
DESIGN AND VALIDATION OF
SOFTWARE MAINTAINABILITY

PREDICTION MODELS FOR
IMBALANCED DATA USING OBJECT

ORIENTED METRICS

By

KUSUM LATA
Roll No.: 2k16/Ph.D./CO/07

Under the guidance of
Dr. Ruchika Malhotra

Associate Professor, Discipline of Software Engineering,
Department of Computer Science & Engineering

Submitted in fulfillment of the requirements of the degree of
Doctor of Philosophy to the

DELHI TECHNOLOGICAL UNIVERSITY
(FORMERLY DELHI COLLEGE OF ENGINEERING)

SHAHBAD DAULATPUR, MAIN BAWANA ROAD, DELHI 110042
2020

Copyright ©November, 2020
Delhi Technological University, Shahbad Daulatpur,
Main Bawana Road, Delhi 110042
All rights reserved

Declaration

I, Kusum Lata, Ph.D. student Roll No.: 2k16/Ph.D./CO/07, hereby declare that

the thesis entitled “Design and Validation of Software Maintainability Prediction

Models for Imbalanced Data using Object Oriented Metrics” which is being sub-

mitted for the award of the degree of Doctor of Philosophy in Computer Science &

Engineering, is a record of bonafide research work carried out by me in the Department

of Computer Science & Engineering, Delhi Technological University. I further declare

that the work presented in the synopsis has not been submitted to any University or

Institution for any degree or diploma.

Date :

Place : Delhi

Kusum Lata

Roll No.: 2k16/Ph.D./CO/07

Department Of Computer Science & Engineering,

Delhi Technological University,

Delhi-110042

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI-110042

Date:

This is to certify that the work embodied in the thesis titled “Design and Valida-

tion of Software Maintainability Prediction Models for Imbalanced Data using

Object Oriented Metrics” has been completed by Ms. Kusum Lata Roll No.:

2k16/Ph.D./CO/07 under the guidance of Dr. Ruchika Malhotra towards fulfillment

of the requirements for the degree of Doctor of Philosophy of Delhi Technological

University, Delhi. This work is based on original research and has not been submitted

in full or in part for any other diploma or degree of any university.

Supervisor

Dr. RUCHIKA MALHOTRA

Associate Professor

Discipline of Software Engineering

Department of Computer Science & Engineering

Delhi Technological University, Delhi-110042

Acknowledgment

First and foremost, with a profound sense of gratefulness, I would like to express

my sincere thanks to my supervisor Dr. Ruchika Malhotra. She has been a mentor

throughout the journey of this research work. Without her consistent support and

continuous encouragement this research would not have been successfully completed.

It is such a blessing with an opportunity to carry this research under her supervision.

This would be impossible without her from dreaming about Ph.D. to unlocking my

potential for Ph.D. I would love to thanks for her priceless and intellectual support,

invaluable guidance, and sustained motivation. She has always guided me with

patience and her incredible knowledge all the time of this research work. I convey my

heartfelt thanks to her. I would remain obliged to her for motivating me throughout

the period of this research work.

I offer my heartiest thanks to Prof. Rajni Jindal, Head of Department and DRC

Chairperson, Department of Computer Science and Engineering, Delhi Technological

University, for her precious insights and guidance. I respectfully express my gratitude

towards all faculty members of the department for their support.

I praise my husband Mr. Shiv Kumar very much for his steadfast encouragement

and moral support along with patience and understanding. He has always inspired

me for hard work. I express my warm love and gratitude to my parents for all

their unconditional love and encouragement. Without their support, appreciation and

driving force it would never have been possible for me to achieve anything in my life.

I am grateful to my loving son, Tanishq who is the reason of immense happiness

and joy that helped me in coming out of many tired situations and gave me strength

during the various stages of my research.

Kusum Lata

Abstract

In today's era, software systems are becoming enormously large and complex. The

principal challenge confronted by software practitioners and engineers is that such

large and complex software projects have to be developed in a specified short period

and satisfying the client's requirements. Developing maintainable software not only

saves the effort during the maintenance, but it also results in saving the cost. The

problem of predicting the maintainability of software is extensively recognized in

the industry and much has been done on how maintainability can be predicted with

the help of software metrics. Software maintainability prediction involves the use

of various software metrics as predictor variables that are representative of software

characteristics such as size, coupling, cohesion and inheritance. Furthermore, we

need learning techniques for developing efficient prediction models that are able

to determine the software parts having low maintainability or high maintainability.

The various elements involved in the development of software maintainability pre-

diction models are required to be analysed and improved to yield efficient software

maintainability prediction models.

This thesis analyses and validates the relationship between various Object-Oriented

metrics and software maintainability. The empirical analyses were conducted using

machine learning, search-based and hybridized techniques with a goal of developing

the effective models to predict software maintainability during the initial phases of

software development.

For developing the models for the predictive modelling tasks, it is tremendously

essential to look into the data distribution of the underlying datasets. Because the

imbalanced distribution of the dataset possess enormous hurdle in the training of the

models. This thesis is focused on the improvement of software maintainability by

developing models by handling imbalanced data. In the imbalanced data problem

addressed in this thesis, the classes with low maintainability are regarded as minority

classes while the classes with high maintainability are regarded as the majority classes.

The prime contribution of this thesis is the investigation of techniques for developing

effective software maintainability prediction models from imbalanced data.

In practice, researchers might not be able to obtain balanced training data with a

proportionate number of low maintainability and high maintainability classes. The

data resampling techniques have been applied in this thesis for developing software

maintainability prediction models to solve the issue of obtaining impractical models

yielded from imbalanced data. After obtaining balanced data by applying data re-

sampling techniques, software maintainability prediction models are developed with

various machine learning techniques.

Moreover, the use of search-based techniques, a sub-class of machine learning

techniques is limited in the domain of maintainability prediction. The search-based

techniques are meta heuristic techniques that find an optimal or near-optimal solution

amongst a large population of candidate solutions. The research community con-

sistently explores new methods and techniques for developing better and effective

prediction models. A promising approach for improvement of existing classifiers is

ensemble methodology that aggregates various individual classifiers to provide stable

results. In this thesis, we have also investigated the use of ensemble methodology

by aggregating them with data resampling techniques. The aggregation of ensem-

ble techniques with data resampling is called as ensemble learners for imbalanced

data problem. Another contribution of this thesis is an investigation of hybridized

techniques that combine search-based and machine learning techniques into a single

approach. The hybridized techniques have been explored after data resampling to

develop effective software maintainability prediction models from imbalanced data.

To contribute to handle imbalanced data in software maintainability prediction, we

also propose a novel oversampling technique termed Modified Safe Level Synthetic

Minority Oversampling Technique in this thesis.

The data collection for training the prediction model is one of the difficult tasks

because in most cases either such data is unavailable or it is difficult to collect. To

overcome the limitation of historical data collection, the development of generalized

maintainability prediction models with inter-project validation is essential. Thus, the

situation in which there is the inadequacy of resources and lack of time to capture

training data for the development of maintainability prediction model, inter-project

validation can be employed. The applicability of inter-project validation for software

maintainability prediction has also been investigated in this thesis.

Contents

List of Tables ix

List of Figures xiv

List of Publications xvi

Abbreviations xix

1 Introduction 1

1.1 Introduction . 1

1.2 What is Software Maintenance? 2

1.2.1 Types of Software Maintenance 3

1.3 What is Software Maintainability? 4

1.4 What is Predictive Modelling? . 5

1.4.1 Steps in Predictive Modelling 5

1.4.2 Predictive Modelling for Software Maintainability 7

1.4.3 Issues in Predictive Modelling for Software Maintainability 8

1.5 What is Imbalanced Data Problem? 10

1.6 Tackling with the Imbalanced Data Problem 11

1.6.1 Data Level Techniques . 11

1.6.2 Algorithm Level Techniques 12

1.7 Literature Survey . 12

i

1.7.1 Software Metrics . 13

1.7.2 Software Maintainability Prediction 15

1.7.3 Software Quality Predictive Modelling using Imbalanced Data 21

1.8 Objectives of the Thesis . 22

1.8.1 Vision . 22

1.8.2 Focus . 22

1.8.3 Goals . 23

1.9 Organization of the Thesis . 27

2 Research Methodology 33

2.1 Introduction . 33

2.2 Research Process . 34

2.3 Define Research Problem . 34

2.4 Literature Survey . 35

2.5 Defining Variables . 36

2.5.1 Independent Variables (OO metrics) 36

2.5.2 Dependent Variable . 40

2.6 Data Analysis Methods . 41

2.6.1 Artificial Neural Network 41

2.6.2 Decision Tree . 42

2.6.3 Rule-Based Classifiers . 43

2.6.4 Ensemble Learning Techniques 44

2.6.5 Logistic Regression . 45

2.6.6 Support Vector Machine 47

2.6.7 Instance-based Learning Techniques 48

2.6.8 Genetic Algorithm based Classifier System 51

2.6.9 Learning Classifier System 52

2.6.10 Decision Trees with Genetic Algorithm 55

ii

2.6.11 Constricted and Linear Decreasing Weight Particle Swarm

Optimization . 56

2.6.12 Particle Swarm Optimization with Linear Discriminant Analysis 58

2.6.13 Genetic-Fuzzy Based Classification Techniques 59

2.7 Experimental Design Framework 61

2.7.1 Empirical Data Collection 61

2.7.2 Software Systems used for Data Collection 62

2.7.3 Data collection Procedure 63

2.7.4 Data Preprocessing . 66

2.7.5 Data Balancing . 72

2.7.6 Prediction Model Development and Validation 72

2.7.7 Performance Measures . 74

2.7.8 Statistical Analysis . 79

3 Systematic Literature Review 83

3.1 Introduction . 83

3.2 Review Protocol . 86

3.2.1 Search Strategy . 86

3.2.2 Inclusion and Exclusion Criteria 87

3.2.3 Quality Assessment Criteria 88

3.3 Review Results . 89

3.3.1 Results Specific to RQ1 90

3.3.2 Results Specific to RQ2 93

3.3.3 Results Specific to RQ3 95

3.3.4 Results Specific to RQ4 97

3.3.5 Results Specific to RQ5 102

3.3.6 Results Specific to RQ6 107

3.3.7 Results Specific to RQ7 108

iii

3.4 Discussion and Future Directions 110

4 Software Maintainability Prediction using Machine Learning Techniques

by Handling Imbalanced Data 115

4.1 Introduction . 115

4.2 Research Background . 118

4.2.1 Independent and Dependent Variables 118

4.2.2 Datasets . 119

4.2.3 Data Resampling . 119

4.2.4 Model Development and Validation 119

4.2.5 Hypothesis Evaluation using Statistical Tests 120

4.3 Research Methodology . 121

4.3.1 SMOTE . 121

4.3.2 BSMOTE . 122

4.3.3 SafeSMOTE . 123

4.3.4 Adasyn . 123

4.3.5 SMOTE-TL . 124

4.3.6 SMOTE-ENN . 124

4.3.7 SPIDER . 125

4.3.8 ROS and RUS . 126

4.3.9 CNN and CNN-TL . 127

4.3.10 NCL . 127

4.3.11 CPM . 128

4.4 Results and Analysis . 128

4.4.1 Results Specific to RQ1 128

4.4.2 Results Specific to RQ2 130

4.4.3 Results Specific to RQ3 141

4.5 Discussion . 143

iv

5 Analysis of Ensemble Techniques for Imbalance Data Problem 147

5.1 Introduction . 147

5.2 An Overview of Ensembles for Imbalanced Data Problem 150

5.2.1 Boosting-based Ensembles 150

5.2.2 Bagging-based Ensembles 155

5.2.3 Hybrid Ensembles . 158

5.3 Research Background . 159

5.3.1 Independent and Dependent Variables 159

5.3.2 Empirical Data Collection and Preprocessing 159

5.3.3 Prediction Model Development and Evaluation 160

5.3.4 Statistical Analysis and Hypothesis Evaluation 160

5.4 Results and Analysis . 160

5.4.1 Answer Specific to RQ1 161

5.4.2 Answer Specific to RQ2 164

5.4.3 Answer Specific to RQ3 170

5.5 Discussion . 179

6 Empirical Evaluation of Search-Based Techniques for Software Main-

tainability Prediction with Imbalanced Data 181

6.1 Introduction . 181

6.2 Elements of Experimental Design 184

6.2.1 Dependent and Independent Variables 184

6.2.2 Datasets . 184

6.2.3 Data Resampling Techniques 184

6.2.4 Model Development and Evaluation 185

6.3 Results and Analysis . 186

6.3.1 CFS Results . 186

6.3.2 Results Specific to RQ1 186

v

6.3.3 Results Specific to RQ2 191

6.3.4 Results Specific to RQ3 209

6.3.5 Results Specific to RQ4 213

6.4 Discussion . 216

7 Hybridized Techniques for Software Maintainability Prediction with Im-

balanced Data 219

7.1 Introduction . 219

7.2 Framework of Experiment . 221

7.2.1 Datasets and Variables used for Empirical Validation 221

7.2.2 Model Development and Validation 222

7.2.3 Statistical Analysis . 222

7.3 Results and Analysis . 223

7.3.1 Results and Analysis of RQ1 223

7.3.2 Results and Analysis of RQ2 236

7.3.3 Results and Analysis of RQ3 241

7.4 Discussion . 245

8 Modified Safe Level Synthetic Minority Oversampling Technique for Han-

dling Imbalanced Data in Software Maintainability Prediction 247

8.1 Introduction . 247

8.2 The Proposed MSLSMOTE Technique 250

8.3 Research Methodology . 254

8.3.1 Datasets and Variables . 254

8.3.2 Model Development and Evaluation 254

8.4 Results and Analysis . 255

8.4.1 Results and Analysis of RQ1 255

8.4.2 Results and Analysis of RQ2 265

8.5 Comparison of Various Studies . 269

vi

8.6 Discussion . 273

9 Inter-Project Validation For Software Maintainability Prediction 275

9.1 Introduction . 275

9.2 Research Methodology . 278

9.2.1 Independent and Dependent Variables 278

9.2.2 Empirical Data Collection 279

9.2.3 Model Development and Performance Evaluation 279

9.3 Inter-Project Validation Results . 279

9.3.1 Answer Specific to RQ1 279

9.4 Ten Fold Cross-Validation Results 282

9.4.1 Answer Specific to RQ2 283

9.5 Statistical Analysis using Wilcoxon Signed-Rank Test 285

9.6 Discussion . 287

10 Conclusion 289

10.1 Summary of the Work . 289

10.2 Application of the Work . 295

10.3 Future Work . 296

Appendices 299

Bibliography 305

Supervisor’s Biography 336

Author’s Biography 337

vii

List of Tables

2.1 Independent Variables . 37

2.2 Details of Software Projects . 68

2.3 Results of Outlier Analysis . 69

2.4 Results of Data Discretization . 71

3.1 Quality Assessment Questionnaire 87

3.2 Description of Primary Studies . 88

3.3 Distribution of Studies according to various Techniques 91

3.4 Most Popular Algorithm from Various Categories of ML Techniques 93

3.5 Performance Measures used in Literature Studies 98

3.6 Description of Cross-validation methods used in Selected Primary

Studies . 100

3.7 Performance of SMP Models Developed using ML Techniques . . . 103

3.8 Performance statistics of SMP Models using Statistical Techniques . 105

3.9 Performance of ML Techniques on different Datasets 107

3.10 Classification of Threats to Validity Reported by Primary Studies . . 108

4.1 G-Mean and Balance Results on Imbalanced Datasets 130

4.2 G-Mean Results for Bcel Dataset after Data Resampling 132

4.3 G-Mean Results for Betwixt Dataset after Data Resampling 132

4.4 G-Mean Results for Io Dataset after Data Resampling 133

ix

4.5 G-Mean Results for Ivy Dataset after Data Resampling 133

4.6 G-Mean Results for Jcs Dataset after Data Resampling 134

4.7 G-Mean Results for Lang Dataset after Data Resampling 134

4.8 G-Mean Results for Log4j Dataset after Data Resampling 135

4.9 G-Mean Results for Ode Dataset after Data Resampling 135

4.10 Balance Results for Bcel Dataset after Data Resampling 137

4.11 Balance Results for Betwixt Dataset after Data Resampling 137

4.12 Balance Results for Io Dataset after Data Resampling 138

4.13 Balance Results for Ivy Dataset after Data Resampling 138

4.14 Balance Results for Jcs Dataset after Data Resampling 139

4.15 Balance Results for Lang Dataset after Data Resampling 139

4.16 Balance Results for Log4j Dataset after Data Resampling 140

4.17 Balance Results for Ode Dataset after Data Resampling 140

4.18 Friedman Ranking based on G-Mean and Balance 141

4.19 Wilcoxon Test Results . 143

5.1 Performance of SMP Models Developed using Classic Ensembles and

Base Classifier . 161

5.2 Wilcoxon Test Results for Classic Ensembles and Base classifier . . 162

5.3 G-Mean Results for Models Developed using Bagging-based Ensembles164

5.4 Balance Results for Models Developed using Bagging-based Ensembles164

5.5 G-Mean and Balance Results for Models Developed using Boosting-

based Ensembles . 164

5.6 G-Mean and Balance Results for Models Developed using Hybrid

Ensembles . 165

5.7 Friedman Test Results for Bagging-based Ensembles 171

5.8 Wilcoxon Signed Rank Test Results for Bagging-based Ensembles . 173

5.9 Friedman Test results for Boosting-based Ensembles 174

x

5.10 Wilcoxon Signed Rank Test Results for Boosting-based Ensembles . 176

5.11 Friedman Test Results for Hybrid Ensembles 177

5.12 Wilcoxon Signed Rank Test Results for Hybrid Ensembles 179

6.1 CFS Results . 189

6.2 G-Mean Results of SMP Models on Imbalanced Datasets 189

6.3 Balance Results of SMP Models on Imbalanced Datasets 190

6.4 G-Mean Results of SMP Models after Data Resampling on Bcel Dataset193

6.5 G-Mean Results of SMP Models after Data Resampling on Betwixt

Dataset . 194

6.6 G-Mean Results of SMP Models after Data Resampling on Io Dataset 195

6.7 G-Mean Results of SMP Models after Data Resampling on Ivy Dataset196

6.8 G-Mean Results of SMP Models after Data Resampling on Jcs Dataset197

6.9 G-Mean Results of SMP Models after Data Resampling on Lang Dataset198

6.10 G-Mean Results of SMP Models after Data Resampling on Log4j

Dataset . 199

6.11 G-Mean Results of SMP Models after Data Resampling on Ode Dataset200

6.12 Balance Results of SMP Models after Data Resampling on Bcel Dataset201

6.13 Balance Results of SMP Models after Data Resampling on Betwixt

Dataset . 202

6.14 Balance Results of SMP Models after Data Resampling on Io Dataset 203

6.15 Balance Results of SMP Models after Data Resampling on Ivy Dataset204

6.16 Balance Results of SMP Models after Data Resampling on Jcs Dataset 205

6.17 Balance Results of SMP Models after Data Resampling on Lang Dataset206

6.18 Balance Results of SMP Models after Data Resampling on Log4j

Dataset . 207

6.19 Balance Results of SMP Models after Data Resampling on Ode Dataset208

6.20 Results of Friedman Test . 210

xi

6.21 Results of Wilcoxon Test . 212

6.22 Friedman Test Results for Performance of Classification Techniques 215

6.23 Wilcoxon Test Results for Performance of Classification Techniques 215

7.1 G-Mean and Balance Results for Bcel Dataset 225

7.2 G-Mean and Balance Results for Betwixt Dataset 226

7.3 G-Mean and Balance Results for Io Dataset 227

7.4 G-Mean and Balance Results for Ivy Dataset 228

7.5 G-Mean and Balance Results for Jcs Dataset 229

7.6 G-Mean and Balance Results for Lang Dataset 230

7.7 G-Mean and Balance Results for Log4j Dataset 231

7.8 G-Mean and Balance Results for Ode Dataset 232

7.9 Friedman Ranking based on G-Mean and Balance 238

7.10 Wilcoxon Test Results of Adasyn with all other Resampling Tech-

niques w.r.t G-Mean and Balance 240

7.11 Wilcoxon Test Results of SafeSMOTE with all other Resampling

Techniques w.r.t G-Mean and Balance 240

7.12 Friedman ranking of HB techniques 242

7.13 Wilcoxon Test Results of SafeSMOTE with all other Resampling

Techniques w.r.t. G-Mean and Balance 243

8.1 Results on Imbalanced Data . 255

8.2 AUC Result of SMP Models . 260

8.3 Balance Result of SMP Models . 262

8.4 G-Mean Result of SMP Models 263

8.5 Friedman Test Ranking . 267

8.6 Friedman Test Ranking . 268

8.7 Results of Comparison of Classification Techniques 270

8.8 Results of Comparison of Imbalance Learning Techniques 270

xii

9.1 Performance of Click dataset using inter-project validation 280

9.2 Performance of Maven dataset using inter-project validation 281

9.3 Ranking produced by Friedman Test According to MMRE for inter-

Project Validation . 282

9.4 Performance of Click dataset using Ten-Fold cross-validation 283

9.5 Performance of Maven dataset using Ten-Fold cross-validation . . . 283

9.6 Ranking produced by Friedman Test according to MMRE for Ten-

Fold cross-validation . 284

9.7 Results of Wilcoxon Test on cross-validation vs Ten fold validation . 286

xiii

List of Figures

1.1 Steps in Predictive Modeling . 6

2.1 Research Process . 34

2.2 Experimental Design for Developing SMP Models 61

2.3 Data Collection Procedure . 64

2.4 Ten-fold Cross-Validation . 74

2.5 Inter-Project Validation . 75

2.6 Confusion Matrix . 75

3.1 Year-wise Distribution of Primary Studies. 90

3.2 Taxonomy of Techniques used for SMP 92

3.3 Types of Datasets used for SMP 95

3.4 Distribution of Studies according to Metrics used 97

3.5 Distribution of Studies according to Performance Measures 99

3.6 Distribution of Studies according to Cross-validation Methods . . . 101

3.7 Distribution of Studies according to Statistical Tests 101

3.8 Performance of ML techniques in terms of MMRE 104

3.9 Performance of ML techniques in terms of Pred(25) 104

3.10 Performance of Statistical techniques in terms of MMRE and Pred(25) 106

4.1 Performance of SMP Models on Imbalanced data 129

4.2 Box-plots for G-Mean Results after Data Resampling 136

xiv

4.3 Box-plots for Balance Results after Data Resampling 136

5.1 Ensembles to Address Imbalanced Data Problem 151

5.2 Average G-Mean of different Ensemble Techniques 166

5.3 Average Balance of different Ensemble Techniques 167

6.1 Median G-Mean values of SMP Models Developed For Imbalanced

Datasets . 188

6.2 Median Balance values of SMP Models Developed For Imbalanced

Datasets . 188

6.3 Median Balance values of SMP Models Developed with SB and ML

Techniques after Data Resampling 192

6.4 Median G-Mean values of SMP Models Developed with SB and ML

Techniques after Data Resampling 209

7.1 Boxplot analysis of G-Mean Results after Applying Data Resampling

for Different Datasets (a) Bcel (b) Betwixt (c) IO (d) Ivy (e) JCS (f)

Lang (g) Log4j (h) Ode. 233

7.2 Boxplot analysis of Balance Results after Applying Data Resampling

for Different Datasets (a) Bcel (b) Betwixt (c) IO (d) Ivy (e) JCS (f)

Lang (g) Log4j (h) Ode. 234

8.1 MSLSMOTE Pseudocode . 252

8.2 The Results (a) average AUC (b) average G-Mean (c) average Balance

of SMP Models . 266

9.1 Experimental Framework for Developing SMP Models using Click

Project . 278

xv

List of Publications

Papers Accepted/Published in International Journals

1. Ruchika Malhotra and Kusum Lata, “A Systematic Literature Review on Empir-

ical Studies Towards Prediction of Software Maintainability”, Soft Computing,

2020 (Impact factor: 2.784). (https://doi.org/10.1007/s00500-020-05005-4)

2. Ruchika Malhotra and Kusum Lata, “An Empirical Study to Investigate the

Impact of Data Resampling Techniques on the Performance of Class Main-

tainability Prediction Models“, Neurocomputing, 2020 (Impact factor: 4.072).

(https://doi.org/10.1016/j.neucom.2020.01.120)

3. Ruchika Malhotra and Kusum Lata, “An Empirical Study on Predictability of

Software Maintainability using Imbalanced Data“, Software Quality Journal,

2020 (Impact factor: 2.141). (https://doi.org/10.1007/s11219-020-09525-y)

4. Ruchika Malhotra and Kusum Lata, “Using Ensembles for Class-Imbalance

Problem to Predict Maintainability of Open Source Software”, International

Journal of Reliability, Quality and Safety Engineering, Vol. 27, No. 5, 2020

(Impact factor: 3.275).

xvi

Papers Accepted/Published in International Conferences

5. Ruchika Malhotra and Kusum Lata, “Using Hybridized Techniques for Pre-

diction of Software Maintainability using Imbalanced data, In 10th IEEE In-

ternational Conference on Cloud Computing, Data Science Engineering, pp.

787-792, Amity University, Noida, India, 2020.

6. Ruchika Malhotra and Kusum Lata, “Improving Software Maintainability Pre-

dictions using Data Oversampling and Hybridized Techniques”, In IEEE World

Congress on Computational Intelligence, pp. 1-7, Glasgow, United Kingdom,

2020.

7. Ruchika Malhotra and Kusum Lata, “Tackling the Imbalanced Data in Software

Maintainability Prediction using Ensembles for Class Imbalance Problem“ In

International Conference on Recent Trends in Engineering, Technology and

Business Management (ICRTETBM), Amity University, Noida, 2019.

8. Ruchika Malhotra and Kusum Lata, “On the Application of Cross-Project Vali-

dation for Predicting Maintainability of Open Source Software using Machine

Learning Techniques”, In 7th IEEE International Conference on Reliability, In-

focom Technologies and Optimization (Trends and Future Directions) (ICRITO),

pp. 175-181, Amity University, Noida, 2018.

9. Ruchika Malhotra and Kusum Lata, “An Exploratory Study For Predicting

Maintenance Effort using Hybridized Techniques”, In Proceedings of the 10th

Innovations in Software Engineering Conference (ISEC), pp. 26-33, Jaipur,

Rajasthan, 2017.

xvii

Papers Communicated in International Journals

10. Ruchika Malhotra and Kusum Lata, “Handling Class Imbalance Problem in

Software Maintainability Prediction: An Empirical Investigation“, Frontiers of

Computer Science, 2020 (Communicated after major revision).

11. Ruchika Malhotra and Kusum Lata, “Using Hybridized Techniques with Class

Imbalance Learning for Software Maintainability Prediction“, Automated Soft-

ware Engineering, 2020.

