RAINFALL-RUNOFF MODELLING OF BETWA BASIN USING SWAT TOOL

A MAJOR PROJECT REPORT

Submitted in partial fulfillment of the requirement for the award of a degree

of

MASTER OF TECHNOLOGY

in

HYDRAULICS AND WATER RESOURCES ENGINEERING

By

MAYUR JAIN

Roll No: 2K19/HFE/06

Under The Guidance

Prof. Rakesh Kumar

BONAFIDE CERTIFICATE

This is to certify that the project report entitled "**RAINFALL - RUNOFF MODELLING OF BETWA BASIN USING SWAT TOOL**" is a record of bonafide dissertation work carried out by me, Mayur Jain, towards the partial fulfillment of the requirement for the award of the degree of Master of Technology in Hydraulics & Water Resource Engineering.

Also, I do hereby state that I have not submitted the matter embodied in this thesis in any other university / institute for the award of any degree as per my knowledge and behalf.

MAYUR JAIN

Mtech (Hydraulics & water resource engineering) Roll no: 2K19/HFE/06 Delhi Technological University, Delhi

This is to confirm that the above statements made by candidate are correct to best of my knowledge

DR. RAKESH KUMAR PROFESSOR Department of Civil engineering Delhi Technological University, Delhi

ACKNOWLEDGEMENT

I would like to convey serious and sincere thanks to my guide. Dr. Rakesh Kumar, Professor, Department of Civil Engineering, Delhi Technological University, Delhi, who give suggestion and guidance and helped me allot inspired for completion of my thesis report.

I express my sincere gratitude to Dr. K. C. Tiwari, Professor, Department of Civil Engineering, Delhi Technological University, Delhi

Special thanks to Vijay Anand sir for teaching me the software and helping me during every trouble I faced in my project

I heartily thank my parents for encouraging and supporting during my study

Date: June, 2021 Place: Delhi MAYUR JAIN Roll No. 2K19/HFE/06

ABSTRACT

The hydrologist is under stress that how to analyze the catchment so that it could manage it properly and develop water resource project. To reduce their complexity in analyzing various engineering problems like reservoir storage, flood protection, forecasting, drainage system design

hydrological modeling Hydrologists used SO that he could give a solution to the difficult problem. To find runoff from Betwa basin which the Ganga basin, ArcSWAT software have comes under been used along with ArcGIS software

In Actual, SWAT is distributed parameter model which be used to find surplus water, erosion, residue from land.

In this study, we delineate our catchment area by the use of DEM (Digital Elevation Model) and we got 33 sub-basin in our study area. creation of Land use map, soil map and After the slope map in model, we got 271 HRU (hydrological response unit) and have swat daily rainfall, minimum and maximum of given 25 years temperature data

simulated for 25 years in which calibration have been done Model is from 1990 to 2000 and taken two vear warm-up period which as gives result $R^2 = 0.89$, NS = 0.58 and validation have been done from 1999 to 2013 and taken two years as warm-up period which give result $R^2 = 0.90$ and NS = 0.34.

Keywords: Hydrological modeling, SWAT, ArcSWAT, GIS, Digital Elevation Model, HRUs

CONTENTS

DESCRIPTION

E

PAGE NUMBER

BONAFIDE CERTIFICATE	2
ACKNOWLEDGMENT	3
ABSTRACT	4
CONTENTS	5
LIST OF FIGURES	8
ABBREVIATION NOTATION AND NOMENCLATURE	10
I INTRODUCTION	(11 -12)
1.1 GENERAL INFORMATION	11
1.2. OBJECTIVE	12
1.3. ORGANIZATION OF THESIS	12
II LITERATURE REVIEW	(13 – 16)
LITERATURE REVIEW	13
III DESCRIPTION OF SWAT MODEL	. (17 – 24)
	17
3.1 DEVELOPMENT HISTORY OF SWAT MODEL	1/
3.1 DEVELOPMENT HISTORY OF SWAT MODEL3.2 OVERVIEW OF SWAT	
	18
3.2 OVERVIEW OF SWAT	
3.2 OVERVIEW OF SWAT 3.2.1 PRECIPITATION	
3.2 OVERVIEW OF SWAT	

3.2.6 RETURN FLOW	24
IV STUDY AREA AND METHODOLOGY(25 - 2	26)
4.1 STUDY AREA4.2 METHODOLOGY	
V PREPARATION OF INPUT DATABASE AND SWAT MODE SETUP(27 – 5	
5.1 PRE – WATERSHED DELINEATION PROCESS. 2 5.1.1 FINDING DISTRICT IN STUDY AREA. 2 5.1.2. DEM . 2 5.1.3. UTM ZONE IDENTIFICATION AND COORDINATE 2	27 28
CONVERSION	
FOR HRU GENERATION	35 .38
5.4. HRU ANALYSIS. 5.4.1 LANDUSE/SOIL/SLOPE MAP 5.4.2 HRU DEFINITION.	39
 5.5 POST HRU ANALYSIS - WRITE INPUT TABLES 5.5.1 CREATING DATA FOR WEATHER DEFINITION 5.5.2 USING DATA IN WEATHER DATA DEFINITION 5.5.3 WRITE INPUT TABLE FOR SWAT 5.5.4 DATABASE UPDATE 	43 44 45 46
5.6. POST HRU ANALYSIS - EDIT SWAT INPUT5.6.1 EDIT GENERAL WATERSHED PARAMETERS	

5.6.2 REWRITE SWAT INPUT FILES
5.7. SET UP FOR SWAT SIMULATION
VI SWAT SIMULATION(52-54)
6.1. READ SWAT OUTPUT
VII CALIBRATION AND VALIDATION(55-57)
7.1. CALIBRATION
7.2 VALIDATION
VIII CONCLUSION
IX SCOPE OF FUTURE WORK
X REFERENCES(60 - 62)
APPENDIX I
APPENDIX II

LIST OF FIGURES

S.N.O	FIG.	NO TITLE PAGE	E NO
1	3.1	Swat Development History	17
2	3.2	Hydrologic Cycle	19
3	4.1	Location Map of Study Area	25
4	4.2	Methodology Flow chart	26
5	5.1	Mosaic (merge all SRTM Image)	28
6	5.2	Merged DEM	29
7	5.3	Extract study area using Extract	29
		by mask option	
8	5.4	DEM of our area	30
9	5.5	Identify UTM Zone in goggle earth	31
		pro desktop app	
10	5.6	Conversion of coordinate system	32
11	5.7	Watershed Delineation Window	33
12	5.8	Delineated Watershed (blue image)	34
13	5.9	Mosaic window for single band composite	35
14	5.10	Mosaic of our band composite	36
15	5.11	Study area band composite	36
16	5.12	Maximum likelihood window	37
17	5.13	LULC Map	38
18	5.14	Soil Map	38
19	5.15	Landuse map and table in HRU	
		Generation step	39
20	5.16	Soil map and table in HRU Generation step	40
21	5.17	Slope map and table in HRU Generation step	41

22	5.18	HRU Definition step in HRU analysis	42
23	5.19	Raingauge stations inside and outside study area	43
24	5.20	Raingauge stations in our study area	44
25	5.21	Assigning rainfall data in weather data	
		definition window	44
26	5.22	Assigning temp data in weather data	
		definition window	45
27	5.23	Write SWAT Database Tables	46
28	5.24	Update Database	47
29	5.25	General data table	48
30	5.26	Rewrite swat input data	49
31	5.27	Swat Set up window	50
32	5.28	SWAT Run was completed	51
33	6.1	Importing Swat File	52
34	6.2	Examine model output	53
35	6.3	SWAT output showing hydrologic cycle	
		With values	54
36	7.1	Graph between simulated value and observed	
		value for calibration	55
37	7.2	R ² Graph for calibration	56
38	7.3	Comparison graph for simulation	57
39	7.4	R ² graph for validation	57

ABBREVIATION NOTATION AND NOMENCLATURE

- SWAT Soil and Water Assessment Tool
- HRU Hydrological Response Unit
- DEM Digital Elevation Model
- LULC Land Use Land Cover
- SRTM Suttle Radar Topography Mission
- UTM Universe Transverse Mercator

CHAPTER 1 INTRODUCTION

1.1 GENERAL INFORMATION

Water is valuable for all living matter, We surface are estimating increase runoff that vield of a catchment, and plan SO we can conservation measures like ground water recharge and reduction of the flooding hazard. So there is a need for SWAT software to get information accurately

But in practical, it is difficult and expensive to determine most of the parameter that interplay in hydrological process. Variables like runoff, sediment load, evaporation is very difficult to measure in the field.

The software used in our study is ArcSWAT 10.3.1 with ArcGIS 2012 interface and catchment area is delineated using projected DEM (Digital Elevation Model) and then had 33 Sub basin got in our area

For preparation of Land use map, Landsat 8 image C2 L1 was downloaded from the USGS Earth Explorer website and soil map was downloaded from Food and Agriculture organization website for entire globe and extracted for our study area.

Sub-basin was further divided into 271 HRU (Hydrological Response Unit). By use of 24 years of daily rainfall data, daily maximum and minimum temperature data, Swat simulation was done for estimating runoff. Calibration and Validation was also done.

11 | Page

1.2 **OBJECTIVE**

The Specific Objective :

- 1- Calculate Runoff for a catchment for a given rainfall
- 2- Flood forecasting using SWAT model
- 3- Estimating groundwater recharge rate
- 4- Assessment of soil erosion risk using swat software
- 5- SWAT is used to simulate the discharge of sediment and pesticides
- 6- Water quality modeling using SWAT
- 7- Modeling of nitrous oxide emission from soil using swat model

1.3 ORGANIZATION OF THESIS

A list of the chapter contains given below:

- 1- Introduction discussed swat model along with its objective
- 2- Literature Review contain various studies conducted using SWAT
- 3- Study Area give details for study area, which we use in this study
- 4- SWAT Model Description given history of model, improvement in models.
- 5- Input data and model setup give information of all input data which are used in this study
- 6- Result In this section, we get result of project along with calibration, validation result.
- 7- Reference In this section, we listed references which we used in our study

CHAPTER 2 LITERATURE REVIEW

LITERATURE REVIEW

In this chapter, we had given only those, whose previous work was related to my work.

(1) Nagraj S Pati, Rajkumar V Raikar, Manoj S (2014) In this study they done rainfall - runoff modeling of Bhima river, delineated the watershed by the use of DEM image of watershed and created land use map, soil map and slope map and then had given rainfall, temperature data (minimum and maximum). They simulated the project and checked the accuracy of result with observed and simulated data. Calibration was done monthly from 1974 to 1978. Validation was carried from 1979 to 1983. The calibration result $R^2 = 0.89$, NSE = 0.81. For validation, the R^2 was found to be 0.74 and NSE was estimated as 0.77.

(2) Rohtash, Dr. L. N. Thakural, Dr. M.K. Choudhary, Dipti Tiwar (2018)

In this study, they do rainfall-runoff modeling of chaliyr basin Kerala which had catchment area 2013.4 km². Delineated the watershed and got 15 sub-basin and created land use map, soil map and slope map and 103 HRU was generated for entire basin and had given rainfall, temperature data (minimum and maximum). they simulated the project and checked the accuracy of result with observed and simulated data. Calibration was done from 2003 to 2007 on monthly basis. Validation was carried from 2008 to 2011. The calibration result $R^2 = 0.77$, NSE = 0.75. For validation, the R^2 was found to be 0.765 and NSE was estimated as 0.73.

