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ABSTRACT 

 

 
Many researchers have already been working in the field of defect prediction in software 

using some machine learning algorithms. Their results vary from dataset to dataset. These 

algorithms give inconsistent output for predicting defects in a random software project. 

Researchers have not decided which machine learning algorithm is best suitable for correctly 

predicting the defects in software so recent developments in machine learning introduce 

ensembling methods to predict defects. Ensembling takes the advantages of different 

techniques to give a better prediction of defects compared to individual base models. 

 

The major objective for work is building the ensemble of various classification methods to 

predict the defects in the given software module and compare the results of the ensemble with 

an individual classification technique. We have used naive bayes classifiers, logistic 

regression, k- nearest neighbors, support vector machine, decision trees for implementation 

and then choose the best three classification techniques to build the ensemble, and data sets 

are collected from publicly available repositories. Here we have used heterogeneous 

ensemble techniques such as voting, stacking and homogeneous ensemble techniques such as 

bagging and boosting for prediction. Also heterogeneous version of bagging and boosting is 

used. All the six techniques are implemented and compared using the various performance 

metrics. Area under ROC curve (AUC) is used to analyze the prediction performance and to 

check the statistical significance of the results of different models, Friedman test is used. The 

results show that the ensemble method improves the prediction performance as compared to 

individual classifiers. 
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CHAPTER 1 

 

INTRODUCTION 

       Software testing is a resource and time-consuming task in the software development lifecycle. 

The main motive of the testing process is to deliver defect-free products to the customers and 

meet all the requirements of the stakeholders. The small budget for testing process leads to 

the development of a prediction model which helps in finding defective parts of the software 

so that there is no need to test all modules of the software. 

Software defect prediction (SDP) is the process of finding defective modules in the software 

using some software metrics to enhance the quality of the software and also this process 

reduces the number of modules to be tested. If the software is complex then it is difficult to 

produce it without any faults. So there is a need to predict the faults at an early stage so that 

there will be no increment in the budget of the software and the customers get quality 

products. This leads to building the defect prediction model. 

Recent developments in machine learning introduce an ensemble approach which combines 

different techniques to predict the number of defects and gives better prediction results 

compared to individual techniques. According to Mendis Moreira et al[7], "Ensemble 

learning is a process that uses a set of models, each of them obtained by applying a learning 

process to a given problem. This set of models (ensemble) is integrated in some way to obtain 

the final prediction." The ensemble method improves the prediction performance of the base 

models. Due to the benefits of the ensemble approach, it is widely used in classifying the 

modules of the software into faulty and non-faulty modules.  

Regression and classification methods are commonly used in the field of software defect 

prediction. Regression methods are used to predict the total number of defects in the software 

[8]. Various classification algorithms have been used in the field of defect prediction [1] 

which includes statistical and machine-learning techniques. Discriminant analysis [2], logistic 

regression [3], factor analysis [4], fuzzy classification [5], classification trees [5], Bayesian 

network [6] etc. comes under classification algorithms. 

If we use ensemble methods, it has some advantages over base learning techniques and leads 

to improvement in the prediction performance [7]. If the dataset is very large, then the cost of 

computing the global minima is large in case of individual fault prediction methods. So to 
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overcome this problem, the ensemble method combines the local minima of base techniques 

to improve the overall performance of the given input function [9]. 

In this study, we present a system that makes use of ensemble methods to predict the faults in 

the software modules. We analyze the results of five classification techniques and choose 

those three techniques which give better AUC values on most of the dataset. These three 

techniques work as base learning techniques to build ensemble methods. 

1.1 Software Defect Prediction 

Defect prediction encompasses the prediction in which it referred to defets in software 

modules. In this, module is known as the main unit of a system such as function or class.  

Any software is composed of many of OOPS and function oreiented which is associated to 

many large number of classes. 

To ensure this, there are many project related software attributes for each class as well. 

It is termed as centre for application of quality assurance (QA) techniques to assess the 

classes‟ inherent quality. For these techniques, it add-ons inspections, unit, static source code 

analyzers, unit testing etc. A documentation of whole results in this QA is known as defect 

log. We can also, use this to grow our domain, understand the principles, major human errors. 

If the information contained in the data provides not only a precise account of the 

encountered faults (i.e., the “bugs”), but also a thorough description of static code features 

such as lines of code (LOC), complexity measures (e.g., McCabe‟s cyclomatic complexity), 

and other suitable object-oriented design metrics. There are three very good reasons to study 

defect predictors learned from static code attributes: they are easy to use, widely used, and 

useful to use. 

1.2 Ensemble Learning 

Ensemble techniques comes out as to be an meta-classifier which are combination of many of 

machine learning models by applying that to it for one prescient model which overall 

improves predictions , decline of predisposition  or may even cancels the difference of 

stacking. 
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Ensemble learning is a technique that consists of classifiers in which an indicator is built for 

utilization of combination of classifiers which may or may not be of one kind while, 

By measuring the weighted vote or at the midpoint of aftermath, in their yiels. New info. 

Focuses on the ordered ones. Various students are utilized to ensemble model to make it as a 

base model. 

Ensemble model capacity is dependent upon the sum of better base class capacity which 

makes that engaging in the capacity of ensemble models in support of frail student‟s 

exhibition and even more to make it as solid theory which produces unquestionably 

progressively exact predictions. Along with this the base students in ensemble learning are 

traditionally assigned as feeble. 

1.3 Organisation Of Dissertation 

This dissertation is organized as follows: Chapter 1 includes introduction and related work 

done. In Chapter 2 – Proposed work, basics ensemble techniques, ensemble techniques used 

in project, classification techniques used and their comparison is being explained. Chapter 3 - 

Experimental layout explains about the proposed architecture, dataset used, dataset pre 

processing, performance metrics used and statistical tests used. Chapter 4 – Results includes 

the discussion about the results obtained using box plots, AUC values, statistical tests and 

graphs. The dissertation ends with conclusion and references being written.     
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CHAPTER 2 

 

LITERATURE REVIEW 

The writing examines that have been overviewed proposes widely compelling models for the 

prediction of deformities. The underlying work in prediction of software deserts concentrate 

chiefly about the utilization of measurable procedures. The outline of the examinations that 

were utilized in this exploration are talked about beneath. 

2.1 Related Work 

Aleem et al.[11] analyzed and compare the prediction performance of 11 machine learning 

techniques such as  Naive bayes, Multilayer perceptron, support vector machines, Adaboost, 

Bagging, Random forest etc. using 15 NASA dataset which was downloaded from PROMISE 

repository. The result of this study shows that the Bagging and Support vector machine gives 

better prediction performance. 

