

coe�cients a1 and b1 de�ned in Theorem 4.1 of [40] are given by:

a1 =
4

∑
k,i, j=1

wkviv j

(
∂ 2gk

∂xi∂x j

)
E0

,

b1 =
4

∑
k,i=1

wkvi

(
∂ 2gk

∂xi∂β ∗2

)
E0

.

The non-zero partial derivatives of the functions gk's at E0 are evaluated as

(
∂ 2g4

∂x4∂x1

)
E0

= β1,
(

∂ 2g4
∂x4∂x2

)
E0

= β ∗2 ,
(

∂ 2g4
∂x4∂x3

)
E0

= β3,
(

∂ 2g4
∂x1∂x4

)
E0

= β1,
(

∂ 2g4
∂x2∂x4

)
E0

= β ∗2 ,(
∂ 2g4

∂x3∂x4

)
E0

= β3,
(

∂ 2g4
∂x2

4

)
E0

=− 2εβ1κ

δ1+δ2+ϑ
− 2εβ ∗2 δ1κ

ϑ(δ1+δ2+ϑ) −
2εβ3δ2κ

ϑ(δ1+δ2+ϑ) +2ab, and(
∂ 2g4

∂x4∂β ∗2

)
E0

= δ1κ

ϑ(δ1+δ2+ϑ) .

The bifurcation coe�cients a1 and b1 are calculated at the bifurcation parameter β ∗2

as follows:

a1 =−
2

δ1κϑ 2 (δ1 +δ2 +ϑ)

(
δ1(δ2(ϑ

2 (
κ(a(ε−b)+ ε(d +θ +ϑ))+2(a+d +θ +ϑ)2)

+β3κ (β3κ−2ϑ(a+d +θ +ϑ)))+ϑ
3 (

κ(a(ε−b)+ ε(d +θ +ϑ))+2(a+d +θ +ϑ)2))
+δ

2
1 ϑ

2 (
κ(a(ε−b)+ ε(d +θ +ϑ))+(a+d +θ +ϑ)2)+(δ2 (ϑ(a+d +θ +ϑ)−β3κ)

+ϑ
2(a+d +θ +ϑ))2−β1κϑ (2δ2 (ϑ(a+d +θ +ϑ)−β3κ)+ϑ (δ1 +2ϑ)(a+d +θ +ϑ))

+β
2
1 κ

2
ϑ

2)
=− 2

δ1κϑ 2 (δ1 +δ2 +ϑ)
×G(β3),

b1 =
κ

δ1 +δ2 +ϑ
.
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where,

G(β3) =
(
ζ2 β

2
3 +ζ1 β3 +ζ0

)
, (6.16)

where, the coe�cients ζ0, ζ1 and ζ2 are

ζ2 = δ2 (δ1 +δ2)κ
2,

ζ1 = 2δ2κϑ (β1κ− (δ1 +δ2 +ϑ)(a+d +θ +ϑ)) ,

ζ0 = ϑ
2((

δ1 +δ2 +ϑ
)(

δ1
(
κ(a(ε−b)+ ε(d +θ +ϑ))+(a+d +θ +ϑ)2)+(

δ2 +ϑ
)
(a+d +θ +ϑ)2)+β1δ1κ(a+d +θ +ϑ)+β1κ

(
β1κ−

2
(
δ1 +δ2 +ϑ

)
(a+d +θ +ϑ)

))
.

(6.17)

It can be seen that the bifucation coe�cient b1 is always positive and the sign of a1

depends the sign of G(β3), given in Eq. (6.16). If G(β3) < 0, then a1 > 0, whereas, if

G(β3)> 0 then a1 < 0.

The discriminant of quadratic polynomial G(β3) is obtained as

D = a
(
δ1 +δ2

)
κ(b− ε)

(
δ1 +δ2 +ϑ

)
+
(
−δ1−δ2−ϑ

)((
δ1 +δ2 +ϑ

)
(a+d +θ +ϑ)2

+ ε
(
δ1 +δ2

)
κ(d +θ +ϑ)

)
+β1κ

(
δ1 +δ2 +2ϑ

)
(a+d +θ +ϑ)+β

2
1
(
−κ

2).
(6.18)

Let β ∗3 and β ∗∗3 be two roots of the Eq. (6.16), then we get

β
∗
3 =
−ζ1 +D

2ζ2
, and β

∗∗
3 =

−ζ1−D
2ζ2

. (6.19)

Using Theorem 4.1(iv) in [40], the type of bifucation is govenered by the sign of a1 and

hence by the sign of G(β3). If G(β3) is of positive sign then forward bifurcation occurs,

whereas, if the sign of G(β3) is negative then the system (6.15) reveals a backward bi-

furcation. These behavior di�erences are essential in planning how to control a disease;

a backward bifurcation at R0 = 1 makes control more di�cult. These two cases are dis-

cussed below separately.

(I) Forward bifurcation: When there is a forward bifurcation at R0 = 1, it is not pos-

sible for a disease to invade a population if R0 < 1 because the system will return to

the disease-free equilibrium I = 0 if some infectives are introduced into the population.

For values of R0 slightly greater than 1, E0 changes its stability from stable to unstable
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and the model admits a unique endemic equilibrium, which is locally asymptotically

stable [40]. Therefore, it is imperative to �nd the range for which forward bifurcation

occurs. The range of forward bifurcation is governed by the positivity of G(β3). Thus,

there are two cases in which G(β3) is found to be positive. These are given as follows:ζ1 > 0,

ζ0 > 0.
(6.20)

or
D > 0,

either of (ζ1 > 0, ζ0 < 0) , (ζ1 < 0. ζ0 > 0) , or (ζ1 < 0, ζ0 < 0) holds,

β3 < β
∗
3 or β3 > β

∗∗
3 .

(6.21)

(II) Backward bifurcation: The backward bifurcation is characterized as when R0 < 1;

a small unstable endemic equilibrium appears while the disease-free equilibrium and a

larger endemic equilibrium are locally asymptotically stable. When R0 > 1, then an

unstable disease-free equilibrium and a stable endemic equilibrium exist [40]. It is illus-

trated in Fig. (6.4). The range of existence of backward bifurcation (i.e., when G(β3)< 0)

as follows:
D > 0,

either of (ζ1 > 0, ζ0 < 0) , (ζ1 < 0. ζ0 > 0) , or (ζ1 < 0, ζ0 < 0) holds,

β
∗∗
3 < β3 < β

∗
3 .

(6.22)

Based on the analysis above, we state the following theorems:

Theorem 6.3.1. The disease-free equilibrium E0(S0,AF0 ,AP0,0) of the delayed system (6.5) is

asymptotically stable if R0 < 1 and unstable if R0 > 1 for ρ > 0.

Theorem 6.3.2. The disease-free equilibrium E0(S0,AF0 ,AP0,0) of the delayed system (6.5) at

R0 = 1 is linearly neutrally stable for ρ > 0.

Theorem 6.3.3. When R0 = 1, then the undelayed system (6.15) reveals a backward (forward)

bifurcation at disease-free equilibrium E0(S0,AF0,AP0,0) if and only if G(β3)< 0 (> 0).

The graphical presentations of the forward and backward bifurcations are shown in Figs.

6.2, 6.3, and 6.4 for the experimental data metioned below:
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κ = 2, ε = 0.1, ϑ = 0.01, d = 0.001, b = 0.8, θ = 0.01, a = 0.9, β1 = 0.004, δ1 =

0.01, δ2 = 0.009. At these values of parameters, we evaluate that the range of β3 is β ∗∗3 =

0.00098164 ≤ β3 ≤ 0.0088652 = β ∗3 . The cases of occurrence of forward and backward

bifurcations, given in the inequalities (6.20), (6.21), and (6.22), are illustrated from

(1.)�(3.) as below:

(1.) If we take β3 = 0.00008, then we obtain that ζ2 = 0.000522, ζ1 = 1.242×10−6 > 0,

and ζ0 = 7.75344× 10−9 > 0. This case illustrates the inequality (6.20) and the

graph is shown in Fig. 6.2.

Figure 6.2: Plot of R0 versus I(t), showing forward bifurcation.

(2.) On considering β3 = 0.01, we obtain that ζ2 = 0.000522, ζ1 = 1.242×10−6> 0, ζ0 =

−5.44699×10−8 < 0, and the discriminant D = 1.15276×10−10 > 0. It illustrates

the inequality (6.21) and the graph is shown in Fig. 6.3.

Figure 6.3: Plot of R0 versus I(t), showing forward bifurcation.
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(3.) If we take β3 = 0.006, which lies between β ∗∗3 and β ∗3 , then we obtain that the

coe�cients ζ2 = 0.000522, ζ1 = 1.242× 10−6 > 0 and ζ0 = −4.05047× 10−8 < 0,

and the discriminant D = 8.61164×10−11 > 0. This case illustrates the inequality

(6.22) and the graph is shown in Fig. 6.4.

Figure 6.4: Plot of R0 versus I(t), showing backward bifurcation.

In Figs. 6.2, 6.3, and 6.4, the solid lines show stability and the dashed lines show

instability.

6.3.2 Endemic equilibrium and stability

Assuming that S, AF , AP, I 6= 0. To determine the conditions for the existence of

endemic (positive) equilibrium Ee(S∗,A∗F ,A
∗
P, I
∗), we put the right-hand side of the system

(6.5) to zero. we get:

κ−δ1S−δ2S− β1SI
1+ εI

−Sϑ = 0, (6.23)

−β2AF I
1+ εI

−ϑAF +δ1S = 0, (6.24)

−β3API
1+ εI

−ϑAP +δ2S = 0, (6.25)

β1SI
1+ εI

+
β2AF I
1+ εI

+
β3API
1+ εI

− (d +θ +ϑ)I− aI
1+bI

= 0. (6.26)

Solving for S, AF and AP in terms of I, from the Eqs. (6.23), (6.24) and (6.25), respec-

tively, and substituting the resulting expression in Eq. (6.26), after simpli�cation, we

obtain the following equation in I:

P(I) := A0 +A1I +A2I2 +A3I3 +A4I4 = 0, (6.27)
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where,

A0 = ϑ (δ1 +δ2 +ϑ)(a+d +θ +ϑ)(1−R0),

A1 = ϑ ((δ1 +δ2 +ϑ)(3εϑ +β2 +β3)+β1ϑ)(a+d +θ +ϑ)−β2δ1κϑ(2ε +b)−β3δ2κϑ

× (2ε +b)−β1κϑ
2(2ε +b)+bϑ

2 (δ1 +δ2 +ϑ)(d +θ +ϑ)−β2β3δ1κ

−β2β3δ2κ−β1 (β2 +β3)κϑ ,

A2 = ϑ

(
β3 (δ2(2aε− εκ(ε +2b)+(2ε +b)(d +θ +ϑ))+(δ1 +ϑ)(2aε +(2ε +b)(d +θ +ϑ)))

+3εϑ (δ1 +δ2 +ϑ)(aε +(ε +b)(d +θ +ϑ))
)
+β2

(
β3

(
(δ1 +δ2)(a−κ(ε +b)

+d +θ +ϑ)+ϑ(a+d +θ +ϑ)
)
+ϑ

(
δ1(2aε− εκ(ε +2b)+(2ε +b)(d +θ +ϑ))

+(δ2 +ϑ)(2aε +(2ε +b)(d +θ +ϑ))
))
−β1

(
β2 (−ϑ(a+d +θ +ϑ)+κϑ(ε +b)+β3κ)

+ϑ (ϑ(−2aε + εκ(ε +2b)− (2ε +b)(d +θ +ϑ))−β3(a−κ(ε +b)+d +θ +ϑ))
)
,

A3 =−(εϑ +β3)((εϑ +β2)(−aεϑ −β1(a−bκ))− εδ1 (aεϑ +β2(a−bκ)))+ εδ2 (εϑ +β2)

×
(
aεϑ +β3(a−bκ)

)
− (d +θ +ϑ)

(
β1 (ϑ (−β3(ε +b)− εϑ(ε +2b))−β2 (ϑ(ε +b)+β3))

− (δ1 +δ2 +ϑ)(β2 (β3(ε +b)+ εϑ(ε +2b))+ εϑ (β3(ε +2b)+ εϑ(ε +3b)))
)
,

A4 = b(εϑ +β2)(εϑ +β3)(d +θ +ϑ)(ε (δ1 +δ2 +ϑ)+β1) .