(3) Leelambar Singh a, Subbarayan Saravanan (2020) In this study they do rainfall-runoff modelling of IB basin. Delineated using the dem of study area. created land use map, soil map and slope and had given rainfall, temperature data (minimum and maximum). they simulated the project and checked the accuracy of result with observed and simulated data. Calibration was done monthly from 1993 to 2003. Validation was carried from 2004 to 2011. The calibration result $R^2 = 0.77$, NSE = 0.75. For validation, R^2 was found to be 0.80 and NSE was estimated as 0.55.

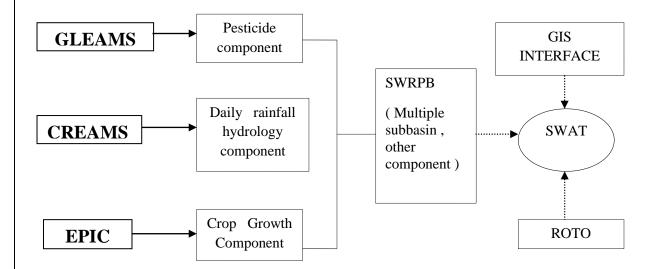
(4) Asmita K. Mistry, Bankim R. Joshi (2014) rainfall-runoff modeling of Shakkar basin had catchment area 2223 km². They delineated the watershed and had got 23 sub-basin and created land use map, soil map and slope map and 223 HRU was generated for entire basin and then by giving rainfall, temperature data (minimum and maximum). SWAT simulation was done for daily basis for 21 years data and a good R2 value 0.8019.

(5) Ashok Mishra, Philip Gassman (2007) The SWAT model had been applied for Banha watershed to simulate sediment transport. The model predicted surface runoff and sediment transport on daily and monthly basis, had R^2 value in range between 0.77 and 0.99. NSE value in range from 0.58 to 0.99 indicated in daily timeframe and SWAT performance was not good for surface runoff and sediment loss. For installing check dam in an area, we had given priority to those sites where current check dam was already placed. Three check dams had install in catchment reduces 50 % of sediment concentration and during the monsoon seasons overall sediment loads was reduced almost 64% for the duration of 1996 - 2001. Results confirm model applicable to small watersheds with that monsoon dominated climatic condition

(6) SU WAI THIN, KOICHIRO OHGUSHI & TOSHIHIRO MORITA (2019) Bago basin, Myanmar had catchment area of 4883.1 km². Delineated using the Dem of study area. created land use map, soil map and slope and then had given rainfall, temperature data (minimum and maximum) simulated project and checked the accuracy of result with they the observed and simulated data. Calibration was done for daily basis from 2013. Validation was carried from 1/1/2014 2010 to to 31/12/2014. Calibration result NSE = 0.76. For validation, NSE = 0.56. The relation was best fitted with observed and simulated data

(7) K. N. Loukika, K. Venkata Reddy, K. H. V. Durga Rao and Amanpreet Singh (2019) The study area was taken at Chintalapudi village, andrapradesh By Using DEM, LULC map, Soil map, rainfall data, aquifer parameters we estimate groundwater recharge . In this SWAT and MODFLOW model, both was used. By creating a grid in modflow along with Dem, aquifer data, and permeability data and by it was simulated from 1990 to 2005 to get groundwater rate result

(8) Anurag Bandi, Y. R. Satyaji Rao, Sanjeet Kumar (2020) On Sarada river basin SWAT model was applied. Sub-basin in which outlet was located they compared both observed discharge & SWAT simulated discharge. 13 years from 1996 to 2008 data was used for simulation and for calibration 1999 to 2005 data was used, which had R^2 value = 0.8312 and NSE = 0.83 and for validation from 2006 to 2008 data was used having R^2 value = 0.855 and NSE value = 0.66. It had given good result (9) Manoj Jain, Survey Daman Sharma (2014)) Vamsadhara basin was delineated using the Dem of study area having area of 10,830 km². input variables like rainfall, temperature data (minimum and maximum, land use map, soil map, slope map, DEM etc. they simulate the project and check the accuracy of result with observed and simulated data. calibration was done monthly having $R^2 = 0.89$. Validation was carried monthly having $R^2 = 0.91$.


(10) Subhadip and Sneha (2017) they find the actual runoff obtained in Ajay catchment. Our area was delineated by the use of DEM and got 19 sub-basins in our area and then they divided area into 223 small units called HRU. After by using daily data of our rainfall for 30 years and 30 years of daily max and min temperature data. SWAT obtained result in monthly basis and R^2 value obtained was 0.9419.

CHAPTER - 3

DESCRIPTION OF SWAT MODEL

3.1 DEVELOPMENT HISTORY OF SWAT MODEL

Before the development of swat model many model came, and by knowing the limitation in each model, swat model were prepared. SWAT model is created around 1990 and it is developed by merging many model like SWRPB, ROTO, GIS Interface.

FIG 3.1: SWAT Development History

After the initial development of SWAT, it goes for modification and many models release with time

Model release:

SWAT 94.2: Multiple hydrologic response units (HRUs) is considered

SWAT 96.2: Auto - fertilization and auto-irrigation added; storage of water is added; Crop Growth Model Co2 component is added; potential evapotranspiration equation added; lateral flow of water in the soil is added; water quality equations added

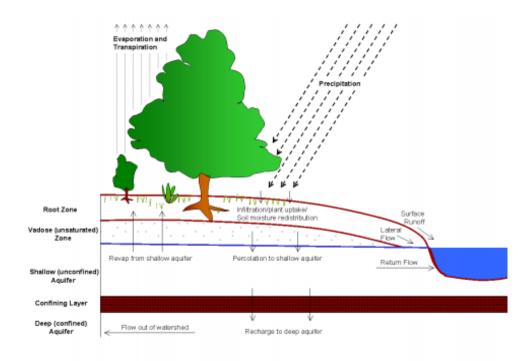
SWAT 98.1: water quality equation is improved; tile flow drainage added, Nutrient cycling routines is added

SWAT 99.2: improvement in Nutrient cycling routines, wetland routine improved, nutrient removal by settling added; water storage is added; Equation from SWMM added

SWAT 2000: infiltration added; improvement in inputs of weather generation; Inputs like solar radiation, relative humidity, and wind speed is added; calculating ET values for catchment area ready; simulate an unlimited number of reservoirs; Muskingum routing method added

SWAT 2005: weather forecast scenarios added; precipitation data is added on a daily and sub-daily basis; CN calculation is added

SWAT 2009: Increasing weather data upto 300 years. Some updates in Watershed Delineation, HRU Analysis and SWAT 2009.mdb Database.


3.2 OVERVIEW OF SWAT

SWAT (Soil & Water Assessment Tool) is continuous time model, public domain software and it is used to predict runoff on our watersheds.

The model is physically based, computationally efficient, and capable to find result for long periods. The watershed is divided into multiple

sub-basin, which is further subdivided into hydrologic response units (HRUs).

Individual HRUs represents land use, soil type and slope within the sub-basin. After creating HRU and adding input like rainfall, maximum and minimum temperature etc. model is simulated. The figure given below is a hydrologic cycle image in SWAT software for better understanding the result obtained after simulation

FIG 3.2: Hydrologic Cycle

Equation on which hydrologic cycle is based:

$$SW_t = SW_0 + \sum_{i=1}^{t} (R_{day} - Q_{surf} - E_a - W_{seep} - Q_{gw})$$

Where SW_t is final soil water content, SW_0 is initial soil water content of day, t is the time, R_{day} is the amount of precipitation on day i, Q_{surf} is the amount of surface runoff on day i, E_a is the amount of evapotranspiration on day i, W_{seep} is the amount of water entering the vadose zone from the soil profile on day i, Q_{gw} is the amount of return flow on the day i

All the component of the hydrological cycle is summarized in next section

3.2.1 PRECIPITATION

For input, user should provide precipitation value on daily timeframe to swat model. SWAT distribute rainfall according to the rain gauge station location in sub basin and created monthly report of every sub basin having precipitation value

We go for skewed rainfall distribution and find the amount of rainfall on that day by an equation:

$$R_{day} = \mu_{mon} + 2. \sigma_{mon} \cdot \left(\frac{\left[\left(SND_{day} - \frac{g_{mon}}{6} \right) \left(\frac{g_{mon}}{6} \right) + 1 \right]^3 - 1}{g_{mon}} \right)$$

Here R_{day} represent quantity of precipitation occurred for given day. μ_{mon} is the average value of the month for daily rainfall data, σ_{mean} is standard deviation value of month by using daily rainfall data, SND_{day} is the standard normal deviate value of our day and g_{mon} is the monthly coefficient value by using daily precipitation value

3.2.2 EVAPOTRANSPIRATION

Evapotranspiration is the sum of evaporation from ground and evaporation from leaves in plant. In swat, there are three methods to calculate evapotranspiration but due to the limitation of data we had chosen the Hargreaves method as it takes only temperature data.

The equation used by this method is :

$$\lambda E_0 = 0.0023 \text{ H}_0 (T_{\text{mx}} - T_{\text{mn}})^{0.5} (T_{av} + 17.8)$$

Where λ is the latent heat of vaporization, E_0 is the potential evapotranspiration, H_0 is the radiation, T_{mx} is maximum temperature obtained for a day, T_{mn} is min temperature obtained for a day, T_{av} is the average temperature of the day

3.2.3 PERCOLATION

Percolation means movement of water in soil in downward direction, it only happen when the water content is in excess to the required field capacity of soil.

Our software calculates the percolation of water at every layer in the soil profile beneath the ground and does the sum and calculate total percolation of water in-ground

Infiltration is calculated by using the field capacity formula Percolation is founded by an equation at each layer on the soil profile and it is given below :

$$W_{perc, ly} = SW_{LY, excess} \cdot \left(1 - \exp\left[\frac{-\Delta t}{TT_{perc}}\right]\right)$$

Where $W_{perc, ly}$ is the value of percolating water in the ground to beneath soil layer for a day, $SW_{LY, excess}$ is the volume of water

drained soil layer for a day, Δt is the same time change value in hours, TT_{perc} is the time taken for water to percolate in ground

For each layer, we calculate our travel time of water in the soil by using

 $TT_{perc} = \frac{SAT_{ly} - FC_{ly}}{K_{sat}}$

Where TT_{perc} is the travel time for percolation (hrs), SAT_{ly} is the amount of water in the soil layer when completely saturated, FC_{ly} is the water content of the soil layer at field capacity, K_{sat} is the saturated hydraulic conductivity for the layer (mm hr^{-1})

3.2.4 REVAP FROM SHALLOW AQUIFER

Revap is simply water coming out from aquifer to saturated zone The maximum amount of water that be removed from aquifer is given by :

 $W_{revap, mx} = \beta_{rev} \cdot E_0$

Where $W_{revap, mx}$ is the maximum amount of water moving into the soil zone, β_{rev} is revap coefficient, E_0 is the potential evapotranspiration for the day

The actual amount of revap for a day is given by an equation :

 $W_{revap} = 0$ if $aq_{sh} \leq aq_{shthr,rvp}$

 $W_{revap} = W_{revap,mx} - aq_{shthr,rvp}$ if $aq_{shthr,rvp} < aq_{sh} < (aq_{shthr,rvp} + W_{revap,mx})$

$$W_{revap} = W_{revap,mx}$$
 if $aq_{sh} \ge (aq_{shthr,rvp} + W_{revap,mx})$

Where W_{revap} is the actual amount of water moving into the soil zone, $W_{revap,mx}$ is the maximum amount of water moving into the soil zone, aq_{sh} is the amount of water stored in the aquifer at the beginning of the day, $aq_{shthr,rvp}$ is the threshold water level in the shallow aquifer for revap to occur

3.2.5 SURFACE RUNOFF

Surface runoff means excess rainfall which is not infiltrated in ground, so that excess water flow over the surface and the river or stream.

