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Abstract 

The COVID-19 crisis has brought significant changes in our lives. Social distancing has 

become a norm. Masks are part of our daily life. We cannot leave out homes without 

wearing masks. These masks have become like an integral organ for survival. But these 

masks have caused problems with our computer models for face recognition. Face 

recognition is the sub-field of computer science in which the computer matches an input 

face to a corresponding set of output images to deduce the identity of the face provided 

as input to the system. But with the masks, the face is covered from nose till neck. Only 

the eyes and forehead region is visible with a mask on the face. This creates a problem 

with existing techniques available in the domain of face recognition using computers. The 

computer models achieving accuracy over 95% for a face drops to a very low level when 

the same face is given as input with a mask on it. The predictions made by these models 

are no better than random predictions made by untrained models. 

In this project, the performance of different state-of-the-art models has been studied. A 

modified version of the existing dataset is utilized for training and testing these models. 

The modification is done by augmenting the masks on faces in the chosen part of the 

VGGface dataset. For faster training and testing, the concept of transfer learning plays a 

big role. The pre-trained models are being adapted to the modified dataset. Apart from 

this, a new model is also introduced which is somewhat a hybrid of the best performing 

models. This new model architecture is defined and then trained and tested on the 

modified dataset. The new model is thrown against the state-of-the-art models. The aim 

of developing this new model is to improve over the existing baselines present. Based on 

the closed observations, the research questions are answered. 
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CHAPTER 1 

INTRODUCTION 

1.1  General 

Neural networks and Artificial Intelligence have played a great role in influencing our 

day-to-day activities. AI has shown its influence on various domains such as computer 

vision, biomedical research, etc. AI models are being embedded into appliances ranging 

from large-scale appliances such as Smart TV, Refrigerators, etc. to sophisticated 

computing devices such as mobile phones. In the year 2020, the SARS-CoV-2 alias 

COVID-19 has brought the development to the halt. Day-to-day activities needed 

contactless working in the COVID-19 crisis. AI showed its potential for helping in these 

day-to-day activities.  Robots controlled by AI neural network models are helping doctors 

to monitor and treat patients in a contactless manner. AI neural networks are also being 

utilized by scientists to run simulations for the spread of infection and diseases.  These 

are also helping the people at the helpdesk by assisting the customers. AI also helped the 

government to track the infection and make predictions so that preventive measures can 

be taken at the right moment. 

AI is slowly changing the conventional ways of computing. In the conventional 

programming paradigm, the problem is divided into sub-problems and then these sub-

problems are assigned computing resources (programmers finding pattern and coding) for 

generating solutions. But, in the case of AI, an enormous volume of data of a problem is 

feed to a neural network that deduces patterns based on inputs to predict output with high 

accuracy and efficiency. In the AI field, deep learning is the most influential sub-field of 

machine learning which itself is a sub-domain of AI (as shown in Fig. 1). 

 

Fig. 1: AI and Deep Learning 

Artificial 
Intelligence

Machine 
Learning

Deep 
Learning
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Deep learning is being used to solve a variety of problems in various domains such as 

image pattern analysis. Face recognition is one such domain. Face recognition is currently 

being the most popular whether it be a traffic challan system or personal device 

authentication. Face recognition techniques vary from simple Machine learning 

techniques such as PCA, SVM to complex neural networks. In AI, machine learning such 

as SVM, decision trees, etc. involves input, feature extraction, and classification for 

outputs. But in deep learning, feature extraction and classification are combined for 

predicting output (as shown in Fig. 2). 

 

Fig. 2: Machine learning vs Deep Learning 

In this project, we are dealing with face recognition using neural networks. Due to the 

COVID-19 crisis, face masks have become mandatory for humans to protect themselves 

but these face masks have an unseen side-effect on the existing face recognition system. 

The majority of a face recognition system requires the complete face for identification of 

an individual and face masks have covered the majority of facial features that act as 

unique identifiers for the existing face recognition systems. 

1.2  Problem Formulation 

When visiting banks, individuals need to be identified to issue the amount against the 

cheque. If the account holder itself has come, he/she need to show his/her face so that 

his/her identity can be verified but due to COVID-19, masks have become part of the 

daily routine. For such identification, one needs to put away his/her mask exposing 

him/her to the risk of getting the virus. To avoid this problem, a need is found to develop 

a face recognition technology that can accommodate masks. This face recognition 
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technique must utilize the limited facial features available to it and based on that 

individuals must be identified. Based on this problem following questions has been 

identified: 

1. What is the current scenario of face recognition with the masks? 

2. What are the existing models available for deep learning? 

3. Which datasets are available for face recognition particularly those involving 

masks? 

4. What is the accuracy achieved by a face recognition system with masks? 

5. How can the achieved accuracy be retained while reducing the time to upgrade 

the existing systems? 

1.3  Objectives of the Project 

In this project, the following objectives need to be achieved: 

1. Generating a custom dataset for training and validating the deep learning model. 

2. Training and validating the performance of deep learning models. 

3. Comparing the performance of different deep learning models available. 

4. Establish a baseline for improvement of the deep learning models in the future. 

5. Develop a new model that combines the capabilities of top-performers based on 

the baseline developed. 

6. Comparing the performance of the developed model with other models. 
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CHAPTER 2 

LITERATURE REVIEW 

In this section, detailed information related to the variety of research papers concentrating 

on face recognition using different methodologies, challenges present in face recognition, 

and which techniques can perform better, etc. has been listed. This section also provides 

insight into the deep learning models currently being used in face recognition. 

Furthermore, the effect of occlusion specifically the mask on face recognition and 

available methods to tackle these problems have also been discussed in this section. This 

section provides a brief insight into the previous works done in the field of face 

recognition. 

 Neo, H.F. at al. (2010) [1]: This paper presents the idea of occlusions on the face 

recognition techniques. This paper aims to develop a framework for partial face 

recognition, i.e., faces occluded by objects like sunglasses, face masks, etc. This 

proposes a framework utilizing PCA/NMF/LNMF/SFNMF for feature extraction and 

then using an L2 classifier for genuine/ imposter identification. This framework was 

tested on approx. 2000 images of 100 subjects with each having 20 images. This 

framework was able to achieve 95.17% accuracy by using SFNMF for the bottom 

region of the face, i.e., faces with occlusion on the eyes region. 

 Su, Y. et al. (2015) [2]: This paper presents the occlusion detection method by fusing 

the raw images with residual images using an SVM classifier. This method utilizes 

NMF to generate reconstructed images and residual images which are then divided 

into the upper and lower region. The generated regions are then fed to PCA for feature 

extraction and dimensionality reduction. The extracted features are fed to SVM at 

two-level. At the first level extracted features are fed to the SVM and then the result 

is fed to SVM at the second level which detects the occlusion on faces in each 

component. The experiment utilized a dataset of 960 normal faces, 720 images of 

faces with sunglasses, and 720 images of faces with a scarf. The proposed method 

was able to achieve 91.9% accuracy on images with sunglass but accuracy dropped 

to 79.4% with scarfs. 

 He, E. J. et al. (2016) [3]: This paper presented the ideas discussed above but using 

three larger datasets with one consisting of over 4000 images of 126 subjects. It 
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proposes the use of MCF and for face recognition. This methodology achieved higher 

accuracy against the observed datasets but required prior knowledge of the occluded 

region of the face for achieving higher accuracy. This prior knowledge provides 

compensation for the presence of occlusion on the face. 

