
“Masked Face Recognition Using Deep Learning”

A PROJECT REPORT

SUBMITTED IN THE PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

OF

MASTER OF TECHNOLOGY
IN

SOFTWARE ENGINEERING

Submitted By

Rachit Mann

(2K19/SWE/09)

Under the supervision of

Dr. Manoj Kumar
Associate Professor

Department of Computer Science & Engineering
Delhi Technological University, Delhi

DEPARTMENT OF SOFTWARE ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

JUNE, 2021

I

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CANDIDATE’S DECLARATION

I, Rachit Mann, 2K19/SWE/09 student of M.Tech (SWE), hereby declare that the project

entitled “Masked Face Recognition Using Deep Learning” which is submitted by me

to the Department of Software Engineering, Delhi Technological University, Shahbad

Daulatpur, Delhi in partial fulfilment of the requirement for the award of the degree of

Master of Technology in Software Engineering, has not been previously formed the basis

for any fulfilment of the requirement in any degree or other similar title or recognition.

This report is an authentic record of my work carried out during my degree under the

guidance of Dr. Manoj Kumar.

 Rachit Mann Place: Delhi

Date: 9th June, 2021 (2K19/SWE/09)

II

DEPARTMENT OF SOFTWARE ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the project entitled “Masked Face Recognition Using Deep

Learning” which is submitted by Rachit Mann (2K19/SWE/09) to the Department of

Software Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi in

partial fulfilment of the requirement for the award of the degree of Master of Technology

in Software Engineering, is a record of the project work carried out by the student under

my supervision. To the best of my knowledge this work has not been submitted in part or

full for any degree or diploma to this university or elsewhere.

Place: Delhi Dr. Manoj Kumar

Date: SUPERVISOR

 Associate Professor

 Dept. of Computer Science & Engineering

III

ACKNOWLEDGEMENT

I am very thankful to Dr. Manoj Kumar (Associate Professor, Department of Computer

Science) and all the faculty members of the Department of Computer Science and

Software Engineering at DTU. They all provided us with immense support and guidance

for the project.

I would also like to express my gratitude to the University for providing us with the

laboratories, infrastructure, testing facilities, and environment which allowed us to work

without any obstructions.

I would also like to appreciate the support provided to us by our lab assistants, seniors,

and our peer group who aided us with all the knowledge they had regarding various topics.

 Rachit Mann

(2K19/SWE/09)

IV

Abstract

The COVID-19 crisis has brought significant changes in our lives. Social distancing has

become a norm. Masks are part of our daily life. We cannot leave out homes without

wearing masks. These masks have become like an integral organ for survival. But these

masks have caused problems with our computer models for face recognition. Face

recognition is the sub-field of computer science in which the computer matches an input

face to a corresponding set of output images to deduce the identity of the face provided

as input to the system. But with the masks, the face is covered from nose till neck. Only

the eyes and forehead region is visible with a mask on the face. This creates a problem

with existing techniques available in the domain of face recognition using computers. The

computer models achieving accuracy over 95% for a face drops to a very low level when

the same face is given as input with a mask on it. The predictions made by these models

are no better than random predictions made by untrained models.

In this project, the performance of different state-of-the-art models has been studied. A

modified version of the existing dataset is utilized for training and testing these models.

The modification is done by augmenting the masks on faces in the chosen part of the

VGGface dataset. For faster training and testing, the concept of transfer learning plays a

big role. The pre-trained models are being adapted to the modified dataset. Apart from

this, a new model is also introduced which is somewhat a hybrid of the best performing

models. This new model architecture is defined and then trained and tested on the

modified dataset. The new model is thrown against the state-of-the-art models. The aim

of developing this new model is to improve over the existing baselines present. Based on

the closed observations, the research questions are answered.

V

CONTENTS

Candidate’s Declaration ... I

Certificate ... II

Acknowledgement .. III

Abstract ... IV

Contents ... V

List of Figures .. VII

List of Tables .. IX

List of symbols and abbreviations ... X

Chapter 1 Introduction ... 1

1.1 General .. 1

1.2 Problem Formulation .. 2

1.3 Objectives of the Project ... 3

Chapter 2 Literature Review .. 4

Chapter 3 Theoretical Concepts ... 10

3.1 Face Recognition ... 10

3.2 Basic Concepts of Convolutional Neural Network (CNN) ... 11

3.3 The Architecture of CNN: ... 12

3.3.1 Layers of CNN: ... 12

3.4 Concept of Transfer Learning in the field of Deep Learning 16

Chapter 4 Proposed model for face recognition .. 19

Chapter 5 Experimental Setup ... 22

5.1 Dataset ... 22

5.2 Deep Learning Models under Observation ... 24

5.3 Metrics for performance .. 25

Chapter 6 Results and Discussion on Results .. 28

Chapter 7 Conclusion and Future Scope .. 37

Appendices .. 38

VI

Appendix 1: Training and Testing Results of Different Models ... 38

Appendix 2: Python Code ... 42

References ... 53

VII

List of Figures

Fig. 1: AI and Deep Learning ... 1

Fig. 2: Machine learning vs Deep Learning ... 2

Fig. 3: Face Verification vs Face Identification ... 10

Fig. 4: A Typical CNN Network .. 11

Fig. 5: Simple Convolution Operation .. 12

Fig. 6: Feature Hierarchy in CNN .. 13

Fig. 7: Typical Convolution operation on MxNx3 image matrix with 3x3x3 Kernel 13

Fig. 8: ReLU Layer ... 14

Fig. 9: Types of Pooling ... 15

Fig. 10: Fully Connected Layer connected after a sequence of convolution, ReLU, and

max pool layers ... 15

Fig. 11: Traditional ML vs Transfer Learning .. 16

Fig. 12: Transfer learning via freezing ... 17

Fig. 13: Transfer learning via fine-tuning ... 18

Fig. 14: Freeze or Fine-Tune .. 18

Fig. 15: CONV Block ... 19

Fig. 16: IDENTITY* Block .. 20

Fig. 17: POOL Block .. 20

Fig. 18: RGGNet Architecture .. 21

Fig. 19: VGGFace2 Description ... 22

Fig. 20: Extracting facial landmarks using “face-alignment” python library 22

Fig. 21: Triangulation Process to extract face mask ... 23

Fig. 22: Augmenting the extracted mask on a new face ... 23

Fig. 23: Area of interest for deep learning models ... 24

Fig. 24: Processes input to the deep neural network ... 24

Fig. 25: Confusion Matrix .. 25

Fig. 26: AUC and ROC ... 26

Fig. 27: Confusion Matrix and different Metrics .. 27

Fig. 28: Accuracy of different models .. 29

Fig. 29: Top-5 Accuracy of different models ... 29

Fig. 30: AUC of different models ... 30

Fig. 31: Precision of different models .. 30

VIII

Fig. 32: Recall of different models ... 31

Fig. 33: ResNet50V2 Plots ... 38

Fig. 34: VGG16 Plots ... 39

Fig. 35: InceptionV3 Plots .. 39

Fig. 36: Xception Plots ... 40

Fig. 37: InceptionResNetV2 ... 40

Fig. 38: MobileNetV2 Plots .. 41

Fig. 39: DenseNet201 Plots .. 41

Fig. 40: RGGNet Plots .. 42

IX

List of Tables

Table I: RGGNet Parameters .. 21

Table II: Pre-trained Models Description ... 24

Table III: Hyper-parameters and validation strategy for DL models 25

Table IV: Performance Metrics for different models ... 28

Table V: Computation of Ranks for Friedman Test ... 33

Table VI: Computation of Differences for Nemenyi Test .. 35

X

List of symbols and abbreviations

Abbreviations Full Form

AUC Area Under ROC Curve

COVID-19 Coronavirus disease 2019

CNN Convolutional Neural Network

DenseNet201 Densely Connected Convolutional Networks

FFHQ Flicker Faces HQ3 Dataset

FN False Negative

FP False Positive

FPGA Field Programmable Gate Arrays

FPS Frames Per Second

InceptionResNet Inception Residual Neural Network

InceptionV3 Inception Network Version 3

JSON JavaScript Object Notation

LBP Local Binary Patterns

LNMF Local Non-negative Matrix Factorization

MCF Masked Correlation Filters

MobileNetV2 Mobile Neural Network Version 2

MTCNN Multi-Task Cascaded Convolutional Neural Network

NMF Non-Negative Matrix Factorization

XI

PCA Principal Component Analysis

ReLU Rectified Linear Unit

ResNet50V1 Residual neural Network (50 deep layers) Version 1

ResNet50V2 Residual neural Network (50 deep layers) Version 2

RGB Red-Green-Blue

RGGNet Residual Geometric Group Network

ROC Curve Receiver Operating Characteristic Curve

SAE Stacked Auto Encoder

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2

SFNMF Spatially Confined Non-negative Matrix Factorization

SVM Support Vector Machine

TN True Negative

TP True Positive

VGG16 Visual Geometry Group Neural Network (16 deep layers)

Xception Extreme Inception

YOLOV3 You Only Look Once Neural Network - Version 3

1

CHAPTER 1

INTRODUCTION

1.1 General

Neural networks and Artificial Intelligence have played a great role in influencing our

day-to-day activities. AI has shown its influence on various domains such as computer

vision, biomedical research, etc. AI models are being embedded into appliances ranging

from large-scale appliances such as Smart TV, Refrigerators, etc. to sophisticated

computing devices such as mobile phones. In the year 2020, the SARS-CoV-2 alias

COVID-19 has brought the development to the halt. Day-to-day activities needed

contactless working in the COVID-19 crisis. AI showed its potential for helping in these

day-to-day activities. Robots controlled by AI neural network models are helping doctors

to monitor and treat patients in a contactless manner. AI neural networks are also being

utilized by scientists to run simulations for the spread of infection and diseases. These

are also helping the people at the helpdesk by assisting the customers. AI also helped the

government to track the infection and make predictions so that preventive measures can

be taken at the right moment.

