

AN IMPROVED CNN BASED ARCHITECTURE FOR WITHIN-PROJECT

SOFTWARE DEFECT PREDICTION

A DESSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted by:

HITENDRA SINGH YADAV

 2K18/SWE /008

Under the supervision of

Dr. RUCHIKA MALHOTRA

(Associate Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY(Formerly Delhi College of

Engineering) Bawana Road, Delhi-110042

JUNE 2020

M
. T

ech (S
oftw

are E
n

gin
eerin

g)
H

IT
E

N
D

R
A

 S
IN

G
H

 Y
A

D
A

V

2020

i

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road,

Delhi - 110042

CANDIDATE’S DECLARATION

I, Hitendra Singh Yadav , Roll No. 2K18/SWE/008 student of M.Tech (Software

Engineering), hereby declare that the project dissertation titled “An Improved

CNN Based Architecture For Within-Project Software Defect Prediction ”

which is submitted by me to the Department of Computer Science and

Engineering, Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology, is original and

not copied from any source without proper citation. This work has not previously

formed the basis for the award of Degree, Diploma Associateship, Fellowship or

other similar title or recognition.

Place: Delhi HITENDRA SINGH YADAV

Date:

ii

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi - 110042

CERTIFICATE

I hereby certify that the Project dissertation titled “An Improved CNN Based

Architecture For Within-Project Software Defect Prediction” which is

submitted by Hitendra Singh Yadav, Roll No. 2K18/SWE/008, student of

Department of Computer Science Engineering, Delhi Technological University,

Delhi in partial fulfillment of the requirement for the award of the degree of

Master of Technology, is a record of the project work carried out by the student

under my supervision. To the best of my knowledge this work has never been

submitted in part or full for any Degree or Diploma to this University or

elsewhere.

Place: Delhi Dr. RUCHIKA MALHOTRA
 SUPERVISOR
Date: (ASSOCIATE PROFESSOR)

iii

ACKNOWLEDGMENT

The success of a Project Dissertation requires help and contribution from

numerous individuals and the organization. Writing the report of this project

work allows me to express my gratitude to everyone who has helped in shaping

up the outcome of the project.

I express my heartfelt gratitude to my project guide, Dr. Ruchika Malhotra, for

allowing me to do my project dissertation work under her guidance. Her constant

support and encouragement have made me realize that it is the process of

learning. I am highly indebted to the panel faculties during all the progress

evaluations for their guidance, constant supervision and for motivating me to

complete my work. They helped me throughout by giving new ideas, providing

the necessary information and pushing me forward to complete the work.

I also reveal my thanks to all my classmates and my family for constant support.

HITENDRA SINGH YADAV

iv

ABSTRACT

To improve the software quality, the software is generally tested to find out any bugs

or a simple reliability test. A reliable software defect checking mechanism is a

leading research topic, in the era of dependency on software’s for several tasks.

Many researchers used different techniques of deep learning algorithm such as CNN

i.e convolutional neural networks, and deep belief networks for prediction of

software defect. these algorithms failed to provide higher prediction accuracies. To

overcome the issues a new algorithm for software defect prediction is required for

higher accuracy and other parameters like F- and G-measure and specifically

important parameter is Matthews correlation coefficient (MCC) measure. In this

paper, a new modified CNN algorithm is proposed, which combines the CNN based

models into one and apply concatenate algorithm under SVM i.e. support vector

machine classifier. The results clearly indicate that the proposed algorithm improves

the parameters and thus is a highly dependable and reliable method for software

defect prediction.