(6.28)

For a positive root of I∗ of the polynomial P(I), we have

S∗ =
κ + εκI∗

(δ1 +δ2 +ϑ)(εI∗+1)+β1I∗
, (6.29)

A∗F =
δ1S∗(εI∗+1)

εI∗ϑ +β2I∗+ϑ
, (6.30)

A∗P =
δ2S∗(εI∗+1)

εI∗ϑ +β3I∗+ϑ
. (6.31)

So, Ee(S∗,A∗F ,A
∗
P, I
∗) is a positive equilibrium of the system (6.5).

Theorem 6.3.4. When R0 > 1, then there is either a unique or three positive endemic equilibria

if all equilibria are simple roots.

Proof. Let R0 > 1. We see that the coefficient A4 is always positive. On the other hand, A0 < 0

when R0 > 1. From Eq. (6.27), we have a fourth degree polynomial in I, given below:

P(I) := A0 +A1I +A2I2 +A3I3 +A4I4 = 0.
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The following possibilities for the signs of A1, A2, and A3 exist:

V1 : A1 > 0, A2 > 0, and A3 > 0,

V2 : A1 < 0, A2 < 0, and A3 > 0,

V3 : A1 < 0, A2 > 0, and A3 > 0,

V4 : A1 < 0, A2 < 0, and A3 < 0,

V5 : A1 > 0, A2 > 0, and A3 < 0,

V6 : A1 > 0, A2 < 0, and A3 > 0,

V7 : A1 > 0, A2 < 0, and A3 < 0,

V8 : A1 < 0, A2 > 0, and A3 < 0.

Using Descartes’ rule of signs [42], P(I) can have either a unique or three positive roots. If

any of the conditions V1–V4 holds, then there is unique endemic equilibrium, whereas for the

existence of three endemic equilibria, any one of the conditions V5–V8 must satisfy.

For the present study, we consider the case of unique endemic equilibrium only. H1:

Suppose that any of the conditions (V1�V4, and R0 > 1) holds, then the system (6.5)

admits a unique endemic equilibrium.

Now, we study the local stability behavior of endemic equilibrium Ee(S∗,A∗F ,A
∗
P, I
∗). For

this, we obtain the characteristic equation of the system (6.5) at Ee(S∗,A∗F ,A
∗
P, I
∗) as

given below:

P0(λ )+ e−λρP1(λ )+ e−2λρP2(λ )+ e−3λρP3(λ ) = 0, (6.32)

where,

P0(λ ) = λ
4 +K1λ

3 +K2λ
2 +K3λ +K4,

P1(λ ) = K5λ
3 +K6λ

2 +K7λ +K8,

P2(λ ) = K9λ
2 +K10λ +K11,

P3(λ ) = K12λ +K13.

(6.33)

where, the coe�cients Ki, i = 1 to 13 are given in Appendix. For ρ = 0, the characteristic

equation becomes:

λ
4 +Q3λ

3 +Q2λ
2 +Q1λ +Q0 = 0, (6.34)

where, Q′is, i = 0,1,2,3, are given in Appendix.
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Based on Routh-Hurwitz criterion, it can be concluded that all the roots of Eq. (6.34)

have negative real parts if the following inequalities hold:

H2: Qi > 0 (i = 0,1,2,3), Q3Q2−Q1 > 0, and Q3Q2Q1−Q2
1−Q2

3Q0 > 0. (6.35)

Thus, we state the following Theorem:

Theorem 6.3.5. At ρ = 0, the endemic equilibrium E2(S∗,A∗F ,A
∗
P, I
∗) is locally asmptotically

stable if H2 holds.

Now multiply by e−λρ on both sides of the characteristic equation (6.32), we get:

P0(λ )eλρ +P1(λ )+ e−λρP2(λ )+ e−2λρP3(λ ) = 0. (6.36)

Change of stability and hence the existence of oscillatory solution may appear if the roots

of the characteristic equation are purely imaginary. Therefore, to study the stability of

Ee, assuming that λ = iω, (ω > 0) is a root of Eq. (6.36). Then, Eq. (6.36) becomes:

P0(iω)eiωρ +P1(iω)+ e−iωρP2(iω)+ e−2iωρP3(iω) = 0. (6.37)

Eq. (6.37) can be rewritten as

(M0 + iN0)(cosωρ + i sinωρ)+(M1 + iN1)+(M2 + iN2)(cosωρ− i sinωρ)

+(M3 + iN3)(cos2ωρ− i sin2ωρ) = 0,
(6.38)

where, M0, M1, M2, M3, N0, N1, N2 and N3 denote the real and imaginary parts of

P0(iω), P1(iω), P2(iω) and P3(iω), respectively, given as:

M0 = ω
4−K2ω

2 +K4, N0 =−K1ω
3 +K3ω,

M1 =−K6ω
2 +K8, N1 =−K5ω

3 +K7ω,

M2 =−K9ω
2 +K11, N2 = K10ω,

M3 = K13, N3 = K12ω.
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When Eq. (6.38) splits into its real and imaginary parts, we get

M1 +M4 cosωρ +V4 sinωρ =−N3 sin2ωρ−M3 cos2ωρ, (6.39)

N1 +N5 cosωρ +M5 sinωρ =−N3 cos2ωρ +M3 sin2ωρ, (6.40)

where, M4 = M0 +M2, N4 = N2−N0, M5 = M0−M2 and N5 = N2 +N0.

On squaring Eqs. (6.39) and (6.40), and then adding, we obtain

(M1 +M4 cosωρ +N4 sinωρ)2 +(N1 +N5 cosωρ)+M5(sinωρ)2−N2
3 −M2

3 = 0. (6.41)

On substituting sinωρ =
√

1− cos2 ωρ in Eq. (6.41), we obtain

L1 cos4
ωρ +L2 cos3

ωρ +L3 cos2
ωρ +L4 cosωρ +L5 = 0, (6.42)

where,

L1 = p2
1 +4p2

5, L2 = 4p1 p2 +8p4 p5,

L3 = 4p2
2 +2p1 p3 +4p2

4−4p2
5, L4 = 4p2 p3−8p4 p5,

L5 = p2
3−4p2

4,

p1 = M2
4 +N2

5 −N2
4 −M2

5 , p2 = M1M4 +N1N4,

p3 = M2
1 +N2

4 +N2
1 +M2

5 −N2
3 −M2

3 , p4 = M1N4 +N1M5,

p5 = M4N4 +M5N5.

Let cosωρ = x, then Eq. (6.42) can be written as

f (x) := L1x4 +L2x3 +L3x2 +L4x+L5 = 0. (6.43)

From Eq. (6.43), we obtain

f ′(x) = 4L1x3 +3L2x2 +2L3x+L4 = 0. (6.44)

For convenience, we assume that x = y−L2/4L1. Then, Eq. (6.44) becomes:

y3 +Ay+B = 0, (6.45)
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where,

A =
L3

2L1
− 3

16

(
T2

T1

)2

,

B =
1

32

(
L2

L1

)3

− L2L3

8L2
1
+

L4

4L1
.

Now, roots of Eq. (6.45) are given as

y1 =
3

√
−B

2
+
√

O+
3

√
−B

2
−
√

O,

y2 = η1
3

√
−B

2
+
√

O+η2
3

√
−B

2
−
√

O,

y3 = η2
3

√
−B

2
+
√

O+η1
3

√
−B

2
−
√

O,

where, η1 =
−1+

√
3i

2 , η2 =
−1−

√
3i

2 and O = B2

4 + A3
27 .

It follows from cosωρ = x and x = y−L2/4L1 = F1(ω) that

cosωρ = F1(ω). (6.46)

On substituting Eq. (6.46) in Eq. (6.41) and solving for sinωρ , we obtain

sinωρ = F2(ω). (6.47)

From Eqs. (6.46) and (6.47), we get

F2
1 (ω)+F2

2 (ω) = 1. (6.48)

Assume that H3: Eq. (6.48) has atleast one positive root ω0, such that the characteristic

equation (6.32) has a pair of purely imaginary roots iω0.

For ω0, the corresponding critical value of time delay ρk can be obtained as:

ρk =
1

ω0
(arccosF1(ω0)+2kπ) , k = 0,1,2, . . . . (6.49)

Assume that ρ is a bifurcation parameter and ρ0=minρk, k = 0,1,2, . . . is the criticle
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value.

To estabilish the Hopf bifurcation, we show that Re
[

dλ

dρ

]−1

λ=iω0

6= 0.

Di�erentiating Eq. (6.32) with respect to ρ , we obtain:

dλ

dρ

(
P′0(λ )+ e−λρP′1(λ )−ρe−λρP1(λ )+ e−2λρP′2(λ )−2ρP2(λ )e−2λρ + e−3λρP′3(λ )−

3ρP3(λ )e−3λρ

)
−λe−λρP1(λ )−2λP2(λ )e−2λρ −3λP3(λ )e−3λρ = 0.

=⇒ dλ

dρ

(
P′0(λ )+ e−λρP′1(λ )−ρe−λρP1(λ )+ e−2λρP′2(λ )−2ρP2(λ )e−2λρ + e−3λρP′3(λ )−

3ρP3(λ )e−3λρ

)
= λe−λρP1(λ )+2λP2(λ )e−2λρ +3λP3(λ )e−3λρ .

=⇒ dλ

dρ
=

λ

(
P1(λ )+2P2(λ )e−λρ +3P3(λ )e−2λρ

)
(
P′0(λ )e

λρ +P′1(λ )−ρP1(λ )+ e−λρ
(
P′2(λ )−2ρP2(λ )

)
+ e−2λρ

(
P′3(λ )−3ρP3(λ )

)) .
Thus, we get

[
dλ

dρ

]−1

=

(
P′0(λ )e

λρ +P′1(λ )+ e−λρP′2(λ )+ e−2λρP′3(λ )
)

λ
(
P1(λ )+2P2(λ )e−λρ +3P3(λ )e−2λρ

) −(
ρP1(λ )+2ρP2(λ )e−λρ +3ρP3(λ )e−2λρ

)
λ
(
P1(λ )+2P2(λ )e−λρ +3P3(λ )e−2λρ

) .

i.e.,

[
dλ

dρ

]−1

=

(
P′0(λ )e

λρ +P′1(λ )+ e−λρP′2(λ )+ e−2λρP′3(λ )
)

λ
(
P1(λ )+2P2(λ )e−λρ +3P3(λ )e−2λρ

) − ρ

λ
.

Re
[

dλ

dρ

]−1

λ=iω0

=
X1X2 +Y1Y2

X2
2 +Y 2

2
,

where,

X1 =−sinω0ρ0
(
−4ω

3
0 +2K2ω0

)
+ cosω0ρ0

(
−3K1ω

2
0 +K3

)
+
(
−3K5ω

2
0 +K7

)
+(K10 cosω0ρ0 +2ω0K9 sinω0ρ0)+K16 cos2ω0ρ0,

X2 = K5ω
4
0 −K7ω

2
0 −2K10ω

2
0 cosω0ρ0 +2

(
−K9ω

2
0 +ω0K11

)
sinω0ρ0−3ω

2
0 K12 cos2ω0ρ0

+3ω0K13 sin2ω0ρ0,
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Y1 = cosω0ρ0
(
−4ω

3
0 +2K2ω0

)
+ sinω0ρ0

(
−3K1ω

2
0 +K3

)
+2ω0K6 +2ω0K9 cosω0ρ0−K10 sinω0ρ0

−K16 sin2ω0ρ0,

Y2 =−K6ω
3
0 +ω0K8 +2

(
−K9ω

3
0 +ω0K11

)
cosω0ρ0 +3

(
ω

2
0 K12 sin2ω0ρ0 +ω0K13 cos2ω0ρ0

)
+2ω

2
0 K10 sinω0ρ0.

Obviously, if H4: X1X2 +Y1Y2 6= 0, then Re
[

dλ

dρ

]−1

λ=iω0

6= 0.

Thus, we state the following theorem:

Theorem 6.3.6. For the system (6.5), if the conditions (H1-H4) hold, then the endemic equi-

librium Ee = (S∗,A∗F ,A
∗
P, I
∗) is locally asmptotically stable when ρ ∈ [0,ρ0); the system (6.5)

undergoes a Hopf bifurcation at Ee = (S∗,A∗F ,A
∗
P, I
∗) when ρ = ρ0, and a family of periodic

solutions bifurcate from Ee = (S∗,A∗F ,A
∗
P, I
∗).