AI is slowly changing the conventional ways of computing. In the conventional

programming paradigm, the problem is divided into sub-problems and then these sub-

problems are assigned computing resources (programmers finding pattern and coding) for

generating solutions. But, in the case of AI, an enormous volume of data of a problem is

feed to a neural network that deduces patterns based on inputs to predict output with high

accuracy and efficiency. In the AI field, deep learning is the most influential sub-field of

machine learning which itself is a sub-domain of AI (as shown in Fig. 1).

Fig. 1: AI and Deep Learning

Artificial
Intelligence

Machine
Learning

Deep
Learning

2

Deep learning is being used to solve a variety of problems in various domains such as

image pattern analysis. Face recognition is one such domain. Face recognition is currently

being the most popular whether it be a traffic challan system or personal device

authentication. Face recognition techniques vary from simple Machine learning

techniques such as PCA, SVM to complex neural networks. In AI, machine learning such

as SVM, decision trees, etc. involves input, feature extraction, and classification for

outputs. But in deep learning, feature extraction and classification are combined for

predicting output (as shown in Fig. 2).

Fig. 2: Machine learning vs Deep Learning

In this project, we are dealing with face recognition using neural networks. Due to the

COVID-19 crisis, face masks have become mandatory for humans to protect themselves

but these face masks have an unseen side-effect on the existing face recognition system.

The majority of a face recognition system requires the complete face for identification of

an individual and face masks have covered the majority of facial features that act as

unique identifiers for the existing face recognition systems.

1.2 Problem Formulation

When visiting banks, individuals need to be identified to issue the amount against the

cheque. If the account holder itself has come, he/she need to show his/her face so that

his/her identity can be verified but due to COVID-19, masks have become part of the

daily routine. For such identification, one needs to put away his/her mask exposing

him/her to the risk of getting the virus. To avoid this problem, a need is found to develop

a face recognition technology that can accommodate masks. This face recognition

3

technique must utilize the limited facial features available to it and based on that

individuals must be identified. Based on this problem following questions has been

identified:

1. What is the current scenario of face recognition with the masks?

2. What are the existing models available for deep learning?

3. Which datasets are available for face recognition particularly those involving

masks?

4. What is the accuracy achieved by a face recognition system with masks?

5. How can the achieved accuracy be retained while reducing the time to upgrade

the existing systems?

1.3 Objectives of the Project

In this project, the following objectives need to be achieved:

1. Generating a custom dataset for training and validating the deep learning model.

2. Training and validating the performance of deep learning models.

3. Comparing the performance of different deep learning models available.

4. Establish a baseline for improvement of the deep learning models in the future.

5. Develop a new model that combines the capabilities of top-performers based on

the baseline developed.

6. Comparing the performance of the developed model with other models.

4

CHAPTER 2

LITERATURE REVIEW

In this section, detailed information related to the variety of research papers concentrating

on face recognition using different methodologies, challenges present in face recognition,

and which techniques can perform better, etc. has been listed. This section also provides

insight into the deep learning models currently being used in face recognition.

Furthermore, the effect of occlusion specifically the mask on face recognition and

available methods to tackle these problems have also been discussed in this section. This

section provides a brief insight into the previous works done in the field of face

recognition.

 Neo, H.F. at al. (2010) [1]: This paper presents the idea of occlusions on the face

recognition techniques. This paper aims to develop a framework for partial face

recognition, i.e., faces occluded by objects like sunglasses, face masks, etc. This

proposes a framework utilizing PCA/NMF/LNMF/SFNMF for feature extraction and

then using an L2 classifier for genuine/ imposter identification. This framework was

tested on approx. 2000 images of 100 subjects with each having 20 images. This

framework was able to achieve 95.17% accuracy by using SFNMF for the bottom

region of the face, i.e., faces with occlusion on the eyes region.

 Su, Y. et al. (2015) [2]: This paper presents the occlusion detection method by fusing

the raw images with residual images using an SVM classifier. This method utilizes

NMF to generate reconstructed images and residual images which are then divided

into the upper and lower region. The generated regions are then fed to PCA for feature

extraction and dimensionality reduction. The extracted features are fed to SVM at

two-level. At the first level extracted features are fed to the SVM and then the result

is fed to SVM at the second level which detects the occlusion on faces in each

component. The experiment utilized a dataset of 960 normal faces, 720 images of

faces with sunglasses, and 720 images of faces with a scarf. The proposed method

was able to achieve 91.9% accuracy on images with sunglass but accuracy dropped

to 79.4% with scarfs.

 He, E. J. et al. (2016) [3]: This paper presented the ideas discussed above but using

three larger datasets with one consisting of over 4000 images of 126 subjects. It

5

proposes the use of MCF and for face recognition. This methodology achieved higher

accuracy against the observed datasets but required prior knowledge of the occluded

region of the face for achieving higher accuracy. This prior knowledge provides

compensation for the presence of occlusion on the face.

 Lin, S. et al. (2016) [4]: This paper proposes the use of a deep learning model for

partially occluded faces in the videos. The proposed method utilized a 5 layer each

consisting of convolution and sub-sampling operations. The dataset consisted of 1140

images with 240 positive instanced and 960 negative instances. To reduce the

overfitting problem due to an imbalanced dataset, the training instances were

increased to twice using horizontal reflections. The experiment is used for the binary

classification problem, i.e., to detect masked faces in the dataset. If a masked face is

available then it is detected in the video stream. The proposed methodology achieved

an f1-score of 0.803 with recall at 0.925 and precision at 0.71 which are reported

higher than other techniques under consideration such as Adaboost. This paper

presented the idea that deep learning models can achieve high performance compared

to the traditional machine learning methods such as SVM, Adaboost, etc.

 Wang, M. et al. (2017) [5]: Earlier papers discussed using a deep learning model for

occlusion detection on the face whereas this paper proposes the use of a deep learning

model for face recognition. This paper doesn’t consider occlusion for faces but

discusses the performance of deep learning models on faces compared to traditional

techniques while also proposing an own deep learning model for face recognition.

The proposed method achieved the highest recognition rate of 96.6 whereas

traditional methods only achieved a recognition rate of 83.5 (PCA), 89.7 (LBP), and

92.3 (SAE). Thus, this paper opens the approach of deep learning towards face

recognition. The proposed MaskNet has advantages of powerful generalization ability

and brilliant performance combined with the classification advantage of the softmax

regression model. This model also reduces the cost of training.

 Coskun, M. et al. (2017) [6]: This research document provides details of an

experimental evaluation of CNN based face recognition system. The noticeable

qualities of the proposed algorithm are that for the initial and final layers of

convolution, batch normalization is utilized which allows the neural network to

achieve higher accuracy. Apart from this, the fully connected layer is connected to a

softmax classifier. Georgia Tech Face database, composing 15 images each for 50

6

individuals, has been utilized as the testing dataset for the proposed model. The model

results have shown significant recognition accuracy when compared to the literature

studies presented in the paper. This paper shows how optimization can increase the

achievable accuracy of CNN architecture and the potential of CNN in the field of face

recognition.

 Wan, W., & Chen, J. (2017) [7]: This research document proposed the idea of using

deep learning methods for face recognition on occluded faces. The paper proposed a

trainable module called MaskNet which optimized the existing CNN architecture.

MaskNet provided a clear distinction between occluded areas and non-occluded areas

of the face. MaskNet improved the accuracy of ResNet by 1.4% to 3.0%. A fixed-size

image is provided as input to MaskNet, followed by a low convolutional network.

Then a regression layer is fully connected to the last convolution output in MaskNet.

For facial recognition, occluded areas corrupt the training process, so MaskNet

assigns more weight to non-occluded areas thus, decreasing the importance of the

occluded area in the training and therefore, improves the existing CNN architectures.