And it is being calculated in SWAT using CN Value Formula is given below:

$$Q_{surf} = \frac{(R_{day} - 0.2 S)^2}{(R_{day} + 0.8 S)}$$

Where S = 25.4 (
$$\frac{1000}{CN}$$
 - 10)

Where R_{day} is a depth of rainfall for a day, S is the retention parameter, CN is the Curve Number for the day

3.2.6 RETURN FLOW

Base flow is sometimes called as return flow as it comes to the main channel through groundwater

In SWAT it is being calculated by an equation:

$$Q_{gw} = \frac{8000.K_{sat} \cdot h}{L_{gw}^2}$$

Where Q_{gw} is the base flow, K_{sat} is hydraulic conductivity, L_{gw} is the distance from the ridge, h is the height of the water table

CHAPTER - 4

STUDY AREA AND METHODOLOGY

4.1 STUDY AREA

betwa basin which is a sub-basin Our Selected study area was Watershed 43,751.59 km². States of basin. was ganga area which comes under this basin part of uttarpradesh are some and some part of Madhya Pradesh. fourtheen district which comes under betwa ashoknagar, bhopal, chattarpur, hamirpur, jalaun, jhansi, lalitpur, basin was mahoba, raisen, sagar, sehore, shivpuri, tikamgardh, vidisha. In our basin, less than 1% of area was covered by water bodies, and the highest of the land was covered with forest and In our elevation report 40% of our basin, it was seen that it had an elevation range from 76 to 715 above mean sea level

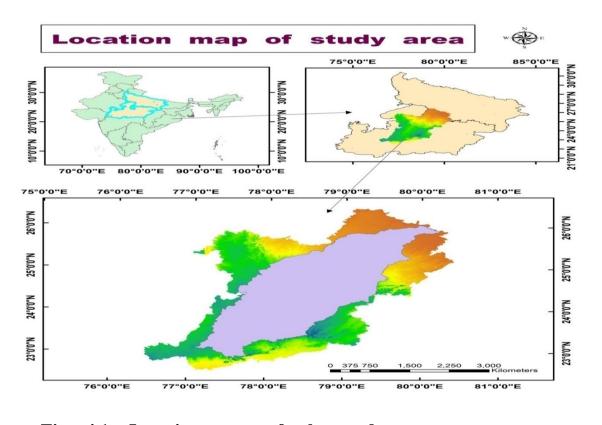


Fig 4.1: Location map of the study area

25 | Page

4.2. METHODOLOGY

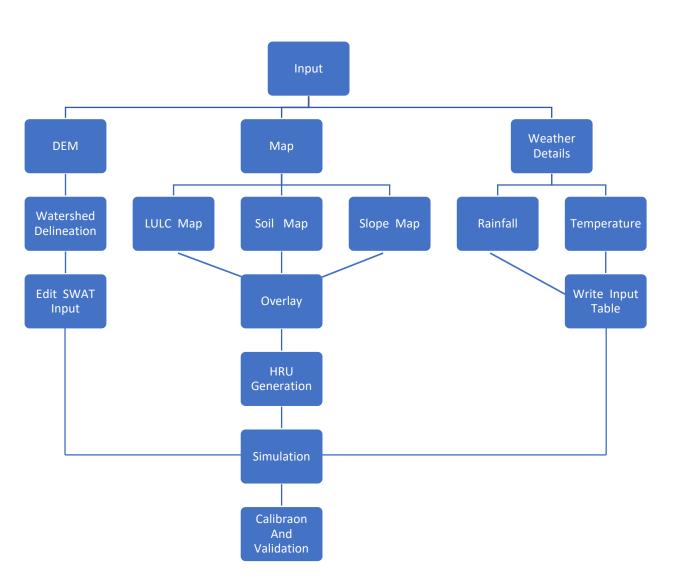


FIG 4.2: Methodology Flow Chart

The given above was the flowchart of methodology picture that 2012 version tells the steps to complete the project. ArcSWAT is in this project with ArcGIS 10.3.1. The used input data required project was DEM, LULC map, soil in this map, slope and map rainfall and data. By using all simulated our temperature data we project and after that, we use SWAT CUP for calibration and validation

CHAPTER - 5

PREPARATION OF INPUT DATABASE AND SWAT MODEL SETUP

case, we SWAT 2012 version In our used and using this 10.3.1 version software, which is easily version in ArcGIS available software. Input which required in and free of cost project was DEM, land use map data, soil map data and meteorological data like data and minimum and maximum temperature data. Daily precipitation temperature and precipitation data which required in this project was from 1-1-1990 to 31-12-2013.

5.1 PRE–WATERSHED DELINEATION PROCESS

5.1.1 FINDING DISTRICT IN THE STUDY AREA

we find district basin, for had to come in Betwa that we scanned image basin need a of that and do georeferencing means assigning coordinate system for that image/ scanned image such that image should be used for ArcGIS software.

Now by selecting a district from India district and find that map district that touches the scanned Betwa basin image and do this had got in such a way we 14 district that comes in my selected basin i.e. ashoknagar, bhopal, chattarpur, hamirpur, jalaun, jhansi, lalitpur, mahoba, raisen, sagar, sehore, shivpuri, tikamgardh, vidisha

So our district selection step was now completed.

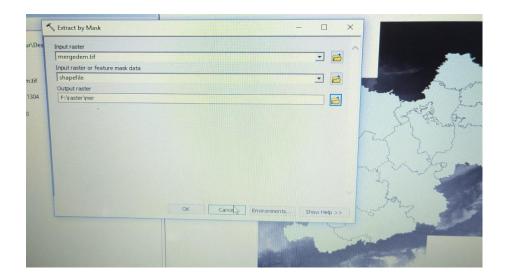
5.1.2. DEM

DEM Stands for digital elevation model. DEM is digital representation of land surface elevation with respect to any reference datum.

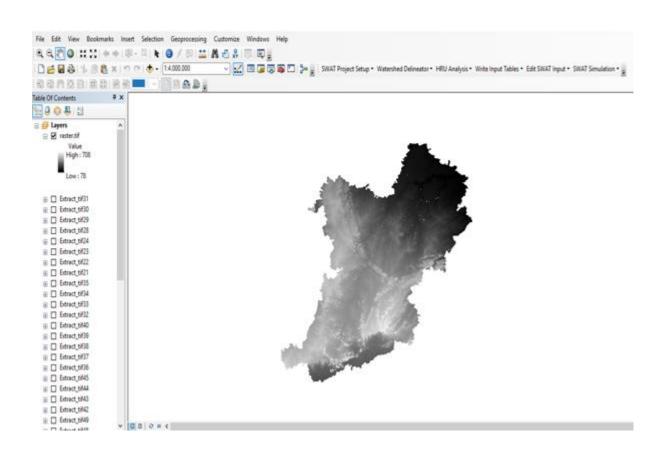
DEM of area, first we had to download For creating a our image. For that open Earth Explorer website SRTM and search all district by one and note its latitude and 14 one longitude value. After that add all 14 coordinate and get an area and now on SRTM 1 Arc - Second Global and then click click on footprint which touches and select those footstep the area and done such a way it covers total in area and download that footprint. You get an SRTM image

In the Arc Toolbox option in ArcGIS, create a raster After creating a raster dataset, merge all Srtm images by mosaic option

put Rasters				
	A STORE		-	
			- 5	
n23_e076_1arc_v3.tif			45	
n22_e076_1arc_v3.tif				×
n23_e079_1arc_v3.tif				
n23_e078_1arc_v3.tif				1
n22_e078_1arc_v3.tif				
n22_e077_1arc_v3.tif				1
n26_e078_1arc_v3.bil				
n26_e080_1arc_v3.tif			~	
<			>	
Farget Raster				_
F:\raster\ras.tif				
Mosaic Operator (optional)				
LAST				~
Mosaic Colormap Mode (optional)				
FIRST				


Fig 5.1: Mosaic (merge all SRTM images)

And after that, merged Dem was obtained


Fig 5.2: Merged DEM

Study area which was formed by click on all 14 districts. And extract our study area from merged DEM by the use extract by mask command

Fig 5.3: Extract study area using Extract by mask option

And obtained the Dem of our study area

FIG 5.4: DEM of our study area

5.1.3. UTM ZONE IDENTIFICATION AND COORDINATE CONVERSION

Before gone to watershed delineation process, we had changed the coordinate system of obtained DEM. Coordinate system was GCS_WGS_1984 and its unit was in decimal. So we had to convert its unit in meter by converting its coordinate system

So main aim identify in which our our was to zone study Google Earth Pro area comes. By the of and kml of use shape file and utm zone kml. we got our area lies in two our i.e. 44N and 43N. but most of UTM utm zone our area lies in Zone 44N. So we converted our coordinate system into WGS_1984_UTM_Zone_44N by using project raster in Arc tool box.

30 | Page

FIG 5.5: Identification of UTM Zone in goggle earth pro desktop app

For converting the coordinate system in WGS_1984_UTM_Zone_44N we had used the project raster option in the arc toolbox

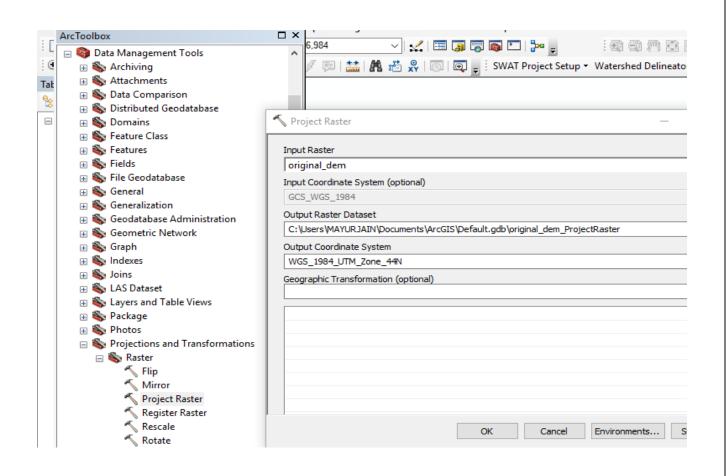


FIG 5.6: Conversion of the coordinate system

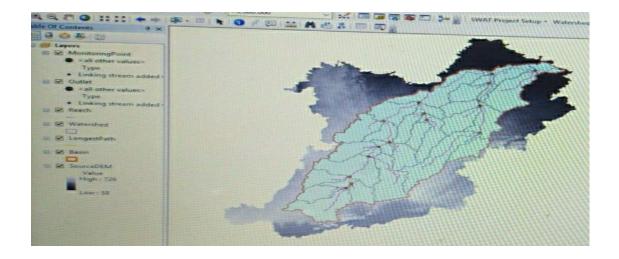
5.2. WATERSHED DELINEATION

Watershed delineation means creating a boundary that represents the contributing area for a particular river outlet.

