
i

“SOFTWARE DEFECT PREDICTION USING HOMOGENEOUS

AND HETEROGENEOUS ENSEMBLE TECHNIQUES”

DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY IN

SOFTWARE ENGINEERING

Submitted By

Yankit Kumar (2K19/SWE/16)

Under the guidance

 Of

Dr. Manoj Kumar

Assistant Professor, DTU

 Department of Computer Science & Engineering

Delhi Technological University, Delhi

 DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

SHAHBAD DAULATPUR, DELHI-110042

MAY-2021

ii

DECLARATION

I hereby declare that the work presented in this report entitled “SOFTWARE DEFECT

PREDICTION USING HOMOGENEOUS AND HETEROGENEOUS ENSEMBLE

TECHNIQUES”, in fulfillment of the requirement for the award of the MASTER OF

TECHNOLOGY degree in Software Engineering submitted in Computer Science Department

at DELHI TECHNOLOGICAL UNIVERSITY, New Delhi, is an authentic record of my own

work carried out during my degree under the guidance of Dr. Manoj Kumar.

The work reported in this has not been submitted by me for the award of any other degree or

diploma.

Date:

 Yankit Kumar

(2K19/SWE/16)

Place: Delhi

iii

CERTIFICATE

This is to certify that Yankit Kumar (2K19/SWE/16) has completed the project titled

“Comparing the predictive performances of different classification algorithm and ensemble

techniques” under my supervision in partial fulfillment of the MASTER OF TECHNOLOGY

degree in Software Engineering at DELHI TECHNOLOGICAL UNIVERSITY.

 Dr. Manoj Kumar

 (Supervisor)

 (Assistant Professor),

 Dept. of Computer Science & Engineering,

Delhi Technological University

iv

ACKNOWLEDGEMENT

I am very thankful to Dr. Manoj Kumar (Assistant Professor, Department of Computer

Science) and all the faculty members of the Department of Computer Science at DTU. They

all provided us with immense support and guidance for the project.

I would also like to express my gratitude to the University for providing us with the

laboratories, infrastructure, testing facilities, and environment which allowed us to work

without any obstructions.

I would also like to appreciate the support provided to us by our lab assistants, seniors, and

our peer group who aided us with all the knowledge they had regarding various topics.

Yankit Kumar

Roll No. 2K19/SWE/16

v

ABSTRACT

Many researchers have already been working in the field of defect prediction in software

using some machine learning algorithms. Their results vary from dataset to dataset. These

algorithms give inconsistent output for predicting defects in a random software project.

Researchers have not decided which machine learning algorithm is best suitable for correctly

predicting the defects in software so recent developments in machine learning introduce

ensembling methods to predict defects. Ensembling takes the advantages of different

techniques to give a better prediction of defects compared to individual base models.

The major objective for work is building the ensemble of various classification methods to

predict the defects in the given software module and compare the results of the ensemble with

an individual classification technique. We have used naive bayes classifiers, logistic

regression, k- nearest neighbors, support vector machine, decision trees for implementation

and then choose the best three classification techniques to build the ensemble, and data sets

are collected from publicly available repositories. Here we have used heterogeneous

ensemble techniques such as voting, stacking and homogeneous ensemble techniques such as

bagging and boosting for prediction. Also heterogeneous version of bagging and boosting is

used. All the six techniques are implemented and compared using the various performance

metrics. Area under ROC curve (AUC) is used to analyze the prediction performance and to

check the statistical significance of the results of different models, Friedman test is used. The

results show that the ensemble method improves the prediction performance as compared to

individual classifiers.

vi

INDEX

Content Page

Number

Title
i

Declaration
ii

Certificate
iii

Abstract
iv

Acknowledgement
v

List of Tables
 viii

List of Figures
ix

List of Abbreviations
xi

Chapter 1 – Introduction
1

 1.1 Software Defect Prediction

 1.2 Ensemble Learning

 1.3 Organisation of Dissertation

2

2

3

Chapter 2 – Literature Review 4

 2.1 Related Work 4

Chapter 3 - Proposed Work

 3.1 Ensemble Method

 3.1.1 Motivation Behind Ensemble Methods

6

6

vii

 3.1.2 Why an Ensemble Method is Used?

 3.2 Ensemble Techniques Used in Project

 3.3 Classification Techniques Used

 3.4 Comparison of Classification Techniques Used

7

7

14

16

Chapter 4 - Experimental Layout 18

 4.1 Proposed Architecture

 4.2 Software Fault Dataset

 4.3 Data Pre-processing

 4.4 Performance Evaluation Measure Used

 4.5 Statistical Test Used

 4.5.1 Friedman Test

 4.5.2 Nemenyi Test

18

19

20

21

21

21

21

Chapter 5 – Results 23

 5.1 Discussion on Results through Box Plots and AUC values

 5.2 Discussion on Results through Statistical Tests

 5.3 Discussion on Results through Graphs Obtained

23

35

37

Chapter 6 – Conclusion 43

References 44

viii

LIST OF TABLES

Table

Number

Table Name Page

Number

I AUC values for different classification technique 16

II Static code metrics details 19

III Dataset Used 20

IV AUC values of stacking and base techniques 23

V AUC values of voting and base techniques 24

VI AUC values of stacking and voting 25

VII AUC values for Homogeneous Bagging 27

VIII AUC values for Homogeneous Boosting 28

IX AUC values for Homogeneous Bagging vs. Homogeneous

Boosting

29

X AUC values for Heterogeneous Bagging 30

XI AUC values for Heterogeneous Boosting 31

XII AUC values for Heterogeneous Bagging vs. Heterogeneous

Boosting

32

ix

LIST OF FIGURES

Figure

Number

Figure Name Page

Number

1 Classification of ensemble techniques 8

2 Architecture of stacking method 9

3 Architecture of voting method 10

4 Types of Bagging 11

5 Algorithm of Bagging 12

6 Classification of ML technique 14

7 Box plots for five classification technique 17

8 Proposed Architecture 18

9 Box plot for stacking and base techniques 26

10 Box plot for voting and base techniques 26

11 Box plot for stacking and voting 26

12 Box plot for Homogeneous Bagging 32

13 Box plot for Homogeneous Boosting 33

14 Box plot for Homogeneous Boosting vs.

Homogeneous Bagging

33

15 Box plot for Heterogeneous Bagging 34

16 Box plot for Heterogeneous Boosting 34

17 Box plot for Heterogeneous Bagging vs.

Heterogeneous Boosting

35

x

18 Collate of average AUC values between various

classification techniques

38

19 Collate of average AUC values between stacking

and individual techniques

38

20 Collate of average AUC values between voting and

individual techniques

39

21 Collate of average AUC values between voting and

stacking

39

22 Collate of average AUC values for Homogeneous

Bagging

40

23 Collate of average AUC values for Homogeneous

Boosting

40

24 Collate of average AUC values for Homogeneous

Bagging vs. Homogeneous Boosting

41

25 Collate of average AUC values for Heterogeneous

Bagging

41

26 Collate of average AUC values for Heterogeneous

Boosting

42

27 Collate of average AUC values for Heterogeneous

Bagging vs. Heterogeneous Bagging

42

xi

LIST OF ABBREVIATIONS

SDP Software Defect Prediction

AUC Area Under the curve

ROC Receiver Operating Characteristics

WMC Weighted Methods per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Object

RFC Response for a Class

LCOM Lack of Cohesion in Methods

CA Afferent Coupling

CE Efferent Coupling

NPM Number of Public Methods

LCOM3 Lack of Cohesion in Methods version 3

LOC Lines of Code

DAM Data Access Metric

MOA Measure of Aggregation

MFA Measure of Functional Aggregation

CAM Cohesion Among Methods

IC Inheritance Coupling

CBM Coupling Between Methods

AMC Average Method Complexity

max (CC) Maximum McCabe‟s Complexity

avg (CC) Average McCabe‟s Complexity

WEKA Waikato Environment for Knowledge

Analysis

1

CHAPTER 1

INTRODUCTION

 Software testing is a resource and time-consuming task in the software development lifecycle.

