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ABSTRACT 
 
 
 
 

To improve the software quality, the software is generally tested to find out any bugs 

or a simple reliability test. A reliable software defect checking mechanism is a 

leading research topic, in the era of dependency on software’s for several tasks. 

Many researchers used different techniques of deep learning algorithm such as CNN 

i.e convolutional neural networks, and deep belief networks for prediction of 

software defect. these algorithms failed to provide higher prediction accuracies. To 

overcome the issues a new algorithm for software defect prediction is required for 

higher accuracy and other parameters like F- and G-measure and specifically 

important parameter is Matthews correlation coefficient (MCC) measure. In this 

paper, a new modified CNN algorithm is proposed, which combines the CNN based 

models into one and apply concatenate algorithm under SVM i.e. support vector 

machine classifier. The results clearly indicate that the proposed algorithm improves 

the parameters and thus is a highly dependable and reliable method for software 

defect prediction. 
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CHAPTER 1 
 
 

INTRODUCTION 
 

 
 

A product imperfection is a blunder, bug, defect, shortcoming, breakdown or 

mix-ups in programming that makes  an incorrect or unpredicted result. Flaws 

are basic properties of a framework. They show up from structure or assembling, 

or outer condition. Programming blemishes are modifying mistakes which cause 

distinctive execution contrasted and expectation. The dominant parts of the 

issues are from source code or condescend, some of them are from the off base 

code producing from compilers.  

For programming engineers and customers, programming issues are a peril issue. 

Programming abandons not just decline programming quality, increment costing 

yet additionally defer the advancement plan. Programming flaw foreseeing is 

proposed to illuminate such a difficulty.  

In mining software repositories, many different approaches have been developed 

to predict the number and location of future bugs in the source code. These 

predictions can help a project manager to quantitatively plan and steer the project 

according to the expected number of bugs and their bug-fixing effort. But bug 

prediction can be helpful in a qualitative way whenever the defect location is 

predicted: testing efforts can then be accomplished with a focus on the predicted 

bug locations. All of the above-mentioned approaches use history data of a 

software project to predict defects in the second release. Features (or variables) 

are taken from raw data. Then these features (learning period) are used together 

with the goal values (i.e., bug or no bug) to learn a prediction model. To assess 

such a model, it is fed with data from another period, and the predicted values are 

examined with the observed ones helping to an accuracy measure. 

 The downside of these approaches is its temporally coarse evaluations. 

Generally, a bug prediction algorithm is assessed, in terms of correctness, in only 

one or different points in time. These selective (insular) analyses make 

generalizations of the prediction methods difficult: it postulates that the evolution 

of a project and its data is stable over time. In the proposed work the terminology 
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within project implies that we can find defect within two versions of same 

project which are mainly java based in your case, and can compare the accuracy 

of model within project versions.  

 

1.1 Overview  

 

The fault prediction dataset is a group of models and metrics of software systems 

and their histories. The aim of such a dataset is to permit people to evaluate 

different fault prediction approaches and to evaluate whether a new technique is 

an enhancement over existing ones. PROMISE, AEEEM, ReLink, MORPH, 

NASA, and SOFTLAB  are some of the defect datasets which are publically 

available to the user. In our project we had use the processes data set from the 

PROMISE repository. Your work is based on the some open source project 

which are developed using JAVA based programming methodology.   

At present the growth of software based system are rising from the previous 

years due to its advantage. On the other hand, the quality of the system is 

essential prior it is delivered to end in order to improve the efficiency and quality 

of software development, software faults can be predicted at early phase of life 

cycle itself. To predict the software faults a variety of data mining techniques can 

be used. 

Learning techniques are intended to determine whether software module has a 

higher fault hazards or not. In supervised learning data is extracted using the 

target class. If machine learning task is trained for each input with consequent 

target, it is called supervised learning, which will be able to provide target for 

any new input after adequate training. Targets expressed in some classes are 

called classification problem.  