 Guo, G., & Zhang, N. (2018) [8]: This paper presents the various challenges of deep

learning in the face recognition field particularly in an unrestricted environment (non-

ideal environment). The paper investigates the roles of quality on the performance of

deep learning models. Face images with different qualities were assembled. The

quality of images varied into three categories: low, medium, and high. The assembled

images are then fetched to state-of-the-art deep learning techniques to investigate the

role of quality and its impact on performance on those learning techniques. Two

publicly available dataset of 21,230 images (High: 1,543 – Medium 13,941 – Low:

6,196) and 106,863 images (out of these 20,895 images consisting 10089 high, 10444

medium and 362 low quality were selected) are used. VGGFace, FaceNet, and other

CNN-based architectures have been observed and found that recognition rate is

greatly influenced by quality. For high-quality images, the recognition rate is on the

higher side compared to low and medium-quality images.

 Elmahmudi, A., & Ugail, H. (2018) [9]: This paper presented the idea of determining

the performance of deep learning methods when partial faces are used, i.e., either

nose, eyes, or their combination or top-half or ¾ face, etc. The paper validates that a

low recognition rate is achieved when utilizing partial face parts such as cheek,

forehead, and mouth whereas higher accuracy rates can be achieved using left or right

7

½ of the face, top half. A 100% accuracy rate is possible for the ¾ of the face. The

paper utilizes VGG-Face architecture in combination with SVM and Cosine

Similarity classifier for conducting the experiments to validate the hypothesis. This

paper acts as a baseline for state-of-the-art models to improve upon and thus providing

direction for further research in this field of face recognition using deep learning

architectures.

 Qu, X. et al. (2018) [10]: This research paper promises a fast face recognition

approach using parallelization and networking for faster training of the deep neural

networks. The proposed method separates the understanding process of CNN into two

parts: network training on the PC and network implementation on the FPGA. After

software simulation and board measurement, the speed of the face recognition system

was 400 FPS with a 99.25% recognition rate along with good vigor under various

light environments.

 Tomodan, E. R., & Caleanu, C. D. (2018) [11]: This research manuscript provided a

comparative study between the traditional machine learning approach of the bag of

features and deep CNN. The basic difference between these two is that in deep CNN,

the features are automatically extracted from low-level to high-level whereas, in the

bag of features, these features need to be hand-tuned. The manuscript presents the

problems in CNN and providing research directions. It provided details on how

datasets size, background variations, and images per class influence the learning

process of deep neural networks.

 Wu, G. et al. (2019) [12]: This proposed paper implements the InceptionResnetV1

model for occlusion-based face recognition. The dataset utilized for this model has

about 30% occlusion to the faces. This dataset consists of 4,234 images and the model

was able to 98.6% recognition rate. The model is robust to the occlusions while

retaining a high recognition rate for practical applications.

 Ejaz, M. S. et al. (2019) [13]: This paper performs analysis of face recognition using

the PCA method for both masked faces and non-masked faces. The non-masked face

has a better recognition rate in PCA based face recognition system whereas, for a

person who is wearing a mask, a poor recognition rate is observed. Extracting features

from a masked face is less than a non-masked face which causes a reduction in

8

features ultimately degrading the recognition rate. The paper concludes that PCA is

good for normal face recognition but not for masked face recognition.

 Khan, S. et al. (2019) [14]: This research paper presents the use of transfer learning

on deep learning models for face recognition. The paper proposes the modification of

existing layers of pre-trained models according to the dataset on which face

recognition is required. This process of modification is known as transfer learning.

The transfer learning is performed on pre-trained AlexNet. This paper only studies

face recognition without occlusions. The transferred model was able to achieve an

accuracy of 97.95%.

 Ejaz, M. S., & Islam, M. R. (2019) [15]: This paper proposes the use of FaceNet CNN

in combination with SVM. The proposed framework utilized the MTCNN to detect

the face in the dataset and then use the extracted faces as input to the FaceNet to create

face embedding (face vector). The generated face vector is used by SVM to recognize

the face under test with the existing vectors. This model proposed face verification,

i.e., one-to-one mapping of the face. One-to-one mapping means the test face is cross-

matched a single identity using L2 normalization by SVM.

 Bhuiyan, M. R. et al (2020) [16]: This paper proposed the use of YOLOv3 architecture

for detecting masks on the faces, i.e., a person is wearing a mask or not. The model

achieved a 17 FPS average for detection on video stream and a precision score of

0.96.

 Adjabi, I. et al (2020) [17]: This review paper provided insight into the face

recognition methodologies. The document presented the techniques utilized in the

past for face recognition, the present approaches, and trends in face recognition, and

the future challenges that are needed to be tackled in the future.

 Cabani, A. et al (2020) [18]: This paper proposed a dataset of correctly and incorrectly

masked faces. The dataset was created while considering the COVID-19 crisis. Apart

from the dataset, it also provided the details of generating a similar dataset with a

different set of images. The proposed dataset has been generated using the FFHQ

dataset available online by NVIDIA. The proposed dataset consisted of 137,016 good-

quality images. The dataset is proposed to act as a benchmark for the models that are

utilized for detecting the masked faces specifically whether the masks are correctly

worn or not by a person.

9

 Li, Y. et al (2021) [19]: This paper proposed an optimization module (CBAM) to crop

the masked faces for better recognition. The CBAM module is created to focus on the

areas surrounding the eye region. This helped to achieve better performance for

masked face recognition compared to the other attention-based models. An optimal

value of 0.7L is utilized for cropping the faces and this allows CBAM to focus on

eyes and their surrounding regions. An increase of 17.427% and 18.507% has been

achieved using this approach.

Out of all the paper reviewed in this section following concluding points are noted:

1. Initial papers were limited to traditional machine learning techniques. As the deep

learning techniques evolved, their practicality for face recognition has become

apparent. No analysis has been performed among different deep learning techniques

for occlusion-based face recognition.

2. Most of the papers use occlusion up to 60-70% in the dataset for analyzing the

techniques. Only one paper studied face recognition with just individual parts such as

eyes, mouth, etc. but the accuracy achieved was quite low.

3. The dataset size in most cases is limited to 5-20 images per subject and a size varying

from 100 images to 4000 images. The dataset size is quite low if considered from the

deep learning point of view. So a need for a larger dataset is required for extensive

training and testing of the deep learning models.

4. Apart from the small dataset, one paper presented the use of optimization by cropping

for better results. This proposed approach can be utilized for generating better models.

5. Transfer learning is studied from the surface only in deep learning models utilized for

face recognition. Transfer learning provides a way to use pre-trained models and re-

training pre-trained models require relatively less computational power than training

a deep learning model from scratch. Generally, 10 epochs are more than enough for

transfer learning.

10

CHAPTER 3

THEORETICAL CONCEPTS

This section presents the basic theoretical concepts required to understand the key

processes and working of the experiment studied in this project. This section familiarizes

the concept of deep learning, transfer learning, and pre-trained models available. It also

induces the idea of working on different kinds of layers utilized by a variety of pre-trained

models. The concepts introduced in this section help to understand the proposed

architecture for masked face recognition.

3.1 Face Recognition

The process of cross-matching a face against one or more faces is described as face

recognition. The face recognition task can be explained as the problem of a supervised

learning task that uses predictive modeling. A model is trained on a set of inputs and

outputs in a predictive modeling task. The model tries to learn the relation between inputs

and outputs and is required to give predictions / expected output for a given input.

The 2011 book titled “Handbook of Face Recognition” explains the following categories

of face recognition task (as shown in Fig. 3):

• Face Verification: A one-to-one matching of face against an identified face, i.e., a

person's face under test is matched against a particular face available in the records

present. Example: A photo id verification.

• Face Identification: A one-to-many matching of face against all the identified faces,

i.e., face under test is matched against every known face to identify the actual identity.

Example: Who is the person?

Fig. 3: Face Verification vs Face Identification

11

“A face recognition system is expected to identify faces present in images and

videos automatically. It can operate in either or both of two modes: (1) face

verification (or authentication), and (2) face identification (or recognition).”

– (Li and Jain, 2011) [20]

In this project, we are dealing with the face identification task. This task is selected since

the literature review revealed that masked face recognition paper consisted of two

categories for classification namely, masked or not-masked. Furthermore, the masked

category was further divided into correctly worn or incorrectly worn in some cases. The

challenge of face identification was not explored in such cases.

3.2 Basic Concepts of Convolutional Neural Network (CNN)

A Convolutional Neural Network (CNN) is an algorithm in deep learning taking images

as a form of input, allocating some weights/ the significance factor to the different

features/aspects present in the image, and then use the assigned factor value to

differentiate the various aspects from each other. CNN pre-computation is on the far

lower side compared to other classification learning techniques. In classical techniques,

the feature filtering methods are manually provided, i.e., manually constructed whereas,

in CNN, CNN itself learns those filters using enough training, and this is termed as an

epoch.