Our converted DEM in meter format and now spatial reference of DEM was WGS_1984_UTM_ZONE_44N

Now In the watershed delineation step, it accept our converted DEM

DEM Setup	Outlet and Inlet Definition
Open DEM Raster	O Subbasin outlet
E:\lte_it\Watershed\Grid\SourceDem	 Inlet of draining watershed Point source input
DEM projection setup	Add point source to each subbasin Add by Table
Mask and Andrew An Andrew Andrew Andr	
Stream Definition	Watershed Outlets(s) Selection and Definition
 DEM-based Pre-defined streams and watersheds 	Wholewatershed Cancel selection
DEM-based	outlet(s)
Flow direction and accumulation	Delineate watershed
Area: (21870 - 4374097) 87481.930887 [Ha]	₽
Number of cells: 972840	Calculation of Subbasin Parameters
Pre-defined Watershed dataset	Reduced report Calculate subbasin output parameters
Stream dataset:	geometry check Skip longest flow reservoir
Stream network	path calculation
Create streams and outlets	Number of Outlets: 33 Exit Minimi


FIG 5.7: Watershed Delineation Window

We had assigned the unit in meter in DEM projection setup option

We had delineated our watershed by DEM After using flow direction and accumulation option

Area obtained should be in range After created stream network and we had to assign an outlet We had to assign outlet for the whole watershed

Watershed Delineation step was completed

Fig 5.8: Delineated Watershed (blue image)

In our area we got 33 sub-basin and we got topographic report in which each subbasin elevation details was there. Elevation of our area lies between 76 to 715

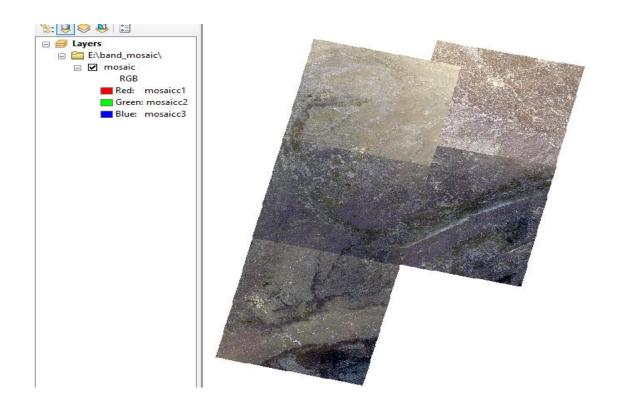
5.3. PREPARATION OF LANDUSE MAP AND SOIL MAP FOR HRU GENERATION

HRU (Hydrologic Response Unit) is the smallest unit of SWAT to calculate the Hydrological properties of catchment

Individual HRUs represents land use, soil type and slope within the sub-basin

Our aim was to create lulc map, soil map and slope map for making hru report.

5.3.1 LULC MAP


creating need a land image which For land use map, we was captured from satellite i.e. Land sat 8 satellite takes 30 m spatial from the USGS Earth resolution image it was downloaded and Explorer website

Search all 14 district one by one in Earth Explorer website and note its latitude and longitude value. After that add all 14 coordinate and now click on Land sat 8 OLI / TRIS C2 and get an area L1 then click footprint and select and on those footstep whose cloud cover was less than 10 % for clear picture of our land area touches area done and the and in such it a way covers total area and download footprint. You get land sat image. that

Now do band composite for every footprint by using composite band in arc toolbox and after completing all image do mosaic option such composite image of that a single band our study area was obtained

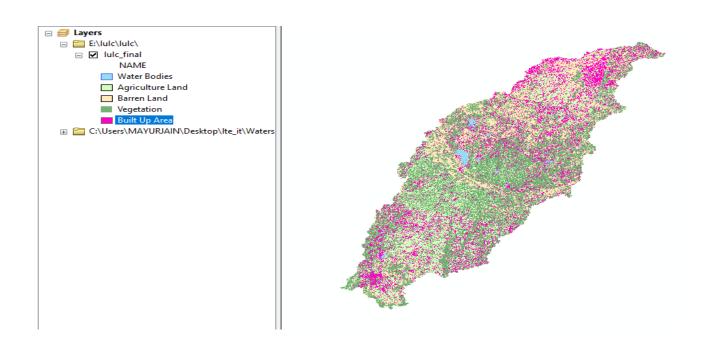
√ Mosaic To New Raster - □ ×
Input Rasters
Output Location
C:\Users\MAYURJAIN\Desktop\band_mosaic_1
Raster Dataset Name with Extension imag.tif Spatial Reference for Raster (optional) Pixel Type (optional) OK Cancel Environments Show Help >>

FIG 5.9: Mosaic window for single-band composite

FIG 5.10: Mosaic of our band composite

Now do extract by mask operation we get our study area

FIG 5.11: Study area band composite


And by using the image classification option we had create a training sample

To create training sample, identification is necessary whether Our land was barren, had water bodies, etc by adding base map in band composite mosaic image and now it is easily visible what the land was and we had created a signature file and do maximum likelihood classification

layers	Maximum Likelihood Classification —	
 ■ E\band_studyarea\ ■ band_sa RGB ■ Red: band_sac2 ■ Green: band_sac3 ■ Blue: band_sac4 	Input raster bands	
	Input signature file E: VulcVulcVulc.gsg	
	Output classified raster C:\Users\MAYURJAIN\Documents\ArcGIS\Default.gdb\MLClass_band4 Reject fraction (optional) 0.0 A priori probability weighting (optional) OK Cancel	Show Help >>

FIG 5.12: Maximum likelihood window

After completing this our LULC Map was prepared

FIG 5.13: LULC Map

5.3.2 SOIL MAP

Download digital soil map of world from FAO website and extract our study area from it. Now we get soil map of our study area

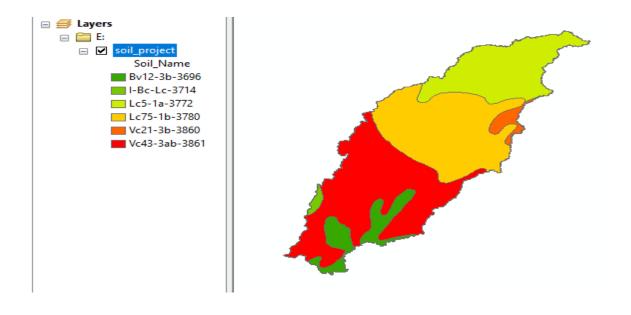
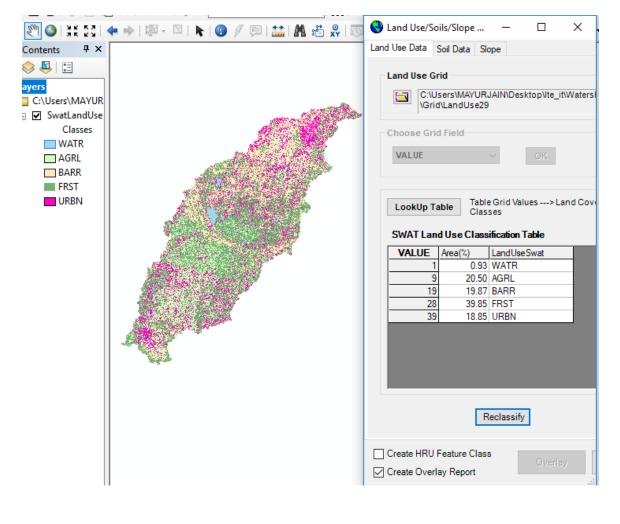
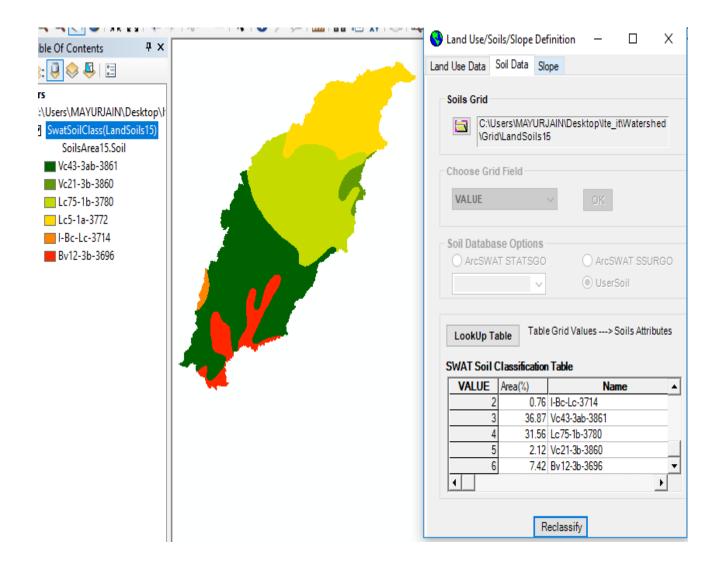


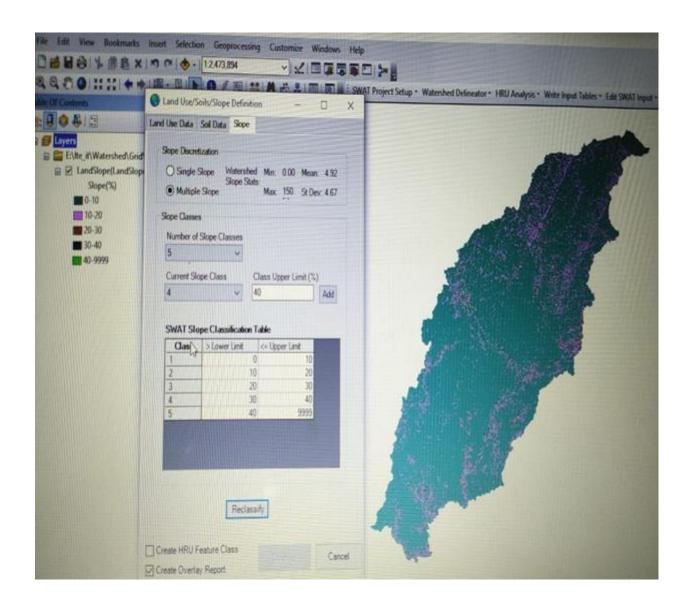
FIG 5.14: Soil Map

5.4.1 LANDUSE / SOIL / SLOPE MAP

After the creation of LULC Map and Soil Map. We go for HRU generation.