 Lin, S. et al. (2016) [4]: This paper proposes the use of a deep learning model for 

partially occluded faces in the videos. The proposed method utilized a 5 layer each 

consisting of convolution and sub-sampling operations. The dataset consisted of 1140 

images with 240 positive instanced and 960 negative instances. To reduce the 

overfitting problem due to an imbalanced dataset, the training instances were 

increased to twice using horizontal reflections. The experiment is used for the binary 

classification problem, i.e., to detect masked faces in the dataset. If a masked face is 

available then it is detected in the video stream. The proposed methodology achieved 

an f1-score of 0.803 with recall at 0.925 and precision at 0.71 which are reported 

higher than other techniques under consideration such as Adaboost. This paper 

presented the idea that deep learning models can achieve high performance compared 

to the traditional machine learning methods such as SVM, Adaboost, etc. 

 Wang, M. et al. (2017) [5]: Earlier papers discussed using a deep learning model for 

occlusion detection on the face whereas this paper proposes the use of a deep learning 

model for face recognition. This paper doesn’t consider occlusion for faces but 

discusses the performance of deep learning models on faces compared to traditional 

techniques while also proposing an own deep learning model for face recognition. 

The proposed method achieved the highest recognition rate of 96.6 whereas 

traditional methods only achieved a recognition rate of 83.5 (PCA), 89.7 (LBP), and 

92.3 (SAE). Thus, this paper opens the approach of deep learning towards face 

recognition. The proposed MaskNet has advantages of powerful generalization ability 

and brilliant performance combined with the classification advantage of the softmax 

regression model. This model also reduces the cost of training. 

 Coskun, M. et al. (2017) [6]: This research document provides details of an 

experimental evaluation of CNN based face recognition system. The noticeable 

qualities of the proposed algorithm are that for the initial and final layers of 

convolution, batch normalization is utilized which allows the neural network to 

achieve higher accuracy. Apart from this, the fully connected layer is connected to a 

softmax classifier. Georgia Tech Face database, composing 15 images each for 50 
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individuals, has been utilized as the testing dataset for the proposed model. The model 

results have shown significant recognition accuracy when compared to the literature 

studies presented in the paper. This paper shows how optimization can increase the 

achievable accuracy of CNN architecture and the potential of CNN in the field of face 

recognition. 

 Wan, W., & Chen, J. (2017) [7]: This research document proposed the idea of using 

deep learning methods for face recognition on occluded faces. The paper proposed a 

trainable module called MaskNet which optimized the existing CNN architecture. 

MaskNet provided a clear distinction between occluded areas and non-occluded areas 

of the face. MaskNet improved the accuracy of ResNet by 1.4% to 3.0%. A fixed-size 

image is provided as input to MaskNet, followed by a low convolutional network. 

Then a regression layer is fully connected to the last convolution output in MaskNet. 

For facial recognition, occluded areas corrupt the training process, so MaskNet 

assigns more weight to non-occluded areas thus, decreasing the importance of the 

occluded area in the training and therefore, improves the existing CNN architectures. 

 Guo, G., & Zhang, N. (2018) [8]: This paper presents the various challenges of deep 

learning in the face recognition field particularly in an unrestricted environment (non-

ideal environment). The paper investigates the roles of quality on the performance of 

deep learning models. Face images with different qualities were assembled. The 

quality of images varied into three categories: low, medium, and high. The assembled 

images are then fetched to state-of-the-art deep learning techniques to investigate the 

role of quality and its impact on performance on those learning techniques. Two 

publicly available dataset of 21,230 images (High: 1,543 – Medium 13,941 – Low: 

6,196) and 106,863 images (out of these 20,895 images consisting 10089 high, 10444 

medium and 362 low quality were selected) are used. VGGFace, FaceNet, and other 

CNN-based architectures have been observed and found that recognition rate is 

greatly influenced by quality. For high-quality images, the recognition rate is on the 

higher side compared to low and medium-quality images. 

 Elmahmudi, A., & Ugail, H. (2018) [9]: This paper presented the idea of determining 

the performance of deep learning methods when partial faces are used, i.e., either 

nose, eyes, or their combination or top-half or ¾ face, etc. The paper validates that a 

low recognition rate is achieved when utilizing partial face parts such as cheek, 

forehead, and mouth whereas higher accuracy rates can be achieved using left or right 
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½ of the face, top half. A 100% accuracy rate is possible for the ¾ of the face. The 

paper utilizes VGG-Face architecture in combination with SVM and Cosine 

Similarity classifier for conducting the experiments to validate the hypothesis. This 

paper acts as a baseline for state-of-the-art models to improve upon and thus providing 

direction for further research in this field of face recognition using deep learning 

architectures. 

 Qu, X. et al. (2018) [10]: This research paper promises a fast face recognition 

approach using parallelization and networking for faster training of the deep neural 

networks. The proposed method separates the understanding process of CNN into two 

parts: network training on the PC and network implementation on the FPGA. After 

software simulation and board measurement, the speed of the face recognition system 

was 400 FPS with a 99.25% recognition rate along with good vigor under various 

light environments. 

 Tomodan, E. R., & Caleanu, C. D. (2018) [11]: This research manuscript provided a 

comparative study between the traditional machine learning approach of the bag of 

features and deep CNN. The basic difference between these two is that in deep CNN, 

the features are automatically extracted from low-level to high-level whereas, in the 

bag of features, these features need to be hand-tuned. The manuscript presents the 

problems in CNN and providing research directions. It provided details on how 

datasets size, background variations, and images per class influence the learning 

process of deep neural networks. 

 Wu, G. et al. (2019) [12]: This proposed paper implements the InceptionResnetV1 

model for occlusion-based face recognition. The dataset utilized for this model has 

about 30% occlusion to the faces. This dataset consists of 4,234 images and the model 

was able to 98.6% recognition rate. The model is robust to the occlusions while 

retaining a high recognition rate for practical applications. 

 Ejaz, M. S. et al. (2019) [13]: This paper performs analysis of face recognition using 

the PCA method for both masked faces and non-masked faces. The non-masked face 

has a better recognition rate in PCA based face recognition system whereas, for a 

person who is wearing a mask, a poor recognition rate is observed. Extracting features 

from a masked face is less than a non-masked face which causes a reduction in 
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features ultimately degrading the recognition rate. The paper concludes that PCA is 

good for normal face recognition but not for masked face recognition. 

 Khan, S. et al. (2019) [14]: This research paper presents the use of transfer learning 

on deep learning models for face recognition. The paper proposes the modification of 

existing layers of pre-trained models according to the dataset on which face 

recognition is required. This process of modification is known as transfer learning. 

The transfer learning is performed on pre-trained AlexNet. This paper only studies 

face recognition without occlusions. The transferred model was able to achieve an 

accuracy of 97.95%. 

 Ejaz, M. S., & Islam, M. R. (2019) [15]: This paper proposes the use of FaceNet CNN 

in combination with SVM. The proposed framework utilized the MTCNN to detect 

the face in the dataset and then use the extracted faces as input to the FaceNet to create 

face embedding (face vector). The generated face vector is used by SVM to recognize 

the face under test with the existing vectors. This model proposed face verification, 

i.e., one-to-one mapping of the face. One-to-one mapping means the test face is cross-

matched a single identity using L2 normalization by SVM. 

 Bhuiyan, M. R. et al (2020) [16]: This paper proposed the use of YOLOv3 architecture 

for detecting masks on the faces, i.e., a person is wearing a mask or not. The model 

achieved a 17 FPS average for detection on video stream and a precision score of 

0.96. 