 

1.2 Research Objective  

 

 The objective is to develop a model which improves the accuracy in term of 

various measures such as F-measure, G-measure and MCC-measure as compared 

to the exiting CNN based model [2].  The proposed model using the pre-

processed data set PSC [2] , this data set is passed in set of convolutional neural 

layers, which is a multi headed  structure of CNN layers, further max pooling 
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layers used with forward CNN layer along with dropout layer, flattering layer, 

dense layers and lastly a support vector machine (SVM) for classification of 

buggy and non-buggy data. This model is evolved by examining various 

permutation and combination over layers to reach the final architecture. The final 

architecture is supposed to give better results in term of accuracy of defect 

prediction in term of F-measure, G-measure and MCC-measure.  

 

1.3 Organization of Thesis  

 

The project report has been divided into five chapters. Each chapter deals with 

one component related to this thesis. Chapter 1 being introduction to this thesis, 

gives us the brief introduction about the project topic, thereafter chapter 2 tells 

about the project work carried out which further includes literature survey  

section. Following up is chapter 3 which tells about the proposed work carried 

out during the development of improved CNN based architecture. Chapter 4 

focuses on the implementation work carried out and the result generated during 

the process. In chapter 4 we also analyzed the results in tabular and in bar chart 

form. Final chapter, chapter 5, which is concludes the thesis and future scope of 

work. 
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CHAPTER 2 
 
 

RELATED WORK  
 
 
 

Various researchers had contributed in making defect prediction more accurate 

and precise. The model proposed [2] shows the three layer CNN model along 

with liner regression as classifier. The Three layer model [2] explained in a flow 

type architecture given below:  

 

 

Fig. 1:  Three layer CNN model [2] 

As we see in fig. 1 that after every convolution layer they have used a max 
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pooling layer along with other building blocks to get the desired output.   

The data set used is PSC data set [2] which is a processed data set from the 

original PROMISE repository.  

We can understand the approach adopted in model[2] via pictorial representation  

given below:  

 

 

 

Fig. 2:  Architecture used in Cong Pan CNN [2] 

 

2.1 Literature Survey   

 

In the literature survey, several techniques are found which are related to deep 

learning and machine learning for software defect prediction The software 

development life cycle for the most part incorporates investigation, plan, 

execution, test and production stages. [1] The testing stage ought to be worked 

viably so as to produce the without bug software to end clients. [2] Over the most 

recent two decades, academicians have taken an expanding enthusiasm for the 

software defect prediction issue, a few AI methods have been applied for 

progressively powerful prediction. [3] Software defect prediction is significant in 

software building. It utilizes the defects found in chronicled software modules to 

anticipate defects in new software modules, and gives choice help to arranging 

and procedure the board in software venture. AI (Artificial intelligence) is one of 

the center exploration bearings in the field of man-made brainpower and spreads 

numerous controls. [4] In the basic examination of the software based defect 

prediction algorithms, different AI techniques have been broadly contemplated 

and applied in various reference papers, and have been confirmed to acquire 
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great execution. During this period of AI and ML i.e machine learning, there are 

numerous of basic ongoing headways in Software Engineering domain.[5] 

Different software designing measurements are broke down due to bug detection 

in the software; negative effect is achieved and the necessary predictions can be 

made. The software Defect prediction is basically one such movement which is 

of incredible importance in improving the software quality which helps software 

designers and analyzers to concentrate on the modules which are bound to defect 

inclined.  

[6] Software defect prediction gives significant yields to software groups while 

adding to mechanical achievement. Experimental examinations in many research 

works have been directed on software defect prediction for both cross-venture 

and AI based undertaking defect prediction. [7] Be that as it may, existing 

examinations still can't seem to exhibit a strategy for anticipating the quantity of 

defects in a developed software. Software Quality is the most significant part of a 

software. Software Defect Prediction can legitimately influence quality and has 

accomplished noteworthy prevalence in most recent couple of years. [8] 

Defective software modules have a bad effect over software's quality prompting 

cost overwhelms, postponed courses of events and a lot of higher upkeep costs.  