v

TABLE OF CONTENTS

CONTENT PAGE NUMBER

Candidate's Certificate i

Declaration ii

Acknowledgment iii

Abstract iv

Contents v

List of Figures vii

List of Tables viii

List of Acronyms ix

Chapter 1: Introduction

1.1 Overview

1.2 Research Objective

1.3 Organization of Thesis

1

2

2

3

Chapter 2 : Related Work

2.1 Literature Survey

2.2 Background Concepts

 2.2.1 CNN

 2.2.2 SVM

 2.2.3 Confusion Matrix

4

5

7

8

9

10

Chapter 3: Proposed Work

3.1 Problem Statement

12

12

vi

3.2 Proposed Solution 13

Chapter 4: Implementation and Results

4.1 Evolution Matrices

4.2 Experimental Results

17

20

22

Chapter 5: Conclusion and future scope 28

References 29

vii

LIST OF FIGURES

Number of
Figure

 Description Page
Number

Figure 1 Three layer CNN model [2] 4

Figure 2 Architecture used in Cong Pan CNN [2] 5

Figure 3 Process to detect defect in software [1] 7

Figure 4 Sample Convolutional Neural Network 9

Figure 5 Diagram showing liner SVM 10

Figure 6 Confusion Matrix 11

Figure 7 Proposed Multi headed CNN based model 14

Figure 8 Improved Accuracy and Decrease in loss
with increase in no. of Epochs

 15

Figure 9 Drop out example 19

Figure 10 Average F Measure Comparison Result 26

Figure 11 Average G Measure Comparison Result 26

Figure 12 Average MCC Measure Comparison Result 27

viii

LIST OF TABLES

 0B0B0BTable

Number 1B1B1BDescription

2B2B2BPage

Number

3B3B3BTable 1

4B4B4BComparison of between Cong Pan CNN model and your

Multi Headed CNN model. 5B5B5B7

6B6B6BTable 2 7B7B7B20 Major Features used in proposed Model [13]. 8B8B8B16

9B9B9BTable 3 10B10B10BParameters used in model. 11B11B11B17

12B12B12BTable 4 13B13B13BDataset PSC [2].
14B14B14B18

15B15B15BTable 5

16B16B16BValues of Precision and Recall, which are avg. values after 30

runs. 17B17B17B21

18B18B18BTable 6

19B19B19BComparison of F-measure of three Layer CNN (Cong Pan)

and proposed multi headed CNN with SVM model on PSC

data. 20B20B20B23

21B21B21BTable 7

22B22B22BComparison of G-measure of three Layer CNN (Cong Pan)

and proposed multi headed CNN with SVM model on PSC

data. 23B23B23B24

24B24B24BTable 8

25B25B25BComparison of MCC-measure of three Layer CNN (Cong

Pan) and proposed multi headed CNN with SVM model on

PSC data. 26B26B26B25

ix

LIST OF ACRONYMS

AI Artificial Network

TN True Negative

FN False Negative

TP True Positive

FP False Positive

ReLU Rectified Liner Unit

CNN Covolution Neural Network

DNN Deep Neural network

LR Logistic Regression

ML Machine Learning

P Precision

R Recall

SVM Support Vector Machine

URL Uniform Resource Locator

MCC Matthews correlation coefficient

1

CHAPTER 1

INTRODUCTION

A product imperfection is a blunder, bug, defect, shortcoming, breakdown or

mix-ups in programming that makes an incorrect or unpredicted result. Flaws

are basic properties of a framework. They show up from structure or assembling,

or outer condition. Programming blemishes are modifying mistakes which cause

distinctive execution contrasted and expectation. The dominant parts of the

issues are from source code or condescend, some of them are from the off base

code producing from compilers.

For programming engineers and customers, programming issues are a peril issue.

Programming abandons not just decline programming quality, increment costing

yet additionally defer the advancement plan. Programming flaw foreseeing is

proposed to illuminate such a difficulty.

In mining software repositories, many different approaches have been developed

to predict the number and location of future bugs in the source code. These

predictions can help a project manager to quantitatively plan and steer the project

according to the expected number of bugs and their bug-fixing effort. But bug

prediction can be helpful in a qualitative way whenever the defect location is

predicted: testing efforts can then be accomplished with a focus on the predicted

bug locations. All of the above-mentioned approaches use history data of a

software project to predict defects in the second release. Features (or variables)

are taken from raw data. Then these features (learning period) are used together

with the goal values (i.e., bug or no bug) to learn a prediction model. To assess

such a model, it is fed with data from another period, and the predicted values are

examined with the observed ones helping to an accuracy measure.

 The downside of these approaches is its temporally coarse evaluations.

Generally, a bug prediction algorithm is assessed, in terms of correctness, in only

one or different points in time. These selective (insular) analyses make

generalizations of the prediction methods difficult: it postulates that the evolution

of a project and its data is stable over time. In the proposed work the terminology

2

within project implies that we can find defect within two versions of same

project which are mainly java based in your case, and can compare the accuracy

of model within project versions.

1.1 Overview

The fault prediction dataset is a group of models and metrics of software systems

and their histories. The aim of such a dataset is to permit people to evaluate

different fault prediction approaches and to evaluate whether a new technique is

an enhancement over existing ones. PROMISE, AEEEM, ReLink, MORPH,

NASA, and SOFTLAB are some of the defect datasets which are publically

available to the user. In our project we had use the processes data set from the

PROMISE repository. Your work is based on the some open source project

which are developed using JAVA based programming methodology.

At present the growth of software based system are rising from the previous

years due to its advantage. On the other hand, the quality of the system is

essential prior it is delivered to end in order to improve the efficiency and quality

of software development, software faults can be predicted at early phase of life

cycle itself. To predict the software faults a variety of data mining techniques can

be used.

Learning techniques are intended to determine whether software module has a

higher fault hazards or not. In supervised learning data is extracted using the

target class. If machine learning task is trained for each input with consequent

target, it is called supervised learning, which will be able to provide target for

any new input after adequate training. Targets expressed in some classes are

called classification problem.

