

 1

Minimizing and Optimizing the Solution

Space of Test Data

A MAJOR PROJECT-II THESIS REPORT

SUBMITTED IN PARTIAL FULFILMENT OF REQUIREMENT

FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

Submitted By – Trilochan Yadav

(Roll No. 2K18/SWE/16)

Under the supervision of Dr. Ruchika Malhotra (Associate

Professor)

Delhi Technological University

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING DELHI

TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering) Bawana Road, Delhi-110042

June, 2020

 2

DECLARATION

I hereby declare that the Major Project-II work entitled “Minimizing and Optimizing the

Solution Space of Test Data” which is being submitted to Delhi Technological University, in

partial fulfillment of requirements for the award of the degree of Master of Technology

(Computer Science and Engineering) is a bona fide report of Major Project-II carried out by

me. I have not submitted the matter embodied in this dissertation for the award of any other

degree or diploma

Place: Delhi

Trilochan Yadav 2K18/SWE/16

 3

CERTIFICATE

This is to certify that the Major II Report entitled “Minimizing and Optimizing the Solution

Space of Test Data" submitted by Trilochan Yadav (2K18/SWE/16) for the partial fulfilment

of the requirement for the award of degree of Master of Technology (Software Engineering) is

a record of the original work carried out by him under my supervision.

Place: Delhi

Date:

Project Guide Dr. Ruchika Malhotra Associate Professor

Department of Computer Science & Engineering

Delhi Technological University

 4

ACKNOWLEDGEMENT

First of all, I would like to express my deep sense of respect and gratitude to my project

supervisor Dr. Ruchika Malhotra for providing the opportunity of carrying out this project

and being the guiding force behind this work. I am deeply indebted to him for the support,

advice and encouragement he provided without which the project could not have been a

success.

Secondly, I am grateful to Dr. Rajni Jindal, HOD, Computer Science & Engineering

Department, DTU for her immense support. I would also like to acknowledge Delhi

Technological University library and staff for providing the right academic resources and

environment for this work to be carried out.

Last but not the least I would like to express sincere gratitude to my parents and friends for

constantly encouraging me during the completion of work.

Trilochan Yadav

Roll No – 2K17/SWE/19

M. Tech (Software Engineering) Delhi Technological University

 5

ABSTRACT

In the software development lifecycle (SDL), testing of software is the most stressful and

exhausting operation which consumes lots of time. Every aspect of software is very hard to test.

Consequently, in recent times some automatic data generation research methods were added

to reduce the time expended during the software testing. And the solution space of the

automated generated test data is very large. It is not easy to check all the test data which is

generated because it is time consuming, forces to check whole solution space of automated

generated test data. We present in this paper demonstrating the design framework,

implementing it and discovering the tool 's capabilities to minimize the test data generated.

Our concrete concepts on the test cases for the optimal set is based on the mutation function

Specified by the user. The system was implemented in language C++. We introduce mutation

function to calculate mutant score with value and path to the test cases generated to minimize

the solution space for the tester.

Keywords: SUT (Software Under Testing), Mutant Score, Test Cases, Optimized

Test Cases, Optimal Test Suites.

 6

TABLE OF CONTENTS

CONTENT PAGE NUMBER

Title Page 1

Declaration 2

Certificate 3

Acknowledgment 4

Abstract 5

Table of Contents 6

List of Figures 8

List of Tables 9

List of Abbreviations and Nomenclature 10

1. Introduction

1.1 Overview and Motivation

1.2 Research Objective

1.3 Mutation Testing

11

11

11

12

2. Literature study 13

3. Tool Framework

3.1 Overview

3.2 Formula for Mutant Score (1)

3.3 Formula for Mutant Score (2)

16

16

18

18

 7

4. Resulting and Comparing 20

5. Discussion and Analyze

5.1 Change in test suites order.

5.2 Change in test cases order within a test suite.

5.3 Dividing the Algorithm

5.3.1 Algorithm for optimal test cases

5.3.2 Algorithm for path coverage of SUT in each test

suite

44

45

50

56

57

57

6. Conclusion 58

7. References 59

 8

LIST OF FIGURES

CONTENT PAGE NUMBER

Fig 3.1 Block diagram of Tool Developed 17

Fig 4.1 Program graph (Path) 23

 9

LIST OF TABLES

CONTENT PAGE NUMBER

Table 4.1 Mutated Statements 23

Table 4.2 Comparing Mutation Score 42

Table 4.3 Other Result Table
43

Table 5.1 Comparing Mutation Score 56

 10

List of Abbreviations and Nomenclature

• SUT – Software Under Testing

• OP – Original code Path

• EO – Excepted Output

• OO – Obtained Output

• TP – Total number of paths in SUT.