Fig. 4: A Typical CNN Network

Basically, an image is a collection of pixels. CNN can easily detect the spatial and

temporal relations of the pixels present in the image by applying relevant filters. CNN

performs better fitting of the images by reduction of parameters and reusability of

weights. CNN converts the image into a much smaller form which is easier to process

12

without losing critical features as shown in Fig. 4. This leads to high prediction accuracy

with the added advantage of scalability.

Just like neural networks, CNN consist of a set of neurons that memorizes features and

biases as weights and filters. Instead of learning each pixel, each neuron receives a

collection of pixels as inputs (typically convolved pixels), takes a weighted sum over

them, uses the resultant output as input to the activation function, and then generates

corresponding output. The whole network has a loss function to adjust the weight

according to the training epoch.

3.3 The Architecture of CNN:

A typical CNN has the following layers:

• Convolutional layers (Acting as feature maps for the model)

• ReLU layers (Optimizes the feature map using ReLU activation function)

• Pooling layers (Groups together the features map to reduce the size of the input)

• A Fully connected layer (Predicts the output based on the input and feature map)

These layers are placed in the stacked form to form a CNN. The arrangement can be like

this:

“ Input → Convolution → ReLU → Convolution → ReLU → Pooling → ReLU

→ Convolution → ReLU → Pooling → Convolution → ReLU → Pooling →

Fully Connected → Output ”

3.3.1 Layers of CNN:

1. Convolutional Layer

A convolutional layer in a CNN has defined feature maps which are utilized to

recognize the patterns and shapes in the input in a stratified/ranked manner.

A convolution operation is a simple multiplication

operation performed using a set of weights and an

input. The 2-D array of weights is known as a filter or

a kernel. This filter has a smaller size compared to the

input data. A dot product multiplication is performed

between the set of weights (filter) and the input set.
Fig. 5: Simple Convolution

Operation

13

This filter multiplication is applied symmetrically over the input image as shown

in Fig. 5.

CNN pinpoints the most useful features of an input image using the pattern

recognition of the numbers. CNN piles up these patterns in form of a heap which

progressively builds the complex feature maps as shown in Fig. 6.

Fig. 6: Feature Hierarchy in CNN

Fig. 7 is representing the multiplication operation performed by the Convolution

layer on different channels(dimensions such as RGB) of the image to generate a

convoluted matrix.

Fig. 7: Typical Convolution operation on MxNx3 image matrix with 3x3x3 Kernel

14

2. ReLU (Rectified Linear Unit) layer

ReLU layer is an on/off switch in CNN (shown in Fig. 8). The output (feature

map) of the convolution layer is moved through the ReLU. Typically, if the value

is negative, it is changed to 0 else remains unchanged. The convolution layer

processes the input linearly but this layer introduces non-linearity in the feature

map. This ReLU layer corresponds to the activation function in a simple neural

network. ReLU is the most popular function. Other functions such as tanh,

sigmoid are also available for use.

Fig. 8: ReLU Layer

3. Pooling Layer

Feature map (output of convolutional layer + ReLU layer) keeps note of the

specific position of features in the input. This leads to a problem in case the input

is altered, i.e., rotated, cropped, or shifted.

To overcome this problem, a downsampling technique is applied. In

downsampling, the input is downsized to lower resolution input but still

maintaining a high amount of fundamental information. This technique is applied

by the pooling layer. The pooling layer is added after the ReLU operation has

taken place.

The pooling layer executes symmetrically over each feature map generated to

create a new set of feature maps.

Pooling consists of choosing a pooling operation (average or maximum) to be

applied on feature maps. The result of the pooling operation will be downsized

version of feature maps generated from the convolution layer.

Pooling operation has two types of function (shown in Fig. 9):

15

• Average Pooling: For each subset of the feature map, the average value is

calculated.

• Max Pooling: For each subset of the feature map, the maximum value is

calculated.

Fig. 9: Types of Pooling

Typically, max pooling is the most commonly used operation.

4. Fully Connected Layer

In simple words, the process of joining the features with each other to deduce

some result is the fully connected layer. The feature map obtained from the earlier

layer is flattened to vector, i.e., changed into a 1-D vector. The fully connected

layer (corresponds to classical neural network) takes the flattened vector is as

input. This layer then captures the high-level links between these complex features

obtained and deduce some results. This layer returns a 1-D feature vector. This

obtained vector typically represents the output of the CNN (shown in Fig. 10).

Fig. 10: Fully Connected Layer connected after a sequence of convolution, ReLU, and max pool layers

16

Using feed-forward network and back-propagation, the model is trained for a

series of iterations (epochs). This back-propagation helps the model to change its

weights and improve the distinguishing ability of the model between features

using the Softmax classification technique.

The functioning of CNN layers in the union is as follows:

1. An image is provided as input to the first layer.

2. The input is fed to the convolution layer which generates a feature matrix/map.

3. The output of the convolution layer is fetched to the ReLU function to obtain a

feature map to intensify the irregularities.

4. Pooling operation is applied to every batch of feature matrix by the pooling layer.

5. The pooled map is flattened into a long 1-D vector.

6. The vector is fed to the fully connected neural network which provides the

probability of the classes.

7. This process is repeated for several epochs along with back-propagation for

generating a high-quality model.

3.4 Concept of Transfer Learning in the field of Deep Learning

In transfer learning, pre-trained models are utilized to train new models. Existing

knowledge (weights, feature matrix, etc.) from already trained models are utilized for

training (as shown in Fig. 11).

Fig. 11: Traditional ML vs Transfer Learning

17

Deep learning prototypes are instances of inductive learning techniques where the goal is

to deduce relations from training data, i.e., try to infer mapping using the examples

provided as input during the training of the model.

To deduce these relations, the techniques work on a set of assumptions termed inductive

bias. These biases are influenced by hypothesis, search strategy, and various other factors.

The inductive bias is the one that impacts the learning of a task in a domain, i.e., what

should be learned, how it should be learned from given task data of a domain.

For applying the concept of transfer learning to deep learning, inductive transfer

techniques are utilized which use the original target task biases to guide the model for the

new target task. The details of the architecture of different deep learning models are

publicly accessible as pre-trained models architecture. These pre-trained models are

utilized for transfer learning and this form of transfer learning is termed deep transfer

learning.

Deep transfer learning can exist in two forms of implementation (either Freezing or Fine-

Tuning):

1. In the freezing implementation, the input layer and final fully connected layer are

adjusted according to the destination dataset and freeze the hidden layers of the

network (as shown in Fig. 12).

Fig. 12: Transfer learning via freezing

18

2. In the fine-tuning implementation, adjustment of the input layer and final fully

connected layer according to the destination dataset as well as training of the

hidden layers of the network for finer adjustments is done (as shown in Fig. 13).

Fig. 13: Transfer learning via fine-tuning

Choosing the strategy for transfer learning depends on the type of task and the domain on

which transfer learning is required. The process for choosing the strategy for transfer

learning is shown in Fig. 14.

Fig. 14: Freeze or Fine-Tune

For the field of computer vision, some of the popular pre-trained models available are

VGG16, DenseNet121, ResNet-50, InceptionV3, and Xception.

19

CHAPTER 4

PROPOSED MODEL FOR FACE RECOGNITION

This section presents the proposed model, i.e., RGGNet that is being utilized in this

project. This section familiarizes the architecture of RGGNet. It also helps to understand

the relation of the RGGNet with the ResNet50V2 and VGG16. It presents the details of

the layer and the position at which the layers are introduced.

4.1 RGGNet Architecture

RGGNet architecture is based on the architecture of ResNet50V2 along with the features

of VGG16 along the shortcut paths. RGGNet model is composed of three blocks (CONV,

IDENTITY*, and POOL block) clubbed together. Each block has two paths: The main

path and the shortcut path. The main path represents standard convolution, ReLU, and

pooling operations whereas the shortcut path represents the unique attribute that differs

each of these blocks. The detailed representation of these blocks is as follows:

1. CONV Block

A standard CONV block is utilized in the RGGNet architecture. A standard

CONV block (as shown in Fig. 15) represents the case when the input has a

different shape compared to the output activation. CONV block is utilized to

resize the dimensions of the image.

Fig. 15: CONV Block

2. IDENTITY* Block

A standard identity block represents the case when the input function has the same

dimensionality as the output function. A standard Identity block has two paths:

20

Main Path and the skip connection path. The skip connection directly connects

the input to the block with the output of the main path.

But in this case, this identity block has been modified. Instead of skip connection,

we have utilized a shortcut path with a single convolution layer as shown in Fig.

16. This allows additional feature extraction in the skip connection. The input to

the identity block is processed on the main path that helps in retrieving complex

features whereas the shortcut path utilizes the Conv2D layer to deduce simpler

features. These simple and complex features together help to understand the image

properties better.