1.2 Research Objective

 The objective is to develop a model which improves the accuracy in term of

various measures such as F-measure, G-measure and MCC-measure as compared

to the exiting CNN based model [2]. The proposed model using the pre-

processed data set PSC [2] , this data set is passed in set of convolutional neural

layers, which is a multi headed structure of CNN layers, further max pooling

3

layers used with forward CNN layer along with dropout layer, flattering layer,

dense layers and lastly a support vector machine (SVM) for classification of

buggy and non-buggy data. This model is evolved by examining various

permutation and combination over layers to reach the final architecture. The final

architecture is supposed to give better results in term of accuracy of defect

prediction in term of F-measure, G-measure and MCC-measure.

1.3 Organization of Thesis

The project report has been divided into five chapters. Each chapter deals with

one component related to this thesis. Chapter 1 being introduction to this thesis,

gives us the brief introduction about the project topic, thereafter chapter 2 tells

about the project work carried out which further includes literature survey

section. Following up is chapter 3 which tells about the proposed work carried

out during the development of improved CNN based architecture. Chapter 4

focuses on the implementation work carried out and the result generated during

the process. In chapter 4 we also analyzed the results in tabular and in bar chart

form. Final chapter, chapter 5, which is concludes the thesis and future scope of

work.

4

CHAPTER 2

RELATED WORK

Various researchers had contributed in making defect prediction more accurate

and precise. The model proposed [2] shows the three layer CNN model along

with liner regression as classifier. The Three layer model [2] explained in a flow

type architecture given below:

Fig. 1: Three layer CNN model [2]

As we see in fig. 1 that after every convolution layer they have used a max

5

pooling layer along with other building blocks to get the desired output.

The data set used is PSC data set [2] which is a processed data set from the

original PROMISE repository.

We can understand the approach adopted in model[2] via pictorial representation

given below:

Fig. 2: Architecture used in Cong Pan CNN [2]

2.1 Literature Survey

In the literature survey, several techniques are found which are related to deep

learning and machine learning for software defect prediction The software

development life cycle for the most part incorporates investigation, plan,

execution, test and production stages. [1] The testing stage ought to be worked

viably so as to produce the without bug software to end clients. [2] Over the most

recent two decades, academicians have taken an expanding enthusiasm for the

software defect prediction issue, a few AI methods have been applied for

progressively powerful prediction. [3] Software defect prediction is significant in

software building. It utilizes the defects found in chronicled software modules to

anticipate defects in new software modules, and gives choice help to arranging

and procedure the board in software venture. AI (Artificial intelligence) is one of

the center exploration bearings in the field of man-made brainpower and spreads

numerous controls. [4] In the basic examination of the software based defect

prediction algorithms, different AI techniques have been broadly contemplated

and applied in various reference papers, and have been confirmed to acquire

6

great execution. During this period of AI and ML i.e machine learning, there are

numerous of basic ongoing headways in Software Engineering domain.[5]

Different software designing measurements are broke down due to bug detection

in the software; negative effect is achieved and the necessary predictions can be

made. The software Defect prediction is basically one such movement which is

of incredible importance in improving the software quality which helps software

designers and analyzers to concentrate on the modules which are bound to defect

inclined.

[6] Software defect prediction gives significant yields to software groups while

adding to mechanical achievement. Experimental examinations in many research

works have been directed on software defect prediction for both cross-venture

and AI based undertaking defect prediction. [7] Be that as it may, existing

examinations still can't seem to exhibit a strategy for anticipating the quantity of

defects in a developed software. Software Quality is the most significant part of a

software. Software Defect Prediction can legitimately influence quality and has

accomplished noteworthy prevalence in most recent couple of years. [8]

Defective software modules have a bad effect over software's quality prompting

cost overwhelms, postponed courses of events and a lot of higher upkeep costs.

[9] Mechanized software defect prediction is an importantly significant and basic

action in the area of software development. In any case, present day software

frameworks are naturally huge and complex with various corresponded

measurements that catch various parts of the software segments. [10] This

enormous number of corresponded measurements makes constructing a software

defect prediction model extremely perplexing. Along these lines, recognizing and

choosing a subset of measurements that upgrade the software defect prediction

strategy's exhibition are a significant yet testing issue that has gotten little

consideration in the writing. [11] The fundamental goal of this paper is to

distinguish critical software measurements, to fabricate and assess an

autonomous software defect prediction model.

7

A comparison has been done between the the existing model [2] and your

proposed multi headed CNN model, comparison in tabular form is shown below:

 Cong Pan CNN Model Multi headed proposed CNN
Model

Input layers 1 2

Convolutional Layers 3 2

Pooling layers 3 2

 Activation function ReLU + sigmoid (last dense layer) ReLU + sigmoid (last dense layer)

Classification Function Liner regression
Function is used

SVM classifier used

Dropout Layers 1 3

Concatenation Layers not used Yes, 1 Layer used for
concatenation

Table 1: Comparison of between Cong Pan CNN model and your Multi Headed

CNN model

2.2. Background Concepts

In fig 3. A process is shown which is generally employed by researchers in

previous work. The steps involve loading of software files, extracting features,

training features as per bug or no bug using a suitable classifier. [14] The test

sequences are then loaded on classifier which will further give output as buggy

or clean software.