 Adjabi, I. et al (2020) [17]: This review paper provided insight into the face 

recognition methodologies. The document presented the techniques utilized in the 

past for face recognition, the present approaches, and trends in face recognition, and 

the future challenges that are needed to be tackled in the future. 

 Cabani, A. et al (2020) [18]: This paper proposed a dataset of correctly and incorrectly 

masked faces. The dataset was created while considering the COVID-19 crisis. Apart 

from the dataset, it also provided the details of generating a similar dataset with a 

different set of images. The proposed dataset has been generated using the FFHQ 

dataset available online by NVIDIA. The proposed dataset consisted of 137,016 good-

quality images. The dataset is proposed to act as a benchmark for the models that are 

utilized for detecting the masked faces specifically whether the masks are correctly 

worn or not by a person. 
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 Li, Y. et al (2021) [19]: This paper proposed an optimization module (CBAM) to crop 

the masked faces for better recognition. The CBAM module is created to focus on the 

areas surrounding the eye region. This helped to achieve better performance for 

masked face recognition compared to the other attention-based models. An optimal 

value of 0.7L is utilized for cropping the faces and this allows CBAM to focus on 

eyes and their surrounding regions. An increase of 17.427% and 18.507% has been 

achieved using this approach. 

Out of all the paper reviewed in this section following concluding points are noted: 

1. Initial papers were limited to traditional machine learning techniques. As the deep 

learning techniques evolved, their practicality for face recognition has become 

apparent. No analysis has been performed among different deep learning techniques 

for occlusion-based face recognition. 

2. Most of the papers use occlusion up to 60-70% in the dataset for analyzing the 

techniques. Only one paper studied face recognition with just individual parts such as 

eyes, mouth, etc. but the accuracy achieved was quite low. 

3. The dataset size in most cases is limited to 5-20 images per subject and a size varying 

from 100 images to 4000 images. The dataset size is quite low if considered from the 

deep learning point of view. So a need for a larger dataset is required for extensive 

training and testing of the deep learning models. 

4. Apart from the small dataset, one paper presented the use of optimization by cropping 

for better results. This proposed approach can be utilized for generating better models. 

5. Transfer learning is studied from the surface only in deep learning models utilized for 

face recognition. Transfer learning provides a way to use pre-trained models and re-

training pre-trained models require relatively less computational power than training 

a deep learning model from scratch. Generally, 10 epochs are more than enough for 

transfer learning.  
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CHAPTER 3 

THEORETICAL CONCEPTS 

This section presents the basic theoretical concepts required to understand the key 

processes and working of the experiment studied in this project. This section familiarizes 

the concept of deep learning, transfer learning, and pre-trained models available. It also 

induces the idea of working on different kinds of layers utilized by a variety of pre-trained 

models. The concepts introduced in this section help to understand the proposed 

architecture for masked face recognition. 

3.1  Face Recognition 

The process of cross-matching a face against one or more faces is described as face 

recognition. The face recognition task can be explained as the problem of a supervised 

learning task that uses predictive modeling. A model is trained on a set of inputs and 

outputs in a predictive modeling task. The model tries to learn the relation between inputs 

and outputs and is required to give predictions / expected output for a given input. 

The 2011 book titled “Handbook of Face Recognition” explains the following categories 

of face recognition task (as shown in Fig. 3): 

• Face Verification: A one-to-one matching of face against an identified face, i.e., a 

person's face under test is matched against a particular face available in the records 

present. Example: A photo id verification. 

• Face Identification: A one-to-many matching of face against all the identified faces, 

i.e., face under test is matched against every known face to identify the actual identity. 

Example: Who is the person? 

 

Fig. 3: Face Verification vs Face Identification 
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“A face recognition system is expected to identify faces present in images and 

videos automatically. It can operate in either or both of two modes: (1) face 

verification (or authentication), and (2) face identification (or recognition).” 

– (Li and Jain, 2011) [20] 

In this project, we are dealing with the face identification task. This task is selected since 

the literature review revealed that masked face recognition paper consisted of two 

categories for classification namely, masked or not-masked. Furthermore, the masked 

category was further divided into correctly worn or incorrectly worn in some cases. The 

challenge of face identification was not explored in such cases. 

3.2  Basic Concepts of Convolutional Neural Network (CNN) 

A Convolutional Neural Network (CNN) is an algorithm in deep learning taking images 

as a form of input, allocating some weights/ the significance factor to the different 

features/aspects present in the image, and then use the assigned factor value to 

differentiate the various aspects from each other. CNN pre-computation is on the far 

lower side compared to other classification learning techniques. In classical techniques, 

the feature filtering methods are manually provided, i.e., manually constructed whereas, 

in CNN, CNN itself learns those filters using enough training, and this is termed as an 

epoch. 

 

Fig. 4: A Typical CNN Network 

Basically, an image is a collection of pixels. CNN can easily detect the spatial and 

temporal relations of the pixels present in the image by applying relevant filters. CNN 

performs better fitting of the images by reduction of parameters and reusability of 

weights. CNN converts the image into a much smaller form which is easier to process 
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without losing critical features as shown in Fig. 4. This leads to high prediction accuracy 

with the added advantage of scalability. 

Just like neural networks, CNN consist of a set of neurons that memorizes features and 

biases as weights and filters. Instead of learning each pixel, each neuron receives a 

collection of pixels as inputs (typically convolved pixels), takes a weighted sum over 

them, uses the resultant output as input to the activation function, and then generates 

corresponding output. The whole network has a loss function to adjust the weight 

according to the training epoch. 

3.3  The Architecture of CNN: 

A typical CNN has the following layers: 

• Convolutional layers (Acting as feature maps for the model) 

• ReLU layers (Optimizes the feature map using ReLU activation function) 

• Pooling layers (Groups together the features map to reduce the size of the input) 

• A Fully connected layer (Predicts the output based on the input and feature map) 

These layers are placed in the stacked form to form a CNN. The arrangement can be like 

this: 

“ Input → Convolution → ReLU → Convolution → ReLU → Pooling → ReLU 

→ Convolution → ReLU → Pooling → Convolution → ReLU → Pooling → 

Fully Connected → Output ” 

3.3.1 Layers of CNN: 

1. Convolutional Layer 

A convolutional layer in a CNN has defined feature maps which are utilized to 

recognize the patterns and shapes in the input in a stratified/ranked manner. 

A convolution operation is a simple multiplication 

operation performed using a set of weights and an 

input. The 2-D array of weights is known as a filter or 

a kernel. This filter has a smaller size compared to the 

input data. A dot product multiplication is performed 

between the set of weights (filter) and the input set. 
Fig. 5: Simple Convolution 

Operation 
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This filter multiplication is applied symmetrically over the input image as shown 

in Fig. 5. 

CNN pinpoints the most useful features of an input image using the pattern 

recognition of the numbers. CNN piles up these patterns in form of a heap which 

progressively builds the complex feature maps as shown in Fig. 6. 

 

Fig. 6: Feature Hierarchy in CNN 

Fig. 7 is representing the multiplication operation performed by the Convolution 

layer on different channels(dimensions such as RGB) of the image to generate a 

convoluted matrix. 

 

Fig. 7: Typical Convolution operation on MxNx3 image matrix with 3x3x3 Kernel 
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2. ReLU (Rectified Linear Unit) layer 

ReLU layer is an on/off switch in CNN (shown in Fig. 8). The output (feature 

map) of the convolution layer is moved through the ReLU. Typically, if the value 

is negative, it is changed to 0 else remains unchanged. The convolution layer 

processes the input linearly but this layer introduces non-linearity in the feature 

map. This ReLU layer corresponds to the activation function in a simple neural 

network. ReLU is the most popular function. Other functions such as tanh, 

sigmoid are also available for use. 