A comparative study of ensemble classifiers done by Wang et al.[12] shows that voting and 

random forest gives better classification results as compared to stacking, naive bayes, 

Adaboost and bagging. 

A study done by Perreault et al.[13] on five NASA dataset compared naive bayes, support 

vector machines, artificial neural networks, logistic regression and k nearest neighbor but 

there is no clear explanation about which technique is best.    

Hussain et al.[14] in his study compared the three ensemble techniques that uses five base 

classification techniques such as naive bayes, logistic regression, J48, Voted-Perceptron, and 

support vector machine in Weka tool for SDP. The result of this study shows that Stacking 

gives better results among all the ensemble techniques used. A defect prediction model using 

ensemble method was presented by Mısırlı, Bener, and Turhan (2011)[15]. In this, they build 

ensembles using three learning techniques: naive bayes, voting feature intervals and artificial 

neural networks. This study results in improvement of the prediction accuracy using 

ensemble methods. 

Aljamaan and Elish (2009)[16] analyzed the bagging and boosting ensemble methods and 

compared their performances with some other individual classification techniques. The 
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results show that bagging and boosting improved prediction accuracy over most of the 

individual classification techniques. 

A study done by Elish, Aljamaan, and Ahmad (2015)[17] shows that ensemble method gives 

correct prediction results on considered dataset. They used two publicly available datasets to 

analyze the ensemble methods for predicting software maintenance and changing efforts. 

 

All the studies done in this field shows the prediction capabilities of ensemble method. Most 

of them show that ensemble methods improve the prediction accuracy results as compared to 

individual technique. Other works available in the field of prediction using ensemble methods 

are given in Zheng(2010)[18], Wang et al.(2011)[20] and Twala(2011)[19]. 
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CHAPTER 3 

 

PROPOSED WORK 

3.1 Ensemble Method 

Аn ensemble is а mасhine leаrning mоdel where соmbination frоm twо оr mоre mоdels‟ 

prediction is made. 

The рrediсtiоns mаde by the ensemble members‟ mаy be соmbined using stаtistiсs, suсh аs the 

mоde оr meаn, оr by mоre sорhistiсаted methоds thаt leаrn hоw muсh tо trust eасh member аnd 

under whаt соnditiоns. 

Ensemble learning techniques are known for their long histories for showing a better level of 

performance that too in a variety of various machine learning applications. The domains of 

all of these applications consist of regression and classification problems. The popular model 

of Random forest along with the gradient boosting model is a very well-known ensemble 

model, in which a combination of some weak learners is used for building up an ensemble. In 

these type of models, the collection made up of weak learners is homogeneous, this implies 

that all those weak learners that are of same type are to be grouped together in order to show 

their combined strength. Here, we will show how a heterogeneous collection made from 

weak learners can be used to build a hybrid learning model in ensemble. All these different 

types of ML algorithms can be grouped together for doing this task so as to work on any 

particular classification problem. 

Ensemble methоds greаtly inсreаse соmрutаtiоnаl соst аnd соmрlexity. This inсreаse соmes frоm 

the exрertise аnd time required tо trаin аnd mаintаin multiрle mоdels rаther thаn а single mоdel.  

3.1.1 Motivation Behind Ensemble Method 

The inspiration driving utilizing the ensemble AI methods are because of a few reasons.  

Ensemble models have been demonstrated exceptionally successful to inspire the precision 

and the presentation of the models.  

Some AI methods play out a neighborhood search as opposed to finding the worldwide 

optima, which frequently gets caught in nearby optima. For instance, the calculation for the 

choice tree utilizes a parting rule for ravenous strategies to develop the tree. On the other 
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hand, an ensemble worked from a few distinctive beginning stages by running a nearby 

pursuit typically will in general give a superior prediction of the genuine unlabeled example 

than any of the individual classifiers taken independently.  

A learning calculation can be seen as looking for a space H of theory so as to recognize the 

best speculation in space. Nonetheless, the factual issue emerges that the measure of 

information accessible to prepare the model is excessively little contrasted with the size of the 

speculation space. Without adequate information, a wide range of theories can be found in a 

learning calculation in H which when utilized with preparing information for the most part 

gives a similar precision. By making an ensemble of all these exact models, the calculation 

can have 10 weighted-normal of their votes and gives a decrease in the probability of 

choosing the improper classifier for prediction. 

3.1.2 Why an ensemble method is used? 

An ensemble method is used for twо mаin reаsоns:  

1. Рerfоrmаnсe: Better predictions and better thus performance can be achieved through 

ensemble method in contrast of non-ensemble method.   

2. Rоbustness: The sрreаd оr disрersiоn оf the рrediсtiоns can be reduced by ensemble methods 

аnd so the рerfоrmаnсe of the model can be improved. 

Through Ensemble method better рrediсtive рerfоrmаnсe can be achieved for а problem of 

predictive modelling as compared to a single рrediсtive mоdel.  

To achieve better performance, the ensemble method adds the bias and thus reduces the variance 

of the prediction error.  

Another advantage of ensemble method that is not discussed frequently is they provide better 

robustness and reliability even if the performance of model is average. 

3.2 Ensemble Techniques Used in Project 

Various researchers have evaluated the performance of classification techniques for the 

software fault prediction. Therefore, there is none common permission among the researchers 

that a classification approach is the most suited for the fault prediction. Recent developments 
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in the area of machine learning have brought the concept of ensemble learning to improve the 

performance of the prediction model. 

 

Fig 1 Classification of ensemble techniques 

The central idea of ensemble is to combine the prediction outputs of several learning 

techniques such that the overall performance of the decision is improved as compared to the 

individual techniques output. Ensemble method can be of two types: homogeneous ensemble 

and heterogeneous ensemble. In a homogenous ensemble, learning techniques are of the same 

type such as bagging, boosting, etc. In heterogeneous ensembles, different learning 

techniques are used. 

Here in this study we are using four ensemble techniques to combine the prediction result of 

some classification technique in order to get better prediction accuracy. The four ensemble 

techniques used are: 

1. Stacking: 

Stacking is a way of ensembling classification or regression models that consists of two-layer 

estimators. The first layer consists of all the base models or models for individual techniques 

that are used to predict the outputs on the test datasets. The second layer consists of a Meta-

Classifier or Regressor which takes all the predictions of base models as an input and 

generates new predictions. Fig 2 shows the architecture of stacking methods. 
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Fig 2 Architecture of stacking method 

 

2. Voting: 

Voting is another way of ensemble technique used for classification models. In this the 

results are combined on the basis of majority voting and on the basis of probability values. 