Fig. 3: . Process to detect defect in software [1]

8

In fig. 1, CNN based architecture is shown. It consists of layers in which

convolutional process is applied. There are several layers associated with CNN

like pooling, softmax, maxpool layers. Depending on the level of classification

one can activate or deactivate the layers are make them fully connected or

partially connected. The pooling size can be defined and number of layers can be

modified. There are several activation functions used. In this work, ReLu

activation function is used. The pooling size controls the sparse connectivity in

CNN. The accuracy of the model can be varied by the use of the parameters such

as size, connectivity pooling layers, etc[2].

 2.2.1 Convolutional Neural Network

 As summarized by Yoav Goldberg , “The CNN layer’s responsibility is to

extract meaningful sub-structures that are useful for the overall prediction

task at hand. A convolutional neural network is designed to identify

indicative local predictors in a large structure, and to combine them to

produce a fixed size vector representation of the structure, capturing the

local aspects that are most informative for the prediction task at hand. In

the NLP case the convolutional architecture will identify n-grams that are

predictive for the task at hand, without the need to pre-specify an

embedding vector for each possible n-gram.” The concepts used in

Convolution Neural Network consist of various terminologies which are

briefly defined as:

 Convolution: Applying filter to a fixed size window is the task of

convolution operation.

 Convolution Filter: It is also known as convolution kernel. It is basically a

matrix that is utilized for performing convolution operation.

 Pooling: It is the process of combining the vectors obtained as a result of

various convolution windows into a vector single one dimension.

 Feature maps : The significance of number of feature maps is that it

directly controls capacity and is dependent on count of available examples

and complexity of task.

9

Fig. 4: Sample Convolutional Neural Network

 2.2.2 Support Vector Machine (SVM)

 It can be said that support Vectors are those data points that the margin

pushes up against. In this the classifier is a separating hyper plane. The most

“important” training points are the support vectors; they define the hyper

plane.

A Support Vector Machine (SVM) is a discriminative classifier formally

defined by a separating hyper plane. In other words, given labeled training

data (supervised learning), the algorithm outputs an optimal hyper plane

which categorizes new examples. In two dimensional space this hyper plane is

a line dividing a plane in two parts where in each class lay in either side.

Let us assume that if all data is at least distance 1 from the hyper plane, then

the following two constraints follow for a training set {(xi ,yi)} then:

For support vectors, the inequality becomes an equality.

This concept is used in locating the classifier the bug or no-bug in the defect

prediction in software project over the time due to certain features, which are

obtained as out data sets of CNN model.

10

Fig 5: Diagram showing liner SVM

For the instance of multidimensional space, SVM finds the hyperplane

that amplifies the edge between two distinct classes. A couple of tests

control the choice limit. There are just a couple of preparing tests that

touch the choice limit. These are the ones that really control the choice

limit and are known as help vectors. Here the help vectors are those

specks that have been circumnavigated. One of the significant points of

interest of utilizing SVM arrangement is that it performs very well on

datasets having numerous traits, in any event, when there are only a

couple of cases that are accessible for preparing process.

 2.2.3 Confusion Matrix

 It maps the relation between what the model has predicted and what the

actual result should be as shown in fig 6. If the predicted class is positive

and actual class is positive as well, then we get the true positive section. If

the predicted class is positive but actual class is negative then we get false

positive section, on similar bases if the actual class is positive but the

predicted class in negative then it is false negative and if the actual class

is negative and predicted class is also negative we get true negative

section.

11

It's essential to comprehend the centrality of these measurements.

Precision is a general proportion of right expectation, paying little mind to

the class (positive or negative). The supplement of exactness is mistake

rate or misclassification rate.

Fig. 6: Confusion Matrix

 High review infers that not many positives are misclassified as negatives.

High exactness suggests not many negatives are misclassified as

positives. There's an exchange off here. In the event that model is

fractional towards positives, we'll end up with high review however low

exactness. It model favors negatives, we'll end up with low review and

high exactness.

12

CHAPTER 3

PROPOSED WORK

To reach the proposed multi headed CNN based architecture, various

experiment were done to get higher accuracy model which can predict the defect

in the java based project. Defect is predicted within project means we are

comparing two or more versions of same project on basis of defect. It can be

understood by observing the result tables.

3.1 Problem Statement

The problem statement is " To develop a CNN based architecture improve the

accuracy of defect finding by minimizing the original data loss during the

process, this accuracy to be measured in term of F-measure, G-measure and

MCC-measure for a set of JAVA based open source projects".

In the wake of parsing source code, a symbolic vector is required for each

source record. Be that as it may, these symbolic vectors couldn't fill in as the

immediate contribution for a CNN model, and along these lines initially it is

expected to delineate from strings to whole numbers. At that point, a

transformation that mapped each string token to a whole number extending from

one to the absolute number of token sorts with the goal that each extraordinary

string was spoken to by a special number constantly to be completed. What's

more, the CNN model requires input vectors to have equivalent length. Be that as

it may, the length of the information vectors fluctuated by the quantity of

separated AST hubs for each source record after change occurs. To take care of

the issue, a zero to the whole number vectors to make their lengths equivalent to

the longest vector. The digit zero would not influence mapping spaces on the

grounds that the mapping began from one.