 

Fig. 8: ReLU Layer 

3. Pooling Layer 

Feature map (output of convolutional layer + ReLU layer) keeps note of the 

specific position of features in the input. This leads to a problem in case the input 

is altered, i.e., rotated, cropped, or shifted. 

To overcome this problem, a downsampling technique is applied. In 

downsampling, the input is downsized to lower resolution input but still 

maintaining a high amount of fundamental information. This technique is applied 

by the pooling layer. The pooling layer is added after the ReLU operation has 

taken place. 

The pooling layer executes symmetrically over each feature map generated to 

create a new set of feature maps. 

Pooling consists of choosing a pooling operation (average or maximum) to be 

applied on feature maps. The result of the pooling operation will be downsized 

version of feature maps generated from the convolution layer. 

Pooling operation has two types of function (shown in Fig. 9): 
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• Average Pooling: For each subset of the feature map, the average value is 

calculated. 

• Max Pooling: For each subset of the feature map, the maximum value is 

calculated. 

 

Fig. 9: Types of Pooling 

Typically, max pooling is the most commonly used operation. 

4. Fully Connected Layer 

In simple words, the process of joining the features with each other to deduce 

some result is the fully connected layer. The feature map obtained from the earlier 

layer is flattened to vector, i.e., changed into a 1-D vector. The fully connected 

layer (corresponds to classical neural network) takes the flattened vector is as 

input. This layer then captures the high-level links between these complex features 

obtained and deduce some results. This layer returns a 1-D feature vector. This 

obtained vector typically represents the output of the CNN (shown in Fig. 10). 

 

Fig. 10:  Fully Connected Layer connected after a sequence of convolution, ReLU, and max pool layers 
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Using feed-forward network and back-propagation, the model is trained for a 

series of iterations (epochs). This back-propagation helps the model to change its 

weights and improve the distinguishing ability of the model between features 

using the Softmax classification technique. 

The functioning of CNN layers in the union is as follows: 

1. An image is provided as input to the first layer. 

2. The input is fed to the convolution layer which generates a feature matrix/map. 

3. The output of the convolution layer is fetched to the ReLU function to obtain a 

feature map to intensify the irregularities. 

4. Pooling operation is applied to every batch of feature matrix by the pooling layer. 

5. The pooled map is flattened into a long 1-D vector. 

6. The vector is fed to the fully connected neural network which provides the 

probability of the classes. 

7. This process is repeated for several epochs along with back-propagation for 

generating a high-quality model. 

3.4 Concept of Transfer Learning in the field of Deep Learning 

In transfer learning, pre-trained models are utilized to train new models. Existing 

knowledge (weights, feature matrix, etc.) from already trained models are utilized for 

training (as shown in Fig. 11).  

 

Fig. 11: Traditional ML vs Transfer Learning 
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Deep learning prototypes are instances of inductive learning techniques where the goal is 

to deduce relations from training data, i.e., try to infer mapping using the examples 

provided as input during the training of the model. 

To deduce these relations, the techniques work on a set of assumptions termed inductive 

bias. These biases are influenced by hypothesis, search strategy, and various other factors. 

The inductive bias is the one that impacts the learning of a task in a domain, i.e., what 

should be learned, how it should be learned from given task data of a domain. 

For applying the concept of transfer learning to deep learning, inductive transfer 

techniques are utilized which use the original target task biases to guide the model for the 

new target task. The details of the architecture of different deep learning models are 

publicly accessible as pre-trained models architecture. These pre-trained models are 

utilized for transfer learning and this form of transfer learning is termed deep transfer 

learning. 

Deep transfer learning can exist in two forms of implementation (either Freezing or Fine-

Tuning): 

1. In the freezing implementation, the input layer and final fully connected layer are 

adjusted according to the destination dataset and freeze the hidden layers of the 

network (as shown in Fig. 12). 

 

Fig. 12: Transfer learning via freezing 
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2. In the fine-tuning implementation, adjustment of the input layer and final fully 

connected layer according to the destination dataset as well as training of the 

hidden layers of the network for finer adjustments is done (as shown in Fig. 13). 

 

Fig. 13: Transfer learning via fine-tuning 

Choosing the strategy for transfer learning depends on the type of task and the domain on 

which transfer learning is required. The process for choosing the strategy for transfer 

learning is shown in Fig. 14. 

 

Fig. 14: Freeze or Fine-Tune 

For the field of computer vision, some of the popular pre-trained models available are 

VGG16, DenseNet121, ResNet-50, InceptionV3, and Xception. 
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CHAPTER 4 

PROPOSED MODEL FOR FACE RECOGNITION 

This section presents the proposed model, i.e., RGGNet that is being utilized in this 

project. This section familiarizes the architecture of RGGNet. It also helps to understand 

the relation of the RGGNet with the ResNet50V2 and VGG16. It presents the details of 

the layer and the position at which the layers are introduced.  

4.1 RGGNet Architecture 

RGGNet architecture is based on the architecture of ResNet50V2 along with the features 

of VGG16 along the shortcut paths. RGGNet model is composed of three blocks (CONV, 

IDENTITY*, and POOL block) clubbed together. Each block has two paths: The main 

path and the shortcut path. The main path represents standard convolution, ReLU, and 

pooling operations whereas the shortcut path represents the unique attribute that differs 

each of these blocks. The detailed representation of these blocks is as follows: 

1. CONV Block 

A standard CONV block is utilized in the RGGNet architecture. A standard 

CONV block (as shown in Fig. 15) represents the case when the input has a 

different shape compared to the output activation. CONV block is utilized to 

resize the dimensions of the image. 

 

Fig. 15: CONV Block 

2. IDENTITY* Block 

A standard identity block represents the case when the input function has the same 

dimensionality as the output function. A standard Identity block has two paths: 
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Main Path and the skip connection path. The skip connection directly connects 

the input to the block with the output of the main path. 

But in this case, this identity block has been modified. Instead of skip connection, 

we have utilized a shortcut path with a single convolution layer as shown in Fig. 

16. This allows additional feature extraction in the skip connection. The input to 

the identity block is processed on the main path that helps in retrieving complex 

features whereas the shortcut path utilizes the Conv2D layer to deduce simpler 

features. These simple and complex features together help to understand the image 

properties better. 

 

Fig. 16: IDENTITY* Block 

3. POOL Block 

A standard POOL block is utilized to gather the most prominent features from the 

input image. A POOL block (as shown in Fig. 17) performs the max pooling 

operation on the image. 

 

Fig. 17: POOL Block 
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By combining these three blocks, the shortcut path in the RGGNet has layers in the 
same manner as that of VGG16 thus giving the higher capabilities compared to the 
standard architectures. The combined architecture is shown in fig. 18.  

 
Fig. 18: RGGNet Architecture 

The proposed RGGNet architecture is designed for face identification with more than 
43 million parameters as shown below: 

Table I: RGGNet Parameters 

Parameters ResNet50V2 VGG16 RGGNet 

Total params 26,360,385 15,180,673 43,269,953 

Trainable params 2,795,585 465,985 43,224,513 

Non-trainable params 23,564,800 14,714,688 45,440 
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CHAPTER 5 

EXPERIMENTAL SETUP 

5.1  Dataset 

In the experiment, a modified version of the vggface2 dataset1 is utilized. The 

description of the vggface2 dataset is shown in Fig. 19. 