• MS (1) - Mutant Score (1)

• MS (2) - Mutant Score (2)

 11

 CHAPTER 1

INTRODUCTION

1.1 Overview and Motivation

One of most complicated tasks throughout software development is software testing, and

absorbs great amount of time and effort while developing. Testing the software without

planning, the software quality can become progressively worst, or extend the software's time

and cost. One way to cut down on time is to automate test case generation [1]. The problem

with automate generation of test cases is that the solution space of test data generated, which

is very large in size. To find the minimum and optimal test suites in the solution space is very

important as minimized solution space take less time to check the software correctness. By

minimizing the test data, we save the testing cost and time.

1.2 Research Objective

We propose an alternative solution in this paper to minimizing the test data solution space, by

referring to the mutation score for each test case of the test suits, based on the actual execution

of each path of the program under testing, analysis the flow of each test case. The new test suits

are developed using actual input variable values. When executing the program on some input

data the execution flow of the path in the program is monitoring. While execution of program,

the flow of path is observed and eliminating the test case when the test case is alive and

continues when the test case gets killed by the mutant [2]. We select all the test cases with

mutant score equal to 1 and test case path is not selected previously. In this approach, we

helped the tester to get the optimal solution space.

 12

1.3 Mutation Testing

Mutation testing involves smaller modifications of a program. The goal is to help the tester

establish successful tests or identify vulnerabilities in the test data used for the program or in

parts of the code which are rarely or never accessed during execution. Mutation testing is a

form of white-box testing which is mainly used for unit testing. It is a powerful approach to

attain high coverage of the source program.

Following are the advantages of Mutation Testing:

• This testing is capable comprehensively testing the mutant program.

• Mutation testing brings a good level of error detection to the software developer.

• This method uncovers ambiguities in the source code and has the capacity to detect all

the faults in the program.

• Customers are benefited from this testing by getting a most reliable and stable system.

This is the method which checks for the effectiveness and accuracy of a testing program to

detect the faults or errors in the system. And we used mutation to minimize and optimize the

test suites.

 13

CHAPTER 2

LITERATURE REVIEW

In this section we present the problem of Optimal Automatic Test Data Generator comes under

the research topic of Software testing. It is noted that even after using specified method, the

performance of the test data that are generated by Automatic Test Data Generator is not so

optimal. So, some researchers performed different techniques to optimize the solution space of

test data.

The test data dependents on two things, which type of tool we are using and what Minimization

function we are applying on it. There isn’t enough research and literature available or

conducted on this topic in order to improve the test data generated solution space. The paper

also talks about some of the important conclusions that have not been researched yet and some

of them are.

The paper by Michael et al., developed a new test data generation software system which could

be used for combinatory optimisation in order to obtain condition decision coverage of the

program which is developed in C++ or C language [3]. System generated the test knowledge

in projects with more complicated interrelationship systems, and the tests showed a major gap

between another feature for minimizing problems and the production test results which are

dynamic.

The paper by Pargas et al., implemented a Genetic Algorithm (GA) check data generation

method for different reporting strategies for example (statement coverage and branch coverage)

[4]. The tool employed parallel processing to improve the overall search performance. Another

random generator of test data was developed to equate the effects of the Preferred method with

 14

random generator, that revealed the existing one outmatch the latter, as the system complication

grew.

The paper by Bin et al., represented the automated test data generation tool that dynamically

generated test data by reducing the test data generation process to a single minimisation

function [5]. In the proposed algorithm some improvements have been made to improve the

computational efficiency of the proposed method.

The paper by Mala, Automated test suite optimisation by applying the honey bees' parallel

behavior allowing the algorithm to find the optimal global solution faster [6]. Comparison of

the result of the suggested method with other methods, as with GA, sequential ABC and

random testing. The test verified that the parallel ABC is proposed worked superior than any

of the other methods.

Mala et al. analyzed high-mutation test cases and an updated GA were added to boost the test

suite by covering every test case [7]. The suggested method contained two better heuristics that

are intake to examine the performance of the test cases produced from the suggested method

to the preestablished method and experiment finding revealed that the suggested method

yielded higher performing test cases than developed methods.

The paper by Malhotra et al., integrated mutation analysis to create test cases in order to refine

the produced test cases by introducing mutation at the time of test data creation, instead of

stopping it after creation [8]. To generating the test cases GA is used. The findings of the

experiment show that the time taken by the proposed method was substantially saved and the

number of test cases created was dramatically reduced.

The paper by Malhotra et al., Using the SBT, developed a test data generation tool. The

developed tool is better than the other tools which are designed for the production of test data,

because it enables the production of test data using several SBT and allows the user to evaluate

 15

the output of the input information under test (SUT) [9]. This work would decrease the cost

and time of testing for a given SUT.

The paper by Ruilian Zhao et al, indicates the DOTSG approach for the EFSM design from

GA. The solution involved the creation from GA of test data and of test paths generation. The

study took the opinion that the diversity between test paths has a greater effect on disparity

among test paths had a greater effect on test case suite diversity in comparison to the disparity

among test data in EFSM designs [10].