After processing of data as shown in above paragraph the processed data is

passed to the CNN architecture for training and testing purposes. Problem here is

to develop a efficient CNN based model which can give desired results.

13

3.2 Proposed Solution

The Algorithm/ Working Flow of Classification Model for approach or

implementation is explained below:

14

A multi headed architecture is developed and output of this model given to the

SVM classifier. SVM classifier is used instead of leaner regression classifier for

classification of results as buggy or non-buggy. The outcomes were as a decimal

number somewhere in the range of zero and one, in view of which we anticipated

a source document as carriage or clean. On the off chance that the outcome was

above 0.5, the forecast was viewed as cart; else it was viewed as perfect.

The Proposed multi headed CNN architecture developed for processing of PSC

data set is as follows:

Fig. 7: Proposed Multi headed CNN based model

15

In starting we have the input layer, where the initial input of 20 parameters from

the .csv file is given, we had the separate .csv files for all 14 projects mentioned

in table1 and output input layer then passed to next layer i.e convolution layer.

Max pooling layer is reducing the nodes to half the number as compared to input.

The most widely recognized type of pooling is max pooling. Max pooling

decreases the computational expense by diminishing the quantity of boundaries

to learn and gives fundamental interpretation invariance to the interior portrayal.

Flatten layer straighten the yield of the convolutional layers to make a solitary

long element vector.

As we increases the running instances of model over every project the loss of

model is reduced and the accuracy increases and it become flat after certain

number of repetitive runs carried out, in our case we can say 30 runs. It can be

understood by figure shown below:

Fig. 8: Improved Accuracy and Decrease in loss with increase in no. of Epochs

16

The most relevant feature used in our source code are mentioned below in the tabular

form:

Table 2: 20 Major Features used in proposed Model [13]

17

CHAPTER 4

IMPLEMENTATION AND RESULTS

Some parameters used in the coding are mentioned in the table below:

Parameter Value

Number of Filters 10

Kernal Sizes 3 to 5

Drop out 0.5

Batch Size 256

Non-linearity function ReLU

Pool Size 2

Table 3.: Parameters used in model

 The dataset used is PROMISE Source code (PSC) dataset [2]. Negative number in

brackets in #files column represents the number of files which are removed due to

having buggy rate > 95% or data in file not relevant i.e not related to source code.

from the data in PROMISE repository. Dataset comprises of nearly 14,006 files from

12 open source Java based projects having 41 versions. PSC data set is available at

URL https://github.com/penguincwarrior/CNN-WPDPAPPSCI2019. We had used

the processed data set [2] in our model as input. Details of data set given in tabular

form given below:

18

Table 4: Dataset PSC [2]

Details of implementation is given below:

 Implementation framework used: Python 3.1 setup with Keras 2.2.4 and

tenserflow 1.14 for bulding model is used.

 All of our experiments were run on windows 8.1 pro with intel(R) core(TM)

i5-7200u cpu @ 2.30ghz and having RAM of GB.

 Multi headed CNN based model is used for processing the data set to get the

desire results. Model fuctioning is explained in fig. 3.

19

 ReLU is used as the activation fuction except the last layer which uses SVM

for classification.

 The model epoch value is kept at 30 rounds and resut is average of output

reacvied by every itration. Number of repetition rounds kept limited due to

resorce limitaions.

 Dropouts: Dropout is a system model planning to manage model overfitting

issues. Its key thought is to arbitrarily drop neural units just as their

associations during preparing, which would forestall complex co-adaptions

of units and lower model speculation mistake (contrasts between model

execution on preparing set and test set). In the regressive spread procedure of

a neural system, the loads of a unit are refreshed given what different units

are doing, so the weight may be refreshed to make up for the mix-up of

different units, which is called co-adjustment. While including dropout

layers, a unit is problematic in light of the fact that it might be arbitrarily

dropped. Thusly, every unit would learn better highlights as opposed to

fixing the errors of different units. Weight rescaling is performed on test sets

to make up for the dropped units. Fig. 6 can be understood by a guiding

example to understand the mechanics of dropouts. At the point when we

include a dropout layer for the concealed layer and set the dropout likelihood

to 0.5, shrouded units are haphazardly picked to be dropped at a likelihood of

0.5, as H2 and H4, for instance. The associations between the two hubs and

the information/yield layers are likewise dropped. For this situation, the

weight update of H1 and H3 would be autonomous of H2 and H4, which

would forestall co-adjustment of units and lower model speculation mistake.

Fig. 9: Drop out example

20

 We had kept the drpoout probability to 0.50.

 We had used the 70 percentage of data for training purpose and 30 percent

data for testing of the model and this is done separately for very project

independently.