 

Fig. 19: VGGFace2 Description 

Pre-processing of part of the dataset is done in which masks are augmented on the 

face of individuals and then the faces are cropped. The pre-processing of the dataset 

is taking place in four steps: 

a. Find Face Landmarks 

Python library “face-alignment” is utilized to generate coordinates of features of 

the face and then use those obtained features for extracting mask coordinates (Fig. 

20). 

 

Fig. 20: Extracting facial landmarks using “face-alignment” python library 

 

                                                 
1 Original dataset available at https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/ 
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b. Triangulation Process 

Using the existing masks database (approx. 250 masks with different orientations 

and styles), masks are extracted from the generated features using the 

triangulation process (Fig. 21). The extracted masks are then saved into JSON 

format. 

 

Fig. 21: Triangulation Process to extract face mask 

c. Mask Matching (Augmentation) 

Using the extracted masks, the VGGFace2 dataset is modified. The extracted 

masks are added to the faces available in the dataset by finding the facial 

landmarks and estimating the face pose for augmenting the mask (Fig. 22). 

 

Fig. 22: Augmenting the extracted mask on a new face 

d. Masked Face Cropping (Optimization) 

The masked images are cropped to extract the eyes and forehead region by using the 

optimization (cropping) ratio of 0.7L [18] as shown in Fig. 23. 
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Fig. 23: Area of interest for deep learning models 

Finally, the dataset consists of 22,647 belonging to 65 classes out of which 18,092 

images belonging to the training dataset and 4,555 images belonging to the validation 

dataset. 

5.2  Deep Learning Models under Observation 

In this project, pre-trained deep learning models are used using transfer learning for 

masked face recognition as shown in Fig. 24. 

 

Fig. 24: Processes input to the deep neural network 

Following is the list of pre-trained deep learning models under observation along with 

their description: 

Table II: Pre-trained Models Description2 

Model Size Top-1 

Accuracy 

Top-5 

Accuracy 

Parameters Depth 

ResNet50V2 98 MB 0.760 0.930 25,613,800 - 

VGG16 528 MB 0.713 0.901 138,357,544 23 

InceptionV3 92 MB 0.779 0.937 23,851,784 159 

Xception 88 MB 0.790 0.945 22,910,480 126 

                                                 
2 Available at https://keras.io/api/applications/ 
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InceptionResnetV2 215 MB 0.803 0.953 55,873,736 572 

MobileNetV2 14 MB 0.713 0.901 3,538,984 88 

DenseNet201 80 MB 0.773 0.936 20,242,984 201 

The top-1 and top-5 accuracy signifies the ImageNet validation dataset performance 

of the model. 

Depth represents the depth of the model which includes activation layers, batch 

normalization layers, etc. 

Table III: Hyper-parameters and validation strategy for DL models 

Validation Strategy Hold-out validation in ratio 8:2 for training 

and testing 

Pre-Training Dataset ImageNet 

Batch Size 32 

Optimizer Adam Optimizer 

Loss Function Categorical Cross Entropy 

Maximum number of Training epochs 25 

Early Stopping Patience 3 

Early Stopping Criteria Validation Accuracy 

 
5.3  Metrics for performance 

The following metrics are used for analyzing the performance of the models that are 

calculated using confusion matrix (as shown in Fig. 25) generated on the dataset: 

 
Fig. 25: Confusion Matrix 
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1. Accuracy 

Accuracy is the ratio of correct outcomes to the total outcomes of the experiment. 

Accuracy is calculated using the following formula: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

                                          (4.1) 

Accuracy represents the correctness of predictions made by the model. 

2. Top k Categorical Accuracy 

It represents the percentage of records for which the target predictions are in the 

top K predictions. 

For a record: 

a. The predictions for an instance are ranked in the descending order of 

probability values. 

b. If the rank of the prediction is less than or equal to K for the actual class, 

it is considered accurate. 

Here for the deep learning models, k is chosen as 5. 

3. AUC (Area Under ROC Curve) 

AUC represents the worthiness of model predictions (Fig. 26). It is the degree of 

how superior a model is capable to discern between positive and negative 

occurrences. 

 

Fig. 26: AUC and ROC 

1.0 value in AUC means model prediction is 100% accurate and 0.5 means model 

prediction is worthless for unknown instances prediction. 

4. Precision 

Precision is the ratio of correct positive outcomes to the total positive outcomes 

for a class. Precision is calculated using the following formula: 
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𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

                                         (4.2) 

Precision signifies how many positive outcomes are actually correct for a class. 

5. Recall 

Recall or sensitivity is defined as the ratio of correctly classified positive instances 

to the total number of actual positive instances. The recall is calculated using the 

following formula: 

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

      (4.3) 

Recall signifies the positive predictions that are classified incorrectly. 

The following figure (Fig. 27) represents the confusion matrix along with the metrics 

calculations: 

 

Fig. 27: Confusion Matrix and different Metrics 
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CHAPTER 6 

RESULTS AND DISCUSSION ON RESULTS 

Q What is the performance of different deep learning models on masked faces? 

The performance of different models is shown in the following table: 

Table IV: Performance Metrics for different models 

Model Accuracy 
Top-5 

Accuracy 
AUC Precision Recall 

RGGNet 

(Proposed Model) 
0.608 0.841 0.953 0.777 0.519 

ResNet50V2 0.5060 0.7737 0.7704 0.5073 0.5060 

VGG16 0.4648 0.7396 0.9146 0.6940 0.3495 

InceptionV3 0.3574 0.6571 0.7767 0.3850 0.3460 

Xception 0.3627 0.6428 0.7256 0.3713 0.3603 

InceptionResnetV2 0.4360 0.7135 0.8009 0.4617 0.4250 

MobileNetV2 0.4004 0.6777 0.7264 0.4029 0.3991 

DenseNet201 0.4665 0.7396 0.7846 0.4768 0.4641 

 

Q What is the highest accuracy achieved by different deep learning models on masked 

faces? 

Out of all the pre-trained models under evaluation, ResNet50V2 achieved the highest 

accuracy (50.6%) as well as the highest top-5 accuracy (77.37%). Overall, RGGNet 

achieved the highest accuracy. 



29 
 

The accuracy plot for the different model is shown in the following figure: 

 

Fig. 28: Accuracy of different models 

The top-5 accuracy plot for the different model is shown in the following figure: 

 

Fig. 29: Top-5 Accuracy of different models 
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The AUC plot for the different model is shown in the following figure: 

 

Fig. 30: AUC of different models 

The precision plot for the different model is shown in the following figure: 

 

Fig. 31: Precision of different models 
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The recall plot for the different model is shown in the following figure: 

 

Fig. 32: Recall of different models 

All these plots represent the variation of performance for different models. 

Q What are observations made for different deep learning models on masked face 

recognition? 

The following observations are made for pre-trained models: 

• ResNet50V2 outperforms every other model in terms of accuracy and top-5 

accuracy while also maintaining high precision and recall. 

• In terms of precision, VGG16 has the highest value, i.e., VGG16 has shown a very 

low number of false predictions of positive instances. The AUC value of VGG16 

is very high (>0.9), thus stating it is very much capable of differentiating between 

positive and negative instances or in this case, identify the person more easily 

from the crowd. 

• DenseNet201 has shown accuracy and top-5 accuracy at the same level as VGG16 

but it lacks in terms of performance on other performance metrics. 

