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Preface

The development in the field of information theory can be traced back to 1948

with the publication of C.E. Shannon’s landmark paper [76] entitled “A Mathemat-

ical Theory of Communication” in the Bell System Technical Journal. This theory

set in motion a revolution in communication system engineering. The application

of various information theoretic measures, for example, Shannon entropy mea-

sure [76] and its various generalizations like one-parametric: Renyi entropy [68],

Arimoto entropy [2], Tsallis entropy [89]; and two-parametric: Varma entropy [93],

Sharma and Mittal entropy [77] and Sharma and Taneja entropy [85] have been

widely applied in finance [19, 28, 48, 84] to measure the diversity and regularity

of price fluctuations across a broad spectrum of markets (i.e., stock, currency,

future, commodity, and cryptocurrency).

This thesis aims to examine how entropy can be useful to analyze financial

markets through an analytical approach, an emergent field of interest with a lot to

learn. Many researchers have tried to explore the behavior of various information

theoretic measures on the volatility modeling [9, 14, 73], portfolio-selection prob-

lem [10,95], and time series analysis [18,44]. In this thesis, we have studied four

aspects which have the application of information theoretic tools as a common

thread.

Firstly, we have used entropy to measure the uncertainty in the financial markets

since the standard deviation/variance can discern only linear relationships. We

find it worth to investigate deeper into the working of these entropic measures

such as Renyi, Tsallis, Approximate, and Sample entropies in the situations of

financial turmoil. As the second aspect, Kullback measure of relative information

[40] has been used to examine and contrast different forecasting models such as

ARIMA, Holt-Winters, and LSTM in terms of performance to predict the financial

data series.
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As the generalized entropy measures are useful due to flexibility provided by

additional parameters, so thirdly, we have studied a rich class of one and two

parametric information measures for portfolio selection problems such as port-

folio diversification and portfolio optimization to quantify risk and measure risk-

adjusted performance in the capital market. Further, as the fourth aspect, we

have applied the information theoretic measures approach to the Black-Scholes

option pricing model with stochastic volatility and Quanto-option pricing model, as

it is a useful and interesting concept not explored so much. The reported work is

organized as follows:

Chapter 1 provides a summary of the related literature as well as an introduction

to the mathematical concepts used. It gives an outline of Information theory,

entropy measures, and its generalizations. Mutual information and its variants

are also discussed. Also, a brief survey of stochastic differential equation and

Option pricing theory have been carried out. The motivation for the problems

undertaken along with a plan of work has been discussed at the end.

In Chapter 2, we have modeled the implied volatility as a linear combination of

historical volatility and entropy, and found that the model was heavily dependent

on the entropy. Also, we have considered seven different estimators of Shannon

entropy; Tsallis entropy and Renyi entropy for various values of their parameters

to characterize the volatility in the stock market, where we have done in-depth

empirical analysis among generalized information theoretic measures. We have

also observed some equivalence between information theoretic measures and

statistical measures normally employed to capture the randomness in financial

time series.

In Chapter 3, we have applied forecasting models such as Autoregressive In-

tegrated Moving Average (ARIMA), Holt-Winter and Long Short Term Memory

(LSTM) network to forecast the behavior of some well-known stock market in-

dices and have compared the accuracy of these forecasting models by using the

Kullback measure of relative information. We conclude that the ARIMA forecast-

ing model outperforms the other two for one specific index, and the Holt-Winters

model works better for prediction of the other two indices.

In Chapter 4, we present an alternative method for improving the accuracy of

portfolio risk assessment by using a rich class of information theoretic measures.

We analyze the effectiveness of Markowitz’s Mean-Variance model with the mod-
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els which replace expected portfolio variance with measures of information (un-

certainty of the portfolio allocations to the different assets). The empirical analysis

is carried out on the historical data of Indian financial stock indices by application

of portfolio optimization problem with information measures as the objective func-

tion and constraints derived from the return and the risk. Our findings indicate

that some generalized information measures with parameters can be used as

an adequate supplement to traditional portfolio optimization model such as the

mean-variance model.

In Chapter 5, we have used the Kullback measure of relative information to ob-

tain risk-neutral measures of the stock option price and volatility. Based on theo-

retical analysis, when the underlying financial asset is calculated using a stochas-

tic volatility model, we have obtained a second-order parabolic partial differential

equation, the generalized Black-Scholes equation. Also, to investigate the analyti-

cal solution of this generalized Black-Scholes equation, we have used the Laplace

transform homotopy perturbation method.

In Chapter 6, we have extended the information theoretic approach as studied in

Chapter 5 to the Quanto option pricing model. Numerical results for the assumed

financial parameters demonstrate that the method is effective, and this approach

will help to study the financial behavior of the Quanto option pricing problems.

In the end, we conclude the work reported in this thesis and also give further

scope of the study.
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Chapter 1

Introduction And Literature Survey

1.1 An outline of Information Theory

Information Theory is a branch of applied mathematics dealing with problems

such as information processing, storage, retrieval, and decision-making. Basi-

cally, it deals with all the theoretical problems which come across in the trans-

mission of information over the communication channels. Information Theory has

found applications in various fields like electrical engineering, financial mathe-

matics, statistical modeling and image processing, etc. Although Nyquist [62]

and Hartley [29] made the first attempt in this direction by characterizing the en-

tropy measure for equally probable events, yet the theoretical foundation for all

the developments in the area of digital communication dates backs to the work

of Shannon [76] and others in the mid of the 20th century. All this resulted in

the advancement of information theory as a mathematical discipline. The theory

basically considers the following three fundamental questions:

• Compression: How much data can be compressed so that an identical

copy of the uncompressed data can be recovered by another person?

• Lossy data compression: How much can data be compressed so that an-

other person can recover an approximate copy of the uncompressed data?

• Channel capacity: How quickly reliable communication is possible from the

source to destination through a noisy medium?

1
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Being an electrical engineer Shannon’s goal was to get maximum line capacity

with minimum distortion. He was more concerned with the technical problems of

high-fidelity message transmission than with the semantic nature of the message

or its pragmatic effect on the listener. The second half of the twentieth century

was characterized by the enormous development of systems in which the trans-

mitted information (analog signal) is coded in a digital form. In spite of the fact that

Shannon presented entropy [76] as a measure of uncertainty in the communica-

tion theory, the information measures have kept on finding diverse applications in

a variety of disciplines including mathematics, physics, biological sciences, pat-

tern recognition, etc., refer to [39,72,90]. It has broad applications in finance too

especially in portfolio selection, refers to Fernholz [25], who studied entropy as di-

versification in financial markets. Nawrocki and Harding [60] proposed state-value

weighing of the entropy and tested using a portfolio selection heuristic algorithm.

The results showed that weighing the entropy value will increases the investment

performance of the entropy risk measures.

Tang and Song [86] have given a more detailed description of the model as-

sumptions and the mathematics derivation process of the formula and have ana-

lyzed the sensitivity of the value of an option. According to their empirical analysis,

the Black-Scholes model features strong usefulness, but also has some limita-

tions and thus further research was required. Finkelstein and Friedberg [24] have

used entropy as a measure of industrial concentration and market competitive-

ness. Dedu and Toma [19] designed few techniques for modeling financial data

and solving decision-making problems based on risk theory and information the-

ory. They proposed a new risk measure given by the convex combination of two

measures: Value-at-Risk (VaR) and Shannon Entropy and resulting in different

consequences of the optimization problem, depending upon the proportion of the

two measures used.

Sheraz et al. [78] presented the entropic approach so as to assess the volatile

stock index by using entropy measures: Tsallis entropy [89], Shannon entropy

[76], Renyi entropy [68] and Approximate entropy [66]. They concluded that the

entropic approach for the volatility of the stock market was another approach

which investigates the new horizons for future research. Tunaru [92] reviewed

some important aspects of the application of entropy-related concepts to option

pricing. Li et al. [44] constructed financial networks based on the data from
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the Chinese financial market and examined the different types of network en-

tropies. Bose and Hamacher [14] proposed two alternate information theoretical

approaches (Super-information, and Super-mutual-information) to assess volatil-

ity in financial markets. Motivated by the aforementioned work by researchers, in

this thesis, we study the ability of information theoretic measures to capture the

irregularities in a financial time series, analysis of portfolio selection problems and

also have explored the Black-Scholes model [12,55], a pricing model for financial

instruments, applying information theoretic measures.

1.2 Entropy Measure and Generalizations

1.2.1 Entropy Measures

Shannon Entropy

Shannon introduced a measure of information or entropy for a general finite

complete probability distribution and gave a characterization theorem for the en-

tropy measure introduced. Entropy as defined by Shannon [76] and added upon

by other physicists is closely related to thermodynamical entropy. In fact, Shan-

non borrowed the idea of entropy from the second law of thermodynamics, ac-

cording to this law the universe is winding down from an organized state to chaos,

moving from predictability to uncertainty. How much information a message con-

tains is measured by the extent it combats entropy. Consider the random variable

X = {X1,X2, ...Xn} with probability distribution P = {p1, p2, ..., pn}, then the Shan-

non’s entropy is defined as

H(P) =−
n

∑
i=1

pi log pi , 0≤ pi ≤ 1,
n

∑
i=1

pi = 1. (1.2.1)

Here it is assumed that 0log0 = 0; the base of logarithm is being considered as

e, unless stated otherwise. Shannon entropy provides the measure of average

uncertainty associated with the outcome of a random experiment or a measure

of information conveyed through the knowledge of the probabilities associated

with the events. It satisfies the following important properties which are usually

considered desirable for a measure of uncertainty defined in terms of probability

distributions:
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1. Non-negativity: H(P) is always non-negative, that is,

H(P) =−
n

∑
i=1

pi log pi ≥ 0;

The result is obvious since −pi log pi ≥ 0 for all i. It becomes zero if one

pi = 1 and rest are zeros.

2. Maxima: H(p1, p2, . . . . . . , pn)≤ logn, with equality when pi =
1
n for all i.

3. Continuity: H(p1, p2, . . . . . . , pn) is a continuous function of pi’s, that is, a

slight change in the probabilities pi’s results in the slight change in the un-

certainty measure also.

4. Symmetry: H(p1, p2, . . . . . . , pn) is a symmetric function of pi’s, that is, it is

invariant with respect to the order of the outcomes.

5. Grouping (or, Branching) Property:

H {p1, p2, p3, · · · , pn} = H{p1 + · · ·+ pr, pr+1 + · · ·+ pn}+(p1 + · · ·+ pr)×

H
(

p1

∑
r
i=1 pi

, · · · , pr

∑
r
i=1 pi

)
+(pr+1 + · · ·+ pn)H

(
pr+1

∑
n
i=r+1 pi

, · · · , pn

∑
n
i=r+1 pi

)
.

for r = 1,2, · · ·n−1.

6. Additivity: If P = (p1, p2, . . . . . . , pn) and Q = (q1,q2, . . . . . . ,qn) are two inde-

pendent probability distributions, then

H(P•Q) = H(P)+H(Q),

where P •Q is the joint probability distribution, that is, for two independent

distributions entropy of the joint distribution is the sum of the entropies of the

two marginal distributions.

Analogous to (1.2.1), for a continuous random variable with probability density

function f (x), the measure of uncertainty is defined as

H(X) =−E[log f (X)] =−
∫

∞

0
f (x) log f (x)dx . (1.2.2)
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In general, this measure is termed as differential entropy, for more details refer to

McEliece [52]. Unlike the uncertainty measure (1.2.1) defined for discrete random

variable which is always positive, the differential entropy can take a negative value

as well.

Pal and Pal entropy

Pal and Pal [64] proposed another entropy measure called exponential entropy

given by

E p(X) = ∑
i

pi(e(1−pi)−1), 0≤ pi ≤ 1,
n

∑
i=1

pi = 1. (1.2.3)

This entropy measure has an advantage over Shannon entropy, like in the case of

uniform distribution of probabilities of a random variable X = {x1,x2, ...,xn}, E p(X)

has a finite upper bound e−1 as n→ ∞.

Sine entropy

Sine entropy [98] of a random variable X is defined by

Si(X) = ∑
i

sin(π pi), 0≤ pi ≤ 1,
n

∑
i=1

pi = 1. (1.2.4)

This entropy keeps invariant under arbitrary translation, and also can measure

the uncertainty of some set which Shannon entropy cannot.

1.2.2 One-Parametric Entropy Measures

We have seen that Shannon entropy satisfies a number of useful properties like

non-negativity, continuity, symmetry, additivity, grouping, etc. Though Shannon’s

entropy is at the focus in information theory, yet the idea of information is so rich

enabling no single definition that will have the capacity to measure information

legitimately. Hence, many researchers presented the parametric entropies as a

mathematical generalization of Shannon’s entropy. These entropies have some

additional parameters and tend to Shannon entropy when these parameters ap-

proach their limiting values.
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Renyi entropy

Alfred Renyi [68] proposed a generalized form of Shannon entropy, known as

Renyi entropy, depending on a parameter r. The Renyi entropy is defined as

Rr(X) =
log∑

n
i=1 pr

i
1− r

, 0 < r < ∞, r 6= 1. (1.2.5)

Properties of Renyi entropy are similar to the Shannon entropy i.e., it is additive

and has a maximum for pi =
1
n , but it contains additional parameter r and thus

forms a parametric family of entropy measures that give weights to extremely rare

and regular events completely different. This entropy became widely useful for its

applications in finance [15,36,38].

Arimoto entropy

Arimoto entropy [2] with parameter a, a generalization of Shannon entropy, is

given by

Aa(X) =
a

a−1

[
1−
(

∑ pa
i

) 1
a
]
, a > 0, a 6= 1. (1.2.6)

Aa(X) tends to Shannon entropy when a→ 1.

Tsallis entropy

Tsallis [89] proposed a generalized non-additive entropy with a parameter q.

In the case for q < 1, rare events are emphasized and for q > 1 frequent events

prevail. Tsallis entropy is defined as

Tq(X) =
1−∑

n
i=1 pq

i
q−1

, 0 < q < ∞, q 6= 1. (1.2.7)

There are diverse applications of Tsallis entropy in finance [59, 75]. Tsallis and

Renyi both proposed generalized entropies that for q→ 1 and r → 1 reduce to

the Shannon entropy. These generalized entropy measures have been used to

analyze highly volatile financial sectors [6].
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1.2.3 Two-Parametric Entropy Measures

Varma entropy

Varma entropy [93] of order α and type β is a generalized form of Renyi entropy.

This two-parametric entropy, denoted by Hα,β (X), is given by

Hα,β (X) =
1

β −α
log
(

∑
i

pα+β−1
i

)
, 0≤ β −1 < α < β , α +β 6= 2. (1.2.8)

It reduces to Renyi entropy when β = 1. So Renyi entropy becomes a particular

case of Varma entropy.

Sharma and Mittal entropy

Sharma and Mittal [77] introduced a two parametric entropy measure given by

SMα,β (X) =
1

1−β

[(
∑

i
pα

i

) 1−β

1−α

−1
]
, (1.2.9)

for α 6= β , α,β > 0 and α 6= 1 6= β . Sharma-Mittal entropy SMα,β (X) reduces to

Renyi entropy and Tsallis entropy when β → 1 and β → α respectively.

Sharma and Taneja entropy

Sharma-Taneja entropy [85] is given by

STα,β (X) =
1

21−α −21−β ∑
i
(pα

i − pβ

i ), (α,β ) 6= (1,1). (1.2.10)

This entropy reduces to Shannon entropy when (α,β )→ (1,1) and by imposing

β = 1, this entropy reduces to Tsallis entropy.

Along with these entropies, some other entropies which have been used in this

thesis are discussed below.

Approximate and Sample entropies

In 1991, Pincus [66] introduced Approximate entropy that measures the intri-

cacy and regularity of a time series which is relatively short and noisy. This en-
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tropy calculates the statistical likelihood that the trend will remain the same on a

larger scale. Series that are highly entropic, approximate random systems that

usually contain very less repetitive trends than those with low entropy values.

Approximate entropy was introduced to measure the regularity of non-linear sys-

tems [11,23,47,67]. The description of Approximate entropy (ApEn) is as follows:

Given a finite time series T={t1, t2, ..., tN}, define two vectors of m-dimension, xi =

ti, ti+1, ..., ti+m−1 and y j = t j, t j+1, ..., t j+m−1 for 1 ≤ i, j ≤ N−m+1, whose distance,

d is expressed as

d = max
k=0,1,...,m−1

|y j+k− xi+k|. (1.2.11)

If d is smaller than a specified tolerance r then sequence vectors xi and y j are

called similar. For each of the N−m+1 elements, the relative frequency of finding

similar vectors is

fi(r) =
ni

N−m+1
, (1.2.12)

where ni is calculated as the total number of vectors y j similar to xi. Next, one

calculates the average regularity as

ξ
m(r) =

∑i log fi(r)
N−m+1

, (1.2.13)

from which the approximate entropy can be evaluated by comparing the average

regularity of adjacent dimensions m and m+1 as

ApEn(m,r,N) = ξ
m(r)−ξ

m+1(r), (1.2.14)

where m and r are variable parameters.

Lower ApEn value stipulates that the time series is deterministic and a higher

value stipulates randomness. ApEn depicts a family of statistics, with distinct

regularity measures over a range of tolerances r and dimensions m.

Next a modification of ApEn, the Sample entropy is an alternative method given

by Richman and Mooran [69] to eliminate ApEn’s biasness towards regularity. Like

ApEn, the algorithm remains the same except that when calculating the relative

frequency, it excludes self-matching vectors. Sample entropy has been utilized

substantially for analyzing financial markets [96].
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1.2.4 Joint and Conditional Entropies

The joint entropy is the uncertainty measure allied with a joint probability distri-

bution of two discrete random variables, say X = {x1,x2,x3, ...,xs} and

Y = {y1,y2,y3, ...,yt}, associated with some experiment with all possible outcomes,

st is defined as

H(X ,Y ) =−
s

∑
i=1

t

∑
j=1

pi jlog pi j, (1.2.15)

where pi j = p(xi,y j) = P(X = xi,Y = y j) is the joint probability density function of

random variables X and Y .

The conditional entropy, also called the equivocation of the random variable

Y = {y1,y2,y3, ...,yt} given X = {x1,x2,x3, ...,xs} is defined as

H(Y |X) =−
s

∑
i=1

t

∑
j=1

pi jlog p j|i, (1.2.16)

where p j|i = p(y j|xi) = P(Y = y j|X = xi) is the conditional probability density func-

tion of the random variable Y given X .

The joint and conditional entropy measures follow some properties as given

below

• H(Y |X)≤ H(Y ).

• H(X ,Y )≤ H(X)+H(Y ).

• H(X ,Y ) = H(X)+H(Y |X) = H(Y )+H(X |Y ).

1.3 Mutual Information and its Variants

In this section we discuss the concept of mutual information and its variants like

global correlation coefficient and variation of information.

1.3.1 Mutual Information

This information measure gives the reduction in uncertainty of one random vari-

able Y due to the knowledge of another random variable X . The mutual informa-
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tion, also called the transinformation of Y relative to X , is defined as

I(Y |X) =H(Y )−H(Y |X)

=H(Y )+H(X)−H(X ,Y )

=H(X)−H(X |Y ),

where H(Y |X) and H(X |Y ) are the conditional entropies and H(X ,Y ) is the joint

entropy of two random variables X and Y .

If pi = P(X = xi) and p j = P(Y = y j) are marginal probability distributions of X and

Y respectively; and pi j = p(xi,y j) = P(X = xi,Y = y j) is the joint probability density

function of X and Y , then it can be shown that

I(Y |X) =
s

∑
i=1

t

∑
j=1

pi j log
pi j

pi p j
. (1.3.1)

This information measure follows some properties, as given below

• Non-negative: I(Y |X)≥ 0,

• Symmetric: I(Y |X) = I(X |Y ).

Next, we summarize some of the extensions of mutual information measure as

follows:

• The relative mutual information measure is directly comparable to the co-

efficient of determination (R2), because both estimates the proportion of

variability demonstrated by an independent variable in the dependent vari-

able [21]. This information measure is defined as

RMIXY =
I(X ,Y )
H(Y )

. (1.3.2)

• For the two discrete random variables say, X and Y , the normalized version

of mutual information is defined as

NMIXY =
I(X ,Y )√

H(X)H(Y )
. (1.3.3)

In addition to capturing strong linear relationship, this non-linear approach based

on mutual information also captures the non-linearity found in the volatile market
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data which was not otherwise captured by the approach based on correlation

coefficient.

1.3.2 Global Correlation Coefficient

This standardized measure of mutual information can be used as a predictability

measure based on the distribution of empirical probability, and is defined as

λXY =
√

1− e−2I(X ,Y ). (1.3.4)

It ranges from 0 to 1 and records the linear as well as the nonlinear dependence

between two discrete random variables, say X and Y , and is therefore easily com-

parable with the linear correlation coefficient [81],

λXY =

0, if X contains no information on Y

1, if there is a perfect relationship between the vectors X and Y .

1.3.3 Variation of Information

This information measure is a true estimate of distance between two discrete

random variables, say X and Y and, as such it obeys the triangle inequality [53].

It is closely related with mutual information measure and is defined as

V IXY =H(X)+H(Y )−2I(X ,Y )

=H(X ,Y )− I(X ,Y )

=H(X |Y )+H(Y |X).

Alternatively, variation of information can be given as

V IXY =


0, when X is equal to Y

< H(X ,Y ), when X and Y are dependent

H(X ,Y ), when X and Y are independent,

where H(X) is the entropy of the discrete random variable X = {x1,x2,x3, ...,xn}

and I(X ,Y ) is mutual information between two discrete random variables X =

{x1,x2,x3, ...,xn} and Y = {y1,y2,y3, ...,yn} and H(X ,Y ) is the joint entropy of X and
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Y .

1.4 Specific Stochastic Processes

1.4.1 Brownian Motion

In 1827, Brown identified the peculiar motion of a small particle fully immersed

in a liquid or gas. During 19th century, Brownian motion was applied to model the

price movements of stocks and commodities.

A stochastic process {W (t), t ≥ 0} is said to be a Brownian motion if it satisfies

the following properties:

• W (0) = 0.

• For t > 0, the sample path of W (t) is continuous.

• ∀n, and 0≤ t0 < t1 < t2 < ... < tn, increments W (ti)−W (ti−1), i = 1,2, ...,n are

independent and stationary.

• For 0 ≤ s < t < ∞, W (t)−W (s) is normallly distributed random variable with

mean 0 and variance t− s.

A Brownian motion is also called a Wiener process. The sample path of Weiner

process is continuous, and Wiener process can also be visualized as a scaling

limit of a symmetric random walk. These paths are also essentially nowhere

differential.

The Wiener process is not wide sense stationary and this is because for s < t, the

covariance function Cov(W (t),W (s)) is not a function of (t− s). In fact

Cov(W (t),W (s)) = E[W (t)∗W (s)]−E[W (t)]∗E[W (s)]

= E[W (t)∗W (s)]

= E[(W (t)−W (s)+W (s))∗W (s)]

= E[(W (t)−W (s))∗W (s)]+E[W (s)2]

= E[W (s)2] =Var(W (s)) = s.

Hence Cov(W (t),W (s)) = min(s, t). Given, W (t) the future W (t + h) for any h > 0

only depends on the increment W (t + h)−W (t) and this is independent of the
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past. Thus {W (t), t ≥ 0} is a Markov process.

Properties of Brownian motion

Let {W (t), t > 0} be a Weiner process. Then

• {−W (t), t ≥ 0} is a Wiener process (Symmetric).

• { 1√
cW (ct), t ≥ 0} is a Wiener process for each fixed c > 0 (Scaling).

• taking Ẇ (0) = 0, Ẇ (t) = t ∗W (1
t ), t > 0, the process {Ẇ (t), t ≥ 0} is a Wiener

process (Time Inversion property ).