Fig. 16: IDENTITY* Block

3. POOL Block

A standard POOL block is utilized to gather the most prominent features from the

input image. A POOL block (as shown in Fig. 17) performs the max pooling

operation on the image.

Fig. 17: POOL Block

21

By combining these three blocks, the shortcut path in the RGGNet has layers in the
same manner as that of VGG16 thus giving the higher capabilities compared to the
standard architectures. The combined architecture is shown in fig. 18.

Fig. 18: RGGNet Architecture

The proposed RGGNet architecture is designed for face identification with more than
43 million parameters as shown below:

Table I: RGGNet Parameters

Parameters ResNet50V2 VGG16 RGGNet

Total params 26,360,385 15,180,673 43,269,953

Trainable params 2,795,585 465,985 43,224,513

Non-trainable params 23,564,800 14,714,688 45,440

22

CHAPTER 5

EXPERIMENTAL SETUP

5.1 Dataset

In the experiment, a modified version of the vggface2 dataset1 is utilized. The

description of the vggface2 dataset is shown in Fig. 19.

Fig. 19: VGGFace2 Description

Pre-processing of part of the dataset is done in which masks are augmented on the

face of individuals and then the faces are cropped. The pre-processing of the dataset

is taking place in four steps:

a. Find Face Landmarks

Python library “face-alignment” is utilized to generate coordinates of features of

the face and then use those obtained features for extracting mask coordinates (Fig.

20).

Fig. 20: Extracting facial landmarks using “face-alignment” python library

1 Original dataset available at https://www.robots.ox.ac.uk/~vgg/data/vgg_face2/

23

b. Triangulation Process

Using the existing masks database (approx. 250 masks with different orientations

and styles), masks are extracted from the generated features using the

triangulation process (Fig. 21). The extracted masks are then saved into JSON

format.

Fig. 21: Triangulation Process to extract face mask

c. Mask Matching (Augmentation)

Using the extracted masks, the VGGFace2 dataset is modified. The extracted

masks are added to the faces available in the dataset by finding the facial

landmarks and estimating the face pose for augmenting the mask (Fig. 22).

Fig. 22: Augmenting the extracted mask on a new face

d. Masked Face Cropping (Optimization)

The masked images are cropped to extract the eyes and forehead region by using the

optimization (cropping) ratio of 0.7L [18] as shown in Fig. 23.

24

Fig. 23: Area of interest for deep learning models

Finally, the dataset consists of 22,647 belonging to 65 classes out of which 18,092

images belonging to the training dataset and 4,555 images belonging to the validation

dataset.

5.2 Deep Learning Models under Observation

In this project, pre-trained deep learning models are used using transfer learning for

masked face recognition as shown in Fig. 24.

Fig. 24: Processes input to the deep neural network

Following is the list of pre-trained deep learning models under observation along with

their description:

Table II: Pre-trained Models Description2

Model Size Top-1

Accuracy

Top-5

Accuracy

Parameters Depth

ResNet50V2 98 MB 0.760 0.930 25,613,800 -

VGG16 528 MB 0.713 0.901 138,357,544 23

InceptionV3 92 MB 0.779 0.937 23,851,784 159

Xception 88 MB 0.790 0.945 22,910,480 126

2 Available at https://keras.io/api/applications/

25

InceptionResnetV2 215 MB 0.803 0.953 55,873,736 572

MobileNetV2 14 MB 0.713 0.901 3,538,984 88

DenseNet201 80 MB 0.773 0.936 20,242,984 201

The top-1 and top-5 accuracy signifies the ImageNet validation dataset performance

of the model.

Depth represents the depth of the model which includes activation layers, batch

normalization layers, etc.

Table III: Hyper-parameters and validation strategy for DL models

Validation Strategy Hold-out validation in ratio 8:2 for training

and testing

Pre-Training Dataset ImageNet

Batch Size 32

Optimizer Adam Optimizer

Loss Function Categorical Cross Entropy

Maximum number of Training epochs 25

Early Stopping Patience 3

Early Stopping Criteria Validation Accuracy

5.3 Metrics for performance

The following metrics are used for analyzing the performance of the models that are

calculated using confusion matrix (as shown in Fig. 25) generated on the dataset:

Fig. 25: Confusion Matrix

26

1. Accuracy

Accuracy is the ratio of correct outcomes to the total outcomes of the experiment.

Accuracy is calculated using the following formula:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑇𝑇+𝑇𝑇𝑇𝑇

 (4.1)

Accuracy represents the correctness of predictions made by the model.

2. Top k Categorical Accuracy

It represents the percentage of records for which the target predictions are in the

top K predictions.

For a record:

a. The predictions for an instance are ranked in the descending order of

probability values.

b. If the rank of the prediction is less than or equal to K for the actual class,

it is considered accurate.

Here for the deep learning models, k is chosen as 5.

3. AUC (Area Under ROC Curve)

AUC represents the worthiness of model predictions (Fig. 26). It is the degree of

how superior a model is capable to discern between positive and negative

occurrences.

Fig. 26: AUC and ROC

1.0 value in AUC means model prediction is 100% accurate and 0.5 means model

prediction is worthless for unknown instances prediction.

4. Precision

Precision is the ratio of correct positive outcomes to the total positive outcomes

for a class. Precision is calculated using the following formula:

27

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (4.2)

Precision signifies how many positive outcomes are actually correct for a class.

5. Recall

Recall or sensitivity is defined as the ratio of correctly classified positive instances

to the total number of actual positive instances. The recall is calculated using the

following formula:

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 (4.3)

Recall signifies the positive predictions that are classified incorrectly.

The following figure (Fig. 27) represents the confusion matrix along with the metrics

calculations:

Fig. 27: Confusion Matrix and different Metrics

28

CHAPTER 6

RESULTS AND DISCUSSION ON RESULTS

Q What is the performance of different deep learning models on masked faces?

The performance of different models is shown in the following table:

Table IV: Performance Metrics for different models

Model Accuracy
Top-5

Accuracy
AUC Precision Recall

RGGNet

(Proposed Model)
0.608 0.841 0.953 0.777 0.519

ResNet50V2 0.5060 0.7737 0.7704 0.5073 0.5060

VGG16 0.4648 0.7396 0.9146 0.6940 0.3495

InceptionV3 0.3574 0.6571 0.7767 0.3850 0.3460

Xception 0.3627 0.6428 0.7256 0.3713 0.3603

InceptionResnetV2 0.4360 0.7135 0.8009 0.4617 0.4250

MobileNetV2 0.4004 0.6777 0.7264 0.4029 0.3991

DenseNet201 0.4665 0.7396 0.7846 0.4768 0.4641

Q What is the highest accuracy achieved by different deep learning models on masked

faces?

Out of all the pre-trained models under evaluation, ResNet50V2 achieved the highest

accuracy (50.6%) as well as the highest top-5 accuracy (77.37%). Overall, RGGNet

achieved the highest accuracy.

29

The accuracy plot for the different model is shown in the following figure:

Fig. 28: Accuracy of different models

The top-5 accuracy plot for the different model is shown in the following figure:

Fig. 29: Top-5 Accuracy of different models

30

The AUC plot for the different model is shown in the following figure:

Fig. 30: AUC of different models

The precision plot for the different model is shown in the following figure:

Fig. 31: Precision of different models

31

The recall plot for the different model is shown in the following figure:

Fig. 32: Recall of different models

All these plots represent the variation of performance for different models.

Q What are observations made for different deep learning models on masked face

recognition?

The following observations are made for pre-trained models:

• ResNet50V2 outperforms every other model in terms of accuracy and top-5

accuracy while also maintaining high precision and recall.

• In terms of precision, VGG16 has the highest value, i.e., VGG16 has shown a very

low number of false predictions of positive instances. The AUC value of VGG16

is very high (>0.9), thus stating it is very much capable of differentiating between

positive and negative instances or in this case, identify the person more easily

from the crowd.

• DenseNet201 has shown accuracy and top-5 accuracy at the same level as VGG16

but it lacks in terms of performance on other performance metrics.

• ResNet50V2 is found to be more capable of masked face recognition compared

to VGG16 when all the performance factors are taken into consideration as it is

32

performing highest in 3 out 5 performance criteria and 2nd highest in one of the

remaining criteria.

The following observations are made for the proposed models:

• RggNet has been advantages of both the ResNet50V2 and the VGG16 model.

• RggNet outperforms every other model in every performance criteria.

• The top-5 accuracy of RggNet is more than 0.8 which means that the actual

identity of the person under observation is in the top-5 predictions made by our

model.

• In terms of precision, RggNet has a value greater than 0.75, i.e., RggNet has a

very low false prediction rate over the positive instances.