• ResNet50V2 is found to be more capable of masked face recognition compared 

to VGG16 when all the performance factors are taken into consideration as it is 
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performing highest in 3 out 5 performance criteria and 2nd highest in one of the 

remaining criteria. 

The following observations are made for the proposed models: 

• RggNet has been advantages of both the ResNet50V2 and the VGG16 model. 

• RggNet outperforms every other model in every performance criteria. 

• The top-5 accuracy of RggNet is more than 0.8 which means that the actual 

identity of the person under observation is in the top-5 predictions made by our 

model. 

• In terms of precision, RggNet has a value greater than 0.75, i.e., RggNet has a 

very low false prediction rate over the positive instances. 

• The AUC of 0.95 for RggNet throws the light that the prediction made by the 

model is not just some random prediction but the model has identified the features 

to predict the identity of the person. 

Q Perform an investigation of whether the performance of the models differs 

significantly or not. 

Statistical tests are used to determine whether the performance of the models differ 

significantly or not: 

Applying Statistical test: 

Step 1: Hypothesis formation 

The null hypothesis (H0) and alternative hypothesis (Ha) are as follows: 

H0: There is no statistical difference between the performance of the 

models 

Ha: There is a statistically significant difference between the performance 

of the models. 

Step 2: Selecting the statistical test 

Since an evaluation of the difference between the performance of different 

methods is to be evaluated, the Friedman test is selected. 

Step 3: Applying test on performance results and calculating p-value. 
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χ2 = 12
𝑛𝑛𝑛𝑛(𝑛𝑛+1)

∑ 𝑅𝑅𝑖𝑖2𝑛𝑛
𝑖𝑖=1 −  3𝑃𝑃(𝑘𝑘 + 1)     (6.1) 

where Ri is the individual rank of ith iteration, n is no of 

data instances and k is no. of groups 

Degree of Freedom (𝐷𝐷𝐷𝐷𝐷𝐷) = 𝑘𝑘 − 1           (6.2) 

Table V: Computation of Ranks for Friedman Test 

 
ResNet

50V2 

VG

G16 

Incepti

onV3 

Xcep

tion 

InceptionRe

snetV2 

Mobile

NetV2 

DenseN

et201 

RGG

Net 

Accuracy 2 4 8 7 5 6 3 1 

Top-5 

Accuracy 
2 3.5 7 8 5 6 3.5 1 

AUC 6 2 5 8 3 7 4 1 

Precision 3 2 7 8 5 6 4 1 

Recall 2 7 8 6 4 5 3 1 

Rank 

total 
15 18.5 35 37 22 30 17.5 5 

Average 

Rank 
3 3.7 7 7.4 4.4 6 3.5 1 

On applying the Friedman test, Friedman's chi-square value (χ2) is found 

to be 27.615752. 

Degree of Freedom (DOF) = 7 

Based on the calculated χ2 value, the p-value is 0.000258. 

Step 4: Defining the level of significance 

As the calculated p-values <0.01, the results are significant at significance 

level (α) = 0.01. 

Step 5: Deriving Conclusion 

Since the calculated χ2 value is greater than the tabulated value, the null 

hypothesis is rejected. Thus, it is concluded that the performance of the 

models differs significantly. 

Applying a Post-adhoc test to determine whether there is a significant difference between 

RGGNet and other models: 
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Step 1: Hypothesis formation 

The null hypothesis (H0) and alternative hypothesis (Ha) are as follows: 

H01: The performance of the RGGNet model and ResNet50V2 model do 

not differ significantly. 

Ha1: The performance of the RGGNet model and ResNet50V2 model 

differ significantly. 

H02: The performance of the RGGNet model and VGG16 model do not 

differ significantly. 

Ha2: The performance of the RGGNet model and VGG16 model differ 

significantly. 

H03: The performance of the RGGNet model and InceptionV3 model do 

not differ significantly. 

Ha3: The performance of the RGGNet model and InceptionV3 model differ 

significantly. 

H04: The performance of the RGGNet model and Xception model do not 

differ significantly. 

Ha4: The performance of the RGGNet model and Xception model differ 

significantly. 

H05: The performance of the RGGNet model and InceptionResnetV2 

model do not differ significantly. 

Ha5: The performance of the RGGNet model and InceptionResnetV2 

model differ significantly. 

H06: The performance of the RGGNet model and MobileNetV2 model do 

not differ significantly. 

Ha6: The performance of the RGGNet model and MobileNetV2 model 

differ significantly. 

H07: The performance of the RGGNet model and DenseNet201 model do 

not differ significantly. 
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Ha7: The performance of the RGGNet model and DenseNet201 model 

differ significantly. 

Step 2: Selecting the statistical test 

Since the evaluation of the difference between the performance of 

different methods (with equal sample size) using the Friedman test leads 

to rejection of the null hypothesis and pairwise comparison is required, the 

Nemenyi test is selected. 

Step 3: Applying test and calculating CD. 

𝐶𝐶𝐷𝐷 = 𝑞𝑞α�
𝑛𝑛(𝑛𝑛+1)
6𝑛𝑛

     (6.3) 

The value of qα for eight subjects at α = 0.01 is 3.526. The calculated CD 

value is found to be 5.462455711. 

The following table is computed using average ranks calculated during the 

Friedman test: 

Table VI: Computation of Differences for Nemenyi Test 

Pair 
Pair 

Difference 
CD Difference 

RGGNet – ResNet50V2 2 2 < 5.46 

RGGNet – VGG16 2.7 2.7 < 5.46 

RGGNet – InceptionV3 6 6 > 5.46 

RGGNet – Xception 6.4 6.4 > 5.46 

RGGNet – InceptionResnetV2 3.4 3.4 < 5.46 

RGGNet – MobileNetV2 5 5 < 5.46 

RGGNet – DenseNet201 2.5 2.5 < 5.46 
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Step 4: Defining the level of significance 

The rank difference of pairs (RGGNet – InceptionV3 and RGGNet – 

Xception) is higher than the computed critical distance at α =0.01. The 

rank difference for other pairs is not significant at α =0.01. 

Step 5: Deriving Conclusion 

As the rank difference of pairs (RGGNet – InceptionV3 and RGGNet – 

Xception) is higher than the computed critical distance, it can be 

concluded that the RGGNet model significantly outperforms the 

InceptionV3 model and Xception model. The difference is not significant 

for the other techniques. All the null hypotheses except H03 and H04 cannot 

be rejected. 
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

The following conclusion has been made: 

• Existing pre-trained deep learning models have been studied and compared in this 

study. 

• It has been found that ResNet50 has the most potential to solve the problem of masked 

faces compared to any other pre-trained deep learning model available. 

• The proposed architecture that is derived from ResNet has shown better accuracy and 

other performance parameters compared to all the pre-trained models under 

observation. 

• Along with this, the performance of different deep learning models has been studied.  

• A baseline has been generated for the state-of-the-art pre-trained models to work 

upon. 

The future scope of this project is as follows: 

• Optimization of the existing deep learning models for performance improvement can 

be performed. 

• The proposed model architecture can be enhanced further by the use of layer 

optimization in future iterations. 

• Currently, transfer learning is utilized for faster training. Fine-tuning of layers can be 

performed, i.e., the further scope of fine-tuning can be studied for these models in the 

future. 

• The results can act as a baseline for developing a better deep learning model for the 

masked face recognition problem without using the actual face knowledge. 