[9] Mechanized software defect prediction is an importantly significant and basic 

action in the area of software development. In any case, present day software 

frameworks are naturally huge and complex with various corresponded 

measurements that catch various parts of the software segments. [10] This 

enormous number of corresponded measurements makes constructing a software 

defect prediction model extremely perplexing. Along these lines, recognizing and 

choosing a subset of measurements that upgrade the software defect prediction 

strategy's exhibition are a significant yet testing issue that has gotten little 

consideration in the writing. [11] The fundamental goal of this paper is to 

distinguish critical software measurements, to fabricate and assess an 

autonomous software defect prediction model. 
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A comparison has been done between the the existing model [2] and your 

proposed multi headed CNN model, comparison in tabular form is shown below:  

 

 Cong Pan CNN Model Multi headed proposed CNN 
Model 

Input layers 1 2 

Convolutional Layers    3   2 

Pooling layers    3   2 

  Activation function ReLU + sigmoid (last dense layer) ReLU + sigmoid (last dense layer) 

Classification Function Liner regression 
Function is used  

SVM classifier used  

   
Dropout Layers 1 3 

Concatenation Layers  not used Yes, 1 Layer used for 
concatenation  

 

Table 1: Comparison of  between Cong Pan CNN model and your Multi Headed 

CNN model 

 

2.2. Background Concepts  

 
In fig 3. A process is shown which is generally employed by researchers in 

previous work. The steps involve loading of software files, extracting features, 

training features as per bug or no bug using a suitable classifier. [14] The test 

sequences are then loaded on classifier which will further give output as buggy 

or clean software.  

 

 

Fig. 3: . Process to detect defect in software [1] 
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In fig. 1, CNN based architecture is shown. It consists of layers in which 

convolutional process is applied. There are several layers associated with CNN 

like pooling, softmax, maxpool layers. Depending on the level of classification 

one can activate or deactivate the layers are make them fully connected or 

partially connected. The pooling size can be defined and number of layers can be 

modified. There are several activation functions used. In this work, ReLu 

activation function is used. The pooling size controls the sparse connectivity in 

CNN. The accuracy of the model can be varied by the use of the parameters such 

as size, connectivity pooling layers, etc[2]. 

 

 2.2.1  Convolutional Neural Network 

 

 As summarized by Yoav Goldberg , “The CNN layer’s responsibility is to 

extract meaningful sub-structures that are useful for the overall prediction 

task at hand. A convolutional neural network is designed to identify 

indicative local predictors in a large structure, and to combine them to 

produce a fixed size vector representation of the structure, capturing the 

local aspects that are most informative for the prediction task at hand. In 

the NLP case the convolutional architecture will identify n-grams that are 

predictive for the task at hand, without the need to pre-specify an 

embedding vector for each possible n-gram.” The concepts used in 

Convolution Neural Network consist of various terminologies which are 

briefly defined as: 

 Convolution: Applying filter to a fixed size window is the task of 

convolution operation. 

 Convolution Filter: It is also known as convolution kernel. It is basically a 

matrix that is utilized for performing convolution operation. 

 Pooling: It is the process of combining the vectors obtained as a result of 

various convolution windows into a vector single one dimension. 

 Feature maps : The significance of number of feature maps is that it 

directly controls capacity and is dependent on count of available examples 

and complexity  of task.  
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Fig. 4:  Sample Convolutional Neural Network 

    

 2.2.2 Support Vector Machine (SVM) 

  

 It can be said that support Vectors are those data points that the margin 

pushes up against. In this the classifier is a separating hyper plane. The most 

“important” training points are the support vectors; they define the hyper 

plane.  

A Support Vector Machine (SVM) is a discriminative classifier formally 

defined by a separating hyper plane. In other words, given labeled training 

data (supervised learning), the algorithm outputs an optimal hyper plane 

which categorizes new examples. In two dimensional space this hyper plane is 

a line dividing a plane in two parts where in each class lay in either side. 

Let us assume that if all data is at least distance 1 from the hyper plane, then 

the following two constraints follow for a training set {(xi ,yi)} then: 

 

For support vectors, the inequality becomes an equality. 