6.4 Numerical simulation

In this section, numerical experiments are presented to show the analytical results

using Mathematica 11.

We have considered the following set of experimental data: κ = 2, ϑ = 0.01, β1 =

0.02, β2 = 0.006, β3 = 0.008, δ1 = 0.1, δ2 = 0.02, a = 0.04, d = 0.009, θ = 0.004, ε =

0.5, b = 0.09.

At these parameters values, the endemic equilibrium is

Ee(S∗,A∗F ,A
∗
P, I
∗) = (11.903,55.602,9.443,38.504) with R0 > 1.

Figure 6.5: Subpopulations S−AP−AF − I−R at ρ = 1.

Fig. 6.5 shows the behavior of di�erent subpopulations for the time delay ρ = 1.
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Evidently, as time increases, unaware susceptibles decrease, and the fully aware and

partially aware, infected, and removed individuals population increase and then start

decaying and settle down to steady-state Ee(11.903,55.602,9.443,38.504).

Figure 6.6: Infected population I(t) at different values of time delay ρ .

Fig. 6.6 depicts the e�ect of time delay on the infected population. We plot the

infected population for di�erent values of time delay ρ = 1,7, and 14, respectively. It

reveals that the large value of time delay causes an increment in the infected population.

6.7.1: Infected population I(t) when β1 varies. 6.7.2: Infected population I(t) when β2 varies.
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6.7.3: Infected population I(t) when β3 varies.

Figure 6.7: Infected population for the transmission rates of unaware, fully aware, and partially
aware susceptibles for the time-delay ρ = 1.

Figs. 6.7.1, 6.7.2, and 6.7.3 show the in�uence of di�erent transmission rates on infected

population I(t). It validates the increment in the number of infected population as the

transmission rates increase, which is biologically true.

6.8.1: Infected population I(t) for δ1. 6.8.2: Infected population I(t) for δ2.

Figure 6.8: Impact of full and partial awareness rates on infected population for the time delay
ρ = 1.

Figs. 6.8.1 and 6.8.2 show the impact of full and partial awareness rates (δ1 and δ2) on

the infected population for the time delay ρ = 1. It is evident that if the full awareness

rate is high, then infection diminishes at a high level. Partially awareness in humans also

helps them to escape from the infection, as depicted by Fig. 6.8.2. Thus, more e�orts

should be put to spread full awareness among people.
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Figure 6.9: Dynamics of infectious diseases showing the impact of aware classes on infected
individuals I(t) for the time delay ρ = 1.

Fig. 6.9 examines the potential of fully and partially aware classes in minimizing the

impact of an epidemic. From the graph, it is evident that when people are not aware of

the spread of disease (shown by a solid red line), the infection occurs at a higher rate.

Awareness in humans motivates them to escape from the infection. By the complete and

correct information about a disease, individuals change their attitudes and actions to

reduce their chances of becoming infected, spreading the disease further, or experiencing

prolonged periods of medical treatment. Attempts to raise awareness of an infectious

disease may also build a sense of threat in inadequately informed individuals. When

there is only partial information available, infection reduces, but a low level (as shown

by the dashed green line). Because of weak, inaccessible, and absence of education,

uneducated individuals are rarely formally trained in handling diseases, its prognosis,

diagnosis, preventions, and cures. They take preventive measures by word of mouth or

by social media, which leads to a reduction in infection at a low level. Also, if people are

partially mindful, then there are chances that they can take unnecessary medications due

to fear of catching the infection, which can weaken their immune system. So those people

are at more risk of getting infected (shown by the dot-dashed blue line). Therefore, the

absence of partial awareness and the presence of full awareness about the spread and

prevention of disease leads to a reduction in the range of illness at a high rate (shown

by the dotted black line).
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6.10.1: Effect of cure rate a on infected population
I(t) for the time delay ρ = 1.

6.10.2: Infected individuals I(t) with and without
saturated treatment rate and aware classes for the
time delay ρ = 1.

Figure 6.10: Impact of cure rate, awareness, and saturated treatment on the infected population
for ρ = 1.

Fig. 6.10.1 shows that the increase in the cure rate can increase the reduction of

infected individuals. Fig. 6.10.2 shows the in�uence of saturated treatment rate on

infected population I(t). We have plotted the infected population when there is neither

treatment nor awareness available. Clearly, in this case, infection is spreading at a very

high rate. Purple dashed line shows the infected population when people are aware, but

treatment is not available, and the solid red line shows the infected population in the

absence of awareness and treatment. The major di�erence can be seen between these

two lines. Blue dashed line shows the infected population when both awareness and

treatment are present, which is stabilizing at the lowest level among three lines. Thus,

the treatment rate with awareness help in reducing infection at a faster rate.
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To show the presence of Hopf bifurcation, we take the following experimental data:

κ = 10, ε = 0.92, β1 = 0.2, β2 = 0.02, β3 = 0.04, δ1 = 0.05, δ2 = 0.03, ϑ = 0.1, a =

0.2, b = 0.5, θ = 0.01, d = 0.01.

We obtain that Ee(S∗,A∗F ,A
∗
P, I
∗) = (25.5152,10.5267,5.37598,42.1257), at these values

of parameters.

6.11.1: Time series solution of the model (6.1) for
ρ = 14.

6.11.2: Phase plot of susceptible, infected and re-
moved population when ρ = 14.

6.11.3: Time series solution of the model (6.1) for
ρ = 21.

6.11.4: Phase plot of susceptible, infected and re-
moved population when ρ = 21.
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6.11.5: Time series solution of the model (6.1) for
ρ = 25.

6.11.6: Phase plot of susceptible, infected and re-
moved population when ρ = 25.

6.11.7: Time series solution of the model (6.1) for
ρ = 27.

6.11.8: Phase plot of susceptible, infected and re-
moved population when ρ = 27.

Figure 6.11: Graphs depicting the presence of Hopf bifurcation for different values of time-
delay ρ .

Figs. 6.11 depicts the time series solutions of the model (6.1) with their respective SIR

phase plot for distinct values of time delay ρ . It is observed that the spread of infectious

disease can be controlled for ρ = 14, and ρ = 21. That is, Figs. 6.11.1, 6.11.2, 6.11.3,

and 6.11.4 show that initially periodic solutions appear but after a time, the endemic

157



equilibrium Ee reaches to its steady state. Figs. 6.11.5, 6.11.6, 6.11.7, and 6.11.8 show

the unstable limit cycle around the endemic equilibrium equilibrium when time delay

ρ > ρ0 = 24.

6.5 Discussion

In the present chapter, we divide the total population into �ve compartments: unaware

susceptibles, fully aware susceptibles, partially aware susceptibles, infected, and removed

individuals; and study a time-delayed epidemic model with saturated incidences and

treatment rates. We analyze the model mathematically and study the dynamic behaviors

of the epidemic model with and without time delay ρ . The mathematical analysis of

the model shows that it exhibits two equilibria: disease-free and endemic. By deriving

the basic reproduction number R0, we prove that the disease-free equilibrium is locally

asymptotically stable when R0 < 1, unstable when R0 > 1, and linearly neutrally stable

when R0 = 1 for the time delay ρ > 0. When we don't consider the time delay, then using

the center manifold theory, it is obtained that the forward or backward bifurcation occurs

when R0 = 1. We obtain the bifurcation range of forward and backward bifurcations,

given in the inequalities (6.20), (6.21), and (6.22), respectively. In the presence of forward

bifurcation, as R0 increases through unity, then the disease-free equilibrium loses its

stability, and a stable endemic equilibrium appears. In contrast, the presence of backward

bifurcation shows that a stable endemic equilibrium coexists with a stable DFE when

R0 < 1. It has an important implication as it fails the ideal condition of reducing R0

below unity to eradicate the diseases from society. Thus, the control programs must

reduce R0 further than below unity to eliminate the disease. Schematic diagrams of

forward and backward bifurcation are depicted in Figs. (6.2), (6.3), and (6.4). Further,

the local stability of the endemic equilibrium has been studied, which demonstrates that

by choosing time delay as a bifurcation parameter, the Hopf bifurcation occurs near the

endemic equilibrium, revealing the presence of oscillatory and periodic solutions.

The numerical simulations show the graphical representation of the e�ectiveness of

theoretical results. We see that the consideration of time delay has a signi�cant role as

it impacts the number of infectives. It is seen that when the time delay is high, then

the infection spreads at a higher rate. The periodic and oscillatory solutions have been

plotted near-endemic equilibrium, showing Hopf bifurcation at di�erent values of time

delay ρ . As ρ passes through the critical value ρ0, then the endemic equilibrium loses
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its stability, and an unstable limit cycle appears. When there is no treatment available,

then knowledge about the spread of disease is the main focus. The role of full and

partial awareness in susceptibles has been shown numerically with and without saturated

treatment. When treatment is not given to infected individuals, only susceptibles' full or

partial awareness shows a signi�cant di�erence in the number of infectives (Figs. 9 and

10(b)). Whereas, if we consider saturated treatment rate along with awareness in the

susceptibles, then the transmission pattern of infectious diseases changes more e�ectively,

and the reduction in the prevalence of the disease can be seen to a more extent.

The �ndings of the model, consisting of explicit saturated incidences with latent period

and saturated treatment rate, are capable of demonstrating the signi�cant role of the

latent period, the behavior of susceptibles through di�erent subclasses, and limitation in

available facilities of treatment. The results can understand the role of varying protec-

tion levels of susceptibles in the transmission pattern of infectious diseases, suggesting

the control strategies to prevent the spread of infections at a massive scale. A full aware-

ness about the spread of infectious disease increases public perception to avert infection

and willingness to adopt prevention methods, which mitigates disease transmission. Due

to the di�erent social, educational, and limited information resources, some people may

have incomplete information. Therefore, these partially aware individuals adopt insuf-

�cient preventive methods, through which infection reduces but at a low level. Public

health initiatives can put extra e�ort into making individuals fully aware by enhancing

health literacy and providing su�cient information resources. It can contribute to early

case detection and help in reducing the transmission of infection. Thus, for eradicat-

ing the disease, programs related to regular knowledge, full information, education, and

communication, concerning the spread of infectious diseases and their importance to the

public and health care workers will help them improve their general attitude toward it.

Timely disease pieces of information updates are highly needed. Together with aware-

ness, appropriate treatment to infectives, and the availability of health resources will

help in diminishing the infection from society e�ectively.
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Appendix

Using Mathematica 11, we obtain the coe�cients of the characteristic equation (6.32)

as follows:

K1 =
a+(1+bI∗)2(d +θ +4ϑ)+δ1(1+bI∗)2 +δ2(1+bI∗)2

(1+bI∗)2 ,

K2 =
(δ1 +δ2)

(
a+(1+bI∗)2(θ +d +3ϑ)

)
+3ϑ

(
a+(d +θ +2ϑ)(bI∗+1)2)

(1+bI∗)2 ,

K3 = ϑ
(
(δ1 +δ2)

(
2a+(1+bI∗)2(2(d +θ)+3ϑ)

)
+ϑ

(
3a+(bI∗+1)2(3(d +θ)+4ϑ)

))
,

K4 =
ϑ 2 (δ1 +δ2 +ϑ)

(
a+(d +θ +ϑ)(1+bI∗)2)
(1+bI∗)2 ,

K5 =
β3
(
−A∗P + εI∗2 + I∗

)
+β2

(
−A∗F + εI∗2 + I∗

)
+β1

(
−S∗+ εI∗2 + I

)
(εI∗+1)2 ,

K6 =
1

(1+bI∗)2(1+ εI∗)2 (β3(I∗(εI∗+1)
(
a+(d +θ +3ϑ)(1+bI∗)2)+(1+bI∗)2((δ1 +δ2) I∗(1+ εI∗)

−A∗P (δ1 +δ2 +3ϑ)))+β2(I∗(εI∗+1)
(
a+(1+bI∗)2(θ +d +3ϑ)

)
+(1+bI∗)2 ((δ1 +δ2)

× I∗(εI∗+1)−A∗F (δ1 +δ2 +3ϑ)))+β1(aI∗(εI∗+1)+(1+bI∗)2(I∗(1+ εI∗)(θ +d +3ϑ)

