
 
 

SEMANTIC SEGMENTATION USING CONDITIONAL GAN WITH 
PERCEPTUAL LOSS 

A DISSERTATION 

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS 
FOR THE AWARD OF THE DEGREE 

OF 

MASTER OF TECHNOLOGY 

IN 

INFORMATION SYSTEMS 

Submitted by: 

Gaurav Sohaliya (2K19/ISY/08) 

Under the supervision of 

Prof. Kapil Sharma  
 

 

 

 

 

 

 

DEPARTMENT OF INFORMATION TECHNOLOGY 

DELHI TECHNOLOGICAL UNIVERSITY 
(Formerly Delhi College of Engineering) 

Bawana Road, Delhi – 110042 

JULY, 2021 

 



i 
 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

Bawana Road, Delhi-110042 

 

 

CANDIDATE’S DECLARATION 
 
 
 
I, Gaurav Sohaliya (2K19/ISY/08) student of M.Tech. (Information Systems), hereby 

declare that the Thesis/Dissertation titled: “Semantic Segmentation using Conditional 

Gan with Perceptual Loss”, which is submitted by me to the Department of Information 

Technology, Delhi Technological University, Delhi in partial fulfilment of the 

requirement for the award of the degree of Master of Technology, is original and not 

copied from any source without proper citation. This work has not previously formed the 

basis for the award of any Degree, Diploma Associateship, Fellowship or other similar 

title or recognition. 

 

Place: Delhi        

July 22, 2021      Gaurav Sohaliya (2K19/ISY/08) 

 

 

 

 



 
 
 

ii

 
INFORMATION TECHNOLOFY 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

Bawana Road, Delhi-110042 

 
 

CERTIFICATE 
 
 
 
 

I hereby certify that the Thesis/Dissertation titled “Semantic Segmentation using 

Conditional Gan with Perceptual Loss” which is submitted by Gaurav Sohaliya 

(2K19/ISY/08), Department of Information Technology, Delhi in partial fulfilment of the 

requirement for the award of degree of Master of Technology, is a record of the project 

work carried out by the student with my guidance. To the best of my knowledge, this 

work has not been submitted in part or full for any Degree or Diploma to this University 

or elsewhere. 

 

Place: Delhi        PROF. KAPIL SHARMA 

July 22, 2021                SUPERVISOR 

 

 

 

 



 
 
 

iii 

ACKNOWLEDGEMENT 
 
 
 
 

I am very thankful to Prof. Kapil Sharma (Department of Information Technology) and 

all the faculty members of the Department of Information Technology of DTU. They all 

provided us with immense support and guidance for the project. I would also like to 

express my gratitude to the university for providing us with the laboratories, 

infrastructure, testing facilities and environment which allowed us to work without any 

obstructions. I would also like to appreciate the support provided to us by our lab 

assistants, seniors and our peer group who aided us with all the knowledge they had 

regarding various topics. 

Gaurav Sohaliya 

2K19/ISY/08 

 

 

 

 

 

 

 

 

 



 
 
 

iv

ABSTRACT 
 
 
 
Image-to-semantic labels classification is a very challenging task in image processing. 

Convolutional neural networks (CNN) have managed to achieve the state-of-the-art 

quality of the segmented image in semantic segmentation tasks. Still, the classification 

capability of such algorithms is not satisfactory to segment images that contain complex 

object boundaries and minimal regions. Recently, the Generative Adversarial Networks 

(GAN) were introduced, which can solve the overfitting of the generator network using 

the adversarial loss. In this paper, a GAN-based segmentation model is proposed, in 

which the Conditional Generative Adversarial Networks (CGAN) model is used as base 

architecture. Perceptual loss is introduced in this composite model to solve the 

identification and classification of visually small elements in images. A pre-trained deep 

convolution neural network is adopted to generate improved segmentation masks to 

calculate Perceptual loss. The usage of Perceptual loss has demonstrated the high quality 

of the output labels. The evaluation of the proposed model on the cityscapes dataset has 

shown the effectiveness of GAN-based architecture in semantic segmentation of 

multiclass images. The proposed model achieved 83.3% accuracy on the test dataset, 

which is superior to most semantic segmentation state-of-the-art methods. 
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CHAPTER 1 : INTRODUCTION 
 

 Object detection, image classification, and image segmentation are 

very classic problems in computer vision and still challenging tasks in the 

current time, which may be used to still 2D pictures, video, and even 3D or 

volumetric data. Semantic segmentation is one of the high-level processes that 

leads to full scene understanding in the grand scheme of things. The 

importance of scene understanding as a fundamental computer vision topic is 

highlighted by the fact that an increasing number of applications rely on 

inferring knowledge from pictures. Identifying whether a particular object is 

present in an image or not and classifying the image according to it is object 

detection and image classification, respectively. But the semantic image 

segmentation phenomenon is very complex. It's the technique of assigning a 

semantic name to each pixel in a picture (for example, vehicle or people). This 

task is one of the most challenging since natural environments include many 

classes, some of which are visually identical to one another. 

 

 The term “semantic segmentation” was coined in the 1970s [1]. This 

phrase was similar to picture segmentation at the time, but it emphasized the 

importance of isolated sections that were “semantically relevant”. “Object 

segmentation and recognition” [2] are two-class segmentation problems 

created in the 1990s to distinguish essential things from the background. 

Because it's difficult to entirely separate foreground and background items, a 

two-class picture segmentation problem called sliding window object 

detection was created to partition objects using bounding boxes. At the time, 
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this notion was comparable to image segmentation, but it emphasized on the 

importance of different "semantically significant" parts. Object segmentation 

and recognition is a two-class image segmentation problem invented in the 

1990s to distinguish essential items from the background. 

 

 We are interested in finding all the things present in a picture with exact 

regional boundaries and categorizing each pixel present in an image into a set 

of classes [3] like bus, car, sky, building, tree, road, etc., assigning a label to 

it. This is very challenging task in image processing because of multiple 

angles and viewpoints of different objects and illumination, texture of visual 

scenes, and the high variation in appearance. Because separating foreground 

and background items is challenging, a two-class picture segmentation 

problem known as sliding window object detection was created to partition 

objects using bounding boxes.  

 

 Excellent two-class fragmentation techniques like limited parametric 

min-cutting are effective in recognising objects in circumstances. Two-class 

image segmentation, on the other hand, is unable to determine what these split 

items are. As a result, object detection (or identification) was eventually 

enhanced to semantic segmentation or multi-class image labeling in the 

contemporary meaning, to establish both the location and the nature of the 

objects in the picture.  

 

 In order to achieve high-quality semantic segmentation, two primary 

difficulties must be addressed. These include how efficient representation of 

characteristics may be built to distinguish between different classes and how 

contextual information can be used to ensure consistency between pixel 

labels.  
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 Semantic segmentation can be used in automated cars [4], virtual 

reality, human-computer interaction [5], sky monitoring cameras, delivery 

drones, etc. 

 

1.1 Evaluation of Image Segmentation 

 Semantic segmentation has grown in importance as it relates to 

different elements of computer vision. This evaluation will not be able to 

cover all of the information available on the subject. We won't go into detail 

on classic image segmentation, object segmentation, or object identification 

because there are already several great assessments of research findings. 

 

 

Fig. 1 : Development of scene understanding or object recognition 

 

 Image classification: The image might be categorized, which entails 

generating a prediction for the whole input, such as identifying which 

object in an image is the object or even constructing a ranked list if 

there are several, it is referred as image classification.  
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 Localization or detection: is not simply the classes but also 

supplementary information about their spatial position, such the centres 

or bounding boxes. is the next stage in the picture categorization. 

 

 Semantic segmentation: is the obvious next step after object 

localization; its goal is to provide dense predictions for each pixel of 

image, labelling each pixel with the class of the item or region it 

surrounds.  

 

 Instance segmentation: is the next stage following semantic 

segmentation, where it assigns different labels for various instances of 

the same class.  The above-mentioned development is depicted in 

Figure 1.  

 

 

1.2 Different approaches of semantic segmentation 

 Deep learning can solve these tasks using deep convolution 

architecture, and some of the problems are also resolved successfully. Several 

classic computer vision and machine learning approaches have already been 

used to tackle this challenge. Convolution neural network architectures 

(CNN) [6, 7] pushed the accuracy and efficiency of image segmentation to a 

new height by surpassing other methods with a wide margin. Despite their 

widespread usage, the deep learning revolution has turned the tables, and deep 

architectures, most notably CNNs, are now being utilised to tackle a wide 

range of computer vision problems, including semantic segmentation, 

surpassing traditional approaches in terms of accuracy and speed.  
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 CNNs can solve the problem of semantic segmentation. Still, it requires 

many modifications because originally, CNN is developed for the image 

classification task. Because of that, CNN suffers from various problems such 

as the low resolution of generated output, unable to predict object boundaries 

accurately. In comparison to other well-established disciplines like computer 

vision and machine learning, deep learning is still in its infancy.  

 

 Using the capabilities of CNN and overcoming the problem, several 

deep architectures and research works have been proposed, such as Fully 

Convolution Network [8], Pyramid Scene Parsing Network [9], DeepLab 

[10], U-Net [11], etc. These techniques can solve image segmentation 

problems successfully at a certain level, but some issues like accurate 

boundary extraction and area prediction remain to solve. As a result, there are 

few unifying works and state-of-the-art assessments available. Due to the 

huge volume of new material being generated, keeping up with the field's 

ever-changing state is difficult, and keeping up with its evolution pace is a 

time-consuming endeavor. This makes it difficult to stay on top of semantic 

segmentation research and correctly evaluate concepts, eliminate ineffective 

techniques, and validate results. 