This concept is used in locating the classifier the bug or no-bug in the defect 

prediction in software project over the time due to certain features, which are 

obtained as out data sets of  CNN model.  
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Fig 5: Diagram showing liner SVM 

 
For the instance of multidimensional space, SVM finds the hyperplane 

that amplifies the edge between two distinct classes. A couple of tests 

control the choice limit. There are just a couple of preparing tests that 

touch the choice limit. These are the ones that really control the choice 

limit and are known as help vectors. Here the help vectors are those 

specks that have been circumnavigated. One of the significant points of 

interest of utilizing SVM arrangement is that it performs very well on 

datasets having numerous traits, in any event, when there are only a 

couple of cases that are accessible for preparing process.  

  

 2.2.3 Confusion Matrix 

 

 It maps the relation between what the model has predicted and what the 

actual result should be as shown in fig 6. If the predicted class is positive 

and actual class is positive as well, then we get the true positive section. If 

the predicted class is positive but actual class is negative then we get false 

positive section, on similar bases if the actual class is positive but the 

predicted class in negative then it is false negative and if the actual class 

is negative and predicted class is also negative we get true negative 

section. 
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It's essential to comprehend the centrality of these measurements. 

Precision is a general proportion of right expectation, paying little mind to 

the class (positive or negative). The supplement of exactness is mistake 

rate or misclassification rate.  

 
 
 
Fig. 6:  Confusion Matrix 

 

 High review infers that not many positives are misclassified as negatives. 

High exactness suggests not many negatives are misclassified as 

positives. There's an exchange off here. In the event that model is 

fractional towards positives, we'll end up with high review however low 

exactness. It model favors negatives, we'll end up with low review and 

high exactness. 
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CHAPTER 3 
 
 

PROPOSED WORK  
 
 

 
To reach the proposed  multi headed CNN based architecture, various 

experiment were done to get higher accuracy model which can predict the defect 

in the java based project. Defect is predicted within project means we are 

comparing two or more versions of same project on basis of defect. It can be 

understood by observing the result tables.  

 

3.1 Problem Statement 

 

The problem statement is " To develop a CNN based architecture improve the 

accuracy of defect finding by minimizing the original data loss during the 

process, this accuracy to be measured in term of F-measure, G-measure and 

MCC-measure for a set of JAVA based open source projects".  

In the wake of parsing source code, a symbolic vector is required  for each 

source record. Be that as it may, these symbolic vectors couldn't fill in as the 

immediate contribution for a CNN model, and along these lines initially it is 

expected to delineate from strings to whole numbers. At that point, a 

transformation that mapped each string token to a whole number extending from 

one to the absolute number of token sorts with the goal that each extraordinary 

string was spoken to by a special number constantly to be completed. What's 

more, the CNN model requires input vectors to have equivalent length. Be that as 

it may, the length of the information vectors fluctuated by the quantity of 

separated AST hubs for each source record after change occurs. To take care of 

the issue, a zero to the whole number vectors to make their lengths equivalent to 

the longest vector. The digit zero would not influence mapping spaces on the 

grounds that the mapping began from one. 

After processing of data as shown in above paragraph the processed data is 

passed to the CNN architecture for training and testing purposes. Problem here is 

to develop a efficient CNN based model which can give desired results. 
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3.2 Proposed Solution   

 

The Algorithm/ Working Flow of Classification Model for approach or 

implementation is explained below: 
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A multi headed architecture is developed  and output of this model given to the 

SVM classifier. SVM classifier is used instead of leaner regression classifier for 

classification of results as buggy or non-buggy. The outcomes were as a decimal 

number somewhere in the range of zero and one, in view of which we anticipated 

a source document as carriage or clean. On the off chance that the outcome was 

above 0.5, the forecast was viewed as cart; else it was viewed as perfect.     

The Proposed multi headed CNN architecture developed for processing of PSC 

data set is as follows: 

 

 

Fig. 7:  Proposed Multi headed CNN based model  
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In starting we have the input layer, where the initial input of 20 parameters from 

the .csv file is given, we had the separate .csv files for all 14 projects mentioned 

in table1 and output input layer then passed to next layer i.e convolution layer.  