A general Brownian motion need not have W (0) = 0 and σ2 = 1. Therefore, we

define a general Brownian motion with drift µ and variance σ2 as follows

A stochastic process {X(t), t ≥ 0} is said to be a Brownian motion with drift µ

and volatility σ if

X(t) = µt +σW (t),

where W (t) is a Brownian motion, µ ∈ (−∞,∞) and σ > 0 are constants. This is

a generalization of standard Brownian motion. In this process, the mean function

E[X(t)] = µt and Covariance function Cov(W (s),W (t)) = σ2min(s, t), for s, t ≥ 0.

Brownian Bridge

A standard Brownian motion bridge {X(t), t ∈ [0,1]} is defined as

X(t) =W (t)− tW (1),

where W (t) is a standard Brownian motion. Clearly X(0) = X(1) = 0 and since

for 0 < t < 1, W (t) ∼ N(0, t), and X(t) ∼ N(0, t(1− t)). The covariance function is

s(1− t) for 0 ≤ s ≤ t ≤ 1. Therefore, the Brownian bridge is a Gaussian process

but is not a Brownian motion. For a fixed T > 0, the general Brownian bridge

{X(t), t ∈ [0,T ]} can be defined as

X(t) =W (t)− t
T

W (T ), 0≤ t ≤ T.
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Also, the covariance function is given by

Cov(X(s),X(t)) = min{s, t}+ st
T
− t

T
min{s,T}− s

T
min{t,T}.

Note, Cov(X(t),X(s)) < Cov(W (t),W (s)), and most uncertainty is in the middle of

the bridge, with zero uncertainty at the nodes. Also, the increments in a brownian

bridge are not independent.

1.4.2 Geometric Brownian Motion

A stochastic process X(t), t ≥ 0 is said to be a geometric Brownian motion if

X(t) = X(0)eW (t),

where W (t) is standard Brownian motion. Note that Brownian motion has inde-

pendent increment, hence given X(t), the future X(t + h) only depends on the

future increments of the Brownian motion, i.e. X(t + h) = X(t)eW (t+h)−W (t). Thus

future is independent of the past and therefore the Markov property is satisfied.

Hence, X(t), t ≥ 0 is a Markov process. Because, a geometric Brownian motion

is non-negative, it provides for a more realistic model of stock prices.

How does geometric Brownian motion relate to stock prices? One possibility is

to think of modeling the rate of the stock price as a Brownian motiion. Suppose

that the stock price S(t) at time t is given by

S(t) = S(0)eH(t),

where S(0) is an initial price and H(t) = µt+σW (t) is a Brownian motion with drift.

In this case, H(t) represents a continuously compound rate of return of the stock

price over the period of time [0, t]. Here, H(t) refers to the logarithmic growth of

the stock price, satisfies

H(t) = log(S(t))− log(S(0)),

and therefore log(S(t)) has a normal distribution with mean µt + log(S(0)) and

variance σ2t. Here, logarithm is to the base e.
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1.4.3 Levy Process

A stochastic process {X(t), t ≥ 0} is said to be a Levy process if it satisfies the

following properties:

• X(0) = 0,

• ∀n, and for 0 ≤ t0 < t1 < t2 < ... < tn, increments X(ti)−X(ti−1), i = 1,2, ...,n

are independent and stationary,

• for a > 0, P(|X(t)−X(s)|> a)→ 0, when t→ s.

Note, for X(t) = bt where b is constant, then {X(t), t ≥ 0} is a Levy process. Also,

Brownain motion {W (t), t ≥ 0} is a Levy process in R that has continuous paths

and has the Gaussian distribution with mean 0 and variance ∆t for its increments

W (t +∆t)−W (t). The most general continuous Levy process in R has the form

X(t) = bt + cW (t), t ≥ 0, b,c ∈ R.

In the continuous time modeling, the dynamics of stock price is described by a

stochastic differential equation (SDE). By Oksendal [63],“ ... equation we obtain

by allowing randomness in the coefficients of a differential equation is called a

stochastic differential equation”. It is explained as below.

Consider a stochastic process Xt , and a partition 0 = h0 < h1 < ... < hn = t of the

time interval [0, t]. Then, the difference equation

Xhi+1−Xhi = µ (hi,Xhi)(hi+1−hi)+σ (hi,Xhi)
(
Whi+1−Whi

)
; i = 0,1, . . . ,n−1.

(1.4.1)

As the increments hi+1−hi→ 0, the above eq.(1.3.1) is transformed to

dXt = µ (t,Xt)dt +σ (t,Xt)dWt . (1.4.2)

This is the general form of a SDE where the first term on the right side is deter-

ministic with drift µ and the second term is a random term with diffusion σ . Wt

represents the standard Brownian motion (BM). It must be noted that as BM is no

where differentiable so dWt just represents the increment Wt+dt−Wt on the interval

[t, t +dt], and (dWt)
2 = (Wt+dt−Wt)

2 = dt is the quadratic variation of Wt .
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Also,

dWtdt = 0, (dt)2 = 0, (1.4.3)

and Eq.(1.4.2) can be expressed as an integral

Xt = X0 +
∫ t

0
µ (h,Xh)dh+

∫ t

0
σ (h,Xh)dWh. (1.4.4)

Here,
∫ t

0 σ (h,Xh)dWh is the integral with respect to the standard Brownian motion

Wt and is known as the stochastic integral.

1.5 Option Pricing Theory

1.5.1 Volatility

Volatility as a concept is intuitive and simple, measures dispersion about a cen-

tral tendency. It is a measure of how far an asset’s current price deviates from its

average past price. More this deviation, more is the volatility. Volatility can indi-

cate the conviction or endurance underneath a stock price movement. Volatility is

of mainly two types, Historical and Implied.

• Historical Volatility is the annualized volatility σ , the standard deviation of the

annual logarithmic returns of an instrument, defined as σT = s
√

∆T where ∆T

stands for trading days per year (usually 252), s is the standard deviation of

stock price returns over time. Then, σ gives us an estimate of the historical

volatility of the stock. The closing stock price Si is usually observed daily

over a period of time to calculate the historical volatility of a stock price, and

then we let ui = log
( Si

Si−1

)
for i = 0,1,2, ...,n and the standard deviation s of

ui
′s is given as s =

√
1

n−1 ∑(ui− ū)2 where ū is the mean of ui. The volatility

is given by σ
√

T , and since s is an estimate of σ we can write volatility as

σ̂ = s
√

T .

• On the other hand, Implied volatility is the volatility resulting from the market

observed option prices. It is used to monitor the opinion of the market or of a

trader about the volatility of the security. Just like market as a whole, implied

volatility is subject to variability. We will come to implied volatility calculation

in Subsection 1.5.3.
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1.5.2 Options

Option is a financial security (contract) whose value is derived from (or depends

on) an underlying security (stock, stock index, foreign currency etc.). It is a con-

tract giving the option buyer (or holder) a right (without any obligation) to buy or

sell a specified underlying asset in future by a fixed date and at a fixed price which

is decided when the contract is initiated. This fixed price is known as the “strike

price or exercise price” and the fixed date is known as the “maturity or expiration

date”.

Since an option gives its holder a right without any obligation, the holder needs

to pay some amount in the beginning of the contract to the option seller (or writer)

to get this right. This amount is called the premium or price of the option.

Any option can be categorized as a “call option” or a “put option” depending

upon, whether the holder gets the right to buy or the right to sell respectively

without any obligation. An option can be either exercised only at maturity (Euro-

pean option) or at any time up to maturity (American option). These options are

also called the vanilla options. Vanilla options are the path-independent options

because these options are independent of the historical prices of the underlying

assets.

Options are the most traded financial securities and can be used to manage

risk. For example, if an investor buys a risky asset (say a stock), its future is not

known today. Its price can fall in the future and the investor may have to bear

the loss. Instead of buying a stock if a person buys a call option on that stock,

he gets the right to wait and buy this asset in future (without any obligation) if its

price increases the strike price. If the price does not reach the agreed price, he

can exit the contract without exercising his right. In this case, his loss will be the

premium amount only which was paid at the beginning of the contract.

Here, we consider the European call options only and its payoff (or the value of

option at maturity T) is given as:

h(XT ) = (XT −K)+ = max(XT −K,0) , (1.5.1)

where XT is stock price at maturity and K is the strike price.

The European call option is said to be “In The Money” (ITM) if XT > K, “At The
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Money” (ATM) if XT = K and “Out The Money” (OTM) if XT < K. The buyer of a

call option exercises his right only if he gets some benefit, which is possible when

XT > K, otherwise he’ll not exercise his right. This results in the payoff as given in

Eq.(1.5.1).

The most interesting question is ‘To get this right without obligation, how much

one should pay for an option contract?’. Every option pricing model tries to find

out the fair price of an option.

Before 1970s, there was not any standard way to price the options. Most of the

previous work on the valuation of options include Sprenkle [82], Ayrus [3], Boness

[13], Samuelson [70], Baumol et al. [8] and Chen [16], but none were widely

accepted until the significant breakthrough by Fischer Black, Myron Scholes and

Robert Merton during 1970s, called the Black-Scholes Model.

1.5.3 Black-Scholes Model

In 1973, there came a revolution in the field of options trading when Fischer

Black and Myron Scholes [12] and Robert C. Merton [55] published their work on

‘Pricing options’. Black and Scholes [12] gave an option pricing formula for the

European options which was further developed by Merton [55] in the same year.

Black-Scholes model became a milestone in the field of modern finance and for

their contribution Myron Scholes and Robert C. Merton received the “Nobel prize

in Economics” in 1997. Due to his sudden demise in 1995, Fischer Black could

not share this prize.

The Black-Scholes model assumes that the market is complete, i.e., a market

with equilibrium price for every asset in every possible state of the world, stock

pays no dividend and follows a Geometric Brownian Motion. Volatility and risk

free rate of interest are constant through out the option period. The model gives

the formula for the pricing of European call options. This model is explained as

follows:

Let Xt be the price of the underlying asset at time t, whose dynamics is governed

by the geometric Brownian motion given as

dXt = µXtdt +σXtdW x
t , (1.5.2)

where W x
t is the standard Brownian motion, µ ∈ (−∞,∞) is the growth term (drift)
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and σ > 0 is the volatility. Let Bt be the bond price at time t and r be the risk free

interest rate, then the dynamics of Bt is given as

dBt = rBtdt. (1.5.3)

Let the price of the European call option at time t be C(x, t), where x = Xt . This

price satisfies the partial differential equation (PDE)

∂C
∂ t

+ rx
∂C
∂x

+
1
2

σ
2x2 ∂ 2C

∂x2 − rC = 0, (1.5.4)

with the terminal condition

h(XT ) = (XT −K)+ . (1.5.5)

This PDE is called the Black-Scholes equation. For its derivation one may refer

to Luenberger [46]. Eq.(1.5.4) can also be written as

LBSC = 0, (1.5.6)

where

LBS =
∂

∂ t
+ rx

∂

∂x
+

1
2

σ
2x2 ∂ 2

∂x2 − r, (1.5.7)

is Black-Scholes operator for the European options. The solution of this equation

gives the Black-Scholes formula for pricing options, mentioned next.

The implied volatility is the value of σ when substituted into the Black-Scholes-

Merton formula [12] for the European call option price: C = S0N(d1)−Ke−rT N(d2)

where, N(.) is a cumulative distribution function for a standardized normal random

variable, i.e., 0 < N(x) < 1, and r and σ are kept as constant, given by N(x) =
1√
2π

∫ x
−∞

exp−
1
2 y2

dy where, d1 =
log( S0

K )+(r+ 1
2 σ2)T

σ
√

T
and d2 =

log( S0
K )+(r− 1

2 σ2)T
σ
√

T
gives the

value of C. But its not possible to invert the above equation and express σ as an

explicit function of the other parameters. Hence, some numerical methods like

Bisection Method or Newton Raphson Method is used to find this volatility. Just

like market as a whole, implied volatility is subject to variability. When the demand

of a stock is high, the price is likely to rise, and so does implied volatility, leading

to a higher option premium. A long-dated option leads to high implied volatility

while short-dated option often leads to low implied volatility. It is directly related to
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market opinion, which in turn affects the pricing of the options. Implied volatilities

are forward looking while historical volatilities are backward looking.

Black-Scholes Formula

The European call option price, at time t, is obtained in the closed form as

C (Xt , t,T,r,σ ,K) = XtN (w1)−Ke−r(T−t)N (w2) , (1.5.8)

here
w1 =

log(Xt
K )+(r+ 1

2 σ2)(T−t)
σ
√

T−t
,

w2 = w1−σ
√

T − t,
(1.5.9)

with the strike price K, maturity T and the current time t. N(.) represents the

cumulative distribution function (CDF) of the standard normal random variable.

The European call and put option prices of an underlying asset Xt , with same

strike price K and expiration time T are related with “Put-Call parity formula” given

as

Ct−Pt = Xt−Ke−r(T−t), (1.5.10)

here, Ct and Pt represents the prices of call and put option respectively at time

t with risk free interest rate r. Black-Scholes formula had a major impact on the

market as the investors began to feel more comfortable in trading options.

Evolution of dynamic volatility modeling

Volatility is not constant and has many empirical characteristics like volatility

smile and skew, mean-reversion, leverage, volatility clustering, variation on differ-

ent time scales etc., refer to [26,29,58]. There has been a logical progress in the

field of volatility modeling by the development of new models as an improvement

of the existing ones. Time dependent volatility models, where σ = f (t), were able

to capture the variation of option prices with maturity dates [55]. The local volatility

models, where σ = f (t,Xt) [17,20,22], also addressed volatility smiles and lever-

age effect (correlation of stock price and volatility), whereas stochastic volatility

models, where σ = f (Yt), were able to assimilate all the features of local volatil-

ity models and some other empirical volatility characteristics like mean-reversion

and volatility clustering (autocorrelation of volatility). Our work is mainly concen-
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trated on the stochastic volatility models and their extensions, so we start with the

general representation of the stochastic volatility models.

The general representation of the single factor stochastic volatility model is

given below. The dynamics of stock price process Xt is given by

dXt

Xt
= µdt +σdW x

t , (1.5.11)

where, σ = f (Yt) and Yt is the stochastic volatility factor whose dynamics is given

by

dYt = a(Yt)dt +b(Yt)dW y
t , (1.5.12)

here, a(Yt) and b(Yt) are some functions of Yt . The standard Brownain motions

W x
t and W y

t have the correlation structure E[dW x
t dW y

t ] = ρdt where, ρ represents a

correlation between them.

Some of the most notable single factor stochastic volatility models are given

in Ball and Roma [5], Heston [33], Hull and White [37], Scott [74] and Stein and

Stein [83]. Hull and White [37] considered the volatility dynamics (1.5.12) to follow

process (1.5.2), Scott [74] and Stein and Stein [83] considered the volatility dy-

namics to follow Ornstein-Uhlenbeck (OU) process, whereas, Ball and Roma [5]

and Heston [33] considered volatility dynamics to follow Cox-Ingersoll-Ross (CIR)

process.

1.6 Motivation and Plan of Work

Considering the importance and various applications of information theoretic mea-

sures and their generalizations in different fields of science and engineering, and

in view of the above literature review, we are motivated to apply information the-

oretic measures to analyze the financial markets [21]. In this thesis, we have

studied four aspects in this context which have the application of information the-

oretical tools as a common thread.

Firstly, we have used entropy to measure the uncertainty in the financial markets

since the standard deviation/variance can discern only linear relationships. We

find it worth to investigate deeper into the working of these entropic measures

such as Renyi, Tsallis, Approximate, and Sample entropies in the situations of

financial turmoil. As the second aspect, Kullback measure of relative information
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[40] has been used to examine and contrast different forecasting models such as

ARIMA, Holt-Winters, and LSTM in terms of performance to predict the financial

data series.

As the generalized entropy measures are useful due to flexibility provided by ad-

ditional parameters, so thirdly, we have studied a rich class of one and two para-

metric information measures for portfolio selection problems such as portfolio di-

versification and portfolio optimization to quantify risk and measure risk-adjusted

performance in the capital market. Further, as the fourth aspect, we have applied

the information theoretic measures approach to the Black-Scholes option pricing

model with stochastic volatility and the Quanto-option pricing model, as it is a

useful and interesting concept not explored so much.

This thesis includes six chapters, including the current chapter on introduction

and literature survey. The reported work is organized as follows:

In Chapter 2 titled, “Analysing Financial Markets Using Entropy Measures”, we

have applied the concept of entropy measure to capture the disorder or uncer-

tainty in highly volatile financial markets without putting any additional constraint

on the probability distribution function. We have modeled implied volatility as a

linear combination of historical volatility and entropy and found that the implied

volatility was heavily dependent on the entropy. We use the closing price data1

from Jan 2000 to Dec 2017 of top 10 Indian companies: Tata Consultancy Ser-

vices (TCS), Hindustan Unilever Limited (HUL), India Tobacco Company (ITC), Oil

and Natural Gas Corporation Limited (ONGC), Infosys, Reliance, Maruti Suzuki,

ICICI Bank, HDFC Bank, State Bank of India (SBI); top four public sector banks:

Bank of Baroda, Punjab National Bank (PNB), IDBI Bank, State Bank of India

(SBI); and top four private sector banks: Yes Bank, Kotak Bank, HDFC Bank,

Axis Bank in terms of their market cap in the year 2018.

Next, we have considered seven different estimators of Shannon entropy; Tsallis

entropy and Renyi entropy for various values of their parameters; and also Ap-

proximate entropy and Sample entropy to characterize the volatility in the stock

market. We have done in-depth empirical analysis among aforementioned infor-

mation theoretic measures and can affirm that Sample entropy measures more

the regularity of time series rather than its complexity; and in comparison it with

1Source - Official website of National Stock Exchange of India.
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Approximate entropy, a similar class, Sample entropy is more consistent measure

and provides improved analysis of the stock market regularity. For this analysis,

we have taken the data from the official website of National Stock Exchange of

India, we consider the NIFTY stock closing prices into account - NIFTY 50, NIFTY

100, NIFTY 200, NIFTY 500 & NIFTY stock in sectoral - NIFTY Auto, NIFTY Bank,

NIFTY IT, NIFTY Pharma for the period of 2016-2018.

Also, we have taken into account the information theoretic concepts such as en-

tropy, conditional entropy, and mutual information and their dynamic extensions

for studying the association among the randomness of different financial time se-

ries. We have also checked some equivalence between information theoretic

measures and statistical measures normally employed to capture the random-

ness in financial time series. We observe that mutual information and its dy-

namical extensions provide a good approach to study the association between

several international stock indices. The mutual information and conditional en-

tropy have shown a decent efficiency compared to the measures of statistical

dependence. To analyze, we have obtained daily closing price data for eigh-

teen years of international stock market indices namely, IBOVESPA(Brazil), Hang

Seng(Hong Kong), SSE Composite(China), Dow Jones Industrial Average(United

States), CAC 40(France), DAX(France), NASDAQ(United States), Nifty 50(India)

and, BSE Sensex(India) from https://in.finance.yahoo.com/, the free financial data

online platform.

The part of the work reported in this chapter has been published in two re-

search papers entitled, “Evaluating volatile stock markets using information theo-

retic measures”, Physica A: Statistical Mechanics and its Applications, 537,

122711 (2020) and “Entropy as a measure of implied volatility in options market”,

AIP Conference Proceedings 2183 (1), 110005 (2019).

In Chapter 3 titled, “Comparative Performance of Forecasting Models using

Relative Information”, we have applied forecasting models such as ARIMA, Holt-

Winter, and Long Short Term Memory network to forecast the behavior of some

well-known stock market indices, namely NIFTY 50, Dow Jones Industrial Aver-

age and S&P BSE SENSEX monthly closing price data; and have compared the

accuracy of these forecasting models by using Kullback measure of relative in-

formation. We conclude that the ARIMA forecasting model outperforms over the



24

other two for NIFTY 50 index and Holt-Winters model works better for prediction

for other two indices. The part of the work presented in this chapter is commu-

nicated entitled, “Comparison of forecasting models using information theoretic

approach in financial market prediction” and also presented in 3rd International

Conference of Mathematical Sciences (ICMS 2019) held at Maltepe University,

Istanbul, Turkey, Sept. 2019.

In Chapter 4 titled, “Information Measures Based Portfolio Optimization”, we

have provided a rich class of information theoretical measures designed to en-

hance the accuracy of portfolio risk assessments. We analyze the effectiveness of

Markowitz’s mean-variance model with the models which replace expected port-

folio variance with measures of information (uncertainty of the portfolio allocations

to the different assets). The empirical analysis is carried out on the historical data

of Indian financial stock indices by applying portfolio optimization problem with

information measures as the objective function and constraints derived from the

return and the risk.

Our findings indicate that the information measures with parameters can be used

as an adequate supplement to traditional portfolio optimization model such as the

mean-variance model. However, we should take care of the fact that general-

ized entropy measures are highly sensitive to the values of their parameters. So

the market analysts need to adjust these parametric values as per their risk and

return capacities. The part of the work presented in this chapter has been pub-

lished in a research paper entitled, “Portfolio optimization based on generalized

information theoretic measures”, Communications in Statistics - Theory and

Methods, (2020) and also presented in the International Conference on Re-

cent Trends in Mathematics and Its Applications to Graphs, Networks and

Petri Nets (ICRTMA-GPN-2020) held at School of Computational and Integrative

Sciences, JNU, July 2020.

In Chapter 5 titled, “Black-Scholes Model With Stochastic Volatility Using Rel-

ative Information”, we have derived the risk-neutral measures of the stock op-

tions price and volatility by incorporating constrained minimization of the Kullback

measure of relative information. We obtain a second-order parabolic partial dif-

ferential equation, the generalized Black-Scholes equation based on the theoret-
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ical analysis when the underlying financial asset is estimated using a stochastic

volatility model. Also, to investigate the analytical solution of this generalized

Black-Scholes equation, we have used Laplace transform homotopy perturbation

method. The work presented in this chapter has been published in a research pa-

per entitled, “On Black-Scholes option pricing model with stochastic volatility: an

information theoretic approach”, Stochastic Analysis and Applications, 39(2),

327-338 (2021).

In Chapter 6 titled, “Quanto-Option Black-Scholes Model Using Relative Infor-

mation”, we extend the information theoretic approach to Quanto option pric-

ing model. Numerical results for the assumed parameters demonstrate that the

method is effective and this approach will help to study the financial behavior of

the Quanto option pricing problems. The work reported in the present chapter is

communicated entitled, ”Information theoretic approach to quanto option pricing

model”.

Lastly, we have presented the conclusion of the work reported in this thesis and

further scope of work, followed by a bibliography and the list of publications.





Chapter 2

Analysing Financial Markets Using

Entropy Measures

2.1 Introduction

There has been a growing debate on the stock market volatility over the past

few years [9]. Shiller [93] asserted that the measured volatility of the stock mar-

ket was erratic mostly with the predictions of models based on current values.

Schwert [73] brought a new insight into this, who asked “Why does stock market

volatility change over time?”.

The basic characteristic of the entropy that it plays a vital role in retrieving the

ubiquitous functionalities of a system from its microscopic feature makes it ap-

plicable to measure the randomness in diversified systems. Entropy quantifies

the price return variations, the ability to retrieve information, is possibly its most

striking property. Entropy studies the behaviour of trends in financial sector, for

instance, sessions with several regular trends will tend to be less entropic than

those which are having relatively fewer occurrences. The concept of entropy plays

an alternative way to look at the stock market volatility. This measure can be ap-

The part of the results reported in this chapter have been published in the paper entitled Evaluating
volatile stock markets using information theoretic measures in Physica A: Statistical Mechanics and
its Applications, 2020, 537; and also have been published in the paper entitled Entropy as a measure of
implied volatility in options market in AIP Conference Proceedings 2183, 110005 (2019).

27
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plied to describe the non-linear dynamics of volatility.

This chapter considers three aspects, first we liken techniques, one based on

the standard deviation, a statistic, and another based on the investor’s expectation

on the future movements of the underlying asset price (implied) and the last,

centred on the concept of Shannon entropy. The empirical analysis is carried out

so as to find some relationship between the three different aspects. It is also worth

investigating deeper into the working of these entropic measures in the situations

of financial turmoil.