• The AUC of 0.95 for RggNet throws the light that the prediction made by the

model is not just some random prediction but the model has identified the features

to predict the identity of the person.

Q Perform an investigation of whether the performance of the models differs

significantly or not.

Statistical tests are used to determine whether the performance of the models differ

significantly or not:

Applying Statistical test:

Step 1: Hypothesis formation

The null hypothesis (H0) and alternative hypothesis (Ha) are as follows:

H0: There is no statistical difference between the performance of the

models

Ha: There is a statistically significant difference between the performance

of the models.

Step 2: Selecting the statistical test

Since an evaluation of the difference between the performance of different

methods is to be evaluated, the Friedman test is selected.

Step 3: Applying test on performance results and calculating p-value.

33

χ2 = 12
𝑛𝑛𝑛𝑛(𝑛𝑛+1)

∑ 𝑅𝑅𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − 3𝑃𝑃(𝑘𝑘 + 1) (6.1)

where Ri is the individual rank of ith iteration, n is no of

data instances and k is no. of groups

Degree of Freedom (𝐷𝐷𝐷𝐷𝐷𝐷) = 𝑘𝑘 − 1 (6.2)

Table V: Computation of Ranks for Friedman Test

ResNet

50V2

VG

G16

Incepti

onV3

Xcep

tion

InceptionRe

snetV2

Mobile

NetV2

DenseN

et201

RGG

Net

Accuracy 2 4 8 7 5 6 3 1

Top-5

Accuracy
2 3.5 7 8 5 6 3.5 1

AUC 6 2 5 8 3 7 4 1

Precision 3 2 7 8 5 6 4 1

Recall 2 7 8 6 4 5 3 1

Rank

total
15 18.5 35 37 22 30 17.5 5

Average

Rank
3 3.7 7 7.4 4.4 6 3.5 1

On applying the Friedman test, Friedman's chi-square value (χ2) is found

to be 27.615752.

Degree of Freedom (DOF) = 7

Based on the calculated χ2 value, the p-value is 0.000258.

Step 4: Defining the level of significance

As the calculated p-values <0.01, the results are significant at significance

level (α) = 0.01.

Step 5: Deriving Conclusion

Since the calculated χ2 value is greater than the tabulated value, the null

hypothesis is rejected. Thus, it is concluded that the performance of the

models differs significantly.

Applying a Post-adhoc test to determine whether there is a significant difference between

RGGNet and other models:

34

Step 1: Hypothesis formation

The null hypothesis (H0) and alternative hypothesis (Ha) are as follows:

H01: The performance of the RGGNet model and ResNet50V2 model do

not differ significantly.

Ha1: The performance of the RGGNet model and ResNet50V2 model

differ significantly.

H02: The performance of the RGGNet model and VGG16 model do not

differ significantly.

Ha2: The performance of the RGGNet model and VGG16 model differ

significantly.

H03: The performance of the RGGNet model and InceptionV3 model do

not differ significantly.

Ha3: The performance of the RGGNet model and InceptionV3 model differ

significantly.

H04: The performance of the RGGNet model and Xception model do not

differ significantly.

Ha4: The performance of the RGGNet model and Xception model differ

significantly.

H05: The performance of the RGGNet model and InceptionResnetV2

model do not differ significantly.

Ha5: The performance of the RGGNet model and InceptionResnetV2

model differ significantly.

H06: The performance of the RGGNet model and MobileNetV2 model do

not differ significantly.

Ha6: The performance of the RGGNet model and MobileNetV2 model

differ significantly.

H07: The performance of the RGGNet model and DenseNet201 model do

not differ significantly.

35

Ha7: The performance of the RGGNet model and DenseNet201 model

differ significantly.

Step 2: Selecting the statistical test

Since the evaluation of the difference between the performance of

different methods (with equal sample size) using the Friedman test leads

to rejection of the null hypothesis and pairwise comparison is required, the

Nemenyi test is selected.

Step 3: Applying test and calculating CD.

𝐶𝐶𝐷𝐷 = 𝑞𝑞α�
𝑛𝑛(𝑛𝑛+1)
6𝑛𝑛

 (6.3)

The value of qα for eight subjects at α = 0.01 is 3.526. The calculated CD

value is found to be 5.462455711.

The following table is computed using average ranks calculated during the

Friedman test:

Table VI: Computation of Differences for Nemenyi Test

Pair
Pair

Difference
CD Difference

RGGNet – ResNet50V2 2 2 < 5.46

RGGNet – VGG16 2.7 2.7 < 5.46

RGGNet – InceptionV3 6 6 > 5.46

RGGNet – Xception 6.4 6.4 > 5.46

RGGNet – InceptionResnetV2 3.4 3.4 < 5.46

RGGNet – MobileNetV2 5 5 < 5.46

RGGNet – DenseNet201 2.5 2.5 < 5.46

36

Step 4: Defining the level of significance

The rank difference of pairs (RGGNet – InceptionV3 and RGGNet –

Xception) is higher than the computed critical distance at α =0.01. The

rank difference for other pairs is not significant at α =0.01.

Step 5: Deriving Conclusion

As the rank difference of pairs (RGGNet – InceptionV3 and RGGNet –

Xception) is higher than the computed critical distance, it can be

concluded that the RGGNet model significantly outperforms the

InceptionV3 model and Xception model. The difference is not significant

for the other techniques. All the null hypotheses except H03 and H04 cannot

be rejected.

37

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

The following conclusion has been made:

• Existing pre-trained deep learning models have been studied and compared in this

study.

• It has been found that ResNet50 has the most potential to solve the problem of masked

faces compared to any other pre-trained deep learning model available.

• The proposed architecture that is derived from ResNet has shown better accuracy and

other performance parameters compared to all the pre-trained models under

observation.

• Along with this, the performance of different deep learning models has been studied.

• A baseline has been generated for the state-of-the-art pre-trained models to work

upon.

The future scope of this project is as follows:

• Optimization of the existing deep learning models for performance improvement can

be performed.

• The proposed model architecture can be enhanced further by the use of layer

optimization in future iterations.

• Currently, transfer learning is utilized for faster training. Fine-tuning of layers can be

performed, i.e., the further scope of fine-tuning can be studied for these models in the

future.

• The results can act as a baseline for developing a better deep learning model for the

masked face recognition problem without using the actual face knowledge.

• The proposed model architecture can be utilized in different domains of deep learning

for further determining the capabilities of the model.

38

APPENDICES

Appendix 1: Training and Testing Results of Different Models

This appendix contains the training and testing results in detail that are reported in

Chapter 5. The various models for which plots are included in this appendix are as

follows:

• ResNet50V2 (Fig. 33)

• VGG16 (Fig. 34)

• InceptionV3 (Fig. 35)

• Xception (Fig. 36)

• InceptionResNetV2 (Fig. 37)

• MobileNetV2 (Fig. 38)

• DenseNet (Fig. 39)

• RGGNet (Fig. 40)

Fig. 33: ResNet50V2 Plots

39

Fig. 34: VGG16 Plots

Fig. 35: InceptionV3 Plots

40

Fig. 36: Xception Plots

Fig. 37: InceptionResNetV2

41

Fig. 38: MobileNetV2 Plots

Fig. 39: DenseNet201 Plots

42

Fig. 40: RGGNet Plots

Appendix 2: Python Code

This appendix contains the python code divided into sections that can be used to replicate

the project.

A 2.1 Importing Libraries

from glob import glob as gl
import keras as ks
from keras import metrics as met
from keras.preprocessing.image import ImageDataGenerator as IDG
from keras.callbacks import EarlyStopping as ES
from keras.applications.resnet_v2 import ResNet50V2 as RNETV2
from keras.applications.vgg16 import VGG16 as VGGNET
from keras.applications.inception_v3 import InceptionV3 as INCV3NET
from keras.applications.xception import Xception as XCPNET
from keras.applications.inception_resnet_v2 import InceptionResNetV2 as
INCRNETV2
from keras.applications.mobilenet_v2 import MobileNetV2 as MOBNETV2
from keras.applications.densenet import DenseNet201 as DENSENET
from keras.layers import Input as inp, Lambda as lbd, Dense as den,
Flatten as flt
from keras.models import Model as MdlObject
import pickle as pkl

43

A 2.2 Defining Constants

re-size all the images to this
img_size = [224, 224]
bat_size = 32
mode = 'categorical'
#init constants
training_path = '/content/test_large'
validating_path = '/content/test_small'
EpochCount = 25
early_stop = ES(
 monitor='val_accuracy',
 patience=3,
 min_delta=0.001
)

preweights='imagenet'
permit = False
lossfunc = 'categorical_crossentropy'
optimfunc = 'adam'
actfunc = 'softmax'