−3S∗ϑ)− (δ1 +δ2)S∗(bI∗+1)2)),

K7 =
1

(1+bI∗)2(1+ εI∗)2 (β3(I∗(1+ εI∗)((δ1 +δ2)
(
a+(1+bI∗)2(θ +d +2ϑ)

)
+ϑ(2a+(1+bI∗)2

× (2(d +θ)+3ϑ)))−ϑA∗P(1+bI∗)2 (2δ1 +2δ2 +3ϑ))+β2(I∗(εI∗+1)((δ1 +δ2)

×
(
a+(1+bI∗)2(θ +d +2ϑ)

)
+ϑ

(
2a+(1+bI∗)2(2(d +θ)+3ϑ)

)
)−ϑA∗F(bI∗+1)2

(2δ1 +2δ2 +3ϑ))+β1ϑ(2aI∗(εI∗+1)+(bI∗+1)2(I∗(εI∗+1)(2(d +θ)+3ϑ)−3S∗ϑ)

−2(δ1 +δ2)S∗(bI∗+1)2)),

K8 =
ϑ

(bI∗+1)2(εI∗+1)2 ((δ1 +ϑ +δ2)(β3(I∗(εI∗+1)
(
a+(1+bI∗)2(θ +d +ϑ)

)
−ϑA∗P(1+bI∗)2)

+β2
(
I∗
(
a+(bI∗+1)2(θ +d +ϑ)

)
(1+ εI∗)−ϑA∗F(1+bI∗)2))+β1ϑ(aI∗(1+ εI∗)

+(1+bI∗)2(I∗(θ +d +ϑ)(εI∗+1)−S∗ϑ)− (δ1 +δ2)S∗(1+bI∗)2)),

K9 =
1

(1+ εI∗)3 (I
∗(β1

(
β3
(
−A∗P−S∗+ εI∗2 + I∗

)
+β2

(
−A∗F −S∗+ εI∗2 + I∗

))
+β2β3

(
−A∗P−A∗F + εI∗2 + I∗

)
)3),
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K10 =
I∗

(1+ εI∗)3(1+bI∗)2 (β1(β3((1+ εI∗)aI∗−2ϑA∗P(1+bI∗)2 +(1+bI∗)2(I∗(θ +d +2ϑ)×

(1+ εI∗)−2S∗ϑ)−δ1S∗(1+bI∗)2)+β2((1+ εI∗)aI∗−2ϑA∗F(1+bI∗)2+

(1+bI∗)2(I∗(1+ εI∗)(θ +d +2ϑ)−2S∗ϑ)−δ2S∗(1+bI∗)2))+

β2β3((1+ εI∗)I∗
(
a+(1+bI∗)2(θ +d +2ϑ)

)
+(1+bI∗)2((δ1 +δ2)× I∗(εI∗+1)−

(δ1 +δ2 +2ϑ)(A∗P +A∗F)))),

K11 =
I∗

(1+ εI∗)3(1+bI∗)2 (β1ϑ(β3((1+ εI∗)aI∗−ϑA∗P(1+bI∗)2 +(1+bI∗)2(I∗(1+ εI∗)×

(d +θ +ϑ)−S∗ϑ)−δ1S∗(bI∗+1)2)+β2(aI∗(εI∗+1)−ϑA∗F(1+bI∗)2+

(1+bI∗)2(I∗(1+ εI∗)(θ +d +ϑ)−S∗ϑ)−δ2S∗(bI∗+1)2))+

β2β3 (δ1 +δ2 +ϑ)(I∗(1+ εI∗)
(
a+(1+bI∗)2(θ +d +ϑ)

)
−ϑ(1+bI∗)2 (A∗P +A∗F))),

K12 =−
β1β2β3S∗I∗2 (A∗P +A∗F +S∗− I∗(1+ εI∗))

(1+ εI∗)4 ,

K13 =
β1β2β3S∗I∗2

(
(1+εI∗)aI∗−ϑ(1+bI∗)2(A∗P+A∗F )+
(1+bI∗)2(I∗(θ+d+ϑ)(1+εI∗)−S∗ϑ)

)
(bI∗+1)2(εI∗+1)4 .

The coe�cients of the characteristic equation (6.36) are obtained as follows:

Q0 = ϑ
2 (δ1 +δ2 +ϑ)(d +θ +ϑ)+

I∗ϑ ((β2 +β3)(δ1 +δ2 +ϑ)+β1ϑ)(d +θ +ϑ)

εI∗+1
×

1
(εI∗+1)3

(
I∗(β2β3(−ϑ)(δ1 +δ2 +ϑ)(A∗P +A∗F)−β1(β2

(
ϑ

2A∗F +S∗
(
ϑ (δ2 +ϑ)−

β3I∗2(d +θ +ϑ)
))

+β3ϑ (ϑA∗P +S∗ (δ1 +ϑ))))
) 1
(εI∗+1)2

(
(δ1 +δ2 +ϑ)(β2ϑ

2 (−A∗F)−

β3
(
ϑ

2A∗P−β2I∗2(d +θ +ϑ)
)
)+β1ϑ

(
β2I∗2(d +θ +ϑ)+β3I∗2(d +θ +ϑ)−

S∗ϑ (δ1 +δ2 +ϑ)
))
− β1β2β3S∗I∗2ϑ (A∗P +A∗F +S∗)

(εI∗+1)4 +
1

(bI∗+1)2(εI∗+1)3×(
a(β1I∗ (β2I∗ (β3S∗I∗+ εI∗ϑ +ϑ)+ϑ(εI∗+1)(εI∗ϑ +β3I∗+ϑ))+

(δ1 +δ2 +ϑ)(εI∗+1)(I∗ϑε +ϑ +β2I∗)(εϑ I∗+ϑ +β3I∗))
)
,
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Q1 =
1

(bI∗+1)2(1+ εI∗)4

(
β1(β2I∗((1+ εI∗)(aI∗(1+ εI∗)+(1+bI∗)2(I∗(1+ εI∗)(d +θ +2ϑ)−2ϑS∗))

− (bI∗+1)2(β3S∗I∗(A∗P +S∗− I∗(εI∗+1))+A∗F (β3S∗I∗+2(εI∗ϑ +ϑ))+δ2S∗(εI∗+1)))

+(εI∗+1)(β3I∗((1+ εI∗)aI∗−2ϑA∗P(1+bI∗)2 +(1+bI∗)2(I∗(1+ εI∗)(θ +d +2ϑ)−2S∗ϑ)

− (1+bI∗)2
δ1S∗)+ϑ(1+ εI∗)(2aI∗(1+ εI∗)+(1+bI∗)2(I∗(1+ εI∗)(2(d +θ)+3ϑ)−3ϑS∗)

−2(δ1 +δ2)S∗(1+bI∗)2)))+(1+ εI∗)(β2(I∗(β3(I∗(εI∗+1)
(
a+(1+bI∗)2(θ +d +2ϑ)

)
+(1+bI∗)2(1+ εI∗)((δ1 +δ2) I∗−A∗P (δ1 +δ2 +2ϑ)))+(εI∗+1)2((δ1 +δ2)

×
(
a+(1+bI∗)2(θ +d +2ϑ)

)
+ϑ(2a+(bI∗+1)2(2(d +θ)+3ϑ))))

−A∗F(bI∗+1)2(ϑ (2δ1 +2δ2 +3ϑ)(εI∗+1)+β3I∗(δ1 +δ2 +2ϑ)))+(εI∗+1)(β3(I∗(εI∗+1)

× ((δ1 +δ2)(a+(1+bI∗)2(d +θ +2ϑ))+ϑ
(
2a+(1+bI∗)2(2(d +θ)+3ϑ)

)
)−ϑA∗P(bI∗+1)2

× (2δ1 +2δ2 +3ϑ))+ϑ(εI∗+1)2× ((δ1 +δ2)
(
2a+(1+bI∗)2(2(d +θ)+3ϑ)

)
+ϑ

(
3a+(1+bI∗)2(4ϑ +3(θ +d))

)
)))
)
,

Q2 =
1

(1+ εI∗)3(1+bI∗)2

(
β1((1+ εI∗)

(
(1+ εI∗)aI∗+(1+bI∗)2(I∗(1+ εI∗)(θ +d +3ϑ)−3S∗ϑ)

)
− (bI∗+1)2 (β3I∗ (A∗P +S∗− I∗(εI∗+1))+β2I∗ (A∗F +S∗− I∗(εI∗+1))+(δ1 +δ2)S∗(εI∗+1)))

+β2(I∗(1+ εI∗)2 (a+(1+bI∗)2(d +θ +3ϑ)
)
+(1+bI∗)2(I∗(β3

(
−A∗P + εI∗2 + I∗

)
+(δ1 +δ2)(εI∗+1)2)−A∗F ((δ1 +δ2 +3ϑ)(εI∗+1)+β3I∗)))+(εI∗+1)

× (β3(I∗(1+ εI∗)
(
a+(1+bI∗)2(θ +3ϑ +d)

)
+(1+bI∗)2((δ1 +δ2) I∗(εI∗+1)

−A∗P (δ1 +δ2 +3ϑ)))+(δ1 +δ2)(εI∗+1)2 (a+(1+bI∗)2(θ +d +3ϑ)
)
)
)

+3ϑ

(
a

(1+bI∗)2 +d +θ +2ϑ

)
,

Q3 =
a

(bI∗+1)2 +
β3
(
−A∗P + εI∗2 + I∗

)
+β2

(
−A∗F + εI∗2 + I∗

)
+β1

(
−S+ εI∗2 + I∗

)
(εI∗+1)2

+d +δ1 +δ2 +θ +4ϑ .
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Chapter 7

A deterministic time-delayed SVIRS

epidemic model with incidences and

saturated treatment

A novel nonlinear delayed susceptible�vaccinated�infected�recovered�susceptible (SVIRS)

epidemic model with a Holling type II incidence rate for fully susceptible and vaccinated

classes, a saturated treatment rate, and an imperfect vaccine given to susceptibles is

proposed herein. Analysis of the model shows that it exhibits two equilibria, namely

disease-free and endemic. The basic reproduction number R0 is derived, and it is demon-

strated that the disease-free equilibrium is locally asymptotically stable when R0 < 1 and

linearly neutrally stable when R0 = 1. Furthermore, bifurcation analysis is performed

for the undelayed model, revealing backward and forward bifurcation when the basic re-

production number varies from unity. The stability behavior of the endemic equilibrium

is also discussed, showing that oscillatory and periodic solutions may appear via Hopf

bifurcation when regarding delay as the bifurcation parameter. Moreover, numerical

simulations are carried out to illustrate the theoretical �ndings.

7.1 Introduction

Vaccination is one of the most cost-e�ective means to prevent and control infectious

diseases. It remains a considerable challenge to achieve desirable vaccination coverage
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for herd immunity to be in e�ect. The vaccine may be imperfect as there can exist un-

wanted, adverse side e�ects of various degrees, or the vaccination can only confer partial

protection against the disease. In mathematical epidemiology literature, many studies

have dealt with epidemic models, including imperfect vaccination (see, just to specify

a couple of studies, [92, 97, 110, 126]). With imperfect vaccination, the outcome of an

epidemic model may lead to backward bifurcation under particular conditions because

vaccinated individuals may return to the susceptible pool or become directly infected

by transmission. Backward bifurcation thus plays a relevant role in disease control and

eradication. Indeed, it is well known that, in classical disease transmission models, a

necessary condition for disease eradication is that the basic reproductive number R0 [33]

be less than unity. This type of bifurcation is known as forward bifurcation, where

for R0 < 1 the disease-free equilibrium (DFE) is the only equilibrium and is asymptot-

ically stable, while for R0 > 1 the DFE is unstable and only one asymptotically stable,

endemic equilibrium exists. However, via the occurrence of backward bifurcation, an

endemic equilibrium may also exist even when the basic reproduction number R0 is less

than unity. From the public viewpoint, the occurrence of backward bifurcation may

have signi�cant health implications regarding disease elimination. In literature, many

epidemic models, including backward bifurcation, have been studied for both generic

and speci�c diseases [40, 47].