There are two types of voting: 

a) Hard voting:  

In hard voting, the results of individual technique are combined on the basis of majority 

voting for better prediction performance. 

b) Soft voting:  

Soft voting is applicable where individual techniques result in probabilities for the outcome. 

This technique gives the best result by calculating the average probabilities of the individual 

technique probabilities. Here we are using soft voting. Fig 3 shows the architecture of the 

voting method. 
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Fig 3 Architecture of voting method 

3. Bagging 

Bаgging is а соndensing fоr Bооtstrар Аggregаting. Расking wаs рresented by Breimаn. The 

thоught оf sасking is strаightfоrwаrd, thаt is, the ensemble соmрrises оf сlаssifiers thаt 

deрend оn the рreраrаtiоn set's bооtstrар сорies. The yields оf the individuаl сlаssifier аre 

соnsоlidаted utilizing the blend rule оf lаrger раrt саsting а bаllоt.   

In this bооtstrар testing is utilized in whiсh subset оf infоrmаtiоn fосuses аre сhоsen 

аimlessly frоm the sрасe оf infоrmаtiоn fосuses with nаmes. The fundаmentаl hidden 

guideline is thаt the exаmрles аre gоtten with substitutiоn, sо we саn sаy thаt аn infоrmаtiоn 

роint thаt hаs been gоtten befоre hаs equivаlent likelihооd оf being рiсked аgаin like оther 

infоrmаtiоn fосuses whiсh were nоt gоtten befоre. 

These exаmрles оr we саn sаy thаt the bооtstrаррed tests аre then sent tо аn аggregаtоr whiсh 

tаllies the vоte thаt hоw muсh vоte а сlаss is hаving. The сlаss with dоminаnt раrt саsts а 

bаllоt is viewed аs the аntiсiраted mаrk fоr thаt оbsсure exаmрle. 

Bаgging is сlаssified intо twо tyрes as shown in Fig.4, i.e., bооtstrаррing аnd аggregаtiоn. 

Bооtstrаррing is а sаmрling teсhnique where sаmрles аre derived frоm the whоle рорulаtiоn 

(set) using the reрlасement рrосedure. 
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Fig 4 Types of Bagging 

The sаmрling with reрlасement methоd helрs mаke the seleсtiоn рrосedure rаndоmized. The 

bаse leаrning аlgоrithm is run оn the sаmрles tо соmрlete the рrосedure. 

Аggregаtiоn in bаgging is dоne tо inсоrроrаte аll роssible оutсоmes оf the рrediсtiоn аnd 

rаndоmize the оutсоme. Withоut аggregаtiоn, рrediсtiоns will nоt be ассurаte beсаuse аll 

оutсоmes аre nоt рut intо соnsiderаtiоn. The аggregаtiоn is, therefоre, bаsed оn the 

рrоbаbility bооtstrаррing рrосedures оr оn the bаsis оf аll оutсоmes оf the рrediсtive mоdels. 

Bagging algorithm 

Given а trаining dаtа set D соntаining m exаmрles, bооtstrар drаwing methоd drаws а 

sаmрle оf trаining exаmрles Di, by seleсting m exаmрles in unifоrm rаndоm with 

reрlасement. It  соmрrises  twо  рhаses  nаmely  Trаining  рhаse  аnd  Сlаssifiсаtiоn  Рhаse.   

Trаining  Рhаse: 

1.  Initiаlize the раrаmeters 

2.  D = {Φ} 

3.  H= the number оf сlаssifiсаtiоn 
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4.  Fоr k=1 tо h 

5.  Tаke а bооtstrар sаmрle S frоm trаining set S 

6.  Build the сlаssifier D using S аs а trаining set 

7.  D = DUDi 

8.  Return D 

Сlаssifiсаtiоn Рhаse: 

1.  Run D₁, D2 ...Dk оn the inрut k 

2.  The сlаss with а mаximum number оf the vоte is сhоsen аs the lаbel fоr X. 

 

Fig 5 Algorithm of Bagging 

Advantages and Disadvantages 

Advantages: 

 When weаk leаrners are аggregаted, they perform better than а single leаrner оver the 

entire set and thus have less overfitting. 

 Bagging helps is removing vаriаnсe for dаtа set having high variance and low bias. 

 Bagging cаn be рerfоrmed in раrаllel, аs eасh seраrаte bооtstrар саn be рrосessed оn its 

оwn befоre соmbinаtiоn  

Disadvantages: 
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 For a dataset having high bias, bagging will also lead to high bias for its aggregate 

 Lоss оf  interрretаbility оf а mоdel. 

 Depending on the dataset, bagging can be соmрutаtiоnаlly exрensive.  

4. Boosting 

The fundamental thought behind the working of ensemble model is to improve the prescient 

intensity of the model by including each classifier iteratively in turn. At a specific stage when 

a classifier enters an ensemble then it is prepared on an informational collection haphazardly 

examined from the preparation informational index. Test appropriation begins with 

consistently stable mode and meets its development towards expanding the prediction of 

troublesome information focuses.  

Boosting unites powerless students. On the other hand, we can say base students are made 

utilizing AI calculations with an alternate appropriation to frame a solid classifier with solid rules. 

Each time a fundamental learning calculation is applied, it produces another standard. At the end 

of the day, boosting is an iterative strategy in which the primary calculation is prepared all in all 

dataset and the resulting calculations are built by fitting the residuals of the main calculation, 

accordingly giving more noteworthy load to the perceptions inadequately anticipated by the past 

model. 

AdaBoost is a variation of boosting ensemble inclining technique. AdaBoost is abbreviation 

for Adaptive Boosting. At first we start by allocating equivalent loads to all the information 

focuses. On the off chance that there is any off-base prediction i.e., the blunder of prediction 

because of the main calculation of essential characterization, at that point we pay more regard 

for those perceptions with blunder of prediction. At that point comes the utilization of the 

next calculation for learning the base. 