The main motive of the testing process is to deliver defect-free products to the customers and

meet all the requirements of the stakeholders. The small budget for testing process leads to

the development of a prediction model which helps in finding defective parts of the software

so that there is no need to test all modules of the software.

Software defect prediction (SDP) is the process of finding defective modules in the software

using some software metrics to enhance the quality of the software and also this process

reduces the number of modules to be tested. If the software is complex then it is difficult to

produce it without any faults. So there is a need to predict the faults at an early stage so that

there will be no increment in the budget of the software and the customers get quality

products. This leads to building the defect prediction model.

Recent developments in machine learning introduce an ensemble approach which combines

different techniques to predict the number of defects and gives better prediction results

compared to individual techniques. According to Mendis Moreira et al[7], "Ensemble

learning is a process that uses a set of models, each of them obtained by applying a learning

process to a given problem. This set of models (ensemble) is integrated in some way to obtain

the final prediction." The ensemble method improves the prediction performance of the base

models. Due to the benefits of the ensemble approach, it is widely used in classifying the

modules of the software into faulty and non-faulty modules.

Regression and classification methods are commonly used in the field of software defect

prediction. Regression methods are used to predict the total number of defects in the software

[8]. Various classification algorithms have been used in the field of defect prediction [1]

which includes statistical and machine-learning techniques. Discriminant analysis [2], logistic

regression [3], factor analysis [4], fuzzy classification [5], classification trees [5], Bayesian

network [6] etc. comes under classification algorithms.

If we use ensemble methods, it has some advantages over base learning techniques and leads

to improvement in the prediction performance [7]. If the dataset is very large, then the cost of

computing the global minima is large in case of individual fault prediction methods. So to

2

overcome this problem, the ensemble method combines the local minima of base techniques

to improve the overall performance of the given input function [9].

In this study, we present a system that makes use of ensemble methods to predict the faults in

the software modules. We analyze the results of five classification techniques and choose

those three techniques which give better AUC values on most of the dataset. These three

techniques work as base learning techniques to build ensemble methods.

1.1 Software Defect Prediction

Defect prediction encompasses the prediction in which it referred to defets in software

modules. In this, module is known as the main unit of a system such as function or class.

Any software is composed of many of OOPS and function oreiented which is associated to

many large number of classes.

To ensure this, there are many project related software attributes for each class as well.

It is termed as centre for application of quality assurance (QA) techniques to assess the

classes‟ inherent quality. For these techniques, it add-ons inspections, unit, static source code

analyzers, unit testing etc. A documentation of whole results in this QA is known as defect

log. We can also, use this to grow our domain, understand the principles, major human errors.

If the information contained in the data provides not only a precise account of the

encountered faults (i.e., the “bugs”), but also a thorough description of static code features

such as lines of code (LOC), complexity measures (e.g., McCabe‟s cyclomatic complexity),

and other suitable object-oriented design metrics. There are three very good reasons to study

defect predictors learned from static code attributes: they are easy to use, widely used, and

useful to use.

1.2 Ensemble Learning

Ensemble techniques comes out as to be an meta-classifier which are combination of many of

machine learning models by applying that to it for one prescient model which overall

improves predictions , decline of predisposition or may even cancels the difference of

stacking.

3

Ensemble learning is a technique that consists of classifiers in which an indicator is built for

utilization of combination of classifiers which may or may not be of one kind while,

By measuring the weighted vote or at the midpoint of aftermath, in their yiels. New info.

Focuses on the ordered ones. Various students are utilized to ensemble model to make it as a

base model.

Ensemble model capacity is dependent upon the sum of better base class capacity which

makes that engaging in the capacity of ensemble models in support of frail student‟s

exhibition and even more to make it as solid theory which produces unquestionably

progressively exact predictions. Along with this the base students in ensemble learning are

traditionally assigned as feeble.

1.3 Organisation Of Dissertation

This dissertation is organized as follows: Chapter 1 includes introduction and related work

done. In Chapter 2 – Proposed work, basics ensemble techniques, ensemble techniques used

in project, classification techniques used and their comparison is being explained. Chapter 3 -

Experimental layout explains about the proposed architecture, dataset used, dataset pre

processing, performance metrics used and statistical tests used. Chapter 4 – Results includes

the discussion about the results obtained using box plots, AUC values, statistical tests and

graphs. The dissertation ends with conclusion and references being written.

4

CHAPTER 2

LITERATURE REVIEW

The writing examines that have been overviewed proposes widely compelling models for the

prediction of deformities. The underlying work in prediction of software deserts concentrate

chiefly about the utilization of measurable procedures. The outline of the examinations that

were utilized in this exploration are talked about beneath.

2.1 Related Work

Aleem et al.[11] analyzed and compare the prediction performance of 11 machine learning

techniques such as Naive bayes, Multilayer perceptron, support vector machines, Adaboost,

Bagging, Random forest etc. using 15 NASA dataset which was downloaded from PROMISE

repository. The result of this study shows that the Bagging and Support vector machine gives

better prediction performance.

A comparative study of ensemble classifiers done by Wang et al.[12] shows that voting and

random forest gives better classification results as compared to stacking, naive bayes,

Adaboost and bagging.

A study done by Perreault et al.[13] on five NASA dataset compared naive bayes, support

vector machines, artificial neural networks, logistic regression and k nearest neighbor but

there is no clear explanation about which technique is best.

Hussain et al.[14] in his study compared the three ensemble techniques that uses five base

classification techniques such as naive bayes, logistic regression, J48, Voted-Perceptron, and

support vector machine in Weka tool for SDP. The result of this study shows that Stacking

gives better results among all the ensemble techniques used. A defect prediction model using

ensemble method was presented by Mısırlı, Bener, and Turhan (2011)[15]. In this, they build

ensembles using three learning techniques: naive bayes, voting feature intervals and artificial

neural networks. This study results in improvement of the prediction accuracy using

ensemble methods.

Aljamaan and Elish (2009)[16] analyzed the bagging and boosting ensemble methods and

compared their performances with some other individual classification techniques. The

5

results show that bagging and boosting improved prediction accuracy over most of the

individual classification techniques.

A study done by Elish, Aljamaan, and Ahmad (2015)[17] shows that ensemble method gives

correct prediction results on considered dataset. They used two publicly available datasets to

analyze the ensemble methods for predicting software maintenance and changing efforts.

All the studies done in this field shows the prediction capabilities of ensemble method. Most

of them show that ensemble methods improve the prediction accuracy results as compared to

individual technique. Other works available in the field of prediction using ensemble methods

are given in Zheng(2010)[18], Wang et al.(2011)[20] and Twala(2011)[19].

6

CHAPTER 3

PROPOSED WORK

3.1 Ensemble Method

Аn ensemble is а mасhine leаrning mоdel where соmbination frоm twо оr mоre mоdels‟

prediction is made.

The рrediсtiоns mаde by the ensemble members‟ mаy be соmbined using stаtistiсs, suсh аs the

mоde оr meаn, оr by mоre sорhistiсаted methоds thаt leаrn hоw muсh tо trust eасh member аnd

under whаt соnditiоns.

Ensemble learning techniques are known for their long histories for showing a better level of

performance that too in a variety of various machine learning applications. The domains of

all of these applications consist of regression and classification problems. The popular model

of Random forest along with the gradient boosting model is a very well-known ensemble

model, in which a combination of some weak learners is used for building up an ensemble. In

these type of models, the collection made up of weak learners is homogeneous, this implies

that all those weak learners that are of same type are to be grouped together in order to show

their combined strength. Here, we will show how a heterogeneous collection made from

weak learners can be used to build a hybrid learning model in ensemble. All these different

types of ML algorithms can be grouped together for doing this task so as to work on any

particular classification problem.

Ensemble methоds greаtly inсreаse соmрutаtiоnаl соst аnd соmрlexity. This inсreаse соmes frоm

the exрertise аnd time required tо trаin аnd mаintаin multiрle mоdels rаther thаn а single mоdel.

3.1.1 Motivation Behind Ensemble Method

The inspiration driving utilizing the ensemble AI methods are because of a few reasons.

Ensemble models have been demonstrated exceptionally successful to inspire the precision

and the presentation of the models.