Fahad M. Almansour et al, represents an evidenced based comparative study with genetic

algorithms & adaptive random methods based on four parameters: reduced test suite size,

convergence rate, the efficiency of maximizing of all du-pair by coverage ratio criteria and

elapsed time. Through these findings, stated that GA algorithms are much more efficient from

ORT and ART in the testing of data-flow, and somehow ART has achieved much more

coverage ratio [12]. Hence, suggested that the hybridization of ART and GA and the use of a

hybrid framework in testing the data-flow.

 16

CHAPTER 3

TOOL FRAMEWORK

3.1 Overview

The tool we had develop is a language-oriented, general purpose programming method

integrating some SUT data. The tool 's framework is indicated in Figure 3.1. The first step is

to choose the SUT solution space that needs to reduce the test data for. This is done by the SUT

Solution Space module. Then we select the test suites from which we have to select the optimal

test case.

The Domain Initialiser initializes all the algorithm-related values and produces the SUT control

flow graph. The path evaluator initialises the test cases of the 1st test suite and tests the direction

that every test case is going along. The test cases where there's no path among the beginning

node and every leaving node are considered negligible [9].

Then the tool is instructive the Mutation Calculator (1), for calculating the mutant score for

every test case based on the killed mutant by the total mutant. Then the tool is instructive the

Mutation Calculator (2), for calculating the mutant score of the same test case again based on

the killed mutant by the total mutant. We select only those test cases with both the mutant score

equal to 1.

 17

Then, it employs the redundancy checker to determine a single test case 's path that wasn't

cover by any other test cases earlier. These test cases are unique as other cases are considered

repetitive test cases. Consequently, test cases which are unique added to the optimum test data.

And then check the conditions and select the new test suites.

On further refining the test cases and generating new test suite, the Path Checker checks

whether the tester’s defined total paths are equal to the paths generated, the algorithm stops.

The current test case set will then form the final test suite. The main Algorithm stop when all

Automated test data checked.

Fig 3.1 Block diagram of Tool Developed

 18

3.2 Formula for Mutant Score (1)

Mutant score (1) is calculated for conditional changes in the mutant code.

Line number in mutant code where change is occurred = L

The original code path of the test case = OP

The Mutant code path of the test case = MP

The expected output of the test case = EO

The obtain output of the test case = OO

So,

MS (1) = (L+1 belongs to OP) && (OP equal to MP)

Mutant Alive = MS (1) is True.

Mutant Kill = MS (1) is False.

Total Mutant = Mutant Alive + Mutant kill

Mutant Score (1) = Mutant Kill / Total Mutant

3.3 Formula for Mutant Score (2)

Mutant score (2) is calculated for operation changes in the mutant code.

Line number in mutant code where change is occurred = L

The original code path of the test case = OP

The Mutant code path of the test case = MP

The expected output of the test case = EO

 19

The obtain output of the test case = OO

So,

MS (2) = (L belongs to OP) && (OP equal to MP) && (OO equal to EO).

Mutant Alive = MS (2) is True.

Mutant Kill = MS (2) is False.

Total Mutant = Mutant Alive + Mutant kill

Mutant Score (2) = Mutant Kill / Total Mutant

To add the test case to the optimal Test data both the Mutant score (1) and Mutant Score (2)

must be equal to 1.

 20

CHAPTER 4

RESULT AND COMPARISON

Now we run the tool and analyze the result of the optimal test data. We minimize the solution

space of the SUT (Software under Test). The important part in the tool is to calculate both the

mutant score. Mutation score is the main key in minimization tool. This helps us to minimize

the solution space and lead us to the optimal test data. We calculate the both mutant score and

if they equal to 1 then we select them as the part of optimal test data. Then we analyze the

mutant score of test suites and then compare it with the mutant score of the obtain test suite. If

the mutation score of the obtain test suite is better, than we consider that test suite as the optimal

test suite for the test data.

We are performing the tool on the program to find the largest among three number.

Program to find the largest among three numbers

#include<stdio.h>

#include<conio.h>

1. void main()

2. {

3. float A,B,C;

4. clrscr();

5. printf("Enter number 1:\n");

6. scanf("%f", &A);

7. printf("Enter number 2:\n");

 21

8. scanf("%f", &B);

9. printf("Enter number 3:\n");

10. scanf("%f", &C); /*Check for greatest of three numbers*/

11. if(A>B) {

12. if(A>C) {

13. printf("The largest number is: %f\n",A);

14. }

15. else {

16. printf("The largest number is: %f\n",C);

17. }

18. }

19. else {

20. if(C>B) {

21. printf("The largest number is: %f\n",C);

22. }

23. else {

24. printf("The largest number is: %f\n",B);

25. }

26. }

27. getch();

28. }

We have test suite of the SUT we perform over algorithm and see how it minimize and give an

optimal solution.

 22

Test Suite A.

S. No. A B C Expected Output

1 6 10 2 10

2 10 6 2 10

3 6 2 10 10

4 6 10 20 20

Test Suite B.

S. No. A B C Expected Output

1 10 10 10 10

2 10 5 5 10

3 6 10 5 10

4 20 40 30 40

 23

Fig 4.1 Program graph to find the largest number amongst three numbers (Path)

Mutant

No.