12. Ruchika Malhotra and Kusum Lata, ”Modified Safe-Level Synthetic Minor-

ity Oversampling Technique for Handling the Imbalanced data in Software

Maintainability Prediction”, IEEE Transactions on Reliability, 2020.

xviii

Abbreviations

AdaBoost Adaptive Boosting

ADT Abstract Data Types

Adasyn Adaptive Synthetic Sampling

AR Additive Regression

AHF Attribute Hiding Factor

AIF Attribute Inheritance Factor

AMC Average Method Complexity

ANA Average Number of Ancestors

ANN Artificial Neural Network

ANFIS Adaptive Neuro Fuzzy Inference System

AUC Area Under Receiver Operating Characteristic Curve

Bagging Bootstarp Aggregation

BBN Bayesian Belief Network

BN Bayesian Networks

BNGE Batch Nested Generalized Exemplar

BIOHEL Bioinformatics based Hierarchical Evolutionary Learning

Ca Afferent Coupling

CAM Cohesion Among Methods of a Class

CART Classification and Regression Tree

CBM Coupling Between Methods of a Class

CBO Coupling Between Objects

xix

Ce Efferent Coupling

CFS Correlation-based Feature Selection

C&K Chidamber and Kemerer

CKJM Chidamber and Kemerer Java Metrics

CNN Condensed Nearest Neighbor

CNN-TL Condensed Nearest Neighbor with Tomek's Link

CPM Class Purity Maximization

CPSO Constricted Particle Swarm Optimization

CS Class Size metric

CIS Class Interface Size

DAC Data Abstraction Coupling

DAM Data Access Metric

DCC Direct Class Coupling

DCRS Defect Collection and Reporting System

DIT Depth of Inheritance Tree

DT Decision Trees

DT-GA Decision Trees with Genetic Algorithms

DS Decision Stump

FN False Negative

FP False Positive

EACH Exemplar-Aided Constructor of Hyper-rectangles

GA Genetic Algorithm

GA-Int Genetic Algorithm based classifier with Intervalar rules

GA-ADI Genetic Algorithm based classifier with Adaptive Discretization Intervals

GGA Generational Genetic Algorithm for Instance Selection

GFS Genetic Fuzzy System

GFS-AB Genetic Fuzzy System with AdaBoost

xx

GFS-LB Genetic Fuzzy System with LogitBoost

GFS-

MaxLB

Genetic Fuzzy System with LogitBoost and Single Winner Inference

GFS-GP Fuzzy Learning based on Genetic Programming

GFS-SP GFS-GP with Grammar Operators and Simulated Annealing

GFS-GPG Fuzzy Learning based on Genetic Programming Grammar Operators

GFS-GCCL Fuzzy rule approach based on a Genetic Cooperative Competitive Learning

GP Genetic Programming

GMDH Group Method of Data Handling

GP Genetic Programming

HB Hybridized

IC Inheritance Coupling

IGA Intelligent Genetic Algorithm for Edition

IH-ICP Information flow-based Inheritance Coupling

IQR Inter Quartile Range

IRBFNN Incremental Radial Basis Function Neural Network

KEEL Knowledge Extraction based on Evolutionary Learning

KNN K Nearest Neighbor

LB LogitBoost

LCOM Lack of Cohesion in Methods

LCC loose Class Cohesion

LCS Learning Classifier System

LDWPSO Linear decreasing weight particle swarm optimization

LDA Linear Discriminant Analysis

LOOCV Leave-one-out Cross Validation

LR Logistic Regression

MARE Mean Absolute Relative Error

xxi

MAE Mean Absolute Error

MFA Method of Functional Abstraction

MHF Method Hiding Factor

ML Machine Learning

MLP-BP MultiLayer Perceptron with Backpropagation

MLP-CG MultiLayer Perceptron with Conjugate Learning

MRE Magnitude of Relative Error

MMRE Mean Magnitude of Relative Error

MdMRE Median Magnitude of Relative Error

MOA Measure of Aggression

MOOD Metrics for Object-Oriented Design

MLR Multiple Linear Regression

MARS Multivariate Adaptive Regression Splines

MPC Message Pass Coupling

MPLCS Memetic Pittsburgh Learning Classifier System

MSE Mean Square Error

MSLSMOTE Modified Safe Level SMOTE

NB Naive Bayes

NCL Neighborhood Cleaning Rule

NNEP Neural Net Evolutionary Programming

NOA Number of Operations Added by a subclass

NOC Number of Children

NOH Number of Hierarchies

NOM Number of Methods

NOO Number of Operations Overridden

NIH-ICP Non-inheritance information flow-based coupling

NPM Number of Public Methods

xxii

OO Object-Oriented

PBIL Population-Based Incremental Learning

PSO Particle Swarm Optimization

PSOLDA Particle Swarm Optimization with Linear Discriminant Analysis

Pred(q) Prediction at Level q

PUBLIC Pruning and Building Integrated in Classification

QMOOD Quality Model for Object-Oriented Design

QUES Quality Evaluation System

RBFNN Radial Basis Function Neural Network

REP Reduces Error Pruning

RF Random Forest

RFC Response For a Class

RIPPER Repeated Incremental Pruning to Produce Error Reduction

RISE Rule Induction from a Set of Exemplars

RMSE Root Mean Square Error

ROC Receiver Operating Characteristic Curve

RUS Random Undersampling

RQ Research Question

SB Search Based

SE Standard Error

SEM Standard Error of the Mean

SGA Steady-State Genetic Algorithm for Instance Selection

SLIPPER Simple Learner with Iterative Pruning to Produce Error Reduction

SLOC Source Lines Of Code

SSMA Steady-State Memetic Algorithm for Instance Selection

SMOTE Synthetic Minority Oversampling Technique

SafeSMOTE Safe Level SMOTE

xxiii

SMOTE-TL Synthetic minority oversampling technique with Tomek's Link

SMOTE-

ENN

Synthetic Minority Oversampling Technique with Edited Nearest Neighbor

SPIDER Selective Preprocessing of Imbalanced Data

SIX Specialization Index

UCS Supervised Classifier System

SVM Support Vector Machine

TN True Negative

TP True Positive

TCC Tight Class Cohesion

UIMS User Interface Management System

WEKA Waikato Environment for Knowledge Analysis

WMC Weighted Methods of a Class

XCS X-Classifier System

Chapter 1

Introduction

1.1 Introduction

With the ever-increasing demands of new software applications based on cutting

edge technologies, the complexity of software systems is increasing day by day. The

development of maintainable software is becoming a challenge for the software pro-

gramming community. Maintenance cost is approximated to be 80% of the total cost

of software development, and with the increasing complexity of software systems,

this cost can be even more [1]. It is very uneconomical and impractical to develop

software that cannot be modified easily. So, the development of maintainable software

systems substantially reduces future maintenance costs and time [2]. Nowadays, soft-

ware development has shifted towards Object-Oriented (OO) software methodology

because OO software systems have better understandability, and quality [3]. The

classes are the fundamental units in OO software development that are expected to

have high quality and maintainability [4]. Software classes with low maintainability

must be precisely tested in the testing phase to get rid of future faults [5]. Various

studies in the literature advocated the prediction of maintainability by establishing

1

What is Software Maintenance?

a relation between the OO metrics with software maintainability [6–9]. However,

significant problem is still unidentified and unsolved in software maintainability pre-

diction (SMP). This problem is the imbalanced data problem. The software classes

with low maintainability requires more revisions in the maintenance period, and the

prediction of such classes in the earlier phases is the prime concern of the software

developers. However, in most of the maintainability prediction datasets, the classes

with low maintainability are rare. If in a maintainability prediction dataset, the data

points of low maintainability class are few, it is challenging to train the prediction

models so as the predict the unseen data points of both classes (i.e., a class with low

maintainability or high maintainability) with reasonable accuracy. Therefore, the

focus of this thesis is the improvement of SMP models handling imbalanced data

problem. This chapter introduces the basic concepts involved in the thesis and the

motivation of the work. First of all, the basic terms like software maintenance, types

of software maintenance (Section 1.2), and software maintainability (Section 1.3) are

defined. Next, the predictive modeling and its steps for developing a predictive model,

and issues in predictive modeling for SMP are discussed in Section 1.4. Section

1.5 discusses the imbalanced data problem. The way to tackle the imbalanced data

problem is discussed in Section 1.6. Section 1.7 discusses the literature work. The

remainder of the chapter discusses the objectives of the thesis (Section 1.8) and the

organization of the thesis is presented in Section 1.9.

1.2 What is Software Maintenance?

Software maintenance is a very wide-ranging activity. It is defined as the activity of

making changes in the software system once it has been delivered to the customer and

is operational at the customer's site. The definition of IEEE [4] is as follows:

”Software maintenance is the process of changing a software program or object

2

What is Software Maintenance?

after delivery to fix errors, improve performance or other attributes, or adapt to a

changing environment.”

This definition reflects the general idea that software maintenance is a post-

deployment activity, which is initiated after the final release of software. It includes

all activities that keep the software operational and meet the user's requirements. The

life cycle of software is the time from its initial conception until it is expired. In the

software life cycle, the various phases include the collection of requirements, soft-

ware design, implementation, testing and validation of software, and finally software

maintenance. All of these phases are related to software development except software

maintenance. Software maintenance is typically related to those activities that are

carried out after the software development.

Software maintenance as a life cycle phase is defined as activities required to

keep a software system operational and responsive to its users after it is accepted

and placed into production. It is also defined as a set of activities that bring changes

in the baseline products. The change is essential to improve the performance of the

software consistently. Organizations employ a significant budget for maintenance

and preservation of their software systems as they are vital assets for their business

progress. As a result, organizations devote more money and resources to maintaining

existing systems instead of developing new ones. The costs incurred in changing

software are a considerable part of organization's budget [1]. Therefore, as maintaining

a software system is pricey, maintenance must be managed and planned properly.

1.2.1 Types of Software Maintenance

Lientz and Swanson [10] categorized software maintenance into three types. These

are: perfective, adaptive, and corrective. These types are briefly described as follows:

• Perfective Maintenance: To take care of the expanding and/or requirements

3

What is Software Maintainability?

of the customers, few activities needed to be performed. These activities in-

clude updating, adding, removing, modifying, or extending a few capabilities

of the system. These activities are intended to make the source code easier to

comprehend and use. Perfective maintenance activities also include restructur-

ing or documentation modifications. Some of these activities are considered

optimization that makes the code run faster and uses memory efficiently.

• Adaptive Maintenance: Sometimes, the environment in which a software system

operates, changes. Therefore, the maintenance activities originated as a con-

sequence of changes in the environment in which software operates is termed

as adaptive maintenance. The environmental variations include changes to

the hardware devices, operating system, operating system tools like compilers,

utility programs, etc.

• Corrective Maintenance: There may the errors introduced during the develop-

ment. Such errors are triggered when the system is in operation. The main-

tenance activities carried out to fix such errors or bugs are called corrective

maintenance. For the proper functioning of the software, such bugs are needed

to be corrected immediately. The corrective maintenance usually includes func-

tions that are considered “firefighting“ or “quick fixes“ to allow a system to

function correctly.

1.3 What is Software Maintainability?

The software is not static. A software product that works seamlessly, but hard to

modify and acclimate to new requirements, will not survive. Software maintainability

is a long-term aspect that defines how effortlessly software can evolve or change. The

process of changing the software that is delivered to the customer is called software

4

What is Predictive Modelling?

maintenance, and the ease with which software can be changed to incorporate the

changing requirements of the customers is called software maintainability. Software

maintainability is one of the important dimensions of software quality.

1.4 What is Predictive Modelling?

The procedure of making, testing, and approving a model to anticipate the probability

of an outcome is known as predictive modelling. It uses techniques for the prediction

of unknown events irrespective of the occurrence time of the event. For instance,

identifying the suspects after the crime has occurred or predicting the crime rate

that may occur in the future are a few of the applications of predictive modeling. It

is a very useful technique as it helps in getting accurate insight knowledge of any

given problem domain and allows the development team to forecast accordingly. The

detection theory based on the amount of input data is used to select a model for

estimating the probability of any event. One or more classifier is used by the model to

anticipate the likelihood of a given dataset belonging to another set. For instance, a

model can distinguish whether a given class has defects or not. A model is trained

using historical data so that it can be reusable for analyzing the results of other familiar

applications.

1.4.1 Steps in Predictive Modelling

The following are the steps that are used in predicting modeling and are shown in

Figure 1.1.

1. Objective of the problem under analysis: The first step is to define the objec-

tives of the application that needs to be analyzed.

5

What is Predictive Modelling?

Figure 1.1: Steps in Predictive Modeling

2. Defining analytical goals: The goals are finalized after completing the feasi-

bility study of the problem domain.

3. Data preparation: In this step, the analysis team understand the data and pre-

pare data for analysis. The predictive model would be efficient if the underlying

data is good enough for the analysis.

4. Analyse and transform the variables: Here, the null and missing values are

dealt with properly and dimensions are reduced using various techniques like

principal component analysis, factor analysis, etc.

5. Random sampling: The data is divided into training and testing set depending

on the ratio selected.

6. Model selection: Depending on the goals of the application, models are selected

6

What is Predictive Modelling?

either supervised or unsupervised.

7. Training the model: Models are trained by feeding them with the data prepared

at step 3.

8. Validation: In the final step, results are validated using inter-validation so that

accuracy can be improved.

As more and more data are being produced, it is important to generate a model

that will be able to understand that data thoroughly. Predictive modeling helps

the organizations to take suitable decisions.

1.4.2 Predictive Modelling for Software Maintainability

Predictive modeling has its applications in various areas such as finance, transportation,

healthcare, social media, etc. where the historical data is used to build predictive mod-

els to capture the trends in data and predict future outcomes. Predictive modeling has

its application in the software engineering domain too. Over the years several models

have been developed by the researchers to predict various software quality attributes

such as defect-proneness, change-proneness, development effort, and software main-

tainability. Managers must identify and predict which parts of the software are likely

to possess low maintainability and what effort would be expended in maintaining

these parts. SMP models support software project managers in strategizing allocating

constraint software resources such as time, cost, and effort. A manager should allocate

more resources to software components with low maintainability as these components

must be rigorously tested to ensure that changes have been incorporated efficiently

and no new errors have been introduced while maintaining these components [11, 12].

Estimating software maintainability in the early phases of software development with

the aid of predictive modeling would lead to lower cost and higher quality products

7

What is Predictive Modelling?

because effective development plans to deal with changes can be prepared well in

advance. Predictive modeling for software maintainability results in the development

of models to predict maintainability. It involves understanding the relationship be-

tween the software system's internal structural characteristics and maintainability. The

structural characteristics can be quantified with the help of several software metrics.

The software metrics are indicators of different attributes of software like coupling,

cohesion, polymorphism, size, etc. The prediction models are developed with various

techniques such as statistical, Machine Learning (ML) and Hybridized (HB) that learn

from historical software data and predict the maintainability of the future versions of

the software product.

1.4.3 Issues in Predictive Modelling for Software Maintainability

Li&Henry [5], in 1993, defined software maintainability in the form of the lines

of source code changed during the period of maintenance to correct faults. They

advocated that software maintainability has a strong correlation with OO metrics

describing various software characteristics such as inheritance, coupling, and cohesion.

Later various researchers [7, 13–16] measured the maintainability in the form of the

lines of source code changed during the maintenance. They developed software

maintainability models to predict maintainability in the form of number of lines of

code changes. The more the changes encountered in a class in the maintenance phase,

the lower would be the class's maintainability and vice versa. Thus, these studies tried

to predict software maintainability in terms of code lines changed, i.e., a numeric

value. The struggle with these studies was difficulty in predicting a numeric value to

find ideal results.

Furthermore, most of the time, it is superfluous to predict the exact number of

code lines changed in a class or a module. Subsequently, research has bowed towards

8

What is Predictive Modelling?

binary classification, and researchers have come up with models for predicting change

prone classes, i.e., the classes that have the probability of changing in the future

[11, 12, 17–21]. However, the class in which there is a change of one line of code

changed or 1000 code lines are changed, predicted as change-prone classes in these

studies. But software practitioners are more interested in those classes that have

the probability of a greater number of code lines changes, i.e., the classes with low

maintainability.

This research work aims to develop maintainability prediction models that predict

low and high maintainability classes. SMP is regarded as a binary classification

problem in this study. It is essential that for effective training of the model, the

dataset consists of low maintainability and high maintainability classes. The low

maintainability requires more revisions in the maintenance period, and the prediction

of such classes in the earlier phases is the prime concern of the software developers.

However, in most of the maintainability prediction datasets, the classes with low

maintainability are rare, and the datasets are imbalanced. If in a maintainability

prediction dataset, the data points of low maintainability class are few, it is very

challenging to train the prediction models to predict the unseen data points of both

classes (i.e., a class with low maintainability and high maintainability) with reasonable

accuracy.

In this research work, the effort is devoted to improve maintainability prediction

performance by dealing with imbalanced data as no study has addressed this problem

in the area of SMP. This study preprocessed the imbalanced dataset carefully with

data resampling techniques to develop effective maintainability prediction models.

Also, the use of the statistical test has been decidedly less evident in past studies. The

study applies statistical analyses to strengthen the results.

9

What is Imbalanced Data Problem?

1.5 What is Imbalanced Data Problem?

Imbalanced learning or imbalanced data problem is well recognized in various real-life

problems like predicting fraud credit card transactions [22], detection of fake website

[23], sentiment analysis [24] etc. In an imbalanced dataset, there is a huge difference in

terms of number of data points of different classes. This thesis work deals with binary

class imbalanced data problem where the training dataset has only two classes namely

low maintainability and high maintainability. We mostly find that low maintainability

classes are less in number in datasets as software datasets follow the Pareto principle

[12]. According to this principle, the major changes in a dataset originate from only

20% of software modules or classes [12]. Therefore, it is essential to build SMP

models to recognize low maintainability classes accurately. The low maintainability

classes need to be well-designed and meticulously tested to have quality software. An

efficient model should be able to detect both low and high maintainability classes with

good accuracy. But most often, with the imbalanced datasets, high maintainability

classes are detected with high accuracy but low maintainability classes are not that

much correctly recognized. For imbalanced datasets, SMP models have lower accuracy

rates for low maintainability classes. In the case of a highly imbalanced dataset, the

lower recognition rate of the model for low maintainability classes is overlooked and

the models show good overall accuracy. These models are biased but are still labeled

as decent models. But this situation is relatively unfavorable and may lead to incorrect

decisions leading to heavy loss for a software organization. Suppose in a dataset there

are 1000 data points. Each data point is comprised of OO metrics and low or high

maintainability as the class labels. The aim is to develop an efficient and unbiased

model that detects both low and high maintainability classes accurately. Suppose, the

training dataset is imbalanced with only 10% data points of low maintainability classes

10

Tackling with the Imbalanced Data Problem

and 90% of data points belong to high maintainability class. A prediction model

trained on such a dataset would give accurate predictions for high maintainability

class (nearly 100%) but very low accuracy for low maintainability classes generally in

the range from 0 to 10% [25]. The accuracy of 10% of low maintainability classes

means 100 out of 1000 low maintainability classes are predicted correctly. This low

accuracy for low maintainability class is not acceptable. It would lead to a bad quality

software product because low maintainability classes need sufficient resources so that

these classes can be effectually designed, verified, and tested i.e., these classes should

be appropriately handled to avoid the existence of defects in forthcoming software

versions. The lower accuracy of SMP models for such classes means ignorance of

these classes. This would badly impact software quality. Therefore, it is critical to

effectively handle the imbalanced data problem in SMP.

1.6 Tackling with the Imbalanced Data Problem

The solutions to handle the problem of imbalanced data have been categorized into two

types namely data level and algorithm level solutions. The data level solutions involve

the modifications of the imbalanced datasets to alleviate the imbalanced data problem.

The algorithm level solutions involve modifications in the learning procedures of the

learning techniques to eliminate their bias towards learning majority class data points.

This section presents a brief explanation of these solutions.

1.6.1 Data Level Techniques

The data level techniques modify the imbalanced training data to make it appropriate

for the learning algorithm [26]. The data level techniques make a balance in the data

distribution of different classes by removing or adding more data points in the dataset.

11

Literature Survey

The data level techniques are classified into two types namely undersampling and

oversampling. The undersampling techniques tend to balance the datasets by randomly

dropping the data points of the majority class The oversampling techniques add more

data points belonging to the minority class into the dataset to make minority data

points proportionate with the majority class. The oversampling and undersampling

techniques are regarded as data resampling techniques [27, 28].

1.6.2 Algorithm Level Techniques

With the imbalanced datasets, the learning techniques strongly bias their learning

towards the majority class data points [26, 29]. Unlike data level techniques, algorithm

level techniques modify the learning procedure of the learning techniques to lessen

their favoritism towards learning majority class data points. The cost-sensitive learning

mechanism is the popular technique for this in which the higher cost is assigned to

the underrepresented data points i.e., data points of the minority class. Assigning a

higher cost to the minority data points during the learning boosts their weightage in

the learning process. To alleviate the imbalanced data problem, hybrid techniques

have also been proposed in the literature. These techniques combine the data level

techniques with the algorithmic level techniques thereby generating robust learners by

learning from the imbalanced data [26].

1.7 Literature Survey

As discussed, software maintenance is an important activity that should be planned and

monitored to get good quality software and ensure customer satisfaction. Researchers

have been working hard in this direction to optimize the processes and other facets

associated with software maintenance. A comprehensive study of the existing literature

12

Literature Survey

is essential to recognize the research gaps and get the motivation to further work in

this direction.

In this section, software metrics used in the literature to predict software maintain-

ability are discussed. Also, various models that have been developed in the research

for predicting software maintainability are discussed in this section.

1.7.1 Software Metrics

The study by Swanson [30] advocated that software maintainability is imperative as

a significant proportion of the total budget is spent on this activity. He suggested

that if a software product or component is not maintainable, it cannot accommodate

changes flawlessly, resulting in the loss of many business opportunities. Further,

various researchers, Martin and McClure [31], Nosek and Palvia [32] identified

problems in the process of software maintenance, and suggested various metrics

such as Halstead [33] and McCabe's cyclomatic complexity [34]. These metrics are

intended to measure the quality of the source code of software systems developed

in procedural programming languages. Rombach [35] claimed that all the useful

metrics for procedural language could not be practical for OO languages as the

procedural programming focuses primarily on functional decomposition. In contrast,

the OO programming paradigm emphasizes the identification of classes, objects, and

characteristics of classes. Also, software practitioners started giving importance to

software design instead of the code. Thus, various metrics were proposed by the

researchers to capture and quality the different design aspects of OO paradigms such

as inheritance, encapsulation, cohesion, polymorphism, etc. Further, with the help of

empirical investigations, a strong correlation between software design metrics and

maintainability was recognized, and various metrics suites were proposed for the OO

paradigm such as Chidamber and Kamerer (C&K) metric suite [36], Li&Henry metric

13

Literature Survey

suite [5], Wei Li metric suite [37], Lorenz and Kidd metric suite [38], Metrics for

Object-Oriented Design (MOOD) [39], etc. A brief description of metrics included

under these metric suites are given as follows:

• Chidamber and Kemerer [36] presented a metrics suite which contains six OO

metrics namely Response For a Class (RFC), Depth of Inheritance Tree (DIT),

Coupling Between Object classes (CBO), Weight Methods per Class (WMC),

Lack of Cohesion in Methods (LCOM) metrics and Number Of Children (NOC).

• Lorenz and Kidd [38] have given the OO metric suite containing the following

OO metrics; Number of Operations Overridden (NOO), Class Size metric (CS),

Specialization Index (SIX), Number of Operations Added (NOA), and Number

of Public Methods (NPM).

• Li&Henry [5] suggested an OO metric suite containing the following metrics;

Number of Methods (NOM), Message Pass Coupling (MPC), Data Abstraction

Coupling, Size metrics namely SIZE1 and SIZE2.

• Briand et al. [40] proposed a metric suite containing eighteen OO metrics.

These metrics under this suite capture types of interactions among the classes.

These metrics guide software practitioners on the kind of coupling that affects

the cost of maintenance cost. In addition to various coupling metrics proposed

by Briand, two more coupling metrics, Afferent Coupling (Ca) and Efferent

Coupling (Ce) were given by Martin.

• Bansiya and Davis [41] recommended the Quality Model for Object-Oriented

Design (QMOOD) metrics suite. The following are the constituents of this

metric suite; Number of Polymorphic Methods (NOP), Design Size in Classes

(DSC), Number of Hierarchies (NOH), Average Number of Ancestors (ANA),

Data Access Metric (DAM), Direct Class Coupling (DCC), Cohesion among

14

Literature Survey

Methods of a Class (CAM), Measure of Aggression (MOA), Method of Func-

tional Abstraction (MFA), Class Interface Size (CIS).

Tang et al. [42] proposed Coupling Between Methods of a Class (CBM),

Number of Object/Memory Allocation (NOMA), Average Method Complexity

(AMC), and Inheritance Coupling (IC).

• To distinguish between the non-inheritance-based coupling from inheritance-

based coupling, Lee et al. [43] proposed the following metrics; information

flow-based inheritance coupling (IH-ICP) and Non-inheritance information

flow-based coupling (NIH-ICP). The information flow-based coupling (ICP)

metric is the sum of NIH-ICP, and IH-ICP was included in this metric suite.

• Bieman and Kang [44] have given two cohesion based metrics, namely loose

class cohesion (LCC), and tight class cohesion (TCC) to quantify cohesion in

the classes.

1.7.2 Software Maintainability Prediction

The relationship between software metrics and maintainability is well established in

the literature. Several models have been proposed in the literature to predict software

maintainability. Chidamber and Kamerer [36] in 1991, language-independent OO

metrics to predict software maintainability. Li and Henry [5] added two more metrics

into the existing C&K metrics suite to quantify different types of coupling. To measure

the coupling through message passing, Message Passing Coupling (MPC) metrics

were added and to measure the coupling through Abstract Data Types (ADT), Data

Abstraction Coupling (DAC), and added to C&K metrics.

Li and Henry [5] also observed that C&K metric suite does not take into account

the structural quality of the code. Therefore, later two metrics more metrics capturing

15

Literature Survey

the same were added into this metrics suite. These metrics were SIZE1, which

measures the line of code for software, and SIZE2 for counting the total number of

attributes and methods in a class. The Li and Henry and C&K metric suites were

validated in many empirical studies to predict software maintainability.

The non-availability of datasets for empirical validations for software maintainabil-

ity was the big hurdle. The datasets of two proprietary software systems encompass-

ing of User Interface Management System (UIMS) and Quality Evaluation System

(QUES) were made public by Li and Henry and termed as Li &Henry [5] dataset.

Later, many research studies emerged in SMP validating the Li&Henry dataset with

the application of various techniques and various researchers used this dataset in their

studies. Few of the studies that validated Li&Henry dataset are Aggarwal et al. [9] ,

Elish and Elish [15] , Dagpinar and Jahnke [6], Koten and Gray [13], Tang et al. [42] ,

Malhotra and Chug [45], Kaur et al. [46], Thwin and Quah [14], and Zhou and Leung

[7]. These studies advocated that OO metrics can be used to measure the structural

quality of code in general and predict software maintainability.

Li and Henry tried [5] linear regression model using UIMS and QUES dataset for

appraising the relationship between C&K metrics and maintainability. The results

of the study showed that the C&K metrics of UIMS and QUES datasets have a

significantly high correlation with software maintainability. The study by Aggarwal et

al. [9] advocated that Artificial Neural Network (ANN) is a very suitable technique

for SMP. In this study, Li&Henry dataset was used and it was found that using ANN,

the SMP model achieved the accuracy up to 72%.