Some AI methods play out a neighborhood search as opposed to finding the worldwide

optima, which frequently gets caught in nearby optima. For instance, the calculation for the

choice tree utilizes a parting rule for ravenous strategies to develop the tree. On the other

7

hand, an ensemble worked from a few distinctive beginning stages by running a nearby

pursuit typically will in general give a superior prediction of the genuine unlabeled example

than any of the individual classifiers taken independently.

A learning calculation can be seen as looking for a space H of theory so as to recognize the

best speculation in space. Nonetheless, the factual issue emerges that the measure of

information accessible to prepare the model is excessively little contrasted with the size of the

speculation space. Without adequate information, a wide range of theories can be found in a

learning calculation in H which when utilized with preparing information for the most part

gives a similar precision. By making an ensemble of all these exact models, the calculation

can have 10 weighted-normal of their votes and gives a decrease in the probability of

choosing the improper classifier for prediction.

3.1.2 Why an ensemble method is used?

An ensemble method is used for twо mаin reаsоns:

1. Рerfоrmаnсe: Better predictions and better thus performance can be achieved through

ensemble method in contrast of non-ensemble method.

2. Rоbustness: The sрreаd оr disрersiоn оf the рrediсtiоns can be reduced by ensemble methods

аnd so the рerfоrmаnсe of the model can be improved.

Through Ensemble method better рrediсtive рerfоrmаnсe can be achieved for а problem of

predictive modelling as compared to a single рrediсtive mоdel.

To achieve better performance, the ensemble method adds the bias and thus reduces the variance

of the prediction error.

Another advantage of ensemble method that is not discussed frequently is they provide better

robustness and reliability even if the performance of model is average.

3.2 Ensemble Techniques Used in Project

Various researchers have evaluated the performance of classification techniques for the

software fault prediction. Therefore, there is none common permission among the researchers

that a classification approach is the most suited for the fault prediction. Recent developments

8

in the area of machine learning have brought the concept of ensemble learning to improve the

performance of the prediction model.

Fig 1 Classification of ensemble techniques

The central idea of ensemble is to combine the prediction outputs of several learning

techniques such that the overall performance of the decision is improved as compared to the

individual techniques output. Ensemble method can be of two types: homogeneous ensemble

and heterogeneous ensemble. In a homogenous ensemble, learning techniques are of the same

type such as bagging, boosting, etc. In heterogeneous ensembles, different learning

techniques are used.

Here in this study we are using four ensemble techniques to combine the prediction result of

some classification technique in order to get better prediction accuracy. The four ensemble

techniques used are:

1. Stacking:

Stacking is a way of ensembling classification or regression models that consists of two-layer

estimators. The first layer consists of all the base models or models for individual techniques

that are used to predict the outputs on the test datasets. The second layer consists of a Meta-

Classifier or Regressor which takes all the predictions of base models as an input and

generates new predictions. Fig 2 shows the architecture of stacking methods.

9

Fig 2 Architecture of stacking method

2. Voting:

Voting is another way of ensemble technique used for classification models. In this the

results are combined on the basis of majority voting and on the basis of probability values.

There are two types of voting:

a) Hard voting:

In hard voting, the results of individual technique are combined on the basis of majority

voting for better prediction performance.

b) Soft voting:

Soft voting is applicable where individual techniques result in probabilities for the outcome.

This technique gives the best result by calculating the average probabilities of the individual

technique probabilities. Here we are using soft voting. Fig 3 shows the architecture of the

voting method.

10

Fig 3 Architecture of voting method

3. Bagging

Bаgging is а соndensing fоr Bооtstrар Аggregаting. Расking wаs рresented by Breimаn. The

thоught оf sасking is strаightfоrwаrd, thаt is, the ensemble соmрrises оf сlаssifiers thаt

deрend оn the рreраrаtiоn set's bооtstrар сорies. The yields оf the individuаl сlаssifier аre

соnsоlidаted utilizing the blend rule оf lаrger раrt саsting а bаllоt.

In this bооtstrар testing is utilized in whiсh subset оf infоrmаtiоn fосuses аre сhоsen

аimlessly frоm the sрасe оf infоrmаtiоn fосuses with nаmes. The fundаmentаl hidden

guideline is thаt the exаmрles аre gоtten with substitutiоn, sо we саn sаy thаt аn infоrmаtiоn

роint thаt hаs been gоtten befоre hаs equivаlent likelihооd оf being рiсked аgаin like оther

infоrmаtiоn fосuses whiсh were nоt gоtten befоre.

These exаmрles оr we саn sаy thаt the bооtstrаррed tests аre then sent tо аn аggregаtоr whiсh

tаllies the vоte thаt hоw muсh vоte а сlаss is hаving. The сlаss with dоminаnt раrt саsts а

bаllоt is viewed аs the аntiсiраted mаrk fоr thаt оbsсure exаmрle.

Bаgging is сlаssified intо twо tyрes as shown in Fig.4, i.e., bооtstrаррing аnd аggregаtiоn.

Bооtstrаррing is а sаmрling teсhnique where sаmрles аre derived frоm the whоle рорulаtiоn

(set) using the reрlасement рrосedure.

11

Fig 4 Types of Bagging

The sаmрling with reрlасement methоd helрs mаke the seleсtiоn рrосedure rаndоmized. The

bаse leаrning аlgоrithm is run оn the sаmрles tо соmрlete the рrосedure.

Аggregаtiоn in bаgging is dоne tо inсоrроrаte аll роssible оutсоmes оf the рrediсtiоn аnd

rаndоmize the оutсоme. Withоut аggregаtiоn, рrediсtiоns will nоt be ассurаte beсаuse аll

оutсоmes аre nоt рut intо соnsiderаtiоn. The аggregаtiоn is, therefоre, bаsed оn the

рrоbаbility bооtstrаррing рrосedures оr оn the bаsis оf аll оutсоmes оf the рrediсtive mоdels.

Bagging algorithm

Given а trаining dаtа set D соntаining m exаmрles, bооtstrар drаwing methоd drаws а

sаmрle оf trаining exаmрles Di, by seleсting m exаmрles in unifоrm rаndоm with

reрlасement. It соmрrises twо рhаses nаmely Trаining рhаse аnd Сlаssifiсаtiоn Рhаse.

Trаining Рhаse:

1. Initiаlize the раrаmeters

2. D = {Φ}

3. H= the number оf сlаssifiсаtiоn

12

4. Fоr k=1 tо h

5. Tаke а bооtstrар sаmрle S frоm trаining set S

6. Build the сlаssifier D using S аs а trаining set

7. D = DUDi

8. Return D

Сlаssifiсаtiоn Рhаse:

1. Run D₁, D2 ...Dk оn the inрut k

2. The сlаss with а mаximum number оf the vоte is сhоsen аs the lаbel fоr X.

Fig 5 Algorithm of Bagging

Advantages and Disadvantages

Advantages:

 When weаk leаrners are аggregаted, they perform better than а single leаrner оver the

entire set and thus have less overfitting.

 Bagging helps is removing vаriаnсe for dаtа set having high variance and low bias.

 Bagging cаn be рerfоrmed in раrаllel, аs eасh seраrаte bооtstrар саn be рrосessed оn its

оwn befоre соmbinаtiоn

Disadvantages:

13

 For a dataset having high bias, bagging will also lead to high bias for its aggregate

 Lоss оf interрretаbility оf а mоdel.

 Depending on the dataset, bagging can be соmрutаtiоnаlly exрensive.

4. Boosting

The fundamental thought behind the working of ensemble model is to improve the prescient

intensity of the model by including each classifier iteratively in turn. At a specific stage when

a classifier enters an ensemble then it is prepared on an informational collection haphazardly

examined from the preparation informational index. Test appropriation begins with

consistently stable mode and meets its development towards expanding the prediction of

troublesome information focuses.

Boosting unites powerless students. On the other hand, we can say base students are made

utilizing AI calculations with an alternate appropriation to frame a solid classifier with solid rules.

Each time a fundamental learning calculation is applied, it produces another standard. At the end

of the day, boosting is an iterative strategy in which the primary calculation is prepared all in all

dataset and the resulting calculations are built by fitting the residuals of the main calculation,

accordingly giving more noteworthy load to the perceptions inadequately anticipated by the past

model.