Line

No.

Original Line Modified Line

M1 11 If(A>B) If(A<B)

M2 11 If(A>B) If(A>(B+C))

M3 12 If(A>C) If(A<C)

M4 20 If(C>B) If(C==B)

M5 16 Print (“The Largest number

is:%f\n”,C);

Print (“The Largest number

is:%f\n”,B);

Table 4.1 Mutated Statements

 24

Mutant live = Expected Output is equal to Obtain Output.

Mutant kill = Expected Output is not equal to Obtain Output.

For Test Suite A.

Mutant M1.

S. No. A B C EO OO

1 6 10 2 10 6

2 10 6 2 10 6

3 6 2 10 10 10

4 6 10 20 20 20

Mutant M1 is killed

Mutant M2.

S. No. A B C EO OO

1 6 10 2 10 10

2 10 6 2 10 10

3 6 2 10 10 10

4 6 10 20 20 20

Mutant M2 is alive

 25

Mutant M3.

S. No. A B C EO OO

1 6 10 2 10 6

2 10 6 2 10 2

3 6 2 10 10 6

4 6 10 20 20 20

Mutant M3 is killed

Mutant M4.

S. No. A B C EO OO

1 6 10 2 10 10

2 10 6 2 10 10

3 6 2 10 10 10

4 6 10 20 20 10

Mutant M4 is killed

 26

Mutant M5.

S. No. A B C EO OO

1 6 10 2 10 10

2 10 6 2 10 10

3 6 2 10 10 2

4 6 10 20 20 20

Mutant M5 is killed

For Test Suite A

Mutation Score = Number of mutants killed/ Total number of mutants.

Mutant killed = 4.

Total Mutant is 5.

Mutant live = 1 (M2).

So,

Mutation Score for Test Suite A is 0.8

 27

For Test Suite B.

Mutant M1.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 10

3 6 10 5 10 6

4 20 40 30 40 30

Mutant M1 is killed

Mutant M2.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 5

3 6 10 5 10 10

4 20 40 30 40 40

Mutant M2 is killed

 28

Mutant M3.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 5

3 6 10 5 10 10

4 20 40 30 40 40

Mutant M3 is killed

Mutant M4.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 10

3 6 10 5 10 10

4 20 40 30 40 40

Mutant M4 is alive

 29

Mutant M5.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 10

3 6 10 5 10 10

4 20 40 30 40 40

Mutant M5 is alive

For Test Suite B

Mutation Score = Number of mutants killed/ Total number of mutants.

Mutant killed = 3.

Total Mutant is 5.

Mutant live = 2 (M4, M5).

So,

Mutation Score for Test Suite A is 0.6

 30

As we can see the Mutant score is not equal to 1, which means the test suites are not optimal

but test suite A is near to optimal.

Now we apply our algorithm to improve the test suite and minimize the optimal solution. We

use our new Mutant Score formula to obtain the optimal solution space by minimizing and

optimizing the test suites.

Our Mutant Score must be equal to 1 of each test cases to add in minimized optimal solution

space. So, our method selects the optimal test case from test suite and gets the optimal and test

suites.

Let now we start our method of selecting the test case from the given test suite.

For Test Suite A.

Mutant score (1) is calculated for conditional changes in the mutant code.

Line number in mutant code where change is occurred = L

The original code path of the test case = OP

The Mutant code path of the test case = MP

So,

MS (1) = (L+1 belongs to OP) && (OP equal to MP)

Mutant Alive = MS (1) is True.

Mutant Kill = MS (1) is False.

Total Mutant = Mutant Alive + Mutant kill

Mutant Score (1) = Mutant Kill / Total Mutant

 31

Mutant M1

line no. 11

L+1=12.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 6 10 2 1-11, 19-20, 23-28 False - kill

2 10 6 2 1-14, 18, 27 ,28 True False kill

3 6 2 10 1-12, 15-18, 27,28 True False kill

4 6 10 20 1-11, 19-22, 26-28 False - kill

Mutant M2

line no. 11

L+1=12.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 6 10 2 1-11, 19-20, 23-28 False - kill

2 10 6 2 1-14, 18, 27 ,28 True True alive

3 6 2 10 1-12, 15-18, 27,28 True False kill

4 6 10 20 1-11, 19-22, 26-28 False - kill

2nd number test case is alive. So, it must not be in optimal test suites.

 32

Mutant M3

line no. 12

L+1=13.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 6 10 2 1-11, 19-20, 23-28 False - kill

2 10 6 2 1-14, 18, 27 ,28 True False alive

3 6 2 10 1-12, 15-18, 27,28 False - kill

4 6 10 20 1-11, 19-22, 26-28 False - kill

Mutant M4

line no. 20

L+1=21.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 6 10 2 1-11, 19-20, 23-28 False - kill

2 10 6 2 1-14, 18, 27 ,28 False - alive

3 6 2 10 1-12, 15-18, 27,28 False - kill

4 6 10 20 1-11, 19-22, 26-28 True False Kill

As we calculated the mutant score (1) and Now we calculate Mutant Score (2)

 33

Mutant score (2) is calculated for operation changes in the mutant code.