• The proposed model architecture can be utilized in different domains of deep learning 

for further determining the capabilities of the model. 
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APPENDICES 

Appendix 1: Training and Testing Results of Different Models 

This appendix contains the training and testing results in detail that are reported in 

Chapter 5. The various models for which plots are included in this appendix are as 

follows: 

• ResNet50V2 (Fig. 33) 

• VGG16 (Fig. 34) 

• InceptionV3 (Fig. 35) 

• Xception (Fig. 36) 

• InceptionResNetV2 (Fig. 37) 

• MobileNetV2 (Fig. 38) 

• DenseNet (Fig. 39) 

• RGGNet (Fig. 40)

 

 

Fig. 33: ResNet50V2 Plots 
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Fig. 34: VGG16 Plots 

 

Fig. 35: InceptionV3 Plots 
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Fig. 36: Xception Plots 

 

Fig. 37: InceptionResNetV2 
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Fig. 38: MobileNetV2 Plots 

 

Fig. 39: DenseNet201 Plots 
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Fig. 40: RGGNet Plots 

Appendix 2: Python Code 

This appendix contains the python code divided into sections that can be used to replicate 

the project. 

A 2.1 Importing Libraries 

from glob import glob as gl 
import keras as ks 
from keras import metrics as met 
from keras.preprocessing.image import ImageDataGenerator as IDG 
from keras.callbacks import EarlyStopping as ES 
from keras.applications.resnet_v2 import ResNet50V2 as RNETV2 
from keras.applications.vgg16 import VGG16 as VGGNET 
from keras.applications.inception_v3 import InceptionV3 as INCV3NET 
from keras.applications.xception import Xception as XCPNET 
from keras.applications.inception_resnet_v2 import InceptionResNetV2 as 
INCRNETV2 
from keras.applications.mobilenet_v2 import MobileNetV2 as MOBNETV2 
from keras.applications.densenet import DenseNet201 as DENSENET 
from keras.layers import Input as inp, Lambda as lbd, Dense as den, 
Flatten as flt 
from keras.models import Model as MdlObject 
import pickle as pkl 
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A 2.2 Defining Constants 

# re-size all the images to this 
img_size = [224, 224] 
bat_size = 32 
mode = 'categorical' 
#init constants 
training_path = '/content/test_large' 
validating_path = '/content/test_small' 
EpochCount = 25 
early_stop = ES( 
    monitor='val_accuracy',  
    patience=3,  
    min_delta=0.001 
) 
 
preweights='imagenet' 
permit = False 
lossfunc = 'categorical_crossentropy' 
optimfunc = 'adam' 
actfunc = 'softmax' 

A 2.3 Defining Training and Testing Dataset 

#Defining training and testing dataset 
train_gen = IDG(rescale = 1./255, shear_range = 0.2,  
                zoom_range = 0.2, horizontal_flip = True) 
 
test_gen = IDG(rescale = 1./255) 
 
train_dataset = train_gen.flow_from_directory('/content/test_large', 
                                                 target_size = img_size, 
                                                 batch_size = bat_size, 
                                                 class_mode = mode) 
 
test_dataset = test_gen.flow_from_directory('/content/test_small', 
                                            target_size = img_size, 
                                            batch_size = bat_size, 
                                            class_mode = mode) 

A 2.4 Defining functions for RGGNet 

from keras import layers 
from keras.layers import Input as Inp, ZeroPadding2D as Zpd 
from keras.layers import Conv2D as Con, MaxPool2D as MXPool 
from keras.layers import BatchNormalization as BatNor, Activation as Act 
from keras.layers import Add 
 
def blockfunc(input_a, filterlen, kernels=3, stridesize=1, 
           short_con=False, block_name=None): 
    #Generate Residual Block 
    axis_no = 3 
     
    preactivation = BatNor(axis=axis_no, epsilon=1.001e-5, 
                                       name=block_name + 
'_preact_batchnormal')(input_a) 
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    preactivation = Act('relu', name=block_name + 
'_preact_reluactivation')(preactivation) 
 
    if short_con is True: 
        shortcut_path = Con(4 * filterlen, 1, strides=stridesize, 
                                 name=block_name + '_0con')(preactivation) 
    else: 
        shortcut_path = MXPool(1, strides=stridesize)(input_a) if 
stridesize > 1 else Con(4 * filterlen, 1, strides=stridesize, 
                                 name=block_name + '_0con')(input_a) 
 
    input_a = Con(filterlen, 1, strides=1, use_bias=False, 
                      name=block_name + '_1con')(preactivation) 
    input_a = BatNor(axis=axis_no, epsilon=1.001e-5, 
                                  name=block_name + 
'_1batchnormal')(input_a) 
    input_a = Act('relu', name=block_name + '_1reluactivation')(input_a) 
 
    input_a = Zpd(padding=((1, 1), (1, 1)), name=block_name + 
'_2padding')(input_a) 
    input_a = Con(filterlen, kernels, strides=stridesize, 
                      use_bias=False, name=block_name + '_2con')(input_a) 
    input_a = BatNor(axis=axis_no, epsilon=1.001e-5, 
                                  name=block_name + 
'_2batchnormal')(input_a) 
    input_a = Act('relu', name=block_name + '_2reluactivation')(input_a) 
 
    input_a = Con(4 * filterlen, 1, name=block_name + '_3con')(input_a) 
    input_a = layers.Add(name=block_name + '_output')([shortcut_path, 
input_a]) 
    return input_a 
 
def stacking_func(input_a, filterlen, blocklen, strfunc=2, 
blocks_name=None): 
    #Generate Stack of Repeated Blocks 
    input_a = blockfunc(input_a, filterlen, short_con=True, 
block_name=blocks_name + '_block1') 
    for x in range(2, blocklen): 
        input_a = blockfunc(input_a, filterlen, block_name=blocks_name + 
'_block' + str(x)) 
    input_a = blockfunc(input_a, filterlen, stridesize=strfunc, 
block_name=blocks_name + '_block' + str(blocklen)) 
    return input_a 
 
def rggnet_module(layer_input_value,  
                    use_bias = True,  
                    weights = 'None',  
                    topmost_layer_include = False, 
                    pooltype=None, 
                    **kwargs): 
   
  layer_img_input = layer_input_value 
   
  axis_no = 3 
 
  input_a = Zpd(padding=((3, 3), (3, 3)), 
name='con1_padding')(layer_img_input) 
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  input_a = Con(64, 7, strides=2, use_bias=use_bias, 
name='con1_convolution')(input_a) 
 
  input_a = Zpd(padding=((1, 1), (1, 1)), 
name='MaxPooling1_padding')(input_a) 
  input_a = MXPool(3, strides=2, name='MXPooling1_pooling')(input_a) 
 
  input_a = stacking_func(input_a, 64, 3, blocks_name='con2') 
  input_a = stacking_func(input_a, 128, 4, blocks_name='con3') 
  input_a = stacking_func(input_a, 256, 6, blocks_name='con4') 
  input_a = stacking_func(input_a, 512, 3, strfunc=1, blocks_name='con5') 
 
  input_a = BatNor(axis=axis_no, epsilon=1.001e-5, 
name='post_batchnormalizing')(input_a) 
  input_a = Act('relu', name='post_reluactivation')(input_a) 
 
  if topmost_layer_include: 
    input_a = 
layers.GlobalAveragePooling2D(name='average_pooling')(input_a) 
    input_a = layers.Dense(1000, activation='softmax', 
name='probs')(input_a) 
  else: 
    if pooltype == 'max': 
      input_a = layers.GlobalMaxPooling2D(name='maximum_pooling')(input_a) 
    elif pooltype == 'avg': 
      input_a = 
layers.GlobalAveragePooling2D(name='average_pooling')(input_a) 
   
  input_layer = layer_img_input 
 
  # Generate model object 
  modelobj = MdlObject(input_layer,input_a, name='My_RNet') 
   
  return modelobj 

 