Basili et al. [47] conducted empirical validations on C&K metrics for predicting

software maintainability. The study used eight medium-sized software systems written

in the C++ language. The C&K metrics and traditional metrics of the datasets were

extracted and used for empirical validations. The results of the study advocated that

OO metrics are good predictors of software maintainability.

16

Literature Survey

Dagpinar and Jhanke [6] recommended that OO metrics should be used for de-

veloping SMP models. The study also suggested that direct coupling metric and

size metric have a significant impact on software maintainability instead of cohesion,

inheritance, and indirect coupling. Elish and Elish [15] employed gradient boosting in

classification and regression tree (TreeNet) to improvise it, which was then used to

build SMP models. The performance of TreeNet is compared against Support Vec-

tor Machine (SVM), Neural Network (NN), Regression Tree (RT), and Multivariate

Adaptive Regression Splines (MARS). In this study, TreeNet was found better in its

predictions than SVM, NN, MARS, and RT on UIMS and QUES datasets. The results

were analyzed using various prediction accuracy measures such as Magnitude of

Relative Error (MRE), Mean Magnitude of Relative Error (MMRE), Mean Absolute

Relative Error (MARE), and Prediction accuracy with less than 25% error known as

Pred(0.25).

Thwin and Quah [14] used OO metrics extracted from two commercial software

systems to build SMP models. The principal component analysis on the extracted OO

metrics has been carried out in this study. The NN is used to develop SMP models in

this study.

The study by Fioravanti and Nesi [48] presented a metric analysis to identify

which metrics would be better predictors of OO software maintainability. Kaur et

al. [46] conducted the study using UIMS and QUES datasets with hold out cross-

validation. The study applied Adaptive Neuro-Fuzzy Inference System (ANFIS)

technique. The results of the study advocated that ANFIS technique gives a better

predictive performance as compared to previous studies for developing an efficient

SMP model.

Koten and Gray [13] proposed Bayesian Belief Network (BBN) using ten-fold

cross-validation on the Li&Henry dataset and found it to be significantly better in terms

of prediction accuracy. In this study, for the UIMS dataset, BBN model outperformed

17

Literature Survey

compared to the RT well as the multiple linear regression model. For the QUES

dataset, even though BBN was not as good as it was for the UIMS dataset, but still

reasonably accuracy was achieved for QUES compared to regression models. The

study concluded that the performance of BBN based model is dependent on the

characteristics of datasets.

Malhotra and Chug [45] examined the performance of SMP model developed with

the application of Group Method of Data Handling (GMDH) technique on the UIMS

and QUES dataset. They analyzed the performance of the models in terms of MRE,

MMRE, MARE, and Pred(0.25) performance metrics. The outcomes of the study

exhibited that the GMDH has the competence to apprehend the design characteristics

of datasets using C&K metrics, due to which the results were found to be better.

Dallal [49] examined 19 OO metrics on software maintainability. The predic-

tion models are constructed using statistical techniques, univariate, and multivariate

regression. The study results revealed that cohesion and size metrics have higher in-

volvement in SMP than coupling metrics. Tang et al. [42] empirically validated C&K

metrics for investigating the correlation between OO design metrics and software

maintainability.

The studies by Jin and Liu [50] and Misra [51] developed SMP models by ex-

tracting the datasets developed from the student's projects. Jin and Liu [50] collected

datasets containing OO metrics from the software projects developed by the students.

SVM with ten-fold cross-validation was used in this study for predicting maintenance

effort. This study also advocated that there is a significantly high correlation between

C&K metrics and software maintainability. The study by Misra [51] used the datasets

collected from C++ programs and developed SMP models using Linear Regression.

He concluded that the two most important measures should be kept in mind while

coding is that functions (modules) should not be more than two screens long. He found

that the AMC metric is a significant predictor for determining software maintainability.

18

Literature Survey

The software maintainability can be measured only once the software is in the

operational phase but can be estimated early in the software development. In this

regard, as suggested by Jorgensen [52] and Lucia et al. [53] the essential technique to

take care of this issue are by developing prediction models using OO metrics that can

be deployed during the early phases of the software project development. According

to [52, 53], the prediction of software maintenance early during software development

reduces the future maintenance cost and effort because software developers can

improve the design or code by detecting the determinants of software maintainability.

It also gives cautionary signs to project managers well in advance with evidence for

making effective plans regarding the resource allocations and taking curative actions

using their valued resources more cautiously.

In open-source software systems, practitioners worldwide are allowed to change,

inflate, and redistribute the newly developed version without any pre-requisite of

licensing [54]. The open-source software systems are changed continuously by many

software developers to enhance their functioning and practicality. The determination

of the maintainability of open-source software systems is challenging due to the lack

of technical support and the absence of documentation. In the literature, there is

an inadequate number of studies on witnessing the maintainability of open-source

software systems. Few studies Zhou and Xu [55], Zhang et al. [56], Malhotra and

Chug [57] developed models to predict the maintainability of open-source software

systems.

Ramil et al. [58] surveyed many empirical studies that have taken datasets from

open-source software systems. However, all those studies oriented towards judging

the software evolution based on the characteristics instead of developing the prediction

models. The datasets used in proprietary software also have certain constraints on

the generalizability of results because each system has been developed in different

programming languages with different environment settings.

19

Literature Survey

Wang et al. [59] proposed a fuzzy network framework to predict software main-

tainability using two widely used commercial datasets. The study advocated that

the proposed framework improves the accuracy of software maintainability models

compared to standard fuzzy-based models.

Kumar et al. [16] used class level software metrics with three different types of

neural networks to train software maintainability models. The genetic algorithm with

a gradient descent approach is used to find the optimal weights of neural networks.

Schnappinger et al. [60] extracted software metrics using static analysis tools and

predicted software maintainability using diverse ML techniques. The majority of

the SMP studies have practiced ML and statistical techniques for developing SMP

models.

The evolutionary algorithms are the set of algorithms inspired by the metaphor

of natural biological evolution such as Ant-Colony optimization, Bees Algorithms,

Cuckoo Algorithms, and Particle Swarm Optimization, etc. [61–64]. Certain operators

are applied to potential solutions to produce better approximations in these algorithms.

Each time, at each generation various operators such as selection, recombination,

mutation, migration, locality, and neighborhood are applied to produce the next

generation, and each [63] individual solution of the next generation is compared

against the survival of the fittest, and the weak solutions are discarded [62]. On

repeating this process, again and again, it leads to optimized and better solutions. In

the next decades, such evolutionary and Search-Based (SB) techniques were being

widely used for solving many problems in various areas of software engineering,

like the prediction of development effort estimation [65], prediction of maintenance

effort [66], prediction of preventive maintenance [67]. However, the use of these SB

techniques for SMP is found to be immensely limited.

20

Literature Survey

1.7.3 Software Quality Predictive Modelling using Imbalanced

Data

For predictive modeling in software engineering, the imbalanced data problem (i.e.,

one class has more number of data points compared to another class) is encountered

prediction of classes that are likely to be change-prone and defective. This problem is

solved in different ways to uplift the performance of the predictive models. Choeiki-

wong and Vateekul [68] proposed an algorithm level solution to the imbalanced data

problem for software fault prediction. They implemented a classifier in which the

separation hyperplane of SVM was adjusted to cut down the bias from the dominant

class. Gao et al. [69] examined four different scenarios of feature selection and data

sampling to boost the predictive capability of defect prediction models developed

with imbalanced datasets. This study confirmed that feature selection on resampled

data improves the predictive capability of the models. Laradji et al. [70] proposed an

Average Probability Ensemble (APE) incorporating several base classifiers to cope

up with the imbalanced data problem. To further improve the prediction capability,

feature selection was combined with APE in this study. Siers and Islam [71] proposed

a cost-sensitive classifier, which was an ensemble of the decision trees to tackle the

problem of imabalanced data. Pelayo and Dick [72] investigated the synthetic mi-

nority oversampling technique, which balances the proportion of the defective and

non-defective modules. The paper by Sun et al. [73] used ensemble and coding

schemes to handle the imbalance data problem for predicting defective classes. The

study first converted the unbalanced binary class data into multiclass balanced data

by using coding-based schemes and then trained the defect prediction models from

this multiclass data. Wang and Yuo [74] investigated different methods, including

resampling, ensembles, and threshold moving to improve defect prediction models.

The study also proposed a dynamic version of AdaBoost to handle the imbalanced

21

Objectives of the Thesis

data issue in the area of defect prediction. A paper by Zheng [75] proposed three

cost-sensitive boosting techniques to improve the prediction rate of neural networks.

Malhotra and Khanna [76] developed software change prediction models from imbal-

anced data by employing three data resampling methods and meta cost learners. In

this way, various studies in the literature have dealt with imbalanced data in predic-

tive modeling in the software engineering domain to improve defect prediction and

change prediction models. However, the imbalanced data problem is untouched in the

literature for SMP. This thesis deals with improving the performance of SMP models

with the help of data level and algorithm level techniques.

1.8 Objectives of the Thesis

1.8.1 Vision

Improving software maintenance by developing SMP models that deal with imbal-

anced data problem.

1.8.2 Focus

The focus of the work has been to suggest methods that help in improving software

maintainability. In this regard, effective SMP models are developed from open-source

systems. This thesis endeavors to conduct the research in predictive modeling using

OO metrics and ML, SB, and HB techniques. Keeping in mind the challenges of imbal-

anced data while developing the prediction models, the current study carefully handles

the imbalanced datasets to develop effective SMP models. The cross-validation tech-

nique and statistical tests have been used while developing the models to ensure

that the results are unbiased. Thus, this study explicitly addresses the following

22

Objectives of the Thesis

perspectives:

1. To analyze the OO metrics available in the literature to examine their relationship

with software maintainability.

2. To investigate the effectiveness of ML and ensemble techniques with data

resampling to handle the imbalanced data for software maintainability.

3. To investigate the effectiveness of SB and HB techniques with data resampling

to handle the imbalanced data for software maintainability.

4. To devise a new imbalanced data handling technique by improvising the existing

technique in the literature.

5. To investigate whether one technique outperforms others in terms of perfor-

mance measures with the help of statistical tests.

6. To develop SMP models with inter-project validation.

1.8.3 Goals

Aggarwal and Singh [77] have emphasized the importance of software maintenance.

They stated that more than half of the total project cost goes into just maintaining a

given software. Also, the literature survey conducted by the researchers such as Riaz

et al. [78], Calzolari et al. [79], Ghosh et al. [80], and Saraiva et al. [81] showed

that the cost of maintenance has been increasing day by day. This truly gives the

researchers a motivation to think that how can we make the software product highly

maintainable so that the future maintenance cost and efforts can be reduced. It is an

unpleasant reality that a major portion of the time and effort in the software industry

is expended in software maintenance as opposed to development. If maintainability

of the software product or component is predicted early in software development,

23

Objectives of the Thesis

resources and effort during the maintenance can be managed in a better way. Thus,

the aim of this thesis is to develop effective SMP models. The summary of the goals

is stated below:

1. Perform an extensive review of existing literature to identify the relationship

between OO metrics and software maintainability with the following objectives:

• Study the use of prediction models for maintainability in the early phases

of development.

• Extensive study of existing literature to understand the significance of

software metrics that are related to maintainability.

• Study of various ML and statistical techniques used in literature for devel-

oping SMP models.

• Comparing the performance of various techniques used in the literature.

• Practitioners would be able to improve the quality of systems and thus

optimize maintenance costs.

• To gain insights about both quantitative and qualitative perspectives of

predictive modeling for software maintainability.

• To identify the research gap to work further in the field of software main-

tainability.

2. Develop new models for prediction of software maintainability using ML tech-

niques by handling the imbalanced data with the following objectives:

• Empirically validate the relationship between OO metrics and software

maintainability.

• To preprocess the imbalanced data using data resampling techniques.

24

Objectives of the Thesis

• To determine which data resampling technique performs statistically better

from others.

3. Exploration of ensemble learners for handling the imbalanced data to improve

software maintainability predictions.

• Modeling techniques based on ensemble methodology are known to de-

velop stable and robust models, which improve the capability of their

constituent techniques. Such techniques can be used to develop SMP

models with improved accuracy as they are based on diverse constituent

techniques.

• To develop new models by using ensemble learners which combine the

data resampling techniques to handle the imbalanced data for software

maintainability.

• To assess the capability of ensembles to handle inbalanced data for pre-

diction of software maintainability and compare them with the traditional

ensemble learners.

• To perform statistical analysis of the compared techniques with statistical

tests.

4. To evaluate and compare various SB techniques for SMP and compare them

with the ML techniques by dealing with the imbalanced data problem.

• With a large number of available classification techniques, which have

different abilities and characteristics, it is important to conduct studies to

evaluate their capability in the domain of SMP.

• Such studies can be used by researchers and practitioners as guide for the

selection of an appropriate technique.

25

Objectives of the Thesis

• The performance of compared techniques is assessed on the imbalanced

and balanced datasets for SMP.

5. Exploration of HB techniques for prediction of maintainability by handling

imbalanced data.

• To explore HB techniques that tend to combine ML and SB techniques

into a single approach and to assess their applicability for SMP.

• To evaluate the performance of each technique so that the effectiveness of

each technique SMP can be judged.

• The performance of HB techniques for maintainability prediction is em-

pirically investigated after employing data resampling techniques.

6. To propose new data resampling technique to alleviate the imbalanced data

problem for SMP.

• To contribute to imbalance data problem in SMP and to use it to im-

prove the predictions of SMP models, a novel oversampling technique is

proposed.

• To conduct extensive empirical investigation comparing the performance

of the proposed technique with state-of-art data resampling techniques.

• To statistically analyze the performance of the proposed technique with

other prevalent data resampling techniques.

7. To carry out inter-project validation to obtain generalized results for SMP.

• The use of inter-project validation should be explored where training data

is taken from some other similar software. There is a lack of work done in

this field.

26

Organization of the Thesis

• To develop SMP models developed using inter-project validation to pro-

duce unbiased and generalized results.

1.9 Organization of the Thesis

This section presents the organization of the thesis. Chapter 1 presents basic concepts

of software maintenance, software maintainability along with the motivation of the

thesis. Chapter 2 describes the research methodology followed in carrying out this

research work. Chapter 3 presents a systematic review of existing literature and

identifies the prevailing research gaps. Chapter 4 presents the construction of SMP

models using ML techniques by handling imbalanced data. Chapter 5 presents the

ensemble techniques for dealing with imbalanced data. Subsequently, Chapter 6

analyses SB techniques for developing SMP models by handling imbalanced data

and compares them with ML techniques. Chapter 7 analyzes the capability of HB

techniques for developing models by handling imbalanced data, while Chapter 8

proposes a new data resampling technique Modified Safe Level Synthetic Minority

Oversampling Technique (MSLSMOTE) to handle the imbalanced data problem

and develop SMP models using ML techniques. Chapter 9 analyses inter-project

validation for developing effective SMP models. In Chapter 10, the conclusions of

the thesis are presented. A brief description of each chapter is given below.

Chapter 1: This chapter describes the basic concepts about software maintenance,

its types, and the definition of software maintainability. The benefits of the early

prediction of software maintainability are enumerated in this chapter. Various software

metrics have been used in software quality predictive modeling to develop prediction

models. An overview of software metrics is given in this chapter. This chapter also

describes the steps of developing maintainability prediction models.

Chapter 2: This chapter describes the detailed description of the research method-

27

Organization of the Thesis

ology followed in this research work i.e., a brief explanation of the dependent and

independent variables, classification techniques, validation methods, and statistical

tests. Further, the datasets used in the work, and the data collection procedure is

described in this chapter. This chapter also describes the data preprocessing steps

followed before developing SMP models. This chapter also describes various perfor-

mance measures used to assess the performance of the developed models. Furthermore,

ten-fold and inter-project validation techniques used in this research work for validat-

ing the prediction models have also been explained in this chapter.

Chapter 3: A comprehensive systematic literature review of the studies related to

software maintainability from January 1990 to October 2019 is presented in this chap-

ter. The research questions (RQs) have been framed that summarized the empirical

evidence with respect to software metrics, datasets, predictive performance of data

analysis techniques, statistical tests and threats to validity in these studies. The review

results are analyzed systematically and research gaps have been identified.

Chapter 4: This chapter deals with the development of SMP models using ML

techniques (Multilayer Perceptron with Conjugate Learning (MLP-CG), Multilayer

Perceptron with Back-propagation (MLP-BP), Radial Basis Function Neural Network

(RBFNN), Incremental Radial Basis Function Neural Network (IRBFNN), Boot-

strap Aggregation (Bagging), Adaptive Boosting (AdaBoost), K Nearest Neighbour

(KNN), KSTAR)) on eight open-source datasets (Bcel, Betwixt, Io, Ivy, Jcs, Lang,

Log4j, Ode). The data resampling techniques including ROS (Random oversampling),

Synthetic Minority Oversampling Technique (SMOTE), Borderline Synthetic Minor-

ity Oversampling Technique (BSMOTE), Adaptive Synthetic Sampling (Adasyn),

Safe Level Synthetic Minority Oversampling Technique (SafeSMOTE), Synthetic

minority oversampling technique with Tomek's link (SMOTE-TL), Synthetic Minority

Oversampling Technique with Edited Nearest Neighbours (SMOTE-ENN), Selective

Preprocessing of Imbalanced Data (SPIDER), Random Undersampling (RUS), Con-

28

Organization of the Thesis

densed Nearest Neighbor (CNN), Condensed Nearest Neighbor with Tomek's Link

(CNN-TL), and Neighborhood Cleaning Rule (NCL) are examined in this chapter to

deal with the imbalanced data problem.

Chapter 5: The application of ensemble techniques for imbalanced data prob-

lem is examined in this chapter. In this chapter development of SMP models has

been done using the following ensembles (i) Boosting-based ensembles (SMOTE-

Boost, MSMOTEBoost, RUSBoost, DataBoost, and EUSBoost. (ii) Bagging-based

ensembles UnderBagging, OverBagging, SMOTEBagging, MSMOTEBagging, Un-

derOverbagging, and IIVotes. (ii) Hybrid ensembles (EasyEnsemble, BalanceCas-

cade). The empirical validation has been performed using eight open-source datasets,

and results are evaluated using G-Mean and Balance performance measures.

Chapter 6: This chapter analyzes the capability of SB techniques with data

resampling. The data resampling used in this chapter to balance the datasets are

SMOTE, BSMOTE, SafeSMOTE, Adasyn, SMOTE-ENN, SMOTE-TL, SPIDER,

NCL, RUS, ROS and CNN. The SB techniques used in this chapter for developing

the SMP models are Genetic Algorithm based classification system with Adaptive

Discretization Intervals (GA-ADI), Genetic Algorithm based Classification System

with Intervalar Rules (GA-Int), X-Classification System (XCS), Supervised Classi-

fication System (UCS), Bioinformatics based Hierarchical Evolutionary Learning

(BIOHEL), Memetic Pittsburgh learning classification System (MPLCS), Constricted

Particle Swarm Optimization (CPSO), Linear Decreasing Weight Particle Swarm

Optimization (LDWPSO), Generational Genetic Algorithm for Instance Selection

(GGA), Steady State Algorithm for Instance Selection (SGA), Adaptive Search for

Instance Selection (CHC), Population Based Incremental Learning (PBIL), Intelligent

Genetic Algorithm (IGA), and Steady-State Memetic Algorithm for Instance Selection

(SSMA)). The performance of SB techniques is also compared with ML techniques

(MLP-CG, MLP-BP, RBFNN, IRBFNN, Bagging, AdaBoost, KNN, KSTAR, Partial

29

Organization of the Thesis

Decision Tree (PART), Repeated Incremental Pruning to Produce Error Reduction

(RIPPER), Simple Learner with Iterative Pruning to Produce Error Reduction (SLIP-

PER), Batch Nested Generalized Exemplar (BNGE), Exemplar-Aided Constructor of

Hyperrectangles (EACH), and Rule Induction from a Set of Exemplars (RISE), and

Pruning and Building Integrated in Classification (PUBIC)) in this chapter.

Chapter 7: This chapter evaluates the effectiveness of HB techniques for SMP

with data resampling. The SMP models are developed with the following HB tech-

niques: Tree-Genetic Algorithm (DT-GA), Tree Analysis with Randomly Generated

and Evolved Trees (TARGET), Fuzzy LogitBoost (GFS-LB), Logitboost with Single

Winner Inference (GFS-MaxLB), Fuzzy AdaBoost (GFS-AB), Genetic Programming-

based learning of Compact and Accurate fuzzy rule-based classification systems for

High-dimensional problems (GP-COACH), Particle Swarm Optimization with Linear

Discrimination Analysis (PSOLDA), Fuzzy Learning based on Genetic Programming

(GFS-GP), GFS-GP with Grammar Operators and Simulated Annealing (GFS-SP)

and Fuzzy Rule approach based on Genetic Cooperative Competitive Learning (GFS-

GCCL). The predictive performance of the models is assessed with the help of G-Mean

and Balance performance measures.

Chapter 8: This chapter proposes a data resampling technique namely MSLSMOTE

to alleviate the imbalanced data problem. The empirical investigation comparing the

performance of MSLSMOTE with SMOTE, BSMOTE, and SafeSMOTE at different

rates of oversampling has been carried out in this chapter. The SMP models are

developed with ML techniques used in Chapter 6. The performance of the developed

models is assessed with the performance measures G-Mean, Balance and Area Under

Receiver Operator Characteristic Curve (AUC-ROC). The results are statistically

evaluated with the help of Friedman test and Wilcoxon signed-rank test.

Chapter 9: In this chapter, inter-project predictions are carried out for SMP

where the training and validation of the maintainability models have been done on

30

Organization of the Thesis

different projects rather than the same project. The experiments are conducted using

dataset extracted from three open-source projects, namely Htmlunit, Maven, and Click.

The prediction models are developed using eleven ML techniques and two statistical

techniques. The performance of the models is analyzed using MMRE, Pred(25),

Pred(30), and Pred(75).

Chapter 10: This chapter summarizes the conclusion of the research work and

provides future directions.

31

Chapter 2

Research Methodology

2.1 Introduction

We need to follow a systematic procedure to accomplish our objectives and perform

reliable empirical experiments. The research methodology is a systematic and well-

defined order of steps that are required to conduct effective empirical experimentation.

This chapter describes the research methodology that is followed in the thesis. The

organization of the chapter is as follows: Section 2.2 presents the research process

followed for conducting empirical experiments. Section 2.3 presents the definition

of the research problem. Section 2.4 describes the literature review conducted to

provide an overview of the existing literature. In section 2.5 the independent and

dependent variables used in this work are defined. Section 2.6 is designated for

various data analysis techniques used in this work. Also, the parameter setting for

various data analysis techniques is defined in this section. Section 2.7 demonstrates

the experimental design framework of the thesis.

33

Research Process

2.2 Research Process

The research process involves a well-ordered and planned sequence of steps required

for the exploration of a research problem. Figure 2.1 describes the research process

that is followed in the chapters of this thesis. The various steps of the research process

are explained in the following sections.

Figure 2.1: Research Process

2.3 Define Research Problem

The first step in the research process is to formulate the research problem. In this

step, the research problem at hand is stated and defined in the form of RQs. Research

experiments are conducted to determine the answers to the RQs. The following RQs

34

Literature Survey

are addressed in this thesis:

1. What is the current state of literature studies in the domain of SMP and what

are the research gaps?

2. What is the performance of SMP models developed from imbalanced data?

3. What techniques can be used by researchers to develop efficient SMP models

from the imbalanced data?

4. What is the performance of different data analysis techniques such as ML, SB,

and HB techniques for developing SMP models?

2.4 Literature Survey

To understand the research problem, a literature survey of existing studies is essential.

With the help of the review, we get to know to what extent the research problem in

literature has been investigated. In the past, researchers have developed various models

for predicting software maintainability [6, 9, 13, 15, 16, 46, 57, 66, 82, 83]. These

models have been developed by establishing the relationship between the internal char-

acteristics of the software and software maintainability. The internal characteristics of

software have been captured with the help of software metrics. These models have

been developed on commercial and open-source project datasets. These models help

the software practitioners to predict the software maintainability when the software

is in the initial development stages. Thus, identifying the software maintainability,

early during the software development would help the project managers to allocate the

resources optimally to the software components with low maintainability. Therefore,

it has been well recognized in the literature that developing effective SMP models is

crucial and important to improve software quality.

35

Defining Variables

2.5 Defining Variables

There are two types of variables involved in an empirical investigation i.e., the inde-

pendent (predictor) and the dependent (response) variable. The dependent variable is a

variable the researcher is interested in. In this research work, the dependent variable is

software maintainability. The dependent variable is influenced by the variables called

independent variables or predictor variables. The dependent variable can be predicted

from the independent variables. The independent variable should be independent in

nature i.e., these variables should not be affected by the other variables under analysis.

This thesis is indented to develop SMP models that learn the independent variables to

predict software maintainability i.e., dependent variable. The independent variables

in this research work are OO metrics that represent the various characteristics of the

software classes. We explore the independent variables from various popular OO

metrics suites and determine their relationship with software maintainability.

2.5.1 Independent Variables (OO metrics)

The applicability of OO metrics for developing models for the prediction of faulty

classes, predicting change-prone classes, and predicting software maintainability

has been well-acknowledged in the literature. The OO metrics quality aspects of

the software systems like coupling, reusability, cohesion, size, etc. To effectively

administer and supervise a software product during its development, it is essential to

monitor these metrics.

The OO metrics used in the thesis include the following:

• Chidamber and Kemerer (C&K) metric suite [36] contains six OO metrics

namely WMC, DIT, CBO, LOCM, and RFC. C&K metrics are widely used in

the literature [16, 84, 85].

36

Defining Variables

• Quality Model for Object-Oriented Design (QMOOD) [41] metric suite is also

validated in the thesis. The metrics contained in QMOOD metric suite are MOA,

DAM, MFA, NPM, and CAM.

• Martin metrics [31] namely Ce and Ca have also been analyzed in the thesis.

Other metrics used in the thesis are AMC, SLOC, and LCOM3 (given by [86]),

CBM, and IC.

Table 2.1: Independent Variables

Metric Definition Source
Weighted Method per

Class (WMC)

The sum of cyclometic complexities of all methods

of a class is called weighted method per class.

[36]

Depth of Inheritance Tree

(DIT)

It is defined as the length of the longest path in the

inheritance hierarchy.

[36]

Number of Children

(NOC)

It is defined as the number of immediately derived

classes of a particular class.

[36]

Coupling between Objects

(CBO)

This metrics shows the number of classes to which a

specific class is coupled where the coupling can be

due to data accesses, function calls, inheritance etc.

[36]

Response for Class (RFC) The number of functions executed in response to a

message received by an object of a class is called

response for class.

[36]

Lack of Cohesion in Meth-

ods (LCOM)

This metric measures the number of methods in a

class that is not related to themselves by sharing

some of the class data.

[36]

Afferent Coupling (Ca) This metrics measures merely the number of classes

that use a particular class.