 

 A convolution neural network tries to learn a parametric translation 

function in a fully supervised environment. Significant manual efforts are 

required to compose accurate loss between ground truth pixels and predicted 

pixels. Ian J. Goodfellow proposed generative adversarial networks (GANs) 

[12] to address this problem. GAN tries to identify the relation between an 

input dataset and an output dataset. GANs can be used in several applications, 

such as object transfiguration, photo enhancement, style transfer, season, or 

daylight transfer.  
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 There are certain limitations of GANs, such as the training of GAN is 

sensitive and unstable, it cannot control the data being generated by the 

generator. To tackle these problems, Mehdi Mirza proposed Conditional 

Generative Adversarial Nets (CGAN) [13], in which condition has been 

imposed over discriminator to produce the required output. We use CGANs 

as basic architecture with perceptual loss [14] for high quality and accurate 

regional segmentation in our proposed architecture. 

 

1.3 Organization of the Thesis 

 This dissertation demonstrates how recent advances in the field of 

semantic segmentation have led to the development of a novel architecture 

based on generative adversarial networks that has achieved the best 

segmentation accuracy of any GAN-based approach described to date. In 

Chapter 2, we briefly examined the linked works, including their introduction, 

what they accomplished, and their limits. The tools and platform we utilised, 

the libraries and datasets we used, and the general structure of the tracking 

effort are all explained in Chapter 3. It provides a comprehensive description 

of the step-by-step algorithms. Finally, Chapter 4 presents the experimental 

results we were able to accomplish using our suggested technique, as well as 

a comparison of its accuracy metrics with prior methods used in the same area. 

Chapter 5 summarises our ground breaking work, as well as the findings, 

problems we encountered while putting the framework in place, and 

additional works that may be used to enhance our framework.  
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CHAPTER 2 : LITERATURE REVIEW 

 

 

Fig. 2 : Existing semantic segmentation approaches classification 

 
 CNNs In this chapter, as shown in Fig. 2 shows, we will see methods 

to solve semantic segmentation and its sub approaches. Then after, we will 

explore available dataset for urban scene semantic segmentation. 
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2.1 Naive approach 

 The region/pixel level categorization is followed by feature extractors. 

CNNs are commonly used to display patches of fixed size centred on each 

pixel in the context of pixel categorization. On the other hand, it is inadequate 

to mark each pixel with a tiny region surrounding it. When making a local 

decision, it is essential to look at the wider context. The size of picture patches 

is a simple technique to do this. 

 

 However, this technique would significantly rise CNN parameters, 

which would result in a significant increase in processing complexity. Multi-

scale approaches were created to deal with a wide range of circumstances 

while keeping computational efficiency. Farabet et al. [15] used CNN on a 

multi-scale pyramid of data to analyze patches of images. The feature maps 

produced at different sizes were combined using a size matching approach. 

As a result, each pixel is linked to a feature vector comprised of multiple 

patches with progressively larger but equal-sized visual fields.  

 

 Couprie et al. [16] used a multi-scale architecture to extract features 

from the depth information of RGB-D sensors. In the same way, different 

scales were taken into account. Although feeding picture patches to a 

traditional CNN to obtain dense predictions is conceptually simple, it is 

computationally inefficient. Because patches centred at neighbouring pixels 

are considerably overlapped, there are a lot of duplicate convolutions. One 

method to approach this challenge is to use the notion of region proposals to 

undertake region-wise categorization.  

 

 After warping, this approach has the benefit of immediately putting the 

rectangle region suggestions into a CNN for classification. This system can 

also recognise and segment items at the same time. Rectangular region 
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suggestions, on the other hand, include not just the object class, but a few 

others as well. As a result, many bottomup area suggestions must be examined 

while deciding on the label for a single pixel. Mostajabi et al. [17] used a CNN 

as a feature extractor and upsampled the resulting feature maps to produce 

pixel-level features.  

 

 Then, by pooling pixel-level data, superpixel characteristics were 

derived. In order to acquire multi-scale data, the authors also recommended 

that the characteristics of intermediate layers be concatenated. Upsampling 

these multi-scale feature maps to picture resolution would take a lot of 

memory because each scale can include hundreds of feature maps. A recursive 

network of context propagation was used to enhance each superpixel with 

contextual information, which comprised an upgrade and an upgraded context 

phase.  

 

2.1.1 Fully Convolutional Network (FCN) 

 

 

Fig. 3 : Architecture of FCN 

 

 FCN [8] is the first successful architecture (Fig. 3) in terms of accuracy 

gain in image segmentation, which uses a CNN to reconstruct image pixels 

into a set of categories. The last dense layer of convolutional neural networks 

is replaced by transposed convolution layer in the proposed FCN architecture. 
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Hence the predicted pixels can have one-to-one conformity in terms of spatial 

positions with the input image. FCN first uses the consecutive convolution 

layers to capture image features. Then it transforms the dimensions of the 

intermediate layer feature block to the dimensions of the input image by using 

the transposed convolution layer. The model's output will have the exact 

dimensions as the input image. The final output channel contains the class 

prediction of the pixel of the corresponding spatial dimension.  

 

 The dense layer in CNN has many trainable parameters, and it requires 

a lot of time to train; this layer is eliminated in FCN. Hence FCN takes less 

time for training in comparison to CNN.  It does not have any dense layer and 

contains only convolutional layers, because of which it can accept variable 

size input images.  

 

 The majority of recent advances in semantic segmentation have 

employed FCN. The main idea behind FCN is to substitute a fully connected 

layer in a conventional CNN with a 1×1 convolution layer to produce low-

resolution predictions, as shown in Fig. 3. Shift-and-stitch [18] is a simple 

method for sewing predictions generated from numerous shifted copies of the 

input into pixel dense forecasts. Because the CNN's output moves in lockstep 

with the input, this approach works. The shift-and-stitch method must evaluate 

s2 shifted copies of the input picture when assessing output score maps with 

input strides. A more efficient technique is to upsample over the coarse 

predictions. We called it UP FCN to keep things easy. [8, 19] for example, 

utilised a deconvolution layer to up-sample low-resolution predictions. End-

to-end training is possible with the UP FCN-based methodology, making it a 

preferred method for scene labelling.  

 

 In end-to-end training, the feature representation and pixel-wise 

classifiers are both learned at the same time. Based on the structure of FCN, 
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methods for improving semantic segmentation may be divided into three 

categories. It's possible that upsampling low-resolution forecasts to picture 

resolution (typically 1/32 of the original input) will result in a significant loss. 

To extract the feature maps, the SegNet [20] employed a hierarchy of 

decoders. The authors used dimensionality reduction on the feature maps to 

reduce the model's size, however this reduced the model's accuracy.  

 

 Some down-sampling procedures may be discarded before upsampling 

to get finer-resolution forecasts. Unfortunately, this may result in a reduction 

in the receptive field widths of the final layer, resulting in the loss of 

contextual information and critical global for semantic segmentation. Dilated 

convolution is a similar approach described in [21]. The fundamental concept 

is to dilate the convolution filters before the deleted down sampling stages. 

The atrous convolution increases the number of zeros in the initial convolution 

mask, whereas the dilated convolution accomplishes the same. The main 

benefit of the atrocious FCN model is that it can give forecasts without the 

requirement for additional parameters.   

 

 However, because the model's wide receptive field fails to capture low-

level visual information, adding skip connections to intermediary layer 

features is another approach for producing finer-resolution outputs. For 

example, before fusing the multi-resolution scores to generate the final 

forecast. Feature maps should be up-sampled rather than score maps. All of 

these approaches used a summing procedure to aggregate the multi-resolution 

score or feature maps after upsampling.  

 

 Making the most of a poor circumstance includes the following 

strategies: Despite the fact that many deep CNNs' receptive fields are 

theoretically close to or even greater than the total input, Zhou et al. [22] 

discovered that the true receptive field is significantly smaller than the 
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theoretical one, indicating that many segmentation networks do not adequately 

use higher-level contexts. Zhao et al. achieved this by splitting the FCN 

receptive field into various sizes (multiple parallel pooling). Context was 

gathered at both low and high levels by combining the features of various 

receptive fields. [10] suggested an atrous spatial pyramid pooling approach 

that is similar but more efficient.  

 

 Lin et al. recently reported a superpixel-based receptive field that 

produced several receptive fields by using varied superpixel sizes. Mean-field 

inference was used by Chen et al. to create a dense CRF with sharp limits over 

up-sampled predictions. [23] calculated paired pixel affinities utilising 

semantic limits given by a trained CNN instead of low-level pairwise 

potentials defined on colour contrast. Lin et al. [24] used a non-associative 

potential based on CNN.  

 

 Zheng et al. [25] were able to train CNN and CRF simultaneously by 

translating several rounds of CRF inference to a recurrent neural network by 

combining the capabilities of the CNN and CRF in one unified framework 

(RNN). Arnab et al. [26] shown that the CRF with higher order potentials may 

also be incorporated into the FCN, resulting in substantial improvements over 

the CRF-RNN. These CRF embedded FCNs are substantially more complex 

than standard FCNs, notwithstanding their effectiveness [23]. [27] addressed 

the problem by casting the paired potential to a contextual classifier over unary 

scores, which reproduced CRF inference as a convolutional network. Because 

approximation inference methods are common in discrete CRF-based 

approaches, [28] employed Gaussian CRF to pursue precise inference. While 

[28] and [25] both used the same notion of unrolling fixed inference steps to 

train a deep network. 
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 Several scene labelling techniques based on this information used RNN 

in conjunction with CNN to capture long-range spatial relationships. RNN 

works on the premise of memorising data created in the current prediction and 

then passing it on to the next prediction. As a result, previous data from this 

repeating process may influence each projection. The idea of temporal 

sequence is broadened to encompass spatial sequence when it comes to scene 

labelling.   

 

 By seeing the image horizontally and vertically in both directions, Visin 

et al. [29] created four 1D spatial sequences. The pros and cons of each 

approach are their own. Expanding the receptive field requires a simpler model 

and is easier to implement than using CRF/RNN. A difficult-to-understand 

learning process, on the other hand, implicitly and thoroughly represents the 

structural relationships between pixels. Using CRF/RNN, on the other hand, 

requires a significant amount of time and effort to train the model, despite the 

fact that it allows for more precise structural correlations.  