AdaBoost is a variation of boosting ensemble inclining technique. AdaBoost is abbreviation

for Adaptive Boosting. At first we start by allocating equivalent loads to all the information

focuses. On the off chance that there is any off-base prediction i.e., the blunder of prediction

because of the main calculation of essential characterization, at that point we pay more regard

for those perceptions with blunder of prediction. At that point comes the utilization of the

next calculation for learning the base.

3.3 Classification Techniques Used

Classification is defined as predicting the binary class variables (dependent data) from a

given set of independent data such as classifying email as spam or not spam or we can say

that classification of many module as consisting of faults or not.

14

Fig 6 Classification of Machine Learning Techniques

In this study, we are using five different classifier techniques to predict the results. For

implementation, we are using weka tool. All the techniques have their parameter value as

default available in WEKA . Here we are also using a ten - fold cross-validation technique for

splitting the original dataset into training and testing dataset. Five classification technique

which we have chosen for implementation are as follows:

1. Naive Bayes:

Naive Bayes is classification method which is based on mathematical theorems which is

termed as Bayes with an assumption of independence among predictors. In other words, NB

classifier takes that when an specific side is present within class which is not enclosed to the

presence in others.It is a simple technique and gives better accuracy results[6],[21]. It is

based on one assumption that the value of one feature is not dependent on another feature

value. Naive bayes theorem is a supervised learning algorithm. Supervised algorithm further

classified into two parts: Classification and Regression. Naive bayes come under

classification algorithms.

P(F/c)=(P(F)*P(c/F))/P(c)

Where

P(F/c) is the posterior probability.

P(F) is the class prior probability.

15

P(c) is the predictor prior probability.

P(c/F) is the likelihood.

Given F is the set of feature values or independent variables and c is the dependent variable

or class variable having values either 0 or 1.0 value indicates not faulty and 1 indicates faulty

modules.

2. Logistic Regression:

Logistic regression is a widely used statistical technique used for predicting the faulty

modules or predicting the dependent variable using independent variables. Here binary

Logistic regression is used to build the model as the dependent variable has binary values

either 0 or 1. It models the probability of classification anomalies with 2 possible outputs. It's

an extension that works as a linear regression model for classification anomalies.

In this first data is fit into the linear regression model as linear regression outputs continuous

variables, so logistic regression makes use of the logistic sigmoid function to transform this

output into probability value and this probability is mapped to target categorical dependent

variable. A detailed description of logistic regression is given by Basili et al.(1996)[22] and

Hosmer and Lemeshow(1989)[23]. Based on categories, there are 3 types of logistic

regression:

a) Binary

b) Multinomial

c) Ordinal

3. Support Vector Machines:

It is another simple algorithm used for both regression and classification. It is a highly

preferred technique as it gives the best accuracy with less computation. It divides the whole

dataset into two parts by constructing an N-dimensional hyperplane. The hyperplane is

created in the way to divide the means of 1-category in dependent value on 1-manor way and

another category of the dependent variable on another side [25]. Vectors that are nearer to the

hyperplane are called support vectors. Support vector machines have also been used in face

recognition, medical diagnosis, and text classification [24].

16

4. K- nearest neighbor:

It is another simple Ml that could be using in classification and regression problems. KNN

follows two properties: Lazy learning and Non parametric learning. Lazy learning means no

specification about how to choose training data and non parametric learning means no there is

no assumption about the data. It considers the k most similar instances to classify an instance

by calculating the euclidean distance between instances[26]. KNN has also been used in

pattern recognition, data mining, and intrusion detection.

5. Decision Tree:

In this, we use the REP tree which means Reducing within Erroneous inside of Pruning tree.

It is the decision tree learning based technique & uses regression logic as it creates trees for

every iteration and chooses the best one among all. It used the methods from C4.5 or J48

algorithm. It has also been used in intrusion detection. A study done by Zhao and Zhang

[27] shows that the J48 or C4.5 algorithm produces decision tree classifier by the recursive

division of the data, and using the Depth-first strategy, decision trees are grown.

3.4 Comparison of Classification Techniques Used

Table I shows the result of these five fault prediction techniques on the basis of AUC values.

The result shows that in 53.33% cases logistic regression gives better prediction performance.

Fig 7 shows the box plot analysis of these five fault prediction techniques. Choose the best 3

techniques among these 5 and they will be considered as base techniques for ensemble. From

table I and fig 7 it can be seen that logistic regression, naive bayes and knn gives the best

result.

Project

name

Logistic

regression

Naïve bayes KNN Decision

tree

Support

vector

ant1.3 0.686 0.769 0.704 0.640 0.515

ant1.4 0.669 0.624 0.627 0.549 0.500

ant1.6 0.814 0.809 0.721 0.765 0.621

ant1.7 0.814 0.806 0.712 0.782 0.624

Camel1.0 0.613 0.743 0.596 0.434 0.500

Camel1.2 0.628 0.564 0.649 0.613 0.508

17

Ivy1.1 0.669 0.667 0.637 0.648 0.678

Ivy1.4 0.494 0.660 0.507 0.419 0.500

Jedit4.0 0.776 0.741 0.708 0.695 0.567

Jedit4.1 0.823 0.773 0.742 0.721 0.654

Synapse1.0 0.672 0.747 0.649 0.422 0.500

Synapse1.1 0.718 0.716 0.709 0.677 0.660

Synapse1.2 0.748 0.756 0.765 0.700 0.651

Xalan2.4 0.760 0.742 0.659 0.729 0.498

Xalan2.6 0.804 0.786 0.788 0.798 0.707

Table I AUC values using different classification techniques

Fig 7 Box plots of five classification techniques

18

CHAPTER 4

EXPERIMENTAL LAYOUT

4.1 Proposed Architecture

Fig 8 Proposed Architecture

19

4.2 Software fault dataset

In this section, we define independent and dependent variables used in this study and

empirical data collection of the dataset used in this study.

Dependent and Independent Variables:

Independent variables used in this study are static code metrics and the dependent variable

used in this study is fault proneness. Fault proneness is defined as the probability of finding

faults in the class. Static code metrics used in this study are given in table II:

WMC Weighted Method per Class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Objects

RFC Response for a Class

LCOM Lack of Cohesion in Methods

LCOM3 Lack of Cohesion in Methods version 3

NPM Number of Public Methods

DAM Data Access Metric

MOA Measure of Aggregation

MFA Measure of Functional Abstraction

CAM Cohesion Among Methods

IC Inheritance Coupling

CBM Coupling Between Methods

AMC Average Method Complexity

Ca Afferent Coupling

Ce Efferent Coupling

Max (CC) Maximum McCabe‟s Complexity

Avg (CC) Average mccabe's Complexity

LOC Line of code

Table II Static code metrics details

20

The definition in aforementioned metric is given in a separate report given by Jureczko and

Madeyski[10] and also this report is available online.

Empirical Data Collection:

The dataset is collected from 6 projects. All are java based projects which can be downloaded

from PROMISE repository which is publicly available. The datasets which have been used in

this study are shown in table III.

4.3 Dataset Preprocessing

Datasets from the publicly available repositories may contain some noise or there can be

some missing values which can affect the performance of the generated model so to avoid

this type of problem some preprocessing is to be done on datasets such as removing unique id

field, version field, class field etc. In this we have used one filter “replacing missing values

with user constant” to fill the missing values if any. We have also used one more filter of

weka tool to convert the bug field data type from “numeric to nominal” as software can be

faulty or non faulty. In other terms we can say that the bug field contains binary values either

0 or 1.

Project

name

Version Description

ant 1.3,1.4,1.6,1.7 Java-base-build-tool

camel 1.0,1.2 a rule-based

framework written in

Java

ivy 1.1,1.4 Dependency Manager

jEdit 4.0.1,4.1.1,4.3.1.1 Java-bases cross-

platform using-text

editor

synapse 1.1.1,1.2.1 Enterprise service bus

xalan 2.5.0.1,2.6.0.1,2.7.

0.1

XSLT processor

Table III Datasets used

21

4.4 Performance Evaluation Measure Used

In this study, we use AUC (area under ROC curve) to evaluate the prediction performance.