To determine the dynamics of epidemic models, the incidence rate (the rate of new

infections) plays a major role in modeling infectious diseases. Capasso and Serio [12]

introduced the nonlinear incidence rate in the form g(I)S with g′(I) < 0, which allows

the introduction of some �psychological� e�ects. Capasso and Serio motivated their

formulation with behavioral changes: in epochs of high prevalence, the perceived risk

of infection might become very large, yielding dramatic changes in individuals' behav-

ior and reducing the actual risk of getting the disease (as widely discussed in [68]).

Numerous authors have focused on the signi�cance of considering nonlinear incidence

rates in the study of the transmission dynamics of infectious diseases (see, for exam-

ple, [9�12,61,62,73,131,132,135]). Li et al. [73] proposed a SIR model with a nonlinear

incidence rate given by

f (S, I) =
βSI

1+ γI
.

In this incidence rate, the number of e�ective contacts between infective and susceptible

individuals may saturate at high infective levels due to overcrowding of infective indi-

164



viduals. The delay di�erential equation plays a signi�cant role in estimating past and

ongoing epidemics and the structure of future-focused control interventions. In math-

ematical epidemiology literature, many studies have dealt with the time delay (called

the latent or incubation period) (see, e.g., [25, 44, 76, 131, 132, 135]) and studied its im-

pact on their models. Motivated by the work of Capasso and Serio [12], d'Onofrio and

Manfredi [68], and Li et al. [73], a saturated nonlinear incidence rate, re�ecting the psy-

chological or inhibition e�ect, with the inclusion of a time delay as the latent period, is

considered herein.

The loss of quality of life and economic productivity due to severe illness further in-

creases the societal cost. Therefore, it is very important to prevent and reduce the

spread of infectious diseases among people. Treatment is the key to �ght many infec-

tious diseases. Therefore, Holling type II treatment rate is considered herein, and its

e�ect on the present epidemic model is studied (the detailed explanation is given in

Chapter two of this thesis).

The purpose of this chapter is to study the e�ect of saturated incidence, an imperfect

vaccine, and saturated treatment to achieve substantial progress in implementing mea-

sures to prevent and control infectious diseases among people. For this, a compartmental

susceptible�vaccinated�infected�recovered�susceptible (SVIRS) epidemic model with a

saturated incidence rate and including a time delay (representing the latent period) and

saturated treatment rate is considered. Qualitative analysis is performed through the

stability and bifurcation theory approach using center manifold theory, revealing the

existence of backward, forward, and Hopf bifurcations under certain conditions, which

enrich the dynamics of infectious diseases among humans.

7.2 The model and its basic properties

Assume that the epidemiological status of the total population N(t) of individuals can

be identi�ed by dividing them into susceptibles S(t), vaccinated V (t), infectives I(t),

and recovered R(t) classes. Individuals move from one state to another as their status

concerning the disease evolves. A is the recruitment rate of susceptibles and hence

entering the susceptible state. Susceptible individuals are vaccinated at a rate of δ and

enter the state V (t). The term f (S(t−ρ), I(t−ρ)) = (βS(t−ρ)I(t−ρ))/(1+αI(t−ρ))
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is the Holling type II functional response representing the incidence of infection among

susceptibles, where β is the force of infection, α describes the inhibition measures taken

by the infected, and the time delay parameter ρ represents the latent period. The

protection provided by an imperfect vaccine is only partial, so some individuals can

catch the disease when they come into contact with infected individuals. Therefore, it is

assumed that γ is the rate at which vaccinated individuals become infected when coming

into contact with infected individuals. This occurs due to the imperfect nature of the

vaccine, which leaves a percentage of the susceptibles unprotected even if vaccinated.

Assume that β > γ , as it is expected that the vaccine will be at least partly e�ective

in preventing infection, yielding a reduction in the force of infection. The term g(V (t−

ρ), I(t−ρ)) = (γ V (t−ρ)I(t−ρ))/(1+αI(t−ρ)) represents the incidence of infection

among vaccinated individuals who move from state V (t) to state I(t). The term (aI)/(1+

bI), where a is the treatment (cure) rate, and b is a rate of limitation in medical resources,

describes the treated individuals who recover and thus move from state I(t) to R(t).

Also, it is assumed that recovered individuals become susceptible again, thus the term

θR describes recovered individuals who re-enter the class of susceptible individuals. The

parameters µ and d are the natural and disease-induced mortality rates, respectively.

The parameter ς denotes the recovery rate, hence ς I individuals move from the infected

to the recovered class.

Thus, the proposed SVIRS epidemic model consists of the following system of delay

di�erential equations:

dS
dt

= A−δS− βS(t−ρ)I(t−ρ)

1+αI(t−ρ)
−µS+θR,

dV
dt

= δS− γV (t−ρ)I(t−ρ)

1+αI(t−ρ)
−µV,

dI
dt

=
βS(t−ρ)I(t−ρ)

1+αI(t−ρ)
+

γV (t−ρ)I(t−ρ)

1+αI(t−ρ)
− (µ +d + ς)I− aI

1+bI
,

dR
dt

= ς I +
aI

1+bI
−θR−µR.

(7.1)

For biological reasons, the initial conditions are nonnegative continuous functions

S(Θ) = φ1(Θ),V (Θ) = φ2(Θ), I(Θ) = φ3(Θ),R(Θ) = φ4(Θ),

where φ(Θ)= (φ1,φ2,φ3,φ4)
T are functions such that φi(Θ)≥ 0,(−ρ ≤Θ≤ 0, i= 1,2,3,4).

C denotes the Banach space C
(
[−ρ,0],R4

+

)
of continuous functions mapping the interval
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[−ρ,0] into R4
+ with supremum norm

‖φ‖= sup
Θ∈[−ρ,0]

|φ(Θ)|,

where |.| is any norm in R4
+.

The transition diagram of the model (7.1) is shown in Fig. 7.1.

Figure 7.1: Transition diagram of the model (7.1).

The model (7.1) monitors populations. Using Proposition 2.3. in Yang et al. [124] and

Proposition 2.1 given in Hattaf et al. [107], it can be checked that all state variables

of the model (7.1) are nonnegative; i.e., (S,V, I,R) ∈ R4
+. For ecological reasons, it is

assumed that all the parameters are positive, i.e., A, δ , β , α, µ, θ , γ, d, ς , a, and b

are positive.

Lemma 7.2.1. The compact set

Ω =

{
(S(t),V (t), I(t),R(t)) ∈ R4

+ : N(t) = S(t)+V (t)+ I(t)+R(t)≤ A
µ

}
is invariant for the solutions of the model (7.1).

Proof. The well-posedness of the model is ensured by the continuity of the terms on the right-

hand side of the model (7.1) and its derivatives.
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Addition of the equations of the model (7.1), yields

dN
dt

= A−µN−dI ≤ A−µN. (7.2)

Thus, the invariant region for the existence of the solutions is given as

0 < liminf
t→∞

N(t)≤ limsup
t→∞

N(t)≤ A
µ
. (7.3)

Hence, the solutions of the model (7.1) are closed and bounded.

7.3 Equilibria and stability analysis

In this section, the existence of equilibria of the model (7.1) is con�rmed. The model

has two equilibria, namely,

1. The disease-free equilibrium E0, discussed in subsection 7.3.1.

2. Endemic equilibrium Ee, discussed in subsection 7.3.2.

7.3.1 The disease-free equilibrium and its stability

Here, it is established that the model (7.1) has a disease-free equilibrium of the form

E0 =
(

A
µ+δ

, δA
µ(µ+δ ) ,0,0

)
.

At E0, the characteristic equation of the linearized model (7.1) is obtained as follows:

(λ +µ)(λ +µ +δ )(λ +µ +θ)

(
λ +(d +µ + ς +a)− A(β µ + γδ )e−λρ

µ(δ +µ)

)
= 0. (7.4)

Eq. (7.4) has real negative roots λ1 =−µ, λ2 =−µ−δ , λ3 =−µ−θ , and other roots

are the solution of

λ +(d +µ + ς +a)− A(β µ + γδ )e−λρ

µ(δ +µ)
= 0. (7.5)

The term (A(µβ + γδ )e−λρ)/(µ(µ + δ )(d + µ + ς + a)) at ρ = 0 is de�ned as the basic

reproduction number R0 of the model (7.1). Therefore, R0 for the model (7.1) is given

as

R0 =
A(µβ + γδ )

µ(µ +δ )(d +µ + ς +a)
.
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The stability of E0 is shown as follows.

Theorem 7.3.1. The disease-free equilibrium E0 =
(

A
µ+δ

, δA
µ(µ+δ ) ,0,0

)
of the model (7.1) is

1. Unstable if R0 > 1

2. Linearly nuetrally stable if R0 = 1

3. Asymptotically stable if R0 < 1.

Proof. As mentioned above, Eq. (7.4) has real negative roots λ1 = −µ, λ2 = −µ − δ , λ3 =

−µ−θ , and other roots are the solution of

f (λ ) := λ +(d +µ + ς +a)− A(β µ + γδ )e−λρ

µ(δ +µ)
= 0. (7.6)

1. Assuming that R0 > 1, then

f (0) = d +µ + ς +a− A(β µ + γδ )

µ(δ +µ)

= (d +µ + ς +a)
(

1− A(β µ + γδ )

µ(µ +δ )(d +µ + ς +a)

)
= (d +µ + ς +a)(1−R0)

< 0.

i.e., when R0 > 1 then f (0)< 0. Also, f ′(λ ) = 1+ ρA(β µ+γδ )
µ(δ+µ) e−λρ > 0 so, lim

λ→∞

f (λ ) =

+∞.

Hence f (λ ) = 0 and f ′(λ )> 0 imply that there exists a unique positive root of Eq. (7.6)

when R0 > 1.

2. If R0 = 1, then λ = 0 is a simple characteristic root of Eq. (7.6). Let λ = α + iω be any

of the other solutions of Eq. (7.6), then Eq. (7.6) turns into

α + iω +(d +µ + ς +a)− A(β µ + γδ )

µ(δ +µ)
e−αρ(cosωρ− i sinωρ) = 0. (7.7)

Using Euler’s formula and separating real and imaginary parts, yields

α +d +µ + ς +a =
A(β µ + γδ )

µ(δ +µ)
e−αρ cosωρ, (7.8)

ω =−A(β µ + γδ )

µ(δ +µ)
e−αρ sinωρ. (7.9)
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Note that R0 = 1 implies that (A(β µ + γδ ))/(µ(µ +δ )) = (d+µ +ς +a). In addition,

if there exists a root satisfying both Eqs. (7.8) and (7.9), then this root also satisfies the

equation obtained by squaring and adding Eqs. (7.8) and (7.9), thus

(α +d +µ + ς +a)2 +ω
2 = (d +µ + ς +a)2 e−2αρ . (7.10)

For Eq. (7.10) to be verified, α ≤ 0 must apply. Therefore, E0 is linearly neutrally stable.

3. Let R0 < 1. The goal is to prove that, for any values of the parameters, the roots of

the characteristic equation cannot reach the imaginary axis, which means that, for any

values of the parameters and all delays ρ , then Re(λ )< 0.

Note that

Re(λ ) = A(β µ+γδ )e−Re(λ )ρ cos(Imλ )ρ
µ(δ+µ) − (d+µ + ς +a)< A(β µ+γδ )

µ(δ+µ) − (d+µ + ς +a)< 0.

Therefore, all the roots of Eq. (7.6) must have a negative real part. Thus, E0 is asymp-

totically stable.

Bifurcation analysis

In this section, a qualitative analysis of model (7.1) is performed without delay, i.e.,

with ρ = 0. The stability properties of the model (7.1) without delay are investigated

near criticality (i.e., at E0 and R0 = 1). To this aim, the bifurcation theory approach

developed in [40], which is based on the center manifold theory [17], is applied. For this,

rede�ne S = x1, V = x2, I = x3 and R = x4, so that the model (7.1) reduces to

dx1

dt
= A−δx1−

βx1x3

1+αx3
−µx1 +θx4,

dx2

dt
= δx1−

γx2x3

1+αx3
−µx2,

dx3

dt
=

βx1x3

1+αx3
+

γx2x3

1+αx3
− (µ +d + ς)x3−

ax3

1+bx3
,

dx4

dt
= ςx3 +

ax3

1+bx3
−θx4−µx4.

(7.11)

observing that R0 = 1 ⇐⇒ γ = γ∗ = µ(µ+δ )(µ+d+ς+a)−Aµβ

δA .