Max pooling layer is reducing the nodes to half the number as compared to input. 

The most widely recognized type of pooling is max pooling. Max pooling 

decreases the computational expense by diminishing the quantity of boundaries 

to learn and gives fundamental interpretation invariance to the interior portrayal. 

Flatten layer straighten the yield of the convolutional layers to make a solitary 

long element vector.  

As we increases the running instances of model over every project the loss of 

model is reduced and the accuracy increases and it become flat after certain 

number of repetitive runs carried out, in our case we can say 30 runs. It can be 

understood by figure shown below: 

 

Fig. 8:  Improved Accuracy and Decrease in loss with increase in no. of Epochs 
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The most relevant feature used in our source code are mentioned below in the tabular 

form: 

 

 

Table 2: 20 Major Features used in proposed Model [13] 
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CHAPTER 4 
 
 

IMPLEMENTATION AND RESULTS 
 
 

Some parameters used in the coding are mentioned in the table below: 
 
 

Parameter Value 

Number of Filters 10 

Kernal Sizes 3 to 5 

Drop out 0.5 

Batch Size 256 

Non-linearity function ReLU 

Pool Size 2 

 

Table 3.: Parameters used in model 
 
 

 The dataset used is PROMISE Source code (PSC) dataset [2]. Negative number in 

brackets in #files column represents the number of files which are removed due to 

having buggy rate > 95% or data in file not relevant i.e not related to source code.  

from the data in PROMISE repository. Dataset comprises of nearly 14,006 files from 

12 open source Java based projects having 41 versions. PSC data set is available at 

URL https://github.com/penguincwarrior/CNN-WPDPAPPSCI2019. We had used 

the processed data set [2] in our model as input. Details of data set given in tabular 

form given below:  
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Table 4: Dataset PSC [2] 

 

Details of  implementation is given below: 

 Implementation framework used: Python 3.1 setup with Keras 2.2.4 and 

tenserflow 1.14  for bulding model is used. 

 All of our experiments were run on windows 8.1 pro with intel(R) core(TM) 

i5-7200u cpu @ 2.30ghz and having RAM of GB. 

 Multi headed CNN based model is used for processing the data set to get the 

desire results. Model fuctioning is explained in fig. 3.  
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 ReLU is used as the activation fuction except the last layer which uses SVM 

for classification.  

 The model epoch value is kept at 30 rounds and resut is average of output 

reacvied by every itration. Number of repetition rounds kept limited due to 

resorce limitaions.  

 Dropouts: Dropout is a system model planning to manage model overfitting 

issues. Its key thought is to arbitrarily drop neural units just as their 

associations during preparing, which would forestall complex co-adaptions 

of units and lower model speculation mistake (contrasts between model 

execution on preparing set and test set). In the regressive spread procedure of 

a neural system, the loads of a unit are refreshed given what different units 

are doing, so the weight may be refreshed to make up for the mix-up of 

different units, which is called co-adjustment. While including dropout 

layers, a unit is problematic in light of the fact that it might be arbitrarily 

dropped. Thusly, every unit would learn better highlights as opposed to 

fixing the errors of different units. Weight rescaling is performed on test sets 

to make up for the dropped units.  Fig. 6 can be understood by a guiding 

example to understand the mechanics of dropouts. At the point when we 

include a dropout layer for the concealed layer and set the dropout likelihood 

to 0.5, shrouded units are haphazardly picked to be dropped at a likelihood of 

0.5, as H2 and H4, for instance. The associations between the two hubs and 

the information/yield layers are likewise dropped. For this situation, the 

weight update of H1 and H3 would be autonomous of H2 and H4, which 

would forestall co-adjustment of units and lower model speculation mistake. 

 
Fig. 9:  Drop out example 



20 
 

 
 We had kept the drpoout probability to 0.50.  
 

 We had used the 70 percentage of data for training purpose and 30 percent 

data for testing of the model and this is done separately for very project 

independently.   

  SVM classifier is used instead of Liner Regression for classification into 

buggy or non-buggy.  