 SVM classifier is used instead of Liner Regression for classification into

buggy or non-buggy.

 F-measure, G-measure and MCC-measure values are calculated for

compression with existing results.

4.1 Evaluation Matrices

Now, after implementation, the evaluation parameters are calculated. In this section,

the evaluation parameters taken into consideration are defined.

The five parameters taken into consideration are Precision , Recall, F Measure, MCC

Measure and G Measure.

Precision: It is the ratio of data elements that are correctly classified (for both the

minority and majority class) to total number of classified instances.

P =TP/ (TP + FP)

Recall: The ratio of the minority class instances that are correctly classified to the

total number of actual minority class instances.

R =TP/ (TP + FN)

F Measure: this parameter depends on precision parameter and recall parameter,

which are measured by true positive, true negative, false positive and false negative

numbers.

F measure is defined as:

Thus to calculate the F-measure we drived the values of P(precision) and R(recall)

21

given in table 2 in next page. The values in table represents the average values after

runing the proposed model 30 times.

Project Name Version Avg. Precision Avg. Recall

lucene 2 1 1

lucene 2.2 0.9986666667 1

lucene 2.4 1 1

synapse-1.0.csv 1 1 1

synapse-1.1.csv 1.1 1 1

synapse-1.2.csv 1.2 0.9986666667 1

poi-1.5.csv 1.5 1 1

poi-2.0.csv 2 0.9973333333 1

poi-2.5.csv 2.5 1 1

poi-3.0.csv 3 0.9986666667 1

jedit-3.2.csv 3.2 0.9976666667 1

jedit-4.0.csv 4 0.9986666667 1

jedit-4.1.csv 4.1 0.998 1

jedit-4.2.csv 4.2 0.993 1

jedit-4.3.csv 4.3 0.4333333333 0.4333333333

camel-1.0.csv 1 0.3666666667 0.3666666667

camel-1.2.csv 1.2 0.9993333333 1

camel-1.4.csv 1.4 0.9986666667 1

camel-1.6.csv 1.6 0.9993333333 1

xerces-Initial.csv Initial 1 1

xerces-1.2.csv 1.2 1 1

xerces-1.3.csv 1.3 1 1

log4j-1.0.csv 1 1 1

log4j-1.1.csv 1.1 1 1

log4j-1.2.csv 1.2 0.9993333333 1

ivy-1.1.csv 1.1 0.9966666667 1

ivy-1.4.csv 1.4 0.9333333333 0.9333333333

ivy-2.0.csv 2 0.995 1

xalan-2.4.csv 2.4 0.9946666667 1

xalan-2.5.csv 2.5 1 1

xalan-2.6.csv 2.6 0.9993333333 1

ant-1.3.csv 1.3 1 1

ant-1.4.csv 1.4 0.9953333333 1

ant-1.5.csv 1.5 1 1

ant-1.6.csv 1.6 0.995 1

ant-1.7.csv 1.7 0.9903333333 1

pbeans-1.0.csv 1 0.989 1

pbeans-2.0.csv 2 1 1

velocity-1.4.csv 1.4 1 1

velocity-1.5.csv 1.5 1 1

velocity-1.6.csv 1.6 1 1

Table 5 : Values of Precision and Recall, which are avg. values after 30 runs

22

In factual investigation of twofold order, the F1 score (likewise F-score or F-

measure) is a proportion of a test's precision. It considers both the exactness p and

the review r of the test to figure the score: p is the quantity of right positive outcomes

partitioned by the quantity of every positive outcome returned by the classifier, and r

is the quantity of right positive outcomes separated by the quantity of every single

applicable example (all examples that ought to have been recognized as positive).

The F1 score is the consonant mean of the exactness and review, where a F1 score

arrives at its best an incentive at 1 (immaculate accuracy and review).

G measure: it is defined as the harmonic mean made by true positive rate. It is given

as:

Where TPR and TNR are true positive and true negative rate respectively.

MCC measure: the correlation between predicted and true values is MCC. It is

defined as:

4.2 Experimental Results

In this section results are shown in tabular and graphical format. The result justifies

significant improvement in the proposed method for software defect prediction using

modified CNN with combined SVM classifier. In the result table the values of F-

measure, G-measure and MCC-measure is average of values obtained after running

the proposed multi headed CNN based model 30 times.

 In table 6, F Measure results for different projects are shown under different version.

It is seen that Camel and Lucene has found the highest F Measure.

23

 The decimal values states F-measure and best value is indicated in bold.