[31]

Efferent Coupling (Ce) Number of classes used by a specific class is called

efferent coupling of that class.

[31]

37

Defining Variables

Number of Public Meth-

ods (NPM)

This is the count of the number of public methods

defined in a class.

[41]

Data Access Metrics

(DAM)

It is described as the number of protected or private

attributes declared in a class divided by total number

of attributes declared in that class.

[41]

Measure of Aggregation

(MOA)

This metrics is a count of number of data fields in a

class whose type is user-defined.

[41]

Measure of Functional Ab-

straction (MFA)

This metric defines the number of methods that are

inherited by a specific class divided by the sum of

methods accessible by that class.

[41]

Cohesion Among Meth-

ods of Class (CAM)

This metrics measure the relationship amongst the

class methods. The association is found by their

list of arguments and defined as: the sum of the

number of unique argument types used by all of the

class methods divided by product of total number

of methods in the class and total count of unique

argument type in that class.

[41]

Inheritance Coupling (IC) The number of parent classes to which given class is

coupled is called inheritance coupling of that class.

http://gromit.

iiar.pwr.wroc.

pl/p_inf/ckjm/

Coupling Between Meth-

ods (CBM)

This metric computes the total number of methods in

a class to which all of the metrics that are inherited,

coupled.

http://gromit.

iiar.pwr.wroc.

pl/p_inf/ckjm/

Average Method Com-

plexity (AMC)

This average method size of each class is called aver-

age method complexity.

http://gromit.

iiar.pwr.wroc.

pl/p_inf/ckjm/

38

 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

Defining Variables

Lines of Source code

(SLOC)

It is defined as total number of lines in the binary

code of a class.

[36]

Lack of cohesion

(LCOM3)

LCOM3 is given as:

LCOM3 =
1

n
(
n∑
i

f(pi))− ma

1−ma
(2.1)

Here n= number of attributes in a class; ma = num-

ber of methods in a class and f(pi) = number of

functions that access an attribute.

[86]

These metrics describe different aspects of OO systems namely cohesion, coupling,

size, inheritance, composition, and encapsulation etc. The metrics WMC, NPM, LOC,

DAM, and AMC are indicators of the size of a class. The metrics CBO, RFC, Ca, Ce,

IC, and CBM measure the coupling. The inheritance property is measured with the

help of NOC, DIT, and MFC. The metrics LCOM, CAM, and LCOM3 are indicators

of class cohesion, whereas MOA measures composition. The metrics that quantify

the different characteristics of a class are regarded as internal quality attributes. The

internal quality attributes used have significant relation with software maintainability

[8, 13, 49]. For instance, the attributes WMC, NPM, LOC, DAM, and AMC measures

the size of a class. If the size increases, code would likely be less maintainable, i.e.,

likely to require high maintainability effort [49]. Table 2.1 shows a brief explanation

of the above OO metrics. These metrics have been widely used by the researchers for

predictive modeling in the domain of software engineering [85, 87–90]. Radjenovic

et al. [91] conducted a review of 106 papers predicting defects in classes. This review

revealed that C&K metrics have frequently been used for predicting faults in classes.

Therefore, our study also has taken C&K metrics to validate them for predicting

software maintainability. The paper Lu et al. [92] assessed sixty-two OO metrics for

39

Defining Variables

estimating the change-prone classes. It was discovered in the study that LOC, CBO,

LCOM, and CAM are significant metrics. The C&K metrics, combined with QMOOD

metrics, are used by [93] to predict change-prone classes. The study advocated the

combination of C&K and QMOOD metrics be the competent predictors for predicting

classes that are likely to be changed in the future. Therefore, in this research work, an

effective combination of OO metrics is used for determining software maintainability.

2.5.2 Dependent Variable

In this thesis, software maintainability is the dependent variable. It is a binary variable

i.e., there will be two values of maintainability for any class namely low maintainability

and high maintainability. A low maintainability class would require more revisions in

its source code as compare to a high maintainability class in the maintenance period

and increase the overall cost of software development. In order to determine the

maintainability, two consecutive versions of the same software i.e., the old version

and next subsequent version are analyzed. The common classes between the two

consecutive software versions are determined. Then, the total number of changes in

the lines of source code in common classes i.e., lines of source code added, deleted,

modified, and total lines of source code changed are calculated. The studies in the

literature have determined the lines of code changed in the same way [5, 7, 46, 66].

The total lines of source code changed in a common class is a continuous variable.

We convert this continuous variable into a binary variable by dividing it into two bins

with two values, “low maintainability“ and “high maintainability“. In this thesis, we

also predict maintainability in the form of a continuous variable.

40

Data Analysis Methods

2.6 Data Analysis Methods

Several data analysis techniques including statistical, ML, SB, and HB are used in

this thesis to develop SMP models. Statistical techniques model the relationship

between the independent and dependent variables using mathematical equations. ML

techniques learn from historical data in order to model the relationships between the

independent and dependent variables without relying on a predetermined mathematical

equation as a model. The developed model is then used to predict the outcome of future

data points. SB techniques aid in the development of optimized models with improved

predictive capability as such techniques are effective in solving optimization problems.

The HB techniques combine the statistical/ML techniques with SB techniques to give

a single efficient technique to be used for a prediction task.

2.6.1 Artificial Neural Network

ANN is a computing system inspired by biological neural network. Such systems learn

to do tasks by considering examples, generally without task-specific programming.

MLP is an ANN that maps a set of inputs to the target or desired outputs [94]. MLP

consists of three types of layers namely, input layer, an output layer and, one or more

hidden layers. The inputs from the input layer are mapped to the desired outputs

using the hidden layers. MLP-BP is one of the common forms of training the network.

Training the MLP-BP comprises two passes i.e. forward and backward pass. In the

forward pass, the inputs are applied at the input layer and the output is of the network

is calculated. The calculated output is termed as the actual output of the network. In

the backward pass, an error which is the difference of actual output and the target

output is propagated backward from the output layer to the input layers. In this

process, weights of the network are adjusted and input with modified weights is again

41

Data Analysis Methods

propagated forward in the network so that the calculated output becomes close to the

desired output. In this thesis, MLP-BP is simulated using the Waikato Environment

for Knowledge Analysis (WEKA) tool [95] with default parameter settings. The

parameters used for MLP-BP are a learning rate of 0.3, a validation threshold of 20,

and a momentum of 0.2.

MLP-CG is also a feed-forward and back-propagation neural network. MLP-BP is

based on the gradient descent approach and it has poor convergence because learning

rate and momentum need to be given by the user and there is no theoretical basis to

choose these parameters. MLP-CG avoids this limitation of MLP-BP [94]. It has fast

convergence as it performs search along with the conjugate directions.

RBFNN is a type of non-linear feed-forward neural network with a single hidden

layer. It has guaranteed learning because of a single layer of weights that are adjustable

and calculated by a linear optimization problem. This neural network can represent

non-linear transformations [96].

2.6.2 Decision Tree

Decision tree (DT) algorithms develop the prediction model by constructing a decision

tree and predict the label of data points by traversing the nodes of the DT from the

root node to the leaves. The interior nodes in the DT represent the attribute test

whereas the leaves represent the class labels. During the course of constructing the

DT, the most significant predictor is identified that splits the available training data

in the best possible way. DT is built iteratively by dividing the training data into

partitions based on test conditions on one of the predictors in the training data. The

attribute spitting schemes differentiate the decision trees. For easy interpretability, DT

can easily be transformed into decision rules that are to be traversed in order to find

the class label of future instance. Three DT based classifiers are used in this thesis:

42

Data Analysis Methods

C4.5, Classification and Regression Tres (CART), Decision Stump (DS) and Reduced

Error Pruning Tree (REPTree). C4.5 uses gain ratio for attribute splitting criteria

whereas CART uses the Gini index [97, 98]. REPTree develops a DT and then applies

reduced-error pruning to it in order to develop a fast learner. REPTree algorithm

generates the DT in two phases. In the first phase, complete DT is built and the second

phase comprises pruning the fully developed DT. However, constructing the DT in

two distinct phases a significant amount of effort is wasted [95]. Because fully grown

DT is pruned in the subsequent phase. PUBIC overcomes this limitation of REPTree.

In this algorithm, the building and pruning are combined into one single phase that aid

in the construction of efficient DT as repeated dataset scans got eliminated [99]. For

C4.5 and CART decision tree algorithms, the parameter setting includes a confidence

factor of 0.25 and two instances per leaf. The parameter settings for REPTree and

PUBLIC involve using two instances per leaf node and pruning factor as true. DS is a

one-level DT in which split at root node is based on attribute-value pair. It has fast

model building speed [100]. The parameter setting of DS include bag size of 100.

2.6.3 Rule-Based Classifiers

Rule-based classifiers refers to the classification algorithm that use “if-then“ classifi-

cation rules in order to predict the class labels [101]. The classification rules are of

the following form: Conditioni → Yi. Here Conditioni is the left-hand side of the

rule and is termed as “rule antecedent“. Yi is called ”rule consequent”. Conditioni

comprehends conjunction of tests on predictor variable and it is represented as follows:

Conditioni : (P1 operator V1) ∧ (P2 operator V2) ∧(Pn operator Vn).

Here, (Pi operator Vi) is predictor-value pair, operator is any logical operator from

the set (=, >,<,≤,≥) and Yi is the class label. The rule-based classifiers used in this

thesis are RIPPER, SLIPPER, and PART. RIPPER works by extraction of rules or rule

43

Data Analysis Methods

set from the available training data where each rule identifies the relationship between

the independent variables and the class label [102]. From the training data set, the

rules are derived directly by sequential covering. Rules are derived from one class at

a time. For the binary classification, first, all the rules of one class are derived then

rules for the second class are constructed. The algorithm starts with the empty rule

list and then learn one rule function is applied to the training data set to extract the

best possible rule. Here, the best rule means the rule which covers more data points of

one particular class type. The newly derived rule is then added to the ruleset. When a

new rule is added to the ruleset, all the data points covered by that rule are removed

from the training data set. After forming the ruleset, pruning is applied to construct

an optimal rule set. SLIPPER algorithm develops a weighted rule set. There is a

confidence factor associated with each rule in the ruleset. To predict the class label of

an instance, all rules covering the instance are determined and their confidence factors

are summed up [102]. The label for the instance is then predicted according to the

sign of the sum. The PART algorithm constructs the partial DT using the training data

set instead of developing the fully grown DT. The tree construction and pruning are

combined to develop a stable tree. Once the stable tree is developed, tree construction

is stopped and the decision rules are read off [103].

2.6.4 Ensemble Learning Techniques

Ensemble learning techniques train the multiple classification models and collate

their predictions to obtain the distinct class label. The ensemble learning techniques

used in this thesis are AdaBoost and Bagging. These techniques modify the original

training examples and create multiple models from them. The final predicted outcome

is produced after combining the predictions of the individual models.

AdaBoost is based on the boosting method. The boosting technique develops a

44

Data Analysis Methods

powerful classification model by using some weak classifiers. AdaBoost improves

the predictive power of weak classifiers. The learning of weak classifiers is carried

out by using the weighted training data samples, and the misclassification rate of

the individual classification models is determined. This algorithm includes a weight

updating process. The correctly classified data points get small weights, and the

wrongly classified data points get large weights. In this manner, AdaBoost focuses

more on difficult to learn data points [104]. The parameter setting for the AdaBoost

includes C4.5 tree as a base learner, two instances per leaf node, the confidence factor

is 0.25, and 10 number of classifiers.

Random Forest (RF) constructs multiple decision trees using the training set. In

the testing stage, each DT predicts the class label [95]. The final predicted class is

decided based on majority voting. In this work, RF uses 100 decision trees.

Bagging is an ensemble technique that creates individual subsets of the training

dataset randomly with replacement. A predictor is developed corresponding to each

subset [105]. The results of individual predictors are then either averaged or combined

using majority voting. The parameter setting for the Bagging includes C4.5 DT as a

base learner, two instances per leaf node, the confidence factor is 0.25, and 10 number

of classifiers.

2.6.5 Logistic Regression

Logistic regression (LR) is one of the most widely used statistical techniques in the

literature. LR estimates the variance in the values of the dependent variable caused

by the independent variable [106]. LR analysis is of two types, (i) Univariate and

(ii) Multivariate. With univariate LR analysis, the relationship of each independent

variable with the dependent variable is determined, whereas with multivariate LR,

using the complete set of independent variables, the prediction model is developed

45

Data Analysis Methods

to estimate the dependent variable. In multivariate LR, the independent variables are

used in combination. Forward selection and backward elimination are two specific

ways to select independent variables among the set of the available set of independent

variables. In the forward selection method, one variable at a time is selected and

included in the model. In backward elimination, model development starts with all

variables, and then one variable at a time is eliminated and this process continues until

the desired model is obtained [106]. The univariate LR is defined by the following

formula:

Odds =
p

1− p
(2.2)

Here, p is the probability of class being low maintainable. In LR, we estimate an

unknown p for any given linear combination of the independent variables. The simple

logistic model is based on the linear relationship between a numerical independent

variable and the natural logarithm of an event. The simple logistic model is thus given

by the following equation:

ln(Odds) = β0 + β1x1 (2.3)

Here, x is the independent variable, β0 is the y-intercept and β1 corresponds to the

slope. Using equations 2.2 and 2.3, the univariate formula is given as follows:

p =
ef(x)

1 + ef(x)
(2.4)

46

Data Analysis Methods

Where, f(x) = β0 + β1. The equation for the univariate LR can be extended to the

multivariate equation as follows:

p =
eβ0+β1x1+β2x2+β3x3+....+βnxn

1 + eβ0+β1x1+β2x2+β3x3+....+βnxn
(2.5)

where xi; 1 ≤ i ≤ n are the independent variables.

Maximum Likelihood Estimation is a well-known technique for estimating the coeffi-

cients of the model. The likelihood function determines the probability of perceiving

the set of dependent variable values. The objective of is to determine the values of

coefficients, such that the log of likelihood function is maximized. The large value of

coefficient denotes higher impact of the independent variables on dependent variable.

The ridge estimator is used in this thesis with LR to enhance the parameter estimates

and lower the error when maximum-likelihood estimators cannot fit the data [106].

2.6.6 Support Vector Machine

SVM are important techniques for solving classification problems. These are used in

many real-world problems like text classification, face recognition, medical diagnosis,

etc. A data point the training data set is represented by an n-dimensional vector and

belongs to one of the classes. SVM creates a hyperplane to separate the data points

belonging to the two classes [107]. Apart from creating a hyperplane, it also creates

two marginal lines and these two marginal lines are some distance apart so this it will

be easily linearly separable for both the classification points. The sum of distances of

the hyperplane from the two marginal lines is termed as ”margin”. The significance

of the margin lies in the fact that it aids in the creation of a generalized classification

model that gives better accuracy for predicting the class label of unseen instance. It

is to be noted that there may be many hyperplanes that correctly separates the data

47

Data Analysis Methods

points. In this situation, SVM selects the hyperplane that maximizes the margin.

In the case of the ”non-linearly” separable data points i.e., the data points that can

not be separated from any of the hyperplanes, SVM makes use of kernel. SVM kernel

converts the data points from a low-dimensional space to a high-dimensional space.

The data points on the high-dimensional space are then separated with the help of a

hyperplane. The parameter setting for SVM in this thesis includes a c value of 100, a

degree of 1, γ value of 0.01, v value of 0.1, and polynomial kernel.

2.6.7 Instance-based Learning Techniques

Instance-based learning techniques make predictions by memorizing the training data

instead of developing the generalized models. To determine the target class label of

an unseen data point, instance-based learning techniques compute the similarity of

that data point with the data points of the training data. The instance-based learning

techniques used in this thesis are KNN, KSTAR, BNGE, EACH, and RISE. In KNN

entire training dataset is stored in memory. To determine the target class of a new

instance, the distance is computed between the instance and each of the instances of

the training data set stored in the memory. More specifically, the k nearest neighbors of

the new instance are determined. The class label of the new instance is then determined

based on the labels of the majority of the neighbors amongst the k nearest neighbors

[108]. The distance measure used in KNN is the euclidean distance. KSTAR is also

an in-memory technique. Like KNN, it also determines the label of the new instance

according to its neighbors. The difference lies in the distance measure. KSTAR uses

entropy distance measure [109]. KNN and KSTAR require huge memory space as

the entire data set is stored in the memory for classification. BNGE [110], EACH

[111], and RISE [112] algorithm stores data in a compact way in memory. The

training examples corresponding to the same class are represented in the form of hyper

48

Data Analysis Methods

rectangles that lead to fast classification.

In BNGE and EACH, an exemplar corresponds to a single training data point and

a generalized exemplar is a hyperrectangle that covers multiple training data points.

To find the label of a test data point, its distance from the generalized exemplar is

computed. RISE combines instance-based learning and rule induction into one single

approach.

Unlike the other instance-based learning techniques that classify a test instance

based on its distance from the data points kept in memory, RISE finds the label of an

unseen data point by assigning it to the class label of the nearest rule in the ruleset.

The instance-based techniques generally work not well on large training datasets.

Therefore, this thesis also applies few evolutionary instance selection techniques that

tend to determine an optimal training dataset for classification. The basic concept

in GGA is to maintain a population of chromosomes. The chromosomes epitomize

probable solutions to the problem that evolves in the succeeding iterations through a

process of competition. A fitness value is associated with each chromosome that aid in

the selection of chromosomes in the competition process to form new chromosomes.

GGA consists of three operations namely assessment of the fitness of individuals,

development of an intermediate population through selection, and recombination

using crossover and mutation operators [113].

SGA picks two parents from the population. An offspring is created with the help

of crossover and mutation which is then evaluated using the fitness function. Then an

individual in the population is decided to be replaced by the offspring depending on

the replacement strategy [113].

IGA employs an intelligent cross-over operator that intelligently selects the better

genes for the formation of the chromosomes of children [114]. Intelligent crossover

replaces the traditional generate-and-test search for children using a random combina-

tion of chromosomes with a systematic reasoning search technique using an intelligent

49

Data Analysis Methods

combination for selecting better genes. The algorithm works as follows: A random

population of individuals is initialized, and their fitness is evaluated. Then a rank

selection is performed that replaces the worst individual with the best one. individuals

to form a new population. Random individuals are then selected for performing

intelligent crossover. Then mutation is applied using a bit inverse mutation operator.

The parameter setting of GGA, SGA, and IGA include population size of 51, 10000

number of evaluations, 5 number of neighbors, mutation probability of 0.01, and

cross-over probability of 0.6.

CHC is an adaptive search algorithm that uses a parent population of size n

to produce an intermediate population of n individuals. These n individuals are

arbitrarily paired and offspring are produced. The survival competition is held where

the best chromosomes from the parent and offspring populations are selected and the

next generation is formed [113]. The parameter setting for CHC includes population

size of 50, the number of evaluations is 10000, percentage of change in restart is 0.35,

number of neighbors is equal to 5 and the distance function is Euclidean.

PBIL technique uses stochastic exploration to adjust a probability array, which

converges toward an optimal solution with the help of GA. The probability array is

adjusted iteratively by considering the solutions explored in the previous iterations

[113]. If the feasible solution is represented as a binary string, the probability array

is represented as a vector. Each bit in this vector stores probability related to each

bit of the optimal solution. Once probability entry converges to one, it depicts the

corresponding value of the associated bit for the optimal solution. The parameter

settings of PBIL are as follows: a number of generations are equal to 10000, the

population size of 50, mutation probability of 0.05, the number of neighbors are 5,

and the Euclidean distance function.

SSMA works by forming all subsets of training data and chromosome represents

the subsets of training data using binary representation [115]. The chromosome

50

Data Analysis Methods

contains n genes i.e., one for each example in training data with two states 1 and 0. If

the corresponding bit for a gene is 1, the example would be contained in the subset of

of training data and if it is 0, the example is would not be contained in the subset.

Fitnessfunction = a ∗ C.R + (1− a) ∗ P.R (2.6)

Here, C.R is a classification error associated with the selected subset, and P.R

indicates the percentage of reduction of examples of the subset with respect to training

data.

2.6.8 Genetic Algorithm based Classifier System

Genetic Algorithm Based Classifier System (GAssist), the knowledge representation

takes the form of classification rules and GA is used for the evolution of these rules

[116]. A chromosome in a GA is representative of a classification rule and it is coded

in the form of a bit array where the individual bits represent the attributes of the

training example. The bits correspond to genes of the chromosomes. To characterize

a real-valued attribute in the form of a chromosome, discretization using the proper

number of intervals is required. Therefore, the bits signify a discretization interval.

The traditional technique used in GA is a set of rules where the antecedent of the

rule is defined by a prefixed finite number of intervals to handle real-valued attributes.

Therefore, the competence of these systems is highly reliant on the correct choice of

the intervals. Hence, a rule representation with adaptive discrete intervals is essential.

In GA-ADI, the intervals are split and combined during the evolution process [117].

GA-Int uses intervalar rules [118]. The fitness of individual rules is evaluated based on

the proportion of examples that are being correctly classified. The parameter settings

for GA-ADI and GA-Int include 500 iterations, Strata of 2, min rule deletions equal to

12, and 4 as the size of the penalty of minimum rules. in addition to above parameters

51

Data Analysis Methods

4,5,6,7,8,10,15,20,25 discretization intervals are used. The fitness function in GA-ADI

and GS-Int is Accuracy which is defined in Section 2.7.7.

2.6.9 Learning Classifier System

Learning Classifier System (LCS) is a versatile classification system that is trained to

perform achieve the best actions from the given input. In the context of classification,

“input“ is the set of independent variables and actions characterize the predicted target

class. The rule-set for LCS comprises rules of the form of “condition-action“. For

a specific set of input comprising the independent variables, sometimes more than

one rule can be triggered and predict different target classes. In this situation, LCS

computes the average of the predictions of the classifiers that target class. And the

target class having the highest average is predicted as the resultant target class. Some

amount of payoff is returned by the system when the target class with the highest

average prediction is returned. This payoff is used to modify the prediction during

the training of LCS. Each classifier in LCS also keeps track of the errors of the

misclassifications. During each iteration of the training, LCS regulates the fitness by

moving close to the inverse of error. Also, in each iteration, the classifiers with higher

fitness are evolved over the less fit variants by modifying the âoffspringâ using the

genetics operators i.e., cross-over and mutation.

XCS makes use of genetic algorithm with reinforcement learning scheme. With

this scheme, when the input is given to the system, the different rules can be triggered

based preconditions of the rules matching with the input. The competing rules get

reward based on their actions. The algorithm evolves as a population of classifiers,

where each classifier consists of a rule and parameters for estimating the quality of the

rule. The GA in XCS is applied to the action sets, rather than over all the population.

First, it selects two parents from the actual action set with probability proportional

52

Data Analysis Methods

to fitness. Then, the parents are crossed and mutated. The resulting offspring are

introduced into the population [119]. The parameter for XCS technique used this

thesis are, a population size of 6,400, a crossover probability of 0.8, 1,00,000 explores,

two-point crossover type, a mutation probability of 0.04, free mutation, roulette wheel

selection, δ = 0.1, θmna = 2, θsub = 50.0, θga = 50.0, α = 0.1, β = 0.2, θdel = 50.0

µ = 10.0, r = 1.0, m = 0.1, 0.4 as size of tournament, 10.0 as initial prediction, 0.0

as initial prediction error, 0.25 as reduction of prediction error, 0.01 as initial fitness

value and GA subsumption as true.

Error = (1/R (|R− Pc| ∗ Pcl + |θ − Pc| ∗ (1− Pcl))) (2.7)

HereR denotes reward, Pc denotes prediction given by classifier, and Pcl is probability

of correct classification.

UCS is intended for supervised environments. The training in UCS is performed

in a supervised way where each training instance is accompanying with a class label.

This is different from XCS where reinforcement learning is performed and the system

gets rewards corresponding to the actions [120]. In UCS, when a with input instance

e is presented during training, a match set (M) is formed. The match set contains

classification rules whose conditions match with the input e. The classifiers in (M)

that predict the correct class of e form a set C, regarded as the correct-set. Remaining

classifiers in M said to belong to incorrect set (!C). In the testing phase, when an

instance e is presented, the system has to predict the associated class. The predicted

class is determined by the weighting of the vote of all the classifiers in the match set

(M). The weights are assigned according to fitness. In UCS, GA is applied only to

correct-set (C). Two classifiers from set (C) are selected with probability proportional

to fitness. The crossover and mutation are applied to the selected classifiers. The

parameter settings used for UCS in this thesis are the same as that of XCS. The fitness

53

Data Analysis Methods

function of UCS is accuracy which is given by equation 2.7 where v is a constant.

Accuracy = (
Number of Correct Predictions

Number of Matches
)
v

(2.8)

BIOHEL entails the iterative learning of rules. It is strongly influenced by the

GAssist Pittsburgh learning classifiers systems and works well for large data sets [121].

The various features of BIOHEL are inherited from GAssist. The learning process

is guided by creating one rule at a time using GA. Once a rule is found, the training

instances covered by that rule are taken out of the training data set and GA is enforced

to discover other areas of the search space to learn another rule. The discovered rules

are iteratively inserted into the ruleset. Also, o default rule covering the majority of the

class domain is added into the ruleset. The learned rules are continuously evolved. For

BIOHel, the parameters used in this thesis are, the population size of 500, tournament

size of 4, and crossover and mutation probability is equal to 0.6 with 100 iterations.

MPLCS is another classification technique used in this thesis. In MPLCS, Pitts-

burgh refers to the approach that comprises rule-sets rather than individual rules

and Memetic denotes the combination of population based global search along with

cultural evolution in the search cycle i.e., local refinement [122]. MPLCS incorporates

GAssist with a local search algorithm using a rule-set wise operator (RSW). RSW

works in three stages. In the first stage, all the available rules are evaluated with respect

to all the instances in the training dataset. This process would result in correct and

incorrect classification of each rule. In the second stage, the position in the rule-set

is determined where inserting the candidate rule would lead to an increase in the

accuracy of the rule-set. In the last stage, the highest accuracy rules are picked and

offspring is generated out of the selected rules.

The parameters used for MPLCS include 750 iterations, 0.05 as local search

probability, 0.1 as rule set-wise crossover probability, 4 as the size of penalty rules,

54

Data Analysis Methods

and 5 rule ordering repetitions. The fitness function for MPLCS is as follows:

FitnessFunction = Exception Bits+Weight ∗ Theory Bits. (2.9)

In the above equation, Weight assigns the weight for adjustment of exception. TheoryBits

signifies the length of all classification rules that are alive and ExceptionBits implies

all examples which are wrongly classified.