Next, we extend the information theoretic measure approach to estimate the

comparison between highly volatile stock indices and sectors. We have consid-

ered seven different estimators of Shannon entropy; Tsallis entropy and Renyi

entropy for various values of their parameters; and also Approximate entropy and

Sample entropy.

Some researchers have considered information measures theoretic approach to

study this statistical dependence because of their potential to identify a stochas-

tic relationship as a whole (including linearity and non-linearity both) refer to

[6, 7, 18, 28, 101], and so making it a general approach. For example network

statistics based on mutual information can successfully replace statistics based

on coefficient of correlation [80]. The correlation structure of time series data

for financial securities incorporates important statistics for many real world appli-

cations such as portfolio diversification, risk measure and asset pricing model-

ing [49,91]. Traditionally, non-linear correlations with higher order moments have

been studied [21]. Therefore, we apply these information measures for studying

the association among the randomness of different financial time series. We have

also checked some equivalence between information theoretic measures and sta-

tistical measures normally employed to capture the randomness in financial time

series. We have proposed a way of integrating non-linear dynamics and depen-

dencies in the study of financial markets using several information entropic mea-

sures and their dynamical extensions in the mutual information like normalized

mutual information measure, relative mutual information rate and variation of infor-

mation. We have shown that this approach leads to better results than other stud-

ies using a correlation-based approach on the basis of nine international stock

indices which are traded continuously during eighteen years i.e. (2001-2018).

The chapter is organized as follows. Section 2.2 models the implied volatility
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as a linear combination of historical volatility and entropy. Section 2.3 explores

the information theoretic approach to analyse the stock indices and sectors which

are highly volatile. Section 2.4 presents equivalence between various statistical

measures with the information theoretic measures. Section 2.5 concludes the

chapter.

2.2 Volatility and Entropy Model and its Analysis

This section examines whether entropy is a good measure for volatility in stock

returns and also compares historical volatility with implied volatility. Our concern

is to model Implied Volatility (IV) as a function of Historical Volatility (HV) and

Entropy (S). As per Gulko [28], the entropy based implied volatility subsumes all

the information about historical volatility and entropy. So, we propose a model as:

IV = aHV +bS+ c (2.2.1)

where a,b and c are constants, and to estimate these, we use the closing price

data2 from Jan 2000 to Dec 2017 of top 10 Indian companies: Tata Consul-

tancy Services (TCS), Hindustan Unilever Limited (HUL), India Tobacco Com-

pany (ITC), Oil and Natural Gas Corporation Limited (ONGC), Infosys, Reliance,

Maruti Suzuki, ICICI Bank, HDFC Bank, State Bank of India (SBI); four public

sector banks: Bank of Baroda, Punjab National Bank (PNB), IDBI Bank, State

Bank of India (SBI); and four private sector banks: Yes Bank, Kotak Bank, HDFC

Bank, Axis Bank in terms of their market cap in the year 2018 which has 4478

observations to make our analysis meaningful. The aforementioned data is given

in Tables 2.1, 2.3, and 2.4 and the main reason of choosing this period was that

the period had several scenarios of markets in it, the crash due to the economic

crisis as well as the sharp rise due to stimulus package given by the Indian gov-

ernment for the revival.

By using multiple regression, the estimated values for the constants come out to

be a =−0.05, b = 41.46, c =−147.93. Here we observe that variation in S effects

IV much more as compared to the variation in HV. So entropy can be seen as a

suitable alternate to implied volatility in financial markets.

The data has daily closing prices of the index which was used to calculate the

2Source - Official website of National Stock Exchange of India.
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daily returns. With the help of these daily returns, we calculate the annualized

historical volatility. We compute a time series of historical volatility by taking a

calculation window of 1 year and the time step is 1 day. As we constructed a time

series for historical volatility, we did the same for entropic measure i.e., Shannon

entropy so as to compare them and visualize them correctly. The entropy was

calculated using the natural logarithm and the unit for entropy here is nats.

After analyzing the time series, we find that entropy moves in a similar way as of

volatility, see Figure 2.1 (for Indian companies), Figure 2.2 (for Indian public sector

banks) and Figure 2.3 (for Indian private sector banks), and it has been seen that

in periods of crash or jumps (highly volatile), volatility and entropy show similar

signals but in period of stability, entropy doesn’t give much information about the

uncertainty. We have built correlation matrices for sector-wise analysis to check

the relation among entropy, historical volatility and implied volatility, see Tables

2.2, 2.3, and 2.4. We can also say that the entropy is mean reverting similar to

volatility and hence it can be used in mean reversion trading strategies.

(a) Daily Historical Volatility (b) Entropy

(c) Annualized Historical Volatility (d) Implied Volatility

Figure 2.1: Comparative analysis of the entropy and volatility for Indian Companies
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(a) Daily Historical Volatility (b) Entropy

(c) Annualized Historical Volatility (d) Implied Volatility

Figure 2.2: Comparative analysis of the entropy and volatility for Public Sector Banks

(a) Daily Historical Volatility (b) Entropy

(c) Annualized Historical Volatility (d) Implied Volatility

Figure 2.3: Comparative analysis of the entropy and volatility for Private Sector Banks
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2.3 Volatile Markets Analysis

Here we compute different entropy measures from the data obtained to analyze

the underlying financial markets. From the official website of National Stock Ex-

change of India, we consider the NIFTY stock closing prices into account - NIFTY

50, NIFTY 100, NIFTY 200, NIFTY 500 & NIFTY stock in sectoral - NIFTY Auto,

NIFTY Bank, NIFTY IT, NIFTY Pharma for the period of 2016-2018. For the Shan-

non entropy measure, we first use different estimators to assess the consistency

of the results. In Tables 2.5, 2.8, 2.9 and 2.10 we consider the following estima-

tors to calculate the Shannon entropy [30] with the flattening constants a play the

role of pseudo-counts.

• Maximum Likelihood (ML).

• Miller-Madow (MM) : biased corrected Maximum Likelihood.

• Jeffreys : Shannon entropy Bayesian estimate with a = 1
2 .

• Laplace : Shannon entropy Bayesian estimate with a = 1.

• Schurmann-Grassberger (SG) : Shannon entropy Bayesian estimate with a

= 1/(length of underlying time series).

• Chao Shen (CS) : Horvitz-Thompson estimator applied to the problem of en-

tropy estimation, with additional coverage correction as proposed by Good.

• Shrink entropy : employs James-Stein-type shrinkage at the level of cell

frequencies.

The main objective of using various measures of entropy is to liken their perfor-

mance and deviation between results. Tables 2.5-2.10 show the results obtained.
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NIFTY minute
wise

NIFTY day wise

Shannon
ML 10.73183 4.762456
MM 11.81106 4.971733

Jeffreys 10.7358 4.783969
Laplace 10.73631 4.794722

SG 10.73183 4.763124
CS 28.95428 5.318577

Shrink 10.73668 4.820282

Table 2.5: Entropy results for NIFTY index from Jan 2018 to June 2018

Figure 2.4: Shannon estimators results for NIFTY minute wise and day wise data

NIFTY 50 NIFTY 100 NIFTY 200 NIFTY 500
Tolerance Dimension

0.1 σ 1 2.453312 2.480094 2.481278 2.478506
2 0.9984871 0.9454796 0.9397409 0.9286534

0.15 σ 1 2.245176 2.296259 2.278354 2.27682
2 1.33853 1.296562 1.293055 1.295919

0.2 σ 1 2.075483 2.087393 2.084737 2.086328
2 1.460449 1.460357 1.41661 1.427835

0.25 σ 1 1.905598 1.912649 1.919878 1.905752
2 1.471024 1.469146 1.470134 1.493677

0.3 σ 1 1.760218 1.76128 1.761205 1.754683
2 1.464866 1.448892 1.464682 1.446751

Table 2.6: Approximate Entropy results for selected NIFTY stock indices

NIFTY 50 NIFTY 100 NIFTY 200 NIFTY 500
Tolerance

0.1 σ 2.93492 2.797733 2.805012 2.575432
0.2 σ 2.033375 2.0367 1.984498 1.984444
0.3 σ 1.632652 1.600092 1.601844 1.568093

Table 2.7: Sample Entropy results for selected NIFTY stock indices
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Figure 2.5: Sample entropy with different tolerance for NIFTY stock indices

NIFTY 50 NIFTY 100 NIFTY 200 NIFTY 500
Shannon
ML 6.469935 6.468499 6.468767 6.469134
MM 6.617608 6.6172 6.613147 6.611208
Jeffreys 6.477448 6.476464 6.476518 6.476734
Laplace 6.482168 6.481448 6.481405 6.481536
SG 6.46997 6.468536 6.468803 6.469169
CS 6.73791 6.745052 6.720968 6.708602
Shrink 6.498282 6.498282 6.498282 6.498282
Tsallis
q=0.2 228.894 228.3279 228.1869 228.4059
q=0.4 83.05012 82.89198 82.81183 82.85537
q=0.6 32.20349 32.15995 32.1261 32.13327
q=0.8 13.74028 13.72848 13.7159 13.71653
q=1 6.636976 6.633829 6.629494 6.629312
q=1.2 3.682577 3.681754 3.680336 3.680194
q=1.4 2.328711 2.3285 2.328054 2.327993
q=1.6 1.637382 1.637329 1.637193 1.637171
q=1.8 1.244449 1.244436 1.244396 1.244389
q=2 0.998895 0.9988919 0.9988804 0.9988783
Renyi
r=0.2 6.519452 6.516373 6.515606 6.516798
r=0.25 6.526381 6.523292 6.522326 6.523436
r=0.5 6.561816 6.558688 6.556683 6.557372
r=1 6.636976 6.633829 6.629494 6.629312
r=2 6.80787 6.805136 6.794805 6.792868
r=4 7.255002 7.254384 7.227422 7.22835
r=16 1.882505 1.839721 1.857602 1.93357
Approximate 1.460449 1.460357 1.41661 1.427835
Sample 2.033375 2.0367 1.984498 1.984444

Table 2.8: Entropy results for selected NIFTY stock indices



37

(a) Shannon entropies

(b) Tsallis entropies

(c) Renyi entropies

Figure 2.6: Shannon, Tsallis and Renyi entropy results for selected NIFTY stock indices
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NIFTY Auto NIFTY Bank NIFTY IT NIFTY Pharma
Shannon
ML 6.473271 6.462192 6.463629 6.460898
MM 6.569173 6.589525 6.587767 6.568279
Jeffreys 6.478032 6.470574 6.471589 6.468561
Laplace 6.481401 6.476173 6.476912 6.473905
SG 6.473292 6.462229 6.463665 6.46093
CS 6.526887 6.636346 6.621999 6.558987
Shrink 6.498282 6.498282 6.498282 6.498282
Tsallis
q=0.2 227.0767 227.9727 227.3463 226.5249
q=0.4 81.94662 82.4432 82.25018 81.79209
q=0.6 31.72982 31.9347 31.8761 31.68594
q=0.8 13.56319 13.63774 13.62019 13.55058
q=1 6.575724 6.600955 6.595767 6.572068
q=1.2 3.662466 3.670595 3.66908 3.6614
q=1.4 2.322359 2.324883 2.324446 2.322047
q=1.6 1.635437 1.636198 1.636073 1.635346
q=1.8 1.243869 1.244093 1.244058 1.243843
q=2 0.998726 0.9987902 0.9987804 0.9987183
Renyi
r=0.2 6.509543 6.514438 6.511018 6.506518
r=0.25 6.513536 6.519668 6.516147 6.510503
r=0.5 6.533784 6.546168 6.542127 6.530647
r=1 6.575724 6.600955 6.595767 6.572068
r=2 6.665574 6.717341 6.709269 6.659568
r=4 6.865558 6.952645 6.936996 6.850211
r=16 1.876934 1.820595 1.833627 2.052759
Approximate 1.457835 1.456819 1.451147 1.47301
Sample 1.91334 2.048367 2.002481 2.074121

Table 2.9: Entropy results for selected NIFTY Sectoral indices
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(a) Shannon entropies

(b) Tsallis entropies

(c) Renyi entropies

Figure 2.7: Shannon, Tsallis and Renyi entropy results for selected NIFTY sectoral in-
dices
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Reliance day
wise

Reliance minute
wise

Shannon
ML 5.508918 11.43187
MM 5.518777 11.95902
Jeffreys 5.50915 11.43516
Laplace 5.509324 11.43599
SG 5.508921 11.43187
Minimax 5.509131 11.43195
CS 5.508918 18.66754
Shrink 5.513429 11.43694
Tsallis
q=0.2 101.4863 2535.621
q=0.4 43.87956 533.0535
q=0.6 20.19893 119.9994
q=0.8 10.07189 30.90599
q=1 5.518873 10.00761
q=1.2 3.342548 4.348634
q=1.4 2.225495 2.461381
q=1.6 1.606096 1.664045
q=1.8 1.234976 1.249856
q=2 0.9960279 1
Renyi
r=0.2 5.511277 9.519429
r=0.25 5.51175 9.543102
r=0.5 5.514118 9.672091
r=1 5.518873 10.00761
r=2 5.528459 17.47514
r=4 5.54793 9.823324
r=16 1.87016 1.900184

Table 2.10: Entropy results for selected Reliance stock from Jan 2017 to Dec 2017
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(a) Shannon entropies

(b) Tsallis entropies

(c) Renyi entropies

Figure 2.8: Minute wise and Day wise analysis of Shannon, Tsallis and Renyi entropy
results for selected Indian Reliance stock data
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From the results availablle in Tables 2.5 and 2.10, we observed that entropy

values of minute-wise returns increased more than twice the day-wise returns,

see Figs. 2.4 and 2.8. From Table 2.10, it is also observed that as Tsallis paramter

q increases from 0.2 to 2.0 with step size 0.2, difference between day-wise entropy

value and minute-wise entropy value is approximately zero. Similar behaviour is

exhibited by Renyi entropy when the parameter r varies between 0.2 and 16. In

terms of minute-wise anlysis, values of Tsallis entropy with parameter q→ 1, and

Renyi entropy with parameter r→ 1, ML estimator of Shannon entropy is the most

appropriate estimator that satisfies the defination, i.e. for q→ 1 Tsallis entropy and

r→ 1 Renyi entropy, both approach Shannon entropy. On the other hand, day-

wise analysis indicates that the values of Tsallis entropy with q→ 1 and Renyi

entropy with r → 1, MM estimator of Shannon entropy is the most appropriate

among other seven estimators which satisfies its entropy value upto 3-decimal

places, see Table 2.10.

The behavior of the volatility of stock indices and sectors relies on the values

of Tsallis and Renyi entropies with parameters q and r respectively, concludes

that the financial series is nonlinear. By analysing the NIFTY index sector-wise,

NIFTY Pharma index is the most volatile index, see Table 2.9; and from Tables

2.6, 2.7 and 2.8, NIFTY 50 and NIFTY 100 are the most volatile or we can say that

these indices are most uncertain as per indices-wise analysis for the time period

2016 to 2018. To be more informative with our empirical results, it is desirable to

use Sample and Approximate entropic values, since Tsallis and Renyi entropies

behave similarly, see Figs. 2.6 and 2.7.

2.4 Equivalence between Statistical Measures and Infor-

mation Theoretic Measures

As the entropy of a stock, refer to [21], can be estimated as

H(X) = I(X ,Y )+H(X |Y ) (2.4.1)

where Y represents the stock index and X denotes the stock, and I(X,Y) repre-

sents mutual information.

Further, for Y as independent and X as dependent variable, the total variance
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of the stock (TSS=σ2
Y ) can be subdivided into two parts: the regression sum

of squares (ESS=β 2
∑(Xi-X̄)2), i.e. the systematic risk, and the residual sum of

squares (RSS=∑(Yi-Ȳ)2-β 2
∑(Xi-X̄)2), i.e. the specific risk; the coefficient β tests

the sensitivity of stock’s rate of return to the risk premium. Thus, the equation is

T SS = ESS+RSS.

In this section we intend to show the equivalence between statistical measures

and information theoretic measures for presenting a decent solution to the prob-

lem of dependence in the financial series data, refer to Table 2.11. To this pur-

pose we have considered fourteen time series which are made of the daily clos-

ing price of the international stock indices and their selective stocks which were

traded continuously between 01/01/2001 and 31/12/2018 (about 4433 observa-

tions in each time series). In order to apply entropic measures in operation and

Information Theoretical Measures Statistical Measures
H(Y ) Entropy (TSS) Total sum of squares
H(Y |X) Conditional entropy (RSS) Residual sum of squares
I(X,Y) Mutual information cov(X,Y) Covariance or

(ESS) Explained sum of squares
NMIX ,Y Normalized mutual information RXY Correlation
RMIXY Relative mutual information R2

XY Coefficient of determination

Table 2.11: Equivalences between Statistical measures and Information theoretic mea-
sures

to find out their properties, we have obtained daily closing price data of eigh-

teen years of international stock market indices namely, IBOVESPA(Brazil), Hang

Seng(Hong Kong), SSE Composite(China), Dow Jones Industrial Average(United

States), CAC 40(France), DAX(France), NASDAQ(United States), Nifty 50(India)

and BSE Sensex(India) from https://in.finance.yahoo.com/, the free financial data

online platform. We have studied a comparison of two Indian market indices

namely, NIFTY 50 and S&P BSE Sensex with their common stocks. During the

complete selection process, daily closing price data filtered to select stocks listed

in their respective indices and as a result due to inadequate data, five stocks

were selected from the study. In Fig.2.9 we have presented daily closing price

movement of the index NIFTY 50 of National Stock Exchange of India and S&P

Bombay Stock Exchange Sensitive Index with their respective stocks. Fig.2.10

presents the allocation of the aforementioned Indian stock indices with their se-
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lected stocks. Fig.2.11 gives the details of the distribution of the aforementioned

International stock indices. Figs.2.12, 2.13 and 2.14 give the visual comaprison

of information and statistical measures.

From the data given in Tables 2.12 to 2.15, we have presented four correla-

tion matrix plots of above-mentioned international indices with their stocks, with

the distribution of each stock/indices shown on the diagonal; on the lower diago-

nal, the bi-variate scatter plots with the fitted higher order degree polynomial are

shown; on the upper diagonal, the correlation value plus the significance level

(p-values: 0, 0.001, 0.01, 0.05, 0.1) as stars(“***”, “**”, “*”, “.”, “ ”) is shown, refer

to Fig.2.15. Here also, we have discussed the choice of bin counts for the nature

of calculation of statistical and information theoretic measures, see Tables 2.16 to

2.21. In general, the count of bins should be selected on the basis of availability of

the number of observations of time series data. Also from Figs. 2.12 and 2.13, if

we increase bin counts, entropy and TSS measures become inversely symmetric.

Our main emphasis is on determining the dependence level between each stock

and their respective stock index, i.e. to select a stock which is more dependent on

its relative index and this has been estimated by the information theoretic mea-

sures. And, to compare two different indices with their stocks and measure their

level of dependence, concept of mutual information is used as an analogue to

covariance and normalised mutual information is calculated akin to the Pearson’s

coefficient of correlation. From Tables 2.16 and 2.17, we observed that for 342

and 341 total number of bins count for the indices NIFTY 50 and BSE sensex

respectively, we come to a conclusion that BSE Sensex is more uncertain stock

index as compared to NIFTY 50 and also Axis Bank is the underlying stock which

is more dependent among other stocks. In other words, by observing the Axis

Bank stock, more information of NIFTY 50 and BSE sensex can be obtained.

Also, by observing ONGC stock, remaining uncertainty about the aforemen-

tioned indices is more than other stocks. We have also come to conclusion that

the measure of Global correlation coefficient can be useful if lower count of bins

are considered otherwise this measure gives similar output to all stock variables.

Thus in this case, the large count of data bins would not be a reasonable choice

for comparative analysis of information theoretic measures with statistical mea-

sures, as even in very small change in the prices no depth-patterns are to be

found. From Table 2.18, as per maximum count of bins (i.e.403), the index BSE
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sensex can be used as the appropriate variable for the dependency of the index

NIFTY 50. From Table 2.19, as per maximum count of bins (i.e.1132), the inter-

national index DAX can be used as the appropriate variable for the dependency

of DOW Jones in comparison of other indices, like CAC 40 and NASDAQ.

(a) NIFTY 50

(b) BSE SENSEX

Figure 2.9: Nature of indices with their stocks
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Index: NIFTY 50

Tata Steel Limited

Axis Bank Limited

State Bank of India

Sun Pharmaceutical Industries Limited

Oil and Natural Gas Corporation Limited

Index: S&P BSE Sensex

Tata Steel Limited

Axis Bank Limited

State Bank of India

Sun Pharmaceutical Industries Limited

Oil and Natural Gas Corporation Limited

Figure 2.10: Distribution of Indian market indices with their stocks

International Indices I

NIFTY 50

BSE SENSEX

IBOVESPA

HANG SENG

SSE Composite

International Indices II

Dow Jones

CAC 40

DAX 40

NASDAQ

Figure 2.11: Distribution of International market indices

NIFTY 50 SBI ONGC TATA STEEL SUN PHARMA AXIS BANK
NIFTY 50 1
SBI 0.912775 1
ONGC 0.751958 0.877591 1
TATA STEEL 0.62706 0.70924 0.729808397 1
SUN PHARMA 0.849815 0.741449 0.632811246 0.247712201 1
AXIS BANK 0.968125 0.889382 0.684453591 0.496628753 0.902948749 1

Table 2.12: Correlation between NIFTY 50 index and its stocks



47

BSE SENSEX SBI ONGC TATA STEEL SUN Pharma AXIS BANK
BSE SENSEX 1
SBI 0.906307159 1
ONGC 0.770824431 0.852104665 1
TATA STEEL 0.616349493 0.690282939 0.71104882 1
SUN Pharma 0.847512935 0.747856596 0.635405704 0.23767116 1
AXIS BANK 0.960704283 0.883724153 0.67863293 0.480740583 0.901383062 1

Table 2.13: Correlation between BSE SENSEX index and its stocks

NIFTY 50 BSE SENSEX IBOVESPA HANG SENG SSE COMPOSITE
NIFTY 50 1
BSE SENSEX 0.993128661 1
IBOVESPA 0.846516617 0.854876742 1
HANG SENG 0.902019599 0.914449061 0.916779164 1
SSE COMPOSITE 0.629972979 0.621347381 0.665743543 0.72005024 1

Table 2.14: Correlation between International Indices I

DOW JONES CAC 40 DAX NASDAQ
DOW JONES 1
CAC 40 0.518270674 1
DAX 0.949384611 0.57404269 1
NASDAQ 0.9903752 0.464697828 0.948926251 1