3.3  Classification Techniques Used 

Classification is defined as predicting the binary class variables (dependent data) from a    

given set of independent data such as classifying email as spam or not spam or we can say 

that classification of many module as consisting of faults or not. 
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Fig 6 Classification of Machine Learning Techniques 

In this study, we are using five different classifier techniques to predict the results. For    

implementation, we are using weka tool. All the techniques have their parameter value as 

default available in WEKA . Here we are also using a ten - fold cross-validation technique for 

splitting the original dataset into training and testing dataset. Five classification technique 

which we have chosen for implementation are as follows: 

1. Naive Bayes:  

 

Naive Bayes is classification method which is based on mathematical theorems which is 

termed as Bayes with an assumption of independence among predictors. In other words, NB 

classifier takes that when an specific side is present within class which is not enclosed to the 

presence in others.It is a simple technique and gives better accuracy results[6],[21]. It is 

based on one assumption that the value of one feature is not dependent on another feature 

value. Naive bayes theorem is a supervised learning algorithm. Supervised algorithm further 

classified into two parts: Classification and Regression. Naive bayes come under 

classification algorithms.  

P(F/c)=(P(F)*P(c/F))/P(c) 

Where 

P(F/c) is the posterior probability. 

P(F) is the class prior probability. 
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P(c) is the predictor prior probability. 

P(c/F) is the likelihood. 

Given F is the set of feature values or independent variables and c is the dependent variable 

or class variable having values either 0 or 1.0 value indicates not faulty and 1 indicates faulty 

modules. 

2. Logistic Regression:  

Logistic regression is a widely used statistical technique used for predicting the faulty 

modules or predicting the dependent variable using independent variables. Here binary 

Logistic regression is used to build the model as the dependent variable has binary values 

either 0 or 1. It models the probability of classification anomalies with 2 possible outputs. It's 

an extension that works as a linear regression model for classification anomalies. 

In this first data is fit into the linear regression model as linear regression outputs continuous 

variables, so logistic regression makes use of the logistic sigmoid function to transform this 

output into probability value and this probability is mapped to target categorical dependent 

variable. A detailed description of logistic regression is given by Basili et al.(1996)[22] and 

Hosmer and Lemeshow(1989)[23]. Based on categories, there are 3 types of logistic 

regression: 

a) Binary 

b) Multinomial 

c) Ordinal 

3. Support Vector Machines:  

It is another simple algorithm used for both regression and classification. It is a highly 

preferred technique as it gives the best accuracy with less computation. It divides the whole 

dataset into two parts by constructing an N-dimensional hyperplane. The hyperplane is 

created in the way to divide the means of 1-category in dependent value on 1-manor way and 

another category of the dependent variable on another side [25]. Vectors that are nearer to the 

hyperplane are called support vectors. Support vector machines have also been used in face 

recognition, medical diagnosis, and text classification [24]. 
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4. K- nearest neighbor: 

It is another simple Ml that could be using in classification and regression problems. KNN 

follows two properties: Lazy learning and Non parametric learning. Lazy learning means no 

specification about how to choose training data and non parametric learning means no there is 

no assumption about the data. It considers the k most similar instances to classify an instance 

by calculating the euclidean distance between instances[26]. KNN has also been used in 

pattern recognition, data mining, and intrusion detection. 

5. Decision Tree:  

In this, we use the REP tree which means Reducing within Erroneous inside of  Pruning tree. 

It is the decision tree learning based technique & uses regression logic as it creates trees for 

every iteration and chooses the best one among all. It used the methods from C4.5 or J48 

algorithm. It has also been used in intrusion detection. A study done by Zhao and  Zhang  

[27] shows that the J48 or C4.5  algorithm produces decision tree classifier by the recursive 

division of the data, and using the Depth-first strategy, decision trees are grown. 

3.4 Comparison of Classification Techniques Used 

Table I shows the result of these five fault prediction techniques on the basis of AUC values. 

The result shows that in 53.33% cases logistic regression gives better prediction performance. 

Fig 7 shows the box plot analysis of these five fault prediction techniques. Choose the best 3 

techniques among these 5 and they will be considered as base techniques for ensemble. From 

table I and fig 7 it can be seen that logistic regression, naive bayes and knn gives the best 

result. 

Project 

name 

Logistic 

regression 

Naïve bayes KNN Decision 

tree 

Support 

vector 

ant1.3 0.686 0.769 0.704 0.640 0.515 

ant1.4 0.669 0.624 0.627 0.549 0.500 

ant1.6 0.814 0.809 0.721 0.765 0.621 

ant1.7 0.814 0.806 0.712 0.782 0.624 

Camel1.0 0.613 0.743 0.596 0.434 0.500 

Camel1.2 0.628 0.564 0.649 0.613 0.508 



17 
 

Ivy1.1 0.669 0.667 0.637 0.648 0.678 

Ivy1.4 0.494 0.660 0.507 0.419 0.500 

Jedit4.0 0.776 0.741 0.708 0.695 0.567 

Jedit4.1 0.823 0.773 0.742 0.721 0.654 

Synapse1.0 0.672 0.747 0.649 0.422 0.500 

Synapse1.1 0.718 0.716 0.709 0.677 0.660 

Synapse1.2 0.748 0.756 0.765 0.700 0.651 

Xalan2.4 0.760 0.742 0.659 0.729 0.498 

Xalan2.6 0.804 0.786 0.788 0.798 0.707 

Table I AUC values using different classification techniques 

 

Fig 7 Box plots of five classification techniques 
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CHAPTER 4 

EXPERIMENTAL LAYOUT 

4.1 Proposed Architecture 

 

Fig 8 Proposed Architecture 
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4.2 Software fault dataset 

In this section, we define independent and dependent variables used in this study and 

empirical data collection of the dataset used in this study. 

Dependent and Independent Variables: 

Independent variables used in this study are static code metrics and the dependent variable 

used in this study is fault proneness. Fault proneness is defined as the probability of finding 

faults in the class. Static code metrics used in this study are given in table II: 

WMC Weighted Method per Class 

DIT Depth of Inheritance Tree 

NOC Number of Children 

CBO Coupling Between Objects 

RFC Response for a Class 

LCOM Lack of Cohesion in Methods 

LCOM3 Lack of Cohesion in Methods version 3 

NPM Number of Public Methods 

DAM Data Access Metric 

MOA Measure of Aggregation 

MFA Measure of Functional Abstraction 

CAM Cohesion Among Methods 

IC Inheritance Coupling 

CBM Coupling Between Methods 

AMC Average Method Complexity 

Ca Afferent Coupling 

Ce Efferent Coupling 

Max (CC) Maximum McCabe‟s Complexity 

Avg (CC) Average mccabe's Complexity 

LOC Line of code 

Table II Static code metrics details 
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The definition in aforementioned metric is given in a separate report given by Jureczko and 

Madeyski[10] and also this report is available online. 

Empirical Data Collection: 

The dataset is collected from 6 projects. All are java based projects which can be downloaded 

from PROMISE repository which is publicly available. The datasets which have been used in 

this study are shown in table III. 