Line number in mutant code where change is occurred = L

The original code path of the test case = OP

The Mutant code path of the test case = MP

The expected output of the test case = EO

The obtain output of the test case = OO

So,

MS (2) = (L belongs to OP) && (OP equal to MP) && (OO equal to EO).

Mutant Alive = MS (2) is True.

Mutant Kill = MS (2) is False.

Total Mutant = Mutant Alive + Mutant kill

Mutant Score (2) = Mutant Kill / Total Mutant

Mutant M5

line no. 16

L=16.

S. No. A B C OP L ε OP OP=MP OO=EO Mutant

1 6 10 2 1-11, 19-20, 23-28 False - - kill

2 10 6 2 1-14, 18, 27 ,28 False - - kill

3 6 2 10 1-12, 15-18, 27,28 True True False kill

4 6 10 20 1-11, 19-22, 26-28 False - - kill

 34

We calculated both the Mutant Score (1) and Mutant Score (2).

The Mutant Score Table.

Test Case No. Mutant Score (1) Mutant Score (2) OP ε Path Selected

1 1 1 No Yes

2 0.8 1 No No

3 1 1 No Yes

4 1 1 No Yes

Path is the set of paths of test cases which are previously selected for the present optimal test

suites.

We select those test cases for minimized optimal solution which have both mutant score equal

to 1 and OP ε Path is no.

For Test Suite B.

Mutant score (1) is calculated for conditional changes in the mutant code.

Line number in mutant code where change is occurred = L

The original code path of the test case = OP

The Mutant code path of the test case = MP

So,

MS (1) = (L+1 belongs to OP) && (OP equal to MP)

Mutant Alive = MS (1) is True.

 35

Mutant Kill = MS (1) is False.

Total Mutant = Mutant Alive + Mutant kill

Mutant Score (1) = Mutant Kill / Total Mutant

Mutant M1

line no. 11

L+1=12.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 10 10 10 1-11, 19-20, 23-28 False - kill

2 10 5 5 1-14, 18, 27 ,28 True False alive

3 6 10 5 1-11, 19-20, 23-28 False - kill

4 20 40 30 1-11, 19-20, 23-28 False - kill

Mutant M2

line no. 11

L+1=12.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 10 10 10 1-11, 19-20, 23-28 False - kill

2 10 5 5 1-14, 18, 27 ,28 True False alive

3 6 10 5 1-11, 19-20, 23-28 False - kill

4 20 40 30 1-11, 19-20, 23-28 False - kill

Mutant M3

 36

line no. 12

L+1=13.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 10 10 10 1-11, 19-20, 23-28 False - kill

2 10 5 5 1-14, 18, 27 ,28 True False alive

3 6 10 5 1-11, 19-20, 23-28 False - kill

4 20 40 30 1-11, 19-20, 23-28 False - kill

Mutant M4

line no. 20

L+1=21.

S. No. A B C OP L+1 ε OP OP=MP Mutant

1 10 10 10 1-11, 19-20, 23-28 False - kill

2 10 5 5 1-14, 18, 27 ,28 False - alive

3 6 10 5 1-11, 19-20, 23-28 False - kill

4 20 40 30 1-11, 19-20, 23-28 False - kill

As we calculated the mutant score (1) and Now we calculate Mutant Score (2)

 37

Mutant score (2) is calculated for operation changes in the mutant code.

Line number in mutant code where change is occurred = L

The original code path of the test case = OP

The Mutant code path of the test case = MP

The expected output of the test case = EO

The obtain output of the test case = OO

So,

MS (2) = (L belongs to OP) && (OP equal to MP) && (OO equal to EO).

Mutant Alive = MS (2) is True.

Mutant Kill = MS (2) is False.

Total Mutant = Mutant Alive + Mutant kill

Mutant Score (2) = Mutant Kill / Total Mutant

Mutant M5

line no. 16

L=16.

S. No. A B C OP L ε OP OP=MP OO=EO Mutant

1 10 10 10 1-11, 19-20, 23-28 False - - kill

2 10 5 5 1-14, 18, 27 ,28 False - - kill

3 6 10 5 1-11, 19-20, 23-28 True True False kill

4 20 40 30 1-11, 19-20, 23-28 False - - kill

 38

We calculated both the Mutant Score (1) and Mutant Score (2).

The Mutant Score Table.

Test Case No. Mutant Score (1) Mutant Score (2) OP ε Path Selected

1 1 1 Yes No

2 1 1 No Yes

3 1 1 Yes No

4 1 1 Yes No

Path is the set of paths of test cases which are previously selected for the present optimal test

suites.

We select those test cases for minimized optimal solution which have both mutant score equal

to 1 and OP ε Path is no.

From Both Test Suites we selected optimal test cases for new test suites. Now we again

calculate the mutation score of new test suite and compare the mutation score with old test

suites.

Our new test suite selected 4 test cases from test suit A and one test case from test suite B.