Table 2.15: Correlation between International Indices II



48

E
ntropy

C
onditional

E
ntropy

R
SS

M
utual

Infor-
m

ation
C

ovariance
T

SS/E
SS

N
orm

alized
M

utual
In-

form
aion

C
orrelation

R
elative

M
utual

Inform
ation

R
2

G
lobal

C
or-

relation
C

o-
efficient

B
eta

JointE
ntropy

V
ariation

of
Inform

ation

N
um

berofB
ins:13

N
IFT

Y
50

2.3654
624968

SB
I

2.458
1.193993

525211.4
1.171394

14421.8
99756.55

0.4858
0.39952

0.49522298
0.15962

0.950757881
0.27691

3.652042
1.575007

O
N

G
C

2.2503
1.271086

611529.3
1.094301

9615.42
13438.65

0.47432
0.14664

0.462630851
0.0215

0.942298616
0.18463

3.521353
1.5579

TA
TA

ST
E

E
L

2.3183
1.558285

271045.3
0.807102

39897.1
353922.7

0.34466
0.75253

0.341213552
0.56631

0.894958652
0.76606

3.876556
1.751986

SU
N

PH
A

R
M

A
2.012

1.247659
311598.8

1.117728
70651.4

313369.2
0.51235

0.70811
0.472534938

0.50142
0.945016745

1.35658
3.259693

1.463545
A

X
IS

B
A

N
K

2.2408
0.950231

311899.7
1.415156

50735.6
313068.3

0.61468
0.70777

0.59827673
0.50093

0.970054409
0.97417

3.191061
1.332631

N
um

berofB
ins:114

N
IFT

Y
50

4.404851
155446

SB
I

4.513777
2.363595

109584.07
2.041256

602.407
45861.93

0.45778527
0.5431707

0.452227924
0.29503441

0.99153162
0.43791

6.877372
2.199117096

O
N

G
C

4.270089
2.54428

154842.6142
1.860571

90.2212
603.3858

0.42900482
0.06230283

0.435721832
0.00388164

0.987822702
0.06559

6.814369
2.225712919

TA
TA

ST
E

E
L

4.423323
2.637154

117870.67
1.767696

543.832
37575.33

0.40046784
0.4916563

0.399630775
0.24172592

0.985318563
0.39533

7.060477
2.300604486

SU
N

PH
A

R
M

A
4.011162

2.17026
141939.42

2.234591
756.637

13506.58
0.53161513

0.2947698
0.557093181

0.08688923
0.994255157

0.55003
6.181422

1.986663283
A

X
IS

B
A

N
K

4.220391
2.135119

152160.018
2.269732

324.841
3285.982

0.5264203
0.1453928

0.537801355
0.02113907

0.994646103
0.23614

6.35551
2.02133075

N
um

berofB
ins:234

N
IFT

Y
50

5.094405
82294

SB
I

5.197257
2.411424

66285.66
2.682981

133.919
16008.34

0.5214153
0.4410512

0.526652475
0.19452616

0.997660783
0.37916

7.608681
2.219391809

O
N

G
C

4.955445
2.661887

81787.8593
2.432518

29.4292
506.1407

0.48413669
0.07842446

0.477488146
0.0061504

0.996136762
0.08332

7.617332
2.277018665

TA
TA

ST
E

E
L

5.120726
1.939751

68218.6
2.474352

117.957
14075.4

0.48445002
0.4135673

0.4856999
0.17103791

0.996447392
0.33397

7.060477
2.14152399

SU
N

PH
A

R
M

A
4.641876

2.379532
78821.269

2.714873
163.412

3472.731
0.55828507

0.2054242
0.532912676

0.0421991
0.997805487

0.46267
7.021408

2.075219266
A

X
IS

B
A

N
K

4.915216
2.338495

80765.575
2.75591

76.2446
1528.425

0.55074047
0.1362818

0.540967984
0.01857273

0.997978582
0.21587

7.253711
2.120801971

N
um

berofB
ins:342

N
IFT

Y
50

5.453974
59342

SB
I

5.562694
2.301391

48867
3.152583

63.9736
10474.9

0.572358
0.42014

0.578034109
0.17652

0.999086161
0.36761

7.864085
2.170599

O
N

G
C

5.32691
2.57858

58991
2.875393

13.9912
350.645

0.533461
0.07687

0.527210617
0.00591

0.998408594
0.0804

7.90549
2.242788

TA
TA

ST
E

E
L

5.485732
2.485931

49847
2.968042

56.5161
9495.09

0.542621
0.40001

0.544198047
0.16001

0.998677948
0.32476

7.971663
2.236878

SU
N

PH
A

R
M

A
5.005167

2.36412
56861

3.089854
78.3197

2480.87
0.591388

0.20447
0.566532587

0.04181
0.998963947

0.45005
7.369287

2.068679
A

X
IS

B
A

N
K

5.275659
2.291045

58604
3.162929

31.0763
738.054

0.58965
0.11152

0.579931074
0.01244

0.999104884
0.17858

7.566704
2.098517

N
um

berofB
ins:494

N
IFT

Y
50

5.80256
42468

SB
I

5.906887
2.14323

35651.97
3.65933

31.1724
6816.03

0.62504664
0.400622

0.619502286
0.16049799

0.99966842
0.36187

8.050117
2.095420483

O
N

G
C

5.672488
2.42322

42191.98
3.37934

7.23935
276.02

0.5890271
0.08061933

0.595742115
0.00649948

0.999419451
0.08404

8.095708
2.171720056

TA
TA

ST
E

E
L

5.838767
2.292056

35612.2
3.510505

27.998
6855.81

0.603113714
0.4017892

0.60124081
0.16143456

0.999553439
0.32502

8.130823
2.149492498

SU
N

PH
A

R
M

A
5.323432

2.318918
41213.97

3.483641
35.5314

1254.03
0.626798167

0.1718393
0.654397577

0.02952875
0.999528784

0.41248
7.64235

2.039291298
A

X
IS

B
A

N
K

5.616465
2.514358

41923.79
3.510505

15.8073
544.213

0.614933634
0.1132018

0.625038169
0.01281465

0.999553439
0.1835

8.130823
2.149492498

N
um

berofB
ins:1482

N
IFT

Y
50

6.777287
17490

SB
I

6.880173
1.438093

15580.71
5.339193

3.61783
1909.3

0.781894219
0.3304012

0.776025981
0.10916495

0.999988481
0.30635

8.318266
1.725999131

O
N

G
C

6.665101
1.679381

17431.45
5.097907

0.70358
58.5507

0.758508763
0.05785902

0.764865679
0.00334767

0.999981337
0.05958

8.344482
1.801825463

TA
TA

ST
E

E
L

6.819702
1.524932

15687.37
5.252355

3.19311
1802.63

0.772579952
0.3210395

0.770173682
0.10306636

0.999986296
0.27038

8.344634
1.758487703

SU
N

PH
A

R
M

A
6.270829

1.853948
17199.72

4.923339
3.85145

290.284
0.755212766

0.1288299
0.785117725

0.01659714
0.999973538

0.32613
8.124777

1.78925627
A

X
IS

B
A

N
K

6.585871
1.63262

17377.21
5.144667

1.50709
112.793

0.77005673
0.08030552

0.78116729
0.00644898

0.999983003
0.12762

8.218491
1.753232443

Table
2.16:N

IFT
Y

50
and

its
stocks



49

E
nt

ro
py

C
on

di
tio

na
l

E
nt

ro
py

R
SS

M
ut

ua
l

In
fo

r-
m

at
io

n
C

ov
ar

ia
nc

e
T

SS
/E

SS
N

or
m

al
iz

ed
M

ut
ua

lI
nf

or
-

m
at

io
n

C
or

re
la

tio
n

R
el

at
iv

e
M

ut
ua

l
In

fo
rm

at
io

n
R

2
G

lo
ba

l
C

or
-

re
la

tio
n

C
o-

ef
fic

ie
nt

B
et

a
Jo

in
tE

nt
ro

py
V

ar
ia

tio
n

of
In

fo
rm

at
io

n

N
um

be
ro

fB
in

s:
13

B
SE

SE
N

SE
X

2.
36

61
05

63
46

18
SB

I
2.

45
44

73
1.

21
13

55
50

76
92

.9
1.

15
47

5
16

51
3

12
69

25
.1

0.
47

91
72

44
4

0.
44

72
16

2
0.

48
80

38
35

8
0.

20
00

02
33

0.
94

90
46

42
0.

31
22

44
5

3.
66

58
28

1.
58

46
38

12
9

O
N

G
C

2.
24

80
63

1.
26

13
12

61
71

96
.6

1.
10

47
93

10
97

0.
17

17
42

1.
43

0.
47

90
26

64
2

0.
16

56
85

9
0.

46
69

24
75

6
0.

02
74

51
81

7
0.

94
35

32
68

0.
20

74
35

3.
50

93
75

1.
55

06
71

46
7

TA
TA

ST
E

E
L

2.
32

67
45

1.
56

58
63

25
44

83
.2

0.
80

02
42

6
40

77
9.

83
38

01
34

.8
0.

34
10

59
59

0.
77

39
49

5
0.

33
82

10
94

2
0.

59
89

97
82

9
0.

89
34

21
19

0.
77

11
06

4
3.

89
26

08
1.

75
85

12
26

9
SU

N
PH

A
R

M
A

2.
00

81
73

1.
27

70
61

33
29

31
.9

1.
08

90
44

69
30

0.
58

30
16

86
.1

0.
49

96
06

24
5

0.
68

94
79

7
0.

46
02

68
66

9
0.

47
53

82
25

7
0.

94
16

69
86

1.
31

04
06

3.
28

52
34

1.
48

19
54

79
A

X
IS

B
A

N
K

2.
22

79
92

1.
02

92
44

32
98

34
.5

1.
33

68
61

50
68

2.
83

30
47

83
.5

0.
58

22
53

93
7

0.
69

30
10

1
0.

56
50

04
93

4
0.

48
02

62
99

9
0.

96
48

86
03

0.
95

83
62

4
3.

25
72

36
1.

38
57

75
95

6
N

um
be

ro
fB

in
s:

31
B

SE
SE

N
SE

X
3.

15
22

47
42

77
56

SB
I

3.
28

06
26

1.
68

71
02

29
92

83
.3

1.
46

51
46

55
17

.7
67

12
84

72
.7

0.
45

56
09

13
4

0.
54

80
33

9
0.

46
47

94
16

1
0.

30
03

41
15

6
0.

97
29

43
24

0.
38

69
8

4.
96

77
28

1.
87

15
18

63
5

O
N

G
C

3.
04

24
91

1.
75

54
37

39
91

61
.8

1.
39

68
11

40
18

.9
28

59
4.

25
0.

45
10

37
73

3
0.

25
85

48
1

0.
44

31
15

97
4

0.
06

68
47

12
0.

96
89

17
36

0.
28

18
59

3
4.

79
79

28
1.

84
42

11
75

6
TA

TA
ST

E
E

L
3.

15
38

58
2.

01
07

77
30

62
97

.5
1.

14
14

71
67

19
.0

67
12

14
58

.5
0.

36
20

20
94

2
0.

53
28

63
4

0.
36

21
13

43
8

0.
28

39
43

40
3

0.
94

76
37

2
0.

47
12

31
3

5.
16

46
35

2.
00

57
82

64
SU

N
PH

A
R

M
A

2.
79

92
82

1.
57

57
05

19
75

88
.5

1.
57

65
42

18
22

2.
33

23
01

67
.5

0.
53

07
28

12
1

0.
73

35
40

2
0.

50
01

32
76

2
0.

53
80

81
22

5
0.

97
84

06
78

1.
27

79
95

4.
37

49
87

1.
67

28
55

34
3

A
X

IS
B

A
N

K
3.

04
68

14
1.

42
94

68
20

38
04

.3
1.

72
27

8
12

90
6.

5
22

39
51

.7
0.

55
59

00
07

2
0.

72
35

67
6

0.
54

65
24

43
2

0.
52

35
50

07
2

0.
98

39
27

39
0.

90
51

77
3

4.
47

62
82

1.
65

93
67

95
2

N
um

be
ro

fB
in

s:
14

3
B

SE
SE

N
SE

X
4.

62
27

84
12

72
90

SB
I

4.
72

45
62

2.
42

91
93

10
17

53
.6

2.
19

35
92

34
7.

06
34

25
53

6.
36

0.
46

93
78

59
1

0.
44

79
01

3
0.

47
45

17
52

0.
20

06
15

57
5

0.
99

37
62

7
0.

38
71

71
7.

15
37

55
2.

22
71

42
33

9
O

N
G

C
4.

49
11

46
2.

59
90

29
12

57
77

2.
02

37
55

10
1.

78
17

15
13

.0
32

0.
44

41
47

83
3

0.
10

90
25

2
0.

43
77

78
40

4
0.

01
18

86
49

4
0.

99
12

28
63

0.
11

35
43

9
7.

09
01

75
2.

25
08

70
94

3
TA

TA
ST

E
E

L
4.

65
22

12
2.

64
88

38
98

54
3.

81
1.

97
39

47
34

3.
30

99
28

74
6.

19
0.

42
56

51
27

5
0.

47
52

18
1

0.
42

70
03

94
4

0.
22

58
32

24
3

0.
99

03
05

36
0.

38
29

83
7

7.
30

10
5

2.
30

80
51

77
6

SU
N

PH
A

R
M

A
4.

19
77

79
2.

23
32

89
11

84
72

.4
2.

38
94

96
47

2.
82

39
88

17
.5

73
0.

54
24

31
27

5
0.

26
31

94
9

0.
51

68
95

44
7

0.
06

92
71

55
5

0.
99

57
88

9
0.

52
74

64
8

6.
43

10
68

2.
01

03
66

13
6

A
X

IS
B

A
N

K
4.

43
23

53
2.

24
88

33
12

47
54

.5
2.

37
39

51
20

7.
80

28
25

35
.4

88
0.

52
44

48
41

8
0.

14
11

34
6

0.
51

35
32

75
4

0.
01

99
18

97
5

0.
99

56
55

63
0.

23
18

17
1

6.
68

11
86

2.
07

53
87

91
6

N
um

be
ro

fB
in

s:
34

1
B

SE
SE

N
SE

X
5.

45
26

04
61

41
0

SB
I

5.
54

76
28

2.
31

16
44

51
57

2.
05

3.
14

09
6

63
.5

70
59

98
37

.9
5

0.
57

10
92

9
0.

40
02

51
3

0.
57

60
47

70
1

0.
16

02
01

10
3

0.
99

90
64

66
0.

35
19

62
2

7.
85

92
72

2.
17

21
67

58
O

N
G

C
5.

31
99

79
2.

56
15

35
61

22
0.

07
65

2.
89

10
7

11
.2

94
12

18
9.

92
4

0.
53

67
86

6
0.

06
09

79
36

0.
53

02
18

22
2

0.
00

37
18

48
2

0.
99

84
57

75
0.

06
25

30
53

7.
88

15
14

2.
23

39
30

17
TA

TA
ST

E
E

L
5.

49
08

91
2.

47
74

49
52

03
5.

55
1

2.
97

51
55

55
.8

29
41

93
74

.4
5

0.
54

37
33

64
0.

39
07

08
9

0.
54

56
39

29
5

0.
15

26
53

44
5

0.
99

86
96

63
0.

30
91

02
8

7.
96

83
4

2.
23

45
43

58
SU

N
PH

A
R

M
A

4.
98

35
1

2.
34

78
92

58
63

6.
81

3
3.

10
47

12
86

.9
08

82
27

73
.1

9
0.

59
55

95
87

0.
21

25
05

4
0.

56
93

99
86

8
0.

04
51

58
54

5
0.

99
89

94
3

0.
48

11
75

7
7.

33
14

02
2.

05
58

91
53

A
X

IS
B

A
N

K
5.

26
05

63
2.

28
97

14
60

89
2.

79
31

3.
16

28
91

26
.0

58
82

51
7.

20
7

0.
59

05
62

86
0.

09
17

72
51

0.
58

00
69

81
6

0.
00

84
22

19
4

0.
99

91
04

82
0.

14
42

76
2

7.
55

02
77

2.
09

46
08

79
N

um
be

ro
fB

in
s:

40
3

B
SE

SE
N

SE
X

5.
61

65
12

51
50

4
SB

I
5.

70
79

2
2.

25
20

51
43

31
3.

94
3.

36
44

61
46

.6
09

45
81

90
.0

6
0.

59
42

14
46

0.
39

87
70

6
0.

59
90

30
32

3
0.

15
90

17
99

1
0.

99
94

01
91

0.
36

37
97

7.
95

99
71

2.
14

37
14

07
O

N
G

C
5.

47
97

4
2.

49
11

26
51

26
0.

09
62

3.
12

53
86

9.
12

43
78

24
3.

90
4

0.
56

33
65

62
0.

06
88

15
91

0.
55

64
63

86
9

0.
00

47
35

62
9

0.
99

90
35

05
0.

07
12

17
77

7.
97

08
66

2.
20

12
45

1
TA

TA
ST

E
E

L
5.

65
15

17
2.

40
69

6
42

81
0.

67
9

3.
20

95
52

42
.2

86
07

86
93

.3
2

0.
56

96
76

82
0.

41
08

39
7

0.
57

14
49

32
7

0.
16

87
89

25
9

0.
99

91
84

61
0.

33
00

52
8.

05
84

77
2.

20
20

27
47

SU
N

PH
A

R
M

A
5.

14
68

76
2.

32
65

16
49

15
8.

15
9

3.
28

99
96

60
.6

34
33

23
45

.8
4

0.
61

19
13

69
0.

21
34

16
9

0.
58

57
72

09
5

0.
04

55
46

77
3

0.
99

93
05

83
0.

47
32

64
2

7.
47

33
92

2.
04

53
35

18
A

X
IS

B
A

N
K

5.
41

26
13

2.
28

42
97

51
12

6.
86

59
3.

33
22

16
17

.4
65

17
37

7.
13

4
0.

60
43

60
83

0.
08

55
71

16
0.

59
32

89
21

6
0.

00
73

22
42

3
0.

99
93

62
06

0.
13

63
19

5
7.

69
69

1
2.

08
91

85
01

Ta
bl

e
2.

17
:B

SE
SE

N
SE

X
an

d
its

st
oc

ks



50

Entropy Mutual Infor-
mation

Correlation Joint Entropy Conditional
Entropy

Relative Mutual
Information

Number of Bins: 31
NIFTY 50 3.15029
BSE SNESEX 3.15202 2.11485 0.98778 4.187461 1.03544 0.670950162
IBOVESPA 3.2263 1.51731 0.07871 4.859279 1.632984 0.470293324
HANG SENG 3.201 1.37211 -0.1299 4.979185 1.778181 0.428649261
SSE COMPOSITE 2.9525 1.11249 0.44629 4.9903 2.037799 0.376795808
Number of Bins: 143
NIFTY 50 4.61974
BSE SNESEX 4.62246 2.69859 0.95322 6.543614 1.921151 0.583799589
IBOVESPA 4.71728 2.1575 0.10364 7.179524 2.462246 0.457360368
HANG SENG 4.70464 2.05491 -0.1061 7.26947 2.564834 0.436783845
SSE COMPOSITE 4.44981 1.89907 0.38445 7.170491 2.720678 0.426774114
Number of Bins: 341
NIFTY 50 5.45048
BSE SNESEX 5.45222 3.37328 0.91252 7.529427 2.077205 0.618697294
IBOVESPA 5.56159 3.06538 0.08978 7.946684 2.385099 0.551170575
HANG SENG 5.54328 2.98039 -0.0806 8.013371 2.47009 0.537658113
SSE COMPOSITE 5.28904 2.78918 0.34756 7.950344 2.661302 0.527350322
Number of Bins: 403
NIFTY 50 5.60935
BSE SNESEX 5.61617 3.55583 0.9062 7.669686 2.053519 0.633141963
IBOVESPA 5.72184 3.29735 0.08618 8.033831 2.311995 0.576275517
HANG SENG 5.70409 3.20949 -0.0809 8.103951 2.399858 0.562664739
SSE COMPOSITE 5.44616 3.0275 0.33483 8.028012 2.581848 0.555896407

Table 2.18: International market indices I

Entropy Mutual Infor-
mation

Correlation Joint Entropy Conditional
Entropy

Relative Mutual
Information

Number of bins: 16
DOW JONES 2.397346
CAC 40 2.593225 0.745483 0.24985 4.245088 1.651863 0.287473397
DAX 2.61923 1.233584 0.53358 3.782992 1.163762 0.470972003
NASDAQ 2.359363 1.589967 0.76201 3.166742 0.807379 0.673896726
Number of bins: 283
DOW JONES 5.133843
CAC 40 5.414879 2.424536 0.25323 8.124186 2.709307 0.447754419
DAX 5.430414 2.631433 0.35362 7.932825 2.502411 0.484573184
NASDAQ 5.143222 2.87793 0.58449 7.399136 2.255914 0.559557802
Number of bins: 556
DOW JONES 5.790399
CAC 40 6.069288 3.525484 0.226 8.334203 2.264915 0.580872748
DAX 6.088816 3.61385 0.32142 8.265364 2.176548 0.593522616
NASDAQ 5.799075 3.589182 0.55368 8.000291 2.201216 0.61892319
Number of bins: 1132
DOW JONES 6.418159
CAC 40 6.698651 4.722922 0.19908 8.393888 1.695237 0.70505569
DAX 6.71238 4.75384 0.28448 8.376699 1.664319 0.708219737
NASDAQ 6.422752 4.543293 0.51441 8.297619 1.874867 0.707374814

Table 2.19: International market indices II

BSE SENSEX
Number of Bins 13 31 143 341 403
Entropy 2.366105 3.152247 4.622784 5.452604 5.616512
TSS 634618 427756 127290 61410 51504

Table 2.20: Comparision of Shannon entropy and Total square of sum of BSE Sensex
stocks
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NIFTY 50
Number of Bins 13 114 234 342 494 1482
Entropy 2.36539 4.404851 5.094405 5.453974 5.80256 6.777287
TSS 624968 155446 82294 59342 42468 17490

Table 2.21: Comparision of Shannon entropy and Total square of sum of NIFTY 50 stocks

(a) Entropy with bins

(b) TSS with bins

(c) Entropy and TSS

Figure 2.12: Comparision of Shannon entropy and Total square of sum of BSE sensex
stocks
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(a) Entropy with bins

(b) TSS with bins

(c) Entropy and TSS

Figure 2.13: Comparision of Shannon entropy and Total square of sum of NIFTY 50
stocks
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(a) Conditional entropy and RSS with
Nifty stocks

(b) Conditional entropy and RSS with
BSE sensex stocks

(c) Mutual information and covariance
with Nifty stocks

(d) Mutual information and covariance
with BSE sensex stocks

(e) Mutual information and ESS with
Nifty stocks

(f) Mutual information and ESS with
BSE sensex stocks

(g) Correlation and Normalized mutual
information with Nifty stocks

(h) Correlation and Normalized mutual
information with BSE sensex stocks

(i) Relative mutual information and R2

with Nifty stocks
(j) Relative mutual information and R2

with BSE sensex stocks

Figure 2.14: Comparision of information and statistical meaures of NIFTY 50 and BSE
sensex stocks
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(a) Correlation matrix of index BSE Sensex
and its stocks SBI, ONGC, Tata Steel, Sun
Pharma, Axis Bank
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(b) Correlation matrix of index Nifty 50
and its stocks SBI, ONGC, Tata Steel, Sun
Pharma, Axis Bank
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We find that the information measures like mutual information is an ideal way

to expand the financial network of stock market indices based on the statisti-

cal measures, while the measure of variation of information presents a different

side of the markets but produces network with troubling characteristics. The pro-

posed methodology is sensitive to the choice of data bin counts in which the

daily closing prices of market data are separated and requires large sample size.

Also, the comparison of entropy measures with statistical measures of dependent

stock indices, like Shannon entropy with variance of a stock, conditional entropy

with residual sum of squares, coefficient of determination and correlations with

the relative mutual information rate and normalized mutual information measure,

repectively indicates the further existence of non-linear relationships that are not

identified by statistical correlation measure and hence presents a different side of

the markets.

The coefficient of correlation is a long-standing estimator of the degree of statis-

tical dependence; however mutual information has advantages over it. Also, from

the resulted values of Tables 2.17 and 2.18, the Shannon entropy, mutual informa-

tion and the conditional entropy perform well in accordance with the systematic

risk and the specific risk derived through the linear market model.

2.5 Conclusion

The main idea of this chapter is that entropy can be used as an ure for volatility.

The decisive advantage of this approach resides in its ability to capture disorder

or uncertainty in the system without putting any constraint on the probability dis-

tribution function. We have modelled implied volatility as a linear combination of

historical volatility and entropy, and found that the model was heavily dependent

on the entropy.

We have also used the information theoretic approach to analyse the stock in-

dices and sectors which are highly volatile. We have used entropy measures:

Shannon, Tsallis and Renyi entropy and the Approximate & Sample entropy as an

alternate way to characterize the volatility in stock market, where we have done in-

depth empirical analysis among aforementioned information theoretic measures

and can affirm that Sample entropy measures more the regularity of time series

rather than its complexity; and in comparison it with Approximate entropy, a similar
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class, Sample entropy is more consistent measure and provide improved analysis

of the stock market regularity. We have also observed that generalized informa-

tion theoretic measures i.e., Tsallis and Renyi are not perfect for analysing the

time series of stock market data, like minute wise time series data; also we have

analyzed that which specific estimator of Shannon entropy is appropriate for the

given data type set.