The Jacobian matrix J (E0,γ
∗) of the system (7.11) at the disease-free equilibrium E0
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is given by

J (E0,γ
∗) =


−δ −µ 0 − Aβ

δ+µ
θ

δ −µ − Aδγ∗

µ(δ+µ) 0

0 0 0 0

0 0 a+ ς −θ −µ

 (7.12)

The eigenvalues of the Jacobian matrix J (E0,γ
∗) are given by λ1 = 0,λ2 = −µ,λ3 =

−δ −µ and λ4 =−θ −µ .

Thus, λ1 = 0 is a simple zero eigenvalue, and other eigenvalues are real and negative.

Hence, when γ = γ∗ (or equivalently when R0 = 1), the disease-free equilibrium E0 is a

nonhyperbolic equilibrium.

The right eigenvector uuu = (u1,u2,u3,u4)
T of (7.12) associated with λ1 = 0 is given by

J (E0,γ
∗) ·uuu = 0. Thus,

u1 =
θ(a+ ς)(δ +µ)−Aβ (θ +µ)

(a+ ς)(δ +µ)2 ,

u2 =
δθ

µ(δ +µ)
−

(θ +µ)
(
(δ +µ)2(a+d +µ + ς)−Aβ µ

)
µ(a+ ς)(δ +µ)2 ,

u3 =
θ +µ

a+ ς
,

u4 = 1.

The left eigenvector www = (w1,w2,w3,w4) of (7.12) associated with λ1 = 0 is given by

www · J (E0,γ
∗) = 0. We obtain

www = (0,0,1,0) .

Let fk's denote the right-hand side of the model system (7.11). The coe�cients a1 and

b1 de�ned in Theorem 4.1 of Castillo-Chavez and Song [40] are given by:

a1 =
4

∑
k,i, j=1

wkuiu j

(
∂ 2 fk

∂xi∂x j

)
E0

,

b1 =
4

∑
k,i=1

wkui

(
∂ 2 fk

∂xi∂β ∗

)
E0

.

Consideration of only nonzero partial derivative associated with functions fk's evaluated

at E0 gives(
∂ 2 f3

∂x1∂x3

)
E0

= β ,
(

∂ 2 f3
∂x2∂x3

)
E0

= γ∗,
(

∂ 2 f3
∂x3∂x1

)
E0

= β ,
(

∂ 2 f3
∂x3∂x2

)
E0

= γ∗,
(

∂ 2 f3
∂x2

3

)
= 2ab− 2αβA

µ+δ
.
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Thus, the bifurcation coe�cients a1 and b1 can be computed as

a1 =−
2(θ +µ)

Aδ (a+ ς)2(δ +µ)
(−A(θ +µ)(a(δ (b−α)(δ +µ)+β (δ +2µ))+(d +µ + ς)(β (δ +2µ)

−αδ (δ +µ)))+(δ +µ)(a+d +µ + ς)(µ(a(δ +θ +µ)+δ (θ +µ + ς)+(θ +µ)(µ + ς))

+d(δ +µ)(θ +µ))+A2
β

2(θ +µ)),

=− 2(θ +µ)

Aδ (a+ ς)2(δ +µ)
η(β ),

b1 =
A(µ +θ)

(a+ ς)(µ +δ )
.

where,

η(β ) = A2
β

2(θ +µ)+β (−aA(δ +2µ)(θ +µ)−A(δ +2µ)(θ +µ)(d +µ + ς))

−aAδ (b−α)(δ +µ)(θ +µ)+(δ +µ)(a+d +µ + ς)(µ(a(δ +θ +µ)+δ (θ +µ + ς)

+(θ +µ)(µ + ς))+d(δ +µ)(θ +µ))+αAδ (δ +µ)(θ +µ)(d +µ + ς).

η(β ) can be written as

η(β ) = A1β
2 +A2β +A3, (7.13)

where,

A1 = A2(θ +µ),

A2 =−A(δ +2µ)(θ +µ)(a+d +µ + ς),

A3 = (δ +µ)(aAδ (α−b)(θ +µ)+(a+d +µ + ς)(µ(a(δ +θ +µ)+ ς(δ +θ +µ)+(δ +µ)(θ +µ))

+d(δ +µ)(θ +µ))+αAδ (θ +µ)(d +µ + ς)).

Note that b1 is always positive. Thus, according to Theorem 4.1 of Castillo-Chavez

and Song [40], the sign of a1, and hence the sign of η(β ), determines the local dynam-

ics around the disease-free equilibrium. It is noticed that, A1 > 0 and A2 < 0. The

discriminant D of (7.13) is obtained as

D = A2
2−4A1A3

= A2
δ (θ +µ)

(
a2 (

δ (θ −3µ)−4µ
2)+2a

(
2A(b−α)(δ +µ)(θ +µ)− (d +µ)(δ (θ +3µ)+

2µ(θ +2µ))+ ς
(
δ (θ −3µ)−4µ

2))− (d +µ + ς)
(
(θ +µ)(4αA(δ +µ)+d(3δ +4µ)+

µ(3δ +4µ))+ ς
(
−δθ +3δ µ +4µ

2))).
(7.14)
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Let β1 and β2 are the two real positive roots of the equation A1β 2 +A2β +A3 = 0, given

by

β1 =
−A2−

√
D

2A1
, and β2 =

−A2 +
√

D
2A1

.

By applying Theorem 4.1 [40], the occurrence of forward and backward bifurcations is

discussed separately below:

Backward bifurcation The model (7.11) exhibits a backward bifurcation if η(β ) < 0.

Hence, the following conditions allow the existence of backward bifurcation around E0: D > 0,

β1 < β < β2.
(7.15)

Forward bifurcation: The forward bifurcation occurs if η(β )> 0. Thus, the conditions

for the existence of forward bifurcation are as follows:

D > 0,

β < β1 or β > β2.
(7.16)

The forward and backward bifurcations are illustrated numerically in Fig. (7.2) for the

set of parameters values: A = 5, α = 0.01, µ = 0.01, θ = 0.04, d = 0.01, ς = 0.01, a =

2, b = .1, δ = 0.01, the discriminant D, obtained in Eq. (7.14), is evaluated as D =

0.0000278476 > 0. According to the theoretical results, stated in inequalities (7.15),

the backward bifurcation occurs for D > 0, and β1 = 0.00397917 < β < β2 = 0.00820083.

Setting β = 0.007, the model (7.11) exhibits a backward bifurcation, as shown in Fig.

(7.2.2). This �gure shows that the reduction of the value of R0 below unity does not

guarantee the elimination of the infection. This implies a range that exhibits a region of

coexistence of the disease-free equilibrium and two endemic equilibria: a smaller endemic

equilibrium, i.e., with a small number of infected individuals, which is unstable, and a

larger one, i.e., with a larger number of infected individuals, which is stable. According

to the inequalities given in (7.16), the forward bifurcation occurs when D > 0 and if β is

su�ciently small or su�ciently large, i.e., if either β < β1 or β > β2 holds. Fig. (7.2.1) is

plotted for β = 0.003 < β1 = 0.00397917, and Fig. (7.2.3) for β = 0.009 > β2, revealing

that, when R0 < 1, the disease-free equilibrium is stable, while if R0 crosses unity, the

model admits a stable unique endemic equilibrium.
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7.2.1: Forward bifurcation (β = 0.003).
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7.2.2: Backward bifurcation (β = 0.007).
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7.2.3: Forward bifurcation (β = 0.009).

Figure 7.2: Graphs depicting the forward and backward bifurcation.

7.3.2 Endemic equilibrium

Stability analysis of the endemic equilibrium Ee for the model (7.1) is now carried out.

First, equate the right-hand terms of the model (7.1) to zero to establish the existence

of endemic equilibrium, as given below:

A−δS∗− βS∗I∗

1+αI∗
−µS∗+θR∗ = 0, (7.17)

δS∗− γV ∗I∗

1+αI∗
−µV ∗ = 0, (7.18)

βS∗I∗

1+αI∗
+

γV ∗I∗

1+αI∗
− (µ +d + ς)I∗− aI∗

1+bI∗
= 0, (7.19)

ς I∗+
aI∗

1+bI∗
−θR∗−µR∗ = 0. (7.20)
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The solution of these algebraic equations yields the endemic equilibrium Ee =(S∗,V ∗, I∗,R∗)

as

S∗ =
(αI∗+1)(θ I∗(a+bI∗ς + ς)+A(bI∗+1)(θ +µ))

(bI∗+1)(θ +µ)(δ +µ + I∗(α(δ +µ)+β ))
,

V ∗ =
δ (αI∗+1)2(θ I∗(a+bI∗ς + ς)+A(bI∗+1)(θ +µ))

(bI∗+1)(θ +µ)(µ + I∗(αµ + γ))(δ +µ + I∗(α(δ +µ)+β ))
,

R∗ =
I∗(a+bI∗ς + ς)

(bI∗+1)(θ +µ)
,

where, I∗ is given by the real positive solutions of the equation

A3I∗3 +A2I∗2 +A1I∗+A0 = 0, (7.21)

with the coe�cients A3, A2, A1 and A0 given as

A3 =−b(µ(β (αµ + γ)(θ +µ + ς)+α(α(δ +µ)(θ +µ)(µ + ς)+ γς(δ +θ +µ)

+ γ(δ +µ)(θ +µ)))+d(θ +µ)(αµ + γ)(α(δ +µ)+β )),

A2 =−µ(a(β (αµ + γ)+α(α(δ +µ)(θ +µ)+ γ(δ +θ +µ)))+ ς(α(α(δ +µ)(θ +µ)

+ γ(δ +θ +µ))+β (µ(α +b)+ γ)+b(2α(δ +µ)(θ +µ)+ γ(δ +θ +µ)))

+(θ +µ)(β (µ(α +b)+ γ)+(δ +µ)(γ(α +b)+αµ(α +2b))))+Ab(θ +µ)(β (αµ + γ)

+αγδ )−d(θ +µ)(β (µ(α +b)+ γ)+(δ +µ)(γ(α +b)+αµ(α +2b))),

A1 =−µ(a(2α(δ +µ)(θ +µ)+β µ + γ(δ +θ +µ))+ ς((2α +b)(δ +µ)(θ +µ)+β µ

+ γ(δ +θ +µ))+(θ +µ)((δ +µ)(µ(2α +b)+ γ)+β µ))+A(θ +µ)(β (µ(α +b)+ γ)

+ γδ (α +b))−d(θ +µ)((δ +µ)(µ(2α +b)+ γ)+β µ),

A0 = µ(δ +µ)(θ +µ)(a+d +µ + ς)(R0−1) .

Theorem 7.3.2. If R0 > 1, then there is either one unique or three positive endemic equilibria,

if all equilibria are simple roots.

Proof. Suppose R0 > 1. Eq. (7.21) gives a third-degree polynomial in I∗:

F(I∗) = A3I∗3 +A2I∗2 +A1I∗+A0.

The leading coefficient of I∗ is A3, which is negative. Hence

lim
I∗→∞

F(I∗) =−∞.
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Also, F(0) = A0 and A0 > 0 if R0 > 1. F(I∗) is a continuous function of I∗, and using the

fundamental theorem of algebra, this polynomial can have at most three real roots.

The case of a unique endemic equilibrium only is considered herein. (H1): Suppose

that R0 > 1. It is noted that A3 is negative and A0 is positive. For the existence of a

unique endemic equilibrium, the following possibilities for the signs of A1 and A2 exist:

(i) A1 > 0, and A2 > 0,

(ii) A1 > 0, and A2 < 0,

(iii) A1 < 0, and A2 < 0.

(7.22)

Now, the local stability of the endemic equilibrium of the model (7.1) is discussed.