 

 Keeping the notion of hard pixels in mind when learning: A class-

imbalance problem plagues most semantic segmentation datasets, resulting in 

performance variations in identifying pixels of various classes. Furthermore, 

not all pixels in a single picture are easily identifiable. All of these findings 

point to the need to discriminate between "hard" and "easy" pixels. This is 

done by eliminating pixel samples that have been "correctly recognised," 

which is assessed by assessing if the accurate label's predicted probability 

exceeds a certain threshold. Because most early projections for most pixels 

have low confidence levels in contrast to reality, pixels are regarded the same 

at the beginning of training. As the training proceeds, easy pixels become 

increasingly visible and disregarded. In deep layers, the Deep Layer Cascade 

just overlooks basic pixels rather than totally discarding them.  
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 Current approaches have mostly concentrated on enhancing two core 

FCN architectures: atrous UP-FCN and skip connected UP-FCN, as shown in 

the graph. These advancements include the use of more powerful CNN 

models, the integration of several CRF or higher-level contexts, and the use of 

cascaded methods. The FCN may be used as a general model for constructing 

semantic segmentations, as illustrated in previous presentations. When using 

finer-resolution feature maps, memory constraints might arise during training, 

which is a current and common problem with FCN models. As a result, the 

finer-resolution used is typically 1/8 of the input resolution or less. This 

indicates that further study will be done in the future to increase output 

resolution. 

 

2.1.2 Pyramid Scene Parsing Network (PSPNet) 

 

 

Fig. 4 : PSPN Architecture 

 

 PSPNet [9] proposed the scene parsing concept, which refers to parse 

an image semantically into different regions that belong to a set of classes such 

as sky, road, and car. PSPNets employ pyramid pooling to use the capabilities 

of the global context of the image. PSPNet uses FCN in its core, where it has 

series of convolution layers, and then pyramid pooling adds a new layer 

between the convolution layer and the fully connected layers. It helps to map 
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variable size input to constant output size. PSPNet provides a very efficient 

architecture for interpreting sophisticated scenes and pixel-level prediction 

ability in the image. It includes predicting the shape, size, and object position, 

similar to the human visual approach. PSPnet enormously enhances the ability 

of image description and provides an obvious direction for the pixel-level 

prediction. 

 

2.1.3 DeepLab 

 When applying DCNN on images for segmentation, there are certain 

limitations, and DeepLab [10] tries to overcome these limitations. The first 

solution is dilated convolution, which solves the problem of reduced feature 

resolution. Due to multiple pooling and downsampling layers in DCNN reduce 

spatial resolution significantly from the resultant feature map. Conditional 

Random field has been employed to increase localization accuracy by 

considering the neighbor's context while predicting the label. After the first 

DeepLab model, various revised models have been proposed, including 

DeepLabV2 [30], DeepLabV3 [31], and DeepLabV3+ [32]. The main idea is 

to combine the capabilities of DCNN and conditional random fields. 

 

2.1.4 U-net Architecture 

 U-net [11] was proposed for the segmentation of Biomedical Images. 

The architecture contains two paths. It is divided into two parts, same as FCN; 

the first part is the contraction path employed to extract the context and details 

of the image. It is also addressed as encoder architecture and just a stack of 

convolution layers without dense layers. The decoder part is the symmetric 

expanding path which is a stack of deconvolutions layers.  
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Fig. 5 : U-net Architecture 

 

 The problem in encoder-decoder architecture compresses the input 

linearly; hence, it creates a bottleneck in which all feature information cannot 

be passed to a decoder, leading to low resolution and inaccurate output. Here 

the U-net differs from other architecture. U- Net is a kind of architecture that 

is in U shape. It has two parts that are the left and right sides as shown in 

Figure 5. The left side, which is called the contracting path, is the usual 

convolution neural network. Two convolutional blocks are applied.  

 

Each block consists of two convolutional layers, each of which is followed by 

a ReLU (Rectified Linear Unit) activation function and a max-pooling layer, 

allowing for down-sampling. After every down-sampling, the number of 

channels of features reduces. The right side, which is called the expansive 

path, upsamples the components. By this step, the numbers of feature channels 

doubles. This step combines with a concatenation layer added along with 

feature maps from the respective contracting path and two convolution layers, 
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each of which again followed by a ReLU (Rectified Linear Unit) activation 

function. After the last deconvolution block, a convolution layer of filter size 

equal to the number of classes is applied and a segmented image will be 

generated.  

 

 U-net allows the network to propagate context information from the 

lower layer to the higher layers. The higher resolution feature maps from the 

encoder's successive layers are concatenated with upsampled features of the 

decoder network. It helps to learn better representations with subsequent 

deconvolution operations. Upsampling or deconvolution is a sparse operation, 

so to increase the resolution and represent better localization, it needs prior 

knowledge from successive layers. This yields U-shaped architecture, and 

hence u-net architecture has achieved good accuracy in semantic segmentation 

[33] [34]. 

 

2.2 Weakly and Semi-Supervised Learning 

 The initial domain adaptation approaches for semantic segmentation 

were created via adopting domain adaptation methods for classification in the 

classification area, similar to how previous semantic segmentation research 

began using image classification techniques. However, approaches focusing 

only on the semantic segmentation problem began to emerge soon after, taking 

into consideration the unique characteristics of the spatial components as well 

as the costly (pixel-wise) labour. Simultaneously, methods with weak or 

incomplete supervision, which are the subject of this section, were widely used 

prior to unsupervised domain adaptation.  

 

 As previously stated, training a deep learning model for semantic 

segmentation necessitates a large quantity of data with pixel-level semantic 

labels, which is difficult, inconvenient, and time-consuming to get. Other 
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computer vision applications, such as image classification and object 

recognition, are less impacted by this issue since image-level tags or bounding 

boxes are much simpler to come by, and large annotated datasets are easily 

accessible. Many studies suggest that a model be trained using just weakly 

labelled data or a combination of many weakly labelled samples and a few 

samples with the more expensive pixel-level semantic map in the 

segmentation problem.  

 

 As indicated in [35], A weakly monitored semantin segmentation is one 

method to address the problem as a multiple-instance learning problem. A 

approach for calculating the probability of unnoticed pixel labels was added 

to the foundation, which was founded on the standard feature-based Semantic 

Texton Forest (STF) approach. The STF's structure was then enhanced using 

a unique approach in which a geometric context estimate job is used as a 

regularizer in a multi-task learning framework.  

 

[36] also proposes a deeper network for semantile segmentation, with the 

application of an EM algorithm, in a semicircular and poorly monitored 

situation. The method alternates between pixel-level annotation estimate 

(limited to weak annotations) and network segmentation tweaking. [37] is 

presented as a model for the inclusion of limited CNNs (CCNNs) in training. 

Linear limitations are introduced to the area where labels from the image level 

tags exist and are expected to distribute, and a unique loss function has been 

developed to improve the set of constraints.  

 

 [38] proposed a weakly-supervised semantic segmentation paradigm 

that ranged from elementary to sophisticated. Simple and difficult 

photographs are differentiated in the article: the former contain a single object 

of a single category in the foreground and a clean backdrop, whilst the latter 

may have many things of numerous categories and a crowded background. 
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First, using salient item identification approaches, semantic maps are 

constructed from weakly annotated basic pictures, and then three separate 

networks are trained successively from these to enable sophisticated image 

segmentation.  

 

 [19] proposes a semi-supervised method that consists of three key 

elements: a segmentation network, a classification network and some bridge 

layers that connect the two networks. The suggested training is separated by 

first training of the classification network with poorly noted information, 

followed at the same time by training of bridge layers and segmentation 

network with strong examples. After feeding the input picture into the 

classification network, the bridge layers extract a class-specific activation map 

from the classification network intermediate layer, which is then fed into the 

segmentation network. This technique allows for training with a limited 

number of semantically annotated samples since the number of parameters in 

the segmentation network may be reduced. The classification network's 

collection of key labels and spatial information, which is then improved by the 

bridge layers, makes the task of the segmentation network much easier in 

practise.  

 

 Using just bounding-box annotated input, [33] developed an iterative 

technique for training a segmentation network. For each image, region 

proposal methods are utilised to create a huge number of possible 

segmentation. The candidate mask that overlaps the ground truth bounding 

box as much as feasible with the right label is chosen using an overlapping 

objective function. One candidate mask is chosen for each bounding box at 

each iterative phase, and the resultant semantic labels are utilised to train the 

segmentation network. The segmentation network's outputs are then employed 

in a feedback loop to enhance candidate label selection for the following 

phase. Both the selected candidate labels and the segmentation network 

outputs improve with each iteration.    
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 Starting with [39], where the discriminator network is changed to do 

semantic segmentation, generative adversarial networks have proved to be 

effective in this field. The discriminator assigns a label from one of the 

semantic classes or a false label to each pixel in the input picture. Fake 

(manufactured) data, unlabeled data for regularisation, and labelled data with 

pixel-level semantic mappings are used to train the discriminator. In a weakly-

supervised scenario, another method is to use conditional Generative 

Adversarial Networks (GANs) with weak image-level annotation at both the 

generator and discriminator inputs in a weakly-supervised scenario.   

 

 Using a traditional Seeded Region Growing (SRG) technique, the areas 

are then extended to neighbouring pixels with comparable characteristics, 

resulting in precise labelling of the pixel level that are utilised to train a 

segmentation network. The SRG technology detects the resemblance between 

the seed and the surrounding pixels using the output of the segmentation 

network. Consequently, each repeat improves the divisional network and 

dynamic labels created by SRG. [38] provides a similar approach for gradually 

localising and enlarging object areas using a unique harsh erasing procedure. 

The suggested technique is divided into four phases, with two tasks and two 

domains:  

1. In order to establish a common representation for the domains, 

one task network is trained on data from both domains to resolve 

the first task;  

2. The second network is solely trained in the first field to deal with 

the second problem;  

3. On the first domain a third network is trained to map depths 

acceptable for the first job to features that are appropriate for the 

second task ;  
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4. Finally, in the first area the nth network is trained in maping the 

first task deep features to fit the second task function;  

 

 This approach moves picture segmentation tasks from a generated to a 

real area by using feature maps from both areas. Because depth cameras and 

3D scanners make it simpler to collect depth maps, they may be inferior to 

semantic maps as annotations. 