We have also used the information theoretic concepts such as entropy, con-

ditional entropy and mutual information and their extensions to analyse the sta-

tistical dependence of the financial market. This approach studies the level of

similarities between regression analysis and the information theoretic measures,

i.e. Shannon entropy measures total sum of squares of the dependent variable,

relative mutual information measures coefficient of correlation, conditional entropy

measures residual sum of squares and many more. The ability of this approach is

to check the non-linear dependence of market data without any specific probabil-

ity distribution. We have used different international stock indices to address our

problem. The mutual information and conditional entropy have shown a decent ef-

ficiency compared to the measures of statistical dependence. The results are able

to infer that the information entropic approach observes the dependencies and is

a more general measure to study the financial market, in addition these measures

can provide potential sources of information to financial market investors.



Chapter 3

Comparative Performance Of

Forecasting Models Using Relative

Information

3.1 Introduction

Various forecasting models have been evolved in literature over the years, of

which the Holt-Winters [94] and Autoregressive Integrated Moving Average

(ARIMA) [100] are two traditional techniques that aren’t just widely accepted but

also exceptionally good predictors of the financial time series. Recently, Artificial

Neural Networks have been studied extensively and used in the financial market

prediction, refer to [71, 87]. Flexible non-linear modeling capacity of neural net-

works is the key advantage of deep learning. With these networks, there’s no

need to define a specific model form, but instead it is based on the traits depicted

from the given time series. Deep learning methods in time series forecasting

are capable of assessing data structure and patterns such as complexity and

non-linearity. Long Short Term Memory (LSTM) network, in particular has been

The work presented in this chapter is communicated entitled Comparison of forecasting models using
information theoretic approach in financial market prediction and part of the work has been presented in
3rd International Conference of Mathematical Sciences (ICMS 2019) held at Maltepe University, Istanbul,
Turkey, Sept., 2019.
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used in the prediction of time series in the financial sector, refer to [27, 34, 71].

Next, Holt-Winters doesn’t require stationarity the way an ARIMA model does, it

is specifically designed for seasonal data. ARIMA requires the calculation of a set

of data based parameters, whereas LSTM does not require parameters of this

nature.

In this chapter we intend to examine different forecasting models in terms of their

performance on a time series which is considered complex to predict. We have

compared the performance of three models such as ARIMA, Holt-Winters and

LSTM by applying Kullback measure of relative information [40], an information

theoretic measure. The study shows that traditional model ARIMA performs well

on NIFTY 50 stock index monthly data and the performance of Holt-Winters is

better for prediction of Dow Jones Industrial Average and S&P BSE SENSEX

index data, in comparison with LSTM, an application of deep learning. Infact,

in terms of specific indices under consideration their performance come in the

order of ARIMA, Holt-Winters and LSTM, Holt-Winters being the best. This is

also exhibited by their empirical outputs.

The chapter is organised as follows. Section 3.2 outlines the time series fore-

casting models. Section 3.3 discusses the information theroetic measure em-

ployed. Section 3.4 analyses NIFTY 50, Dow Jones Industrial Average and S&P

BSE SENSEX indices monthly closing price data using ARIMA, Holt-Winters and

LSTM models. Their comparision in forecasting abilities have been measured us-

ing Kullback measure of relative information. Finally, the chapter concludes with

Section 3.5.

3.2 Time Series Forecasting Models

3.2.1 ARIMA

There are two pattern-based forms of the model exhibited by the time series.

Basically, when the data series shows strong seasonal trends, one can use

seasonal-ARIMA model; and a non-seasonal ARIMA model can be used to depict

the series having weak seasonal trends, its general form is denoted as

ARIMA(p, d, q), where p denotes the number of observations from past time

values used to obtain future forecast values; d denotes the times at which the
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given time series is differenced to obtain stationarity; and q represents the moving

average of the model’s past forecasting errors.

In an extension to the non-seasonal model, seasonal-ARIMA model incorpo-

rates both seasonal and non-seasonal factors in a multiplicative way, and its gen-

eral form can be expressed as ARIMA(p, d, q)(P, D, Q)[s], where (p, d, q) shows

the non-seasonal component and (P, D, Q)[s] represents the seasonal component

of the model and s is the number of seasonal periods, P is the order of seasonal

autoregressive, D is the seasonal differencing and Q denotes the seasonal mov-

ing average term.

We have used monthly closing prices of the NIFTY 50 index, Dow Jones Indus-

trial Average and S&P BSE SENSEX from 1 January 2001 to 31 December 2017

to predict price movements during the year 2018, see Fig.3.1. For this we applied

auto.arima() function in R, that searches for feasible model for NIFTY 50 and

S&P BSE SENSEX within the specified order constraints and returns best fitted

class of ARIMA: ARIMA(0,1,0)(1,0,0)[12] with drift and ARIMA(2,1,2)(2,0,0)[12]

with drift for Dow Jones Industrial Average index. Table 3.4 gives the statistics

indicating the suitability of fitting of ARIMA model in different stock market indices

and the resulting forecast is shown in Figs.3.8(a), 3.9(a), 3.10(a).

3.2.2 Holt-Winters

This method is used on the data series showing trends such as increasing or

decreasing with existence of seasonality. There are generally two variants of Win-

ter’s smoothing method, depending on whether the seasonal pattern, is modeled

in an additive or multiplicative process. Winters generalized Holt’s linear method

to develop such a technique, termed as called Holt Winters [35]. In addition to the

Holt’s linear method equations, a seasonal equation is added:

Lt = α(yt−St−s)+(1−α)(Lt−1 +Tt−1) f or 0≤ α ≤ 1,

Tt = β (Lt−Lt−1)+(1−β )Tt−1 f or 0≤ β ≤ 1,

St = γ(yt−Lt)+(1− γ)St−s f or 0≤ γ ≤ 1

then we have a forecast equation:

Ft+k = Lt + kTt +St+k−s
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where, yt is the time series, Lt is series level, Tt is trend, Ft+k is future forecast

for k-periods, s is the seasonal cycle length and α, β and γ are probability values.

An alternative Holt Winter’s multiplicative model multiplies the trended forecast by

the seasonality.

To smoothen the time series, we have used exponential smoothing in R via the

HoltWinters() function to find the smoothing parameters. For our data we have

used monthly prices of the NIFTY 50, Dow Jones Industrial Average and S&P

BSE SENSEX indices from 1 January 2001 to 31 December 2017 to predict price

movement during the year 2018. The output obtained, “Holt–Winter’s exponential

smoothing with trend and additive seasonal component" and Table 3.6 gives the

smoothing parameters; the resulting forecast is shown in Figs.3.8(b),3.9(b),3.10(b).

3.2.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) [34], a special form of recurrent networks

which offers less risks when compared to the other techniques. In regular recur-

rent neural network, small weights are repeatedly multiplied through several time

steps and the gradients tends to zero, a condition is known as vanishing gradi-

ent problem. Here, the main purpose of LSTM is to perform better and tackle

the vanishing gradient problem that recurrent networks would suffer when dealing

with large data sets. There are three gates in LSTM layer: forget gate, input gate

and output gate. For xt as input vector at time step t, W weight matrix and b as

biasness, these are given as:

Forget Gate: Ft = σ(WF [ht−1,xt ]+bF)

decides which data information is to be removed from the cell state;

Input Gate:

tanh layer: Tt = tanh(WT [ht−1,xt ]+bT )

Sigmoid layer: St = σ(WS[ht−1,xt ]+bS)

Cell state: Ct = FtCt−1 +StTt , old state Ct−1 is upadted as Ct ;

Output Gate: Ot = σ(Wo[ht−1,xt ]+bo)

here the sigmoid layer filters outgoing cell state and sets output values to the

range [−1,1], Ct passed through tanh function. At last, Hidden state ht to be
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passed on to the next cell: ht = Ot tanh(Ct).

The monthly closing price data set has been divided into two subsets, training

and test. For training, 95% of the data set, i.e. 204 obsevations were used and

the remaining 5%, i.e. 11 observations were used to test the model accuracy by

predicting the price movement of next 11 months of the year 2018 and compare

with real market data. We have used package Keras in R, a comprehensive library

that runs on top of Tensorflow for classification and prediction of our data.

Actual Price Predicted Price Actual Price Predicted Price Actual Price Predicted Price

11027.7 10624.06 11027.7 10636.64 11027.7 10310.877
10492.85 10721.48 10492.85 10652.06 10492.85 10419.642
10113.7 10821.31 10113.7 11161.59 10113.7 9872.923

10739.35 10929.37 10739.35 11425.52 10739.35 10002.227
10736.15 11030.77 10736.15 11917.63 10736.15 10161.443
10714.3 11150.79 10714.3 11946.06 10714.3 9605.24
11356.5 11244.81 11356.5 12152.35 11356.5 9705.577
11680.5 11396.4 11680.5 11780.87 11680.5 9388.377

10930.45 11494.21 10930.45 11849.78 10930.45 9258.09
10386.6 11592.14 10386.6 12226.14 10386.6 8963.906

10876.75 11718.32 10876.75 11827.45 10876.75 8645.627
10862.55 11828.83 10862.55 11816.78

ARIMA Holt-winters LSTM

Table 3.1: Predicted analysis of the monthly data of NIFTY 50 index for the year of 2018
by forecasting models

Actual Price Predicted Price Actual Price Predicted Price Actual Price Predicted Price

26149.4 23733.6 26149.4 24688.4 26149.4 24568.69
25029.2 24438.1 25029.2 24891.9 25029.2 23577.33
24103.1 24897.8 24103.1 25102.8 24103.1 22602.46
24163.2 25549.3 24163.2 25167 24163.2 22162.85
24415.8 26063.5 24415.8 25255.8 24415.8 22111.56
24271.4 26467.5 24271.4 25431.6 24271.4 21548.65
25415.2 27084.8 25415.2 25596.6 25415.2 21289.01
25964.8 26877.4 25964.8 25640.2 25964.8 21148.49
26458.3 27012.8 26458.3 25769.4 26458.3 20901.22
25115.8 27532.6 25115.8 25946.4 25115.8 21012.33
25538.5 27615 25538.5 26155.3 25538.5 20102.75
23327.5 27136.9 23327.5 26298.1

ARIMA Holt-winters LSTM

Table 3.2: Predicted nnalysis of the monthly data of Dow Jones Industrial Average index
for the year of 2018 by forecasting models
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(a) NIFTY 50

(b) DOW JONES

(c) SENSEX

Figure 3.1: Monthly closing price of the selected indices from Jan 2001 to Dec 2018.
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(a) DOW JONES

(b) NIFTY 50

(c) SENSEX

Figure 3.2: Prediction analysis with ARIMA forecasting model
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(a) DOW JONES

(b) NIFTY 50

(c) SENSEX

Figure 3.3: Prediction analysis with Holt Winters forecasting model
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(a) Decomposition of additive time series

(b) Holt-Winters Filtering

Figure 3.4: Decomposition and Filteration on NIFTY 50 index

(a) Decomposition of Additive time series

(b) Holt-Winters ailtering

Figure 3.5: Decomposition and Filteration on Dow Jones Industrial Average index
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(a) Decomposition of additive time series

(b) Holt-Winters Filtering

Figure 3.6: Decomposition and Filteration on S&P BSE SENSEX index

Actual Price Predicted Price Actual Price Predicted Price Actual Price Predicted Price

34184.04 34392.01 34184.04 34107.59 34184.03 33396.89
32968.68 34730.18 32968.68 34093.09 32968.67 33460.67
35160.36 35075.85 35160.36 35587.22 35160.35 31531.26
35322.38 35434.89 35322.38 36390.45 35322.37 31978.03
35423.48 35782.49 35423.48 38247.55 35423.48 32762.48
37606.58 36157.48 37606.58 38578.14 37606.57 31169.15
38645.07 36507.05 38645.07 39351.79 38645.07 31393.34
36227.14 36898.5 36227.14 38140.62 36227.14 30165.94
34442.05 37288.81 34442.05 38275.77 34442.05 29868.04
36194.3 37644.26 36194.3 39706.52 36194.30 28990.86

36068.33 38035.94 36068.33 38490.08 36068.32 27903.5
36256.69 38416.15 36256.69 38208.35

ARIMA Holt-winters LSTM

Table 3.3: Predicted analysis of the monthly data of S&P BSE SENSEX index for the
year of 2018 by forecasting models
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(a) DOW JONES

(b) NIFTY 50

(c) SENSEX

Figure 3.7: Prediction analysis with LSTM forecasting model
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3.3 Kullback Measure of Relative Information

Kullback measure of relative information [40] in case of two discrete probability

distributions P = {p1, p2, p3, ..., pn} & Q = {q1,q2,q3, ...,qn} defined on the same

probability space is given by

H(P||Q) =
n

∑
i=1

pilog
(

pi

qi

)
. (3.3.1)

Here P can be considered as the actual probability distribution and Q as the pre-

dicted one.

The measure (3.3.1) can be seen as a measure of deviation of the distribution

{qi} from that of actual distribution {pi}. Infact, H(P||Q) > 0 and H(P||Q) = 0

iff pi = qi ∀ i and also H(P||Q) 6= H(Q||P). We have used this relative information

measure to obtain the comparative perfomance of the forecasting models ARIMA,

Holt-Winters and LSTM employed to forecast the aforementioned indices monthly

price data.

3.4 Empirical Results

The analysis, interpretation and modeling of the financial data is done by using

Microsoft Office Excel 2013 (15.0.4420.1017, 2012 Microsoft Corporation©) and

statistical software R (RStudio© 1.2.5019, 2009-2019 RStudio, Inc.), an important

tool for time series forecasting. Fig.3.1 shows the monthly price data from 1

January 2001 to 31 December 2018 of three popular stock indices, namely NIFTY

50, Dow Jones Industrial Average (DJI) and S&P BSE SENSEX (BSESN).

First, NIFTY 50, a broad-based index of India’s National Stock Exchange (NSE),

consists of 50 large and liquid NSE-listed companies reflects the overall condition

of the economy of India. We acquired the historical monthly data of NIFTY 50

index from https://www.quandl.com/data/NSE. Next, Dow Jones Industrial Aver-

age (DJI), an index comprises of 30 major companies trading on the NYSE and

the NASDAQ; and S&P BSE SENSEX (BSESN), the benchmark index of the

Bombay Stock Exchange (BSE) in India, consisting 30 of the most traded stocks

on the BSE and we acquired the historical data of DJI and BSESN indices from

https://finance.yahoo.com.
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(a) ARIMA(0,1,0)(1,0,0)(12) with drift Forecast

(b) Holt-Winters Forecast

Figure 3.8: NIFTY50 prediction analysis with ARIMA and Holt Winters forecasting
model

(a) ARIMA(2,1,2)(2,0,0)(12) with drift Forecast

(b) Holt-Winters Forecast

Figure 3.9: Dow Jones prediction analysis with ARIMA and Holt Winters forecasting
model
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(a) ARIMA(0,1,0)(1,0,0)(12) with drift Forecast

(b) Holt-Winters Forecast

Figure 3.10: BSE SENSEX prediction analysis with ARIMA and Holt Winters forecasting
model

The total period is subdivided into three subperiods, at the beginning of fiscal

year 2003-04, the economy of India was in a boom stage driven largely by foreign

investments until it was halted by the year 2008 global financial crisis. Recov-

ery had been impeded by provisional shocks in some exogenous factors in the

fiscal year 2016-17, while since the beginning of the period 2017-18, the market

has picked momentum primarily from the introduction of GST and several other

policies by the Indian government.

Figs. 3.8,3.9 and 3.10 display the forecast analysis of the aforementioned index

by using ARIMA and Holt-Winters forecasting models. Tables 3.1,3.2 and 3.3

contrast NIFTY 50, DJI and BSESN actual market price and predicted price for the

year 2018 by using ARIMA, Holt-Winters and LSTM network, respectively. Next,
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Holt-Winters decomposition annd filteration analysis are shown in Figs. 3.4,3.5

and 3.6 and further Figs. 3.2,3.3 and 3.7 depict the actual (blue line) vs. forecast

values (orange line) through the aforementioned time series forecasting models.

Table 3.5 gives the calculated values of Kullback measure of relative information

for the forecasts given by Seasonal-ARIMA, Seasonal Additive Holt-Winters and

LSTM network. Since, the calculated value of the Kullback relative information

is the least in case of ARIMA among all the three so the forecastings made by

traditional ARIMA model are the best one in comparison to the other two in case

of the NIFTY 50 monthly closing prices. Thus based on the results from Table 3.5,

we conclude that ARIMA outperforms LSTM and Holt-Winters models in case of

the NIFTY 50 monthly closing prices; and Holt-Winters is better in comparison to

ARIMA for DJI and BSESN indices.

3.5 Conclusion

This chapter forecasts three stock indices, namely NIFTY 50, Dow Jones In-

dustrial Average(DJI) and S&P BSE SENSEX(BSESN) monthly data by using

ARIMA, Holt-Winter and LSTM network. Their performance have been compared

by using Kullback measure of relative information. In comparison to other fore-

casting models, ARIMA model has accuracy of stock price prediction for the se-

lected NIFTY 50 stock index; and Holt-Winters works better for predicting the DJI

and BSESN indices monthly data. LSTM, a neural network method is not as much

accurate to predict the stock market monthly data.



Chapter 4

Information Measures Based Portfolio

Optimization

4.1 Introduction

The Markowitz Mean-Variance (MV) [51] is the most commonly used formula-

tion in portfolio selection. The drawback of this model is that it is weakly concen-

trated for asset allocation which results in low diversity. In the present chapter, we

have explored the effectiveness of an information theoretic measures in optimizing

a portfolio to quantify risk and measure risk-adjusted performance in the capital

market. In the conventional portfolio problem for a specified expected return, the

expected portfolio variance is minimized [51]. This approach of minimizing the

portfolio variance has been replaced by maximization of Shannon entropy, refers

to [10], since both these approaches lead to equalization of allocation of assets

in the portfolio. Instead of maximization of Shannon entropy, we have explored

this approach further by maximizing the generalized measure of entropies. The

flexibility given by the additional parameters helps us to achieve better alloca-

The part of the work presented in this chapter has been published in the paper entitled Portfolio opti-
mization based on generalized information theoretic measures in Communications in Statistics - Theory
and Methods, 2020 and some work has been communicated with the title Comparative Study Of Informa-
tion Measures In Portfolio Optimization Problems and also presented in the International Conference on
Recent Trends in Mathematics and Its Applications to Graphs, Networks and Petri Nets (ICRTMA-GPN-
2020) held at School of Computational and Integrative Sciences, JNU, July 2020.
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tion. Also, we have extended this optimization problem by including additional

non-linear inequality constraint on portfolio variance.

In this chapter, we have considered the problem of portfolio diversification by

maximizing the entropy of the asset allocation. Further, since Shannon entropy

can be considered as an alternative measure to the volatility (variance), so we

employ this concept for portfolio optimization by replacing the minimization of the

variance of allocation with the minimization of entropy. This aspect has been stud-

ied using various measure of entropy. By using the stock data of Indian indices

NIFTY 50 and BSE S&P SENSEX, portfolio optimization problems are formulated

with MV, Shannon entropy [76], Pal and Pal entropy [64] and Sine entropy [98];

and one parameter Renyi entropy [68], Arimoto entropy [2], Tsallis entropy [89];

and two parameters Varma entropy [93], Sharma and Mittal entropy [77] and

Sharma and Taneja entropy [85]. Information theoretic measures portfolios are

generated by placing the specific measure in the objective function. Based on the

empirical findings from the performance measures such as diversity index [95]

and the award-risk ratio [79], the selection of a well-diversified entropy portfolio

model with the given level of return and minimum risk is carried out.

In Section 4.2, we discuss the Mean-Variance model by Markowitz. Section 4.3

considers the maximization of various information theoretic measures based port-

folio models and their analysis. In Section 4.4, we have considered minimization

of information theoretic measures based portfolio models and their qualitative and

quantitative analysis of the financial data and optimization of portfolio models is

carried out; some concluding comments are made in Section 4.5.

4.2 Markowitz Mean-Variance Model

The problem of portfolio selection is faced by a financial investor with a given

initial wealth say W ; the problem is of allocation of the wealth W among available

scope of investment. In other words, the problem of portfolio selection is to find

the optimal weights of portfolio w = {w1,w2, ...,wn}, where each wi ≥ 0 is the share

of W invested in the asset i. A portfolio is said to be completely diversified if

wi > 0, for all i, and it is said to be concentrated or a single asset portfolio if

wi = 1 for some i.

The landmark paper of Markowitz [51] entitled, as “Portfolio selection in the



75

Journal of Finance” marked the beginning of Portfolio Theory and transformed

the portfolio selection. If mi denotes the portfolio sample mean for the ith asset,

then µ0 = ∑
n
i=1 miwi is the expected return and w′∑w is the expected portfolio

variance. In the mean-variance framework proposed by Markowitz, the volatility

i.e. the expected portfolio variance is used as a measure of risk and the sample

mean as a measure of return and MV model is designed as

min
w

w′Σw subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.
(4.2.1)

"An investor who knew future returns with certainty would invest in only one

security, namely the one with the highest future return. If several securities had

the same, highest, future return then the investor would be indifferent between any

of these, or any combination of these. In no case would the investor actually prefer

a diversified portfolio. But diversification is a common and reasonable investment

practice. Why? To reduce uncertainty! ", refer to Markowitz [51].

The sensitivity of MV model is that it is weakly concentrated for asset allocation

and thus results in low diversity. Entropy has been considered as an alternative

measure of the volatility in the financial market. It measures the randomness and

it has a characteristic of measuring non-linear variability which may results in well

diversification of optimal portfolio weights.

4.3 Portfolio Diversification By Maximizing Entropy Mea-

sures

In this section, we have considered the problem of portfolio diversification by

maximizing the entropy of the asset allocation. The various portfolio models are

defined as follows:

Shannon Entropy Portfolio Model

max
w
−

n

∑
k=1

wklog wk subject to

∑
n
k=1 mkwk = µ0

∑
n
k=1 wk = 1.

(4.3.1)
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max
w
−

n

∑
k=1

wklog wk subject to


∑

n
k=1 mkwk = µ0
√

w′Σw≤ σ0

∑
n
k=1 wk = 1.

(4.3.2)

Tsallis Entropy Portfolio Model

For 0 < t < ∞, t 6= 1

max
w

1
1− t

( n

∑
k=1

wt
k−1

)
subject to

∑
n
k=1 mkwk = µ0

∑
n
k=1 wk = 1.

(4.3.3)

max
w

1
1− t

( n

∑
k=1

wt
k−1

)
subject to


∑

n
k=1 mkwk = µ0
√

w′Σw≤ σ0

∑
n
k=1 wk = 1.

(4.3.4)

Renyi Entropy Portfolio Model

For 0 < r < ∞, r 6= 1

max
w

1
1− r

log
( n

∑
k=1

wr
k

)
subject to

∑
n
k=1 mkwk = µ0

∑
n
k=1 wk = 1.

(4.3.5)

max
w

1
1− r

log
( n

∑
k=1

wr
k

)
subject to


∑

n
k=1 mkwk = µ0
√

w′Σw≤ σ0

∑
n
k=1 wk = 1.

(4.3.6)

Two Parametric Entropy Portfolio Model

For β −1 < α < β , β ≥ 1 and α +β 6= 2

max
w

1
β −α

log
( n

∑
k=1

wα+β−1
k

)
subject to

∑
n
k=1 mkwk = µ0

∑
n
k=1 wk = 1.

(4.3.7)
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max
w

1
β −α

log
( n

∑
k=1

wα+β−1
k

)
subject to


∑

n
k=1 mkwk = µ0
√

w′Σw≤ σ0

∑
n
k=1 wk = 1.