2.6.10 Decision Trees with Genetic Algorithm

DT algorithms are biased towards generalization i.e., they generally favor rules cover-

ing a large number of instances i.e., large disjuncts. They ignore the rules with small

disjuncts which cover a few numbers of instances. Therefore, with DT algorithms, it

is challenging to predict the target class of small disjuncts instances. Small disjuncts

should not just be ignored because they may cover few instances but set small disjuncts

may cover a large number of instances [123]. GA is a robust and flexible search algo-

rithm that can cope with attribute interaction better than DT algorithms. GA is suitable

for finding rules that cover a small number of instances. It employs flexible search

and does not get trapped in local minima. DT-GA is a hybridization of DT and GA

that integrates the advantages of its constituent techniques. The training in DT-GA is

done in two distinct stages. The first stage runs the C4.5 DT algorithm on the training

dataset. DT is pruned and transformed into decision rules. In the second phase, GA

determines the decision rules covering instances belonging to small disjuncts. In

this thesis, DT-GA is used with 2 instances per leaf, a confidence of 0.20, 10 as the

threshold for considering small disjuncts, 50 generations for GA, 200 chromosomes

in the population, a crossover probability of 0.7, and a mutation probability of 0.01.

The fitness function is the multiplication of sensitivity and specificity.

55

Data Analysis Methods

The TARGET initializes a forest of random trees developed using CART. the

fitness of each tree in the forest is evaluated and the current forest is evolved to a

new one with the help of genetic operators [124]. This process is continued until

the improvement in the fitness function not get stabilized. The parameter setting for

TARGET includes 100 generations of GA, the number of trees generated by crossover

is 30, the number of trees generated by mutation is 10, 0.5 as the probability of

splitting the node. The fitness function of TARGET is Gini-index.

2.6.11 Constricted and Linear Decreasing Weight Particle Swarm

Optimization

CPSO and LWPSO are variant of the Particle Swarm Optimization (PSO) algorithm.

PSO is based on the fact that an intelligent optimization solution can be accomplished

by cooperative behavior as contrasting to an isolated individual reactive response to

the environment. The solutions in PSO are looked in a dispersed way [125]. The

algorithm maintains the following conditions, (i) function which is required to be

optimized (ii) the global best (gbest) that characterizes the best value obtained by any

particle in the solution space (ii) the termination condition to stop the algorithm. A

particle in PSO also contains the required data that is the representation of a probable

solution, velocity value that specifies the degree to which the data can be changed, and)

the best solution (pbest) indicating the best particle value attained at a moment. The

algorithm investigates the entire search area and looks for the utmost favorable region.

In each iteration, velocity (vt) of each particle at time t is updated according to pbest,

gbest, current position (xt−1) and current velocity (vt−1). During the exploration of the

search space for an optimal solution, it is important to avoid search space. To do so, the

use of proper constriction coefficients (δ) has been suggested by Clerc and Kennedy

[126]. The constriction coefficient (δ) help in controlling the exploration. And the

56

Data Analysis Methods

PSO variant that uses constriction coefficients is termed as the CPSO algorithm. In

addition to δ, CPSO algorithm also uses two additional parameters namely cognitive

parameter (C1) and social parameter (C2). The position of a particle according to its

local best is updated by C1 and the position of a particle according to its global best is

updated by C2. The velocity of the particle is updated as follows:

vt = δ (vt−1 + C1 (pbest − xt−1) + C2 (gbest − xt−1)) (2.10)

The position of the particle is updated according to the following equation:

xt = (xt−1) + vt (2.11)

In this work, the following CPSO parameters are used for model development: 25

particles, convergence radius of 0.1, 2.05 as maximum weights for C1 and C2, a

maximum of 0.1 uncovered instances, δ of 0.73, 0.1 as the threshold for indifference

and a convergence platform of width 30

In LDWPSO, a linearly decreasing inertia Wldw parameter is used that balances

out the global and local search abilities of the swarm in an effective manner [127].

The parameter (Wldw) decreases linearly from 0.9 to 0.4 during the search process.

The equation for the linearly decreased weight (Wldw) is given below:

Wldw = (Wmaximum −Wminimum) ∗
Itmaximum − Iti
Itmaximum

+ wminimum (2.12)

Here, Wmaximum = 0.9, Wminimum = 0.4, Itmaximum denotes maximum number of

iterations in the algorithm, and Iti denotes ith iteration. Using, linearly decreasing

57

Data Analysis Methods

inertia (Wldw) parameter, the updated equation of velocity is given as follows:

vt = Wldw ∗ (vt−1 + c1(pbest − xt−1 + c2(gbest − xt−1)) (2.13)

The fitness function used by the CPSO and LDWPSO in this work is product of

Sensitivity and Specificity.

2.6.12 Particle Swarm Optimization with Linear Discriminant

Analysis

PSOLDA is a hybridization of PSO and LDA [128]. In this technique, PSO is used

for feature subset selection and LDA for developing the model. LDA suffers from

the problem of a small sample size when the dimensions of the data are much more

than the number of data points. The hybridization of LDA with PSO overcome

this problem as PSO can be used to select the useful features and to improve the

classification accuracy of LDA [128]. PSO is a prevailing meta-heuristic technique

that can maximize the performance of classification by reducing the number of features.

The development of a model using PSOLDA involves data preprocessing as the first

step. In the pre-processing step, normalization is done and each independent variable

is scaled in the range (0,1) and instances with missing values are removed. After

this, each particle in the PSO technique is representative of the solution i.e. set of

independent variables. Initially, the position and velocity of each particle are random

in the n-dimensional space where n is the number of independent variables. The

fitness of each particle for LDA is evaluated. For each particle, local best and global

best is determined by the fitness value and position vectors are updated accordingly.

The fitness function for PSOLDA is classification accuracy and the parameters settings

involve 400 iterations, 0.8 as a cognition learning factor, 1.2 as social learning factor,

58

Data Analysis Methods

an inertia weight of 0.5, and the number of particles are 15.

2.6.13 Genetic-Fuzzy Based Classification Techniques

A fuzzy take the form of if xi is Ai then y is Bi. The if part of the rule i.e., xi is Ai

is termed as rule antecedent and y isBi is called rule consequent. The antecedent part

may have conjunctive antecedents in a fuzzy-rule. A fuzzy rule assigns a class label

to an instance with a specific confidence. For a particular set of predictors, a fuzzy

rule outputs the class label and a number representing the degree of confidence of the

classification. The genetic algorithm is used to find a fuzzy classifier in three phases.

In the first phase, a population of several fuzzy rules evolves. This phase is called as

fuzzy rule generation. These rules may correctly classify the training instances. Out of

these rules, the one with the largest coverage is added into the intermediate rule base.

In the second phase, all the training instances are re-weighted based on how well they

are classified according to the new rule. This process is repeated in iterations until the

desired number of rules are obtained or the desired accuracy is obtained. In this thesis,

three boosting techniques are used with GFS to develop hybridized models. The first

technique combines LB with GFS i.e., GFS-LB. Boosting entails combining several

weak classifiers to obtain a classification technique having high classification accuracy

than its constituents. In GFS-LB, a logit boost boosting mechanism is employed to

boost the performance of fuzzy classifiers [129]. While boosting fuzzy rules, a single

fuzzy rule can be fit on a set of weighted examples. The algorithm is repetitively

performed for each rule in the base. GFS-AB is also used in this thesis. In GFS-AB,

the AdaBoost algorithm computes the number of votes each rule is assigned and

recomputes the weight of each instance if a new rule is added to the base. In this

way, AdaBoost combines low-quality classifiers with a voting scheme to produce a

classifier better than any of its constituents [130]. GFS-maxLB is also used in the

59

Data Analysis Methods

thesis. This technique employs a “single winner“ method as compare to “sum of votes“

to output the label of a test example. The parameters used for GFS-LB, GFS-AB, and

GFS-maxLB in this thesis are 5 labels and 25 rules in the base [131]. The fitness of a

fuzzy rule is computed as the squared error between the desired output and the logistic

transform of the classifier's output.

In the above GFS based classification techniques, fuzzy rules have linear rep-

resentation. In GFS-GP, the classification knowledge is expressed in the form of

tree-shaped genotypes [132]. The GP algorithm is similar to GA in terms of finding

an efficient solution in a vast search space of candidate solutions. Both the algorithms

constantly improve their solutions with the help of various operators like mutation,

selection, recombination, etc. However, there is a dissimilarity in the representation of

the candidate solutions for both the algorithms, while both the GA as well as the GP

algorithm use chromosomes whose length is fixed throughout, in the GP algorithm

the chromosomes are later represented as optimal expression trees. In this thesis,

the parameter settings for the GFS-GP technique include the number of labels of

3, 8 number of rules, the population size of 30, 4 as the size of tournament and

10000 evaluations, and tree height of 8. GFS-SP uses a simulated annealing search to

discover the optimum solution from fuzzy rules expressed in the form of tree-shaped

genotypes [132]. The parameter settings for GFS-SP are labels of 3, 8 number of

rules, the population size of 30, 4 as the size of tournament and 10000 evaluations,

cross-over and mutation probability of 0.1, and tree height of 8. In GFS-GCCL an

initial population is generated that is in the form of fuzzy rules [133]. Each generated

fuzzy-rule is evaluated and transformed into new rules using genetic operators. This

process is repeated until the number of specified iterations are not completed. The

parameter setting for GFS-GCCL is as follows: population size is 100, the number

of evaluations is 10000, cross-over probability is 1.0, mutation probability is 0.1 and

the number of individuals to be replaced in the papulation are 20. GP-COACH is

60

Experimental Design Framework

also a fuzzy rule-based classification technique combining feature selection in the

rule learning process in order to generate a compact rule base with the help of genetic

programming [134]. The parameter setting of this technique are 5 number of labels, a

number of generations are 20000 and an initial number of fuzzy rules is 200.

2.7 Experimental Design Framework

The diagrammatic representation of the experimental design of the thesis is presented

in Figure 2.2. The various steps are described in detail in the following sections.

Figure 2.2: Experimental Design for Developing SMP Models

2.7.1 Empirical Data Collection

Empirical data collection is a systematic method of gathering and analyzing specific

information to offer answers to questions and appraise the results. For empirical

61

Experimental Design Framework

validations, the data may be collected from industrial software, open-source software,

or academic projects. This work focused on datasets extracted from the open-source

software systems. These software systems are continuously modified by developers all

over the world but due to lack of documentation and technical support, it is difficult to

estimate their maintainability. In the area of software predictive modeling, hardly a few

studies have dealt with maintainability prediction by extracting datasets from open-

source software systems. Therefore, we decided to target data extraction from the open-

source software systems. The source of these systems could easily be downloaded.

This section describes open-source software used in the thesis for data extraction and

data collection process. The source code of the open-source software systems used in

this thesis has been downloaded from https://sourceforge.net.

2.7.2 Software Systems used for Data Collection

Empirical data is collected from Apache software systems, namely Apache Io, Ivy,

Betwixt, Java caching system (Jcs), Lang, Orchestration Director Engine (Ode), and

Log4j, and Byte Code Engineering Library (Bcel), HtmlUnit, Maven, and Click. The

brief explanation of these software systems is as follows:

• Apache Bcel gives a very convenient way to create, manipulate, and analyze

Java class files. The objects represent the classes and provide all necessary

symbolic information about the corresponding classes.

• Apache Betwixt provides users a convenient way of converting the beans into

Extensible Markup Language (XML) and generating digester rules. A rule is

fired when a pattern is matched.

• Apache Io is a library of utilities that assist in input and output functionality. It

includes utility classes, filter classes, file monitoring, and comparator classes.

62

https://sourceforge.net

Experimental Design Framework

• Apache Ivy is an application package to manage project dependencies. It

includes tracking, recording, and resolving project dependencies and is charac-

terized by its flexibility. Written in Java language.

• Apache JCS is a Java Caching system which tends to manage the cache data

to speed up applications. It acts like a front-tier cache that is configured to

maintain consistency across multiple web servers.

• Apache Lang provides various utilities like basic numerical methods, string

manipulation, and serialization of different system properties.

• Apache Log4j is a fast and reliable logging package with three primary compo-

nents: logger, appender, and layout. The logger captures the logging information.

Appender is accountable for publishing the logging information, whereas the

layout component formats the information in different formats.

• Apache Ode software package designed to talk to the web services by sending

and receiving messages, handle error recovery, and data manipulation.

• HtmlUnit is Apache licensed headless browser which is intended for use in

testing web-based applications.

• Click is Apache licensed a Java Enterprise Edition web application framework,

providing a natural rich client style programming model.

• Maven is a software project management tool which manages project's build,

documentation and reporting from one central place.

2.7.3 Data collection Procedure

The steps followed for data collection are described in Figure 2.3.

63

Experimental Design Framework

Figure 2.3: Data Collection Procedure

1. Calculation of OO Metrics: For data extraction, we analyzed two versions of

the particular open-source software i.e., the previous version and successive ver-

sion. OO metrics are extracted from the previous version of the software. The

OO metrics quantify the various OO characteristics like coupling, inheritance,

cohesion, etc. OO metrics are calculated with the help of the Chidamber and Ke-

merer Java Metrics (CKJM) tool that computes the metrics at the “ method level“

and “class level“. The CKJM tool can be downloaded from http://gromit.

iiar.pwr.wroc.pl/p_inf/ckjm/metrc.html. The CKJM tool cal-

culates OO metrics from the bytecode of compiled Java files. In this thesis, only

“class level“ metrics are considered.

2. Prepossessing Previous and Successive Versions: This step involved prepro-

cessing the previous and successive versions of the software to determine the

common classes in two versions. We analyzed the classes that were present both

64

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metrc.html
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metrc.html

Experimental Design Framework

versions. The classes that were present in the previous version but not there in

the next version are not considered. Also, the classes that were newly added in

the next version are not considered. In this way, we left with common classes

between the two versions. We extracted these common classes and each such

class represents a data point.

3. Determining Change Statistics in the Common Classes: In the next step, we

computed the change statistic in the common classes analyzed in Step 2. The

change statistic is in the form of changes in lines of source code (SLOC) in

the common class. The changes in common class may be due to the addition

of SLOC (SLOCadded), deletion of SLOC (SLOCdeleted), or modification of

SLOC (SLOCmodified) in the recent version with respect to the previous version

of the software. The total SLOC (SLOCtotal) changed in a common class

are calculated as the sum of SLOCadded, SLOCdeleted and SLOCmodified [5].

The calculation of change statistics was accomplished with the help of the

Data Collection and Reporting (DCRS) tool [135]. This tool is developed by

undergraduate students of Delhi Technological University in Java programming

language. Data extraction has successfully been carried out from various open-

source repositories using this tool. Only the prerequisite for utilizing this tool is

that the repository must use GIT as version control. DCRS tool is successfully

employed for data extraction corresponding to open-source software systems

used in this thesis. The data extraction procedure with the DCRS tool is

described below.

• Two successive versions of the software have been fed as input to the

DCRS tool. The changelog corresponding to common classes between the

two analyzed versions has been extracted in the form of change records

with the DCRS tool. A change record encompasses change data such as an

65

Experimental Design Framework

identifier, commit timestamp, description of the change, and a file listing

of all the files which are modified including the lines of changed code.

The change statistics discussed above are extracted from changelogs.

• The CKJM tool, open-source software for the extraction of OO metrics,

is embedded with the DCRS tool to collect the OO metrics correspond-

ing to the common classes. As discussed, the OO metrics extracted by

the CKJM tool (http://gromit.iiar.pwr.wroc.pl/p_inf/

ckjm/metrc.html) are the quantitative measure of cohesion, coupling,

inheritance, etc., of a class.

• For each common class, apart from change statistics, also the values

of a special variable, ALTER are derived. The ALTER variable for a

class contains two values “yes“ and“no“. The “yes“ value of the ALTER

variable represents the change in common class from the previous version

to the next version. The “no“ value of ALTER signifies that there is no

change in SLOC in the corresponding common class. In other words, if

total SLOC in a common class is greater than 0, the ALTER variable has

“yes“ values for that class otherwise it has “no“ value.

4. Combining OO metrics, Change Statistics and ALTER: In the last, OO metrics

computed in Step 1, change statistics and the ALTER variable derived in Step 3

are combined to form data points for each common class. The combination of

these data points from the dataset for analysis in this thesis.

2.7.4 Data Preprocessing

This section describes the descriptive statistics of OO metrics of the datasets and data

preprocessing steps.

66

http://gromit.iiar.pwr.wroc.pl/ p_inf/ckjm/metrc.html
http://gromit.iiar.pwr.wroc.pl/ p_inf/ckjm/metrc.html

Experimental Design Framework

2.7.4.1 Descriptive Statistics

For each dataset, the descriptive statistic of various OO metrics is reported in this

section. The descriptive statistics aid in evaluating the characteristics of the datasets

used for analysis. The following descriptive statistics are reported for OO metrics.

• Minimum: For an OO metric, the minimum denotes the minimum value of the

corresponding metric in the dataset.

• Maximum: For an OO metric, maximum denotes the minimum value of the

corresponding metric in the dataset.

• Mean: The average value for an OO metric in the dataset is depicted by Mean.

The mean is computed by dividing the total value of the OO metric in the dataset

with the number of data points in the dataset.

• Standard Deviation (Std.Dev.): It projects the central tendency of the OO metric.

The low Std. Dev. values are an indication that metric values are close to the

mean whereas high Std.Dev. values indicate that metric is dispersed.

• Median: Median provides information about the frequency distribution of the

classes in a specific metric. In the case of a dataset having outliers, the median

is a good means of measuring the central tendency as compared to the mean.

The descriptive statistics for each dataset are given in Appendix. After analyzing the

descriptive statistics, the following observation have been made.

• The mean of the DIT metric is in the range of 0.32 to 2.64 for all datasets. Also,

for all datasets, the median of NOC metric is 0.00. These statistics indicate that

inheritance property was not much used in these software systems.

67

Experimental Design Framework

• Median of CBO metric for all datasets was in the range of 0.00 to 1.00. The low

values of CBO metric indicate that the classes in all of the software systems are

loosely coupled with each other.

• The LCOM metrics value was high up to 16920. Low LCOM values were

observed in Io, Ivy, HtmlUnit, Maven and Click. Therefore, except Io, Ivy,

HtmlUnit, Maven and Click other datasets have very low cohesion.

2.7.4.2 Removal of Common Classes not Changed

In this thesis, maintainability is predicted in the form of lines of code changes.

Therefore, after data extraction, we removed all those classes from the datasets that

were not changed from the previous version to the next release. To do this, we scanned

all data points in the dataset and removed those data points in which the value of the

ALTER variable was “no“. We did this because the value of the ALTER variable

represents a change in the common class. If the ALTER has a “no“ value, it means

that there is no change in terms of line of code in that class from the previous version

to the next version. The detail of the software projects used in the thesis with their

names, version analyzed, number of common classes, number of common classes

changed and percentage of change (% Change) is given in Table 2.2.

Table 2.2: Details of Software Projects

Name of Software Version Analysed No. of Common

Classes

No. of Common

Classes Changed

% Change

Bcel 5.0-5.1 363 360 99.17
Betwixt 0.6-0.7 290 279 96.2
Io 2.0.1-2.2 274 272 99.27
Ivy 1.4.1-2.2.0 619 429 69.3
Jcs 1.2.6.5-1.2.7.9 333 219 65.76
Lang 2.4-2.6 434 267 61.52
Log4j 1.2.14-1.2.15 491 437 89
Ode 1.3.1-1.3.2 1060 1004 94.71
HtmlUnit 2.19 to 2.20 1874 656 35

68

Experimental Design Framework

Maven 3.3.3 to 3.3.9 832 275 33
Click 2.2.0 to 2.3.0 437 270 62

2.7.4.3 Outlier Analysis

We analyzed data points that were having extreme variability from the remaining data

points in the dataset. Such data points are regarded as outliers. It is imperative to

remove such data points for the development of an effective and unbiased prediction

model. For the outlier analysis, Inter Quartile Range (IQR) available in WEKA

tool [95]. IQR is computed as the difference between upper quartile (Q3) and lower

quartile (Q1) i.e.,

IQR = Q3 −Q1 (2.14)

A data point representing a class is considered an outlier if any one of the following

conditions holds for any of the independent variable x of the class.

Q3 +OF ∗ IQR < x ≤ Q3 + EV F ∗ IQR (2.15)

Q1 − EV F ∗ IQR ≤ x < Q1 −OF ∗ IQR (2.16)

In equations 2.15 and 2.16,EV F represents Extreme Values Factor andOF represents

Outlier Factor. The default values of EV F and OF in the WEKA tool are 6.0 and 3.0

respectively. The outliers were removed from each data set before further analysis.

The number of data points in each dataset after removal of outliers are given in Table

2.3.

Table 2.3: Results of Outlier Analysis

Dataset No. of data-

points

No. of outliers No. of datapoints after out-

lier removal
Bcel 360 26 334

69

Experimental Design Framework

Betwixt 279 34 245
Io 272 24 248
Ivy 429 58 371
Jcs 219 22 197
Lang 267 47 220
Log4j 437 32 405
Ode 1004 115 889
HtmlUnit 656 20 636
Maven 275 10 265
Click 270 13 257

2.7.4.4 Data Discretization

In this thesis, the dependent variable maintainability is formed by converting the

continuous variable SLOCtotal into a binary variable. The new binary variable can

take one of the two possible values of a class, i.e., low maintainability or high

maintainability. Low maintainability classes require more maintenance efforts due

to more number of changes in comparison to high maintainability classes [49]. As

discussed in Section 2.5.2, maintainability is defined as a function of the number of

SLOCtotal revised in a class from the previous version to the next subsequent version.

The values of the dependent variable “Maintainability“ for a particular data point in

our analysis are assigned based on SLOCtotal based on the criteria proposed by [49].

According to this criterion, if the value of SLOCtotal for a data point is greater than

average SLOCtotal values for all data points in the dataset, the Maintainability value

was set to “low maintainability“ or 1; otherwise, the value of Maintainability was set

to “high maintainability“ or 0. The detail of datasets after discretization i.e., number

and percentage of data points of low maintainability (LM) and high maintainability

(HM) data points for each dataset and Imbalance Ratio (IR) is shown in Table 2.4.

70

Experimental Design Framework

Here, IR is given as:

IR =
Number of HM datapoints

Number of LM datapoints
(2.17)

Table 2.4: Results of Data Discretization

Dataset LM data-

points

HM datapints % of LM datapoints % of HM datapoints IR

Bcel 18 316 5.69 94.61 17.55
Betwixt 27 218 12.38 88.97 8.07
Io 10 238 4.20 95.96 23.80
Ivy 28 343 8.16 92.45 12.25
Jcs 27 170 15.88 86.29 6.29
Lang 27 193 13.98 87.72 7.14
Log4j 42 363 11.57 89.62 8.64
Ode 57 832 6.85 93.58 14.59

2.7.4.5 Correlation Based Feature Selection

In a predictive modeling task, the selection of appropriate features has a substantial

influence on the performance of the learned model. The feature selection process

eliminates the irrelevant and redundant features from the training dataset. The advan-

tages of feature selection can incorporate a decrease in the information expected to

accomplish learning, reduction in execution time, and enhanced prediction accuracy of

the model. In this thesis correlation-based feature selection (CFS) [136] has been used

to select the relevant features in the training datasets. CFS selects those features that

have a high correlation with the dependent variable and the least correlation among

themselves. A study by Hall and Holmes [137] assessed six different feature selection

techniques on fifteen datasets. This study discovered that although there is no excellent

technique for feature selection, the results of the CFS technique were promising. A

comprehensive review of 64 fault prediction studies in the time of 1991 to 2013 was

71

Experimental Design Framework

conducted by [138]. This study revealed that CFS was one of the most commonly

used feature selection techniques in software engineering predictive modeling tasks.

The CFS technique has successfully applied in various software quality modeling

studies [139–141], we used the CFS technique in the thesis for feature selection.

2.7.5 Data Balancing

After data discretization, we observed that there is a huge difference in terms of the

number of data points of low maintainability and high maintainability classes i.e., the

resultant datasets were imbalanced in nature (Table 2.4). The numbers of instances

of high maintainability class were far more in number as compared to the number of

instances of low maintainability class. To build effective and unbiased SMP models,

it was essential to handle the imbalanced data problem. In this thesis, the imbalanced

data problem is handled with the help of (i) data level techniques and (ii) algorithm

level techniques. The data level techniques make a balance in the data distribution

of different classes by removing or adding more data points in the dataset. Unlike

data level techniques, algorithm level techniques modify the learning procedure of

the learning algorithms to lessen their favoritism towards learning majority class data

points. The detailed description of various techniques to handle imbalanced data is

given in Chapters 4 and 5.

2.7.6 Prediction Model Development and Validation

This thesis develops SMP models to recognize the maintainability of classes in the

future i.e., unseen versions of the software. The maintainability prediction models are

trained using historical data to determine which class would require more maintain-

ability effort in the future during software maintenance. The data analysis techniques

described in Section 2.6 are used to develop prediction models in a supervised learning

72

Experimental Design Framework

mode. The models are developed using the training data consisting of independent

variables (OO metrics) and class labels (“low maintainability“ or “high maintainabil-

ity“). The supervised techniques aid in learning the data points and class labels. Once

a model is developed, its validation is done by providing the validation or test data

to know that how the developed model would behave on the unknown data points.

The validation data points comprise of independent variables only. When the test data

point is given to the developed model, it is supposed to predict the class label. Later,

in order to know, how accurate are the predictions of the model, the predicted label

is matched with the actual label. The following subsection describes the validation

methods used in this thesis.

2.7.6.1 Ten-fold Cross Validation

The ten-fold cross-validation mechanism works by dividing the training dataset into

ten equal-sized partitions. The training and validation data are derived from the

same project. At random, nine partitions are utilized for learning the model, and the

performance of the learned model is estimated with the leftover tenth partition. This

process is repeated ten times so that every partition is used at least once for testing

the performance of the developed model [142]. The ten-fold cross-validation method

diminishes validation bias. The ten-fold validation method is depicted in Figure 2.4.

2.7.6.2 Inter-Project Validation

Unlike the ten-fold cross-validation, in which the training and test data are used

from the same project, in inter-project validation, the training data is obtained from

a different project, and the model is tested on a different project dataset. The data

collection for training the prediction model is one of the difficult tasks because in

most cases either such data is unavailable or it is difficult to collect [143, 144]. To

73

Experimental Design Framework

Figure 2.4: Ten-fold Cross-Validation

overcome this limitation of historical data collection, the development of generalized

maintainability prediction models is necessary where the historical data of a particular

project can be utilized for other similar kinds of projects. This approach is called inter-

project validation. Thus, the situation in which there is the inadequacy of resources and

lack of time to capture training data for the development of maintainability prediction

model, inter-project validation can be employed. Figure 2.5 describes inter-project

validation.

2.7.7 Performance Measures

Given training data points of classes labeled as low maintainability or high maintain-

ability, a model can be learned from the data points and used to classify the unknown

classes be of low maintainability or high maintainability The performance of the

74

Experimental Design Framework

Figure 2.5: Inter-Project Validation

model is assessed by examining the confusion matrix given in Figure 2.6.

Figure 2.6: Confusion Matrix

The confusion matrix contains the class values in the form of positives and nega-

tives. In this thesis, positive value corresponds to low maintainability, and the negative

value corresponds to high maintainability classes. There are four entries in the confu-

sion matrix i.e., True Positive (TP), True Negative (TN), False Positive (FP), and False

Negative (FN). From the confusion matrix, various performance measures to derived

75

Experimental Design Framework

to assess the performance of maintainability prediction models. These measures are

defined as follows:

• Accuracy: It is defined as the percentage of correctly predicted low and high

maintainability classes.