 F-measure, G-measure and MCC-measure values are calculated for 

compression  with existing results.  

 

4.1 Evaluation Matrices 
 
 
Now, after implementation, the evaluation parameters are calculated. In this section, 

the evaluation parameters taken into consideration are defined. 

The five parameters taken into consideration are Precision , Recall, F Measure, MCC 

Measure and G Measure. 

 

Precision: It is the ratio of data elements that are correctly classified (for both the 

minority and majority class) to total number of classified instances. 

 

P =TP/ (TP + FP) 

 

Recall: The ratio of the minority class instances that are correctly classified to the 

total number of actual minority class instances. 

 

R =TP/ (TP + FN) 

 

F Measure: this parameter depends on precision parameter and recall parameter, 

which are measured by true positive, true negative, false positive and false negative 

numbers.  

F measure is defined as:  

 

Thus to calculate the F-measure we drived the values of P(precision) and R(recall) 
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given in table 2 in next page. The values in table represents the average values after 

runing the proposed model 30 times.  

Project Name Version  Avg. Precision Avg. Recall 

lucene 2 1 1 

lucene 2.2 0.9986666667 1 

lucene 2.4 1 1 

synapse-1.0.csv 1 1 1 

synapse-1.1.csv 1.1 1 1 

synapse-1.2.csv 1.2 0.9986666667 1 

poi-1.5.csv 1.5 1 1 

poi-2.0.csv 2 0.9973333333 1 

poi-2.5.csv 2.5 1 1 

poi-3.0.csv 3 0.9986666667 1 

jedit-3.2.csv 3.2 0.9976666667 1 

jedit-4.0.csv 4 0.9986666667 1 

jedit-4.1.csv 4.1 0.998 1 

jedit-4.2.csv 4.2 0.993 1 

jedit-4.3.csv 4.3 0.4333333333 0.4333333333 

camel-1.0.csv 1 0.3666666667 0.3666666667 

camel-1.2.csv 1.2 0.9993333333 1 

camel-1.4.csv 1.4 0.9986666667 1 

camel-1.6.csv 1.6 0.9993333333 1 

xerces-Initial.csv Initial 1 1 

xerces-1.2.csv 1.2 1 1 

xerces-1.3.csv 1.3 1 1 

log4j-1.0.csv 1 1 1 

log4j-1.1.csv 1.1 1 1 

log4j-1.2.csv 1.2 0.9993333333 1 

ivy-1.1.csv 1.1 0.9966666667 1 

ivy-1.4.csv 1.4 0.9333333333 0.9333333333 

ivy-2.0.csv 2 0.995 1 

xalan-2.4.csv 2.4 0.9946666667 1 

xalan-2.5.csv 2.5 1 1 

xalan-2.6.csv 2.6 0.9993333333 1 

ant-1.3.csv 1.3 1 1 

ant-1.4.csv 1.4 0.9953333333 1 

ant-1.5.csv 1.5 1 1 

ant-1.6.csv 1.6 0.995 1 

ant-1.7.csv 1.7 0.9903333333 1 

pbeans-1.0.csv 1 0.989 1 

pbeans-2.0.csv 2 1 1 

velocity-1.4.csv 1.4 1 1 

velocity-1.5.csv 1.5 1 1 

velocity-1.6.csv 1.6 1 1 
 

Table 5 : Values of Precision and Recall, which are avg. values after 30 runs  
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In factual investigation of twofold order, the F1 score (likewise F-score or F-

measure) is a proportion of a test's precision. It considers both the exactness p and 

the review r of the test to figure the score: p is the quantity of right positive outcomes 

partitioned by the quantity of every positive outcome returned by the classifier, and r 

is the quantity of right positive outcomes separated by the quantity of every single 

applicable example (all examples that ought to have been recognized as positive). 

The F1 score is the consonant mean of the exactness and review, where a F1 score 

arrives at its best an incentive at 1 (immaculate accuracy and review). 

 

G measure: it is defined as the harmonic mean made by true positive rate. It is given 

as:  

 

Where TPR and TNR are true positive and true negative rate respectively. 