3+1=4 test cases are selected. Number of test cases selected is equal to the TP. So, these

selected test cases form our new test suite.

 39

New Test Suite

S. No. A B C Expected Output

1 6 10 2 10

2 6 2 10 10

3 6 10 20 20

4 10 10 5 10

We calculate the mutation score of new test suite and see is this test suit is better than other or

not.

For New Test Suite.

Mutant M1.

S. No. A B C EO OO

1 6 10 2 10 6

2 6 2 10 10 10

3 6 10 20 20 20

4 10 10 5 10 5

Mutant M1 is killed

 40

Mutant M2.

S. No. A B C EO OO

1 6 10 2 10 10

2 6 2 10 10 10

3 6 10 20 20 20

4 10 10 5 10 5

Mutant M2 is killed

Mutant M3.

S. No. A B C EO OO

1 6 10 2 10 10

2 6 2 10 10 6

3 6 10 20 20 20

4 10 10 5 10 5

Mutant M3 is killed

 41

Mutant M4.

S. No. A B C EO OO

1 6 10 2 10 10

2 6 2 10 10 10

3 6 10 20 20 10

4 10 10 5 10 10

Mutant M4 is killed

Mutant M5.

S. No. A B C EO OO

1 6 10 2 10 10

2 6 2 10 10 2

3 6 10 20 20 20

4 10 10 5 10 10

Mutant M5 is killed

 42

For New Test Suite

Mutation Score = Number of mutants killed/ Total mutants.

Mutant killed = 5.

Total Mutant is 5.

Mutant live = 0

So, Mutation Score for Test Suite A is 1.

Compare test suites Mutation Score

S. No. Test Suit Name Mutation Score Optimality

1 Test Suit A 0.8 Nearly Optimal

2 Test Suit B 0.6 Not Optimal

3 New Test Suit 1 Optimal

Table 4.2 Comparing Mutation Score

As we can see that the mutation score of new test suite is better than the other two test suites

and from two test suites, we minimize to one test suite. So, we can say that our new algorithm

of optimizing and minimizing the solution space of test data and performance are better than

others and it help the tester to test the SUT in low cost and less time.

 43

Other Result Table

AGTD = Automated Generated Test Data

TTS = Total Test Suites

MTC = Minimal Test Cases

MTS = Minimal Test Suites

OMTS = Optimal Minimal Test Suites

Program Name AGTD TTS MTC MTS OMTS

Max no. 100 25 20 5 5

Max no. 200 50 48 12 12

Marks Grade 100 20 10 2 2

Marks Grade 200 40 15 3 3

Table 4.3 Other Result Table

As we can see in all Automated Generated Test Data is reduced or say minimized to less test

data for testing. By reducing the Automated Generated Test Data, we save the testing time and

cost of the software under test (SUT).

From the result we can see that Automated Generated Test Data has less average of optimal

test suites than from our minimal test suites, as all the minimal test suites are optimal means

minimal test data is better than the Automated Generated Test Data.

Therefore, we can say that our algorithm generates Minimal and Optimal Test data from the

Automated Generated Test Data.

 44

CHAPTER 5

DISCUSSION AND ANALYZE

In this section, we discuss and examine the majority of aspects that affect our algorithm and

test data.

Main Algorithm

//Calculate Mutant Score 1

If (! ((L+1 ε OP) && (OP=MP)))

{

 flag=1; // for the calculation of mutant score 2

}

//Calculate Mutant Score 2

If (flag==1)

{

 If (! ((L ε OP) && (OP=MP) && (OO=EO)))

 {

 If (! (OP ε Path)) //redundance check

 {

 //Add Test Case to Optimal Test Data

 }

 }

 }

 45

5.1 Change in test suites order.

We have seen the result of test suites A and B, now we see, if we change the order of test suites

in our solution space.

Let test suite B is before test suite A. Now we apply our Algorithm, then our new test suit.

For test suite B

We calculated both the Mutant Score (1) and Mutant Score (2).

The Mutant Score Table.

Test Case No. Mutant Score (1) Mutant Score (2) OP ε Path Selected

1 1 1 No Yes

2 1 1 No Yes

3 1 1 Yes No

4 1 1 Yes No

We select those test cases for minimized optimal solution which have both mutant score equal

to 1 and OP ε Path is no.

 46

For test suite A

We calculated both the Mutant Score (1) and Mutant Score (2).

The Mutant Score Table.

Test Case No. Mutant Score (1) Mutant Score (2) OP ε Path Selected

1 1 1 Yes No

2 0.8 1 No No

3 1 1 No Yes

4 1 1 No Yes

Path is the set of paths of test cases which are previously selected for the present optimal test

suites.

We select those test cases for minimized optimal solution which have both mutant score equal

to 1 and OP ε Path is no.

From Both Test Suites we selected optimal test cases for new test suite 1. Now we again

calculate the mutation score of new test suite and compare the mutation score with old test

suites.