(4.3.8)

Empirical Results

We apply the above designed portfolio models on a financial market data that

consists of 10 sectors associated with the NIFTY index, a broad-based index of

India’s National Stock Exchange (NSE). To analyze the implementation of the

aforementioned portfolio models, Ten years (1st January 2009-31th March 2019)

daily closing price data on the 10 sectors of a NIFTY index, viz. Auto, Bank, IT,

Infra, Commodities, Energy, Media, Realty, Pharma and FMCG were tested into

the models. Fig.4.1 indicates daily closing prices with the trend of these data ob-

tained from the National Stock Exchange of India’s official website. We performed

an optimization algorithm program in MATLAB version R2015a (8.5.0.197613) for

different values of parameters in different entropy measures.

Next, summary statistics of various NIFTY sectoral indices portfolios are re-

ported in Table 4.1. In the model presented an investor can pick a parameter

r in Renyi entropy model, parameter t in Tsallis entropy model and parameters

α and β in Varma entropy model according to their risk estimation. Table 4.2

is obtained by setting the Tsallis parameter t level at 0.005, 0.05, 0.5, 2,...; Ta-

ble 4.3 is obtained by setting the Renyi parameter l̊evel at 0.005, 0.05, 0.5, 2,...

Table 4.4 is obtained by setting the Varma entropy parameters α and β level at

{0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,49.5,99.5} and {1,2,3,4,5,6,7,8,9,10,50,100}

repectively. These tables present portfolio weights and their performance mea-

sures.

We calculate Award Risk ratio (ARR), analogous to the Sharpe ratio [79], the

popular and widely accepted performance measure for a portfolio selection model,

defined as

ARR =
Rp

σp
, (4.3.9)

where Rp= portfolio return and σp= portfolio risk. If ARR < 1, then it is considered

as sub-optimal; If 1≤ ARR≤ 2, then it is acceptable as good by investors; if ARR >

2, then it is rated as very good and if ARR≥ 3, then it is treated excellent.
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(a) Auto
(b) Bank

(c) IT (d) Infra

(e) Commodities (f) Energy

(g) Media (h) Realty

(i) Pharma (j) FMCG

Figure 4.1: Daily closing prices with trendline of the 10 NIFTY sectors from 1 Jan 2009
to 31 Mar 2019.
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Next, to measure the diversification in portfolios, we use the diversity index [95],

Diversity = 1−
n

∑
i=1

w2
i =

0, no diversification

1, ultimate diversification.
(4.3.10)

We observe that Tsallis entropy with parameter t = 0.05 offers highest portfolio

return, and with parameters t = 4 and t = 5 offers the most diversification among its

other parameters, see Table 4.2; Renyi entropy with parameter α = 0.005 offers

highest portfolio return and with parameter r = 2 offers the most diversification

among its other parameters, see Table 4.3; two-parameter Varma entropy with

parameters α = 3.5 and β = 4 and α = 49.5 and β = 50 offers highest portfolio

return and with parameter α = 99.5 and β = 100 offers the most diversification

among its other parameters, see Table 4.4. Markowitz MV model offers minimum

variance.

We further calculate the ARR of the aforementioned models for different values

of desired portfolio returns and variances. ARRs at different desired returns to

compare the performances of models is discussed in Tables 4.2-4.4, and the re-

lation between return, diversity, variance, and ARR are displayed in Figs. 4.2-4.4.

Next, from Figs.4.5-4.9 we can easily see that without volatility as constraint, the

max entropy approach yields a frontier that is lower than mean variance’s frontier,

and after adding volatility as constraint, the max entropy approach has the same

frontier as MV approach.

As a whole, two-parameter entropy model with α = 3.5 and β = 4 and α =

49.5 and β = 50 offers higher portfolio return than all other portfolio models; MV

model without volatility as a constraint offers lower variance than all other portfolio

models; for ultimate diversity, two-parameter entropy model with α = 99.5 and

β = 100 is the most diversified among all other portfolio models with different

parameters considered in this study.
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(a) Return and Diversity

(b) Variance and Diversity

(c) Return and Variance

(d) ARR And Diversity

Figure 4.2: Renyi entropy performance
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(a) Return and Diversity

(b) Variance and Diversity

(c) Return and Variance

(d) ARR And Diversity

Figure 4.3: Two parameter Varma entropy performance
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(a) Return and Diversity

(b) Variance and Diversity

(c) Return and Variance

(d) ARR And Diversity

Figure 4.4: Tsallis entropy performance
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(b) Renyi entropy with parameter r=0.05
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(d) Renyi entropy with parameter r=1
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(e) Renyi entropy with parameter r=2
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(f) Renyi entropy with parameter r=3,4,5...

Figure 4.5: Maximum Renyi entropy with various parameter
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(b) Tsallis entropy with parameter t=0.05
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(c) Tsallis entropy with parameter t=1
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(d) Tsallis entropy with parameter t=2
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(e) Tsallis entropy with parameter t=3
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(f) Tsallis entropy with parameter t=4 and 5

Figure 4.6: Maximum Tsallis entropy with various parameter
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(a) Tsallis entropy with parameter t=6
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(b) Tsallis entropy with parameter t=7
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(c) Tsallis entropy with parameter t=8
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(d) Tsallis entropy with parameter
t=9,10,11...

Figure 4.7: Maximum Tsallis entropy with various parameter
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(b) Varma entropy with parameter
α=1.5 and β=2
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(c) Varma entropy with parameter
α=2.5 and β=3
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(d) Varma entropy with parameter
α=3.5 and β=4

Figure 4.8: Maximum Varma entropy with various parameter
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(a) Varma entropy with parameter α=4.5 and
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Figure 4.9: Maximum Varma entropy with various parameter
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4.4 Portfolio Optimization By Minimizing Entropy Mea-

sures

It has been observed that the measures of information provide a measure of

randomness and this can be considered as an alternate to conventional measure

of volatility in the stock market [6,99]. In this section, we use this characteristic of

information measures in a portfolio optimization problem to achieve diversification.

We have replaced the expected variance of the relative asset allocation by the

expected entropy of the relative allocation of the assets. We measure portfolio

risk as the uncertainty measure say, H(w) of w = {w1,w2, ...,wn} and instead of

minimizing H(w) we will maximize −H(w). The various portfolio models have

been designed on the basis of information theoretic measures on the following

generalized information measures, as introduced in Chapter 1. The models are

as given below.

4.4.1 Entropy Models

Shannon entropy portfolio model

max
w

(w1log w1 +w2log w2 + ...+wnlog wn)

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.

Pal and Pal entropy portfolio model

max
w

(w1(1− e(1−w1))+w2(1− e(1−w2))+ ...+wn(1− e(1−wn)))

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.
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Sine entropy portfolio model

max
w
− (sin(π w1)+ sin(π w2)+ ...+ sin(π wn))

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.

4.4.2 One-Parametric Entropy Portfolio Models

Renyi entropy portfolio model

For 0 < r < ∞, r 6= 1

max
w

1
r−1

log(wr
1 +wr

2 + ...+wr
n)

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.

Arimoto entropy portfolio model

For α > 0, α 6= 1

max
w

α

1−α

(
1−
(

wα
1 +wα

2 + ...+wα
n

) 1
α
)

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.

Tsallis entropy portfolio model

For 0 < t < ∞, t 6= 1

max
w

1
1− t

(
1− (wt

1 +wt
2 + ...+wt

n)

)

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.
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4.4.3 Two-Parametric Entropy Portfolio Models

Varma entropy portfolio model

For β −1 < α < β , β ≥ 1 and α +β 6= 2

max
w

1
α−β

log
(

wα+β−1
1 +wα+β−1

2 + ...+wα+β−1
n

)

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.

Sharma and Mittal entropy portfolio model

For α 6= β , where α,β > 0 and α 6= β 6= 1

max
w

1
1−β

(
1− (wα

1 +wα
2 + ...wα

n )
1−β

1−α

)

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.

Sharma and Taneja entropy portfolio model

For α 6= β 6= 1

max
w

1
21−β −21−α

(
(wα

1 +wα
2 + ...+wα

n )− (wβ

1 +wβ

2 + ...+wβ
n )

)

subject to

m1w1 +m2w2 + ...+mnwn = µ0

w1 +w2 + ...+wn = 1, wi ≥ 0 for all i.

4.4.4 Single-Index Portfolio Entropy

Philippatos and Wilson [65] considered a model to maximize the expected port-

folio return as well as to minimize the portfolio entropy. The entropy of a single-

index portfolio is defined as

H(Si, I) = H(I)+
n

∑
i=1

wiH(Si|I), (4.4.1)
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where {Si, i = 1,2, ...,n} is the set of stocks and I is a financial market index and

wi is the fraction of funds invested in stock i. Given the required individual, joint,

and conditional subjective probabilities, we have used this entropy of single-index

portfolio to calculate the joint uncertainty of the assets Si correlated with a market

index I.

Empirical Results

For the optimal portfolio modeling, we consider a financial data that consists of 5

stocks viz. SBI, ONGC, TATA STEEL, SUN PHARMA, and AXIS BANK listed with

NIFTY 50 as well as with BSE SENSEX, two flagship indices of Indian financial

market. In order to analyze the working of proposed portfolio models, we have

considered eighteen years (01/01/2001 to 31/12/2018) daily closing price data.

The distribution of daily closing price data of the aforementioned Indian stock

indices with their selected stocks, for pictorial representation, refer to Fig. 2.9.

The given data is obtained from https://in.finance.yahoo.com/, the free financial

data online platform. We have also presented two correlation matrix plots as well

as the conditional entropy to check the statistical behavior between the above-

mentioned international indices and their stocks, refer to Fig.4.10. Fig.4.11 can be

referred for visual comparison of generalized entropy measures by using single-

index portfolio entropy.

Further, we implement a portfolio program in MATLAB version

R2015a (8.5.0.197613) for different values of parameters of generalized informa-

tion entropic measures. Table 4.5 is obtained by considering Shannon, Pal and

Pal and Sine entropy measures, and compare their performance with the tradi-

tional mean-variance model. From the data given in Tables 4.6-4.10, we set the

parameter level from 0.005 to 160 of one parametric entropy measures, namely

Renyi, Arimoto and Tsallis to compare the efficiency of portfolio risk and expected

return between mean-variance model and one parameter entropy measure mod-

els; similarly to compare the performance of two parametric entropy models,

namely Varma, Sharma and Mittal, and Sharma and Taneja, Tables 4.11-4.15

are obtained by setting the two parameters level at

{0.505, 1.5, 9.5, 39.5, 79.5, 159.5, 319.5} and {1.005, 2, 10, 40, 80, 160, 320}

respectively.
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Figure 4.10: Correlation matrix plot of stock Indices and their stocks
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(a) BSE SENSEX on one parametric entropy measures

(b) BSE SENSEX on two parametric entropy measures

(c) NIFTY 50 on one parametric entropy measures

(d) NIFTY 50 on two parametric entropy measures

Figure 4.11: Index portfolio entropy
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Figure 4.12: Performance of Shannon, Pal and Pal, and Sine entropy measures
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Figure 4.13: Performance of one parametric entropy measures with parameter: 0.005 and
0.01
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Figure 4.14: Performance of one parametric entropy measures with parameter: 2
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Figure 4.15: Performance of one parametric entropy measures with parameter: 10
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Figure 4.16: Performance of one parametric entropy measures with parameter: 40
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Figure 4.17: Performance of one parametric entropy measures with parameter: 160
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Figure 4.18: Performance of two parametric entropy measures with two parameters: 0.505
& 1.005
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Figure 4.19: Performance of two parametric entropy measures with two parameters: 1.5
& 2
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Figure 4.20: Performance of two parametric entropy measures with two parameters: 9.5
& 10
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Figure 4.21: Performance of two parametric entropy measures with two parameters: 39.5
& 40
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Figure 4.22: Performance of two parametric entropy measures with two parameters: 79.5
and 159.5 and 319.5 & 80 and 160 and 320

.
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We observe that Shannon entropy measure offers more diversity with less ARR

as compared to others non-generalized entropy portfolio models and MV ap-

proach, see Table 4.5. Also, the Arimoto entropy measure offers the most diversi-

fication with less ARR as compared to the others one parameter entropy portfolio

models and MV approach. As per two parameters entropy measures when one

parameter is nearly 1/2 and other is 1, Varma, Sharma and Mittal, and Sharma

and Taneja entropy measures offer high value of diversifications with less ARR

as compared to MV method for both the Indian market indices. Next from Figs.

4.12-4.22, we can easily see that the minimum information theoretic measure ap-

proach yields a portfolio frontier that is either lower than or equal to the frontier of

mean-variance.

As a whole, the minimum entropy model offers higher portfolio returns than

the traditional MV approach; classical MV model offers lower variance than all

other entropy portfolio models; for perfect diversity, one parameter Arimoto en-

tropy model with α = 0.005 and 0.01 is the most diversified among all other port-

folio models with different parameters.

4.5 Conclusion

We have considered a class of information theoretical measures based portfo-

lios designed to assess the accuracy of risk assessment. We have analyzed the

effectiveness of Markowitz’s Mean Variance model in comparison to the model

in which the expected portfolio variance has been replaced by measure of in-

formation, i.e., the uncertainty of the portfolio allocation to the different assets.

According to the study, using some stocks of indices NIFTY50 and BSE SEN-

SEX, the portfolio models with parametric information theoretic measures, with a

possible parameter combination, yield well-diversification than the classical MV

portfolio model. For the given level of portfolio return while minimizing the risk

level, the information theoretic measure approach gives a better idea of risk as-

sessments in portfolio selection problems. However, one should take care of the

fact that generalized entropy measures are highly sensitive to the values of their

parameters and so the market analysts need to adjust these parametric values as

per their risk and return capacities.





Chapter 5

Black-Scholes Model With Stochastic

Volatility Using Relative Information

5.1 Introduction

Black and Scholes [12] and Merton [56] reformed the option pricing theory by

demonstrating how to hedge continuously the exposure on the option’s short po-

sition. Merton’s significant contribution in the work of Black & Scholes was the

arbitrage-based proof of the option pricing formula; for his dynamic programming

approach, he began time financial modeling for optimal portfolio and market con-

sumption policies.

Black-Scholes model [12] assumes constant value for volatility over the op-

tion duration, but in a real scenario, volatility fluctuates with the level of demand

and supply of an asset. Mariani et al.citenm derived the generalized form of

Black-Scholes model by using Stochastic volatility and transaction costs. An

information-theoretic measure approach to derive the Black-Scholes equation has

been given by Abedi et al. [1], in which they have used the method of minimizing

Kullback relative entropy measure. Entropy modeling complements the stochastic

process modeling, the advantage of which is that it can unify the different models

The part of the work reported in the present chapter has been published in the paper entitled On Black-
Scholes option pricing model with stochastic volatility: an information theoretic approach in Stochas-
tic Analysis and Applications, 39(2), 327-338, 2021.
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that have been developed across various fields of engineering and science. Many

authors have worked on the information theoretic approach to study the aspect of

volatility in the financial market [6,7,28,48].

In this chapter, we apply the entropy stock dynamics to model the price of Eu-

ropean options and for this, we have derived the risk-neutral probability density

function of the asset option price and volatility within the information-theoretic dy-

namic formalism. In addition, we specify how the probability function changes

over a period of time modelled as a Kolmogorov-backward equation. We arrive

at the Black-Scholes option pricing model [50] when the volatility is a traded as-

set, i.e. we derive a generalized Black-Scholes differential equation using the

information-theoretic approach. The equation is generalized in the sense that the

market volatility which is taken as deterministic (constant) in the Black-Scholes

formula, has been taken here stochastic in nature. Further, we propose the gener-

alized Black-Scholes model based on the Liouville-Caputo-type fractional deriva-

tive [41], as time-fractional derivative approach is better than the standard Black

Scholes model [54]. We use the Laplace Homotopy perturbation method [88] to

find the approximate analytical solution of the time fractional Black-Scholes equa-

tion in the form of a convergent series.

The chapter is organised as follows: A brief overview of the stochastic volatility

model is given in Section 5.2. In Section 5.3, we briefly highlight the dynamics of

the stock options price and stock volatility and derive the risk-neutral probability

function by integrating the risk-neutral information measure. In Section 5.4, the

generalized second-order partial differential equation is derived by taking deriva-

tive of expected payoff with respect to time at maturity. The approximate analyt-

ical solution of the Black Scholes equation is carried out in Section 5.5. Section

5.6 gives numerical demonstration and discussion and Section 5.7 concludes the

chapter.

5.2 Stochastic Volatility Model

The fundamental assumption in modeling the asset using a random walk mo-

tion is that the volatility is deterministic over time which is an impractical assump-

tion. Any model where the volatility is unpredicted or random is considered as

a stochastic volatility model. The given market is incomplete and free of arbitra-
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tion and we do not take into account that jumps can happen, as this will result in

non-linear partial differential equations which leads to complexity. But one may

consider jumps and can switch to work on alternate approaches of stochastic

volatility model [45] (i.e. jump-diffusion model processes or more general Levy

processes). Change in price S and volatility σ of a stock can be defined by con-

sidering the stochastic volatility model as

dS(t)
S(t)

= µdt +σ(t)dX1(t), (5.2.1)

and
dσ(t)
σ(t)

= αdt +βdX2(t), (5.2.2)

where, µ,α ∈ (−∞,∞) are the constants and the two Brownian motions X1(t) and

X2(t) are correlated with correlation coefficient ρ, that is

E(dX1(t)dX2(t)) = ρdt, (5.2.3)

refer to [37]. Here β is constant coefficient of Brownian motion X2(t) and σ , the

volatility index works as a perfect proxy for the stochastic volatility.

5.3 Entropy Probabilistic Dynamics of Options

In finance, the simplest model of prices and volatility of stock is lognormal dis-

tribution. We consider the dynamics of stock price S and volatility σ as:

f (S) = log(S) (5.3.1)

f (σ) = log(σ) (5.3.2)

and scale invariance in stochastic processes is defined as

P( f (λk)) = λ
θ P( f (k)) where θ =


0, white noise

−1, pink noise

−2, brownian noise

(5.3.3)
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P(f) stands for expected power of the frequency f ; λ a real constant, is scaling

factor and k is any arbitrary variable. We consider the case of white noise in the

stock market, therefore take θ = 0. The reduced form of (5.3.3) is given as

P( f (λk)) = P( f (k)) (5.3.4)

It can be shown that the probability density of price and volatility functions are

invariant under the scaling transformation. The probability density distribution

would be a scalar function under the scaling transformation of the stock price and

volatility [1].

Next, by using Taylor’s expansion upto second order accuracy we consider

change in price fuction (5.3.1) as

log
Ṡ(t)
S(t)
≈ dS(t)

S(t)
− 1

2

(
dS(t)
S(t)

)2

(5.3.5)

and change in current volatility function (5.3.2) as

log
σ̇(t)
σ(t)

≈ dσ(t)
σ(t)

− 1
2

(
dσ(t)
σ(t)

)2

(5.3.6)

where, Ṡ(t) = S(t)+dS(t) and σ̇(t) = σ(t)+dσ(t) stand for current stock price and

stock volatility, repectively at time t +dt. Further, changes in price S and volatlity

σ of a stock can be defined by considering the stochastic volatility model as given

in Section 5.2. By squaring (5.2.1) and (5.2.2), for dX2→ dt as dt→ 0 we get

(
dS(t)
S(t)

)2

= σ
2dt (5.3.7)

(
dσ(t)
σ(t)

)2

= β
2dt (5.3.8)

Now using (5.2.1), (5.3.7) in (5.3.5) and (5.2.2), (5.3.8) in (5.3.6) respectively, we

obtain the information pertaining to change in prices and change in volatility:

log
Ṡ(t)
S(t)
≈ µdt +σ(t)dX1(t)−

1
2

σ
2dt (5.3.9)

log
σ̇(t)
σ(t)

≈ αdt +βdX2(t)−
1
2

β
2dt (5.3.10)
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This information is applicable to dynamic variables S and σ and is implemented

in the form of constraints, where higher order terms of dt tends to zero.

Next, assigning the normal distribution of the log price PS(logṠ|logS) and log

stock volatility Pσ (logσ̇ |logσ) require utilizing the Kullback measure of relative in-

formation [40] which can be defined separately as

KS(P||Q) =
∫

PS(logṠ|logS) log
PS(logṠ|logS)
QS(logṠ|logS)

d logṠ (5.3.11)

and

Kσ (P||Q) =
∫

Pσ (logσ̇ |logσ) log
Pσ (logσ̇ |logσ)

Qσ (logσ̇ |logσ)
d logσ̇ (5.3.12)

where QS(logṠ|logS) and Qσ (logσ̇ |logσ) are the prior probability distributions cor-

responding to stock price and stock volatility, respectively.

Instead of minimizing Kullback measure of relative entropy K(P||Q), we will max-

imize −K(P||Q). Subject to normalization factor N and (5.3.9) as the prior infor-

mation constraint we obtain the transition probability of the stock price S as

PS(logṠ|logS) =
e−

ζ

2

(
log Ṡ

S

)2
+η

(
log Ṡ

S

)
N(ζ ,η , logS)

; (5.3.13)

This can be rewritten as

PS(logṠ|logS) =
e−

1
2σ2dt

(
logṠ−(logS+µdt+σ(t)dX1(t)− 1

2 σ2dt)
)2

N(ζ ,η , logS)
(5.3.14)

where ζ = (σ2dt)−1 and η = 1
2

(2µ

σ2 −1
)

are Lagrange multipliers corresponding to

the constraint (5.3.9) and normalization factor N =
∫

e−
ζ

2

(
log Ṡ

S−
η

ζ

)2

d logṠ.

Similarly, for the case of stock volatility, we consider (5.3.10), the prior information,

as constraint and obtain transition probability function of the stock volatility σ as

Pσ (logσ̇ |logσ) =
e−

1
2σ2dt

(
logσ̇−(logσ+αdt+β (t)dX2(t)− 1

2 σ2dt)
)2

F(λ ,ξ , logσ)
(5.3.15)

where λ = (σ2dt)−1 and ξ = 1
2

(2α

β 2 −1
)

are Lagrange multipliers corresponding to

the constraint (5.3.10) and normalization factor F =
∫

e−
λ

2

(
log σ̇

σ
− ξ

λ

)2

d logσ̇ .
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Next by making the transformation from log price back to price of a stock option

as

PS(Ṡ|S) =
1
Ṡ

P(logṠ|logS) (5.3.16)

and from log stock volatility back to volatility of a stock as

Pσ (σ̇ |σ) =
1
σ̇

P(logσ̇ |logσ), (5.3.17)

the stock price probability is given by

PS(Ṡ|S) =
e−

1
2σ2dt

(
logṠ−(logS+µdt+σ(t)dX1(t)− 1

2 σ2dt)
)2

N(ζ ,η , logS) Ṡ
(5.3.18)

This is the log-normal distribution for very small change in time interval dt in option

price S. Similarly probability of the volatility function

Pσ (σ̇ |σ) =
e−

1
2σ2dt

(
logσ̇−(logσ+αdt+β (t)dX2(t)− 1

2 β 2dt)
)2

F(λ ,ξ , logσ) σ̇
(5.3.19)

is the log-normal distribution for change in stock volatility σ .