A 2.5 Defining, Training, Testing and Saving Various Models 

A 2.5.1 ResNet50V2 Model 

# Preprocess layer added to the face of ResNet50V2 
rnet = RNETV2(input_shape=img_size + [3], 
              include_top=permit, 
              weights=preweights) 
 
# To keep existing weights 
for fold in rnet.layers: 
  fold.trainable = permit 
  
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(rnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
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#Defining Resnet50V2 model for 25 epochs 
rnetmod = MdlObject(inputs=rnet.input, outputs=inferlayer) 
 
# Summary of the model 
rnetmod.summary() 
 
# Defining loss and optimization function 
rnetmod.compile( 
  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
RNetFit = rnetmod.fit_generator( 
  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset), 
  callbacks=[early_stop] 
) 
 
model_namevalue='ResNet50V2__25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='ResNet50V2_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(RNetFit.history, file_pi) 

A 2.5.2 VGG16 Model 

# Preprocess layer added to the face of VGG16 
vggnet = VGGNET(input_shape=img_size + [3], 
              include_top=permit, 
              weights=preweights) 
 
# To keep existing weights 
for fold in vggnet.layers: 
  fold.trainable = permit 
  
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(vggnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
 
#Defining VGG16 model for 25 epochs 
vggnetmod = MdlObject(inputs=vggnet.input, outputs=inferlayer) 
 
# Summary of the model 
vggnetmod.summary() 
 
# Defining loss and optimization function 
vggnetmod.compile( 
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  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
VGGNetFit = vggnetmod.fit_generator( 
  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset), 
  callbacks=[early_stop] 
) 
 
model_namevalue='VGG16_25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='VGG16_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(VGGNetFit.history, file_pi) 

A 2.5.3 InceptionV3 Model 

# Preprocess layer added to the face of InceptionV3 
incnet = INCV3NET(input_shape=img_size + [3], 
              include_top=permit, 
              weights=preweights) 
 
# To keep existing weights 
for fold in incnet.layers: 
  fold.trainable = permit 
  
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(incnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
 
#Defining InceptionV3 model for 25 epochs 
incnetmod = MdlObject(inputs=incnet.input, outputs=inferlayer) 
 
# Summary of the model 
incnetmod.summary() 
 
# Defining loss and optimization function 
incnetmod.compile( 
  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
IncNetFit = incnetmod.fit_generator( 
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  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset), 
  callbacks=[early_stop] 
) 
 
model_namevalue='InceptionV3_25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='InceptionV3_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(IncNetFit.history, file_pi) 

A 2.5.4 Xception Model 

# Preprocess layer added to the face of Xception 
xpnet = XCPNET(input_shape=img_size + [3], 
              include_top=permit, 
              weights=preweights) 
 
# To keep existing weights 
for fold in xpnet.layers: 
  fold.trainable = permit 
  
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(xpnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
 
#Defining Xception model for 25 epochs 
xpnetmod = MdlObject(inputs=xpnet.input, outputs=inferlayer) 
 
# Summary of the model 
xpnetmod.summary() 
 
# Defining loss and optimization function 
xpnetmod.compile( 
  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
XpNetFit = xpnetmod.fit_generator( 
  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset), 
  callbacks=[early_stop] 
) 
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model_namevalue='Xception_25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='Xception_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(XpNetFit.history, file_pi) 

A 2.5.5 InceptionResNetV2 Model 

# Preprocess layer added to the face of InceptionResNetV2 
incrnet = INCRNETV2(input_shape=img_size + [3], 
              include_top=permit, 
              weights=preweights) 
 
# To keep existing weights 
for fold in incrnet.layers: 
  fold.trainable = permit 
  
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(incrnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
 
#Defining InceptionResNetV2 model for 25 epochs 
incrnetmod = MdlObject(inputs=incrnet.input, outputs=inferlayer) 
 
# Summary of the model 
incrnetmod.summary() 
 
# Defining loss and optimization function 
incrnetmod.compile( 
  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
IncRNetFit = incrnetmod.fit_generator( 
  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset), 
  callbacks=[early_stop] 
) 
 
model_namevalue='InceptionResNetV2_25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='InceptionResNetV2_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(IncRNetFit.history, file_pi) 

 



50 
 

A 2.5.6 MobileNetV2 Model 

# Preprocess layer added to the face of MobileNetV2 
mnet = MOBNETV2(input_shape=img_size + [3], 
              include_top=permit, 
              weights=preweights) 
 
# To keep existing weights 
for fold in mnet.layers: 
  fold.trainable = permit 
  
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(mnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
 
#Defining MobileNetV2 model for 25 epochs 
mnetmod = MdlObject(inputs=mnet.input, outputs=inferlayer) 
 
# Summary of the model 
mnetmod.summary() 
 
# Defining loss and optimization function 
mnetmod.compile( 
  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
MNetFit = mnetmod.fit_generator( 
  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset), 
  callbacks=[early_stop] 
) 
 
model_namevalue='MobileNetV2_25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='MobileNetV2_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(MNetFit.history, file_pi) 

A 2.5.7 DenseNet201 Model 

# Preprocess layer added to the face of DenseNet201 
dnet = DENSENET(input_shape=img_size + [3], 
              include_top=permit, 
              weights=preweights) 
 
# To keep existing weights 
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for fold in dnet.layers: 
  fold.trainable = permit 
  
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(dnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
 
#Defining DenseNet201 model for 25 epochs 
dnetmod = MdlObject(inputs=dnet.input, outputs=inferlayer) 
 
# Summary of the model 
dnetmod.summary() 
 
# Defining loss and optimization function 
dnetmod.compile( 
  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
DNetFit = dnetmod.fit_generator( 
  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset), 
  callbacks=[early_stop] 
) 
 
model_namevalue='DenseNet201_25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='DenseNet201_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(DNetFit.history, file_pi) 

A 2.5.8 RGGNet Model 

# Generating RGGNet Model Object 
 
visible = Input(shape=(224, 224, 3)) 
# Adding RGGNet model module 
rggnet = rggnet_module(visible, 64) 
 
# To find number of classes in the dataset  
imgfolders = gl('/content/test_large/*') 
 
#Custom Layers 
a = flt()(rggnet.output) 
inferlayer = den(len(imgfolders), activation=actfunc)(a) 
 
#Defining RGGNet model for 25 epochs 
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rggnetmod = MdlObject(inputs=rggnet.input, outputs=inferlayer) 
 
# Summary of the model 
rggnetmod.summary() 
 
# Defining loss and optimization function 
rggnetmod.compile( 
  loss=lossfunc, 
  optimizer=optimfunc, 
  metrics=['accuracy','top_k_categorical_accuracy', 
           met.AUC(), met.Precision(), met.Recall()] 
) 
 
#Performing training and testing for 25 epoches 
RGGNetFit = rggnetmod.fit_generator( 
  train_dataset, 
  validation_data=test_dataset, 
  epochs=EpochCount, 
  steps_per_epoch=len(train_dataset), 
  validation_steps=len(test_dataset) 
) 
 
model_namevalue='RGGNet_25epoch_model.h5' 
model.save(model_namevalue) 
 
model_history='RGGNet_25epoch_history.h5' 
with open(model_history, 'wb') as file_pi: 
        pkl.dump(RGGNetFit.history, file_pi) 
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