4.3 Dataset Preprocessing 

Datasets from the publicly available repositories may contain some noise or there can be 

some missing values which can affect the performance of the generated model so to avoid 

this type of problem some preprocessing is to be done on datasets such as removing unique id 

field, version field, class field etc. In this we have used one filter “replacing missing values 

with user constant” to fill the missing values if any. We have also used one more filter of 

weka tool to convert the bug field data type from “numeric to nominal” as software can be 

faulty or non faulty. In other terms we can say that the bug field contains binary values either 

0 or 1. 

Project 

name 

Version Description 

ant 1.3,1.4,1.6,1.7 Java-base-build-tool 

camel 1.0,1.2 a rule-based 

framework written in 

Java 

ivy 1.1,1.4 Dependency Manager 

jEdit 4.0.1,4.1.1,4.3.1.1 Java-bases cross-

platform using-text 

editor 

synapse 1.1.1,1.2.1 Enterprise service bus 

xalan 2.5.0.1,2.6.0.1,2.7.

0.1 

XSLT processor 

Table III Datasets used 
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4.4 Performance Evaluation Measure Used 

In this study, we use AUC (area under ROC curve) to evaluate the prediction performance. 

Although the ROC (Receiver Operating Characteristics) curve is the accurate measure for 

prediction performance [28], it does not give the numeric values to discriminate between the 

results so AUC is the better choice for measuring prediction performance.AUC value is the 

average of all threshold values. AUC closer to 1 shows better prediction performance and 

closer to 0 shows poor prediction performance. A detailed description of how to calculate 

AUC values is given in Dejaeger et al [28]. 

4.5 Statistical Test Used 

In this section, we describe statistical tests used in this study. Statistical tests are used to 

check whether there is a significant difference between the predictive performance of various 

techniques. We have used Friedman test and one post hoc test(nemenyi test). 

4.5.1 Friedman Test:  

The Friedman test is the nonparametric version of the one-way ANOVA with repeated 

measures. It is used to test for differences between groups when the dependent variable being 

measured is ordinal. This test is also applicable when the data violates the assumption which 

are required to run the one way ANOVA test 

 

The null hypothesis for this test is that there is no significant difference between the 

performances of all techniques. The alternate hypothesis is that the treatments have 

significant differences. 

4.5.2 Nemenyi Test: 

Nemenyi test is a post-hoc test which intends to find the groups of data that are alike after a 

statistical test with multiple comparisons (such as the Friedman test or kruskal wallis 

test)which rejects the null hypothesis. This test makes this test  pair-wise tests for 

performance. 

https://www.statisticshowto.com/what-is-an-alternate-hypothesis/
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It compares all the algorithms pairwise and is based on the absolute difference of the average 

rankings of the classifiers. 

In a significant level α the test determines the critical difference [CD]. if the difference b/w 

the average ranking of 2 algo is above than CD.then null hypothesis that the algo having 

same throughput is rejected. The function nemenyi test compares the critical difference with 

all the pairwise differences. 
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CHAPTER 5 

RESULTS  

5.1 Discussion on Results through Box Plots and AUC values 

This part represents the result of the ensemble methods answered in sec-3. I have shown 

results in the form using AUC values. We also performed analysis using box plot and 

statistical tests. 

Table IV represents the AUC values obtained after applying a stacking ensemble method 

using naive bayes, logistic regression and k nearest neighbor on a given 15 software fault 

dataset. The result of table IV shows that in 60% cases stacking method gives better results, 

in 26.66% cases naive bayes gives better results and in 13.33% cases logistic regression gives 

better results. 

Project name Logistic regression Naïve bayes KNN Stacking 

ant1.3 0.686 0.769 0.704 0.723 

ant1.4 0.669 0.624 0.627 0.628 

ant1.6 0.814 0.809 0.721 0.825 

ant1.7 0.814 0.806 0.712 0.817 

camel1.0 0.613 0.743 0.596 0.467 

camel1.2 0.628 0.564 0.649 0.659 

ivy1.1 0.669 0.667 0.637 0.675 

ivy1.4 0.494 0.660 0.507 0.510 

jEdit4.0 0.776 0.741 0.708 0.790 

jEdit4.1 0.823 0.773 0.742 0.816 

synapse1.0 0.672 0.747 0.649 0.723 

synapse1.1 0.718 0.716 0.709 0.747 

synapse1.2 0.748 0.756 0.765 0.770 

xalan2.4 0.760 0.742 0.659 0.782 

xalan2.6 0.804 0.786 0.788 0.813 

Table IV AUC values for stacking and base classification technique 
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Table V represents the AUC values obtained after applying a voting ensemble method using 

naive bayes, logistic regression and knn on a given 15 software fault dataset. We are using 

soft voting as we are considering the average of probabilities for combining the result of base 

techniques. The result of table V shows that in 66.66% cases the voting method gives better 

results, in 26.66% cases naive bayes gives best results and in 6.66% cases logistic regression 

gives best results. 

Project name Logistic 

regression 

Naïve bayes KNN Voting 

ant1.3 0.686 0.769 0.704 0.750 

ant1.4 0.669 0.624 0.627 0.674 

ant1.6 0.814 0.809 0.721 0.820 

ant1.7 0.814 0.806 0.712 0.824 

camel1.0 0.613 0.743 0.596 0.711 

camel1.2 0.628 0.564 0.649 0.671 

ivy1.1 0.669 0.667 0.637 0.697 

ivy1.4 0.494 0.660 0.507 0.559 

jEdit4.0 0.776 0.741 0.708 0.794 

jEdit4.1 0.823 0.773 0.742 0.811 

synapse1.0 0.672 0.747 0.649 0.728 

synapse1.1 0.718 0.716 0.709 0.771 

synapse1.2 0.748 0.756 0.765 0.796 

xalan2.4 0.760 0.742 0.659 0.785 

xalan2.6 0.804 0.786 0.788 0.813 

Table V AUC values for voting and base classification technique 

Table VI represents the AUC values for stacking and voting obtained from 15 different 

software fault dataset. As in xerces 2.6 the AUC values for both stacking and voting are the 

same so we are not considering that value. The result of this table shows that in 85.71% cases 

voting gives better results and in 14.28% cases the stacking method gives the best result as 

compared to the stacking method. 
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Project name Voting Stacking 

ant1.3 0.750 0.723 

ant1.4 0.674 0.628 

ant1.6 0.820 0.825 

ant1.7 0.824 0.817 

camel1.0 0.711 0.467 

camel1.2 0.671 0.659 

ivy1.1 0.697 0.675 

ivy1.4 0.559 0.510 

jEdit4.0 0.794 0.790 

jEdit4.1 0.811 0.816 

synapse1.0 0.728 0.723 

synapse1.1 0.771 0.747 

synapse1.2 0.796 0.770 

xalan2.4 0.785 0.782 

xalan2.6 0.813 0.813 

Table VI AUC values for stacking and voting 

Fig 9 represents the box plot analysis of stacking and classification techniques used in 

building stacking ensemble models. Analysis of fig 9 shows that stacking gives the best result 

followed by naive bayes and logistic regression. And there is one outlier in case of knn. Fig 