We had to create swat land use classification table by use of landuse map which had created previously. So after reclassification, we got land use map


Fig 5.15: Land use map and table in HRU Generation step

We had to create SWAT soil classification table using soil map which we created previously. In this table percentage of area covered by each soil was given and after reclassification, we got soil map of our area

Fig 5.16: Soil map and table in HRU Generation step

For slope map, we had created five classes and in each classes, the lower limit and the upper limit was given and we distribute our slope in the form of multiple slopes and after reclassification, we get a slope map of our area

Fig 5.17: Slope map and table in HRU Generation step

After creating all, we want to create a report so this was possible when we overlap the data obtained from land use, soil and slope map

5.4.2 HRU DEFINITION

In this we create HRU by following standard percentage. After clicked create HRU, it tell you how much HRU was there in your area. 271 HRU was created in our study area along with HRU report

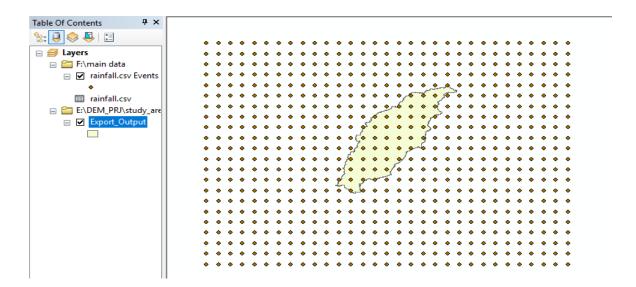
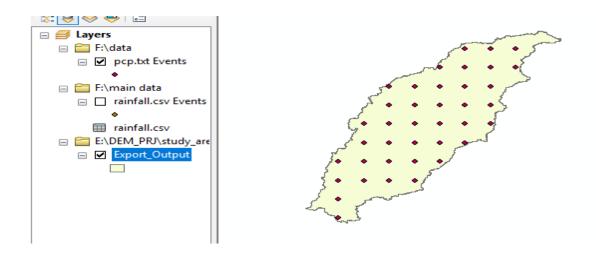

HRU Definition		- 🗆 ×
HRU Thresholds Land	Use Refinement (Option	al) Bevation Bands
-HRU Definition		Threshold
O Dominant Land O Dominant HRU O Target Numbe O Multiple HRUs	r of HRUs	 Percentage Area Target # HRUs 0
Land use percentage	e (%) over subbasin area	
	10 %	
0	· · · · · · · ·	64
Soil class percentage	e (%) over land use area	
0		100
Slope class percentag		
0		100
Write HRU Report	Create HRU	

Fig 5.18: HRU Definition step in HRU analysis

5.5 POST HRU ANALYSIS - WRITE INPUT TABLES5.5.1 CREATING DATA FOR WEATHER DEFINITION


We had to give weather details like temperature, rainfall. So for downloading rainfall and minimum and maximum temperature data from 01-01-1990 to 31-12-2013 on daily basis we had to use global weather data for SWAT given by SWAT website

Got temperature and rainfall data for every station. Now our task was to take data of that station which comes in our study area.

Fig 5.19: rain gauge station inside and outside the study area

Now by extract by clip feature in the arc toolbox, we get the station available in our study area

Fig 5.20: Rain gauge station in our study area

Now by seeing in attribute table, get the id of all station in our area and make text file of id available in attribute table for rainfall and temperature. Now our data was created.

5.5.2 USING DATA IN WEATHER DATA DEFINITION

By assigning precipitation time step in a daily time frame and assigning the folder in which rainfall data was present

Weather Generator Dat		ta Wind Spe emperature D		
SimulationRaingages	Precip Timestep Timestep	Daily	minutes	-
	data \pcp.txt		minutes	

Fig 5.21: Assigning rainfall data in weather data definition window

By assigning the folder in which max and min temperature data was present

Our weather data definition window work got completed

Weather Data Definition -		×
Relative Humidity Data Solar Radiation Data Wind Speed Data Weather Generator Data Rainfall Data Temperature Data		
O Simulation		
Climate Stations		
Locations Table: F:\data\tmp.txt		
Cancel	C	Ж
Processing complete		

Fig 5.22: Assigning temp data in weather data definition window

5.5.3 WRITE INPUT TABLE FOR SWAT

After clicking on write swat input table in write input tables

We get a window, and now click on select all if all get status-completed then only we create input tables

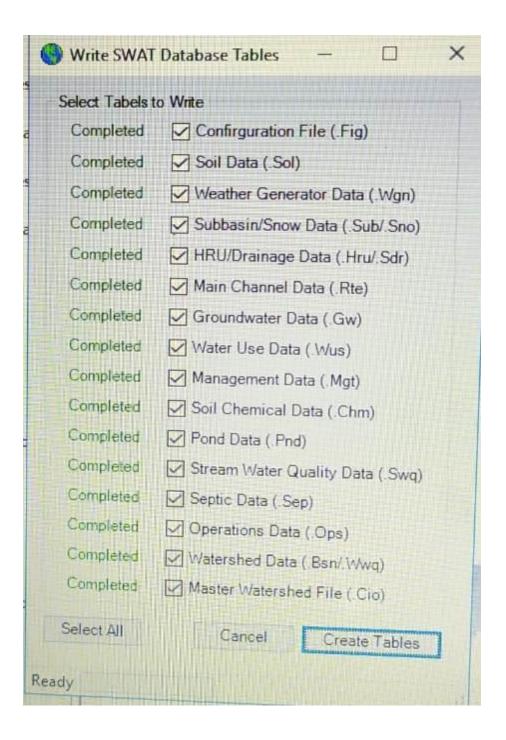


Fig 5.23: Write SWAT Database Tables

5.5.4 DATABASE UPDATE

Now we had to update our input data by clicking on Update data

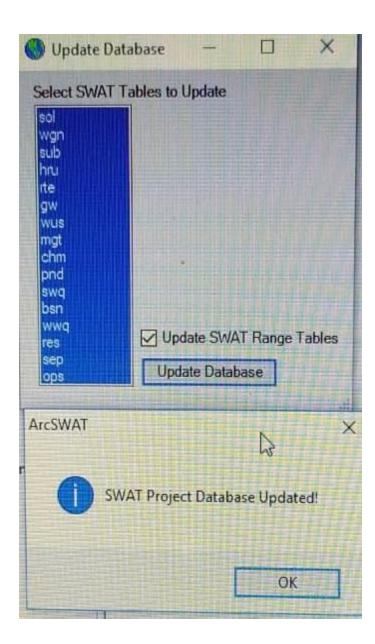


Fig 5.24: Update Database

5.6. POST HRU ANALYSIS - EDIT SWAT INPUT

5.6.1 EDIT GENERAL WATERSHED PARAMETERS

In this we was editing our general data by assigning Potential evapotranspiration method as Hargreaves because we had limited data available precipitation and temperature. So this method is being adopted

We had to assign PET method which was available in the general data window in the watershed data option

Company of Street Street	and the second se		i anna riojeers	etup + Watershed Delineator + HRU Ana
dit General Watershed	Parameters			- 0 >
ter Balance, Surface Ru	noff, and Reaches Nu	trients and Water Quality	Basin-Wide Management	Urban Management/Sub-Daily Erosion
Nater Balance SFTMP (C)	SMTMP (C)	SMFMX (mm/C-day)	SMFMN (mm/C-day)	ТІМР
1	0.5	4.5	4.5	
SNOCOVMX (mm)	SN050COV	PET Method		PET File
1	05	Hargreaves		
ESCO	EPCO	EVLA	FFCB	DEPIMP_BSN
0.95	-1	3	0	0
"Daily Rain/CN/Daily	Route (0)"	 Soil Moisture Methi 	1	0.000862
"Daily Rain/CN/Daily	Route (0)"	 Soil Moisture Methics 	1	0.000862
Crack Flow	SURLAG	ISED_DET	ADJ_PKR	TB_ADJ
Inactive ~	4	Triangular Dist. 🗸	1	0
PRF	SPCON	SPEXP		
1	0.0001	1		
Reaches				
Channel Routing	MSK_CO1	MSK_CO2	MSK_X	Channel Degredation
	0.75	0.25	0.2	inactive V
Variable Storage V		0.000	Routing Pesticide	Algae/CBOD/Dissolved Oxygen Simulation
Variable Storage V Stream Water Quality	TRNSRCH	EVRCH	ricentif Leanence	

Fig 5.25: General data table

5.6.2 REWRITE SWAT INPUT FILES

We was rewrite our input data by clicking on the select all option And then click on rewrite swat input files

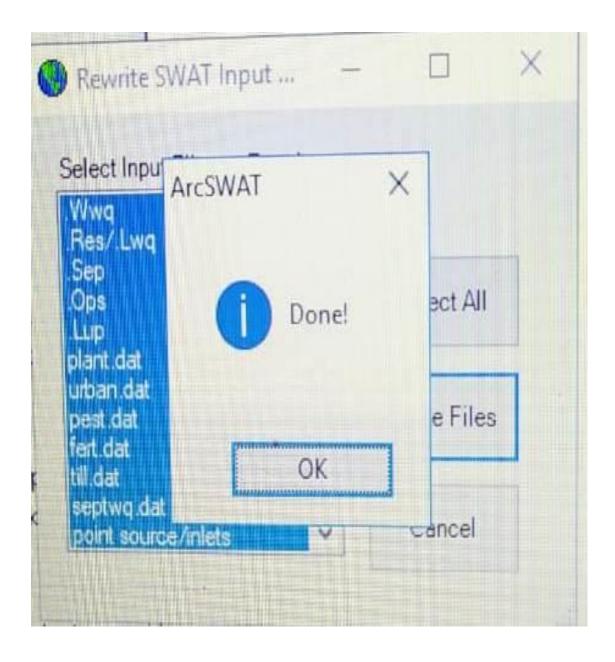


FIG 5.26: Rewrite swat input data

5.7. SET UP FOR SWAT SIMULATION

In this, we had given the period for simulation Starting date of simulation was 1-1-1990 and the ending date of simulation was 31-12-2013 and give 2 years as warm-up period means In output data it shows from 1-1-1992

Penod of Simulation	n,		- [] >
Starting Date ; Ranfall Sub-Daty	1-1-1990 Min Date = 01-01-1990	Ending Date . 1-1-2014	
Timestep:	Minutes n	Printout Settings Daily Yearly Print Log Flow Monthly NYSKIP 2 Print Hourly Ou Print Soil Nutrient Route Headwate Print Water Quality Output Print Snow Outp Print MGT Output Print WTR Output	ers Print Binary Output aut Print Vel./Depth Output
SWAT exe Version 32-bit, debug 64-bit, debug Custom (swat		Output File Variables Al	it Print Calendar Dates Run SWAT Cancel

FIG 5.27: Swat Set up window

After clicking on setup swat run. Setup was being completed

C:\Windows\system32\cmd.exe

Rev. 664	
Soil & Water Assessment Tool	
PC Version	
Program reading from file cio	
executing	
Executing year 1	
Executing year 2	
E Executing year 2	
Executing year	
Executing year of	
Executing year 5	
Executing year o	
S Executing year /	
encouring year 8	
Executing year g	
Executing year 10	
Executing year 11	
Executing year 12	
Executing year 13	
Executing year 14	
Executing year 15	
Evecuting year 16	
Executing year 17	
Executing year 22	
energicang jeur 25	
saccurality year 24	
	Soil & Water Assessment Tool PC Version Program reading from file.cio executing Executing year 1 Executing year 2 Executing year 3 Executing year 4 Executing year 5 Executing year 6 Executing year 7 Executing year 9 Executing year 10 Executing year 11 Executing year 12 Executing year 13 Executing year 13 Executing year 15 Executing year 16 Executing year 17 Executing year 17 Executing year 18 Executing year 20 Executing year 21 Executing year 21 Executing year 22 Executing year 23 Executing year 24