 

2.3 Generative-Based Approaches  

 Unsupervised image-to-image translation (I2I) aims to create a function 

that can translate pictures between domains using just unpaired training data 

from the domains in question as supervision. The objective is to extract unique 

features from a collection of photos and transfer them to a different data set. 

The I2I job, in a more formal description, tries to find a common distribution 

of pictures from several domains. Since the problem is unsuccessful, and the 

marginal ones can infer an unlimited number of joint distributions, suitable 

restrictions have to be imposed to find satisfactory results.    

 

 The discovery of the target set's conditional distribution with regard to 

the source set, the statistical gap between source and target pixel-level 

statistics in principle should be able to cross and eliminate an initial covariate 

shift that caused the performance of the classifier to decrease. The objective is 

to keep the source semantic information while transferring visual 

characteristics from the target domain to the source domain. Many research 

have suggested an input-level adaptation approach based on a generative 

module that changes pictures between source and destination domains based 

on this concept. Regardless of the approaches used, the objective of all of these 

articles is to achieve visual domain invariance by decreasing cross-domain 

differences in picture arrangement and organisation. This allows for the use of 



 
 
 

22

source annotations while learning a segmentation network on data from a 

translated source domain.  

 

 In cross-domain picture translations, the semanticized predictor is 

obliged to keep semanticized information, a degree of semantic discord 

between the original image and its translated counterpart, minimised by the 

optimisation of the translation network.  Because the prediction maps are 

fundamentally incorrect, specifically in the target set when annotations are 

lacking, the generative module's learning of picture projections may be 

hampered by the erroneous semantic information provided. 

 

 To achieve input-level domain adaptation, a large amount of research 

has relied on the effective CycleGAN [40] unsupervised I2I framework. [40] 

present a method for conditional image translation in both the target-to-source 

and source-to-target directions across two domain sets based on a pair of 

generative adversarial models. The necessity for cycle consistency links the 

two antagonistic modules even tighter, further separating the cross-domain 

projections. This criteria is necessary to maintain the input scene's structural 

geometrical characteristics, but it does not ensure semantic coherence during 

translation. In reality, the mapping functions may entirely ruin the semantic 

categorization of incoming data, although maintaining geometrical coherence.   

 

 Li et al. [41] use the CycleGAN-based adaptation technique to build a 

bidirectional learning framework. The I2I and segmentation modules are 

alternatively trained in an optimization approach in which both modules get 

positive data from the other. The segmentation network is enhanced by 

original supervision and target-like translated source pictures, while the 

predictor assists the generative network in maintaining semantic consistency. 

I2I semantic accuracy and quality both improve with time with this closed-

loop structure.  
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 Li et al. [42] proposes to use soft gradient sensitive losses in order to 

support the cyclically consistent I2I framework in the maintenance of 

semantic substances inside the cross-domain projection with an emphasis on 

semantic borders in cross-domain projection.  The aim of this technique is that 

the semantic uniform area borders should be apparent regardless of how low-

level visual features change between domains, regardless of the distribution 

utilised to create the image. As a result, a gradient-based edge detector should 

be able to recognise edge mappings that are consistent in both the original and 

modified pictures. They also develop a semantic-aware discriminator 

structure, which is based on the concept that semantically distinct sections of 

an image should be modified differently. The discriminator can then assess the 

semantic similarity of the original and translated samples.   

 

 By training generative networks with a continuous variable 

representing the domain, Gong et al. [43] modified the CycleGAN model to 

produce a continuous flow of domains spanning from source to destination 

domains. The objective of collecting intermediate domains that span the two 

starting domains is to make the adaptation process easier by gradually 

explaining the domain shift that affects input data distributions. They also 

assert that using target-like training data from a variety of target-like domain 

distributions increases the generalisation of the segmentation network.  

 

 To minimise the processing cost for the CycleGAN bi-directional 

structure, several researches are using a light-weight adaptation module based 

on a generative adversarial frame to slip the backward-to-target projection 

branch. The link to a related effort, which is done concurrently with semantic 

segmentation, ensures translation consistency. Choi et al. [44] instead improve 

the fundamental GAN framework's generator by adding feature normalisation 

modules at various stages to provide style information to source 
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representations while maintaining source content. A semantic consistency loss 

from a pre-trained segmentation network enhances image translation 

coherence in the absence of the cycle-consistency effect, resulting in a 

regularising impact.   

 

 Style-transfer techniques are examined as a separate adaptation 

category in order to achieve an invariance in image levels throughout the 

source and target domains. The concept that each image is separated in two 

components is based on those methods: content and style. The content offers 

a low-level domain-specific texture, while the style transmits domain-

invariant, high-level structural features. As such, the ability to integrate style 

characteristics with semantically maintained source material from target data 

should enable the generation of goal-delivered training information while 

retaining the original source annotations.  

 

 Yang et al [46] are creating a type of objective monitoring from source 

translated data using image-to-image target-to-source translation instead of a 

common source-to-target translation to decrease the distortion towards a 

source domain. The source-like target pictures are then utilised in the 

supervised training of the predictor by utilising pseudo labelling. The training 

of the segmentation network in the source domain permits complete use of the 

original source annotations in the pixel-to-target adaptation situation, while 

also reducing the potential for semantical alterations.  To match feature 

representations across domains, they additionally develop a label-driven 

reconstruction network. Rather of utilising feature-based reconstruction 

approaches, semantic maps obtained from the segmentation result are used to 

generate generative replication of input pictures. They intend to do this by 

directing the category-wise alignment of segmentation network embeddings, 

penalising reconstructions that stray from the objective, and ensuring semantic 

consistency in network predictions.   
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 In order to characterise the remainder of a representation between 

source and destination maps, Hong et al. [45] employ a conditionally 

generated function, optimised in an adverse environment. They avoid 

depending on a single domain-invariant latent space assumption, which may 

or may not be satisfied due to the highly organised nature of semantic 

segmentation. The generator is called upon to create high-level characteristic 

maps with target distribution from low source characteristics maps and noise 

samples using a disc that measures the statistical distance between original and 

replicated target representations. The original source and domain modified 

representations are given a dense classifier to calculate the loss of cross-

entropy.  

 

2.3.1 Semantic segmentation using Adversarial Networks 

 In all the previous models, the loss function is majorly based on pixel-

to-pixel loss. As discussed previously in [10], a Conditional Markov random 

field (CRFs) is an effective way to emphasize spatial integrity in output 

labeled images. CRF Model has a limitation of higher-order consistency. To 

overcome this limitation, in 2016, facebook researchers proposed to use an 

Adversarial Network [47]. Adversarial loss of GAN architecture helps to 

enforce higher-order consistency forms, which is impossible with pixel-to-

pixel loss. 

 

 

 

 

 



 
 
 

26

Original Ground Truth 

  
Without adversarial With adversarial 

  

Fig. 6 : with and without adversarial training results 

 

 The results are shown in Fig. 6 prove that adversarial training helps to 

get spatial consistency and brings smoothness and sharpness of the large 

object or class, e.g., sky and grass. 

 

2.3.2 SegGAN 

 SegGAN [48] has been proposed to utilize the capabilities of 

adversarial loss. It uses the GAN as a kind of loss to segmentation a given 

image and achieve effective results. In SegGAN architecture, there are mainly 

three components:  

 

 Pretrained DeepLab model – it is used for semantic 

segmentation. 

 Generator G – it takes predicated masks from the DeepLab 

model and tries to generate an original image synthetically. 

 Discriminator D – it distinguishes synthetically generated 

images from a generator and real images from a dataset. 
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 Here, generator G follows a simple encoder-decoder architecture with 

four convolution and four deconvolution layers. The discriminator uses four 

convolution layers with ReLU as the activation method. In this paper, another 

significant thing is the loss function; they integrated three losses overall: 

 

 Segmentation Loss – it is a loss between the predicated 

segmentation mask map from Segmentation Network and the 

actual mask. 

 Content Loss – this is pixel-wise MSE loss between ground 

truth image and reconstructed image by Generator G. 

 Adversarial Loss – generator G and discriminator D try to 

improve themselves by fooling each other. 

 

 The result obtained by SegGAN is superior in comparison to DeepLab 

and GAN-based architecture, and the research has successfully demonstrated 

GAN and adversarial loss capabilities. 
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CHAPTER 3 : DATASET 

3.1 Mapillary Vistas 

 The Mapillary Vistas [49] is a large-scale street-level photo dataset 

with 25000 high-resolution images divided into 66 item categories and 

additional, instance-specific labels for 37 classes. In a rich and fine-grained 

way of annotation, individual elements are demarcated using polygons. 

Mapillary Vistas is five times the size of the total number of excellent 

comments for Cityscapes, and it contains images from all over the world, 

captured in a range of weather, season, and daytime conditions. Photographers 

of various ability levels create images using a range of imaging equipment. 

Our dataset has been created and assembled in this manner to encompass 

diversity, richness of detail, and geographic scope. Fig. 7 shows number of 

pixels per class in Mapillary Vistas dataset and total classes. 
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Fig. 7 : Number of annotated pixels per class in Mapillary Vistas dataset 
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3.2 ApolloScape 

 The Apollo Scape [50] dataset includes 147k pictures with pixel-level 

annotations. The static background's posture information and depth maps are 

also included. All photos were taken with a Riegl VMX-1HA camera system 

with a resolution of 3384 x 2710 pixels. The class definitions are identical to 

those in the Cityscapes dataset, except they included a new tricycle class that 

encompasses all types of three-wheeled vehicles due to the prevalence of the 

tricycle in East Asian nations. Fig. 8 shows number of pixels per class in 

Apollo Scape dataset and total classes. 