 

MCC measure: the correlation between predicted and true values is MCC. It is 

defined as: 

 

 

4.2 Experimental Results  

 

In this section results are shown in tabular and graphical format. The result justifies 

significant improvement in the proposed method for software defect prediction using 

modified CNN with combined SVM classifier. In the result table the values of F-

measure, G-measure and MCC-measure is average of values obtained after running 

the proposed multi headed CNN based model 30 times.  

 In table 6, F Measure results for different projects are shown under different version. 

It is seen that Camel and Lucene has found the highest F Measure.  
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 The decimal values states F-measure and best value is indicated in bold. 

 

Project Name Version  Three Layer CNN (Cong Pan) 
Proposed CNN with 
SVM 

Lucene 
 

2 0.74 1 
2.2 0.63 0.999333333 
2.4 0.77 1 

Synapse 
 

1 0.29 1 
1.1 0.67 1 
1.2 0.69 0.989333333 

Poi 
 
 

1.5 0.61 1 
2 0.13 0.998666667 

2.5 0.9 0.98 
3 0.76 0.998666667 

JEdit 
 
 

3.2 0.69 0.998666667 
4 0.48 0.959333333 

4.1 0.41 0.999 
4.2 0.58 0.996666667 
4.3 0 0.433333333 

Camel 
 
 

1 0.4 0.366666667 
1.2 0.69 0.979666667 
1.4 0.46 0.999333333 
1.6 0.52 0.999666667 

Xerces 
 

Initial 0.65 1 
1.2 0.41 1 
1.3 0.56 1 

Log4j 
 

1 0.77 1 
1.1 0.4 1 
1.2 0.97 0.959666667 

Ivy 
 

1.1 0.8 0.998333333 
1.4 0.22 0.933333333 

2 0.31 0.997333333 
 
Xalan 
 

2.4 0.25 0.997 
2.5 0.7 1 
2.6 0.76 1 

Ant 
 
 

1.3 0.67 1 
1.4 0.38 0.897666667 
1.5 0.25 1 
1.6 0.41 0.997333333 
1.7 0.39 0.995 

 
Pbeans 

1 0.89 0.963333333 

2 0.67 1 

Velocity 
 

1.4 0.9 0.96666 
1.5 0.78 1 
1.6 0.83 1 

Average   0.570487805 0.961073008 
 

 
Table 6:  Comparison of F-measure of three Layer CNN (Cong Pan) and proposed 

multi headed CNN with SVM model on PSC data.  
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In table 7, performance for G measure is shown. Shows the best improvement in 

proposed model. The decimal values states G-measure and best value is indicated in 

bold. 

 
 

Project Name Version  Three Layer CNN (Cong Pan) Proposed CNN with SVM 

Lucene 
 

2 0.75 1 
2.2 0.62 0.999 
2.4 0 1 

Synapse 
 

1 0.49 1 
1.1 0.7 1 
1.2 0.72 0.999666667 

Poi 
 
 

1.5 0.61 1 
2 0.25 0.969666667 

2.5 0.82 0.79999 
3 0.72 0.998666667 

JEdit 
 
 

3.2 0.73 0.999333333 
4 0.65 0.999666667 

4.1 0 0.999666667 
4.2 0.78 0.999 
4.3 0 0.433333333 

Camel 
 
 

1 0.5 0.366666667 
1.2 0.76 1 
1.4 0.54 1 
1.6 0.6 0.9899 

Xerces 
 

Initial 0.58 1 
1.2 0.66 1 
1.3 0.65 1 

Log4j 
 

1 0.81 0.79999 
1.1 0.44 1 
1.2 0 0.905333333 

Ivy 
 

1.1 0.65 0.997666667 
1.4 0.49 0.933333333 

2 0.4 0.999333333 
 

Xalan 
 

2.4 0.31 1 
2.5 0.69 1 
2.6 0.78 1 

Ant 
 
 

1.3 0.67 1 
1.4 0.51 0.989333333 
1.5 0.28 1 
1.6 0.53 0.999 
1.7 0.46 0.999333333 

 
Pbeans 

1 0.89 0.855666667 

2 0.67 1 

Velocity 
 

1.4 0.66 1 
1.5 0.72 1 
1.6 0.84 0.99 

Average 
  

0.559268293 
 

0.951793821 

 

 
Table 7:  Comparison of G-measure of three Layer CNN (Cong Pan) and proposed 

multi headed CNN with SVM model on PSC data. 
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In table 8, MCC comparison is shown which is best for proposed work. The decimal 

values states MCC-measure and best value is indicated in bold. 