10 represents the box plot analysis of voting and classification techniques used in building 

voting ensemble models. Analysis of fig 10 shows that voting gives the best result followed 

by naive bayes and logistic regression. And there is one outlier in case of knn. Fig 11 

represents the box plot analysis of voting and stacking. Analysis of fig 11 shows that voting 

gives better performance prediction as compared to stacking. Box plots give the lowest, first 

quartile, the peak, and third quartile results in the sample test. The centroid of the boxplot 

gives the middle results for the sample. 
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Fig 9 Box plot of stacking and base techniques 

 

Fig 10 Box plot of voting and base technique 

 

Fig 11 Box plot of voting and stacking 
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Table VII represents the AUC values obtained after applying a homogenous bagging 

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15 

software fault dataset. It can be seen from the table that all the three classification techniques 

gave almost same AUC values for a given dataset; there is not much difference between the 

results obtained. For Synapse 1.2 dataset, the AUC values obtained is same for all the three 

techniques and for Synapse 1.0, Naïve bayes and KNN gave same results for AUC values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table VII AUC values for Homogeneous Bagging 

Project name Logistic 

regression 

Naïve bayes KNN 

Ant 1.3 0.800 0.816 0.840 

Ant 1.4 0.719 0.539 0.691 

Ant 1.6 0.786 0.794 0.726 

Ant 1.7 0.826 0.808 0.786 

Camel1.0 0.949 0.926 0.941 

Camel1.2 0.662 0.648 0.651 

Ivy1.1 0.612 0.594 0.639 

Ivy1.4 0.921 0.883 0.912 

Jedit4.0 0.787 0.777 0.790 

Jedit4.1 0.814 0.801 0.778 

Synapse1.0 0.859 0.847 0.847 

Synapse1.1 0.797 0.752 0.729 

Synapse1.2 0.746 0.746 0.746 

Xalan2.4 0.849 0.816 0.811 

Xalan2.6 0.738 0.711 0.719 
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Table VIII represents the AUC values obtained after applying a homogeneous boosting 

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15 

software fault dataset. Out of 15 datasets, logistic regression performed better than naïve 

bayes and KNN in 11 datasets. In 3 datasets Logistic regression and KNN gave same AUC 

values, i.e. they gave same performance for these 3 datasets. For 5 datasets Naïve bayes and 

KNN gave the same results for AUC values.  

Project name Logistic 

regression 

Naïve bayes KNN 

Ant 1.3 0.792 0.761 0.816 

Ant 1.4 0.719 0.556 0.674 

Ant 1.6 0.803 0.794 0.740 

Ant 1.7 0.822 0.811 0.774 

Camel1.0 0.946 0.929 0.929 

Camel1.2 0.657 0.646 0.657 

Ivy1.1 0.675 0.594 0.648 

Ivy1.4 0.901 0.892 0.892 

Jedit4.0 0.797 0.764 0.784 

Jedit4.1 0.821 0.769 0.769 

Synapse1.0 0.859 0.834 0.853 

Synapse1.1 0.801 0.747 0.747 

Synapse1.2 0.742 0.726 0.742 

Xalan2.4 0.853 0.817 0.853 

Xalan2.6 0.737 0.715 0.724 

Table VIII AUC values for Homogeneous Boosting 
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Table IX represents the AUC values for Homogeneous Bagging and Homogeneous Boosting 

obtained from 15 different software fault dataset. The table is made by combining the above 

two tables, so that comparison between the two techniques can be made.  

Project 

Name 

BAGGING BOOSTING 

Logistic 

regression 

KNN NAÏVE 

BAYES 

Logistic 

regression 

KNN NAÏVE 

BAYES 

Ant 1.3 0.800 0.816 0.84 0.792 0.760 0.816 

Ant 1.4 0.719 0.539 0.691 0.719 0.556 0.674 

Ant 1.6 0.786 0.795 0.726 0.803 0.795 0.741 

Ant 1.7 0.827 0.808 0.787 0.823 0.811 0.774 

Camel1.0 0.950 0.926 0.941 0.947 0.929 0.929 

Camel1.2 0.663 0.648 0.651 0.658 0.646 0.658 

Ivy1.1 0.613 0.595 0.64 0.676 0.595 0.649 

Ivy1.4 0.921 0.884 0.913 0.900 0.892 0.892 

Jedit4.0 0.788 0.778 0.791 0.797 0.765 0.784 

Jedit4.1 0.814 0.801 0.779 0.821 0.769 0.769 

Synapse1.0 0.860 0.847 0.847 0.860 0.834 0.854 

Synapse1.1 0.797 0.752 0.73 0.802 0.748 0.748 

Synapse1.2 0.746 0.746 0.746 0.742 0.727 0.742 

Xalan2.4 0.849 0.816 0.812 0.853 0.817 0.853 

Xalan2.6 0.739 0.712 0.72 0.738 0.715 0.724 

Table IX AUC values for Homogeneous Boosting vs. Homogeneous Bagging 
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Table X represents the AUC values obtained after applying a heterogeneous bagging 

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15 

software fault dataset.  

The result of table shows that in 13 datasets out of 15, heterogeneous bagging gave better 

results than basic techniques. KNN never performed better than all the other three techniques. 

Logistic regression and Naïve bayes performed better in case of two datasets i.e. Ant 1.6 and 

Synapse 1.0 respectively.    