 

Fig. 8 : Number of annotated pixels per class in Apolloscape Dataset 

 

3.3 Kitti 

 The KITTI [51] semantic segmentation dataset contains 200 training 

and 200 test semantically annotated pictures. In addition to semantic 

segmentation, the KITTI collection includes datasets for optical flow, depth 

assessment, lane/road detection, scene flow, object tracking, 2D and 3D object 

recognition, and object tracking. This dataset was collected while driving 

about Karlsruhe, in rural regions, and on highways. Per picture, up to 15 
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automobiles and 30 people can be seen. Fig. 9 shows number of pixels per 

class in Kitti dataset and total classes. 

 

 

Fig. 9 : Number of annotated pixels per class in Kitti dataset 

 

3.4 BDD 100K 

 The BDD100K [52] dataset is 800 times larger than ApolloScape and 

the largest freely available self-driving dataset. Geographic, environmental, 

and meteorological variety are all included in the dataset, which is beneficial 

for training models that are less likely to be shocked by unexpected situations. 

The majority of the data in this collection comes from various parts of the 

United States. It created a benchmark for heterogeneous multitask learning 

and investigated how to solve the tasks collaboratively. Fig. 10 shows number 

of pixels per class in BDD100K dataset and total classes. 
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Fig. 10 : Number of annotated pixels per class in BDD 100K dataset 

 

3.5 Cityscapes Dataset 

 We used the Cityscapes [53] dataset for this research. It is a huge 

dataset that focuses on semantic segmentation, through which we can 

understand urban street scenes. Hundreds of thousands of frames were 

captured from a moving car in 50 locations over the course of many months 

throughout the spring, summer, and fall seasons, mostly in Germany but also 

in neighboring countries. In Cityscapes dataset, they purposefully avoided 

recording in inclement weather, such as torrential rain or snow, because such 

situations necessitate specific approaches and datasets.  

 

 Images were captured at a frame rate of 17 Hz using an automotive-

grade 22 cm baseline stereo camera with 1/3 in CMOS 2 MP and rolling 

shutters. The sensors were installed beneath the windscreen and provide 

pictures with a 16-bit linear colour depth and a strong dynamic range. Each 

pair of 16-bit stereo pictures was then delayered and tweaked after that. The 

images produced are less accurate, but they are more aesthetically attractive 

and simpler to annotate. By hand-picking 5000 photographs from 27 cities for 
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detailed pixel-level annotation, the goal was to produce a high level of 

variation in the foreground, backdrop, and overall scene layout.  

 

 A single image was chosen for coarse annotation every 20 seconds or 

every 20 metres of driving distance in the remaining 23 cities, totaling 20 000 

photos. The dataset consists of around 20000 coarse annotated ones, and 5000 

fine annotated images. Dataset contains daytime images captured from 50 

different cities. There are mainly 34 classes like objects, humans, flat surfaces, 

constructions, sky, vehicles, nature, void, etc. The class contribution in images 

is hugely unbalanced in terms of region area, and it also includes a diverse 

scene layout and a large number of objects. It will help us to check the 

robustness of the model. It provides three types of annotation, e.g., instance-

wise, semantic, and dense pixel annotations. Since this dataset contains high-

resolution images, we converted it into 256*256 resolution so that class 

information assigned to each pixel is not loose. 

 

 

TABLE I - Dataset Classification 

Group Classes 

flat Rail track, parking, sidewalk, road 

human Rider, person,  

vehicle 
Trailer, caravan, bicycle, motorcycle, on rails, bus, 

truck, car  

construction Tunnel, bridge, guard rail, fence, wall, building  

object Traffic light, traffic sign, pole group, pole 

nature Terrain, vegetation,  

sky sky 

void Static, ground, dynamic 
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Fig. 11 : Images from Cityscapes Dataset 
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Fig. 12 : Number of annotated pixels per class 
  

 Fig. 12 shows number of pixels per class in Kitti dataset and total 

classes. We used a fine annotated dataset with 2975 training, 500 validation, 

and 1525 test images for our experiment. 
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 RGB Semantic Segmentation 
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Fig. 13 : Sample Images from the challenging urban scene understanding datasets 
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CHAPTER 4: METHODOLOGY 

 

4.1 Deep Learning 

 Web search, internal social network filtering, and offers on 'e-

commerce' websites, as well as consumer products like cameras and phones, 

all employ machine learning technology. The machine learning system 

recognises item images, converts speech to text, adapts to new items, articles, 

or commodities, as well as user requests, and selects relevant search results. 

Deep learning is a sort of technology that's becoming more common in these 

systems.  

 

 Deep learning is a subfield of artificial intelligence. Deep learning is 

primarily concerned with computations that are enlivened by the structure and 

capability of fictitious neural networks that are driven by the human mind. 

Deep learning is used without lifting a finger to forecast the unexpected. Deep 

learning is a specialist with an incredibly sophisticated set of abilities that 

allows them to get much higher outcomes from similar data sets. It is 

sometimes referred to as a subset of AI. It is simply based on the NI (Natural 

Intelligence) mechanics of the biological neuron structure. It has a befuddling 

variety of skills in light of the strategies it employs for preparation, such as 

learning in deep learning relies on "learning information representations" 

rather than "task-explicit computations," as is the case with other systems.  
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 Traditional machine learning approaches are restricted in their ability 

to analyse raw natural data. Engineers and field skills have been necessary for 

decades to create feature extractors that transform input (such as pixel values 

in pictures) into internal representations in pattern building systems or 

machine learning systems. The learning subsystem (typically the classifier) is 

able to recognise and categorise patterns in the input. The technique of 

representation training allows a machine to examine raw data and locate the 

representatives required for detection or distribution.  

 

 A model of representation with several layers of representation is an in-

depth research. It's made up of basic but unusual combinations. Each model 

evolves from a depiction of one degree of knowledge to a higher and higher 

level of comprehension. Very tough jobs may be accomplished with the right 

connections, such as transitions. Higher-level representatives focus on tactics 

that are essential to diversity and avoid incorrect exchanges when it comes to 

the division of work.  

 

 A picture, for example, is a pattern with pixel values, and the 

characteristics learned in the initial representation are commonly replaced in 

the image by or without specific borders and regions. Regardless of any little 

modifications in the working edges, the second layer generally discovers a 

motor by visualising the arrangement of the edges. The third layer can 

transform motifs into bigger textures that fit the normal material's shell, while 

the outer layer captures the material as these parts are linked. The major point 

of the research is that the structure's layers were not designed by human 

engineers, but rather learnt from data using a generic learning approach.  

 

 Deep learning is a collection of basic models that are all (or almost all) 

learnt and that frequently calculate non-linear input-output grids. Each model 

in the group alters the format, enhancing the representation's variety and 
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ambiguity. Using many non-layered layers (e.g., depths of 5 to 20) allows the 

system to access information that is not sensitive to mass and does not vary, 

such as backdrop, motion, illumination, and surroundings, while also utilising 

the material's extremely complicated properties.  

 

 The backpropagation method for computing the slope of an Function 

of objective with regard to the stack weight of a multilayer module is just a 

practical implementation of the chain rule for derivatives. Working backwards 

from the slope of a module's output, the derivative (or slope) of a target may 

be calculated regarding the module's input. We may multiply the gradient by 

recursively applying the back-division equation to all modules. From the top 

(where the network creates predictions) to the bottom (where the network 

generates predictions), you may multiply the gradient. It's simple to calculate 

the gradients in proportion to the weight of every component after these 

gradients have been established. 

  

 Neural networks are used to learn how to transform a fixed-sized input 

(such a picture) into a fixed-size output in many deep-learning applications 

(e.g., probability for each of several categories). A series of units calculates 

the weighted amount of their incoming layer and transmits the outcome to a 

nonlinear function to advance from one to the next layer. 

 

 The rectified linear unit (ReLU), which is nothing more than a half-

wave rectifier with f(z) = max, has become the most often used nonlinear 

function (z, 0). In recent decades, smooth nonlinearities such as 𝑡𝑎𝑛ℎ(𝑧) or 

ଵ

(ଵ ା ௘ష೥)
 have been used in neural networks, but ReLU learns far faster on 

multilayer networks, allowing the construction of a deeply monitored network 

without prior supervised training. Units that are not at the input or output level 
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are known as hidden units. Hidden layers are nonlinear input distortions that 

allow the categories to be removed from the final layer in a linear manner.  

 

 Back propagation and neural networks were mostly disregarded by the 

machine learning community. It was likewise disregarded by the computer 

communities' visual and speech-recognition communities. Learning 

meaningful multi-step extracts with minimal prior information was 

considered to be impossible. A basic slope computation, in example, was 

considered to be locked in weak local minima - heavy settings where even 

minor modifications would not lower the mean error.  

 

 A bad local minimum is usually an issue in many networks in practice. 

Despite the original conditions, the system usually constantly produces high-

quality results. The local minimum is not a major concern, according to recent 

theoretical and theoretical conclusions. The scene, on the other hand, is 

encased in a tangle of numerous saddle points, each with a gradient of zero 

and a top curve in most dimensions and curves in the rest. The study appears 

to suggest that the saddle points are many, with just a few curve orientations 

at the bottom, but nearly all of them have the same amount of objective 

movement. As a result, it doesn't matter where of these saddle points the 

algorithm is gathered in.  

 

 Then there was a surge in interest in deep forward learning. 

Uncontrolled learning techniques were developed by the researchers, 

allowing them to build layers on detectors without requiring tagged data. In 

order to simulate the performance of function detectors in the layer below, 

objective learning of each layer of function detectors has to be able to 

reconstruct. By pre-training the detector layers of multiple increasingly more 

complicated functions, the original network's bulk may be reduced to a 

manageable level. Afterwards it was possible to add the last layer of output 
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units to the top layer of the system and configure the entire deep system with 

conventional backpropagation. This was notably useful for detecting 

handwritten numerals or identifying pedestrians when the quantity of data 

indicated was restricted.  