Next, by using risk-neutral measure, we simply estimate the option’s value at

maturity by its expected payoff. With r as a risk free rate and the risk-neutrality

constraint given as

µ(t) = α = r, (5.3.20)

the risk neutral probability function of stock price by imposing the constraint (5.3.20)

is as follows

P(logṠ|logS) =
e−

1
2σ2dt

(
logṠ−(logS+rdt+σ(t)dX1(t)− 1

2 σ2dt)
)2

N(ζ ,η , logS)
(5.3.21)

and the risk neutral probability density of stock volatility is

P(logσ̇ |logσ) =
e−

1
2σ2dt

(
logσ̇−(logσ+rdt+β (t)dX2(t)− 1

2 σ2dt)
)2

F(λ ,ξ , logσ)
. (5.3.22)

By using the risk-neutral probability to value the European call and put option,

with E as the strike price and S0 as the current stock price, the required expected
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payoff at maturity is given by

V (S,σ ,T ) = max(S−E,0) (5.3.23)

where, the expected payoff for the call option at maturity denoted by VC is given

as

VC(S,σ ,T ) =
∫

∞

E
(S−E) P(S,T |S0)dS (5.3.24)

and the expected payoff at the maturity for a put option denoted by VP is given as

VP(S,σ ,T ) =
∫ E

0
(S−E) P(S,T |S0)dS (5.3.25)

Here, we look into the aspect that how the probability distribution in certain state

changes over time which comes out to be Kolmogorov-backward equation. We

use entropic instant which incorporates both option price and volatility, defined as

p(logṠ, logσ̇ , ṫ) =
∫ [

p(logS, logσ , t) P(logṠ|logS, logσ̇ |logσ)

]
dlogS(t) dlogσ(t)

(5.3.26)

where p(logS, logσ , t) and p(logṠ, logσ̇ , ṫ) are distributions representing all infor-

mation available at an instant time t and the next instant time ṫ = t + dt, respec-

tively. We have a generalized Kolmogorov-backward equation for the probability

density p(logS, logσ , t), a differential form of (5.3.26):

∂

∂ t
p(logS, logσ , t) =−

(
µ− σ2

2

)
∂

∂ logS
p(logS, t)−

(
α− β 2

2

)
∂

∂ logσ
p(logσ , t)

− 1
2

[
σ

2 ∂ 2

∂ (logS)2 p(logS, t)+β
2 ∂ 2

∂ (logσ)2 p(logσ , t)
]

−ρσβ
∂ 2

∂ logS ∂ logσ
p(logS, logσ , t),

(5.3.27)

to be used for the derivation of the generalized Black-Scholes equation in the next

section.
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5.4 Derivation of Black-Scholes Equation with Stochastic

Volatility

In order to derive the generalized Black-Scholes equation with stochastic volatil-

ity, we begin with the payoff equation as

V (logS, logσ ,E, t) =
∫
(S−E) P(logṠ|logS, logσ̇ |logσ) dlogS(ṫ) dlogσ(ṫ). (5.4.1)

The time derivate of value of an option is given as

∂

∂ t
V (logS, logσ ,E, t) =

∫
(S−E)

∂

∂ t
P(logṠ|logS, logσ̇ |logσ) dlogS(ṫ) dlogσ(ṫ)

(5.4.2)

Next by using (5.3.27), we get

∂

∂ t
P
(
logṠ|logS,logσ̇ |logσ

)
=−

(
r− σ2

2

)
∂

∂ logS
P(logṠ|logS)

−
(

r− β 2

2

)
∂

∂ logσ
P(logσ̇ |logσ)

− 1
2

[
σ

2 ∂ 2

∂ (logS)2 P(logṠ|logS)+β
2 ∂ 2

∂ (logσ)2 P(logσ̇ |logσ)

]
−ρσβ

∂ 2

∂ logS ∂ logσ
P(logṠ|logS, logσ̇ |logσ , t).

(5.4.3)

Using (5.4.3) in (5.4.2), we get

∂V
∂ t

=
∫
(S−E)

{[
−
(

r− σ2

2

)
∂

∂ logS
P(logṠ|logS)

]
+

[
−
(

r− β 2

2

)
∂

∂ logσ
P(logσ̇ |logσ)

]
− 1

2

[
σ

2 ∂ 2

∂ (logS)2 P(logṠ|logS)+β
2 ∂ 2

∂ (logσ)2 P(logσ̇ |logσ)

]
−ρσβ

∂ 2

∂ logS ∂ logσ
P(logṠ|logS, logσ̇ |logσ)

}
dlogS(ṫ) dlogσ(ṫ).

This implies

∂V
∂ t

=−
(

r− σ2

2

)
∂V

∂ logS
− σ2

2
∂ 2V

∂ (logS)2 −
(

r− β 2

2

)
∂V

∂ logσ

− β 2

2
∂ 2V

∂ (logσ)2 −
∂ 2V

∂ logS∂ logσ
ρσβ
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∂V
∂ t

+
σ2S2

2
∂ 2V
∂S2 +

β 2σ2

2
∂ 2V
∂σ2 + rS

∂V
∂S

+ rσ
∂V
∂σ

+
∂ 2V

∂S∂σ
ρσ

2
βS = 0 (5.4.4)

Now substitute B =Ve−r(T−t), which stands for both put and call options, in (5.4.4);

we have the required partial differential equation

∂B
∂ t

+
σ2S2

2
∂ 2B
∂S2 +

β 2σ2

2
∂ 2B
∂σ2 + rS

∂B
∂S

+ rσ
∂B
∂σ

+
∂ 2B

∂S∂σ
ρσ

2
βS− rB = 0 (5.4.5)

For ρ ∈ (−1,1), the above equation is parabolic second-order partial differential

equation. Next, we need to impose appropriate boundary conditions to this prob-

lem to solve the equation for both the call and put options.

5.5 Approximate Analytical Solution

In this secton, we find the approximate analytical solution of (5.4.5) by Laplace

transform homotopy perturbation method, where fractional derivatives are de-

scribed in the sense of the Liouville-Caputo fractional derivative. Consider (5.4.5),

for S,σ ∈ [0,∞) and t ∈ [0,T ]

∂B
∂ t

+
σ2S2

2
∂ 2B
∂S2 +

β 2σ2

2
∂ 2B
∂σ2 + rS

∂B
∂S

+ rσ
∂B
∂σ

+
∂ 2B

∂S∂σ
ρσ

2
βS− rB = 0 (5.5.1)

with terminal condition:

B(S,σ ,T ) = max{ε1S+ ε2σ −E,0} (5.5.2)

and boundary conditions:

B(S,σ , t) =

0, as (S,σ)→ (0,0)

ε1S+ ε2σ −Ee−r(T−t), as (S,σ)→ (∞,∞).
(5.5.3)
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where ε1 and ε2 are the constant coefficients for the asset prices S and volatility

σ , respectively. To analyse (5.5.1) we use the transformations

x = loge(S)− rt +
σ2t
2

, (5.5.4)

y = loge(σ)− rt +
β 2t
2

(5.5.5)

This gives x,y ∈ (−∞,∞) and t ∈ [0,T ] for S,σ ∈ [0,∞), (5.5.1) transforms to

∂B
∂ t

+
σ2

2
∂ 2B
∂x2 +

β 2

2
∂ 2B
∂y2 +

∂ 2B
∂x∂y

ρσβ − rB = 0 (5.5.6)

with terminal condition:

B(x,y,T ) = max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0} (5.5.7)

and boundary conditions:

B(x,y, t) =

0, as (x,y)→ (−∞,−∞)

ε1ex+rt−σ2t
2 + ε2ey+rt− β2t

2 −Ee−r(T−t), as (x,y)→ (∞,∞).
(5.5.8)

Using V (x,y, t) = e−r(T−t)B(x,y, t) for x,y∈ (−∞,∞) and t ∈ [0,T ] in (5.5.6), we obtain

∂V
∂ t

+
σ2

2
∂ 2V
∂x2 +

β 2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσβ = 0 (5.5.9)

with terminal condition:

V (x,y,T ) = max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0} (5.5.10)

and boundary conditions:

V (x,y, t) =

0, as (x,y)→ (−∞,−∞)

ε1ex+rT−σ2t
2 + ε2ey+rT− β2t

2 −E, as (x,y)→ (∞,∞).
(5.5.11)

Further, we transform the final boundary value problem to an initial boundary

value problem by changing the forward time variable from t to τ = T − t in (5.5.9),
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and for x,y ∈ (−∞,∞) and τ ∈ [0,T ] we get

− ∂V
∂τ

+
σ2

2
∂ 2V
∂x2 +

β 2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσβ = 0 (5.5.12)

with initial condition:

V (x,y,0) = max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0} (5.5.13)

and boundary conditions:

V (x,y,τ) =

0, as (x,y)→ (−∞,−∞)

ε1ex+rT−σ2T
2 +σ2τ

2 + ε2ey+rT− β2T
2 + β2τ

2 −E, as (x,y)→ (∞,∞).

(5.5.14)

Replacing ∂V
∂τ

by L λ
τ V , the Liouville-Caputo [41] type time-fractional derivative of

order λ ∈ (0,1], we have the subsequent fractional Black Scholes equation for

x,y ∈ (−∞,∞) and τ ∈ [0,T ], given by

L λ
τ V =

σ2

2
∂ 2V
∂x2 +

β 2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσβ (5.5.15)

with initial condition:

V (x,y,0) = max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0} (5.5.16)

and boundary conditions:

V (x,y,τ) =

0, as (x,y)→ (−∞,−∞)

ε1ex+rT−σ2T
2 +σ2τ

2 + ε2ey+rT− β2T
2 + β2τ

2 −E, as (x,y)→ (∞,∞).

(5.5.17)

Next we find the solution of (5.5.15) subject to conditions (5.5.16)-(5.5.17) by

using the Laplace transform of the Liouville-Caputo fractional derivative [57, 88],

given as

L[V (x,y,τ)] = 1
s max{ε1ex+rT−σ2T

2 + ε2ey+rT− β2T
2 −E,0}+ 1

sλ
L
[

σ2

2
∂ 2V
∂x2 + β 2

2
∂ 2V
∂y2 + ∂ 2V

∂x∂yρσβ

]
.

(5.5.18)
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By using the inverse Laplace transformation in (5.5.18), we obtain

V (x,y,τ) =L−1
[

1
s

max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0}+

1
sλ

L
[

σ2

2
∂ 2V
∂x2 +

β 2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσβ

]] (5.5.19)

Further, by using Homotopy perturbation method [31, 32], we construct a real

valued homotopy V (x,y,τ, p) defined on (−∞,∞)× (−∞,∞)× [0,T ]× [0,1] which

satisfies the following

(1− p)(V (x,y,τ, p)−V0(x,y,τ))+ p(V (x,y,τ, p)−V (x,y,τ)) = 0 (5.5.20)

where p ∈ [0,1] is an impending parameter and V0 is the initial approximation [4],

defined as V0(x,y,τ) =V (x,y,0)+ τλ e(x+y). Substituting in (5.5.20), we have

V (x,y,τ, p) =max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0}+(1− p)τλ e(x+y)+

p
(

L−1
[

1
sλ

L
[

σ2

2
∂ 2V
∂x2 +

β 2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσβ

]])
.

(5.5.21)

The solution of the time-fractional Black-Scholes equation (5.5.15) with initial and

boundary conditions (5.5.16) and (5.5.17) can be expressed as

V (x,y,τ, p) =
∞

∑
k=0

pk
θk(x,y,τ)

=max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0}+(1− p)τλ e(x+y)+

p
(

L−1
[

1
sλ

L
[

σ2

2

∞

∑
k=0

pk ∂ 2θk

∂x2 +
β 2

2

∞

∑
k=0

pk ∂ 2θk

∂y2 +
∞

∑
k=0

pk ∂ 2θk

∂x∂y
ρσβ

]])
.

(5.5.22)

By comparing correponding powers of p

θk(x,y,τ) =


max{ε1ex+rT−σ2T

2 + ε2ey+rT− β2T
2 −E,0}+ τλ e(x+y), k = 0

−τλ e(x+y)+L−1
[

1
sλ

L
[

σ2

2
∂ 2θ0
∂x2 + β 2

2
∂ 2θ0
∂y2 + ∂ 2θ0

∂x∂yρσβ

]]
, k = 1

−τλ e(x+y)+L−1
[

1
sλ

L
[

σ2

2
∂ 2θk−1

∂x2 + β 2

2
∂ 2θk−1

∂y2 +
∂ 2θk−1
∂x∂y ρσβ

]]
, k ≥ 2.

(5.5.23)
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For k ≥ 1, the general form of (5.5.23) can be written as

θk(x,y,τ) =
τkλ

Γ(kλ +1)

((
σ2

2

)k

max{ε1ex+rT−σ2T
2 ,0}+

(
β 2

2

)k

max{ε2ey+rT− β2T
2 ,0}

)
+

τ(k+1)λ Γ(λ +1)
Γ((k+1)λ +1)

e(x+y)
(

σ2

2
+

β 2

2
+ρσβ

)k

− τkλ Γ(λ +1)
Γ(kλ +1)

e(x+y)
(

σ2

2
+

β 2

2
+ρσβ

)k−1

.

(5.5.24)

The solution of (5.5.15) is given as

V (x,y,τ, p) = max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0}+ τ
λ e(x+y)+

∞

∑
k=0

p(k+1)
(

τ(k+1)λ

Γ((k+1)λ +1)

((
σ2

2

)k+1

max{ε1ex+rT−σ2T
2 ,0}+(

β 2

2

)k+1

max{ε2ey+rT− β2T
2 ,0}

)
+

τ(k+2)λ Γ(λ +1)
Γ((k+2)λ +1)

e(x+y)
(

σ2

2
+

β 2

2
+ρσβ

)k+1

− τ(k+1)λ Γ(λ +1)
Γ((k+1)λ +1)

e(x+y)
(

σ2

2
+

β 2

2
+ρσβ

)k)
.

(5.5.25)

For p→ 1, the above equation becomes

V (x,y,τ) =V (x,y,τ,1) = max{ε1ex+rT−σ2T
2 + ε2ey+rT− β2T

2 −E,0}+ τ
λ e(x+y)+

∞

∑
k=0

(
τ(k+1)λ

Γ((k+1)λ +1)

((
σ2

2

)k+1

max{ε1ex+rT−σ2T
2 ,0}+(

β 2

2

)k+1

max{ε2ey+rT− β2T
2 ,0}

)
+

τ(k+2)λ Γ(λ +1)
Γ((k+2)λ +1)

e(x+y)
(

σ2

2
+

β 2

2
+ρσβ

)k+1

− τ(k+1)λ Γ(λ +1)
Γ((k+1)λ +1)

e(x+y)
(

σ2

2
+

β 2

2
+ρσβ

)k)
.

(5.5.26)

This is the required approximate analytical solution of time-fractional Black-Scholes

equation when the underlying financial asset is estimated using a stochastic volatil-

ity model.
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5.6 Numerical Demonstration and Discussion

The performance of explicit solution (5.5.26) on the option price V (x,y, t) on the

basis of assumed parameters as given in Table5.1, is given in Fig.5.1 to Fig.5.3.

For τ = 0: −2 ≤ x ≤ 5 and −5 ≤ y ≤ 5, the option value V is zero but V increases

exponentially when y≥ 5. Also for τ = 0.5, and 1: −2≤ x≤ 4 and −5≤ y≤ 5, the

option value V is zero but when x ≥ 4 and y ≥ 5, V increases exponentially, refer

to Fig.5.1. According to Fig.5.2, for 0 ≤ τ ≤ 1 and 0 ≤ y ≤ 2, the option value V

Parameters Symbol Value
Strike price of the option E 100
Risk-free interest rate r 5%
Maturity time of the option (years) T 1
Volatility of the underlying asset S σ 0.6
Correlation ρ 0.8
Brownian motion X2(t) coefficient β 0.4
Fractional-time derivative order λ 0.9
Weight of asset price S ε1 2
Weight of volatility σ ε2 1

Table 5.1: Selection of parameters

is zero when x = 0,2,4,8, and V increases exponentially when y ≥ 3 but also as

x tends from 0 to 8 and for τ = 0, the option value V converges to zero. Next,

for 0 ≤ τ ≤ 1 and 0 ≤ x ≤ 3, the option value V is zero when y = 0,2,4,8, and V

increases exponentially when x ≥ 3 but also as y tends from 0 to 8 and for x = 0,

the option value V converges to zero, see Fig.5.3.
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Figure 5.1: Performance of explicit solution on the option price V (x,y,τ) at τ = 0,0.5,1
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5.7 Conclusion

We have derived the generalized Black-Scholes differential equation which give

price of European option when a stochastic volatility model may approximate the

underlying asset. This problem is relevant and driven when high-frequency data

in the prescribed financial market is considered. Also by integrating the risk-

neutral information measure, we have derived the risk-neutral probability density

function of stock price and volatility, as the solution of minimizing Kullback relative

entropy. We have applied Laplace transform homotopy perturbation method for

the approximate analytical solution of the desired Black-Scholes equation where

time derivative is assumed as a Liouville-Caputo time fractional derivative. This

approach will help to study the financial behavior of the generalized problem.



Chapter 6

Quanto-Option Black-Scholes Model

Using Relative Information

6.1 Introduction

In the preceding chapter, we have studied the Black-Scholes option pricing

model with stochastic volatility using information theoretic approach. In the present

chapter, we have extended that study when the number of underlying assets is

two and as a result obtain a two-dimensional parabolic partial differential equa-

tion, refer to [97].

Over the past 20 years, the main focus of research has centered on an effec-

tive computational approach to the multi-asset option pricing model [42, 97]. The

quanto option pricing model is a sort of multi-asset option model, a cross-currency

derivative approach in which the payoff of the asset is converted into another cur-

rency at a pre-specified rate at the option’s maturity. It is an important model for

pricing financial derivatives and the numerical solutions of this two-dimensional

Black-Scholes equation is significant from theoretical as well as practical aspects.

Many researchers have worked on the information theoretic approach to ex-

The work reported in the present chapter has been published in the paper entitled Approximate-
Analytical Solution to the Information Measure’s Based Quanto Option Pricing Model in Chaos, Soli-
tons and Fractals: the interdisciplinary journal of Non-linear Science, and Non-equilibrium and Complex
Phenomena, 2021.
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amine the aspect of volatility in the financial sector [6, 7, 28]. In the preceding

chapter by using the minimization of the Kullback measure of relative information,

we have worked on information-theoretic measure approach to derive the Black-

Scholes option pricing model with stochastic volatility. In this chapter, by using

the information theoretic approach we obtain a two-dimensional parabolic partial

differential equation, a Quanto-option Black-Scholes equation, where the number

of underlying assets is two, refer to [97]. Also, we apply the entropy dynamics of

multi-asset to model the European options price and for this, we have derived the

risk-neutral probability density functions of the multi-asset option price within the

information-theoretic dynamic formalism. In addition, modeled as a Kolmogorov-

backward equation, we specify how the probability function changes over a period

of time.

The chapter is organized as follows: In Section 6.2, we briefly outline the dy-

namics of the two asset option prices and derive the risk-neutral probability func-

tion by integrating the risk-neutral information measure. In Section 6.3, the Quanto

option Black-Scholes equation is derived. The approximate analytical solution

of the derived Black-Scholes equation is carried out in Section 6.4 by using the

Laplace Homotopy perturbation method [88]. Section 6.5 illustrates the perfor-

mance of the model numerically and Section 6.6 concludes the chapter.

6.2 Entropy Probabilistic Dynamics of Quanto-Option

In finance, the simplest model of the asset price is lognormal distribution. We

consider S1 as the foreign asset price, and S2 as the foreign currency exchange

rate against the domestic asset price with dynamics of S1 and S2 as

f (S1) = log(S1) (6.2.1)

f (S2) = log(S2). (6.2.2)

Here, we consider the case of white noise in the financial sector, and therefore

we take the scale invariance as

P( f (λx)) = P( f (x)) (6.2.3)
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where P(f) stands for expected power of the function f ; λ is a scaling factor and

x is an arbitrary variable. Also, the probability densities of (6.2.1) and (6.2.2) are

invariant under the scaling transformation.

Next, we consider a change in S1 by using Taylor’s expansion up to second-order

accuracy as

log
Ṡ1(t)
S1(t)

≈ dS1(t)
S1(t)

− 1
2

(
dS1(t)
S1(t)

)2

(6.2.4)

and similarly, change in S2 as

log
Ṡ2(t)
S2(t)

≈ dS2(t)
S2(t)

− 1
2

(
dS2(t)
S2(t)

)2

(6.2.5)

where, Ṡ1(t) = S1(t)+dS1(t) and Ṡ2(t) = S2(t)+dS2(t) stand for the stock prices S1

and S2, repectively at time t +dt. Further, changes in two underlying asset prices

S1 and S2 can be defined by considering that each asset price follows a geometric

Brownian motion as
dS1(t)
S1(t)

= µ1dt +σ1dX1(t) (6.2.6)

dS2(t)
S2(t)

= µ2dt +σ2dX2(t) (6.2.7)

where µ1,µ2 ∈ (−∞,∞) are growth constants and σ1 is the volatility of S1 and σ2 is

the volatility of S2, and the two Brownian motions X1(t) and X2(t) satisfy

E(dX1) = E(dX2) = 0, and E(dX2
1 ) = E(dX2

2 ) = dt,

and are correlated with correlation coefficient ρ, that is

E(dX1(t)dX2(t)) = ρdt. (6.2.8)

By squaring (6.2.6) and (6.2.7), and for i = 1,2, dX2
i → dt as dt→ 0, we get

(
dS1(t)
S1(t)

)2

= σ
2
1 dt (6.2.9)

(
dS2(t)
S2(t)

)2

= σ
2
2 dt. (6.2.10)

Using (6.2.6), (6.2.9) in (6.2.4), and (6.2.7), (6.2.10) in (6.2.5) respectively, we
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obtain the information pertaining to change in prices S1 and S2:

log
Ṡ1(t)
S1(t)

≈ µ1dt +σ1dX1(t)−
1
2

σ
2
1 dt (6.2.11)

log
Ṡ2(t)
S2(t)

≈ µ2dt +σ2dX2(t)−
1
2

σ
2
2 dt (6.2.12)

This information is applicable to dynamic variables S1 and S2 and is implemented

in the form of constraints, where higher-order terms of dt tend to zero.

Next, assigning the normal distribution of the log price S1 as PS1(logṠ1|logS1) and

log price S2 as PS2(logṠ2|logS2) require minimizing the Kullback measure of relative

information [40], which are defined as:

KS1(P||Q) =
∫

PS1(logṠ1|logS1) log
PS1(logṠ1|logS1)

QS1(logṠ1|logS1)
d logṠ1 (6.2.13)

KS2(P||Q) =
∫

PS2(logṠ2|logS2) log
PS2(logṠ2|logS2)

QS2(logṠ2|logS2)
d logṠ2 (6.2.14)

where QS1(logṠ1|logS1) and QS2(logṠ2|logS2) are the prior probability distributions

corresponding to underlying assets S1 and S2, respectively. However, instead of

minimizing the Kullback measure of relative entropy K(P||Q), we will maximize

−K(P||Q).

Subject to normalization factor N as defined below, and (6.2.11) as the prior

information constraint, we obtain the transition probability of the asset price S1 as

PS1(logṠ1|logS1) =
e−

ζ

2

(
log Ṡ1

S1

)2
+η

(
log Ṡ1

S1

)
N(ζ ,η , logS1)

, (6.2.15)

or

PS1(logṠ1|logS1) =
e
− 1

2σ2
1 dt

(
logṠ1−(logS1+µ1dt+σ1dX1(t)− 1

2 σ2
1 dt)
)2

N(ζ ,η , logS1)
(6.2.16)

where normalization factor N(ζ ,η , logS1)=
∫

e−
ζ

2

(
log Ṡ1

S1
−η

ζ

)2

d logṠ1, and ζ =(σ2
1 dt)−1,

η = 1
2

(2µ1
σ2

1
−1
)

are Lagrange multipliers corresponding to the constraint (6.2.11).

Similarly, for the case of asset price S2 with (6.2.12) as the prior information con-
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straint, we obtain the transition probability function of the asset price S2 as

PS2(logṠ2|logS2) =
e
− 1

2σ2
2 dt

(
logṠ2−(logS2+µ2dt+σ2dX2(t)− 1

2 σ2
2 dt)
)2

N(λ ,ξ , logS2)
(6.2.17)

where normalization factor N(λ ,ξ , logS2) =
∫

e−
λ

2

(
log Ṡ2

S2
− ξ

λ

)2

d logṠ2, and

λ = (σ2
2 dt)−1, ξ = 1

2

(2µ2
σ2

2
− 1
)

are Lagrange multipliers corresponding to the con-

straint (6.2.12).