 

 

 

 

 

 

Table X AUC values for bagging and base classification technique 

Project name Logistic 

regression 

Naïve bayes KNN Bagging 

Ant 1.3 0.686 0.769 0.704 0.783 

Ant 1.4 0.669 0.624 0.627 0.670 

Ant 1.6 0.814 0.809 0.721 0.811 

Ant 1.7 0.814 0.806 0.712 0.822 

Camel1.0 0.613 0.743 0.596 0.766 

Camel1.2 0.628 0.564 0.649 0.665 

Ivy1.1 0.669 0.667 0.637 0.708 

Ivy1.4 0.494 0.660 0.507 0.688 

Jedit4.0 0.776 0.741 0.708 0.797 

Jedit4.1 0.823 0.773 0.742 0.830 

Synapse1.0 0.672 0.747 0.649 0.728 

Synapse1.1 0.718 0.716 0.709 0.777 

Synapse1.2 0.748 0.756 0.765 0.811 

Xalan2.4 0.760 0.742 0.659 0.774 

Xalan2.6 0.804 0.786 0.788 0.816 
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Table XI represents the AUC values obtained after applying a heterogeneous boosting 

ensemble method using naive bayes, logistic regression and k nearest neighbor on a given 15 

software fault dataset. The result of table shows that in 7 cases out of 15, heterogeneous 

boosting gave better results than individual basic technique. 

Project 

name 

Logistic 

regression 

Naïve bayes KNN AdaBoost 

Ant 1.3 0.686 0.769 0.704 0.703 

Ant 1.4 0.669 0.624 0.627 0.671 

Ant 1.6 0.814 0.809 0.721 0.807 

Ant 1.7 0.814 0.806 0.712 0.784 

Camel1.0 0.613 0.743 0.596 0.687 

Camel1.2 0.628 0.564 0.649 0.665 

Ivy1.1 0.669 0.667 0.637 0.689 

Ivy1.4 0.494 0.660 0.507 0.573 

Jedit4.0 0.776 0.741 0.708 0.792 

Jedit4.1 0.823 0.773 0.742 0.789 

Synapse1.0 0.672 0.747 0.649 0.656 

Synapse1.1 0.718 0.716 0.709 0.775 

Synapse1.2 0.748 0.756 0.765 0.772 

Xalan2.4 0.760 0.742 0.659 0.780 

Xalan2.6 0.804 0.786 0.788 0.798 

 

Table XII represents the AUC values for Heterogeneous Bagging and Heterogeneous 

Boosting obtained from 15 different software fault dataset. The table is made by combining 

the above two tables, so that comparison between the two techniques can be made.  

 

Table XI AUC values for bagging and base classification technique 
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Project Name BAGGING BOOSTING 

Ant 1.3 0.783 0.703 

Ant 1.4 0.670 0.671 

Ant 1.6 0.811 0.807 

Ant 1.7 0.822 0.784 

Camel1.0 0.766 0.687 

Camel1.2 0.665 0.665 

Ivy1.1 0.708 0.689 

Ivy1.4 0.688 0.573 

Jedit4.0 0.797 0.792 

Jedit4.1 0.830 0.789 

Synapse1.0 0.728 0.656 

Synapse1.1 0.777 0.775 

Synapse1.2 0.811 0.772 

Xalan2.4 0.774 0.780 

Xalan2.6 0.816 0.798 

 

 

 

Fig. 12. Box Plot for Homogeneous Bagging 

Table XII AUC values for Boosting vs. Bagging 

 



33 
 

Fig 12 represents the box plot analysis of Homogeneous bagging ensemble models. Analysis 

of fig 12 shows that KNN gives the best result followed by Naïve Bayes and logistic 

regression. And there is one outlier in case of Naïve Bayes.  

 

Fig.13 Box Plot for Homogeneous Boosting 

Fig 13 represents the box plot analysis of Homogenous Boosting ensemble models. Analysis 

of fig 13 shows that Logistic regression gives the best result followed by naive bayes and 

KNN. And there is one outlier in case of Naïve Bayes.  

 

Fig. 14 Box Plot for Homogeneous Boosting vs. Homogeneous Bagging 
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Fig 14 represents the box plot analysis of Homogeneous Bagging and boosting. Analysis of 

fig 14 shows that Logistic regression gives better performance prediction as compared to 

others. And there is one outlier in case of Naïve Bayes in homogeneous bagging. 

 

Fig. 15 Box Plot for Bagging 

Fig 15 represents the box plot analysis of heterogeneous bagging. Analysis of fig 15 shows 

that bagging gives better performance prediction as compared to individual base 

classification technique. And there is one outlier in case of KNN. 

 

Fig.16 Box Plot for Boosting 
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Fig 16 represents the box plot analysis of Heterogeneous boosting. Analysis of fig 16 shows 

that boosting gives better performance prediction as compared to individual base classifiers. 

There is one outlier in case of KNN.  

 

Fig. 17 Box Plot for Boosting vs. Bagging 

Fig 17 represents the box plot analysis of heterogeneous boosting and heterogeneous 

bagging. Analysis of fig 17 shows that bagging gives better performance prediction as 

compared to boosting. Box plots give the lowest, first quartile, the peak, and third quartile 

results in the sample test. The centroid of the boxplot gives the middle results for the sample. 

5.2 Discussion On Results Through Statistical Tests 

If we statistically analyze the results of all the tables then results of table I shows that 

calculated χ
2
- value=30.9867 and χ

2
 value at (4,0.05)=9.488 so there is significant difference 

between the performances of techniques of table I. As when their an significance of alikeness 

b/w the performance in techniques so, will apply nemenyi post-hoc which is post hoc test.The 

result of nemenyi test on table I shows that Decision tree and support vector machines 

significantly outperforms logistic regression at significance level 0.05, Decision tree and 

support vector machines significantly outperforms naive bayes at significance level 0.05 and 

support vector machines significantly outperforms knn at significance level 0.05. 

Results of table IV shows that calculated χ
2
-value=16.04 and  χ

2
 value at (3,0.05)=7.815 so, 

when an significance of alike between the performancement of techniques of table IV. As 



36 
 

there is a significant difference between the performances of techniques so will apply 

nemenyi post-hoc which is post hoc test. The result of nemenyi test on table IV shows that  

significant alike in  performance of knn and stacking at significant levels at 0.05. 

Results of table V shows that calculated χ
2
-value=20.92 and  χ

2
 value at (3,0.05)=7.815 so 

there is a significant difference between the performance of techniques of table V. As there is 

a significant difference between the performances of techniques so will apply nemenyi test 

which is post hoc test. The result of nemenyi test on table V shows that when an significant 

values differ in performances of knn & voting there an significant values differ by the 

performances in naive bayes and voting at significance level 0.05. 

Results of table VI shows that calculated χ
2
-value=6.667 and χ

2
 value at (1,0.05)=3.841 so, 

there is  a significance of difference b/w the power of performance in stacking and voting.  