Accuracy = (
TP + TN

TP + TN + FP + FN
) ∗ 100 (2.18)

• Sensitivity: It is defined as the percentage of correctly predicted low maintain-

ability classes amongst actual low maintainability classes. It is also regarded as

the True Positive Rate (TPR).

Sensitivity = (
TP

TP + FN
) ∗ 100 (2.19)

• Specificity: It is defined as the percentage of correctly predicted high maintain-

ability classes amongst actual high maintainability classes. It is also regarded

as the True Negative Rate (TNR).

Specificity = (
TN

TN + FP
) ∗ 100 (2.20)

• Precision: It is defined as the percentage of correctly predicted low maintain-

ability classes amongst total predicted low maintainability classes.

Precision = (
TP

TP + FP
) ∗ 100 (2.21)

• False Positive Rate (FPR): It is defined as the percentage of high maintainability

classes that are incorrectly predicted as low maintainability classes amongst

76

Experimental Design Framework

actual high maintainability classes.

FPR = (
FP

FP + TN
) ∗ 100 (2.22)

• (G-Mean): It is defined as the geometric mean of specificity and sensitivity.

G-Mean =
√
Sensitivity ∗ Specificity (2.23)

• Balance: It is defined as the Euclidean distance between the pair of FPR and

TPR and the optimal value of this pair. The optimal value for FPR is 0 and that

of TPR is 1.

Balance = 1−
√

(0− FPR)2 + (1− Sensitivity)2
2

(2.24)

• AUC: AUC approximates the area under the Receiver Operator Characteristic

curve constructed by plotting sensitivity values of the prediction model on the

y-axis and FPR on the x-axis. The trade-off between the TPR and FPR by the

curve serves as the model's performance. A good prediction model produces

higher AUC [145].

The maintainability prediction model is considered good, if except FPR all the

above-discussed metrics have high values. In the literature, the use of accuracy, sensi-

tivity, precision, and specificity has been criticized for evaluating the models developed

using imbalanced data [25, 146, 147]. Therefore, many researchers considered a few

stable performance measures to evaluate the prediction models developed from imbal-

anced data. He and Garcia [25] advocated that G-Mean is a stable metric for assessing

the prediction models developed from the imbalanced data. A robust performance

77

Experimental Design Framework

evaluator, Balance, to evaluate prediction models developed on an imbalanced dataset

is given by Menzies et al. [147]. So, our study assesses the maintainability prediction

models using stable and strong evaluators, namely Balance and G-Mean. The use

of AUC to assess the performance of models has been advocated by Lessmann et

al. [148] and Shatnawi [149]. In this thesis, the maintainability prediction models

have also been developed to predict maintainability as a continuous variable i.e., the

number of SLOC changed in maintenance. Those models are evaluated using the

following performance metrics.

• Magnitude of Relative Error (MRE): It is defined as the absolute of the relative

error.

MRE =
|Depa −Depp|

Depa
(2.25)

Here, Depa is the dependent variable’s actual value, and Depp is the dependent

variable’s predicted value.

• Mean Magnitude of Relative Error (MMRE): It is defined as the mean magnitude

of relative error over all data points in the data set.

MMRE =
N∑
i=1

MREi (2.26)

Here, N is the total number of data points and MREi is MRE value of the ith

data point.

• Prediction at level q (Pred(q)): Pred(q) is defined as the percentage of observa-

tions where the magnitude of relative error is less or equal to q.

Pred(q) =
K

N
(2.27)

78

Experimental Design Framework

In Equation 2.26,K is the total number of observations givingMRE is less than

or equal to q. A specific value of q is taken, accordingly Pred(q) is calculated.

Commonly used values of q are 0.25 and 0.30. For instance, if q is taken as

0.25, then accordingly Pred(0.25) means the percentage of observations where

MRE is less than or equal to 25%.

2.7.8 Statistical Analysis

In empirical research, deriving conclusions entirely from the empirical results without

the statistical analysis can be misleading [148]. Statistical tests establish confidence in

the outcomes of an empirical investigation and help to validate the hypothesis formed.

We apply the Friedman test [150] and the Wilcoxon signed-rank test [151] in this

thesis to validate the results statistically.

2.7.8.1 Friedman Test

Friedman test allows us to compare k techniques over multiple datasets [150]. This

is a non-parametric that is performed independently of any presumptions about the

distribution of performance measures of k techniques over multiple datasets. The

hypothesis validated using the Friedman test is stated as follow:

• Null Hypothesis (Ho): Different techniques are not statistically different from

each other in terms of their performance.

• Alternative Hypothesis (Ha): Different techniques are statistically different

from each other in terms of their performance.

The Friedman test statistic Chi-Square (χ2) is calculated as follows:

• The performance of k techniques for a particular dataset is sorted in decreasing

order. Each technique within a specific dataset is assigned a rank according to

79

Experimental Design Framework

its performance. Rank 1 is assigned to the best performing technique, whereas

the worst-performing technique is allocated the lowest rank. If the performance

of two or more techniques is equal, then each technique is assigned a mean

rank.

• The total rank of each technique is computed by adding its rank on all datasets.

The total rank assigned to each technique is represented as T1, T2, T3....Tk.

• The χ2 statistic is computed as follows:

χ2 =
12

nk(k + 1)

k∑
i=1

Ti
2 − 3n(k + 1) (2.28)

In equation 2.28, n signifies total number of datasets and Ti2 denotes squared

sum of ranks for ith technique.

If the computed the Friedman statistic lies in the critical region, then the null

hypothesis rejected and it is concluded that different techniques are statistically

equal in terms of their performance. In this thesis, the Friedman test statistic is

computed at a 95% level of confidence (α = 0.05).

2.7.8.2 Wilcoxon Signed Rank Test

In this thesis, the Wilcoxon signed-rank test is used for post-hoc analysis. This test

is used after the results of the Friedman test are fount statistical. This test is a non-

parametric test that is applied to investigate the existence of a significant difference

between the pair of techniques [151]. The hypothesis evaluated with the Wilcoxon

test are stated below:

• Null Hypothesis (Ho): The pair of compared techniques are not statistically

different in terms of their performance.

80

Experimental Design Framework

• Alternative Hypothesis (Ha): The pair of compared techniques are statistically

different in terms of their performance.

The following steps are performed to calculate the Wilcoxon test statistics, W .

• For each pair of performance of two compared techniques, calculate the differ-

ence score Si.

• Ignore the sign of the difference and find a set of n absolute differences |Si|

where n is the number of pairs.

• Remove all pair in which the difference score is 0 to obtain nr pairs where

nr ≤ n.

• Allocate ranks 1 to nr to individual |Si| such that the minimum |Si| obtains

1 rank and the greatest |Si| allotted rank nr. In case two or more |Si| are

equivalent, assign the mean average rank of the ranks they would have been

allotted independently.

• Assign sign “-“ or “+“ to each of the nr ranks, based on whether Si was initially

negative or positive.

• Compute two variables V + and V −. V + is the summation of ranks wherever

the difference was positive and V − is calculated as the summation of ranks

wherever the difference is negative.

• Calculate the Wilcoxon test statistic, W, as follows:

W =
Q− 1

4
nr(nr + 1√

(1
24
nr(nr + 1)(2nr + 1)

(2.29)

Here Q is the minimum of V + and V −. If the W statistic is in the critical region with

a specific level of significance, then we reject the null hypothesis. The rejection of

81

Experimental Design Framework

the null hypothesis means that the performance of the two compared techniques is

significantly different from each other. The Wilcoxon test statistics is computed at

α = 0.05. The Wilcoxon test was performed with Bonferroni correction to remove

the family-wise error. In the Wilcoxon test with Bonferroni correction, a p-value is

considered significant only if it is less than b (α value divided by the total number of

pairs compared).

82

Chapter 3

Systematic Literature Review

3.1 Introduction

Software maintenance is one of the pricey phases in the life cycle of software devel-

opment that requires the attention of researchers to accurately predict the software

maintainability in the earlier stages of software development to take the decisions re-

garding resource allocation optimally and to develop a cost effective, good quality and

maintainable software. The researchers attempted to forecast software maintainability

by building the relation of software metrics with maintainability. Thus, in this way,

various SMP models have been built by employing statistical techniques to predict

software maintainability at the initial stages of software development to decide on

resource allocation. To gain insight into the work done on SMP, it is essential to sum-

marize the existing literature. Thus, this systematic review is strived to analyze and

summarize the use of datasets, software metrics, techniques, performance measures,

and statistical tests in the estimation software maintainability. The following research

questions are investigated in this review:

• RQ1: Which techniques have been used for SMP?

83

Introduction

• RQ2: Which data sets have been used for developing SMP models?

• RQ3: Which metrics have been used for SMP?

• RQ4: What performance evaluators have been for SMP?

– RQ4.1: What are the commonly used performance measures to judge the

performance of SMP models?

– RQ4.2: What validation method has been used for developing models for

SMP? the method used for developing SMP models.

– RQ4.3: Which statistical tests of significance have been used to statistically

examine the predictive capability of SMP models?

• RQ5: What is the predictive ability of different techniques used for SMP?

– RQ5.1: What is the performance of SMP models that are built with the

help of ML techniques?

– RQ5.2: What is the overall performance of SMP of models built using

statistical techniques?

– RQ5.3: What is the overall performance of SMP models developed using

HB techniques?

• RQ6: Is there anyone technique that outperforms over the other in handling

datasets with varying properties?

• RQ7: What are the potential threats to validity in SMP?

The review analyses various aspects of SMP models developed in the literature and

also aid in the identification of research gaps to further work in the field. Based on

the outcome of the systematic review, we provide directions for future work for the

84

Introduction

researchers and software practitioners about the applicability of the prediction models

for SMP.

The organization of this chapter is as follows: Section 3.2 the review protocol.

Section 3.3 presents the results of the review in the form of answers to the research

question and finally, section 3.4 presents the directions of future work. The results of

this chapter are published in [152].

This review is carried out as per the guidelines of Kitchenham [153]. As per

Kitechenham, the systematic review should consist of three stages: planning the

review, conducting the review, and reporting the review. The first stage incorporates

identification of the need for systematic review, framing research questions to be

answered by the systematic review, development protocol to conduct the review, and

its evaluation. The research questions are the objectives that we keep in mind to address

the demands of the systematic review. Development of review protocol encompasses

designing an appropriate strategy to search relevant studies, formulating criteria for

inclusion and exclusion, the formation of quality assessment criteria, preparation of

forms for data extraction, and deciding data synthesis methods. Relevant search criteria

help to identify appropriate candidate studies to cater to the need for review. Based

on criteria set for inclusion and exclusion, individual candidate studies are decided

to be considered relevant or not relevant for the review. To assess the quality of each

selected candidate study, assessment criteria in the form of the quality questionnaire

have to be developed. The next phase is conducting the review, which involves the

execution of a search strategy to search the relevant studies, extraction of relevant

facts out of the primary studies, putting the extracted facts in data extraction forms,

and data synthesis.

85

Review Protocol

3.2 Review Protocol

The review protocol comprises the search strategy for the selection of relevant primary

studies, inclusion and exclusion criteria, and quality assessment criteria for assessing

the quality of candidate studies.

3.2.1 Search Strategy

The review aimed to select the most relevant and significant papers on the subject

under study to provide concrete results of the investigation. Thus, the initial search

was started by searching keywords such as “software maintainability”, “software

maintenance”, “SMP”. After analyzing the studies retrieved after the initial search,

we formed the following search string to select the most promising studies to be

considered for review.

“Software” AND (“maintainability” OR “maintenance effort”) AND (“prediction”

OR “probability”) AND (“software metrics” OR “OO metrics” OR “ procedural met-

rics”) AND (“classification” OR “regression”) AND (“machine learning techniques”

OR “statistical techniques” OR “hybrid techniques”).

After the formation of a search string, most essential and appropriate digital

libraries such as ACM Digital Library, IEEE Xplore, Science Direct, Springer Link,

Wiley Online Library, Web of Science, and Scopus were used to search candidate

primary studies. We searched the papers from January 1990 to October 2019. In total,

107 studies were extracted after exhaustively searching the mentioned digital libraries

and by going through the reference sections of the studies extracted from the above

mentioned electronic libraries. These selected candidate studies were then subjected

to the inclusion and exclusion criteria described in Section 3.2.2.

86

Review Protocol

3.2.2 Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were used for selecting or rejecting a

study based on research questions. We got 39 studies after applying inclusion and

exclusion criteria.

Inclusion Criteria

The empirical studies on SMP using the change in terms of line of code added,

deleted, and modified as the dependent variable are considered for the review. The

empirical studies using statistical, ML, and HB techniques for developing the SMP

model were considered. The studies comparing two or more techniques for SMP were

also considered for the review.

Exclusion Criteria

Studies based on dependent variable change-proneness were excluded. Also, the

studies in which no empirical evidence was provided for software maintainability

were not considered. The studies in which software maintainability is based on expert

judgments were also not considered. The review studies and poster paper were also

excluded. The studies with two similar papers of the same author in the conference

and extended version in the journal, only the journal paper was considered.

Table 3.1: Quality Assessment Questionnaire

S. No. Question Yes Partly No
1 Whether the objectives of the study stated clearly? 89 11 0
2 Whether the study states the maintainability facet in a clear manner? 100 0 0
3 Is the scope of study stated clearly? 61 39 0
4 Does the study provide relevant literature? 86 8 6
5 Are the predictor variables clearly stated and defined? 100 0 0
6 Are the data collection and data preprocessing procedures described adequately? 92 8 0
7 Does the study effectively justify the importance of prediction techniques used? 50 42 8
8 Do the research questions, purposes or hypotheses stated clearly? 58 39 3
9 Are the research questions addressed clearly? 50 47 3
10 Whether the comparative analysis conducted properly? 50 44 6

87

Review Protocol

11 Does the study have sufficient number of citations? 28 28 39
12 Does the results of study reported in clear manner? 61 39 0
13 Are limitations of the study stated? 42 3 55
14 Are the performance measures stated clearly ? 50 39 11

Table 3.2: Description of Primary Studies

Study# Name Reference Study# Name Reference
SI1 Li (1993) [5] SI19 Olatunj(2013) [154]
SI2 Khoshgoftaar(1994) [155] SI20 Malhotra (2014) [45]
SI3 Khoshgoftaar (1994a) [156] SI21 Malhotra (2014a) [157]
SI4 Dagpinar (2003) [6] SI22 Zhang (2015) [56]
SI5 Thwin (2005) [14] SI23 Elish (2015) [158]
SI6 Aggarwal (2006) [9] SI24 Manchanda (2015) [159]
SI7 Koten (2006) [13] SI25 Mishra (2015) [160]
SI8 Zhou (2007) [7] SI26 Kumar (2015) [161]
SI9 Elish (2009) [15] SI27 Sharma (2015) [162]
SI10 Wang (2009) [8] SI28 Kumar (2015) [163]
SI11 Kaur (2010) [46] SI29 Kumar (2015a) [164]
SI12 Jin (2010) [50] SI30 Kumar (2016) [66]
SI13 Chandra (2012) [165] SI31 Tiwani (2016) [166]
SI14 Dubey (2012) [167] SI32 Chug(2016) [57]
SI15 Malhotra (2012) [45] SI33 Malhotra (2017) [168]
SI16 Sharawat (2012) [169] SI34 Kumar(2017) [170]
SI17 Jamimi (2013) [171] SI35 Malhotra (2018) [172]
SI18 Kaur (2013) [173] SI36 Kumar (2019) [16]

3.2.3 Quality Assessment Criteria

To provide concrete results of the review, the selected primary studies needed to be

of the utmost quality. So, we designed quality assessment criteria in the form of 14

quality questions, as shown in Table 3.1. Each of the 39 selected primary candidate

studies were then evaluated and ranked on 14 quality questions. Each question in the

quality questionnaire was assigned scores of 1 (“yes“), 0 (“no“), and 0.5 (“partially“).

The total score assigned to a study is defined as the aggregate of scores assigned to

88

Review Results

each quality question. Thus, the highest quality score that could be given to a study

was 14, and the lowest was 0. The selected primary studies were ranked for quality

according to the quality score. The studies scoring greater than or equal to 8.5 were

kept, while studies below a score of 8.5 were rejected. The rejected studies based

on the quality score were ([174–176]). The studies scoring a score of greater than or

equal to 8.5 are then sorted according to the ascending order of their publication year

and listed in Table 3.2. Each primary study is assigned a unique identifier prefixed

with SI (Study Identifier) for reference in the following subsections of this chapter.

3.3 Review Results

This section presents the results of the review. Figure 3.1 shows the year-wise

distribution of primary studies from January 1990 to October 2019. The first study for

SMP was published in 1993 by Li and Henry [5], where maintainability was taken

as the dependent variable. Li and Henry proved that software maintainability could

be best predicted from OO metrics. Later in 1994, two studies were published by

Khoshgoftaar and Szabo [155, 156] on maintainability prediction. It has been observed

that most of the work on SMP was started from the year 2003 when researchers agreed

that maintainability could be predicted as the number of changes made to code

during the maintenance period and software design metrics are helpful for quality

prediction at early stages of software development life cycle. From 2003 onward,

researchers evaluated the effectiveness of various statistical, ML, and HB techniques

for maintainability prediction.

89

Review Results

Figure 3.1: Year-wise Distribution of Primary Studies.

3.3.1 Results Specific to RQ1

To accurately predict the maintainability of software, various techniques have been

used by researchers and practitioners in the last two decades. These techniques

tend to establish the relationship between predictor and response variables to build

maintainability prediction models. We classify techniques used for SMP into the

following three broad categories: (i) Statistical techniques, (ii) ML techniques, and

(iii) HB techniques. We divide the ML techniques used for developing prediction

models into the following categories:

• Neural Networks

• Decision Trees

• Bayesian Networks

• Support Vector Machine

• Instance-Based Learning

90

Review Results

• Rule-Based Learning

• Ensembles

• Fuzzy Rule Learning

The taxonomy of various techniques used for SMP is presented in Figure 3.2.

Distribution of studies according to the above-mentioned techniques used for SMP

along with study identifier is presented in Table 3.3.

Table 3.3: Distribution of Studies according to various Techniques

Technique used Study Identifier Percentage
Statistical techniques SI1, SI4, SI10 08
Only ML techniques SI2, SI5, SI6, SI9, SI11, SI12-SI16, SI20, SI23,

SI24, SI25, SI27, SI32

44

HB techniques SI21, SI26, SI28, SI29, SI30,SI33, SI34, SI36 20
Statistical and ML techniques SI3, SI7, SI8,SI17, SI18, SI19, SI22, SI31, SI35 25
Statistical, ML & HB techniques SI21, SI33 05

It is evident from Table 3.3 that the majority of studies (44%) applied ML tech-

niques for building maintainability prediction models; statistical techniques are used

in 8% of the studies, whereas HB techniques are used in 20% of the studies. 25%

of the studies have applied ML and statistical techniques combined, whereas 5% of

the studies have applied all three types of techniques combined. 11 primary studies

applied more than one technique to compare the performance of a technique over the

other one. We found ML techniques to be the most prominent techniques used for

SMP. Among the primary studies using ML techniques, NN was the frequently used

category, which was explored in 50% of the studies followed by SVM and DT, which

were used in 26% and 27% of the studies, respectively. Further, studies using different

categories of ML techniques for SMP have applied different variants of each category.

The most widely used algorithm in each category of the ML technique along with the

91

Review Results

WN: Ward Network, GRNN: General Regression Neural Network, MLFFN: Multilayer Feed Forward network, ANN: Artificial

Neural Network, FFBN: Feed Forward Back Propagation Network, MLP: Multilayer Perceptron, PNN: probabilistic Neural

Network, KN: Kohan Network, BPN: Back Propagation Network, ELM: Extreme Learning Machines, GMDH: Group Method

of Data Handling, JERN: Jordon Elman Recurrent Network, RT: Regression Tree, TreeN: TreeNet, CART: Classification and

Regression Tree, DTF: Decision Tree Forest, M5P: Quinlan’s M5 algorithm, REPT: Reduced Error Prone Tree, BBN: Baysian

Belief Network, BLN: Baysian Learning Network, SVR: Support Vector Regression, ESVR: Epsilon Support Vector Regression,

NU-SVR: NU- Support Vector Regression, SMO:Sequential Minimal Optimization, CR: Conjunctive Rules, DT: Decision

Table, ES: Ensemble Selection, ABE: Average Based Ensemble, WBE: Weight Based Ensemble, BTB: Best in Training Based

Ensemble, FIS: Fuzzy Inference System, ANFIS: Artificial Neuro Fuzzy Inference System, LRN: Linear Regression, MLR:

Multiple Linear Regression, MR: Multivariate Regression, PPR: Project Pursuit Regression, LMedReg: Least Median of

Squares Regression, PR: Pace Regression, RegByDisc: Regression by Discretization, AR: Additive Regression, GPR: Gaussian

Process Regression, PolyQuad: Polyquadratic, IR: Isotonic Regression, NGA: Neuro-Genetic, FLANN: Functional Link

Artificial Neural Network, FPSO: Functional Link Artificial Neural Network with Particle Swarm Optimization, MFPSO:

Modified Functional Link Artificial Neural Network Particle Swarm Optimization, GGAL: GRNN with Genetic Adaptive

Learning, FLANN-CS: Functional Link Artificial Neural Network-Clonal Selection, EFRL: Evolutionary Fuzzy Rule Learning,

EFSL: Evolutionary Fuzzy Symbolic Learning, NNEP: Neural Network with Evolutionary Programming.

Figure 3.2: Taxonomy of Techniques used for SMP

92

Review Results

study identifier is presented in Table 3.4.

Table 3.4: Most Popular Algorithm from Various Categories of ML Techniques

ML Technique Popular algorithm Study Identifier
NN GRNN SI5, SI14, SI18, SI20, SI32
DT RT SI7, SI8, SI19
BN BLN SI17, SI19
SVM SVR SI12, SI13, SI17, SI23, SI31, SI32
IBL KSTAR SI18, SI22, SI24, SI32

GRNN is one of the most popular techniques in the category of NN for developing

SMP models. The strengths such as the ability to deal with sparse data, and to

model nonlinear functions, and ability to work well in a noisy environment made

GRNN one of the most popular techniques in NN category. The primary studies

that used statistical techniques for maintainability prediction, three studies applied

linear regression (SI22, SI31, SI32), and another three studies applied multiple linear

regression (SI3, SI7, SI19). Eight SMP studies (SI21, SI26, SI28, SI29, SI30, SI33,

SI34, SI36) explored the use of HB techniques. The HB techniques for SMP combined

ML and evolutionary or SB techniques as a single technique. Out of eight studies

using HB techniques for SMP, four studies reported the use of NGA in which NN is

used for learning, and GA is used for optimizing the weights of NN. The study SI21

has applied EFRL, EFSL, and NNEP techniques to develop SMP models. NGA is

used is SI26, SI28, and SI29. The HB techniques, namely FLANN, Adaptive FLANN,

FPSO, and MFPSO, are used in SI30, whereas SI36 applied FLANN.

3.3.2 Results Specific to RQ2

This RQ determines various datasets that have been used in the literature for developing

SMP models. The datasets used for SMP are categorized as follows:

• Public datasets: In this category UIMS and QUES datasets were found to be

93

Review Results

the most widely used datasets for SMP. These datasets were collected by Li and

Henry during the three years of maintenance of these two systems. Thus, UIMS

and QUES datasets together are called Li&Henry data set [5]. This data set has

been used in 67% (SI1, SI5, SI6, SI7, SI8, SI9, SI10, SI11, SI13, SI14, SI15,

SI16, SI17, SI18, SI19, SI23, SI25, SI26, SI28, SI29, SI30, SI33, SI34, SI36)

of the primary studies selected for this review. Since these datasets are public,

the result obtained using these datasets in various studies are easy to verify and

replicate.

• Proprietary Software: These kinds of datasets include datasets collected from

software developed by industrial professionals. Only 11% (SI2, SI3, SI4, SI20)

of the selected primary studies have used proprietary software for SMP. Some of

the proprietary software projects include File Letter Monitoring (FLM), Student

Management System (SMS), Inventory Management System (IM System),

Angel Bill Printing (ABP) System.

• Open-source projects: Open-source projects are used in 19% of the studies

(SI21, SI22, SI24, SI27, SI31, SI32, SI35) selected for this review. Some of the

open-source projects include Apache Poi, Apache Rave, Hodoku, ORDrumbox,

jTDS, Art of illusion, etc. Most of these open-source projects were downloaded

from software repositories: Sourceforge.net and Github.

• Student projects: This type of data set includes academic projects developed by

students. Only one study (SI12) has dealt with such kind of data set.

Figure 3.3 shows the dataset used and the corresponding percentage of studies in

which these datasets are used.

94

Review Results

Figure 3.3: Types of Datasets used for SMP

3.3.3 Results Specific to RQ3

Various software metrics have been given in the literature to characterize and quantify

various aspects of the software system like size, complexity, modularity, complexity,

etc. In the software engineering predictive modeling, the usefulness of these metrics

has been very well proved. For SMP, the applicability of these lies in their ability to

act as predictors or independent variables. To answer RQ3, we classified the selected

primary studies based on software metrics used as a predictor or independent variable.

A similar kind of classification is given by Malhotra [138] for software fault prediction.

We found selected studies using both static software code metrics and dynamic metrics

as independent variables for maintainability prediction. The categories of software

metrics based on primary studies are given below:

• Studies using traditional software metrics as independent variables: These

95

Review Results

studies used traditional (procedural) software metrics as predictor variables

given by Halstead [33]. These metrics include size metrics: lines of source code

(SLOC), number of unique operands, number of unique operators, etc. Studies

using traditional metrics are SI2, SI3.

• Studies using OO software metrics as independent variables: This category of

studies used OO metrics as independent variables. Such metrics quantify the

characteristics of OO systems like modularity, inheritance, polymorphism, etc.

Studies using OO metrics are SI1, SI4, SI5, SI6, SI7, SI8, SI9, SI10, SI11, SI12,

SI13, SI14, SI15, SI16, SI17, SI18, SI19, SI20, SI21, SI23, SI25, SI26, SI28,

SI29, SI30, SI32, SI33, SI34, SI35, SI36.

• Studies using composite software metrics as independent variables: In this

category, we identify two types of studies as follows: (i) studies using both

traditional and OO metrics as predictors (ii) studies using both OO metrics

and dynamic metrics as predictors. The first category includes the studies that

used OO metrics at the class level and traditional metrics at the method level.

Studies using such a combination of metrics are SI22 and SI24. The second

category includes studies that used OO metrics and dynamic metrics combined

as predictors. Such studies are SI27 and SI31. The distribution of studies

according to the kind of metrics used is depicted in Figure 3.4.

Amongst 83% studies using OO metrics, 86% of studies used the combination of

Chidamber&Kemerer (C&K) and Li&Henry metric suite, 7% of studies solely

used C&K metrics, and in remaining studies, C&K and Li&Henry metrics are

used with another metric suite like Henderson-Seller [86], Lorentz & Kidd [38],

and Briand [3]. Studies using a combination of C&K, Li&Henry, and other OO

metric suite are SI4 and SI32. Thus, C&K and Li&Henry metric suite have

been observed as one of the most popularly used OO metric suite for SMP.