Although the ROC (Receiver Operating Characteristics) curve is the accurate measure for

prediction performance [28], it does not give the numeric values to discriminate between the

results so AUC is the better choice for measuring prediction performance.AUC value is the

average of all threshold values. AUC closer to 1 shows better prediction performance and

closer to 0 shows poor prediction performance. A detailed description of how to calculate

AUC values is given in Dejaeger et al [28].

4.5 Statistical Test Used

In this section, we describe statistical tests used in this study. Statistical tests are used to

check whether there is a significant difference between the predictive performance of various

techniques. We have used Friedman test and one post hoc test(nemenyi test).

4.5.1 Friedman Test:

The Friedman test is the nonparametric version of the one-way ANOVA with repeated

measures. It is used to test for differences between groups when the dependent variable being

measured is ordinal. This test is also applicable when the data violates the assumption which

are required to run the one way ANOVA test

The null hypothesis for this test is that there is no significant difference between the

performances of all techniques. The alternate hypothesis is that the treatments have

significant differences.

4.5.2 Nemenyi Test:

Nemenyi test is a post-hoc test which intends to find the groups of data that are alike after a

statistical test with multiple comparisons (such as the Friedman test or kruskal wallis

test)which rejects the null hypothesis. This test makes this test pair-wise tests for

performance.

https://www.statisticshowto.com/what-is-an-alternate-hypothesis/

22

It compares all the algorithms pairwise and is based on the absolute difference of the average

rankings of the classifiers.

In a significant level α the test determines the critical difference [CD]. if the difference b/w

the average ranking of 2 algo is above than CD.then null hypothesis that the algo having

same throughput is rejected. The function nemenyi test compares the critical difference with

all the pairwise differences.

23

CHAPTER 5

RESULTS

5.1 Discussion on Results through Box Plots and AUC values

This part represents the result of the ensemble methods answered in sec-3. I have shown

results in the form using AUC values. We also performed analysis using box plot and

statistical tests.

Table IV represents the AUC values obtained after applying a stacking ensemble method

using naive bayes, logistic regression and k nearest neighbor on a given 15 software fault

dataset. The result of table IV shows that in 60% cases stacking method gives better results,

in 26.66% cases naive bayes gives better results and in 13.33% cases logistic regression gives

better results.

Project name Logistic regression Naïve bayes KNN Stacking

ant1.3 0.686 0.769 0.704 0.723

ant1.4 0.669 0.624 0.627 0.628

ant1.6 0.814 0.809 0.721 0.825

ant1.7 0.814 0.806 0.712 0.817

camel1.0 0.613 0.743 0.596 0.467

camel1.2 0.628 0.564 0.649 0.659

ivy1.1 0.669 0.667 0.637 0.675

ivy1.4 0.494 0.660 0.507 0.510

jEdit4.0 0.776 0.741 0.708 0.790

jEdit4.1 0.823 0.773 0.742 0.816

synapse1.0 0.672 0.747 0.649 0.723

synapse1.1 0.718 0.716 0.709 0.747

synapse1.2 0.748 0.756 0.765 0.770

xalan2.4 0.760 0.742 0.659 0.782

xalan2.6 0.804 0.786 0.788 0.813

Table IV AUC values for stacking and base classification technique

24

Table V represents the AUC values obtained after applying a voting ensemble method using

naive bayes, logistic regression and knn on a given 15 software fault dataset. We are using

soft voting as we are considering the average of probabilities for combining the result of base

techniques. The result of table V shows that in 66.66% cases the voting method gives better

results, in 26.66% cases naive bayes gives best results and in 6.66% cases logistic regression

gives best results.

Project name Logistic

regression

Naïve bayes KNN Voting

ant1.3 0.686 0.769 0.704 0.750

ant1.4 0.669 0.624 0.627 0.674

ant1.6 0.814 0.809 0.721 0.820

ant1.7 0.814 0.806 0.712 0.824

camel1.0 0.613 0.743 0.596 0.711

camel1.2 0.628 0.564 0.649 0.671

ivy1.1 0.669 0.667 0.637 0.697

ivy1.4 0.494 0.660 0.507 0.559

jEdit4.0 0.776 0.741 0.708 0.794

jEdit4.1 0.823 0.773 0.742 0.811

synapse1.0 0.672 0.747 0.649 0.728

synapse1.1 0.718 0.716 0.709 0.771

synapse1.2 0.748 0.756 0.765 0.796

xalan2.4 0.760 0.742 0.659 0.785

xalan2.6 0.804 0.786 0.788 0.813

Table V AUC values for voting and base classification technique

Table VI represents the AUC values for stacking and voting obtained from 15 different

software fault dataset. As in xerces 2.6 the AUC values for both stacking and voting are the

same so we are not considering that value. The result of this table shows that in 85.71% cases

voting gives better results and in 14.28% cases the stacking method gives the best result as

compared to the stacking method.

25

Project name Voting Stacking

ant1.3 0.750 0.723

ant1.4 0.674 0.628

ant1.6 0.820 0.825

ant1.7 0.824 0.817

camel1.0 0.711 0.467

camel1.2 0.671 0.659

ivy1.1 0.697 0.675

ivy1.4 0.559 0.510

jEdit4.0 0.794 0.790

jEdit4.1 0.811 0.816

synapse1.0 0.728 0.723

synapse1.1 0.771 0.747

synapse1.2 0.796 0.770

xalan2.4 0.785 0.782

xalan2.6 0.813 0.813

Table VI AUC values for stacking and voting

Fig 9 represents the box plot analysis of stacking and classification techniques used in

building stacking ensemble models. Analysis of fig 9 shows that stacking gives the best result

followed by naive bayes and logistic regression. And there is one outlier in case of knn. Fig

10 represents the box plot analysis of voting and classification techniques used in building

voting ensemble models. Analysis of fig 10 shows that voting gives the best result followed

by naive bayes and logistic regression. And there is one outlier in case of knn. Fig 11

represents the box plot analysis of voting and stacking. Analysis of fig 11 shows that voting

gives better performance prediction as compared to stacking. Box plots give the lowest, first

quartile, the peak, and third quartile results in the sample test. The centroid of the boxplot

gives the middle results for the sample.

26

Fig 9 Box plot of stacking and base techniques

Fig 10 Box plot of voting and base technique

Fig 11 Box plot of voting and stacking

27

Table VII represents the AUC values obtained after applying a homogenous bagging

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15

software fault dataset. It can be seen from the table that all the three classification techniques

gave almost same AUC values for a given dataset; there is not much difference between the

results obtained. For Synapse 1.2 dataset, the AUC values obtained is same for all the three

techniques and for Synapse 1.0, Naïve bayes and KNN gave same results for AUC values.

Table VII AUC values for Homogeneous Bagging

Project name Logistic

regression

Naïve bayes KNN

Ant 1.3 0.800 0.816 0.840

Ant 1.4 0.719 0.539 0.691

Ant 1.6 0.786 0.794 0.726

Ant 1.7 0.826 0.808 0.786

Camel1.0 0.949 0.926 0.941

Camel1.2 0.662 0.648 0.651

Ivy1.1 0.612 0.594 0.639

Ivy1.4 0.921 0.883 0.912

Jedit4.0 0.787 0.777 0.790

Jedit4.1 0.814 0.801 0.778

Synapse1.0 0.859 0.847 0.847

Synapse1.1 0.797 0.752 0.729

Synapse1.2 0.746 0.746 0.746

Xalan2.4 0.849 0.816 0.811

Xalan2.6 0.738 0.711 0.719

28

Table VIII represents the AUC values obtained after applying a homogeneous boosting

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15

software fault dataset. Out of 15 datasets, logistic regression performed better than naïve

bayes and KNN in 11 datasets. In 3 datasets Logistic regression and KNN gave same AUC

values, i.e. they gave same performance for these 3 datasets. For 5 datasets Naïve bayes and

KNN gave the same results for AUC values.