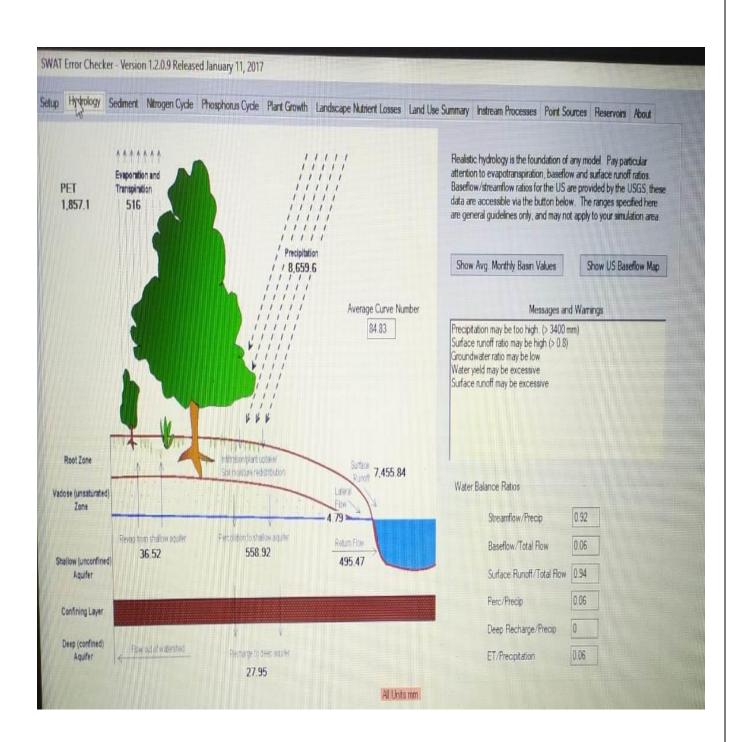
FIG 5.28: SWAT Run was completed

CHAPTER - 6 SWAT SIMULATION

6.1. READ SWAT OUTPUT

In this we had to import our files created till now into database. By Clicked on import files to database

SWAT Output	ß	- 🗆 X]
Read SWAT Output			
Import Files to Database	Check Output Files to I	Import Itput.sedoutput.snu	ArcSWAT
Open SWATOuput.mdb		tput.rsvoutput.pot	Done writing files to database!
Open output std		tput.wtroutput.wql tput.swroutput.mgt	
Open input std			OK
Review SWAT Ouput			
		Run SwatCheck	
Save SWAT Simulation			
Save current simulation a	as (e.g., Sim1)	Save Simulation	
		Cancel	


FIG 6.1: Importing Swat File

After this, we had run our swat project by clicking on Run swat check

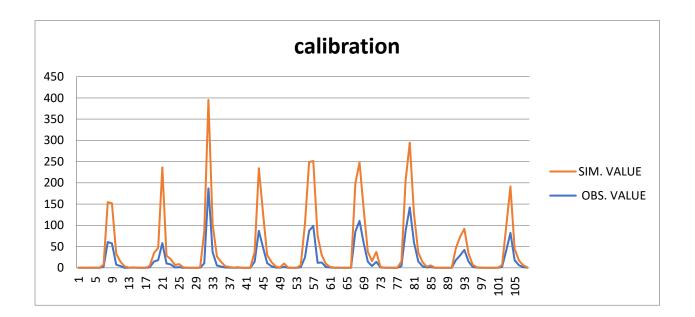
A new window was appeared then click on examine the model output

ect Location	E/lte_t/Scenarios/Default/TreinOut	Examine Model	Output
	Already ran SWAT Check once? Leave this box checked to re-read your SWAT output files SWAT Check reads your output files into a SQLite database. If you have already run this version of SWAT Check on your project, you may save time on subsequent runs by unchecking this box.	Smulaton Details	
structions		SWAT Dec 23 2016 VER 201	16/Rev 564
1 Specif	y your path in the text box above		
2. Hyou	have run this version of SWAT Check before, check the box if you wish to re-read your SWAT output Hes	Smulution Length (jes)	25
3 Press	the "Examine Model Output" button near the top right of the window	Warn up (yrs)	2
4 Ock	each tab to review related model outputs, statistics and warnings	HRUs	271
		Subbasins	33
essages and	Wanngs	Output Timestep	Monthly
eading output	Katd_	Preop Method Me	usured
nished readm	ig output std in 00h 00m 01 31s. Reading output rch ig output rch in 00h 00m 03 13s. Reading output rw ig output rw in 00h 00m 00 02s. Reading hyd out.	Watershed Area km2	43,7512
nished readm	ng hyd out in 00h 00m 00 09s. Computing SWAT_Check analysis uting analysis in 00h 00m 00 73s		
Hist	red Analysis		-
edment Wan	nings - Please Examine - Warnings - Please Examine	-17.	
Atrient Losse	is Warnings - Peese Examine mings - Pease Examine	Soil & Water	NAT
Part Source/	Inlet Warnings - Please Examine mings - Please Examine	Assessment Tool	TA
			100

Fig 6.2: Examine the model output

Fig 6.3: SWAT output showing hydrologic cycle with values

study In swat output we was getting runoff volume for our precipitation, min and max temperature value, land, for given area soil and slope map for our area


CHAPTER - 7 CALIBRATION AND VALIDATION

By using the swat app, we get simulated runoff value for each basin for given duration of year at monthly timeframe. Now we had to compared our simulated runoff value with observed value at site and check accuracy.

we had taken observed value from nautghat station on monthly basis and our station was available in subbasin 4 of our study area and compared with simulated runoff value in subbasin 4

7.1. CALIBRATION

Now we calibrate data from 1990 to 2000 with two years as the warm-up period

FIG 7.1: Graph between simulated value and observed value for calibration

55 | Page

NS value obtained was 0.58 and the Coefficient of correlation was 0.887 that good we get 88 percent accuracy

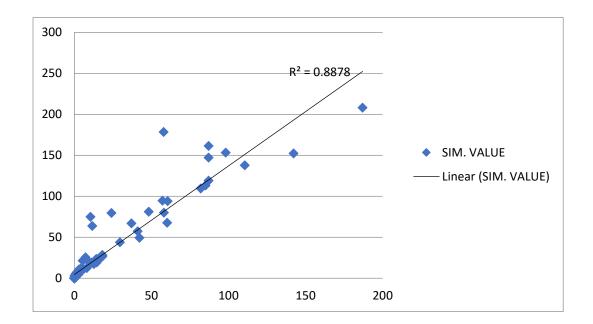
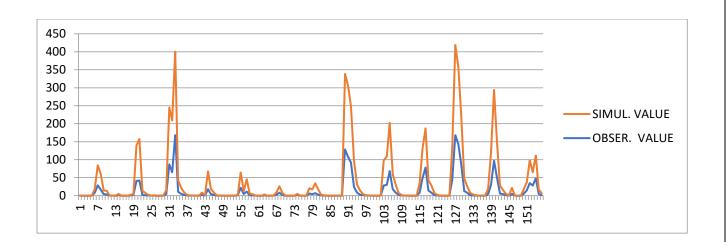



Fig 7.2: R² Graph for calibration

7.2. VALIDATION

And for validation, we had taken our data from 1999 to 2013 on monthly basis with two warm-up year

Now we plot a comparison graph between the observed and simulated result

FIG 7.3: comparison graph for simulation

NS value obtained was 0.34 and the Coefficient of correlation was 0.90 that good . We get 90 percent accuracy

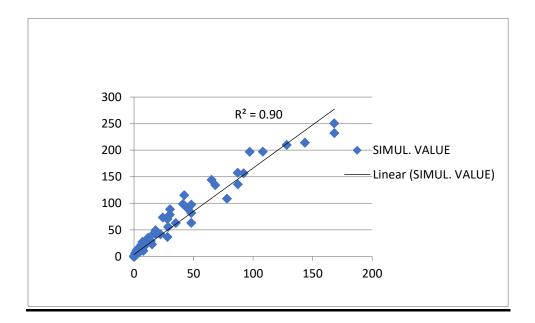


FIG 7.4: R² graph for validation

CHAPTER - 8 CONCLUSION

During our study, SWAT model have been used. Rainfall --runoff basin area 43,751.59 km². It is modeling for betwa basin had а applying helpful tool for in water management models in large scale modeling with medium and long time periods.

We had taken observed value from the nautghat station on monthly basis and our station available in sub basin 4 was and with simulated of our study area compared runoff value in sub basin 4

calibrate data from 1990 2000 with Now we to two years as warm-up period for calibration and for validation we had taken 2013 data from 1999 to monthly basis with on our two warm-up year

Our model was simulated for 24 years . This model gave good \mathbb{R}^2 satisfactory results having value 0.887 for calibration and and validation these value was 0.90. The ability of swat model better computer - generated with exposed by match of data observed data.

CHAPTER -9 SCOPE OF FUTURE WORK

- Simulation of Sediment Yield
- Comparison of evapotranspiraton result obtained from SWAT model and MODIS
- Impact of Land use Land cover change on runoff generation

CHAPTER - 10 REFERENCE

[1] Mistry, Ashmita., and Joshi, Bankim., "Rainfall Runoff Modelling of Shakkar River using SWAT Model" IJSTE - Volume 4, Issue
10, April 2018, ISSN: 2349 - 784X, 49-50

[2] Patil, Nagraj., Raikar, Rajkumar., and S, Manoj., "Runoff Modelling for Bhima River using SWAT Hydrological Model" IJERT -Volume 3, Issue 7, July 2014, ISSN: 2278-0181, 923

[3] Rohtash., Thakural, L.N., and Chaudhary, Dipti., "Runoff Modeling Using SWAT Model for Chaliyr Basin Kerla" IJSR - Volume 8, Issue 5, May 2019, ISSN: 2319 – 7064, 91-92

[4] Singh, Leelambar., and Saravanan, Subbarayan., "Simulation of monthly stream flow using SWAT model of Ib River Watershed" Keai Hydroresearch, Issue 3, Sep 2020, 95-96

[5] Rostamin, Rokshsare., and Jaleh, Aazam., "Application of SWAT Model for estimating runoff and sediment in two mountainous basins in central iran" Hydrological Science Journal - Volume 53, Issue 5, October 2008, ISSN: 0262-6667, 978-979

[6] Shi, Peng., Hou, Yuanbing., and Chen, Chao., "Application of SWAT model for hydrological modeling in xixian watershed" Journal of hydrologic engineering ASCE, Volume 18, Issue 11, November 2013, 1522-1523 [7] Bandi, Anurag., Rao, Y. R., and Kumar, Sanjeet., "Rainfall Runoff modeling in Ephemeral river basin using SWAT" Journal Of Critical Review, Volume 7, Issue 13, July 2020, ISSN: 2394-5125, 1589-1592

[8] Tibebe, Mahtsente., and Melesse, Assefa., "Rainfall - runoff relation and runoff estimation for Holetta River, Awash sub basin"
International Journal of Water resources and environmental engineering, Voume 9, Issue 5, May 2017, ISSN: 2141-6613, 102-104

[9] Kangsabanik, Subhadip., and Murmu, Sneha., "Rainfall-runoff modelling of Ajay river catchment using SWAT model" IOP Conf. Series: Earth and Environmental Science, Volume 67, April 2017, 1-5

[10] Jain, Manoj., and Sharma, Daman., "Hydrological Modeling of vamsadhara river basin, using SWAT" International Conference on Emerging Trends in Computer and Image Processing, Dec 2014, 82-83

[11] Krysanova, Valentina., and Arnold, Jeffrey., "Advances in Echo hydrological modeling With SWAT - A Review" Hydrological Science Journal, Volume 53, Issue 5, October 2008, ISSN: 0262 – 6667, 940-942