A 2.3 Defining Training and Testing Dataset

#Defining training and testing dataset
train_gen = IDG(rescale = 1./255, shear_range = 0.2,
 zoom_range = 0.2, horizontal_flip = True)

test_gen = IDG(rescale = 1./255)

train_dataset = train_gen.flow_from_directory('/content/test_large',
 target_size = img_size,
 batch_size = bat_size,
 class_mode = mode)

test_dataset = test_gen.flow_from_directory('/content/test_small',
 target_size = img_size,
 batch_size = bat_size,
 class_mode = mode)

A 2.4 Defining functions for RGGNet

from keras import layers
from keras.layers import Input as Inp, ZeroPadding2D as Zpd
from keras.layers import Conv2D as Con, MaxPool2D as MXPool
from keras.layers import BatchNormalization as BatNor, Activation as Act
from keras.layers import Add

def blockfunc(input_a, filterlen, kernels=3, stridesize=1,
 short_con=False, block_name=None):
 #Generate Residual Block
 axis_no = 3

 preactivation = BatNor(axis=axis_no, epsilon=1.001e-5,
 name=block_name +
'_preact_batchnormal')(input_a)

44

 preactivation = Act('relu', name=block_name +
'_preact_reluactivation')(preactivation)

 if short_con is True:
 shortcut_path = Con(4 * filterlen, 1, strides=stridesize,
 name=block_name + '_0con')(preactivation)
 else:
 shortcut_path = MXPool(1, strides=stridesize)(input_a) if
stridesize > 1 else Con(4 * filterlen, 1, strides=stridesize,
 name=block_name + '_0con')(input_a)

 input_a = Con(filterlen, 1, strides=1, use_bias=False,
 name=block_name + '_1con')(preactivation)
 input_a = BatNor(axis=axis_no, epsilon=1.001e-5,
 name=block_name +
'_1batchnormal')(input_a)
 input_a = Act('relu', name=block_name + '_1reluactivation')(input_a)

 input_a = Zpd(padding=((1, 1), (1, 1)), name=block_name +
'_2padding')(input_a)
 input_a = Con(filterlen, kernels, strides=stridesize,
 use_bias=False, name=block_name + '_2con')(input_a)
 input_a = BatNor(axis=axis_no, epsilon=1.001e-5,
 name=block_name +
'_2batchnormal')(input_a)
 input_a = Act('relu', name=block_name + '_2reluactivation')(input_a)

 input_a = Con(4 * filterlen, 1, name=block_name + '_3con')(input_a)
 input_a = layers.Add(name=block_name + '_output')([shortcut_path,
input_a])
 return input_a

def stacking_func(input_a, filterlen, blocklen, strfunc=2,
blocks_name=None):
 #Generate Stack of Repeated Blocks
 input_a = blockfunc(input_a, filterlen, short_con=True,
block_name=blocks_name + '_block1')
 for x in range(2, blocklen):
 input_a = blockfunc(input_a, filterlen, block_name=blocks_name +
'_block' + str(x))
 input_a = blockfunc(input_a, filterlen, stridesize=strfunc,
block_name=blocks_name + '_block' + str(blocklen))
 return input_a

def rggnet_module(layer_input_value,
 use_bias = True,
 weights = 'None',
 topmost_layer_include = False,
 pooltype=None,
 **kwargs):

 layer_img_input = layer_input_value

 axis_no = 3

 input_a = Zpd(padding=((3, 3), (3, 3)),
name='con1_padding')(layer_img_input)

45

 input_a = Con(64, 7, strides=2, use_bias=use_bias,
name='con1_convolution')(input_a)

 input_a = Zpd(padding=((1, 1), (1, 1)),
name='MaxPooling1_padding')(input_a)
 input_a = MXPool(3, strides=2, name='MXPooling1_pooling')(input_a)

 input_a = stacking_func(input_a, 64, 3, blocks_name='con2')
 input_a = stacking_func(input_a, 128, 4, blocks_name='con3')
 input_a = stacking_func(input_a, 256, 6, blocks_name='con4')
 input_a = stacking_func(input_a, 512, 3, strfunc=1, blocks_name='con5')

 input_a = BatNor(axis=axis_no, epsilon=1.001e-5,
name='post_batchnormalizing')(input_a)
 input_a = Act('relu', name='post_reluactivation')(input_a)

 if topmost_layer_include:
 input_a =
layers.GlobalAveragePooling2D(name='average_pooling')(input_a)
 input_a = layers.Dense(1000, activation='softmax',
name='probs')(input_a)
 else:
 if pooltype == 'max':
 input_a = layers.GlobalMaxPooling2D(name='maximum_pooling')(input_a)
 elif pooltype == 'avg':
 input_a =
layers.GlobalAveragePooling2D(name='average_pooling')(input_a)

 input_layer = layer_img_input

 # Generate model object
 modelobj = MdlObject(input_layer,input_a, name='My_RNet')

 return modelobj

A 2.5 Defining, Training, Testing and Saving Various Models

A 2.5.1 ResNet50V2 Model

Preprocess layer added to the face of ResNet50V2
rnet = RNETV2(input_shape=img_size + [3],
 include_top=permit,
 weights=preweights)

To keep existing weights
for fold in rnet.layers:
 fold.trainable = permit

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(rnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

46

#Defining Resnet50V2 model for 25 epochs
rnetmod = MdlObject(inputs=rnet.input, outputs=inferlayer)

Summary of the model
rnetmod.summary()

Defining loss and optimization function
rnetmod.compile(
 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
RNetFit = rnetmod.fit_generator(
 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset),
 callbacks=[early_stop]
)

model_namevalue='ResNet50V2__25epoch_model.h5'
model.save(model_namevalue)

model_history='ResNet50V2_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(RNetFit.history, file_pi)

A 2.5.2 VGG16 Model

Preprocess layer added to the face of VGG16
vggnet = VGGNET(input_shape=img_size + [3],
 include_top=permit,
 weights=preweights)

To keep existing weights
for fold in vggnet.layers:
 fold.trainable = permit

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(vggnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

#Defining VGG16 model for 25 epochs
vggnetmod = MdlObject(inputs=vggnet.input, outputs=inferlayer)

Summary of the model
vggnetmod.summary()

Defining loss and optimization function
vggnetmod.compile(

47

 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
VGGNetFit = vggnetmod.fit_generator(
 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset),
 callbacks=[early_stop]
)

model_namevalue='VGG16_25epoch_model.h5'
model.save(model_namevalue)

model_history='VGG16_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(VGGNetFit.history, file_pi)

A 2.5.3 InceptionV3 Model

Preprocess layer added to the face of InceptionV3
incnet = INCV3NET(input_shape=img_size + [3],
 include_top=permit,
 weights=preweights)

To keep existing weights
for fold in incnet.layers:
 fold.trainable = permit

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(incnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

#Defining InceptionV3 model for 25 epochs
incnetmod = MdlObject(inputs=incnet.input, outputs=inferlayer)

Summary of the model
incnetmod.summary()

Defining loss and optimization function
incnetmod.compile(
 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
IncNetFit = incnetmod.fit_generator(

48

 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset),
 callbacks=[early_stop]
)

model_namevalue='InceptionV3_25epoch_model.h5'
model.save(model_namevalue)

model_history='InceptionV3_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(IncNetFit.history, file_pi)

A 2.5.4 Xception Model

Preprocess layer added to the face of Xception
xpnet = XCPNET(input_shape=img_size + [3],
 include_top=permit,
 weights=preweights)

To keep existing weights
for fold in xpnet.layers:
 fold.trainable = permit

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(xpnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

#Defining Xception model for 25 epochs
xpnetmod = MdlObject(inputs=xpnet.input, outputs=inferlayer)

Summary of the model
xpnetmod.summary()

Defining loss and optimization function
xpnetmod.compile(
 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
XpNetFit = xpnetmod.fit_generator(
 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset),
 callbacks=[early_stop]
)

49

model_namevalue='Xception_25epoch_model.h5'
model.save(model_namevalue)

model_history='Xception_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(XpNetFit.history, file_pi)

A 2.5.5 InceptionResNetV2 Model

Preprocess layer added to the face of InceptionResNetV2
incrnet = INCRNETV2(input_shape=img_size + [3],
 include_top=permit,
 weights=preweights)

To keep existing weights
for fold in incrnet.layers:
 fold.trainable = permit

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(incrnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

#Defining InceptionResNetV2 model for 25 epochs
incrnetmod = MdlObject(inputs=incrnet.input, outputs=inferlayer)

Summary of the model
incrnetmod.summary()

Defining loss and optimization function
incrnetmod.compile(
 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
IncRNetFit = incrnetmod.fit_generator(
 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset),
 callbacks=[early_stop]
)

model_namevalue='InceptionResNetV2_25epoch_model.h5'
model.save(model_namevalue)

model_history='InceptionResNetV2_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(IncRNetFit.history, file_pi)

50

A 2.5.6 MobileNetV2 Model

Preprocess layer added to the face of MobileNetV2
mnet = MOBNETV2(input_shape=img_size + [3],
 include_top=permit,
 weights=preweights)