Project name Logistic

regression

Naïve bayes KNN

Ant 1.3 0.792 0.761 0.816

Ant 1.4 0.719 0.556 0.674

Ant 1.6 0.803 0.794 0.740

Ant 1.7 0.822 0.811 0.774

Camel1.0 0.946 0.929 0.929

Camel1.2 0.657 0.646 0.657

Ivy1.1 0.675 0.594 0.648

Ivy1.4 0.901 0.892 0.892

Jedit4.0 0.797 0.764 0.784

Jedit4.1 0.821 0.769 0.769

Synapse1.0 0.859 0.834 0.853

Synapse1.1 0.801 0.747 0.747

Synapse1.2 0.742 0.726 0.742

Xalan2.4 0.853 0.817 0.853

Xalan2.6 0.737 0.715 0.724

Table VIII AUC values for Homogeneous Boosting

29

Table IX represents the AUC values for Homogeneous Bagging and Homogeneous Boosting

obtained from 15 different software fault dataset. The table is made by combining the above

two tables, so that comparison between the two techniques can be made.

Project

Name

BAGGING BOOSTING

Logistic

regression

KNN NAÏVE

BAYES

Logistic

regression

KNN NAÏVE

BAYES

Ant 1.3 0.800 0.816 0.84 0.792 0.760 0.816

Ant 1.4 0.719 0.539 0.691 0.719 0.556 0.674

Ant 1.6 0.786 0.795 0.726 0.803 0.795 0.741

Ant 1.7 0.827 0.808 0.787 0.823 0.811 0.774

Camel1.0 0.950 0.926 0.941 0.947 0.929 0.929

Camel1.2 0.663 0.648 0.651 0.658 0.646 0.658

Ivy1.1 0.613 0.595 0.64 0.676 0.595 0.649

Ivy1.4 0.921 0.884 0.913 0.900 0.892 0.892

Jedit4.0 0.788 0.778 0.791 0.797 0.765 0.784

Jedit4.1 0.814 0.801 0.779 0.821 0.769 0.769

Synapse1.0 0.860 0.847 0.847 0.860 0.834 0.854

Synapse1.1 0.797 0.752 0.73 0.802 0.748 0.748

Synapse1.2 0.746 0.746 0.746 0.742 0.727 0.742

Xalan2.4 0.849 0.816 0.812 0.853 0.817 0.853

Xalan2.6 0.739 0.712 0.72 0.738 0.715 0.724

Table IX AUC values for Homogeneous Boosting vs. Homogeneous Bagging

30

Table X represents the AUC values obtained after applying a heterogeneous bagging

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15

software fault dataset.

The result of table shows that in 13 datasets out of 15, heterogeneous bagging gave better

results than basic techniques. KNN never performed better than all the other three techniques.

Logistic regression and Naïve bayes performed better in case of two datasets i.e. Ant 1.6 and

Synapse 1.0 respectively.

Table X AUC values for bagging and base classification technique

Project name Logistic

regression

Naïve bayes KNN Bagging

Ant 1.3 0.686 0.769 0.704 0.783

Ant 1.4 0.669 0.624 0.627 0.670

Ant 1.6 0.814 0.809 0.721 0.811

Ant 1.7 0.814 0.806 0.712 0.822

Camel1.0 0.613 0.743 0.596 0.766

Camel1.2 0.628 0.564 0.649 0.665

Ivy1.1 0.669 0.667 0.637 0.708

Ivy1.4 0.494 0.660 0.507 0.688

Jedit4.0 0.776 0.741 0.708 0.797

Jedit4.1 0.823 0.773 0.742 0.830

Synapse1.0 0.672 0.747 0.649 0.728

Synapse1.1 0.718 0.716 0.709 0.777

Synapse1.2 0.748 0.756 0.765 0.811

Xalan2.4 0.760 0.742 0.659 0.774

Xalan2.6 0.804 0.786 0.788 0.816

31

Table XI represents the AUC values obtained after applying a heterogeneous boosting

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15

software fault dataset. The result of table shows that in 7 cases out of 15, heterogeneous

boosting gave better results than individual basic technique.

Project

name

Logistic

regression

Naïve bayes KNN AdaBoost

Ant 1.3 0.686 0.769 0.704 0.703

Ant 1.4 0.669 0.624 0.627 0.671

Ant 1.6 0.814 0.809 0.721 0.807

Ant 1.7 0.814 0.806 0.712 0.784

Camel1.0 0.613 0.743 0.596 0.687

Camel1.2 0.628 0.564 0.649 0.665

Ivy1.1 0.669 0.667 0.637 0.689

Ivy1.4 0.494 0.660 0.507 0.573

Jedit4.0 0.776 0.741 0.708 0.792

Jedit4.1 0.823 0.773 0.742 0.789

Synapse1.0 0.672 0.747 0.649 0.656

Synapse1.1 0.718 0.716 0.709 0.775

Synapse1.2 0.748 0.756 0.765 0.772

Xalan2.4 0.760 0.742 0.659 0.780

Xalan2.6 0.804 0.786 0.788 0.798

Table XII represents the AUC values for Heterogeneous Bagging and Heterogeneous

Boosting obtained from 15 different software fault dataset. The table is made by combining

the above two tables, so that comparison between the two techniques can be made.

Table XI AUC values for bagging and base classification technique

32

Project Name BAGGING BOOSTING

Ant 1.3 0.783 0.703

Ant 1.4 0.670 0.671

Ant 1.6 0.811 0.807

Ant 1.7 0.822 0.784

Camel1.0 0.766 0.687

Camel1.2 0.665 0.665

Ivy1.1 0.708 0.689

Ivy1.4 0.688 0.573

Jedit4.0 0.797 0.792

Jedit4.1 0.830 0.789

Synapse1.0 0.728 0.656

Synapse1.1 0.777 0.775

Synapse1.2 0.811 0.772

Xalan2.4 0.774 0.780

Xalan2.6 0.816 0.798

Fig. 12. Box Plot for Homogeneous Bagging

Table XII AUC values for Boosting vs. Bagging

33

Fig 12 represents the box plot analysis of Homogeneous bagging ensemble models. Analysis

of fig 12 shows that KNN gives the best result followed by Naïve Bayes and logistic

regression. And there is one outlier in case of Naïve Bayes.

Fig.13 Box Plot for Homogeneous Boosting

Fig 13 represents the box plot analysis of Homogenous Boosting ensemble models. Analysis

of fig 13 shows that Logistic regression gives the best result followed by naive bayes and

KNN. And there is one outlier in case of Naïve Bayes.

Fig. 14 Box Plot for Homogeneous Boosting vs. Homogeneous Bagging

34

Fig 14 represents the box plot analysis of Homogeneous Bagging and boosting. Analysis of

fig 14 shows that Logistic regression gives better performance prediction as compared to

others. And there is one outlier in case of Naïve Bayes in homogeneous bagging.

Fig. 15 Box Plot for Bagging

Fig 15 represents the box plot analysis of heterogeneous bagging. Analysis of fig 15 shows

that bagging gives better performance prediction as compared to individual base

classification technique. And there is one outlier in case of KNN.

Fig.16 Box Plot for Boosting

35

Fig 16 represents the box plot analysis of Heterogeneous boosting. Analysis of fig 16 shows

that boosting gives better performance prediction as compared to individual base classifiers.

There is one outlier in case of KNN.

Fig. 17 Box Plot for Boosting vs. Bagging

Fig 17 represents the box plot analysis of heterogeneous boosting and heterogeneous

bagging. Analysis of fig 17 shows that bagging gives better performance prediction as

compared to boosting. Box plots give the lowest, first quartile, the peak, and third quartile

results in the sample test. The centroid of the boxplot gives the middle results for the sample.

5.2 Discussion On Results Through Statistical Tests

If we statistically analyze the results of all the tables then results of table I shows that

calculated χ
2
- value=30.9867 and χ

2
 value at (4,0.05)=9.488 so there is significant difference

between the performances of techniques of table I. As when their an significance of alikeness

b/w the performance in techniques so, will apply nemenyi post-hoc which is post hoc test.The

result of nemenyi test on table I shows that Decision tree and support vector machines

significantly outperforms logistic regression at significance level 0.05, Decision tree and

support vector machines significantly outperforms naive bayes at significance level 0.05 and

support vector machines significantly outperforms knn at significance level 0.05.