The characteristic equation of the model (7.1) at Ee is a fourth-degree transcenden-

tal equation:

λ
4+(p0λ

3+q0λ
2+r0λ +s0)+(p1λ

3+q1λ
2+r1λ +s1)e−λρ +(q2λ

2+r2λ +s2)e−2λρ = 0,

(7.23)

where,

s0 =
µ(δ +µ)(θ +µ)

(
a+(bI∗+1)2(d +µ + ς)

)
(bI∗+1)2 ,

s1 =
1

(bI∗+1)2(αI∗+1)2 (aI∗(αI∗+1)(β µ(2θ +µ)+ γ(δ (2θ +µ)+µ(θ +µ)))

+(bI∗+1)2(dI∗(θ +µ)(αI∗+1)(β µ + γ(δ +µ))+β µ(−S∗)(δ +µ)(θ +µ)−

µ(θ +µ)(γV ∗(δ +µ)− I∗(αI∗+1)(µ(β + γ)+ γδ ))+ I∗ς(αI∗+1)(β µ(2θ +µ)+

γ(µ(δ +θ)+2δθ +µ
2)))),

s2 =
1

(bI∗+1)2(αI∗+1)3 ((βγI∗(aI∗(2θ +µ)(αI∗+1)+(bI∗+1)2((θ +µ)(I∗(d +µ)(αI∗+1)

+µ(−S∗−V ∗))+ I∗ς(2θ +µ)(αI∗+1))))),

r1 =
1

(bI∗+1)2(αI∗+1)2 (aI∗(αI∗+1)(2β (θ +µ)+ γ(δ +θ +2µ))+(bI∗+1)2(dI∗(αI∗+1)×

(β (θ +2µ)+ γ(δ +θ +2µ))−βS∗(2µ(δ +θ)+δθ +3µ
2)− γδθV ∗−2γδ µV ∗−2γθ µV ∗−

3γµ
2V ∗+2αβθ µI∗2 +3αβ µ

2I∗2 +αγδθ I∗2 +2αγδ µI∗2 +2αγθ µI∗2 +3αγµ
2I∗2+

I∗ς(αI∗+1)(2β (θ +µ)+ γ(δ +θ +2µ))+2βθ µI∗+3β µ
2I∗+ γδθ I∗+2γδ µI∗+

2γθ µI∗+3γµ
2I∗)),
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r2 =
βγI∗

(
aI∗(αY +1)+(bI∗+1)2(I∗(αI∗+1)(d +θ +2µ + ς)+(θ +2µ)(−S∗−V ∗))

)
(bI∗+1)2(αI∗+1)3 ,

r0 =
1

(bI∗+1)2 (a(2µ(δ +θ)+δθ +3µ
2)+(bI∗+1)2(d(2µ(δ +θ)+δθ +3µ

2)+ ς(2µ(δ +θ)

+δθ +3µ
2)+µ(3µ(δ +θ)+2δθ +4µ

2))),

q0 =
a(δ +θ +3µ)+(bI∗+1)2(d(δ +θ +3µ)+δ (θ +3µ + ς)+ ς(θ +3µ)+3µ(θ +2µ))

(bI∗+1)2 ,

q1 =
1

(bI∗+1)2(αI∗+1)2 (aI∗(β + γ)(αI∗+1)+(bI∗+1)2(dI∗(β + γ)(αI∗+1)−βS∗(δ +θ +3µ)

− γδV ∗− γθV ∗−3γµV ∗+αβθ I∗2 +3αβ µI∗2 +αγδ I∗2 +αγθ I∗2 +3αγµI∗2+

I∗ς(β + γ)(αI∗+1)+βθ I∗+3β µI∗+ γδ I∗+ γθ I∗+3γµI∗)),

q2 =
βγI∗

(
−S∗−V ∗+αI∗2 + I∗

)
(αI∗+1)3 ,

p0 =
a+(bI∗+1)2(d +δ +θ +4µ + ς)

(bI∗+1)2 ,

p1 =
β (−S∗)− γV ∗+ I∗(β + γ)(αI∗+1)

(αI∗+1)2 .

Theorem 7.3.3. At ρ = 0, the endemic equilibrium Ee is locally asymptotically stable if the

real parts of all the roots of (7.23) are negative.

Proof. Eq. (7.23) reveals that the characteristic equation at ρ = 0 near Ee is given by

λ
4 +(p0 + p1)λ

3 +(q0 +q1 +q2)λ
2 +(r0 + r1 + r2)λ +(s0 + s1 + s2) = 0. (7.24)

The proof of this theorem is based on the conditions proposed by the Routh-Hurwitz criterion.

Using this criterion, all roots of Eq. (7.24) have negative real parts if and only if

(H2): p0 + p1 > 0, r0 + r1 + r2 > 0, s0 + s1 + s2 > 0 and,

(p0 + p1)(q0 +q1 +q2)(r0 + r1 + r2)> (p0 + p1)
2(s0 + s1 + s2)+(r0 + r1 + r2)

2.

Eq. (7.23) yields

p1λ
3 +q1λ

2 + r1λ + s1 +(λ 4 + p0λ
3 +q0λ

2 + r0λ + s0)eλρ +(q2λ
2 + r2λ + s2)e−λρ = 0.

(7.25)
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Let iω (ω > 0) be a root of Eq. (7.25), then

−ip1ω
3−q1ω

2+ir1ω+s1+
(
ω

4− ip0ω
3−q0ω

2 + ir0ω + s0
)

eiωρ +
(
−q0ω

2 + ir2ω + s2
)

e−iωρ = 0.

(7.26)

Eq. (7.26) implies that

((
p0ω

3− r0ω + r2ω
)

sin(ρω)+
(
−q0ω

2−q2ω
2 + s0 + s2 +ω

4)cos(ρω)−q1ω
2 + s1

)
+

i
((
−p0ω

3 + r0ω + r2ω
)

cos(ρω)− p1ω
3 +
(
−q0ω

2 +q2ω
2 + s0− s2 +ω

4)sin(ρω)+ r1ω
)
= 0.

(7.27)

Separation of real and imaginary parts gives

q1ω
2− s1 =

(
p0ω

3− r0ω + r2ω
)

sin(ρω)+
(
−q0ω

2−q2ω
2 + s0 + s2 +ω

4)cos(ρω),

(7.28)

p1ω
3− r1ω =

(
−p0ω

3 + r0ω + r2ω
)

cos(ρω)+
(
−q0ω

2 +q2ω
2 + s0− s2 +ω

4)sin(ρω).

(7.29)

That is,

h1(ω)cosωρ−h2(ω)sinωρ = h3(ω), (7.30)

h4(ω)sinωρ +h5(ω)cosωρ = h6(ω), (7.31)

where,

h1(ω) = ω
4− (q0 +q2)ω

2 + s0 + s2,

h2(ω) = (r0− r2)ω− p0ω
3,

h3(ω) = q1ω
2− s1,

h4(ω) = ω
4− (q0−q2)ω

2 + s0− s2,

h5(ω) = (r0 + r2)ω− p0ω
3,

h6(ω) = p1ω
3− r1ω.

Thus,

cosωρ =
P01(ω)

P00(ω)
,

sinωρ =
P02(ω)

P00(ω)
.

(7.32)
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with

P00(ω) = ω
4 (−2p0r0 +q2

0−q2
2 +2s0

)
+ω

6 (p2
0−2q0

)
+ω

2 (−2q0s0 +2q2s2 + r2
0− r2

2
)

+ s2
0− s2

2 +ω
8,

P01(ω) = ω
4 (p0r1 + p1 (r0− r2)+q1 (q2−q0)− s1)+ω

6 (q1− p0 p1)

+ω
2 ((q0−q2)s1 +q1 (s0− s2)+ r1 (r2− r0))− s0s1 + s1s2,

P02(ω) = p1ω
7 +ω

5 (p0q1− p1 (q0 +q2)− r1)+ω
3 (−p0s1 + p1 (s0 + s2)+(q0 +q2)r1−q1 (r0 + r2))

+ω ((r0 + r2)s1− r1 (s0 + s2)) .

(7.33)

Eq. (7.32) gives

P2
01(ω)+P2

02(ω) = P2
00(ω). (7.34)

Now, assume that, (H3): Eq. (7.34) has at least one positive root ω0.

Then, Eq. (7.25) has a pair of purely imaginary roots ±iω0. For ω0, the corresponding

critical value of the time delay is obtained as

ρ0 =
1

ω0
arccos

P01(ω0)

P00(ω0)
+

2π j
ω0

, j = 0,1,2, . . . (7.35)

To establish the Hopf bifurcation at ρ = ρ0, it must be shown that

ℜ

(
dλ

dρ

)
6= 0.

Di�erentiating Eq. (7.23) with respect to ρ gives

dλ

dρ
=
−λeλρ

(
λ 4 +P0λ 3 +q0λ 2 + r0λ + s0

)
+λ

(
q2λ 2 + r2λ + s2

)
e−λρ

L
, (7.36)

where,

L = 3P1λ
2 +2q1λ + r1 +

(
4λ

3 +3P0λ
2 +2q0λ + r0

)
eλρ +ρ

(
λ

4 +P0λ
3 +q0λ

2 + r0λ + s0
)

eλρ

+(2q2λ + r2)e−λρ −ρe−λρ
(
q2λ

2 + r2λ + s2
)
.

It follows that

(
dλ

dρ

)−1

=−Y1(λ )

Y2(λ )
− ρ

λ
, (7.37)
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where,

Y1(λ ) =
(
3P1λ

2 +2q1λ + r1
)
+
(
4λ

3 +3P0λ
2 +2q0λ + r0

)
eλρ +(2q2λ + r2)e−λρ ,

Y2(λ ) = λeλρ
(
λ

4 +P0λ
3 +q0λ

2 + r0λ + s0
)
−
(
q2λ

2 + r2λ + s2
)

e−λρ .
(7.38)

Application of λ = iw0 yields

(
dλ

dρ

)−1 ∣∣∣
λ=iω0

=
−3P1ω2

0 +2iq1ω0 + r1 + eiρω
(
−4iω3

0 −3P0ω2
0 +2iq0ω0 + r0

)
+ e−iρω (2iq2ω0 + r2)

iω0 eiρω0
(
ω4

0 − iP0ω3
0 + ir0ω0−q0ω2

0 + s0
)
− e−iρω0

(
ir2ω0−q2ω2

0 + s2
)

+ i
ρ

ω0
.

ℜ

(
dλ

dρ

)−1 ∣∣∣
λ=iω0

=
V1V2 +V3V4

V 2
2 +V 2

4
.

where,

V1 = 4ω
3
0 sin(ρω0)−3P0ω

2
0 cos(ρω0)−3P1ω

2
0 −2q0ω0 sin(ρω0)+2q2ω0 sin(ρω0)+

r0 cos(ρω0)+ r2 cos(ρω0)+ r1,

V2 = P0ω
4
0 sin(ρω0)+q0ω

3
0 sin(ρω0)+q2ω

2
0 cos(ρω0)− r0ω

2
0 cos(ρω0)− r2ω0 sin(ρω0)−

s0ω0 sin(ρω0)− s2 cos(ρω0)+ω
5
0 (−sin(ρω0)),

V3 = 3P0ω
2
0 sin(ρω0)−2q0ω0 cos(ρω0)−2q2ω0 cos(ρω0)−2q1ω0− r0 sin(ρω0)+

r2 sin(ρω0)+4ω
3
0 cos(ρω0),

V4 =−P0ω
4
0 cos(ρω0)−q0ω

3
0 cos(ρω0)−q2ω

2
0 sin(ρω0)− r0ω

2
0 sin(ρω0)− r2ω0 cos(ρω0)+

s2 sin(ρω0)+ s0ω0 cos(ρω0)+ω
5
0 cos(ρω0).

If (H4): V1V2 +V3V4 6= 0 holds, then ℜ

(
dλ

dρ

)−1 ∣∣∣
λ=iω0

6= 0.

Thus, the following theorem can be stated:

Theorem 7.3.4. For the model (7.1), if conditions (H1-H4) hold, then the endemic equilib-

rium Ee = (S∗,V ∗, I∗,R∗) is locally asymptotically stable when ρ ∈ [0,ρ0); the model (7.1)

undergoes a Hopf bifurcation at Ee = (S∗,V ∗, I∗,R∗) when ρ = ρ0, and a family of periodic

solutions bifurcate from Ee = (S∗,V ∗, I∗,R∗).
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7.4 Numerical simulation

In this section, numerical simulations are carried out to illustrate the e�ectiveness of

the obtained results.

The case of endemic equilibrium is illustrated for the following numerical data: A = 12,

β = 0.05, α = 0.15, µ = 0.1, d = 0.01, θ = 0.1, δ = 0.1, a = 2, b = 10, ς = 0.1, and

γ = 0.001. It is estimated that, with these parameter values, the basic reproduction

number of the model (7.1) is R0 = 1.38462 and the endemic equilibrium is Ee(S,V, I,R) =

(28.9926,27.4302,39.1123,20.5536).