[12] Visharolia, Umang., Shrimali, Narendra., and Prakash, Indra.,
"Watershed Delineation of Purna River using Geographical Information System (GIS)" International Journal of Advance Engineering and Research Development (IJAERD), Volume 4, Issue 5, May - 2017,
ISSN: 2348 6406, 694-695 [13] Thin, SU., Ohgushi, Koichro., and Morita, Toshihiro., "Rainfall
Runoff Modelling of BAGO River in Myanmar" IAHR World
Congress, September 2019, ISSN : 2521 – 7119, 3728-3730

[14] Narasayya "impact of changing Land use - Land Cover UsingSwat Model Of Indrayani Watershed" IJSRCSEIT, Volume 5, Issue 6,November 2019, ISSN : 2456 - 3307, 6-8

[15] Ghadei, S.C., and Singh, P.K., "Hydrological modeling in OngRiver basin using SWAT Model" JOSH, Volume 14, Issue 2, 2018,2-6

[16] Karki, Mohan., and khadka, Bahadur., "Simulation of rainfall runoff of kankai river basin using swat model" IJRASET, Volume
8, Issue VIII, August 2020, ISSN: 2321-9653, 308-311

[17] Patil, Dipali., and Mhatre, Rutuja., "Hydrological modeling of Penganga Sub - basin using SWAT" IRJET, Volume 6, Issue 04, April 2019, ISSN : 2395-0056, 1807-1809

[18] George, Celine., and James, E.J., "Simulation of stream flow using SWAT tool in Meenachil basin" SJET, 2013, ISSN 2321-4358, 68-69

APPENDIX I

PRECIPITATION AND TEMPERATURE STATION LOCATIONS

📄 pcp - Notepad File Edit Format View Help	-	×
ID, NAME, LAT, LONG, ELEVATION		^
543,p229775,22.949,77.500,546.000		
545,p233775,23.261,77.500,454.000		
547,p236775,23.573,77.500,458.000		
549,p239775,23.885,77.500,510.000		
581,p220778,22.012,77.813,600.000		
591,p236778,23.573,77.813,433.000		
593,p239778,23.885,77.813,424.000		
595,p242778,24.198,77.813,427.000		
597,p245778,24.510,77.813,470.000		
635,p236781,23.573,78.125,542.000		
637,p239781,23.885,78.125,413.000		
639,p242781,24.198,78.125,369.000		
641,p245781,24.510,78.125,418.000 643,p248781,24.822,78.125,354.000		
645,p251781,25.134,78.125,411.000		
679,p236784,23.573,78.438,547.000		
681,p239784,23.885,78.438,484.000		
683,p242784,24.198,78.438,415.000		
685,p245784,24.510,78.438,465.000		
		~
Imp - Notepad	_	×
🗐 tmp - Notepad File Edit Format View Help	-	×
	_	×
File Edit Format View Help	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000		×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000	-	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000	-	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000 597,t245778,24.510,77.813,470.000 635,t236781,23.573,78.125,542.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000 597,t245778,24.510,77.813,470.000 635,t236781,23.573,78.125,542.000 637,t239781,23.885,78.125,413.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000 597,t245778,24.510,77.813,470.000 635,t236781,23.573,78.125,542.000 637,t239781,23.885,78.125,413.000 639,t242781,24.198,78.125,369.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000 635,t236781,23.573,78.125,542.000 637,t239781,23.885,78.125,413.000 639,t242781,24.198,78.125,418.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000 597,t245778,24.510,77.813,470.000 635,t236781,23.573,78.125,542.000 637,t239781,23.885,78.125,413.000 639,t242781,24.510,78.125,418.000 641,t245781,24.822,78.125,354.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000 597,t245778,24.510,77.813,470.000 635,t236781,23.573,78.125,542.000 637,t239781,23.885,78.125,413.000 639,t242781,24.198,78.125,418.000 643,t248781,24.822,78.125,354.000 645,t251781,25.134,78.125,411.000	_	×
File Edit Format View Help ID,NAME,LAT,LONG,ELEVATION 543,t229775,22.949,77.500,546.000 545,t233775,23.261,77.500,454.000 547,t236775,23.573,77.500,458.000 549,t239775,23.885,77.500,510.000 589,t233778,23.261,77.813,457.000 591,t236778,23.573,77.813,433.000 593,t239778,23.885,77.813,424.000 595,t242778,24.198,77.813,427.000 597,t245778,24.510,77.813,470.000 635,t236781,23.573,78.125,542.000 637,t239781,23.885,78.125,413.000 639,t242781,24.510,78.125,413.000 641,t245781,24.510,78.125,418.000 643,t248781,24.822,78.125,354.000 645,t251781,25.134,78.125,411.000 679,t236784,23.573,78.438,547.000	_	×
File Edit Format View Help ID, NAME, LAT, LONG, ELEVATION 543, t229775, 22.949, 77.500, 546.000 545, t233775, 23.261, 77.500, 454.000 547, t236775, 23.573, 77.500, 458.000 549, t239775, 23.885, 77.500, 510.000 589, t233778, 23.261, 77.813, 457.000 591, t236778, 23.573, 77.813, 433.000 593, t239778, 23.885, 77.813, 424.000 595, t242778, 24.198, 77.813, 427.000 635, t236781, 23.573, 78.125, 542.000 637, t239781, 23.885, 78.125, 413.000 639, t242781, 24.198, 78.125, 413.000 641, t245781, 24.510, 78.125, 418.000 643, t248781, 24.822, 78.125, 354.000 645, t251781, 25.134, 78.125, 411.000 679, t236784, 23.573, 78.438, 547.000 681, t239784, 23.885, 78.438, 484.000	_	×
File Edit Format View Help ID, NAME, LAT, LONG, ELEVATION 543, t229775, 22.949, 77.500, 546.000 545, t233775, 23.261, 77.500, 454.000 547, t236775, 23.573, 77.500, 458.000 549, t239775, 23.885, 77.500, 510.000 589, t233778, 23.261, 77.813, 457.000 591, t236778, 23.573, 77.813, 433.000 593, t239778, 23.885, 77.813, 424.000 595, t242778, 24.198, 77.813, 427.000 597, t245778, 24.510, 77.813, 470.000 635, t236781, 23.573, 78.125, 542.000 637, t239781, 23.885, 78.125, 413.000 639, t242781, 24.198, 78.125, 369.000 641, t245781, 24.510, 78.125, 418.000 643, t248781, 24.822, 78.125, 354.000 645, t251781, 25.134, 78.125, 411.000 679, t236784, 23.573, 78.438, 484.000 681, t239784, 23.885, 78.438, 484.000 683, t242784, 24.198, 78.438, 415.000		×
File Edit Format View Help ID, NAME, LAT, LONG, ELEVATION 543, t229775, 22.949, 77.500, 546.000 545, t233775, 23.261, 77.500, 454.000 547, t236775, 23.573, 77.500, 458.000 549, t239775, 23.885, 77.500, 510.000 589, t233778, 23.261, 77.813, 457.000 591, t236778, 23.573, 77.813, 433.000 593, t239778, 23.885, 77.813, 424.000 595, t242778, 24.198, 77.813, 427.000 635, t236781, 23.573, 78.125, 542.000 637, t239781, 23.885, 78.125, 413.000 639, t242781, 24.198, 78.125, 413.000 641, t245781, 24.510, 78.125, 418.000 643, t248781, 24.822, 78.125, 354.000 645, t251781, 25.134, 78.125, 411.000 679, t236784, 23.573, 78.438, 547.000 681, t239784, 23.885, 78.438, 484.000	_	×

APPENDIX II

OUTPUT TABLE FOR SUBBASIN IV

4 4 4 4 4 4 4 4 4	1992 1992 1992 1992 1992 1992 1992	1 2 3 4 5	1200 1200 1200 1200	0.4678 0.2995 0.2242	0.3917 0.2018	0.0761 0.0977
4 4 4 4 4 4	1992 1992 1992 1992	3 4	1200			0.0977
4 4 4 4 4	1992 1992 1992	4		0.2242		
4 4 4	1992 1992		1200	0.22 12	0.07978	0.14442
4	1992	E	1200	0.4151	0.2493	0.1658
4		5	1200	0.4547	0.3099	0.1448
		6	1200	0.1156	0.01052	0.10508
A	1992	7	1200	4.938	4.827	0.111
4	1992	8	1200	94.16	94.05	0.11
4	1992	9	1200	94.85	94.74	0.11
4	1992	10	1200	25.66	25.55	0.11
4	1992	11	1200	10.26	10.18	0.08
4	1992	12	1200	3.248	3.18	0.068
4	1993	1	1200	0.5546	0.483	0.0716
4	1993	2	1200	1.153	1.049	0.104
4	1993	3	1200	0.6291	0.5023	0.1268
4	1993	4	1200	0.175	0.01461	0.16039
4	1993	5	1200	0.1293	0	0.1293
4	1993	6	1200	3.167	3.048	0.119
4	1993	7	1200	20.46	20.32	0.14
4	1993	8	1200	28.69	28.56	0.13
4	1993	9	1200	178.6	178.5	0.1
4	1993	10	1200	18.77	18.66	0.11
4	1993	11	1200	12.49	12.41	0.08
4	1993	12	1200	5.56	5.49	0.07
4	1994	1	1200	7.354	7.286	0.068
4	1994	2	1200	1.191	1.098	0.093
4	1994	3	1200	0.2422	0.09322	0.14898
4	1994	4	1200	0.2138	0.05161	0.16219
4	1994	5	1200	0.1334	0.00001995	0.13338005
4	1994	6	1200	0.7476	0.6266	0.121
4	1994	7	1200	75.02	74.91	0.11
4	1994	8	1200	208.3	208.2	0.1
4	1994	9	1200	67.05	66.95	0.1
4	1994	10	1200	21.53	21.42	0.11
4	1994	11	1200	11.03	10.94	0.09
4	1994	12	1200	2.976	2.903	0.073
4	1995	1	1200	1.627	1.559	0.068
4	1995	2	1200	0.3903	0.2859	0.1044
4	1995	3	1200	1.229	1.1	0.129
4	1995	4	1200	0.2144	0.03705	0.17735
4	1995	5	1200	0.158	0.0001024	0.1578976
4	1995	6	1200	0.3104	0.1741	0.1363
4	1995	7	1200	23.61	23.49	0.12