Results of table IV shows that calculated χ
2
-value=16.04 and χ

2
 value at (3,0.05)=7.815 so,

when an significance of alike between the performancement of techniques of table IV. As

36

there is a significant difference between the performances of techniques so will apply

nemenyi post-hoc which is post hoc test. The result of nemenyi test on table IV shows that

significant alike in performance of knn and stacking at significant levels at 0.05.

Results of table V shows that calculated χ
2
-value=20.92 and χ

2
 value at (3,0.05)=7.815 so

there is a significant difference between the performance of techniques of table V. As there is

a significant difference between the performances of techniques so will apply nemenyi test

which is post hoc test. The result of nemenyi test on table V shows that when an significant

values differ in performances of knn & voting there an significant values differ by the

performances in naive bayes and voting at significance level 0.05.

Results of table VI shows that calculated χ
2
-value=6.667 and χ

2
 value at (1,0.05)=3.841 so,

there is a significance of difference b/w the power of performance in stacking and voting.

Results of table VII shows that calculated χ
2
 value at (3,0.05)=8.6333 so there is a significant

difference between the performance of techniques of table VII. As there is a significant

difference between the performances of techniques so will apply nemenyi test which is post

hoc test. The result of nemenyi test on table VII shows that when a significant value differ in

performances of knn & homogeneous bagging there an significant values differ by the

performances in naive bayes and homogeneous bagging at significance level 0.05.

Results of table VIII shows that calculated χ
2
 value at (3,0.05)=18.6333 so there is a

significant difference between the performance of techniques of table VIII. As there is a

significant difference between the performances of techniques so will apply nemenyi test

which is post hoc test. The result of nemenyi test on table VIII shows that when an significant

values differ in performances of knn & homogeneous boosting there an significant values

differ by the performances in naive bayes and homogeneous boosting at significance level

0.05.

Results of table IX shows that calculated χ
2
 value at (3,0.05)=24.0571 so, there is a

significance of difference b/w the power of performance in homogeneous bagging and

boosting.

Results of table X shows that calculated χ
2
 value at (3,0.05)=26.44 so there is a significant

difference between the performance of techniques of table X. As there is a significant

difference between the performances of techniques so will apply nemenyi test which is post

37

hoc test. The result of nemenyi test on table X shows that when an significant values differ in

performances of knn & heterogeneous bagging there an significant values differ by the

performances in naive bayes and heterogeneous bagging at significance level 0.05.

Results of table XI shows that calculated χ
2
 value at (3,0.05)=12.2 so there is a significant

difference between the performance of techniques of table XI. As there is a significant

difference between the performances of techniques so will apply nemenyi test which is post

hoc test. The result of nemenyi test on table XI shows that when an significant values differ

in performances of knn & Heterogeneous Boosting there an significant values differ by the

performances in naive bayes and Heterogeneous Boosting at significance level 0.05.

Results of table XII shows that calculated χ
2
 value at (1,0.05)=6.6667 so, there is a

significance of difference b/w the power of performance in Heterogeneous Bagging and

boosting.

5.3 Discussion On Results Through Graphs Obtained

With an ensemble technique is useful, it must provide greater than, the initial participating

technique in the ensemble method. Hence, with this part we have to measure performance of

given ensemble technique with initial learning method. The results of differ fault prediction

methods compares by using AUC results. The result of table I shows that among five fault

prediction techniques logistic regression gives the good result followed by naive bayes and

knn. The result of table IV shows that stacking gives good prediction accomplishment with

comparison to an individual technique. Result of table V shows that voting gives great

prediction production with comparison to an individual technique. The result of table VI

shows that voting gives gives prediction production with comparison in stacking method. The

box plot analysis shows that there is one outlier in case of knn. Statistical analysis shows that

the null hypothesis is rejected then we, apply nemenyi test. The result shows that

performance of stacking and voting is significantly different from naive bayes.

Fig 18 represents the comparison of average AUC values of various classification on the

basis of AUC values and the last column of this figure shows the average value and the result

of this diagram shows that naive bayes, logistic regression and knn gives the best prediction

performance on the basis of average of AUC values.

38

Fig 18 Collate of average AUC values between various classification techniques

Fig 19 represents the comparison of average AUC values between stacking and individual

technique on the basis of AUC values and the end column of this figure shows the average

value. The output of this figure show that stacking performs better than individual technique

on the basis of average values of AUC values.

Fig 19 Collate of average AUC values between stacking and individual technique

Fig 20 represents the comparison of average AUC values between voting and individual

technique on the basis of AUC value and the last column of this figure shows the average

39

value. Results of this figure show that voting performs better than individual technique on the

basis of average values of AUC values.

Fig 20 Collate of average AUC values between voting and individual technique

Fig 21 represents the comparison of average AUC values between voting and stacking on the

basis of AUC value and the last column of this figure shows the average value. Results of this

figure show that voting performs better than stacking on the basis of average values of AUC

values.

Fig 21 Collate of average AUC values between voting and stacking

40

Fig 22 represents the comparison of average AUC values for Homogeneous Bagging. It can

be seen from the graph that all the three classification techniques gave almost same AUC

values for a given dataset; there is not much difference between the results obtained.

Fig 22 Collate of average AUC values for Homogeneous Bagging

Fig 23 represents the comparison of average AUC values for Homogeneous Boosting. From

the graph obtained, it can be seen out of 15 datasets, logistic regression performed better than

naïve bayes and KNN in 11 datasets.

Fig 23 Collate of average AUC values for Homogeneous Boosting

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Logistic regression Naïve bayes KNN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Logistic regression Naïve bayes KNN

41

Fig 24 represents the comparison of average AUC values between Homogeneous Bagging

and Homogeneous Boosting on the basis of AUC value.

Fig 24 Collate of average AUC values for Homogeneous Boosting and Homogeneous

Boosting

Fig 25 represents the comparison of average AUC values between heterogeneous bagging

and individual technique on the basis of AUC values. The output of this figure show that

bagging performs better than individual technique on the basis of average values of AUC

values.

Fig 25 Collate of average AUC values for Heterogeneous Bagging

0
10
20
30
40
50
60
70
80
90

100

BAGGING Logistic regression BAGGING KNN

BAGGING NAÏVE BAYES BOOSTING Logistic regression

BOOSTING KNN BOOSTING NAÏVE BAYES

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic regression Naïve bayes KNN Bagging

42

Fig 26 represents the comparison of average AUC values between boosting and individual

technique on the basis of AUC values. The output of this figure show that boosting performs

better than individual technique on the basis of average values of AUC values.

Fig 26 Collate of average AUC values for Heterogeneous Boosting

Fig 27 represents the comparison of average AUC values between bagging and boosting on

the basis of AUC value. Results of this figure show that bagging performs better than

boosting on the basis of average values of AUC values.

Fig 27 Collate of average AUC values for Heterogeneous Boosting vs. Heterogeneous

Bagging

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Logistic regression Naïve bayes KNN AdaBoost

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

BAGGING BOOSTING

43

CHAPTER 6

CONCLUSION

The main motive of this study was to examine the various classification techniques and

ensemble techniques in order to find which method gives better fault prediction performance.

Thus we employed five classification techniques (naive bayes, logistic regression, decision

tree, KNN, and support vector machine). Out of these 5, we selected the best 3 techniques on

the basis of AUC values. The results show that naive bayes, logistic regression and knn gives

better prediction performance out of 5 classification techniques. Then we employed six

ensemble techniques (Heterogeneous stacking and voting, Homogeneous Bagging and

Boosting and Heterogeneous Bagging and Boosting). And if we compare the results of

ensemble techniques and individual techniques, ensemble gives the best result. Here we are

also comparing which ensemble technique gives better prediction performance. Result shows

that the voting method gives better prediction performance as compared to the stacking

method and out of Bagging and Boosting (Both homogenous and heterogeneous), bagging

performs better.

44

REFERENCES

[1] Rathore, S. S., & Kumar, S. (2016a). A decision tree logic based recommendation system

to select software fault prediction techniques. Computing, 1-31.

[2] McLachlan, G.(2004). Discriminant analysis and statistical pattern recognition: volume

544. John Wiley & Sons.

[3] James, G., Witten, D., Hastie, T., & Tibshirani, R.(2013). An introduction to statistical

learning. Springer.