 

 The introduction of powerful GPUs that were easy to programme and 

permitted researchers to train networks 10 or 20 times faster helped to make 

speech recognition the first important use of this pre-training technique. This 

approach was used in 2009 to convert a collection of probabilities of distinct 

speech fragments that may be demonstrated by a frame at the window's centre 

from a short time window of coefficients derived from sound waves. It set 

new records in conventional voice recognition benchmarking tests with a 

short vocabulary, and it was soon improved to hit new highs in huge 

vocabulary tasks.  

 

 Many big voice teams have been using the Deep Web version since 

2009, and it had been installed on Android phones by 2012. When the number 

of tagged instances is limited or when there are numerous examples in the 

transfer settings for some "source" activities, unsupervised pre-training helps 

to minimise over-fitting, but few Generalization benefits are considerably 

better when applied for specific "target" tasks. It turns out that once deep 

learning is stabilised, only small data sets require a pre-training phase.  

 

 However, unlike networks with full connection between adjacent 

layers, there existed a form of deep advanced network that was considerably 

easier to train and generalised far better. The convolutional neural network 

was responsible for this (ConvNet). It has had a number of practical triumphs 

at a period when neural networks were underutilised, and it has recently 

gained widespread acceptance in the computer vision field. 
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4.2 Object Detection using Deep Learning 

 
 The volume of image data on the Internet has increased dramatically as 

a result of the advent of mobile internet and the popularity of various social 

media platforms, yet humans are unable to properly process such enormous 

amounts of image data. As a consequence, these data processing activities are 

expected to be carried out automatically with the help of a computer to handle 

large-scale visual difficulties. Complete image interpretation and exact 

identification of the picture's target object become increasingly important as 

understanding of image processing technology improves. 

 

 People are concerned not only with basic image classification, but also 

with accurately getting the semantic category of an item and its location in the 

image, therefore object detection technology has received a lot of attention. 

Object detection technology aims to recognise target items, define semantic 

categories for these things, and indicate the exact position of the target object 

in the picture using image processing and pattern recognition theories and 

methodologies.  

 

 Using computer technology to automatically recognise items in a real-

world application is a difficult challenge. Background complexity, noise 

disruption, occlusion, low-resolution, size and attitude changes, and other 

variables will all have a significant impact on object recognition ability. The 

traditional object detection technique relied on a hand-crafted feature that was 

not resistant to changes in light and lacked generalisation capabilities. In the 

PASCAL VOC competition from 2010 to 2012, it was noted that progress in 

object detection was sluggish, with limited advances made by building 

ensemble systems and using slight modifications of conventional approaches.  

 



 
 
 

43

 As a result, a number of approaches for improving object detection 

performance have been presented. As a successful model of deep learning, the 

convolutional neural network (CNN) [54] has the ability of hierarchical 

learning features, and research indicates that the feature extracted by CNN has 

a higher discriminating and generalisation capacity than hand-crafted 

features.  

 

 

4.3 Review of Generative Adversarial Networks (GAN) 

 Adversarial learning has been presented as Generative Adversarial 

Networks (GANs) to achieve a generative goal [12]. (i.e., creating false 

pictures that seem like genuine ones). In order to solve the generative 

problem, the unknown probability distribution must be established. The 

advent of adversarial learning in the generative context was groundbreaking 

because it removed the need for explicit modelling of the fundamental target 

distribution and the requirement to train the model with a specific aim. 

 

 A generator must learn to generate data on the same statistical 

distribution of training samples in the adversarial method. It does it by using 

a discriminator to determine if the incoming data is from the original set or 

was made up. Simultaneously, the generator is tweaked to trick the 

discriminator by generating outputs that appear to be identical to the originals. 

Finally, the generated data must match the training set's statistics.  

 

 In the form of a learnable discriminator, the GAN model may learn a 

structured loss in order to regulate the generative network optimization 

process. As a consequence, the objective function may be conceived of as 

automatically adapting to the present situation, without the need for complex 

losses to be explicitly designed. As a result, the adversarial learning system 
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may be simply modified to suit a wide range of activities needing various 

types of application-specific objectives.   

 

 GANs [12] are powerful generative models. GAN is working on Game 

Theory, where it consists of a generator and a discriminator. The generator 

generates a new image, and the discriminator discriminates whether that 

newly generated image is actual (as real as training data) or fake. Suppose the 

discriminator assesses the generated image as a fake image. In that case, it is 

a loss for the generator network, and if it fails to discriminate as a fake image 

and classify as an actual image, then it is a loss for the discriminator network. 

So, it's like a game between these two networks, both are trying to fool each 

other, and they evaluate themselves by facing loss, using backpropagation, 

and adjusting weights. The optimization function of GANs is constructed as 

follows: 

 

min
ீ

max
஽

𝔼௫~𝕡ೝ
[log 𝐷(𝑥)] + 𝔼௭~ℙ೒

ቂlog ቀ1 − 𝐷൫𝐺(𝑧)൯ቁቃ  (1) 

 

where 𝑥~ℙ௥ are images from the input dataset, and 𝑧~ℙ௚ are random noise 

units, 𝐺(𝑧) are the generated images and 𝐷(𝑥) is the probability of 𝑥 being 

actual. 

 

 GAN cannot constrain the data being produced by the generator, and to 

address this issue, Mirza et al. [13] extended GANs to a CGAN (conditional 

generative adversarial networks). To achieve specific results from GAN 

networks, certain auxiliary conditions or information 𝑥 emphasized on the 

generator and the discriminator, e.g., class labels. The objective function of 

CGANs is constructed as follows: 

 

min
ீ

max
஽

𝔼௫~𝕡ೝ
[log 𝐷(𝑥, 𝑦)] + 𝔼௭~ℙ೒

ቂlog ቀ1 − 𝐷൫𝑥, 𝐺(𝑧)൯ቁቃ (2) 
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4.4 Perceptual Loss 

 In CNN, the feature extraction is done hierarchically. So, the response 

of the lower layer (layers that are nearest to the input layer) of CNN is much 

similar to the input image because feature extraction at lower layers is at a 

lower tendency, so it just reproduces much similar output with input. Higher 

layers give high-level content (e.g., objects in the scene, the relative positions 

of objects, boundaries of regions), so we prefer to use a higher-level feature 

map for perceptual loss [55]. The primary purpose of perceptual loss is to 

leverage the knowledge of a pre-trained network that can identify more minor 

details and boundaries of regions of image very effectively. U-net and other 

segmentation algorithms are struggling in the identification and classification 

of small object and their areas. We use the content loss to bring more 

information, accurate boundaries, and smooth resultant segmented image to 

overcome this limitation. 

 

(a) (b) 

  

Fig. 14 : (a) ground truth (b) output of U-net. 

  

 Fig. 14(a) is the ground truth segmented image from the dataset, 

whereas Fig. 14(b) is an output of U-net. Some details like street lights and 

stands are not visible, and boundaries are also not smooth in the predicated 

image compared to the ground truth image. If the original image (not 

segmented) is passed to pre-trained CNN, it can identify minor details where 
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U-net is failed to classify it. Fig. 15 shows the comparison of the higher-level 

feature map of the actual image and predicted image. 

 

 The difference between the higher-level feature map of the original 

image and the predicted image can be employed as a perceptual loss to gain a 

sharp and detailed result. 

 

(a) (b) 

  

(c) (d) 

  

Fig. 15 :  feature map of (a) ground truth (b) U-net prediction (c) Ground truth (d) U-
net prediction. 

  

 So, let 𝑜ሬሬ⃗  and 𝑔ሬሬ⃗  be the original and generated image, respectively, 

whereas 𝑂௟ and 𝐺௟ are their respective feature representation in layer 𝑙. 𝐶, 𝐻, 

and 𝑊 represent the number   of filters in feature map, height, and width of 

the image, respectively. We then define the squared-error loss (L2 Norms) 

between the two feature map representations. The perceptual loss for a layer 

𝑙 can be formulated as:      
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ℒ௙௘௔௧(𝑜ሬሬ⃗ , 𝑔ሬሬ⃗ , 𝑙) =  
ଵ

஼∗ு∗ௐ
 ∑ (𝐺௜

௟ − 𝑂௜
௟)ଶ஼

௜ୀ଴           (3) 

 

The above Equation is for one-layer content representation only; we can take 

multiple layers, with each layer has a different contribution factor. 

 

4.5 Network Architecture 

 

 
 

Fig. 16 : The proposed architecture 

 

 
 The Proposed method (Fig. 16) is a different technique in which the 

conditional GAN is combined with the pre-trained VGG19 [54] network for 

calculating the perceptual loss. This hybrid architecture consists of a generator 

model, discriminator, and VGG nets.  

 

 U-net has shown excellent performance in image segmentation, and 

hence we are incorporated U-net with slight modification as generator 

architecture (Fig. 5). U-net is built on the encoder-decoder model, including 
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skip connection, where skip connection helps u-net in shuffling low-level 

details directly between the encoder input to decoder output. The encoder 

aims to map the input data space into output data space, whereas the decoder 

forces encoder to do a meaningful reconstruction of output from a given input 

space.  
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Fig. 17 : Generator network for the proposed method 
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 The encoder part of a generator (fig. 17) consists of 5 downsampling 

blocks, whereas the decoder part consists of 4 composite blocks of an 

upsampling block, concatenation layer, and downsampling block. ReLU 

activation function is used for both the convolution and deconvolution 

processes. Two convolution layers are followed by a batch normalising layer 

in each downsampling block. The transposed convolution layer is followed 

by a batch normalising layer in the upsampling block. The output layer of the 

generator has softmax as an activation function because it predicts each class's 

probability for each pixel. In contrast, the discriminator accepts two images, 

generated image and the conditioned image (original image), with three 

channels. Generated image has N number of channels, and discriminator 

requires only three channels. Hence, we added argmax and stack layer 

between generator and discriminator. 

 

 The PatchGAN is used as a discriminator, which is proposed in [56], 

aims to categorize every patch into real or fake of an image. Discriminator 

runs over the entire image patch by patch and does convolution over each 

patch. The mean of all the values will generate the final output of the 

discriminator. PatchGAN projects the image as same as CRF (Markov 

random field), and hence it acts as a form of texture.  