Next by making the transformation from log price back to asset price S1 as

PS1(Ṡ1|S1) =
1
Ṡ1

P(logṠ1|logS1) (6.2.18)

and from log price back to asset price S2 as

PS2(Ṡ2|S2) =
1
Ṡ2

P(logṠ2|logS2), (6.2.19)

the probability of asset price S1 is given by

PS1(Ṡ1|S1) =
e
− 1

2σ2
1 dt

(
logṠ1−(logS1+µ1dt+σ1dX1(t)− 1

2 σ2
1 dt)
)2

N(ζ ,η , logS1) Ṡ1
(6.2.20)

and for S2 is given by

PS2(Ṡ2|S2) =
e
− 1

2σ2
2 dt

(
logṠ2−(logS2+µ2dt+σ2dX2(t)− 1

2 σ2
2 dt)
)2

N(λ ,ξ , logS2) Ṡ2
(6.2.21)

Equ. (6.2.20)-(6.2.21) are the log-normal distributions for a very small change in

time interval dt in option price S1 and S2 respectively.

Next, we simply estimate the option’s value at maturity by its expected payoff by

using the risk-neutral measure. With r1 as a domestic risk-free rate and r2 as the

foreign risk-free rate, the risk-neutrality constraints are given as

µ1 = r1−d1, (6.2.22)

µ2 = r2−d2 (6.2.23)

where, d1 = r1 − r2 + d + σ1σ2ρ and d2 = r2, with d as the dividend constant.
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The risk-neutral probability function of stock price S1 by imposing the constraint

(6.2.22) is

P(logṠ1|logS1) =
e
− 1

2σ2
1 dt

(
logṠ1−(logS1+(r1−d1)dt+σ1dX1(t)− 1

2 σ2
1 dt)
)2

N(ζ ,η , logS1)
(6.2.24)

and the risk-neutral probability density of asset price S2 by imposing the constraint

(6.2.23) is

P(logṠ2|logS2) =
e
− 1

2σ2
2 dt

(
logṠ2−(logS2+(r2−d2)dt+σ2dX2(t)− 1

2 σ2
2 dt)
)2

N(λ ,ξ , logS2)
. (6.2.25)

By using the risk-neutral probability to value the European call and put option, with

E as the strike price, the expected payoff for the call option at maturity, denoted

by VC, is given as

VC(S1,S2,T ) = max{αS1 +βS2−E,0} (6.2.26)

and the expected payoff at the maturity for a put option, denoted by VP, is given

as

VP(S1,S2,T ) = max{E− (αS1 +βS2),0}; (6.2.27)

where α and β are the constant coefficients for the asset prices S1 and S2, re-

spectively.

Next, we look into the aspect how does the probability distribution change over

time which comes out to be the Kolmogorov-backward equation. We use entropic

instant which incorporates both the asset prices, defined as

p(logṠ1, logṠ2, ṫ) =
∫ [

p(logS1, logS2, t) P(logṠ1|logS1, logṠ2|logS2)

]
dlogS1(t) dlogS2(t)

(6.2.28)

where p(logS1, logS2, t) and p(logṠ1, logṠ2, ṫ) are distributions representing the in-

formation available at an instant time t and the next instant time ṫ = t +dt, respec-

tively. We have a generalized Kolmogorov-backward equation for the probability

density p(logS1, logS2, t), a differential form of (6.2.28) given as
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∂

∂ t
p(logS1, logS2, t) =−

(
µ1−

σ2
1

2

)
∂

∂ logS1
p(logS1, t)−

(
µ2−

σ2
2

2

)
∂

∂ logS2
p(logS2, t)

− 1
2

[
σ

2
1

∂ 2

∂ (logS1)2 p(logS1, t)+σ
2
2

∂ 2

∂ (logS2)2 p(logS2, t)
]

−ρσ1σ2
∂ 2

∂ logS1 ∂ logS2
p(logS1, logS2, t).

(6.2.29)

This will be used for the derivation of the Quanto option Black-Scholes equation

in the next section.

6.3 Derivation of Quanto-Option Black-Scholes Equation

In order to derive the Black-Scholes equation of the quanto option, we begin

with the payoff equation as

V (logS1, logS2,E, t) =
∫
(αS1 +βS2−E) P(logṠ1|logS1, logṠ2|logS2) dlogS1(ṫ) dlogS2(ṫ).

(6.3.1)

and the derivative of the value of an option with respect to time variable is given

as

∂

∂ tV (logS1, logS2,E, t) =
∫
(αS1 +βS2−E) ∂

∂ t P(logṠ1|logS1, logṠ2|logS2) dlogS1(ṫ) dlogS2(ṫ)

(6.3.2)

Next, by using (6.2.29) in (6.3.2), we get

∂V
∂ t

=
∫
(αS1 +βS2−E)

{[
−
(
(r1−d1)−

σ2
1

2

)
∂

∂ logS1
P(logṠ1|logS1)

]
+

[
−
(
(r2−d2)−

σ2
2

2

)
∂

∂ logS2
P(logṠ2|logS2)

]
− 1

2

[
σ

2
1

∂ 2

∂ (logS1)2 P(logṠ1|logS1)+σ
2
2

∂ 2

∂ (logS2)2 P(logṠ2|logS2)

]
−ρσ1σ2

∂ 2

∂ logS1 ∂ logS2
P(logṠ1|logS1, logṠ2|logS2)

}
dlogS1(ṫ) dlogS2(ṫ).
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This implies

∂V
∂ t

=−
(
(r1−d1)−

σ2
1

2

)
∂V

∂ logS1
−

σ2
2

2
∂ 2V

∂ (logS1)2 −
(
(r2−d2)−

σ2
2

2

)
∂V

∂ logS2

−
σ2

2
2

∂ 2V
∂ (logS2)2 −

∂ 2V
∂ logS1∂ logS2

ρσ1σ2,

or

∂V
∂ t +

σ2
1 S2

1
2

∂ 2V
∂S2

1
+

σ2
2 S2

2
2

∂ 2V
∂S2

2
+(r1−d1)S1

∂V
∂S1

+(r2−d2)S2
∂V
∂S2

+ ∂ 2V
∂S1∂S2

ρσ1σ2S1S2 = 0

(6.3.3)

Now substitute B = Ve−r1T+r1t , which stands for both put and call options, in

(6.3.3); we have the required partial differential equation

∂B
∂ t +

σ2
1 S2

1
2

∂ 2B
∂S2

1
+

σ2
2 S2

2
2

∂ 2B
∂S2

2
+(r1−d1)S1

∂B
∂S1

+(r2−d2)S2
∂B
∂S2

+ ∂ 2B
∂S1∂S2

ρσ1σ2S1S2− r1B = 0.

(6.3.4)

For ρ ∈ (−1,1), the above equation is a two-dimensional Black-Scholes equation

of the quanto option, second-order partial differential equation and we need to

impose appropriate boundary conditions to this problem to solve the equation for

both the call and put options.

6.4 Approximate Analytical Solution

Here we find the approximate analytical solution of (6.3.4) by the Laplace trans-

form homotopy perturbation method, where fractional derivatives are described

in the sense of the Liouville-Caputo fractional derivative. Consider (6.3.4), for

S1,S2 ∈ [0,∞) and t ∈ [0,T ]

∂B
∂ t +

σ2
1 S2

1
2

∂ 2B
∂S2

1
+

σ2
2 S2

2
2

∂ 2B
∂S2

2
+(r1−d1)S1

∂B
∂S1

+(r2−d2)S2
∂B
∂S2

+ ∂ 2B
∂S1∂S2

ρσ1σ2S1S2− r1B = 0

(6.4.1)

with the terminal condition:

B(S1,S2,T ) = max{αS1 +βS2−E,0} (6.4.2)
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and boundary conditions:

B(S1,S2, t) =

0, as (S1,S2)→ (0,0)

αS1 +βS2−Ee−r1(T−t), as (S1,S2)→ (∞,∞).
(6.4.3)

To analyse (6.4.1) we use the transformations

x = loge(S1)− (r1−d1)t +
σ2

1 t
2

, (6.4.4)

y = loge(S2)− (r2−d2)t +
σ2

2 t
2

(6.4.5)

This gives x,y ∈ (−∞,∞) and t ∈ [0,T ] for S1,S2 ∈ [0,∞), (6.4.1) transforms to

∂B
∂ t

+
σ2

1
2

∂ 2B
∂x2 +

σ2
2

2
∂ 2B
∂y2 +

∂ 2B
∂x∂y

ρσ1σ2− r1B = 0 (6.4.6)

with the terminal condition:

B(x,y,T ) = max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0} (6.4.7)

and boundary conditions:

B(x,y, t) =

0, as (x,y)→ (−∞,−∞)

αex+(r1−d1)t−
σ2

1 t
2 +βey+(r2−d2)t−

σ2
2 t
2 −Ee−r1(T−t), as (x,y)→ (∞,∞).

(6.4.8)

Using V (x,y, t) = e−r1(T−t)B(x,y, t) for x,y ∈ (−∞,∞) and t ∈ [0,T ] in (6.4.6), we ob-

tain
∂V
∂ t

+
σ2

1
2

∂ 2V
∂x2 +

σ2
2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσ1σ2 = 0 (6.4.9)

with terminal condition:

V (x,y,T ) = max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0} (6.4.10)

and boundary conditions:

V (x,y, t) =

0, as (x,y)→ (−∞,−∞)

αex+(r1−d1)T−
σ2

1 t
2 +βey+(r2−d2)T−

σ2
2 t
2 −E, as (x,y)→ (∞,∞).

(6.4.11)
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Further, we transform the final boundary value problem to an initial boundary

value problem by changing the forward time variable from t to τ = T − t in (6.4.9),

and for x,y ∈ (−∞,∞) and τ ∈ [0,T ] we get

− ∂V
∂τ

+
σ2

1
2

∂ 2V
∂x2 +

σ2
2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσ1σ2 = 0 (6.4.12)

with an initial condition:

V (x,y,0) = max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0} (6.4.13)

and boundary conditions:

V (x,y,τ)=

0, as (x,y)→ (−∞,−∞)

αex+(r1−d1)T−
σ2

1 T
2 +

σ2
1 τ

2 +βey+(r2−d2)T−
σ2

2 T
2 +

σ2
2 τ

2 −E, as (x,y)→ (∞,∞).

(6.4.14)

Replacing ∂V
∂τ

by L λ
τ V , the Liouville-Caputo [41] type time-fractional derivative of

order λ ∈ (0,1], we have the subsequent fractional Black Scholes equation for

x,y ∈ (−∞,∞) and τ ∈ [0,T ], given by

L λ
τ V =

σ2
1

2
∂ 2V
∂x2 +

σ2
2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσ1σ2 (6.4.15)

with an initial condition:

V (x,y,0) = max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0} (6.4.16)

and boundary conditions:

V (x,y,τ)=

0, as (x,y)→ (−∞,−∞)

αex+(r1−d1)T−
σ2

1 T
2 +

σ2
1 τ

2 +βey+(r2−d2)T−
σ2

2 T
2 +

σ2
2 τ

2 −E, as (x,y)→ (∞,∞).

(6.4.17)

Next, we find the solution of (6.4.15) subject to conditions (6.4.16)-(6.4.17) by

using the Laplace transform of the Liouville-Caputo fractional derivative [57, 88],

given as

L[V (x,y,τ)] = 1
s max{αex+(r1−d1)T−

σ2
1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0}+ 1

sλ
L
[

σ2
1

2
∂ 2V
∂x2 +

σ2
2

2
∂ 2V
∂y2 + ∂ 2V

∂x∂yρσ1σ2

]
.

(6.4.18)
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By using the inverse Laplace transformation in (6.4.18), we obtain

V (x,y,τ) =L−1
[

1
s

max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0}+

1
sλ

L
[

σ2
1

2
∂ 2V
∂x2 +

σ2
2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσ1σ2

]] (6.4.19)

Further, by using Homotopy perturbation method [31, 32], we construct a real

valued homotopy V (x,y,τ, p) defined on (−∞,∞)× (−∞,∞)× [0,T ]× [0,1] and sat-

isfying the following

(1− p)(V (x,y,τ, p)−V0(x,y,τ))+ p(V (x,y,τ, p)−V (x,y,τ)) = 0 (6.4.20)

where p ∈ [0,1] is an impending parameter and V0 is the initial approximation,

defined as V0(x,y,τ) = V (x,y,0)+ τλ e(x+y), refer to [4]. Substitute this in (6.4.20),

we have

V (x,y,τ, p) =max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0}+(1− p)τλ e(x+y)+

p
(

L−1
[

1
sλ

L
[

σ2
1

2
∂ 2V
∂x2 +

σ2
2

2
∂ 2V
∂y2 +

∂ 2V
∂x∂y

ρσ1σ2

]])
.

(6.4.21)

The solution of the time-fractional Black-Scholes equation (6.4.15) with initial and

boundary conditions (6.4.16) and (6.4.17) can be expressed as

V (x,y,τ, p) =
∞

∑
k=0

pk
θk(x,y,τ)

=max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0}+(1− p)τλ e(x+y)+

p
(

L−1
[

1
sλ

L
[

σ2
1

2

∞

∑
k=0

pk ∂ 2θk

∂x2 +
σ2

2
2

∞

∑
k=0

pk ∂ 2θk

∂y2 +
∞

∑
k=0

pk ∂ 2θk

∂x∂y
ρσ1σ2

]])
.

(6.4.22)

By comparing correponding powers of p

θk(x,y,τ) =


max{αex+(r1−d1)T−

σ2
1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0}+ τλ e(x+y), k = 0

−τλ e(x+y)+L−1
[

1
sλ

L
[

σ2
1

2
∂ 2θ0
∂x2 +

σ2
2

2
∂ 2θ0
∂y2 + ∂ 2θ0

∂x∂yρσ1σ2

]]
, k = 1

−τλ e(x+y)+L−1
[

1
sλ

L
[

σ2
1

2
∂ 2θk−1

∂x2 +
σ2

2
2

∂ 2θk−1
∂y2 +

∂ 2θk−1
∂x∂y ρσ1σ2

]]
, k ≥ 2.

(6.4.23)
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For k ≥ 1, the general form of (6.4.23) can be written as

θk(x,y,τ) =
τkλ

Γ(kλ +1)

((
σ2

1
2

)k

max{αex+(r1−d1)T−
σ2

1 T
2 ,0}

+

(
σ2

2
2

)k

max{βey+(r2−d2)T−
σ2

2 T
2 ,0}

)
+

τ(k+1)λ Γ(λ +1)
Γ((k+1)λ +1)

e(x+y)
(

σ2
1

2
+

σ2
2

2
+ρσ1σ2

)k

− τkλ Γ(λ +1)
Γ(kλ +1)

e(x+y)
(

σ2
1

2
+

σ2
2

2
+ρσ1σ2

)k−1

.

(6.4.24)

The solution of (6.4.15) is given as

V (x,y,τ, p) = max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0}+ τ

λ e(x+y)+

∞

∑
k=0

p(k+1)
(

τ(k+1)λ

Γ((k+1)λ +1)

((
σ2

1
2

)k+1

max{αex+(r1−d1)T−
σ2

1 T
2 ,0}+

(
σ2

2
2

)k+1

max{βey+(r2−d2)T−
σ2

2 T
2 ,0}

)
+

τ(k+2)λ Γ(λ +1)
Γ((k+2)λ +1)

e(x+y)
(

σ2
1

2
+

σ2
2

2
+ρσ1σ2

)k+1

− τ(k+1)λ Γ(λ +1)
Γ((k+1)λ +1)

e(x+y)
(

σ2
1

2
+

σ2
2

2
+ρσ1σ2

)k)
.

(6.4.25)

For p→ 1, the above equation becomes

V (x,y,τ) =V (x,y,τ,1) = max{αex+(r1−d1)T−
σ2

1 T
2 +βey+(r2−d2)T−

σ2
2 T
2 −E,0}+

τ
λ e(x+y)+

∞

∑
k=0

(
τ(k+1)λ

Γ((k+1)λ +1)

((
σ2

1
2

)k+1

max{αex+(r1−d1)T−
σ2

1 T
2 ,0}+

(
σ2

2
2

)k+1

max{βey+(r2−d2)T−
σ2

2 T
2 ,0}

)
+

τ(k+2)λ Γ(λ +1)
Γ((k+2)λ +1)

e(x+y)
(

σ2
1

2
+

σ2
2

2
+ρσ1σ2

)k+1

− τ(k+1)λ Γ(λ +1)
Γ((k+1)λ +1)

e(x+y)
(

σ2
1

2
+

σ2
2

2
+ρσ1σ2

)k)
.

(6.4.26)

This is the required approximate analytical solution of the time-fractional two-

dimensional Black-Scholes quanto option pricing model.
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6.5 Numerical Demonstration and Discussion

In this section, we demonstrate the performance of the solution (6.4.26) on the

basis of the parameters as given in Table 6.1; V (x,y,τ) is the price of the quanto

option say, in INR, S1 is the price of foreign risk asset say, in USD, S2 is the

exchange rate of the foreign currency against the domestic one. We observed

Quanto Options
Parameters Symbol Value
Strike price of the option price S1 E 100
Domestic risk-free interest rate r1 8%
Foreign risk-free interest rate r2 4%
Maturity time of the option (years) T 1
Volatility of the underlying asset S1 σ1 0.2
Volatility of the underlying asset S2 σ2 0.1
Correlation of asset to domestic currency ρ 0.2
Dividend d 3%
Fractional-time derivative order λ 0.9
Weight of asset S1 α 2
Weight of asset S2 β 1

Table 6.1: Selection of parameters

that as x and y increases, option value V increases exponentially at τ = 0,0.5,1

refer to Fig.6.1. For 0 ≤ τ ≤ 1 and 0 ≤ y ≤ 2, the option value V is zero when

−1 ≤ x ≤ 4, and V increases exponentially when x ≥ 4. But when y increases

from 8 to 10, option value V becomes non-zero and rises exponentially with a

higher increasing rate. Also, when y increases from 16 to 100, and τ becomes

more dominating for V as compared to x, i.e. as τ increases V increases, see

Fig.6.2. For 0 ≤ τ ≤ 1 and 0 ≤ x ≤ 2, the option value V is zero when −1 ≤ y ≤ 4,

and V increases exponentially when y ≥ 4. But when x increases from 8 to 10,

option value V becomes non-zero and rises exponentially with a further higher

increasing rate. Also, when x increases from 16 to 100, and τ becomes more

dominating for V as compared to y, i.e. as τ increases V increases, see Fig.6.3.
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Figure 6.1: Performance of explicit solution on the option price V (x,y,τ) at τ = 0,0.5,1
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Figure 6.2: Performance of explicit solution on the option price V (x,y,τ) for different
values of y.
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Figure 6.3: Performance of explicit solution on the option price V (x,y,τ) for different
values of x.
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6.6 Conclusion

We have derived the Black-Scholes differential equation of the quanto option

which gives the price of a European option when underlying financial assets price

follows a geometric Brownian motion. Also by integrating the risk-neutral infor-

mation measure, we have derived the risk-neutral probability density functions

of multi-assets price, as the solution of minimizing Kullback relative entropy. We

have applied Laplace transform homotopy perturbation method for the approxi-

mate analytical solution of the desired Black-Scholes equation where time deriva-

tive is assumed as a Liouville-Caputo time-fractional derivative. Numerical results

for the assumed parameters demonstrate that the method is effective and this

approach will help to study the financial behavior of the quanto option pricing

problems.





Summary and Future Scope Of The

Work

Here we summarize the work which has been presented in this thesis and also

provide some scope for further investigations that can be performed based on the

results reported.

Summary of the Work Reported

Entropy can be used as an alternative for volatility in the financial sector. The

decisive advantage of this approach resides in its ability to capture disorder or

uncertainty in the financial system without putting any constraint on the proba-

bility distribution function. In Chapter 2, we have modeled implied volatility as

a linear combination of historical volatility and entropy and have found that the

model was heavily dependent on entropy. Entropy studies the behavior of trends

in the financial sector. For instance, sessions with several regular trends tend to

be less entropic than those which are having relatively fewer occurrences. We

have considered seven different estimators of Shannon entropy; Tsallis entropy

and Renyi entropy for various values of their parameters; and also Approximate

entropy and Sample entropy to characterize the volatility in stock market. We

have done in-depth empirical analysis among generalized information theoretic

measures and find that Sample entropy measures more the regularity of time se-

ries rather than its complexity; and in comparison with Approximate entropy, a

similar class, Sample entropy is more consistent measure and provides improved

analysis of the stock market regularity.

Also, we have taken into account the information theoretic concepts such as en-
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tropy, conditional entropy and mutual information and their dynamic extensions for

studying the association among the randomness of different financial time series.

We have also checked some equivalence between information theoretic mea-

sures and statistical measures normally employed to capture the randomness in

financial time series.

In Chapter 3, we have examined different forecasting models in terms of their

performance on a time series which is considered complex to predict. We have

compared the performance of three models such as ARIMA, Holt-Winters and

LSTM by applying Kullback measure of relative information, and find that tradi-

tional model ARIMA performs well on NIFTY 50 stock index monthly data and the

performance of Holt-Winters is better for prediction of Dow Jones Industrial Aver-

age and S&P BSE SENSEX index data, in comparison with LSTM, an application

of deep learning.

In Chapter 4, we have considered the problem of portfolio diversification by

maximizing the entropy of the asset allocation. Further, since Shannon entropy

can be considered as an alternative measure to the volatility (variance), so we

have employed this concept for portfolio optimization by replacing the minimiza-

tion of the variance of allocation with the minimization of entropy. This aspect has

been studied using various measures of entropy. Information theoretic measures

portfolios are generated by placing the specific measure in the objective function.

Based on the empirical findings from the performance measures such as diversity

index and the award-risk ratio, the selection of a well-diversified entropy portfolio

model with the given level of return and minimum risk is carried out.

In Chapter 5, we have extended the concept of information theory to option

price modeling. We have derived the risk-neutral measures of the stock options

price and volatility by incorporating a minimization of the Kullback measure of

relative information under a specified constraint. We have obtained a second-

order parabolic partial differential equation, the generalized Black-Scholes equa-

tion based on the theoretical analysis when the underlying financial asset is esti-

mated using a stochastic volatility model. To investigate the approximate analyti-

cal solution of this generalized Black-Scholes equation we have used the Laplace

transform homotopy perturbation method.

In Chapter 6, by using the information theoretic approach we have obtained

a two-dimensional parabolic partial differential equation, a Quanto-option Black-
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Scholes equation, where the number of underlying assets is two. Also, we have

applied the entropy dynamics of multi-asset to model the European options price

and for this, we have derived the risk-neutral probability density functions of the

multi-asset option price within the information-theoretic dynamic formalism. In

addition, modeled as a Kolmogorov-backward equation, we specify how the prob-

ability function changes over a period of time. The numerical results for the as-

sumed parameters demonstrate that the method is effective and this approach

will help to study the financial behavior of the quanto option pricing problems.

Further Scope of the Work

While working on this thesis many ideas have emanated which can be useful

for further study. The concept of stochastic entropy and extropy [61] in financial

markets is still untouched. Stochastic entropy can be used as a substitute for

stochastic volatility and this can change the entire approach of research in com-

plex financial structures. The literature on extropy measure [43] and its relation

with the Shannon entropy is available. The applications of extropy measures and

its generalizations can be explored to discuss the trend and randomness in finan-

cial market.

Also, we can go beyond the Markowitz mean-variance framework and can ac-

count for higher moments too. By minimizing entropy measures, one can aim to

get distribution as far away from the Gaussian as possible, and this is often best

realized by introducing more and more constraints in the portfolio optimization

problems.

The concept of information measures like Shannon entropy and one paramet-

ric entropy, such as Renyi and Tsallis entropies have been studied by many re-

searchers, but still, it can be explored further for various two parametric entropy

measures. The non-linear fluctuations in a variety of markets (i.e. stock, future,

currency, commodity and cryptocurrency) require powerful tools like entropy for

extracting information from the market that is otherwise not visible by standard

statistical methods. Further, we can extend the information theoretic approach

used in this thesis to a more generalized Black-Scholes European and American

option pricing and other path-dependent option models.
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