[4] Child, D.(1990). The essentials of factor analysis, Cassell Educational.

[5] Quinlan, J. R.(1987). Simplifying decision trees. International Journal of Man-Machine

Studies, 27(3), 221-234.

[6] I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on

empirical methods in artificial engineering. Volume 3 (pp 41-46).

[7] Mendes-Moreira, J., Soares, C., Jorge, A.M., Sousa, J.F.D.: Ensemble approaches for

regression: A survey. ACM Comput. Surv. (CSUR) 45(1), 10 (2012).

[8] Kalaivani, N. and Beena, R. (2018) Overview of Software Defect Prediction Using

Machine Learning Algorithms. International Journal of Pure and Applied Mathematics,

118, 3863-3873.

[9] Dietterich, T. G.(2000a). Ensemble methods in machine learning. In multiple classifier

system (pp. 1-15). Springer.

[10] Jureczko, M., & Madeyski, L. (2011c). Software product metrics used to build defect

prediction models. Report SPR 2/2014, Faculty of Computer Science and Management,

Wroclaw University of Technology.

[11] Aleem, S., Capretz, L. and Ahmed, F. (2015) Benchmarking Machine Learning

Technologies for Software Defect Detection. International Journal of Software

Engineering & Applications, 6, 11-23.

45

[12] Wang, Tao, Li, W., Shi, H. and Liu, Z. (2011) Software Defect Prediction Based on

Classifiers Ensemble. Journal of Information & Computational Science, 8, 4241-4254.

[13] Perreault, L., Berardinelli, S., Izurieta, C., and Sheppard, J. (2017) Using Classifiers for

Software Defect Detection. 26th International Conference on Software Engineering and

Data Engineering, 2-4 October 2017, Sydney, 2-4.

[14] Hussain, S., Keung, J., Khan, A. and Bennin, K.(2015) Performance evaluation of

ensemble methods for software fault prediction: An experiment. Proceedings of the

ASWEC 2015 24th Australasian Software Engineering Conference, 2, 91-95.

[15] Mısırlı, A. T., Bener, A. B., & Turhan, B.(2011). An industrial case study of classifiers

ensembles for locating software defects. Software Quality Journal, 19(3), 515-536.

[16] Aljamaan, H., Elish, M. O., et al.(2009). An empirical study of bagging and boosting

ensembles for identifying faulty classes in object oriented software. In CIDM‟09. IEEE

Symposium on computational intelligence and data mining (pp. 187-194).

[17] Elish, M. O., Aljamaan, H., & Ahmad, I.(2015) Three empirical studies on predicting

software maintainability using ensemble methods. Soft Computing, 1-14.

[18] Zheng, J.(2010). Cost sensitive boosting neural networks for software defect prediction.

Expert Systems with Applications, 37(6), 4537-4543.

[19] Twala, B.(2011) Predicting software faults in large space system using machine learning

techniques. Defence Science Journal, 61(4), 306-316.

[20] Wang, T., Li, W., Shi, H., & Liu, Z.(2011) Software defect prediction based on

classifiers ensemble. Journal of Information & Computational Science, 8(16), 4241-

4254.

[21] C. Catal, U. Sevim, and B. Diri. Practical development of an eclipse-based software

fault prediction tool using Na¨ıve Bayes algorithm. Expert Systems with Applications,

38(3):2347 – 2353, 2011.

[22] Basili, V., Briand, L. and Melo, W. (1996) „A validation of object-oriented design

metrics as quality indicators‟, IEEE Transactions on Software Engineering, Vol. 22,

No.10, pp.751–761.

46

[23] Hosmer, D. and Lemeshow, S. (1989) Applied Logistic Regression, John Wiley & Sons.

[24] Wang, X., Bi, D. and Wang, S. (2007) „Fault recognition with labeled multi-category‟,

3rd Conference on Natural Computation, Haikou, China.

[25] Sherrod, P. (2003) „DTreg predictive modeling software‟.

[26] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transactions on

Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[27] Y. Zhao and Y.Zhang, “Comparison of Decision Tree Methods for Finding Active

Objects,” National Astronomical Observatories, Advances of Space Research, 2007.

[28] K. Dejaeger, T. Verbraken, and B. Baesens. Toward comprehensible software fault

prediction models using Bayesian network classifiers. IEEE Transactions on Software

Engineering, 39(2):237–257, 2013.

[29] T. Gyimothy, R. Ferenc and 1. Siket, "Empirical validation of object-oriented metrics on

open source software for fault prediction," IEEE Transactions on Software Engineering.

vol.31, pp. 897-910, 2005.

[30] C. Catal, B. Diri and B. Ozumut, "An artificial immune system approach for fault

prediction in object-oriented Software," In 2nd International Conference Dependability

Compution System., pp. 1-8, 2007.

[31] Y. Zhou and H. Leung, "Empirical Analysis of Object-Oriented Design Metrics for

Predicting High Severity Faults," IEEE Transactions on Software Engineering, vol. 32,

no.10, pp. 771-784, 2006.

[32] U P. Singh and A. Chug. "Software defect prediction analysis using machine learning

algorithms." In International Conference of Computing and Data Science, 2017, pp. 775

781.

[33] Z.Sun, Q. Song, X. Zhu, "Using coding-based ensemble learning to improve software

defect prediction, IEEE Transactions on Systems, vol.43, no.6, 2012, pp. 313-325. 13 T.

Wang, W. Li, H. Shi and Z. Liu. "Software defect prediction based on classifiers

ensemble. Journal of Information Systems, vol.8. no 16, 2011, pp.4241-4254.

[34] A. Kaur and K. Kamaldeep. "Performance analysis of ensemble learning for predicting

defects in open source software, International Conference on Advances in

Communication and Informatics, 2014, pp. 219-225.

47

[35] P. Singh and A. Chug, "Software defect prediction analysis using machine learning

algorithms In International Conference of Computing and Data Science, 2017, pp. 775-

781

[36] H. Shamsul, L. Kevin and M. Abdelrazek, "An ensemble oversampling model for class

imbalance problem in software defect prediction," IEEE Access 6, 2018.

[37] S. Wang and X. Yao, "Using class imbalance learning for software defect prediction,

International Conference of Computing and Data Science vol. 62, no. 2, 2013, pp. 434-

443.

[38] A. Kaur, K. Kaur and D. Chopra "An empirical study of software entropy based bug

prediction using machine learning." International Conference on Distributed systems,

vol.8, no.2, 2017, pp. 599-616.

[39] C. Seiffert, T.M. Khoshgoftaar and J. V. Hulse, "Improving software-quality predictions

with data sampling and boosting." IEEE Transactions on Systems Man and Cybernetics

Part A. vol. 39, no. 66, pp. 1283-1294, 2009.

[40] W. Dai, Y.E. Shao, C.J.J Lu, "Incorporating feature selection method into support vector

regression for stock index forecasting." Neural Computing and Applications, vol. 23,

no.6. pp. 1551-561, 2012.

[41] W. Chen and C.J. Lin. "Combining SVMs with various feature selection strategies, IEEE

Transactions on Software Engineering, 2005.

[42] C.L. Huang, M.C. Chen and C.J. Wang, "Credit scoring with a data mining approach

based on support vector machines," Expert Systems with Applications, vol. 33, no. 4, pp.

30C. Cortes and V. Vapnik, "Support-vector networks." Machine Learning, vol. 20,

no.3,847-856, 2007

[43] S.K. Shevade, S.S Keerthi CK Bhattacharyya and R.K. Murthy, Improvements to the

SMO Algorithm for SVM Regression, IEEE Transactions on Neural Networks, vol II.

[44] R.Malhotra, S. Shukla. G.Sawhney, Assessment of Defect Prediction Models using

Machine Learning Techniques for Object Oriented Systems." 2016 5th International

Conference on Reliability. Infocom Technologies and Optimization (ICRITO) (Trends

and Future Directions), Sep 7-9, 2016. AllT, Amity University Uttar Pradesh, Noida

India.

[45] R. Malhotra, "An empirical framework for defect prediction using machine learning

techniques with Android software." Applied Soft Computing, vol. 49, pp. 1034-1050.