96

Review Results

Figure 3.4: Distribution of Studies according to Metrics used

3.3.4 Results Specific to RQ4

To assess the effectiveness of the software maintainability predictor model, it is

essential to examine it along with performance evaluators. This section describes the

performance evaluators like performance measures, validation methods, and statistical

tests used in literature to evaluate the effectiveness of SMP models.

Performance Measures (RQ4.1)

The performance of maintainability prediction models can be judged with the

help of various performance measures. In the literature, multiple measures are used

by the researchers to evaluate the performance of maintainability prediction models

developed using different techniques discussed in Section 3.4.1. The definitions of the

most frequently used performance measures, along with the study in which they are

used given in Table 3.5.

97

Review Results

Table 3.5: Performance Measures used in Literature Studies

Performance Measure Description Study Identifier
Mean absolute error (MAE) It is defined as the mean of the absolute

difference between the actual and predicted

value of the dependent variable.

SI2, SI3, SI5, SI14, SI24, SI26,

SI27, SI31, SI32, SI36

Magnitude of Relative Error

(MRE)

It is defined as the ratio of the absolute dif-

ference between the actual and predicted

value of the dependent variable to the ac-

tual value of the dependent variable.

SI6, SI7, SI8, SI11, SI12, SI13,

SI15, SI17, SI18, SI19, SI20, SI21,

SI23, SI26, SI28, SI29, SI30, SI33,

SI35
Mean magnitude of relative

error (MMRE)

It is defined as the mean of MRE's over all

the data points.

SI6, SI7, SI8, SI9, SI11, SI12, SI13,

SI15, SI17, SI18, SI19, SI20, SI21,

SI23, SI26, SI28, SI29, SI30, SI33,

SI34, SI35, SI36
Maximum Magnitude of rel-

ative Error (maxMRE)

It measures the maximum of MRE value

over all the data points.

SI7,SI18,SI21,SI33

Root Mean Square Error

(RMSE)

It is defined as the square root of the average

of the sum of squares of all of the errors.

SI10, SI18, SI24, SI31, SI32, SI36

Pred(30) It is defined as the percentage of predictions

in which MRE is less than or equal to 30%.

SI7, SI8, SI9, SI15, SI17, SI18,

SI19, SI20, SI21, SI23, SI33, SI35
Pred(25) It is defined as the percentage of predictions

in which MRE is less than or equal to 25%.

SI7, SI8, SI9, SI15, SI17, SI18,

SI19, SI20, SI21, SI32, SI33, SI35
Coefficient of Regression (R-

Square)

It measures the closeness of the data point

to the fitted regression line.

SI1, SI4, SI5, SI8, SI14, SI15

Figure 3.5 shows the percentage of studies using the performance measure given

in Table 3.5. As shown in Figure 3.5, MMRE is the most commonly used performance

measure, which is used in 61% of the primary studies.

The other commonly used performance measures are Pred(25) and Pred(30), which

are used in 33% and 33% of the studies, respectively. Few performance measures like

Adjusted R-square, Sum of squares of residuals, Mean square of residuals, Minimum

absolute error, Maximum absolute error, absolute residual error, normalized root

98

Review Results

Figure 3.5: Distribution of Studies according to Performance Measures

mean square error, standard error of the mean, True error, an estimate of true errors,

Spearmen Rank correlation coefficient, Relative Absolute Error (RAE) are clubbed

into the miscellaneous category as these were less commonly used.

Validation Methods (RQ4.2)

The selection of a cross-validation method is essential to develop a prediction

model effectively. Cross-validation methods tend to build a prediction model by

dividing the available data set into two parts, namely: training data and test data. The

training data set is used to train the model, while the test data set is used to evaluate

the performance of the developed model.

For SMP, three types of cross-validation methods have been used in literature: K-Fold

cross-validation, Hold-out cross-validation, and Leave-one-out. The brief description

of these methods, along with the study identifier in which these methods have been

used, is given in Table 3.6.

99

Review Results

Table 3.6: Description of Cross-validation methods used in Selected Primary Studies

Method Description Study Identifier
K-Fold cross valida-

tion

In this cross-validation method, the data set in hand

is divided into K partitions each of equal size. In

each iteration K-1 partitions are used to train the

model while one out of K partitions is used to test

the model. This process is repeated K times. The

commonly used values for K were 5 and 10.

SI5, SI7, SI23, SI24, SI26,

SI28, SI29, SI30, SI31, SI32,

SI35, SI36

Hold-out cross valida-

tion

In Hold-out cross-validation data set is splitted into

two partitions; one partition is used for training

purpose and another for validation. The commonly

employed partitions methods were 60-40, 70-30

and 75-25.

SI15, SI19, SI22, SI27

Leave-one-out cross

validation

This validation method involves dividing data set

with N observations into two partitions of size N-1

and 1. In each iteration random N-1 data points

are used for training and one data point is used for

testing.

SI8, SI9, SI10, SI18, SI34

Figure 3.6 presents the distribution of primary studies by the cross-validation

menthod used.

Only 21 studies reported the validations methods used. K-Fold cross-validation

was used in 12 studies followed by hold-out and leave one out validation, which were

used in 4 and 5 studies, respectively.

Statistical Tests (RQ4.3)

The use of the statistical test in predictive modeling strengthens the outcome

of the developed models by statistically examining the conclusion drawn regarding

the predictions given by the developed model. The use of statistical tests has been

observed in 28% of the primary studies selected for this review. The distribution of

100

Review Results

Figure 3.6: Distribution of Studies according to Cross-validation Methods

the statistical test used is depicted in Figure 3.7. Three studies used t-test (SI23, SI30,

Figure 3.7: Distribution of Studies according to Statistical Tests

101

Review Results

S36); five studies used the Wilcoxon test (SI7, SI8, SI18, SI27, SI35) for comparative

statistical analysis. Four studies (SI18, SI31, SI32, SI35) used the Friedman ranking

test, and the Nemenyi test is used in one study (SI32). It is evident that the use of non-

parametric tests such as the Wilcoxon test and Friedman test has been found in more

number of studies as compared to parametric t-test; the reason is that parametric test

requires data normality of the underlying data set to be true before the application of

the test. In studies SI7, SI8, and SI33, the Wilcoxon test has been used to statistically

prove the significant difference between the predictive performances of different

techniques. In the study SI18, the Wilcoxon test is used as a post-hoc analysis after

the Friedman test. Nemenyi the test is also used as a post-hoc analysis after the

application of the Friedman test in study SI32.

3.3.5 Results Specific to RQ5

This section presents the predictive capabilities of various techniques used for develop-

ing SMP models. To ensure the usefulness of a technique for developing a prediction

model, it is extremely important to evaluate its predictive capability. The predictive

performance of various techniques used for SMP is evaluated by summarizing the

values of the performance measures described in Section 4.4. We report the predic-

tive performance of techniques that have been used in at least two primary studies

to get more generalized results. The following subsections describe the predictive

performance of ML, statistical, and HB techniques.

Performance of SMP Models developed with ML Techniques (RQ5.1)

To evaluate the performance of ML techniques for SMP, we recorded the MMRE

and Pred(25) values of different ML techniques on different data sets. We analyze

the predictive performance of only those ML techniques that are used in at least two

primary studies so that generalized results can be reported.

102

Review Results

Table 3.7: Performance of SMP Models Developed using ML Techniques

Technique Count Performance

Measure

Minimum Maximum Mean Std. Dev.

GRNN 9 MMRE 0.32 0.54 0.43 0.06
10 PRED 0.26 0.78 0.59 0.15

ANN 3 MMRE 0.26 1.95 0.93 0.89
2 PRED 0.15 0.37 0.26 0.15

FFBN 3 MMRE 0.45 0.51 0.48 0.03
MLP 4 MMRE 0.59 1.95 1.16 0.63

2 PRED 0.13 0.37 0.25 0.16
PNN 7 MMRE 0.37 0.53 0.42 0.05

8 PRED 0.51 0.73 0.62 0.06
KN 7 MMRE 0.35 0.56 0.46 0.07

7 PRED 0.48 0.73 0.69 0.08
GMDH 9 MMRE 0.21 0.42 0.33 0.06

9 PRED 0.51 0.79 0.68 0.08
RT 5 MMRE 0.49 1.53 0.91 0.54

6 PRED 0.10 0.41 0.26 0.11
M5P 4 MMRE 0.54 1.67 1.00 0.56

2 PRED 0.28 0.32 0.30 0.02
BN 4 MMRE 0.45 0.97 0.71 0.30

4 PRED 0.39 0.44 0.41 0.03
SVM 9 MMRE 0.22 0.67 0.45 0.14

8 PRED 0.31 0.65 0.46 0.10
KSTAR 9 MMRE 0.27 0.77 0.52 0.14

9 PRED 0.36 0.72 0.53 0.10
Std. Dev. indicates Standard Deviation

MMRE and Pred (25) are selected for the analysis as these are the most commonly

used performance measures, as discussed in Section 3.4.4. We present the descriptive

statistics such as minimum, maximum, mean, and standard deviation of performance

measures: MMRE and Pred (25) in Table 3.7. A good maintainability prediction

model should have low MMRE and high Pred(25) values. The MMRE and Pred values

in Table 3.7 are presented after removing the outliers to minimize the prediction bias

as it was observed that some techniques perform exceptionally different on some data

sets resulting in very biased predictions. To overcome this bias, outlier analysis was

103

Review Results

essential, and we used boxplots to gain insights about the outliers. These outliers

were removed before reporting the statistics of performance measures MMRE and

Pred(25).

Figures 3.8 and 3.9 show the results of outlier analysis done with the help of

boxplots for the two prominent performance measures, namely MMRE and Pred(25),

respectively.

Figure 3.8: Performance of ML techniques in terms of MMRE

Figure 3.9: Performance of ML techniques in terms of Pred(25)

As shown in Table 3.7, the GMDH technique reported the best mean MMRE

of 0.33, followed by PNN and GRNN, which gave mean MMRE of 0.42 and 0.43,

104

Review Results

respectively. It is to be noted that the mean MMRE of GMDH, PNN, GRNN, SVM,

KN, KSTAR, and FFBN ranged from 0.33 to 0.52. KN has reported the best mean

Pred(25) value of 0.69 followed by GMDH with a Pred(25) value of 0.68. Again

as shown in Table 3.7, mean Pred(25) values of GMDH, PNN, GRNN, SVM, KN,

KSTAR, and FFBN ranged from 0.46 to 0.69. Therefore, it is quite evident that the

performance of GMDH, PNN, GRNN, SVM, KN, KSTAR, and FFBN with respect to

MMRE and Pred(25) is quite acceptable. MLP performed worst with a mean MMRE

of 1.16 and a mean Pred(25) value of 0.25. Thus, the predictive capability of ML

techniques: GMDH, PNN, GRNN, SVM, KN, KSTAR, and FFBN, is close to an

acceptable level as per Conte et al. [177] and Wen el al. [178].

Performance of SMP Models developed with Statistical Techniques (RQ5.2)

Statistical techniques are used in 14 primary studies (SI1, SI3, SI4, SI7, SI8, SI10,

SI17, SI18, SI19, SI21, SI22, SI31, SI32, SI34) to develop software maintainability,

prediction models. Out of studies that used statitical techniques for SMP, 11 compared

statistical and ML models. To get generalized results about the performance of models

developed using statistical techniques, we evaluated the results of statistical techniques,

which were used in at least two primary studies. The results were evaluated based

on performance measures MMRE and Pred(25). We found LRN and MLR as the

prominent statistical techniques used for SMP. The performance of models developed

using LRN and MLR techniques in is recorded in Table 3.8 after outlier analysis using

boxplots.

Table 3.8: Performance statistics of SMP Models using Statistical Techniques

Technique Count Performance Measure Minimum Maximum Mean Std. Dev.
LRN 7 MMRE 0.4 0.66 0.53 0.09

7 PRED 0.54 0.63 0.59 0.03
MLR 6 MMRE 0.39 2.70 1.50 1.17

6 PRED 0.15 0.42 0.28 0.12
Std. Dev. indicates Standard Deviation

105

Review Results

Figure 3.10 shows the result of the outlier analysis of LRN and MLR techniques for

performance measures MMRE and Pred(25). It is evident from Table 3.8 that MMRE

of prominent statistical techniques ranges from 0.53 to 1.50, and Pred(25) ranges from

0.28 to 0.59. On comparing the performance statistics of statistical techniques (Table

3.8) with ML techniques (Table 3.7), it may be noted that ML techniques: GMDH,

KN, GRNN, PNN, SVM, FFBN, and KSTAR, outperform statistical techniques LRN

and MLR.

Figure 3.10: Performance of Statistical techniques in terms of MMRE and Pred(25)

Performance of SMP Models developed with HB Techniques (RQ5.3)

The HB techniques such as FPSO, NGA, MFPSO, FLANN-CS, EFRL, EFSL,

and NNEP are used in the studies literature studies for developing models to predict

software maintainability. For instance, SI21 has applied EFRL, EFSL, and NNEP

techniques to develop software maintainability, prediction models. NGA is used is

SI26, SI28, and SI29. HB techniques, namely FLANN, Adaptive FLANN, FPSO,

and MFPSO, are used in SI30, whereas SI36 applied FLANN, the category of HB

techniques, to develop prediction models of maintainability. In total, eight selected pri-

marily studied and used HB techniques for SMP. Unlike ML and statistical techniques,

cumulative performance statistics of each HB technique could not be reported as

106

Review Results

each study has applied the different techniques to predict maintainability. It has been

recorded that MMRE of HB techniques in different studies ranged from 0.22 to 2.1,

whereas Pred(25) ranged from 0.19 to 0.64. Thus, by looking at these performance

statistics of HB techniques, no valid conclusion about their applicability for SMP

could be drawn.

3.3.6 Results Specific to RQ6

To get an insight about which technique is best in terms of its performance on datasets

with differing properties, we record the performance (in terms of MMRE) of the best

techniques on different datasets from different primary studies and present results in

Table 3.9.

Table 3.9: Performance of ML Techniques on different Datasets

Best Technique Dataset MMRE Best Technique Dataset MMRE
GRNN QUES 0.41 KSTAR Log4j 0.39
GRNN FLM,EASY 0.54 GMDH QUES 0.21
GRNN Drumkit 0.38 GMDH Jedit 0.38
GRNN OpenCV 0.42 GMDH Junit 0.37
GRNN Abdera 0.45 GMDH FLM,EASY 0.35
GRNN Ivy 0.41 GMDH Drumkit 0.23
GRNN Log4j 0.32 GMDH OpenCV 0.37
GRNN Jedit 0.49 GMDH Abdera 0.32
GRNN QUES 0.41 GMDH Ivy 0.34
FFBN UIMS 0.51 GMDH Log4j 0.37
FFBN QUES 0.48 KN Drumkit 0.56
FFBN FLM,EASY 0.45 KN OpenCV 0.48
PNN Drumkit 0.38 KN Abdera 0.37
PNN Jedit 0.41 KN Ivy 0.40
PNN Ivy 0.53 KN Log4j 0.35
PNN OpenCV 0.42 KN Jedit 0.43
PNN Abdera 0.38 KN Junit 0.52
PNN Log4j 0.37 SVM Junit 0.54
PNN junit 0.47 SVM Student Project 0.22
KSTAR Abdera 0.55 SVM Log4j 0.39

107

Review Results

KSTAR Jedit 0.56 SVM Drumkit 0.64
KSTAR Ivy 0.38 SVM QUES 0.36
KSTAR junit 0.61 SVM Jedit 0.48
KSTAR UIMS 0.56 SVM Abdera 0.47
KSTAR QUES 0.27 SVM Ivy 0.42
KSTAR Drumkit 0.67 SVM OpenCV 0.67
KSTAR OpenCV 0.77

From Table 3.9, it is very much clear that the GMDH technique shows lower

MMRE on the majority of the diverse datasets as compare to other best techniques:

GRNN, PNN, KSTAR, KN, FFBN, and SVM. On the majority of the datasets, MMRE

of the GMDH technique ranged from 0.21 to 0.38, which is quite close to the ac-

ceptable MMRE as suggested by [177]. Thus, it is quite conclusive that the GMDH

technique is emerged as the best technique in terms of its predictive performance

irrespective of the datasets compare to other best techniques depicted in Table 3.9.

3.3.7 Results Specific to RQ7

For any empirical study, the threats to the validity of the results of the study are quite

important concern as the threats limit the applicability of the results. After the analysis

of the results of the empirical study, it is tremendously essential for the researchers to

list down the validity threats of the results.

Table 3.10: Classification of Threats to Validity Reported by Primary Studies

Threats to external validity
S. No. Threat Threat description Study Identifier
1. Applicability of results

across languages.

The study considered the data set extracted

for software systems written in a particular

programming language.

SI13, SI15, SI20,

SI27, SI29, SI30,

SI33, SI35, SI36

108

Review Results

2. Dataset of inadequate size. The size of the software system evaluated

in the study is quite low which affects the

result generalizability.

SI17, SI18, SI27,

SI33

3. Application of results across

different variables.

Independent variables are collected from

the software systems that have specific char-

acteristics and results cannot be general-

ized.

SI20, SI34, SI36

4. Result bias because tech-

niques used.

The study applied only a few techniques

and the effect of other prominent techniques

on the same data set need to be judged.

SI15, SI27, SI29

5. Software system used have

specific characteristics.

Dataset is extracted from the software sys-

tem with specific characteristics, and results

cannot be generalized.

SI32, SI36

Threats to internal validity
6. Confounding effect of inde-

pendent variables.

The study does not account for the im-

pact of variables on maintenance other than

those selected in that particular study.

SI15, SI29, SI30,

SI32

7. Influence of human factors. The study does not account that mainte-

nance also depends on external quality at-

tributes like developerâs competence, famil-

iarity with code, etc.

SI21, SI36

Only 39% of selected primary studies (SI13, SI15, SI17, SI18, SI20, SI26, SI27,

SI29, SI30, SI32, SI33, SI34, SI35, and SI36) for this systematic review reported

the threats to the validity of results. The threats to validity reported by the selected

primary studies are classified into two types, namely threats to external validity and

threats to internal validity as per classification given by [179]. The classification of

threats to validity reported by primary studies is given in Table 3.10. Out of 39%

studies that reported threats, the threat to the applicability of results across the different

programming languages and small size of data set were reported by the majority of

109

Discussion and Future Directions

the studies. Only a few studies (SI18 and SI32) have reported the threat mitigation

measures of some of the threats. Study SI18 lessened the threat of small size of

the data set by employing leave one out cross-validation. Study SI32 eliminated the

threat of generalizability of results by taking seven open-source software systems with

different sizes, different characteristics, and maintenance requirements.

3.4 Discussion and Future Directions

This systematic review aimed to investigate the SMP models from various perspectives

such as software metrics used, data set used, techniques employed, performance mea-

sures used, validation methods employed, and statistical test employed. We evaluated

the performance of models developed using various techniques where maintainability

is measured as the number of lines of code changed during the maintenance period

and described as the continuous dependent variable in terms of the lines of code

added, deleted, and modified. After an exhaustive search and going through rigorous

quality assessment, 36 studies are selected for this review to answer the eight research

questions. These studies have been published in the period from January 1990 to

October 2019. The information discovered as a result of this review is discussed as

follows:

• RQ1: ML, statistical, and few HB techniques have been applied in developing

models for SMP. ML techniques are found to be the most prominent techniques

applied for SMP in the studies we analyzed and are divided into Neural Net-

works, Decision trees, Bayesian Networks, Support Vector Machine, Instance

Based Learning, Rule-Based Learning, Ensembles, and Fuzzy Rule Learning.

• RQ2: Data sets used for SMP include public data sets, proprietary software,

open-source projects, and student projects used in only one study. Public data

110

Discussion and Future Directions

sets UIMS and QUES were found to be the most widely used data sets in the

literature.

• RQ3: The majority of the studies (83%) have used OO metrics as the predictor

variables; 6% of studies used procedural metrics, and the remaining 11% of

the studies have used composite metrics. Among 83% of the studies using OO

metrics, 86% have used C&K and Li&Henry metric suite combined. Thus,

C&K and Li&Henry metrics emerged as prominent metric suite used for SMP.

• RQ4: The majority of studies have used MMRE and Pred(25) performance

measures. Performance measures such MAE, RMSE, and normalized root-

mean-square error (NRMSE) have also been used in selected primary studies to

evaluate the performance of developed models. K-fold cross-validation with

K=10 is employed in most of the studies as a validation method, and leave-one-

out validation and hold-out validations are used in a few studies. The use of

statistical tests was observed in only 27% of the studies. The nonparametric

Wilcoxon test and Friedman rank test were commonly used statistical tests.

• RQ5: Mean MMRE of ML techniques GMDH, KN, GRNN, PNN, SVM,

KSTAR, and FFBN ranged from 0.33 to 0.52. Mean Pred(25) values of tech-

niques GMDH, KN, GRNN, PNN, SVM, KSTAR, and FFBN ranged from 0.46

to 0.69. Thus, performance measures MMRE and Pred(25) of these techniques

indicate quite an acceptable level of performance of these ML techniques to

develop models to predict software maintainability. The LRN and MLR tech-

niques are found to be commonly used statistical techniques for developing

maintainability prediction models. Overall mean MMRE values of these tech-

niques ranged from 0.53 to 1.50, and mean Pred(25) values ranged from 0.28

to 0.59. These performance statistics are indicative of the poor performance of

statistical techniques. As the use of HB techniques for developing prediction

111

Discussion and Future Directions

models for maintainability is concerned, different HB techniques such as FPSO,

MFPSO, NNEP, and EFRL are applied in different primary studies. Thus, the

cumulative values of MMRE and Pred(25) for HB techniques could not be

reported. However, as per values of extracted from different studies, MMRE

ranged from 0.22 to 2.1, whereas Pred(25) ranged from 0.19 to 0.64. According

to these statistics, no meaningful conclusions about the overall performance of

HB techniques for SMP could be drawn.

• RQ6: GMDH technique outperformed all techniques applied for SMP on

different data sets with varying properties. On different data sets, the MMRE of

this technique ranged from 0.21 to 0.37.

• RQ7: Very few studies have reported threats to the validity of their empirical

results, which we classified into threats to internal validity and threats to external

validity. It has been observed that the inadequate size of data sets used for

experimentation and result bias maybe because of the technique used; data sets

extracted from software systems having specific characteristics are of major

concern.

After taking into account the result discussions specific to each RQ, We propose

the following future directions:

• It has been observed that in the majority of the selected primary studies for this

review, public data sets UIMS and QUES have been used. The size of this data

set is very small. Future work should focus on carrying out more empirical

studies on SMP on industrial data sets, and for this, it is a critical need for the

availability of these datasets to the research community. Also, researchers can

use varying-sized data sets extracted from open-source software for SMP.

112

Discussion and Future Directions

• Majority of studies in the literature have analyzed OO metrics at the class level.

More studies should be performed which evaluate OO metrics at the method

level.

• This review has revealed that the overall performance of models developed using

the ML technique is more as compared to models developed using statistical

techniques. Few statistical techniques like PPR gave a good performance but

were excluded from analysis due to lack of a uniform framework for experi-

mentation. Thus, apart from exploring more techniques, future work should

focus on the development of a uniform experimental scheme for developing

prediction models for software maintainability.

• It was observed that a majority of studies used ML techniques and these tech-

niques are effective in the domain of SMP. However, more studies should be

conducted which assess and compare the effectiveness of more ML techniques

for SMP. Also, researchers should explore the use of ensemble techniques for

developing SMP models.

• It has been reflected through this review that few HB techniques were used for

SMP. Hence, the generalized results about the applicability of these techniques

could not be reported as these techniques were used in very few studies. Future

work should focus on applying these techniques on diverse data sets to establish

their applicability in SMP.

• Few of the selected primary studies reported the threat of result bias as the

software system from which datasets have been extracted had got specific

properties. Thus, to reduce this threat, future studies should focus on cross-

project validation or inter-project validation.

• The results indicate that a majority of studies did not use any statistical tests for

113

Discussion and Future Directions

verifying the obtained results. Hence, future studies should statistically evaluate

the significance of their results. The researchers should take into account the

various possible threats to validity while designing their experiments to yield

effective and reliable results.

• The review has revealed that very few studies have applied ensembles learners

to develop prediction models for software maintainability. More studies should

be carried out to examine the performance of ensembles for SMP.

114

Chapter 4

Software Maintainability Prediction

using Machine Learning Techniques

by Handling Imbalanced Data

4.1 Introduction

Predicting software maintainability is in the initial stages of software development is

an impending area in software engineering. It focuses on the design and development

of prediction models to forecast software maintainability when the software is in

the early development stages. The knowledge about low maintainability classes in

advance helps to allocate the limited resources of an organization optimally to these

classes. It results in good quality and highly maintainable software developed within

the time and budget. In the literature, researchers [5, 8, 13, 57] defined software

maintainability in the form of the lines of source code changed during the period of

maintenance to correct faults and advocated that the software maintainability has a

115

Introduction

strong correlation with the OO metrics describing various software characteristics

such as inheritance, coupling, and cohesion. More the changes encountered in a class

in the maintenance phase means more maintainability effort is required for that class

and vice versa [49]. The ultimate goal of developing these models is to predict those

software classes accurately that have low maintainability. The low maintainability

classes are critical for any project because these classes must be tested cautiously to

decrease the probability of occurrence of faults. Also, such classes should need to

be well-documented to augment understandability to carry out future maintenance

activities. The dataset used for training the maintainability prediction models should

consist of sufficient instances of high and low maintainability classes to train the

model effectively. However, in reality, during maintenance, few software classes

demand complex interventions, resulting in more changes in the code lines i.e., of

low maintainability. Therefore, there is an imbalance among the number of instances

of the classes having low (minority class) and high maintainability (majority class),

resulting in an imbalanced dataset. It is challenging to train the prediction models

to predict the unseen data points of these classes with reasonable accuracy using

imbalanced data.

Therefore, this chapter deals with the development of effective software maintain-

ability models by treating imbalanced datasets. Identification of low maintainability

classes is crucial as these classes need more attention during the software mainte-

nance and testing phase as such classes are likely to be sources of defects and future

advancements. However, with the imbalanced datasets, ML techniques encounter

enormous trouble [27, 180, 181], and the prediction models obtain higher prediction

accuracy just for the majority class rather than those for both of the classes. SMP

models developed using imbalanced data do not have any practical significance as

they may misclassify the minority class (low maintainability) instances. Thus, such

misclassification may lead to improper resource allocation to the misclassified classes

116

Introduction

resulting in poor quality software products.

In the software engineering domain, the imbalanced class problem is addressed

to build competent models to predict faulty and change-prone classes [68, 69, 76].