0.1	147.3	147.4	1200	8	1995	4
0.11	81.22	81.33	1200	9	1995	4
0.11	19.24	19.35	1200	10	1995	4
0.09	10.05	10.14	1200	11	1995	4
0.068	2.614	2.682	1200	12	1995	4
0.0671	0.5421	0.6092	1200	1	1996	4
0.091	8.195	8.286	1200	2	1996	4
0.1371	0.5656	0.7027	1200	3	1996	4
0.17385	0.01255	0.1864	1200	4	1996	4
0.1373	0	0.1373	1200	5	1996	4
0.123	4.894	5.017	1200	6	1996	4
0.12	79.65	79.77	1200	7	1996	4
0.1	161.5	161.6	1200	8	1996	4
0.1	153.3	153.4	1200	9	1996	4
0.09	63.77	63.86	1200	10	1996	4
0.09	17.31	17.4	1200	11	1996	4
0.07	6.922	6.992	1200	12	1996	4
0.071	1.509	1.58	1200	1	1997	4
0.1066	0.4663	0.5729	1200	2	1997	4
0.1417	0.2655	0.4072	1200	3	1997	4
0.1691	0.1546	0.3237	1200	4	1997	4
0.18795	0.05035	0.2383	1200	5	1997	4
0.1547	0.2846	0.4393	1200	6	1997	4
0.1	113.2	113.3	1200	7	1997	4
0.1	137.8	137.9	1200	8	1997	4
0.1	80	80.1	1200	9	1997	4
0.1	23.37	23.47	1200	10	1997	4
0.08	11.69	11.77	1200	11	1997	4
0.04	23.26	23.3	1200	12	1997	4
0.062	1.281	1.343	1200	1	1998	4
0.0891	0.4117	0.5008	1200	2	1998	4
0.1248	0.4014	0.5262	1200	3	1998	4
0.1716	0.1118	0.2834	1200	4	1998	4
0.1679276	0.0008724	0.1688	1200	5	1998	4
0.14	10.98	11.12	1200	6	1998	4
0.1	119.2	119.3	1200	7	1998	4
0.2	152.4	152.6	1200	8	1998	4
0.11	67.81	67.92	1200	9	1998	4
0.11	21.44	21.55	1200	10	1998	4
0.08	9.627	9.707	1200	11	1998	4
0.072	2.02	2.092	1200	12	1998	4
0.057	3.729	3.786	1200	1	1999	4
0.0781	0.2538	0.3319	1200	2	1999	4
0.14877	0.08993	0.2387	1200	3	1999	4
0.17356	0.00344	0.177	1200	4	1999	4

0.1314	0	0.1314	1200	5	1999	4
0.12628	0.07482	0.2011	1200	6	1999	4
0.13	27.9	28.03	1200	7	1999	4
0.12	43.91	44.03	1200	8	1999	4
0.11	49.32	49.43	1200	9	1999	4
0.11	19.32	19.43	1200	10	1999	4
0.091	4.705	4.796	1200	11	1999	4
0.0732	0.8231	0.8963	1200	12	1999	4
0.0786	0.1618	0.2404	1200	1	2000	4
0.09912	0.06498	0.1641	1200	2	2000	4
0.121678	0.001422	0.1231	1200	3	2000	4
0.09164	0	0.09164	1200	4	2000	4
0.07383	0.00113	0.07496	1200	5	2000	4
0.111	4.491	4.602	1200	6	2000	4
0.12	57.38	57.5	1200	7	2000	4
0.1	109.5	109.6	1200	8	2000	4
0.13	26.54	26.67	1200	9	2000	4
0.14	11.34	11.48	1200	10	2000	4
0.099	4.489	4.588	1200	11	2000	4
0.0793	0.7463	0.8256	1200	12	2000	4
0.0804	0.3164	0.3968	1200	1	2001	4
0.11529	0.09391	0.2092	1200	2	2001	4
0.13802	0.01358	0.1516	1200	3	2001	4
0.1127	0	0.1127	1200	4	2001	4
0.0837	0	0.0837	1200	5	2001	4
0.11	10.7	10.81	1200	6	2001	4
0.11	55.68	55.79	1200	7	2001	4
0.12	44.73	44.85	1200	8	2001	4
0.13	10.61	10.74	1200	9	2001	4
0.12	10.39	10.51	1200	10	2001	4
0.0934	0.657	0.7504	1200	11	2001	4
0.0776	0.1523	0.2299	1200	12	2001	4
0.07213	0.08747	0.1596	1200	1	2002	4
0.101	2.963	3.064	1200	2	2002	4
0.0954937	0.0003063	0.0958	1200	3	2002	4
0.06993	0	0.06993	1200	4	2002	4
0.0516	0	0.0516	1200	5	2002	4
0.054	1.549	1.603	1200	6	2002	4
0.138	3.35	3.488	1200	7	2002	4
0.1	98.87	98.97	1200	8	2002	4
0.1	115.4	115.5	1200	9	2002	4
0.12	11.45	11.57	1200	10	2002	4
0.091	6.301	6.392	1200	11	2002	4
0.075	1.231	1.306	1200	12	2002	4
0.0739	0.3028	0.3767	1200	1	2003	4

0.0969	0.8836	0.9805	1200	2	2003	4
0.13379	0.02241	0.1562	1200	3	2003	4
0.1139	0	0.1139	1200	4	2003	4
0.08465	0	0.08465	1200	5	2003	4
0.1	11.08	11.18	1200	6	2003	4
0.1	157.7	157.8	1200	7	2003	4
0.1	144.4	144.5	1200	8	2003	4
0	232.3	232.3	1200	9	2003	4
0.11	31.49	31.6	1200	10	2003	4
0.09	16.79	16.88	1200	11	2003	4
0.07	6.539	6.609	1200	12	2003	4
0.067	1.161	1.228	1200	1	2004	4
0.1029	0.4473	0.5502	1200	2	2004	4
0.1592	0.245	0.4042	1200	3	2004	4
0.1877	0.1126	0.3003	1200	4	2004	4
0.19062	0.03228	0.2229	1200	5	2004	4
0.15	6.544	6.694	1200	6	2004	4
0.1356	0.9694	1.105	1200	7	2004	4
0.11	49.53	49.64	1200	8	2004	4
0.13	14.89	15.02	1200	9	2004	4
0.103	6.375	6.478	1200	10	2004	4
0.089	0.9077	0.9967	1200	11	2004	4
0.0737	0.1146	0.1883	1200	12	2004	4
0.0707	0.1352	0.2059	1200	1	2005	4
0.08828	0.01232	0.1006	1200	2	2005	4
0.068	0	0.068	1200	3	2005	4
0.04914	0	0.04914	1200	4	2005	4
0.03658	0	0.03658	1200	5	2005	4
0.062	1.837	1.899	1200	6	2005	4
0.11	42.05	42.16	1200	7	2005	4
0.132	8.091	8.223	1200	8	2005	4
0.1	34.4	34.5	1200	9	2005	4
0.11	4.382	4.492	1200	10	2005	4
0.092	2.925	3.017	1200	11	2005	4
0.0719	0.3968	0.4687	1200	12	2005	4
0.08108	0.06262	0.1437	1200	1	2006	4
0.106375	0.003125	0.1095	1200	2	2006	4
0.105	2.27	2.375	1200	3	2006	4
0.06812	0	0.06812	1200	4	2006	4
0.04883	0	0.04883	1200	5	2006	4
0.0539	0.3365	0.3904	1200	6	2006	4
0.11	6.626	6.736	1200	7	2006	4
0.11	18.14	18.25	1200	8	2006	4
0.119	5.312	5.431	1200	9	2006	4
0.094	0.1204	0.2144	1200	10	2006	4

0.053059	0.001051	0.05411	1200	11	2006	4
0.03748	0	0.03748	1200	12	2006	4
0.02702	0	0.02702	1200	1	2007	4
0.057	3.428	3.485	1200	2	2007	4
0.02514	0	0.02514	1200	3	2007	4
0.01659	0	0.01659	1200	4	2007	4
0.01171	0	0.01171	1200	5	2007	4
0.08	14.48	14.56	1200	6	2007	4
0.11	13.2	13.31	1200	7	2007	4
0.11	27.56	27.67	1200	8	2007	4
0.11	14.3	14.41	1200	9	2007	4
0.117	1.345	1.462	1200	10	2007	4
0.096	0.7704	0.8664	1200	11	2007	4
0.0733	0.145	0.2183	1200	12	2007	4
0.07721	0.04829	0.1255	1200	1	2008	4
0.086787	0.007733	0.09452	1200	2	2008	4
0.0711	0	0.0711	1200	3	2008	4
0.05291	0	0.05291	1200	4	2008	4
0.054695	0.002165	0.05686	1200	5	2008	4
0.1	210.3	210.4	1200	6	2008	4
0.1	197.3	197.4	1200	7	2008	4
0.1	156.8	156.9	1200	8	2008	4
0.11	73.61	73.72	1200	9	2008	4
0.11	22.48	22.59	1200	10	2008	4
0.09	12.2	12.29	1200	11	2008	4
0.073	2.92	2.993	1200	12	2008	4
0.0736	0.7848	0.8584	1200	1	2009	4
0.1143	0.3673	0.4816	1200	2	2009	4
0.152	0.1972	0.3492	1200	3	2009	4
0.18212	0.07718	0.2593	1200	4	2009	4
0.187152	0.005248	0.1924	1200	5	2009	4
0.1443	0.2914	0.4357	1200	6	2009	4
0.13	70.61	70.74	1200	7	2009	4
0.1	78.6	78.7	1200	8	2009	4
0.1	134.4	134.5	1200	9	2009	4
0.1	41.89	41.99	1200	10	2009	4
0.08	22.02	22.1	1200	11	2009	4
0.063	5.155	5.218	1200	12	2009	4
0.0679	0.9088	0.9767	1200	1	2010	4
0.0988	0.3109	0.4097	1200	2	2010	4
0.1496	0.1079	0.2575	1200	3	2010	4
0.18031	0.01099	0.1913	1200	4	2010	4
0.1418635	0.0001365	0.142	1200	5	2010	4
0.11243	0.001303	0.142	1200	6	2010	4

4	2010	7	1200	26	25.88	0.12
4	2010	8	1200	82.04	81.93	0.11
4	2010	9	1200	109	108.9	0.1
4	2010	10	1200	29.27	29.17	0.1
4	2010	11	1200	19.75	19.68	0.07
4	2010	12	1200	5.616	5.552	0.064
4	2011	1	1200	1.15	1.084	0.066
4	2011	2	1200	0.4458	0.351	0.0948
4	2011	3	1200	0.2827	0.1378	0.1449
4	2011	4	1200	0.2099	0.02696	0.18294
4	2011	5	1200	0.1558	0.0001039	0.1556961
4	2011	6	1200	90.28	90.15	0.13
4	2011	7	1200	250.9	250.8	0.1
4	2011	8	1200	214.5	214.4	0.1
4	2011	9	1200	136.2	136.1	0.1
4	2011	10	1200	35.66	35.54	0.12
4	2011	11	1200	18.56	18.47	0.09
4	2011	12	1200	6.985	6.914	0.071
4	2012	1	1200	2.282	2.221	0.061
4	2012	2	1200	0.6666	0.5677	0.0989
4	2012	3	1200	0.4907	0.3424	0.1483
4	2012	4	1200	0.3642	0.1803	0.1839
4	2012	5	1200	0.2762	0.07617	0.20003
4	2012	6	1200	15	14.82	0.18
4	2012	7	1200	88.97	88.85	0.12
4	2012	8	1200	197.1	197	0.1
4	2012	9	1200	97.89	97.79	0.1
4	2012	10	1200	22.01	21.9	0.11
4	2012	11	1200	11.61	11.52	0.09
4	2012	12	1200	3.534	3.46	0.074
4	2013	1	1200	0.7055	0.6308	0.0747
4	2013	2	1200	16.76	16.67	0.09
4	2013	3	1200	0.3506	0.2155	0.1351
4	2013	4	1200	0.2305	0.05412	0.17638
4	2013	5	1200	0.1694	0.0006181	0.1687819
4	2013	6	1200	12.61	12.48	0.13
4	2013	7	1200	22.88	22.76	0.12
4	2013	8	1200	63.17	63.07	0.1
4	2013	9	1200	37.01	36.9	0.11
4	2013	10	1200	63.26	63.17	0.09
4	2013	11	1200	12.31	12.23	0.08
4	2013	12	1200	5.743	5.675	0.068