 47

New Test Suite 1

S. No. A B C Expected Output

1 10 10 10 10

2 10 5 5 10

3 6 2 10 10

4 6 10 20 20

We calculate the mutation score of new test suite 1.

For New Test Suite.

Mutant M1.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 5

3 6 2 10 10 10

4 6 10 20 20 20

Mutant M1 is killed

 48

Mutant M2.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 5

3 6 2 10 10 10

4 6 10 20 20 20

Mutant M2 is killed

Mutant M3.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 5

3 6 2 10 10 6

4 6 10 20 20 20

Mutant M3 is killed

 49

Mutant M4.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 10

3 6 2 10 10 10

4 6 10 20 20 10

Mutant M4 is killed

Mutant M5.

S. No. A B C EO OO

1 10 10 10 10 10

2 10 5 5 10 10

3 6 2 10 10 2

4 6 10 20 20 20

Mutant M5 is killed

 50

Mutation Score = Number of mutants killed/ Total number of mutants.

Total mutant = 5

Mutant kill = 5

Mutant alive =0

So,

Mutation Score for New Test Suite 1 is 1.

As we can see that the new test suite 1 is also optimal with mutation score 1, so we can say that

our algorithm is independent of test suites order in aspect of obtaining the optimal test suits.

But we observe that there is change in test cases of new test suite 1. As in new test suite 1, test

case (6, 10, 2) which is in new test suite is replaced by test case (10 ,10, 10). Therefore, test

cases in optimal test suits are dependent of test suites order.

5.2 Change in test cases order within a test suite.

We have now changed the order of test cases in test suite B (test case 1 to test case 4) and test

suite B comes before test suite A. Now we apply our Algorithm, then our new test suit.

For test suite B

We calculated both the Mutant Score (1) and Mutant Score (2).

 51

The Mutant Score Table.

Test Case No. Mutant Score (1) Mutant Score (2) OP ε Path Selected

4 1 1 No Yes

2 1 1 No Yes

3 1 1 Yes No

1 1 1 Yes No

We select those test cases for minimized optimal solution which have both mutant score equal

to 1 and OP ε Path is no.

For test suite A

We calculated both the Mutant Score (1) and Mutant Score (2).

The Mutant Score Table.

Test Case No. Mutant Score (1) Mutant Score (2) OP ε Path Selected

1 1 1 Yes No

2 0.8 1 No No

3 1 1 No Yes

4 1 1 No Yes

 52

Path is the set of paths of test cases which are previously selected for the present optimal test

suites.

We select those test cases for minimized optimal solution which have both mutant score equal

to 1 and OP ε Path is no.

From Both Test Suites we selected optimal test cases for new test suite 1. Now we again

calculate the mutation score of new test suite and compare the mutation score with old test

suites.

New Test Suite 2

S. No. A B C Expected Output

1 20 30 40 40

2 10 5 5 10

3 6 2 10 10

4 6 10 20 20

We calculate the mutation score of new test suite 2.

For New Test Suite.

Mutant M1.

 53

S. No. A B C EO OO

1 20 30 40 40 30

2 10 5 5 10 5

3 6 2 10 10 10

4 6 10 20 20 20

Mutant M1 is killed

Mutant M2.

S. No. A B C EO OO

1 20 30 40 40 40

2 10 5 5 10 5

3 6 2 10 10 10

4 6 10 20 20 20

Mutant M2 is killed

 54

Mutant M3.

S. No. A B C EO OO

1 20 30 40 40 40

2 10 5 5 10 5

3 6 2 10 10 6

4 6 10 20 20 20

Mutant M3 is killed

Mutant M4.

S. No. A B C EO OO

1 20 30 40 40 40

2 10 5 5 10 10

3 6 2 10 10 10

4 6 10 20 20 10

Mutant M4 is killed

 55

Mutant M5.

S. No. A B C EO OO

1 20 30 40 40 40

2 10 5 5 10 10

3 6 2 10 10 2

4 6 10 20 20 20

Mutant M5 is killed

Mutation Score = Number of mutants killed/ Total number of mutants.

Total mutant = 5

Mutant kill = 5

Mutant alive =0

So,

Mutation Score for New Test Suite 2 is 1.

As we can see that the new test suite 2 is also optimal with mutation score 1, so we can say that

our algorithm is independent of test cases order within a test suite in aspect of obtaining the

optimal test suits. But we observe that there is change in test cases of new test suite 2. As in

new test suite 2, test case (10, 10, 10) which is in new test suite 1 is replaced by test case (20

,30, 40). Therefore, test cases in optimal test suits are dependent of test cases order within a

test suite.

 56

Compare test suites Mutation Score

S. No. Test Suit Name Mutation Score Optimality

1 Test Suite A 0.8 Nearly Optimal

2 Test Suite B 0.6 Not Optimal

3 New Test Suite 1 Optimal

4 New Test suite 1 1 Optimal

5 New Test Suite 2 1 Optimal

Table 5.1 Comparing Mutation Score

As we can see that the mutation score of new test suite, new test suite 1and new test suite 2 are

better than the other two test suites (A and B). The new test suite 1 and new test suite 2 is also

optimal with mutation score 1, so we ca say that our algorithm is independent of test suites

order and test cases order within a test suite in aspect of obtaining the optimal test suits.