 

 When it comes to picture creation issues, it's well known that L2 loss – 

as well as L1. Although these losses don't help with high-frequency clarity, 

they do a good job of capturing low frequencies in most cases. When this is 

the case, we don't need a whole new system to assure accuracy at low 

frequency for problems. L1 is adequate. The use of an L1 term to compel low-

frequency accuracy by restricting the GAN discriminator to only represent 

high-frequency structure is motivated by this (Eqn. 4). We just need to 

concentrate on the structure of small picture patches to portray high-frequency 

signals. As a result, the PatchGAN, a discriminator architecture that penalises 

structure purely on the basis of patch size.  
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 This discriminator attempts to determine if each of an image's N×N 

patches is authentic or not. We use a complex approach to apply this 

discriminator to the image, averaging all answers to get D's final result.  

PatchGAN is a smaller version of PatchGAN that has less parameters, runs 

quicker, and can be used on any size picture. This type of discriminator treats 

the picture as a Markov random field, assuming that pixels separated by 

greater than a patch diameter are independent.  

 

 Both the conditioned actual sample from the target domain, 𝐷(𝑥, 𝑦|𝑥), 

and the conditioned fake sample created by G, 𝐷(𝑥, 𝐺(𝑧|𝑥)), are given to the 

discriminator network. D examines the data distribution to check if it was 

generated or derived from the target domain's data. The chance that the sample 

came from the training distribution is represented by discriminator D's output. 

𝐺(𝑧|𝑥) and actual y will be inputs to the discriminator D, which will output 

whether the picture is real or fake; each of D's inputs has a 1 2ൗ . probability of 

being true and 1 2ൗ . probability of being false (acts as a binary classifier for 

the produced data, training to recognise the synthetic images as accurately as 

possible).    

 

 PatchGAN is a D that has been patched together. To decrease gradient 

sparsity, we utilised Leaky ReLU activation instead of ReLU activation on all 

D's levels and conducted Batch Normalization on all layers except the input. 

Instead of polling operations, we used strided convolutions and zero padding 

to reduce information loss at the borders. D's architecture is depicted in further 

depth in Figure 18.  
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Fig. 18 : The architecture of the Discriminator 

 
 To compute perceptual loss, we employed the VGG19 pre-trained 

architecture. It's an extremely deep CNN that was trained on a big dataset 

and proven to be more accurate at extracting tiny characteristics than other 

pre-trained networks.  

 

 D classifies bigger picture patches (128×128, instead of 32×32) to 

determine if the input is real or false by operating convolutionally over the 

256×256 patch. The discriminator takes four 128×128 patches as input and 

classifies them according to the distribution they came from (real or fake). To 

get a final forecast for the input tile, the decision scores are summed.  
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 These enhancements reduced the overall number of parameters from 

2,770,433 to 1,071,105, a 61.3 percent reduction, when compared to the 

original PatchGAN [56] network utilised in Pix2pix.  

 

4.6 Optimization 

 The objective function ℒ of our method consists of three vital 

components: Adversarial Loss ℒீ஺ே, Categorical cross-entropy ℒ஼஼ா , and 

perceptual loss ℒ஼. In detail, the final loss function for our segmentation 

architecture, ℒௌீ஺ே, will be: 

 

ℒ =  λଵℒ஼஼ா + λଶℒிா஺் + λଷℒீ஺ே                  (4) 

 

Where λଵ, λଶ, and λଷ are weighting hyperparameters of each loss. 

 

 Here we adopted categorical cross-entropy to calculate the distance 

between ground truth segmentation image and generated segmentation image 

because each pixel belongs to a particular class. Therefore, the discriminator 

task remains as it is, but the generator has to be near the pre-segmented image 

and fool the discriminator. So categorical cross-entropy is:  

 

ℒ஼஼ா൫𝑦, 𝐺(𝑥)൯ =  ∑ ∑ 𝐺(𝑥௜௖)஼
௖

ே
௜ log(𝑦௜௖)           (5) 

 

 Here 𝑥 is from the original image, and 𝑦 is the ground truth segmented 

image. 𝐺(𝑥௜௖)  represents the probability of class 𝑐 for generated pixel 𝑖 and 

𝑦௜௖ represents the probability of class 𝑐 for ground truth pixel 𝑖. 

 

 Generated segmentation images will not be sharp, and the edges of 

objects will not be smooth and accurate without perceptual loss. It guides the 

generator to follow the content and object edges of an image 𝑥. The 

block5_conv2 layer of VGG19 is used to calculates perceptual loss because 

this layer contains the higher-level feature of an image which generally 

represents the shape and edges of objects. So, perceptual loss will be: 
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ℒிா஺்(𝑥, 𝐺(𝑥)) =  
ଵ

஼∗ு∗ௐ
∑[∥ 𝑥௟ − 𝐺(𝑥)௟ ∥ଶ]     (6) 

Here 𝑙 is the layer of VGG19. 

 

 The adversarial loss is used to improve and enhance the constructed 

result by generator, which can be defined as:  

 

ℒீ஺ே(𝐺, 𝐷) =  min
ீ

max
஽

𝔼௫,௬ [log 𝐷(𝑥, 𝑦)] + 𝔼௫,௬ ቂlog ቀ1 − 𝐷൫𝑥, 𝐺(𝑥)൯ቁቃ (7) 
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CHAPTER 5: EXPERIMENTAL RESULTS 

  

5.1 Experimental Setup 

 The first convolution layer contains 64 filters in both the generator and 

discriminator. We used upsampling factor and downsampling factor as 2 for 

every convolution and deconvolution block present in the generator and the 

discriminator with a kernel size of 3 × 3. Both the networks use an Adam 

optimizer with a 0.0002 learning rate. Moreover, this type of architecture uses 

one as the batch size; we use the same and train for 200 epochs. λଵ, λଶ, and 

λଷ are adversarial loss, perceptual loss, and categorical cross-entropy loss, 

respectively where λଵ = 1, λଶ = 100 and λଷ = 100. Our networks were 

implemented with a Keras v2.0 with Tensorflow v1.15 framework 

   

 Tools Used 

In this part, we go through all of the software prerequisites that were 

required to complete our project, including the programming language(s), 

imported libraries, and so on.  

 

1) Programming Platform: Python 3.6: Python is a popular programming 

language. It was created in 1991 by Guido van Rossum, a programmer, 

and has since been substantially expanded and utilised for numerous large-

scale projects.  

 

It's also an interpretive language. An interpreted language is a high-

level language that is run and executed on the fly by an interpreter (a 

software that translates a high-level language to machine code and then 

executes it); the programme is processed one step at a time. It 

incorporates high-level programming, which is ideal for novices, and 

because of its simple syntax and wide range of import libraries, a 

programmer may focus on what to accomplish rather than how to do it.  
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2) Libraries used: The framework requires a number of libraries and open-

source packages, including Tensorflow with Keras as the backend, and 

additional libraries essential for machine learning applications, such as 

scipy, numpy and pickle.  

 

a) TensorFlow: The rise of computer science has resulted in an increase 

in the amount of data available. As a result, deep learning began to 

outperform all other machine learning techniques. To make the most of 

this potential, Google decided to utilise neural networks to improve its 

services: 

 Gmail 

 Photo 

 Google search engine 

 

 TensorFlow was created to allow academics and developers to 

collaborate on AI projects. It provided a lot of people the opportunity 

to utilise it in its evolved and scaled version. In 2015, the first public 

version was published, followed by the first stable version in 2017. It 

is now open source thanks to the Apache Open Source licence. We are 

free to use, alter, and share it.  

 

TensorFlow architecture has three parts for working: 

 Pre-processing the data 

 Build the model 

 Train and estimate the model 
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 TensorFlow was coined because it uses multi-dimensional arrays 

known as Tensors as inputs. We create a graph of functions, which is a 

type of flowchart that shows what we want to do with that input. We 

get data from one side, execute several operations on it, and receive an 

output from the other. This is why it's referred to as TensorFlow as 

input flows.  

 

b) Keras: Although the deep neural networks are growing to become 

more and more popular, many frameworks are so complex that they 

have become a barrier to use it. Many high-level APIs have been 

proposed which are simple and better for developing neural networks, 

which look same but truly are very different on examining. 

 

 Keras is one of the most widely used high-level neural network 

APIs. It works with a variety of neural network engines on the backend. 

Keras offers a user-friendly interface that is modular, extendable, and 

simple to use with Python. Standalone modules like as optimisers, 

activation functions, cost functions, neural network layers, and so on 

can be mixed and matched to create new models. Classes and functions, 

for example, can be simply introduced as modules.  

 

c) Mat-plot Lib: It provides excellent Python visualisations for 2D 

graphs. Matplotlib utilises the SciPy stack for broader use and is built 

on NumPy arrays for multiplatform display. John Hunter gave it to the 

audience in 2002. The main advantage of visualisation is that it allows 

us to visually perceive enormous amounts of data in easy-to-understand 

graphs and other formats. It includes graphs such as line, bar, scatter, 

histogram, and others.  
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d) Numpy: NumPy is the most important Python module for scientific 

computing. It's a Python library that includes a multidimensional array 

object, derived objects (such as masked arrays and matrices), and a 

variety of routines for performing fast array operations, such as random 

simulation, basic statistical operations, basic linear algebra, discrete 

Fourier transforms, I/O, selecting, sorting, shape manipulation, logical, 

mathematical and more.  

 

e) Pickle: Pickle is a module that allows you to alter or modulate object 

structures in a way that is Python friendly and easy to deal with. With 

the aid of the pickle package, any type of Python object may be pickled 

and then written and saved on disc. 