Project Name Version Three Layer CNN (Cong Pan)
Proposed CNN with
SVM

Lucene

2 0.74 1
2.2 0.63 0.999333333
2.4 0.77 1

Synapse

1 0.29 1
1.1 0.67 1
1.2 0.69 0.989333333

Poi

1.5 0.61 1
2 0.13 0.998666667

2.5 0.9 0.98
3 0.76 0.998666667

JEdit

3.2 0.69 0.998666667
4 0.48 0.959333333

4.1 0.41 0.999
4.2 0.58 0.996666667
4.3 0 0.433333333

Camel

1 0.4 0.366666667
1.2 0.69 0.979666667
1.4 0.46 0.999333333
1.6 0.52 0.999666667

Xerces

Initial 0.65 1
1.2 0.41 1
1.3 0.56 1

Log4j

1 0.77 1
1.1 0.4 1
1.2 0.97 0.959666667

Ivy

1.1 0.8 0.998333333
1.4 0.22 0.933333333

2 0.31 0.997333333

Xalan

2.4 0.25 0.997
2.5 0.7 1
2.6 0.76 1

Ant

1.3 0.67 1
1.4 0.38 0.897666667
1.5 0.25 1
1.6 0.41 0.997333333
1.7 0.39 0.995

Pbeans

1 0.89 0.963333333

2 0.67 1

Velocity

1.4 0.9 0.96666
1.5 0.78 1
1.6 0.83 1

Average 0.570487805 0.961073008

Table 6: Comparison of F-measure of three Layer CNN (Cong Pan) and proposed

multi headed CNN with SVM model on PSC data.

24

In table 7, performance for G measure is shown. Shows the best improvement in

proposed model. The decimal values states G-measure and best value is indicated in

bold.

Project Name Version Three Layer CNN (Cong Pan) Proposed CNN with SVM

Lucene

2 0.75 1
2.2 0.62 0.999
2.4 0 1

Synapse

1 0.49 1
1.1 0.7 1
1.2 0.72 0.999666667

Poi

1.5 0.61 1
2 0.25 0.969666667

2.5 0.82 0.79999
3 0.72 0.998666667

JEdit

3.2 0.73 0.999333333
4 0.65 0.999666667

4.1 0 0.999666667
4.2 0.78 0.999
4.3 0 0.433333333

Camel

1 0.5 0.366666667
1.2 0.76 1
1.4 0.54 1
1.6 0.6 0.9899

Xerces

Initial 0.58 1
1.2 0.66 1
1.3 0.65 1

Log4j

1 0.81 0.79999
1.1 0.44 1
1.2 0 0.905333333

Ivy

1.1 0.65 0.997666667
1.4 0.49 0.933333333

2 0.4 0.999333333

Xalan

2.4 0.31 1
2.5 0.69 1
2.6 0.78 1

Ant

1.3 0.67 1
1.4 0.51 0.989333333
1.5 0.28 1
1.6 0.53 0.999
1.7 0.46 0.999333333

Pbeans

1 0.89 0.855666667

2 0.67 1

Velocity

1.4 0.66 1
1.5 0.72 1
1.6 0.84 0.99

Average

0.559268293

0.951793821

Table 7: Comparison of G-measure of three Layer CNN (Cong Pan) and proposed

multi headed CNN with SVM model on PSC data.

25

In table 8, MCC comparison is shown which is best for proposed work. The decimal

values states MCC-measure and best value is indicated in bold.

Project Name Version
Three Layer CNN (Cong
Pan)

Proposed CNN with
SVM

Lucene

2 0.53 1
2.2 0.29 0.998
2.4 0 1

Synapse

1 0.2 1
1.1 0.6 1
1.2 0.59 0.999

Poi

1.5 0.29 1
2 0.01 0.998333333

2.5 0.7 0.6778
3 0.42 0.997333333

JEdit

3.2 0.56 0.998
4 0.29 0.999

4.1 0 0.998666667
4.2 0.51 0.996333333
4.3 0 0.433333333

Camel

1 0.39 0.366666667
1.2 0.5 0.999666667
1.4 0.39 0.999333333
1.6 0.42 0.989666667

Xerces

Initial 0.23 1
1.2 0.28 1
1.3 0.5 1

Log4j

1 0.69 1
1.1 0.29 1
1.2 0 0.995333333

Ivy

1.1 0.48 0.996
1.4 0.16 0.933333333

2 0.25 0.997333333

Xalan

2.4 0.18 0.996666667
2.5 0.38 1
2.6 0.58 0.999333333

Ant

1.3 0.68 1
1.4 0.2 0.997
1.5 0.24 1
1.6 0.22 0.996666667
1.7 0.3 0.994666667

Pbeans

1 0.63 0.952666667

2 0.67 1

Velocity

1.4 0.56 1
1.5 0.42 1
1.6 0.76 0.72229

Average 0.375365854 0.952010325

Table 8: Comparison of MCC-measure of three Layer CNN (Cong Pan) and

proposed multi headed CNN with SVM model on PSC data.

26

Now, all the average values are taken and plot in fig. 10, fig. 11 and fig. 12.

Fig. 10: Average F Measure Comparison Result

In fig. 10, clearly Average F measure is higher in the proposed CNN with SVM new

model. Similarly, for G-Measure in Fig 11. below.

Fig. 11: Average G Measure Comparison Result

27

In fig. 12, final parameter MCC is also improved as per the shown average values.