Fig. 7.3.1 shows the behavior of the susceptible, vaccinated, infected, and recovered

populations at ρ = 1. It can be seen that, as time increases, the susceptible population

decreases, while the vaccinated, infected, and recovered population increase, and �nally,

all the subpopulations settle down to endemic equilibrium Ee. Fig. 7.3.2 shows the

impact of time delay on the infected population. This �gure clearly reveals that infection

increases among society with an increase in the time delay ρ .

7.3.1: Suceptible-vaccinated-infected-recovered
population for ρ = 1.

7.3.2: Infected population for various values of time
delay ρ .

Figure 7.4: Infected population with and without saturated treatment rate for ρ = 1.
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Fig. 7.4 reveals the impact of saturated treatment on the infected population for a time-

delay ρ = 1. When treatment is given to infected individuals, the infection spreads at a

lower level than the case without treatment, revealing that medical resources and their

supply e�ciency greatly in�uence the spread and control of an epidemic. Thus, it can

be seen that the saturated treatment rate helps to lessen the transmission and to control

the spread of the infection. Therefore, it is very important to make treatment facilities

available quickly to infectives to diminish the infection among society.

7.5.1: Infected population with and without vac-
cine.

7.5.2: Infected Population for different values of
vaccination rate.

Figure 7.5: Impact of vaccination on infected population.

Figs. 7.5 shows the impact of vaccination on infected individuals. Fig. 7.5.1 shows

the infected population with and without vaccination, revealing that, even though the

vaccine is imperfect, it helps to reduce the spread of the infection. Meanwhile, Fig. 7.5.2

shows the variation in the infected population for di�erent values of the vaccination rate,

where the infected population is plotted for δ = 0.1, 0.2, and 0.3 respectively. It can be

seen that, when the vaccination rate is high, then the infected population diminishes at

a higher rate. Thus, immunization by vaccination is a counteractive tool that can lessen

the transmission of an infection and control its spread. Therefore, public health agencies

need to ensure e�ective vaccination by increasing the time until loss of immunity and

immunizing the maximum number of individuals.
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7.6.1: Susceptible versus infected population at ρ =
3.

7.6.2: Susceptible versus infected population at ρ =
4.

7.6.3: Susceptible versus infected population at ρ =
6.

7.6.4: Susceptible versus infected population at ρ =
9.

Figure 7.6: Hopf bifurcation for various values of time delay ρ .

Figs. 7.6 is plotted for the parameter values A = 12, β = 0.05, α = 0.15, δ = 0.01, µ =

0.1, θ = 0.1, γ = 0.001, d = 0.01, ς = 0.1, a = 5, b = 10 and shows the relation between

the susceptible and infected populations for di�erent values of time delay, con�rming

the occurrence of Hopf bifurcation. The red dot on the curves indicates the endemic

equilibrium Ee whose components are (S, I) = (36.4105,48.5345) and at this value the

results give (S,V, I,R) = (36.4105,3.43944,48.5345,26.7621). These �gures show how the

fraction of infectives oscillates for higher values of the time delay, and �nally, approaching

the endemic equilibrium Ee. Figs. 7.6.3 and 7.6.4 indicate that increasing the time delay

ρ results in a longer period of periodic oscillations around the endemic equilibrium Ee.
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7.5 Discussion

An SVIRS epidemic model with a Holling type II functional incidence rate, time-delay,

imperfect vaccine, and saturated treatment rate is studied herein. The analysis of the

model shows that it exhibits two equilibria: disease-free equilibrium (DFE) and endemic

equilibrium (EE). The basic reproduction number R0 is obtained, and the dynamics of

the model for disease transmission is characterized by R0, both with time delay and

without time delay. For ρ > 0, it is shown that the DFE is locally asymptotically stable

when R0 is less than unity, unstable when R0 is greater than unity, and linearly neutrally

stable when R0 is equal to unity. However, the use of center manifold theory reveals

that the model undergoes backward or forward bifurcation at R0 = 1 when there is

no time delay. This analysis is of interest in itself as it provides some information on

the stability of the DFE and EE. The model exhibits forward or backward bifurcation

under particular conditions obtained by inequalities 7.15, and 7.16. Schematic diagrams

of forward and backward bifurcation are depicted in Fig. 7.2. Furthermore, stability

analysis of the endemic equilibrium is performed, and the local stability of the endemic

equilibrium is shown in Theorems 7.3.3 and 7.3.4. Regarding time delay as a bifurcation

parameter and analyzing the corresponding characteristic equation, the occurrence of

Hopf bifurcation near the endemic equilibrium is shown, illustrating the presence of

oscillatory and periodic solutions. Numerical simulations are performed to demonstrate

the e�ectiveness of the theoretical �ndings. The graphical representation elucidates the

impact of time delay on infected individuals, revealing that when the time delay is high,

then there is a large number of infected individuals. The e�ect of saturated treatment

rate has been seen graphically, and it can be said that the considered treatment is

imperative to control the spread of the infection as it lessens transmission and reduces

the number of infectives. The occurrence of the oscillatory and periodic solution is also

illustrated, con�rming the existence of Hopf bifurcation. The present study demonstrates

that an imperfect vaccine and saturated treatment rate may lead to backward bifurcation,

but at the same time, it should be emphasized that these measures reduce the size

of the infected population. High vaccine take-up levels result in radical decreases of

infectious disease, as shown in Fig. 7.5. If a completely e�ective vaccine can be made,

this plausibility does not emerge, while a program that reduces the contact rate can

further control infection without inciting backward bifurcation.
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Chapter 8

Conclusions and Future Work

In this chapter, we summarize the main outcomes of the thesis, and some future aspects

have been reported which may be studied in the future course of time.

8.1 Conclusion

There is no doubt that mathematical epidemic models help to understand the trans-

mission and spread of infectious diseases, recognize the components administering the

transmission procedure to create successful control techniques, and evaluate the e�ec-

tiveness of surveillance strategies and intervention measures. This thesis studies the

transmission and prevention mechanisms of epidemics through mathematical compart-

mental models with nonlinear incidences, latent period, and treatment rates using the

system of delay di�erential equations (DDEs). New compartments have been introduced

into the SIR model for various stages according to the dynamics of the disease. For ex-

ample, compartments of partially aware, fully aware, and vaccinated individuals. Novel

combinations of di�erent nonlinear incidence and treatment rates are considered. The

incidence rates of infection are considered nonlinear functional types that provide rich

and more realistic transmission dynamics in a large population. It is shown that the

proposed models are epidemiologically well-behaved. Equilibrium analysis of the models

proves and emanates the existence and uniqueness of equilibria. The local and global

stability behavior of the equilibria have been analyzed and further validated through

numerical simulations. We found the threshold value, the basic reproduction number R0

for each model to determine disease persistence in the endemic zone. The impact of the
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latent period has been seen for all presented models. It is concluded that the latency

phase can increase the ability of the disease to stay for an extended period and give rise

to Hopf bifurcation. In summarizing, in Chapter two, we explore the time-delayed SIR

model with Beddington-DeAngelis type incidence rate and a saturated treatment rate.

The local stability has been investigated using R0 for the equilibria: disease-free and en-

demic. The results suggest that as delay increases, the infected population increases at

a higher rate, and the oscillatory behavior of the infected population may occur, which

shows the presence of Hopf bifurcation. Moreover, the disease can eradicate from society

if the treatment given to infectives is managed according to the saturated treatment rate.

Chapter three is an extension of Chapter two, where we consider Beddington-DeAngelis

type incidence rate with Holling type II treatment rate and study the local and global

stability behaviors of the model's equilibria. We show that the model exhibits various

bifurcations such as forward, backward and Hopf bifurcations. This model is interesting

in itself because the forward and backward bifurcation scenarios occur and depend on

the parameter values of Holling type II treatment rate. Chapter four studies a time-

delayed SIR epidemic model with a logistic growth of susceptibles, Crowley-Martin type

incidence, and Holling type III treatment rates. The analytical results and numerical

simulation of this chapter are capable of demonstrating the signi�cant role of the follow-

ing nonlinearities: capturing lags between the exposure of disease, onset of its symptoms,

and then providing treatment to infectives; susceptibles' and infectives' protection level

against the infectious diseases; the limitation in the availability of the medical resources.

The results further suggest control strategies to prevent the spread of diseases. Chapter

�ve incorporates the compartment of aware individuals in the SIR epidemic model with

Michaelis-Menten type incidence rates. The long-term qualitative behavior of the model

is investigated. The relationship between human awareness and the spread of infection

is seen by observing the di�erence between the number of infected individuals with and

without aware individuals compartment, deliberating that unaware individuals are be-

coming infected faster than those familiar with the disease spread. Also, the results

suggest that for eradicating disease, there is a need for awareness among people and

su�cient treatment availability. Chapter six is an extension of Chapter �ve. The class

of susceptible individuals is divided into three subclasses due to people's di�erent social,

educational, and economic backgrounds: unaware susceptibles, fully aware susceptibles,

and partially aware susceptibles to the disease, respectively. The model is formulated

by incorporating three explicit Holling type II incidences with latent period and Holling

type II treatment rate. The local stability behavior of equilibria is investigated. The
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results show the existence of transcritical bifurcation (such as forward and backward)

and Hopf bifurcation near-endemic equilibrium. Moreover, the signi�cant role of the

latent period, the behavior of susceptibles through di�erent subclasses, and limitation

in available treatment facilities is observed. The results demonstrate the role of varying

protection levels of susceptibles in the transmission pattern of infectious diseases. Chap-

ter seven introduces the compartment of imperfect vaccinated individuals in the SIRS

epidemic model and proposes a susceptible�vaccinated�infected�recovered�susceptible

(SVIRS) epidemic compartmental model along with a Holling type II explicit incidences

and a saturated treatment rate. It is concluded that an imperfect vaccine and saturated

treatment rate may lead to backward bifurcation, but at the same time, it reduces the

number of the infected population, and high vaccine take-up levels result in a signi�cant

decline of infectious cases.

8.2 Future scope

In this thesis, we proposed deterministic models for disease transmission. We have

studied the stability analysis of these models and presented the numerical computations

in graphs to support analytical �ndings. As further studies and future directions, we

may explore the models for chaotic behavior and stochasticity. Also, fractional-order

derivatives can be applied in the presented epidemic models for the memory e�ect.
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Abstract Whenever a disease emerges, awareness in
susceptibles prompts them to take preventivemeasures,
which influence individuals’ behaviors. Therefore, we
present and analyze a time-delayed epidemic model
in which class of susceptible individuals is divided
into three subclasses: unaware susceptibles, fully aware
susceptibles, and partially aware susceptibles to the
disease, respectively, which emphasizes to consider
three explicit incidences. The saturated type of inci-
dence rates and treatment rate of infectives are deliber-
ated herein. The mathematical analysis shows that the
model has two equilibria: disease-free and endemic.We
derive the basic reproduction number R0 of the model
and study the stability behavior of the model at both
disease-free and endemic equilibria. Through analy-
sis, it is demonstrated that the disease-free equilibrium
is locally asymptotically stable when R0 < 1, unsta-
ble when R0 > 1, and linearly neutrally stable when
R0 = 1 for the time delay � > 0. Further, an unde-
layed epidemic model is studied when R0 = 1, which
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reveals that the model exhibits forward and backward
bifurcations under specific conditions, which also has
important implications in the study of disease trans-
mission dynamics. Moreover, we investigate the sta-
bility behavior of the endemic equilibrium and show
that Hopf bifurcation occurs near endemic equilibrium
when we choose time delay as a bifurcation parameter.
Lastly, numerical simulations are performed in support
of our analytical results.

Keywords Full and partial awareness · Time
delay · Nonlinear incidences and treatment rates ·
Bifurcations · Stability · Numerical simulations

Mathematics SubjectClassification 34D20 · 92B05 ·
37M05

1 Introduction

The last two decades have seen several large-scale epi-
demics outbreaks such as Ebola, SARS, Zika virus,
and swine flu, which leads to low socioeconomic sta-
tus and inadequate access to health care. People get
information about these outbreaks quite quickly due to
significant advances in social media, which can have
an insightful effect on the actual epidemic dynamics
[17,31]. Therefore, at the beginning of an epidemic out-
break, the initial step is tomake the individuals aware of
the disease and its preventive methods. Awareness pro-
grams can alert the susceptible population toward the
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