 

Project Name Version  
Three Layer CNN (Cong 
Pan) 

Proposed CNN with 
SVM 

Lucene 
 

2 0.53 1 
2.2 0.29 0.998 
2.4 0 1 

Synapse 
 

1 0.2 1 
1.1 0.6 1 
1.2 0.59 0.999 

Poi 
 
 

1.5 0.29 1 
2 0.01 0.998333333 

2.5 0.7 0.6778 
3 0.42 0.997333333 

JEdit 
 
 

3.2 0.56 0.998 
4 0.29 0.999 

4.1 0 0.998666667 
4.2 0.51 0.996333333 
4.3 0 0.433333333 

Camel 
 
 

1 0.39 0.366666667 
1.2 0.5 0.999666667 
1.4 0.39 0.999333333 
1.6 0.42 0.989666667 

Xerces 
 

Initial 0.23 1 
1.2 0.28 1 
1.3 0.5 1 

Log4j 
 

1 0.69 1 
1.1 0.29 1 
1.2 0 0.995333333 

Ivy 
 

1.1 0.48 0.996 
1.4 0.16 0.933333333 

2 0.25 0.997333333 

 
Xalan 

 

2.4 0.18 0.996666667 
2.5 0.38 1 
2.6 0.58 0.999333333 

Ant 
 
 

1.3 0.68 1 
1.4 0.2 0.997 
1.5 0.24 1 
1.6 0.22 0.996666667 
1.7 0.3 0.994666667 

 
Pbeans 

1 0.63 0.952666667 

2 0.67 1 

Velocity 
 

1.4 0.56 1 
1.5 0.42 1 
1.6 0.76 0.72229 

Average   0.375365854 0.952010325 
 

 
Table 8: Comparison of MCC-measure of three Layer CNN (Cong Pan) and 

proposed multi headed CNN with SVM model on PSC data. 
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Now, all the average values are taken and plot in fig. 10, fig. 11 and fig. 12. 
 
 
 

 
 

 

Fig. 10:  Average F Measure Comparison Result 
 

 

 

In fig. 10, clearly Average F measure is higher in the proposed CNN with SVM new 

model. Similarly, for G-Measure in Fig 11. below. 

 

 

 
 

 
Fig. 11:  Average G Measure Comparison Result 
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In fig. 12, final parameter MCC is also improved as per the shown average values. 
 
 
 

 
 
 

Fig. 12:  Average MCC Measure Comparison Result 
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CHAPTER 5 
 
 

CONCLUSION AND FUTURE WORK 
 
 
 

Conclusion:  

 

Software defect prediction is a procedure of foreseeing code territories that 

conceivably contain defects, which can assist designers with apportioning their 

testing endeavors by first checking possibly buggy code. The proposed work 

offers high reliability in terms of software defect prediction and the parameter 

analyses is very much improved. After carrying out various experiments with 

various combination of input layers , convolutional layers, pooling layers, 

dropouts, dense layers and classifier combination we reached to your proposed 

multi headed CNN based architecture, which gives much better performance in 

terms of evolution matrices. result we got are very encouraging and in most of 

the cases your proposed model outperformed the existing mode. In the process 

we also restricted the number of layer in order to cater the hardware limitation 

and running times of the model.  

 

 

Future Scope: 

 

As it can be seen that model only for the java based projects, hence there is scope 

that model can be extended for the other projects which are based on 

python/c/c++ and other programming languages. Also 20 features are used in 

implementation work and there is scope of increasing features extraction and so 

the increase in relevant feature, so that efficiency can be further optimized.   
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