5.3 Dividing the Algorithm.

Now we have divided our algorithm in two algorithms and we have seen how they affect the

test data.

 57

5.3.1 Algorithm for optimal test cases.

In this algorithm we have just use the half part of our algorithm. We just use that part of

algorithm which has optimized the test cases by calculating the mutant score (1) and mutant

score (2). After that we select only those test cases for new test suit which have both the mutant

score (1) and mutant score (2) are equal to 1. We observed that this algorithm only minimized

the test data but not optimized the test data.

As in test suite B, we can see that all the test cases are optimal with both mutant score equal to

1 but the mutation score is 0.6 which is not optimal.

5.3.2 Algorithm for path coverage of SUT in each test suite.

In this algorithm we have just use the half part of our algorithm. We just use that part of

algorithm which help us to covered all the path of SUT in each test suite. In this algorithm, we

select test cases with different path for new test suit. We observed that this algorithm only

minimized the test data but not optimized the test data.

As in test suite A, we can see that all the test cases belong with different path but the mutation

score is 0.8 which is not optimal.

 58

CHAPTER 6

CONCLUSION

It is concluded from the above discussion that the tool for Minimization of Automated

Generated Test Data perform better than other tool developed. There are many tools and

algorithms for automated generated test data with large solution space. But there are some other

algorithms which minimize the solution space of the SUT for testing the software. But they are

not so optimal and the tool which we developed, provides the optimal or near to optimal

solution. Our developed tool is better than the other tools which were developed for the

generation of test data, because it enables the test data to eliminate the not optimal test cases,

which make our test suites more optimal than any other tools developed. This work would

decrease the cost and time of testing for a given SUT considerably.

 59

CHAPTER 7

REFERENCES

[1] Y. Singh, “Software Testing”, Cambridge University Press, UK, 2010.

[2] B. Korel, "Automated software test data generation," in IEEE Transactions on Software

Engineering, vol. 16, no. 8, pp. 870-879, Aug. 1990.

[3] C. Michael and G. McGraw, “Automated software test data generation for complex programs,” A

Technical Report, Reliable Software Technologies, 1998.

[4] R. P. Pargas, M. J. Harrold, R. R. Peck. “Test-data generation using genetic algorithms” in Software

Testing Verification Reliability, 9(4): 263---282, 1999.

[5] L. Bin, L. Zhi-Shu, C. Yan-Hong and L. Bao-Lin, "Automatic Test Data Generation Tool Based on

Genetic Simulated Annealing Algorithm," Computational Intelligence and Security Workshops, 2007.

CISW 2007. International Conference on, Heilongjiang, pp. 183-186, 2007.

[6] D. Jeya Mala, V. Mohan and M. Kamalapriya, "Automated software test optimisation framework –

an artificial bee colony optimisation-based approach", IEEE, 10.1109/ICRITO.2016.7785020, 19

December 2016.

[7] D.J. Mala, and V. Mohan, “Hybrid Tester - An Automated Hybrid Genetic Algorithm Based Test

Case Optimization Framework for Effective Software Testing,” International Journal of Computational

Intelligence: Theory and Practice, vol.3, no.2, pp 81-94, 2008.

[8] R. Malhotra and M. Garg. "An adequacy based test data generation technique using genetic

algorithms." In Journal of information processing systems, vol. 7, no. 2. pp. 363-384. 2011.

[9] R. Malhotra, Poornima and N. Kumar, "Automatic test data generator: A tool based on search-based

techniques," 2016 5th International Conference on Reliability, Infocom Technologies and Optimization

(Trends and Future Directions) (ICRITO), Noida, 2016, pp. 570-576.

[10] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Yves Le Traon. "Assessing

Software Product Line Testing Via Model-Based Mutation: An Application to Similarity Testing", 2013

IEEE Sixth International Conference on Software Testing, Verification and Validation Workshops,

2013

 60

[11] Feras A. Batarseh, Avelino J. Gonzalez. "Predicting failures in agile software development through

data analytics", Software Quality Journal, 2015

[12] Lili Pan, Junyi Li, Beiji Zou, Hao Chen. "Bi-Objective Model for Test-Suite Reduction Based on

Modified Condition/Decision Coverage" , 11th Pacific Rim International Symposium on Dependable

Computing (PRDC'05), 2005

[13] J.A. Jones, M.J. Harrold. "Test-suite reduction and prioritization for modified condition/decision

coverage", IEEE Transactions on Software Engineering, 2003

[14] Hanh, Le Thi My, Nguyen Thanh Binh, and Khuat Thanh Tung. "A Novel Fitness function of

metaheuristic algorithms for test data generation for simulink models based on mutation analysis" ,

Journal of Systems and Software, 2016.

[15] Subramanian. "A Tool for Generation and Minimization of Test Suite by Mutant Gene Algorithm",

Journal of Computer Science, 2011