Fig. 12: Average MCC Measure Comparison Result

28

CHAPTER 5

CONCLUSION AND FUTURE WORK

Conclusion:

Software defect prediction is a procedure of foreseeing code territories that

conceivably contain defects, which can assist designers with apportioning their

testing endeavors by first checking possibly buggy code. The proposed work

offers high reliability in terms of software defect prediction and the parameter

analyses is very much improved. After carrying out various experiments with

various combination of input layers , convolutional layers, pooling layers,

dropouts, dense layers and classifier combination we reached to your proposed

multi headed CNN based architecture, which gives much better performance in

terms of evolution matrices. result we got are very encouraging and in most of

the cases your proposed model outperformed the existing mode. In the process

we also restricted the number of layer in order to cater the hardware limitation

and running times of the model.

Future Scope:

As it can be seen that model only for the java based projects, hence there is scope

that model can be extended for the other projects which are based on

python/c/c++ and other programming languages. Also 20 features are used in

implementation work and there is scope of increasing features extraction and so

the increase in relevant feature, so that efficiency can be further optimized.

29

REFERENCES

[1] J. Li, P. He, J. Zhu and M. R. Lyu, "Software Defect Prediction via

Convolutional Neural Network," 2017 IEEE International Conference on

Software Quality, Reliability and Security (QRS), Prague, 2017, pp. 318-328, doi:

10.1109/QRS.2017.42.

[2] Pan, C.; Lu, M.; Xu, B.; Gao, H. An Improved CNN Model for Within-Project

Software Defect Prediction. Appl. Sci.2019, 9, 2138

[3] M. Samir, M. El-Ramly and A. Kamel, "Investigating the Use of Deep Neural

Networks for Software Defect Prediction," 2019 IEEE/ACS 16th International

Conference on Computer Systems and Applications (AICCSA), Abu Dhabi,

United Arab Emirates, 2019, pp. 1-6, doi:

10.1109/AICCSA47632.2019.9035240.

[4] E. A. Felix and S. P. Lee, "Integrated Approach to Software Defect Prediction,"

in IEEE Access, vol. 5, pp. 21524-21547, 2017, doi:

10.1109/ACCESS.2017.2759180

[5] K. Yang, H. Yu, G. Fan, X. Yang, S. Zheng and C. Leng, "Software Defect

Prediction Based on Fourier Learning," 2018 IEEE International Conference on

Progress in Informatics and Computing (PIC), Suzhou, China, 2018, pp. 388-

392, doi: 10.1109/PIC.2018.8706304.

[6] S. Huda et al., "A Framework for Software Defect Prediction and Metric

Selection," in IEEE Access, vol. 6, pp. 2844-2858, 2018, doi:

10.1109/ACCESS.2017.2785445.

[7] P. Deep Singh and A. Chug, "Software defect prediction analysis using machine

learning algorithms," 2017 7th International Conference on Cloud Computing,

Data Science & Engineering - Confluence, Noida, 2017, pp. 775-781, doi:

10.1109/CONFLUENCE.2017.7943255.

[8] Z. Li, X. Jing and X. Zhu, "Progress on approaches to software defect

prediction," in IET Software, vol. 12, no. 3, pp. 161-175, 6 2018, doi:

10.1049/iet-sen.2017.0148.

[9] Z. Tian, J. Xiang, S. Zhenxiao, Z. Yi and Y. Yunqiang, "Software Defect

Prediction based on Machine Learning Algorithms," 2019 IEEE 5th International

30

Conference on Computer and Communications (ICCC), Chengdu, China, 2019,

pp. 520-525, doi: 10.1109/ICCC47050.2019.9064412.

[10] S. Sutar, R. Kumar, S. Pai and B. R. Shwetha, "Defect Prediction based on

Machine Learning using System Test Parameters," 2019 Amity International

Conference on Artificial Intelligence (AICAI), Dubai, United Arab Emirates,

2019, pp. 134-139, doi: 10.1109/AICAI.2019.8701345.

[11] P. K. Singh, D. Agarwal and A. Gupta, "A systematic review on software

defect prediction," 2015 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), New Delhi, 2015, pp. 1793-1797.

[12] Fan, Guisheng & Diao, Xuyang & Yu, Huiqun & Yang, Kang & Chen,

Liqiong. (2019). Software Defect Prediction via Attention-Based Recurrent

Neural Network. Scientific Programming. 2019. 1-14. 10.1155/2019/6230953..

[13] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-source

projects: An empirical study on defect prediction,” in ESEM’13: Proc.

of the International Symposium on Empirical Software Engineering and

Measurement, 2013

[14] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, “Dictionarylearning

based software defect prediction,” in ICSE’14: Proc. of theInternational

Conference on Software Engineering, 2014.

[15] K. O. Elish and M. O. Elish, “Predicting defect-prone software modulesusing

support vector machines,” Journal of Systems and Software,vol. 81, no. 5, pp.

649–660, 2008.