Results of table VII shows that calculated χ
2
 value at (3,0.05)=8.6333 so there is a significant 

difference between the performance of techniques of table VII. As there is a significant 

difference between the performances of techniques so will apply nemenyi test which is post 

hoc test. The result of nemenyi test on table VII shows that when a significant value differ in 

performances of knn & homogeneous bagging there an significant values differ by the 

performances in naive bayes and homogeneous bagging at significance level 0.05. 

Results of table VIII shows that calculated χ
2
 value at (3,0.05)=18.6333 so there is a 

significant difference between the performance of techniques of table VIII. As there is a 

significant difference between the performances of techniques so will apply nemenyi test 

which is post hoc test. The result of nemenyi test on table VIII shows that when an significant 

values differ in performances of knn & homogeneous boosting there an significant values 

differ by the performances in naive bayes and homogeneous boosting at significance level 

0.05. 

Results of table IX shows that calculated χ
2
 value at (3,0.05)=24.0571 so, there is  a 

significance of difference b/w the power of performance in homogeneous bagging and 

boosting.  

Results of table X shows that calculated χ
2
 value at (3,0.05)=26.44 so there is a significant 

difference between the performance of techniques of table X. As there is a significant 

difference between the performances of techniques so will apply nemenyi test which is post 
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hoc test. The result of nemenyi test on table X shows that when an significant values differ in 

performances of knn & heterogeneous bagging there an significant values differ by the 

performances in naive bayes and heterogeneous bagging at significance level 0.05. 

Results of table XI shows that calculated χ
2
 value at (3,0.05)=12.2 so there is a significant 

difference between the performance of techniques of table XI. As there is a significant 

difference between the performances of techniques so will apply nemenyi test which is post 

hoc test. The result of nemenyi test on table XI shows that when an significant values differ 

in performances of knn & Heterogeneous Boosting there an significant values differ by the 

performances in naive bayes and Heterogeneous Boosting at significance level 0.05. 

Results of table XII shows that calculated χ
2
 value at (1,0.05)=6.6667 so, there is  a 

significance of difference b/w the power of performance in Heterogeneous Bagging and 

boosting. 

5.3 Discussion On Results Through Graphs Obtained 

With an ensemble technique is useful, it must provide greater than, the initial participating 

technique in the ensemble method. Hence, with this part we have to measure performance of 

given ensemble technique with initial learning method. The results of differ fault prediction 

methods compares by using AUC results. The result of table I shows that among five fault 

prediction techniques logistic regression gives the good result followed by naive bayes and 

knn. The result of table IV shows that stacking gives good prediction accomplishment with 

comparison to an individual technique. Result of table V shows that voting gives great 

prediction production with comparison to an individual technique. The result of table VI 

shows that voting gives gives prediction production with comparison in stacking method. The 

box plot analysis shows that there is one outlier in case of knn. Statistical analysis shows that 

the null hypothesis is rejected then we, apply nemenyi test. The result shows that 

performance of stacking and voting is significantly different from naive bayes. 

Fig 18 represents the comparison of average AUC values of various classification on the 

basis of AUC values and the last column of this figure shows the average value and the result 

of this diagram shows that naive bayes, logistic regression and knn gives the best prediction 

performance on the basis of average of AUC values. 
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Fig 18 Collate of average AUC values between various classification techniques 

Fig 19 represents the comparison of average AUC values between stacking and individual 

technique on the basis of AUC values and the end column of this figure shows the average 

value. The output of this figure show that stacking performs better than individual technique 

on the basis of average values of AUC values. 

 

Fig 19 Collate of average AUC values between stacking and individual technique 

Fig 20 represents the comparison of average AUC values between voting and individual 

technique on the basis of AUC value and the last column of this figure shows the average 
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value. Results of this figure show that voting performs better than individual technique on the 

basis of average values of AUC values. 

 

Fig 20 Collate of average AUC values between voting and individual technique  

Fig 21 represents the comparison of average AUC values between voting and stacking on the 

basis of AUC value and the last column of this figure shows the average value. Results of this 

figure show that voting performs better than stacking on the basis of average values of AUC 

values. 

 

Fig 21 Collate of average AUC values between voting and stacking 
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Fig 22 represents the comparison of average AUC values for Homogeneous Bagging. It can 

be seen from the graph that all the three classification techniques gave almost same AUC 

values for a given dataset; there is not much difference between the results obtained.  

 

Fig 22 Collate of average AUC values for Homogeneous Bagging 

Fig 23 represents the comparison of average AUC values for Homogeneous Boosting. From 

the graph obtained, it can be seen out of 15 datasets, logistic regression performed better than 

naïve bayes and KNN in 11 datasets.  

 

Fig 23 Collate of average AUC values for Homogeneous Boosting 
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Fig 24 represents the comparison of average AUC values between Homogeneous Bagging 

and Homogeneous Boosting on the basis of AUC value. 

 

Fig 24  Collate of average AUC values for Homogeneous Boosting and Homogeneous 

Boosting 

Fig 25 represents the comparison of average AUC values between heterogeneous bagging 

and individual technique on the basis of AUC values. The output of this figure show that 

bagging performs better than individual technique on the basis of average values of AUC 

values. 

 

Fig 25  Collate of average AUC values for Heterogeneous Bagging  
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Fig 26 represents the comparison of average AUC values between boosting and individual 

technique on the basis of AUC values. The output of this figure show that boosting performs 

better than individual technique on the basis of average values of AUC values. 

 

Fig 26  Collate of average AUC values for Heterogeneous Boosting  

Fig 27 represents the comparison of average AUC values between bagging and boosting on 

the basis of AUC value. Results of this figure show that bagging performs better than 

boosting on the basis of average values of AUC values. 

 

Fig 27 Collate of average AUC values for Heterogeneous Boosting vs. Heterogeneous 

Bagging 
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CHAPTER 6 

CONCLUSION 

The main motive of this study was to examine the various classification techniques and 

ensemble techniques in order to find which method gives better fault prediction performance. 

Thus we employed five classification techniques (naive bayes, logistic regression, decision 

tree, KNN, and support vector machine). Out of these 5, we selected the best 3 techniques on 

the basis of AUC values. The results show that naive bayes, logistic regression and knn gives 

better prediction performance out of 5 classification techniques. Then we employed six 

ensemble techniques (Heterogeneous stacking and voting, Homogeneous Bagging and 

Boosting and Heterogeneous Bagging and Boosting). And if we compare the results of 

ensemble techniques and individual techniques, ensemble gives the best result. Here we are 

also comparing which ensemble technique gives better prediction performance. Result shows 

that the voting method gives better prediction performance as compared to the stacking 

method and out of Bagging and Boosting (Both homogenous and heterogeneous), bagging 

performs better. 
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