 
 

5.2 Evaluation Metrics 

 A segmentation system's performance must be extensively assessed in 

order for it to be helpful and make a genuine contribution to the area. The 

assessment has to be carried out by well-defined metrics that allow for 

comparisons fairly with current approaches. To establish a system's validity 

and usefulness, several factors such as accuracy, memory footprint, and 

execution time must be examined. Depending on the system's context or 

purpose, certain metrics may be more essential than others; for example, in a 

real-time application, accuracy could be compromised up to an execution 

speed point. All possible measurements for a given technique must be 

reported to preserve scientific rigor. 
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5.2.1 Accuracy 

 There have been a number of assessment criteria suggested, and they 

are commonly used to examine the accuracy of any semantic segmentation 

technique. These measurements are generally pixel accuracy and IoU 

fluctuations. For evaluation, how pixel labelling algorithms function in this 

work is the most often used semantical segmentation metrics. We stressed the 

following notation features in the sake of clarity: Pij is the number of class I 

pixels that are deduced from class j as long as k+1 classes are available in 

total. In other words, pii represents the number of genuine positive, whereas 

pij and pji represent false positive and false negative. 

 Pixel Accuracy (PA): It's the simplest straightforward 

metric, involving simply the calculation of a ratio between 

the number of correctly classified pixels and the total number 

of pixels.   

 

 Mean Pixel Accuracy (MPA): a somewhat improved PA in 

which the correct-pixel ratio is determined per-class before 

being averaged across all classes    

 

 Mean Intersection over Union (MIoU): This is the industry 

standard for segmentation. It computes the ratio of two sets, 

in this instance the ground truth and the segmentation we 

expect. The number of true positives (intersection) divided 

by the total number of true positives, false negatives, and 

false positives may be expressed as the sum of true positives, 

false negatives, and false positives (union). This IoU is 

computed each class before being averaged.  
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 Frequency Weighted Intersection over Union (FWIoU): 

It's an improvement over the raw MIoU, which weights each 

class's significance based on how frequently it appears. 

 Because of its representativeness and simplicity, the MIoU is the most 

commonly used statistic among the measures listed above. The majority of 

challenges and researchers use this metric to communicate their findings. 

 

5.2.2 Memory Footprint 

 Another key element in the development of segmentation algorithms is 

memory consumption. Although less restrictive than runtime is (typically 

higher memory capacity) the problem may still be limited. In some situations, 

RAM is not as large as in a High-Performance Server, such as on-board CPUs 

for robotic platforms. Another key element in the development of 

segmentation algorithms is memory consumption. It nevertheless may be a 

limiting issue even if memory capacity can typically be increased. In some 

situations, RAM is not as large as in a High-Performance Server, such as on-

board CPUs for robotic platforms. 

 

5.2.3 Execution Time 

 Because the great majority of systems must adhere to severe time 

constraints for the inference pass, speed, or runtime, is an extremely important 

measure. Knowing how long it takes to train a system can be beneficial in 

some situations, but because it is an offline operation, it is seldom important 

unless the system is extremely sluggish. In any event, giving precise times for 

the approaches is meaningless because they are so reliant on hardware and 

backend implementation that some comparisons become irrelevant.  

 

 For the purpose of repeatability and to assist colleagues, timings should 

be accompanied with a detailed description of the hardware on which the 
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experiment was conducted. This can help others to decide whether the 

Strategy is suitable for the application and perform fair comparisons in the 

same settings in order to discover which methods are the fastest. If done 

appropriately. But times should be coupled with a comprehensive explanation 

for the sake of repeatability and to assist fellow researchers of the hardware 

on which the system was operated, and the benchmark situations. This can 

allow others, when done correctly, to evaluate if the strategy is beneficial for 

the application or not and to do fairer comparisons under the same conditions 

in order to discover which approaches are quickest. 

 

5.3 Results and Analysis 

 The Mean Intersection over Union (mIoU) score [8] is used to 

evaluates the architecture performance, which is the standard accuracy 

matric for semantic segmentation tasks.  

 

 Using U-net architecture in CGAN with perceptual loss, the proposed 

Segmentation GAN model has achieved a higher mIoU score than the original 

U-net. The obtained mIoU score is similar in such classes with larger region 

areas, e.g., road, sky, and buildings, compared to U-net as shown in Table III. 

But the proposed architecture managed to improve mIoU score of minor 

objects such as humans, traffic lights, signs, etc., because of perceptual loss 

adoption as shown in Table III. Hence overall mIoU score has improved.  

 

 The network managed to achieve an 83.30%, 86.90% and 97.5% mIoU 

score on the testing set, the validation set and the training set, respectively. It 

shows that more present classes in the dataset are classified accurately. The 

comparison table of segmentation methods performance is provided in Table 

II. 
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Table  II - Segmentation performance on the cityscapes dataset 

Method IoU Score% 

FCN-8s [8] 65.30 

PSPNet [9] 81.20 

DeepLabv2-CRF [30] 70.40 

DeepLabv3 [31] 81.30 

DeepLabv3+ [32] 82.10 

U-net [11] 69.10 

Proposed method 83.30 

 
 
 

Table  III - Segmentation performance on the cityscapes dataset on class bases 

Class Ours FCN PSPNET DeepLabv2 DeepLabv3 DeepLabv3+ U-net 

Bicycle 81.8198 66.7635 77.5388 68.8479 78.2985 78.8796 66.2731 

Motorcycle 77.7488 51.569 70.8048 57.6633 72.0899 73.8367 53.1812 

Train 87.4274 46.5414 83.6401 57.4574 85.0893 83.9089 59.4483 

Bus 94.9137 48.5751 91.5102 67.4976 90.3914 90.9143 64.4488 

Truck 81.728 35.2722 77.6988 56.5019 75.086 78.0207 47.3863 

Car 96.8228 92.628 96.2174 93.7134 96.3178 96.4068 92.887 

Rider 85.8129 51.4129 71.9132 59.8495 73.3587 73.2603 57.8774 

Person 90.0094 77.1373 86.8317 79.8312 87.6126 87.953 77.8652 

Sky 96.2946 93.8604 95.2983 94.192 95.8643 95.8471 94.2097 

Terrain 75.1504 69.2969 72.2031 69.4396 72.3212 73.0359 69.4297 

Vegetation 94.57 91.4171 93.6399 91.8508 93.7959 93.9698 91.8746 

Traffic sign 92.851 65.0173 80.474 67.2847 81.3333 82.1568 65.3923 

Traffic light 90.0552 60.0832 76.1225 57.8685 77.0897 78.163 61.1365 

Poll 80.2949 47.4143 67.6716 49.5789 70.0424 71.3946 54.1891 
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Fence 76.1869 44.2369 63.6752 47.3634 63.2389 63.7375 47.0695 

Wall 79.1813 34.9328 58.3855 48.7736 55.1757 59.4754 41.7583 

Building 95.0358 89.2114 93.4688 90.35 93.5295 93.9102 90.2109 

Sidewalk 88.7003 78.4065 86.9233 81.3219 86.1916 87.0411 81.1635 

Road 98.8659 97.406 98.6814 97.8649 98.5931 98.6939 97.7055 

 
 



 
 
 

64

 

Fig. 19 : Class wise accuracy of Visually larger region of different methods 

0 20 40 60 80 100 120

Bicycle

Motorcycle

Train

Bus

Truck

Car

Person

Sky

Terrain

Vegetation

Building

Sidewalk

Road

Class wise accuracy of Visually larger region 

FCN U-net PSPNET DeepLabv2 DeepLabv3 DeepLabv3+ Ours



 
 
 

65

 

 

Fig. 20 : Class wise accuracy of Visually smaller region of different methods 
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 IoU Score of all the models mentioned in Table IV. are available in 

cityscapes dataset site [53] except U-net. We trained U-net separately in same 

hardware and software environmental setup. To compare the proposed 

method with other GAN-based segmentation models, we used the PASCAL 

VOC 2012 dataset [57] for the experiment. Our method achieved a better 

result than other GAN-based segmentation models because this dataset 

includes a smaller number of categories, and objects presented in the dataset 

are also visually very large compared to the cityscapes dataset. The 

comparison table for GAN based segmentation model is provided in Table 

IV. 

 
Table IV - Segmentation performance on the pascal voc dataset 

GAN based method IoU Score% 

INRIA et al. 2016 [47] 54.30 

SegGAN [48] 69.90 

Proposed method 82.10 

 
 

 Fig. 21 and Fig. 22 are training and validation loss history chart with 

perceptual loss and without perceptual loss respectively. A model without 

perceptual loss able to achieve 94% training and 82% validation accuracy 

whereas it able to achieve 97.5% training and 87.9% validation accuracy with 

perceptual loss in 200 epochs. Fig. 23, Fig. 24 are results captured at 100 and 

200 epochs and Fig. 25 is results after complete training and saving weights 

of model and loading it again using pickle [58] [59]. 
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Fig. 21 : Training and Validation Accuracy without Perceptual Loss 
 

 

Fig. 22 : Training and Validation Accuracy with Perceptual Loss 
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(a) (b) (c) 

 

Fig. 23 : Output sample generated by proposed model at 100 epochs 
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(a) (b) (c) 

 

Fig. 24 : Output sample generated by proposed model at 200 epochs 
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Here are final results generated by the proposed architecture in cityscapes 

dataset. 

 

(a) (b) (c) 

 

 

 

  

 

 

 

 

Fig. 25 : Output sample generated by proposed model (a) original (b) ground truth (c) 
output 
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CHAPTER 5 : CONCLUSION 
 
 In this thesis, we proposed a GAN-based semantic segmentation 

method with the aim to identify more minor region details of an image and 

improve the segmentation model (generator) itself by competing with the 

discriminator. This aim has been fulfilled by employing perceptual loss and 

adversarial loss. The several experiment results on the cityscapes dataset 

prove that the proposed method has significantly enhanced the quality and 

performance of the existing conventional and GAN-based semantic 

segmentation models. The proposed method has achieved highest accuracy 

among all GAN-based methods in semantic segmentation. In this method, we 

only adopted single layer for calculate perceptual loss, but we also can use 

multiple layers for feature extraction. We haven’t tested this method on 

datasets which are taken during multiple environment conditions such as 

daylight, night, dusk, dawn, haze, fog, snow, and rain. It might lead to 

different result.  
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