To keep existing weights
for fold in mnet.layers:
 fold.trainable = permit

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(mnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

#Defining MobileNetV2 model for 25 epochs
mnetmod = MdlObject(inputs=mnet.input, outputs=inferlayer)

Summary of the model
mnetmod.summary()

Defining loss and optimization function
mnetmod.compile(
 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
MNetFit = mnetmod.fit_generator(
 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset),
 callbacks=[early_stop]
)

model_namevalue='MobileNetV2_25epoch_model.h5'
model.save(model_namevalue)

model_history='MobileNetV2_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(MNetFit.history, file_pi)

A 2.5.7 DenseNet201 Model

Preprocess layer added to the face of DenseNet201
dnet = DENSENET(input_shape=img_size + [3],
 include_top=permit,
 weights=preweights)

To keep existing weights

51

for fold in dnet.layers:
 fold.trainable = permit

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(dnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

#Defining DenseNet201 model for 25 epochs
dnetmod = MdlObject(inputs=dnet.input, outputs=inferlayer)

Summary of the model
dnetmod.summary()

Defining loss and optimization function
dnetmod.compile(
 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
DNetFit = dnetmod.fit_generator(
 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset),
 callbacks=[early_stop]
)

model_namevalue='DenseNet201_25epoch_model.h5'
model.save(model_namevalue)

model_history='DenseNet201_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(DNetFit.history, file_pi)

A 2.5.8 RGGNet Model

Generating RGGNet Model Object

visible = Input(shape=(224, 224, 3))
Adding RGGNet model module
rggnet = rggnet_module(visible, 64)

To find number of classes in the dataset
imgfolders = gl('/content/test_large/*')

#Custom Layers
a = flt()(rggnet.output)
inferlayer = den(len(imgfolders), activation=actfunc)(a)

#Defining RGGNet model for 25 epochs

52

rggnetmod = MdlObject(inputs=rggnet.input, outputs=inferlayer)

Summary of the model
rggnetmod.summary()

Defining loss and optimization function
rggnetmod.compile(
 loss=lossfunc,
 optimizer=optimfunc,
 metrics=['accuracy','top_k_categorical_accuracy',
 met.AUC(), met.Precision(), met.Recall()]
)

#Performing training and testing for 25 epoches
RGGNetFit = rggnetmod.fit_generator(
 train_dataset,
 validation_data=test_dataset,
 epochs=EpochCount,
 steps_per_epoch=len(train_dataset),
 validation_steps=len(test_dataset)
)

model_namevalue='RGGNet_25epoch_model.h5'
model.save(model_namevalue)

model_history='RGGNet_25epoch_history.h5'
with open(model_history, 'wb') as file_pi:
 pkl.dump(RGGNetFit.history, file_pi)

53

REFERENCES

[1] Neo, H. F., Teo, C. C., & Teoh, A. B. J. (2010). Development of Partial Face

Recognition Framework. 2010 Seventh International Conference on Computer

Graphics, Imaging and Visualization. doi:10.1109/cgiv.2010.29

[2] Su, Y., Yang, Y., Guo, Z., & Yang, W. (2015). Face recognition with occlusion. 2015

3rd IAPR Asian Conference on Pattern Recognition

(ACPR). doi:10.1109/acpr.2015.7486587

[3] He, E. J., Fernandez, J. A., Kumar, B. V. K. V., & Alkanhal, M. (2016). Masked

correlation filters for partially occluded face recognition. 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP). doi:10.1109/icassp.2016.7471885

[4] Lin, S., Cai, L., Lin, X., & Ji, R. (2016). Masked face detection via a modified LeNet.

Neurocomputing, 218, 197–202. doi:10.1016/j.neucom.2016.08.056

[5] Wang, M., Wang, Z., & Li, J. (2017). Deep convolutional neural network applies to

face recognition in small and medium databases. 2017 4th International Conference

on Systems and Informatics (ICSAI). doi:10.1109/icsai.2017.8248499

[6] Coskun, M., Ucar, A., Yildirim, O., & Demir, Y. (2017). Face recognition based on

convolutional neural network. 2017 International Conference on Modern Electrical

and Energy Systems (MEES). doi:10.1109/mees.2017.8248937

[7] Wan, W., & Chen, J. (2017). Occlusion robust face recognition based on mask

learning. 2017 IEEE International Conference on Image Processing

(ICIP). doi:10.1109/icip.2017.8296992

[8] Guo, G., & Zhang, N. (2018). What Is the Challenge for Deep Learning in

Unconstrained Face Recognition? 2018 13th IEEE International Conference on

Automatic Face & Gesture Recognition (FG 2018). doi:10.1109/fg.2018.00070

[9] Elmahmudi, A., & Ugail, H. (2018). Experiments on Deep Face Recognition Using

Partial Faces. 2018 International Conference on Cyberworlds

(CW). doi:10.1109/cw.2018.00071

54

[10] Qu, X., Wei, T., Peng, C., & Du, P. (2018). A Fast Face Recognition System Based

on Deep Learning. 2018 11th International Symposium on Computational

Intelligence and Design (ISCID). doi:10.1109/iscid.2018.00072

[11] Tomodan, E. R., & Caleanu, C. D. (2018). Bag of Features vs Deep Neural

Networks for Face Recognition. 2018 International Symposium on Electronics and

Telecommunications (ISETC). doi:10.1109/isetc.2018.8583846

[12] Wu, G., Tao, J., & Xu, X. (2019). Occluded Face Recognition Based on the Deep

Learning. 2019 Chinese Control And Decision Conference

(CCDC). doi:10.1109/ccdc.2019.8832330

[13] Ejaz, M. S., Islam, M. R., Sifatullah, M., & Sarker, A. (2019). Implementation of

Principal Component Analysis on Masked and Non-masked Face Recognition. 2019

1st International Conference on Advances in Science, Engineering and Robotics

Technology (ICASERT). doi:10.1109/icasert.2019.8934543

[14] Khan, S., Ahmed, E., Javed, M. H., A Shah, S. A., & Ali, S. U. (2019). Transfer

Learning of a Neural Network Using Deep Learning to Perform Face Recognition.

2019 International Conference on Electrical, Communication, and Computer

Engineering (ICECCE). doi:10.1109/icecce47252.2019.8940754

[15] Ejaz, M. S., & Islam, M. R. (2019). Masked Face Recognition Using

Convolutional Neural Network. 2019 International Conference on Sustainable

Technologies for Industry 4.0 (STI). doi:10.1109/sti47673.2019.9068044

[16] Bhuiyan, M. R., Khushbu, S. A., & Islam, M. S. (2020). A Deep Learning Based

Assistive System to Classify COVID-19 Face Mask for Human Safety with YOLOv3.

2020 11th International Conference on Computing, Communication and Networking

Technologies (ICCCNT). doi:10.1109/icccnt49239.2020.9225384

[17] Adjabi, I., Ouahabi, A., Benzaoui, A., Taleb-Ahmed, A. (2020). Past, Present,

and Future of Face Recognition: A Review. Electronics 2020, 9, 1188.

doi:10.3390/electronics9081188

[18] Adnane Cabani, Karim Hammoudi, Halim Benhabiles, and Mahmoud Melkemi

(2021). MaskedFace-Net – A dataset of correctly/incorrectly masked face images in

the context of COVID-19. Smart Health, Volume 19, 2021.

doi:10.1016/j.smhl.2020.100144

55

[19] Li, Y., Guo, K., Lu, Y., and Lui L. (2021). Cropping and attention-based

approach for masked face recognition, Appl Intell, 2021. doi:10.1007/s10489-020-

02100-9

[20] Li, S. and Jain, A., 2011. “Handbook of Face Recognition”. 2nd ed. London:
Springer-Verlag London Limited, p.1.

	Candidate’s Declaration
	Certificate
	Acknowledgement
	Abstract
	Contents
	List of Figures
	List of Tables
	List of symbols and abbreviations
	Chapter 1 Introduction
	1.1 General
	1.2 Problem Formulation
	1.3 Objectives of the Project

	Chapter 2 Literature Review
	Chapter 3 Theoretical Concepts
	3.1 Face Recognition
	3.2 Basic Concepts of Convolutional Neural Network (CNN)
	3.3 The Architecture of CNN:
	3.3.1 Layers of CNN:

	3.4 Concept of Transfer Learning in the field of Deep Learning

	Chapter 4 Proposed model for face recognition
	Chapter 5 Experimental Setup
	5.1 Dataset
	5.2 Deep Learning Models under Observation
	5.3 Metrics for performance

	Chapter 6 Results and Discussion on Results
	Chapter 7 Conclusion and Future Scope
	Appendices
	Appendix 1: Training and Testing Results of Different Models
	Appendix 2: Python Code

	References