However, the imbalanced data problem has not been addressed for SMP. Therefore, to

treat the imbalanced data problem in SMP, in this chapter we handle the imbalanced

data using various data resampling techniques, including oversampling, undersam-

pling, and hybrid resampling, before learning the SMP models using ML techniques to

improve their performance. ML techniques have been successfully applied in various

other domains of software engineering like defect prediction [84, 87, 138], effort

prediction [178, 182], and change prediction [183]. Different ML techniques work

differently and may yield contrasting results on many software datasets. Thus, it

is important to evaluate a number of ML techniques for the task of maintainability

prediction. Also, as noted in Chapter 3, more studies are essential which compare

the effectiveness of ML techniques for SMP. This chapter has specifically following

objectives:

• To construct SMP models to predict low maintainability classes by treating the

imbalanced datasets with data resampling techniques.

• To assess the predictive performance of the developed SMP models and validate

them statistically.

• To investigate the improvement in the predicting performance of the built SMP

models after data resampling.

To achieve the above-specified objectives, the following research questions are

addressed in this chapter.

• RQ1: What is the performance of SMP models developed using ML techniques

on original imbalanced datasets?

117

Research Background

• RQ2: What is the performance of SMP models developed using ML techniques

after balancing the datasets with data resampling techniques?

• RQ3: Which data resampling technique improves the performance of the pre-

diction models the most?

In the interest of answering the above research questions, we build up SMP models

that use OO metrics as predictors and software maintainability as the outcome. The

datasets extracted from eight open-source software packages are used to develop SMP

models with the application of ML techniques (C4.5, MLP-CG, RBFNN, IRBFNN,

Bagging, AdaBoost, KNN, LR, and KSTAR). The stable performance metrics, Balance

and G-Mean, are used in the study to evaluate the predictive performance of the models.

Also, the statistical analysis of constructed models has been carried out to strengthen

the conclusions.

This chapter is organized as follows: Section 4.2 states the research background.

Section 4.3 describes the research methodology. Section 4.4 discusses the results of

the chapter in the form of answers to RQ's. Section 4.5 states the key findings of the

chapter. The results of this chapter are published in [184].

4.2 Research Background

This section states the research background of this chapter.

4.2.1 Independent and Dependent Variables

In this chapter, OO metrics from C&K [36], QMOOD [41], Henderson-Sellers [86],

and Martin [31] metric suites are used as an independent variable for developing

the SMP models. The detailed description of the OO metrics is given in Chapter 2

(Section 2.5.1). The dependent variable analyzed in this chapter is “Maintainability“.

118

Research Background

4.2.2 Datasets

We used eight open-source software projects (Bcel, Betwixt, Io, Ivy, Jcs, Lang, Log4j,

Ode) in this chapter for developing SMP models. The details of the datasets i.e.,

version analyzed, number of common classes, number of common classes changed

and percentage of change (% Change) is given in Chapter 2 (Table 2.4).

4.2.3 Data Resampling

As discussed in Chapter 2 (Section 2.7.4) there is an imbalance in the data points of

low maintainability and high maintainability data points for each dataset, therefore, we

use data resampling to provide effective training data to ML techniques for developing

SMP models. The data resampling techniques modify the training dataset in such

a manner that it includes enough quantity of data points of the minority and the

majority class [27]. The data resampling techniques applied in this chapter include

oversampling, undersampling, and hybrid resampling. In the oversampling techniques,

the new data points of the rare or the minority class are produced so that the dataset

contains the proportionate number of instances of the minority and majority class.

The undersampling techniques work by expelling a few data points of the majority

class to make a proportionate dataset. Hybrid resampling combines the oversampling

and undersampling strategy [185].

4.2.4 Model Development and Validation

This phase uses ML techniques for model development. The developed models are

validated either using ten-fold cross-validation. The performance of the models is

assessed using G-Mean and Balance measures. Furthermore, statistical analysis is

also performed to evaluate the performance of different data resampling techniques

119

Research Background

for handling imbalanced data.

4.2.5 Hypothesis Evaluation using Statistical Tests

This section describes the hypothesis evaluated in this chapter by using statistical

tests.

Hypothesis for Friedman Test

The hypothesis for the Freidman test were framed to appraise whether using

different data resampling techniques improve the performance SMP models or not.

The Friedman test is used to evaluate the null hypothesis (H0, H1) and alternate

hypothesis (H2, H3) in RQ2. These hypotheses evaluate the performance of SMP

models using G-Mean and Balance.

Null Hypothesis (H0 / H1): There is no significant difference in the predictive

performance of SMP models developed with original imbalanced datasets and after

applying data resampling techniques performance measures G-Mean and Balance.

Alternate hypothesis (H2 / H3): There is a significant difference in the predictive

performance of SMP models developed with original imbalanced datasets and after

applying data resampling techniques with respect to performance measures G-Mean

and Balance.

Hypothesis for Wilcoxon test

The Wilcoxon test with the Bonferroni correction is used as a post-hoc analyzer to

evaluate the pairwise significance difference among the performance of best technique

R and other examined data resampling techniques when the Friedman test returned

significant results. The hypothesis evaluated with the Wilcoxon test was the null

hypothesis (H4 / H5) and alternate hypothesis (H6 / H7).

Null Hypothesis (H4 / H5): SMP models developed using various ML techniques

do not give a significantly improved performance with respect to G-Mean and Balance

120

Research Methodology

when data resampling technique R is used as an alternative of other data resampling

technique S for handing the imbalanced datasets.

Alternate Hypothesis (H6 / H7): SMP models developed using various ML tech-

niques give a significantly improved performance with respect to G-Mean and Balance

when data resampling technique R is used as an alternative of other data resampling

technique S for handing the imbalanced datasets.

Here, by data resampling technique S, we mean all other data resampling tech-

niques applied to balance the datasets in the chapter excluding the best-ranked data

resampling technique R as per the Friedman test results. For example, if SafeSMOTE

(data resampling technique R) is the best-ranked resampling technique as per the re-

sults of the Friedman test, then S corresponds to the remaining resampling techniques

investigated in the chapter.

4.3 Research Methodology

The ML techniques used in the chapter include C4.5, MLP-CG, RBFNN, IRBFNN,

Bagging, AdaBoost, KNN, LR, and KSTAR. These techniques are discussed in detail

in Chapter 2 (Section 2.6). For simulation KEEL tool (http://keel.es/) was

used with default the default parameter settings of the techniques. This section briefly

describes the data resampling techniques used in the chapter to handle the imbalanced

data.

4.3.1 SMOTE

SMOTE is an oversampling technique. It oversamples the minority class by engender-

ing synthetic data points for it. The artificial data points are created by interpolating

the line that joins a randomly picked data point of the minority class and its k-nearer

121

http://keel.es/

Research Methodology

neighbors. The amount of oversampling depends on neighbors chosen for interpola-

tion [28]. For instance, for an oversampling rate of 100%, one nearer neighbor, n, of a

minority data point, is randomly selected. By interpolating n with the minority class

data point, a synthetic data point is generated, which is then added to the dataset. For

exampling, a training dataset of 10000 instances with 500 data points of the minority

class and 9500 data points of majority class, 100% oversampling using SMOTE gen-

erates 500 synthetic data points corresponding to the minority class. So, the training

dataset after 100% oversampling with SMOTE would have 1000 data points of the

minority class, i.e., 500 original minority class data points and 500 synthetic data

points.

Let Xi be a minority class data point, Ri be the randomly selected neighbor of Xi,

and rand be a random number between 0 and 1, and Si be the synthetic data point

to be generated. Di is the difference between the selected minority class data point

Xi and its randomly selected nearer neighbor Ri. The synthetic minority class data

points would be created with the help of the following equations:

Di = Ri −Xi (4.1)

Si = Xi + rand ∗Di (4.2)

The synthetic data points Si generated using the above equations are added into the

original training data.

4.3.2 BSMOTE

Unlike SMOTE, BSMOTE does not create synthetic data points for all the data points

of the minority class. It only oversamples the minority class data points that lie at

the borderline. To find the borderline minority data points, the nearer neighbors of

122

Research Methodology

the minority data point Xi are determined. If the all nearer neighbors of Xi are the

majority class data points Xi is thought-out noise and it is not oversampled i.e., no

synthetic data points are created corresponding to it. Also, if in the nearer neighbors

of a Xi, the majority class data points are less in number compared to minority class

data points, Xi is considered as safe and it is not oversampled. However, if the nearer

neighbors of Xi, the majority class data points are more in number compared to the

minority class data points, Xi is considered borderline. In this case, the synthetic

data points corresponding to Xi are generated in the same manner as SMOTE. So, in

this way, for oversampling, the emphasis of the BSMOTE is only on the borderline

minority data points [186].

4.3.3 SafeSMOTE

SafeSMOTE is another variant of SMOTE. As BSMOTE synthesizes only the border-

line minority data points, the resultant dataset after oversampling still may contain

too few data points of the minority class compared to the majority class. Instead of

only oversampling the borderline minority data points, SafeSMOTE oversamples the

minority class data point Xi as per its Safe-Level ratio. For a minority data point Xi

Safe-Level ratio is given as a ratio of Safe-Level of Xi to that of nearer neighbor's

Safe-Level [187]. The safe level of a data point is given as the number of minority

class data points in its KNN. The focus of the SafeSMOTE technique is to generate

synthetic data points in safe regions.

4.3.4 Adasyn

Adasyn adaptively generates synthetic examples corresponding to the minority class

data points i.e., unlike SMOTE, Adasyn automatically calculates the number of

synthetic samples to be generated. It employs the weighted density distribution to

123

Research Methodology

decide the number of synthetic data points to be created corresponding to each the

the minority class example [188]. Density distribution is the measure of weights that

are assigned to each the minority class data point by their difficulty level of learning.

Many examples are created corresponding to harder-to-learn cases, and a smaller

number of instances are generated, corresponding to easy-to-learn examples. The

synthetic samples are generated by adopting the same technique as that of SMOTE.

4.3.5 SMOTE-TL

SMOTE-TL technique is an oversampling technique that works in two-phases namely

(i) oversampling and (ii) identification and removal of Tomek links [101]. i.e., SMOTE-

TL follows a hybrid data resampling approach. In the first phase, the dataset is

balanced by introducing synthetic data points into it. The synthetic data points are

generated by adopting the SMOTE procedure. All the generated synthetic data points

are added to the training dataset. After this phase, the Tomek links from the training

dataset are identified and removed. Tomek links are described as follows. Consider

two data points X and Y of two different classes. Let the distance between X and Y

be d(X, Y). A pair (X, Y) pair is named a Tomek link if there is not a data point Z,

such that d(X,Z) < d(X, Y) or d(Y, Z) < d(X, Y). If data points form Tomek link,

then either one of these data points would be a noisy or both data points are borderline.

After the identification of Tomek links, the data points forming the link are removed

from the training dataset.

4.3.6 SMOTE-ENN

SMOTE-ENN is a hybrid data resampling technique. In this technique SMOTE is

used to oversample the dataset by creating synthetic data points corresponding to the

minority class. On the oversampled dataset, Wilson's edited nearer neighbor algorithm

124

Research Methodology

is applied which removes those data points from the training dataset that satisfy the

editing rule [189]. As per the editing rule, if the label of a data point differs from the

labels of the majority of its neighbors, such data points are removed from the training

dataset.

4.3.7 SPIDER

SPIDER technique preprocesses the imbalanced data in two distinguished phases

[190]. The first phase consists of segregating all the data points in the training data into

safe and noisy categories for which the KNN algorithm is used. The data points that are

correctly classified using KNN are placed into a safe category and are assigned labels

safe. The data points that are incorrectly classified by the KNN algorithm are assigned

labels noisy. In the second phase, the data points belonging to the minority class

are oversampled using three oversampling options namely, weak amplification, weak

amplification with relabelling, and strong amplification. In the weak amplification,

the minority class data points that are labeled as noisy are oversampled by creating

their exact copies. The number of copies to be created for a noisy minority class data

points depend upon the number of safe data points in 3-nearer neighbors of noisy

the majority class data points. The weak amplification with relabelling extents weak

amplification with relabelling step. In this method of amplification, firstly the noisy

minority class data points are oversampled using weak amplification. Afterward, noisy

data points from the majority class situated in the 3-nearest neighbors of noisy data

points from the minority class are relabelled by changing their class from the majority

class to the minority class. The strong amplification option considers both safe and

noisy data points from the minority class. With strong amplification, firstly the safe

data points are amplified using a weak amplification process as discussed above. After

this algorithm is switched to treat noisy data points from the minority class. The noisy

125

Research Methodology

data points from the minority class are reclassified using an extended nearer neighbor

method i.e., using a 5-nearer neighbor. If a data point is classified correctly using

extended neighbors, it is oversampled by adding as many of its copies as there are

safe data points in the majority class in 3-nearest neighbors. But, if a data point is

incorrectly classified again, it is oversampled by creating a number of copies that

are equal to the number of safe data points from the majority class in its 5-nearest

neighbors. In this thesis another variant of SPIDER i.e., SPIDER II is also used [191].

Though, SPIDER as discussed above instinctively oversamples the minority class data

points without considering the changes that take place in the dataset on account of

relabelling. SPIDER II considers the changes made due to the relabelling option. The

minority class data points are flagged as safe or noisy and based on those changes.

After the identification of noisy examples, SPIDER II oversamples the minority class

using the relabelled dataset.

4.3.8 ROS and RUS

ROS balances class distribution by replicating the minority class data points randomly.

ROS may increase the occurrence of overfitting as it balances the dataset by creating

replicated the data points of the minority class. The balanced dataset after ROS when

presented to the classification algorithm, generated rules may be very accurate, but

cover the replicated data points [189]. On the other hand, the RUS technique balances

the distribution of data points by elimination data points of the majority class randomly.

The major limitation of RUS is that this technique can remove possibly useful data

points that could be significantly important for training the prediction model [189].

126

Research Methodology

4.3.9 CNN and CNN-TL

CNN is a heuristic undersampling technique that removes only the redundant data

points of the majority class. It avoids the limitation of RUS that blindly remove the

majority class data points and may suffer potential loss of valuable data points. This

technique finds a consistent subset S from the overall training data. The subset S is

said to be consistent with T if using S, we can correctly classify the data points of T.

The CNN technique works as follows: In the initial step all the minority class data

points and a random majority class data point are extracted from T and are placed in

set S. After this, the remaining data points of T are classified using the subset S using

1-NN. If a data point is misclassified in due course, it is moved from T to S. This

process is repeated for all data points present in set T [192]. CNN-TL is the extended

version of CNN. In this approach after finding the consistent subset S from T, all the

Tomek links from S are removed [189].

4.3.10 NCL

NCL is an undersampling technique that removes the majority class data points from

the imbalanced dataset using the ENN rule. As per ENN rule, if the class of a data

point differs from that of the class of at least two of its three nearest neighbors, such

data points are removed from the dataset. NCL technique slightly modifies the ENN

rule [193]. This algorithm undersamples the training dataset as follows: For each

data point Di in the training set, its three nearest neighbors are determined. If Di

belongs to the majority class and Di is incorrectly classified using its three nearer

neighbors, then Di is removed. However, if Di is a minority class data point and it is

misclassified by its three nearer neighbors, then the nearer neighbors of Di belonging

to the majority class are removed.

127

Results and Analysis

4.3.11 CPM

CPM is an unsupervised way of balancing the imbalanced dataset. The algorithm

calls itself recursively [194]. In the initial iteration, two data points one corresponding

to minority class and others from the majority class are randomly selected as initial

cluster centers. The remaining data points are then partitioned into two clusters,

C1 and C2, using the selected centers. The algorithm calls itself recursively until

the stopping criteria are not met i.e., the algorithm stops when the class impurity

of either of the clusters becomes less than that of its parent's impurity. Here, the

impurity of a cluster is defined as the proportion of the minority class data points in

the corresponding cluster.

4.4 Results and Analysis

This section discusses the experimental results which evaluate the use of data resam-

pling techniques to deal with imbalanced data for developing SMP models using ML

techniques.

4.4.1 Results Specific to RQ1

The predictive capability of various techniques in the domain of SMP is assessed by

analyzing the performance of ten-fold cross-validation models developed using them.

In this chapter, we first developed SMP models with original imbalanced datasets

using ML techniques. Table 4.1 show the predictive performance of ML techniques for

SMP models based on G-Mean and Balance. As shown in Table 4.1, ML techniques

without applying resampling techniques have inferior performance regarding G-Mean

and Balance. On analyzing Table 4.1 it has been noted that in 61% of the cases,

128

Results and Analysis

G-Mean values are less than 50%. Similarly, in 66.66% of the cases, the Balance

values are less than 50%.

Figure 4.1: Performance of SMP Models on Imbalanced data

Figure 4.1 shows the boxplots for the performance of maintainability prediction

models regarding Balance and G-Mean in case of imbalanced data. It is evident

from Figure 4.1 that G-Mean values are even 0% for a few of the cases, whereas

Balance has 29% as its lowest value. Also, the median of G-Mean and Balance for

all ML techniques is approximately 40%. These trends of the poor performance of

ML techniques for maintainability prediction are because the datasets are imbalanced

in nature and the prediction model is unable to learn the minority class instances

properly, i.e., for training the model, very few minority class instances are presented to

the classifier. Therefore, such kind of prediction models cannot be utilized for making

future predictions for unknown instances.

129

Results and Analysis

Table 4.1: G-Mean and Balance Results on Imbalanced Datasets

Dataset C4.5 AdaBoost IRBFNN KNN KSTAR Bagging LR MLP-CG RBFNN
G-Mean

Bcel 46.46 46.46 51.86 22.66 0.00 46.77 23.27 51.52 40.70
Betwixt 18.62 36.59 51.74 35.93 0.00 0.00 46.27 55.30 45.49
Io 29.00 43.37 43.39 57.55 29.29 29.29 44.06 43.34 57.56
Ivy 42.07 41.82 31.86 26.37 41.76 32.68 49.71 49.04 40.75
Jcs 70.94 70.73 69.42 72.76 0.00 66.08 72.98 74.62 76.25
Lang 77.90 62.49 56.83 65.88 0.00 67.38 62.83 64.56 81.46
Log4j 56.69 50.68 69.42 61.18 0.00 0.00 50.61 59.65 41.99
Ode 15.79 15.79 12.28 19.30 0.00 17.54 17.54 24.56 12.28

Balance
Bcel 44.97 44.97 48.88 33.00 29.29 4.99 33.19 48.84 41.07
Betwixt 31.76 44.50 49.78 39.08 29.29 34.52 44.94 52.50 44.79
Io 29.00 43.37 43.39 57.55 29.29 29.29 44.06 43.34 57.56
Ivy 41.91 41.90 36.76 34.38 41.89 36.87 46.96 46.90 41.71
Jcs 65.89 65.86 65.59 68.4 29.29 60.70 68.44 73.71 73.26
Lang 73.69 57.99 52.81 62.68 29.29 63.11 58.04 60.47 78.66
Log4j 52.79 42.72 65.59 58.61 29.29 58.32 47.79 55.98 42.52
Ode 40.45 40.42 37.95 42.76 29.29 41.69 41.69 46.59 37.95

4.4.2 Results Specific to RQ2

In this section, we assess ML techniques’ performance for predicting software main-

tainability after applying various data resampling techniques to balance the datasets.

Tables 4.2 to 4.9 show the performance of SMP models with respect to performance

measures G-Mean and Tables 4.10 to 4.17 show the performance of SMP models with

respect to performance measures Balance after applying data resampling techniques.

The use of data resampling techniques enhanced the performance of the ML tech-

niques for developing SMP models. For the Bcel dataset, the G-Mean values ranged

from 50.32% to 80.14%, and Balance ranged from 50.65% to 79.31%, respectively,

for the majority of the cases after data resampling. Betwixt dataset, the G-Mean

values ranged from 50.01% to 72.54% and Balance ranged from 50.17% to 72.48%,

130

Results and Analysis

respectively, for most of the cases after data resampling. On analyzing the results of

SMP modes for the Io dataset after data resampling, we observed that for most of the

cases, G-Mean and Balance values ranged from 50.96% to 87.82% and 50.11% to

86.31% respectively. The G-Mean and Balance values ranged from 50.16% to 73.44%

and 50.74% to 73.39%, respectively, for most of the cases after data resampling for

the Ivy dataset. In the case of the Jcs dataset, the G-Mean and Balance values ranged

from 55.17% to 87.07% and 60.54% to 86.97%, respectively, for the majority of the

cases after data resampling. The range of G-Mean and Balance values was 60.70%

to 85.41% and 60.01% to 83.68%, respectively, for the majority of the cases after

data resampling for the Lang dataset. Log4j dataset the G-Mean values ranged from

60.07% to 78.73%, and Balance values ranged from 60.02% to 78.39%, respectively,

for the majority of the cases after data resampling. For the Ode dataset, the G-Mean

and Balance values were observed in the range from 50.09% to 74.06% and 50.11%

to 72.69%, respectively, for most of the cases after data resampling.

Figure 4.2 and Figure 4.3 shows the boxplots for the performance of maintain-

ability prediction models regarding G-Mean and Balance after data resampling. It is

evident from Figure 4.2 that G-Mean reaches up to 80% in most of the datasets. Also,

Balance reaches up to 70% to 80% in all eight datasets, as shown in Figure 4.3. It

is also quite evident from Figure 4.2 and Figure 4.3 that the median of G-Mean and

median of Balance is even higher after data resampling. The G-Mean and Balance

results showed improvement for all datasets when data resampling techniques were

used. The improvement in G-Mean and Balance after data resampling is due to an

increase in sensitivity and specificity. When the datasets were imbalanced, SMP

models gave lower sensitivity values as models were having a smaller number of

instances of the low maintainability class to learn the instances of this class properly.

However, the sensitivity increased after data resampling that has increased the G-Mean

of SMP models as G-Mean is the geometric mean of specificity and sensitivity. After

131

Results and Analysis

data resampling, the rise in sensitivity led to a decrease in the false-positive rate that

improved the Balance results.

Table 4.2: G-Mean Results for Bcel Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 60.58 52.97 64.63 52.87 55.30 71.18 66.03 61.05 69.67
BSMOTE 61.26 56.72 60.66 31.54 48.17 73.22 55.02 50.83 76.42
ROS 58.91 55.11 57.12 22.65 73.13 63.42 59.88 57.53 54.63
SafeSMOTE 65.96 66.74 58.86 22.58 75.64 69.81 67.27 59.93 59.53
SMOTE 63.09 64.19 61.96 43.00 60.12 63.09 66.82 61.62 60.93
SMOTE-ENN 62.41 63.20 63.72 37.79 63.46 70.66 70.90 57.32 63.58
SMOTE-TL 67.86 61.73 63.64 50.46 70.26 70.22 68.12 66.82 63.39
SPIDER 61.16 51.77 59.74 22.65 33.33 69.46 51.60 59.84 52.95
SPIDER II 63.64 56.97 64.63 22.65 40.04 67.85 56.06 54.63 59.32
CNN 73.84 65.49 61.16 53.82 58.49 75.75 51.86 65.22 73.77
CNN-TL 68.56 65.81 66.94 44.29 65.96 69.92 62.30 56.62 67.66
CPM 54.50 51.09 53.54 37.50 22.69 43.57 21.09 53.36 54.54
NCL 65.49 64.95 60.96 52.26 23.57 56.72 39.84 50.31 46.69
RUS 80.13 79.55 65.63 58.32 70.41 75.99 60.47 47.06 69.50

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.3: G-Mean Results for Betwixt Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 52.32 62.17 53.58 55.70 55.19 60.91 69.51 57.29 71.87
BSMOTE 40.60 51.48 44.81 46.52 36.50 54.18 61.25 52.32 54.60
ROS 43.07 47.54 54.31 35.93 46.45 58.16 66.36 45.10 71.82
SafeSMOTE 54.74 59.07 62.24 39.75 52.54 68.77 70.28 68.18 58.26
SMOTE 59.04 52.17 49.46 55.19 31.77 62.65 71.25 54.68 64.04
SMOTE-ENN 58.87 55.91 54.37 60.55 25.87 62.35 72.54 54.68 70.28
SMOTE-TL 58.32 55.02 59.66 60.21 37.44 65.74 68.18 53.12 64.49
SPIDER 50.01 44.93 53.11 43.78 26.96 47.66 65.29 56.37 65.07
SPIDER II 53.67 54.46 48.35 50.28 25.14 62.40 68.10 24.37 62.70
CNN 50.98 58.89 54.99 45.43 25.34 47.16 51.35 48.07 49.80
CNN-TL 65.16 61.46 63.05 60.83 50.33 54.81 56.67 34.04 60.13
CPM 42.66 46.27 57.37 40.05 17.78 50.31 50.88 0.00 57.59
NCL 66.51 68.77 59.56 64.05 19.20 71.11 61.58 34.83 55.85
RUS 57.51 68.77 72.34 64.49 51.91 69.40 58.06 34.83 56.40

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

132

Results and Analysis

Table 4.4: G-Mean Results for Io Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 66.26 43.29 52.30 72.24 42.90 59.55 71.71 42.11 62.85
BSMOTE 53.96 43.77 43.77 69.51 44.25 62.31 53.14 43.48 61.63
ROS 53.37 43.68 41.40 78.64 58.41 61.63 51.57 43.39 77.27
SafeSMOTE 70.11 65.47 65.14 69.66 69.75 70.29 75.54 63.68 71.36
SMOTE 59.83 53.26 42.11 72.24 59.27 53.26 71.01 52.90 58.98
SMOTE-ENN 52.30 53.14 61.77 73.79 42.31 66.89 81.79 52.66 58.55
SMOTE-TL 66.42 53.26 60.81 73.28 48.29 53.26 86.31 60.53 57.39
SPIDER 60.94 53.49 52.54 76.64 52.54 53.49 52.90 53.14 67.83
SPIDER II 61.22 53.49 52.30 62.44 52.54 53.49 52.54 52.66 59.83
CNN 57.39 50.96 59.55 65.14 30.67 50.96 63.51 40.17 76.70
CNN-TL 78.22 73.96 57.69 64.69 30.67 73.96 80.65 38.35 77.57
CPM 75.93 64.98 65.14 66.10 30.74 64.98 65.47 55.15 65.79
NCL 62.44 61.77 62.04 67.98 31.62 61.77 52.42 61.36 87.82
RUS 65.84 57.10 63.01 78.64 71.12 57.10 64.69 37.96 66.80

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.5: G-Mean Results for Ivy Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 56.43 35.82 35.58 58.19 41.76 59.36 72.95 65.77 65.37
BSMOTE 27.11 41.01 40.75 39.12 25.37 36.68 70.78 59.02 55.82
ROS 56.54 52.19 62.97 35.99 45.88 60.26 69.63 61.22 67.60
SafeSMOTE 67.45 60.90 60.13 39.38 47.88 64.94 65.18 56.00 72.90
SMOTE 63.72 54.76 62.36 46.18 38.92 59.39 72.95 63.41 72.29
SMOTE-ENN 56.08 51.14 50.90 49.83 57.03 50.32 66.69 60.61 67.58
SMOTE-TL 56.43 58.52 48.14 57.35 60.97 54.95 73.44 63.89 66.94
SPIDER 57.63 45.20 56.72 47.46 47.15 48.75 60.92 64.57 59.78
SPIDER II 57.72 54.76 52.76 47.07 43.65 54.59 59.30 62.54 69.77
CNN 40.17 56.33 58.40 55.22 24.99 51.14 61.12 49.49 54.36
CNN-TL 58.40 45.40 61.61 59.67 58.75 67.16 54.94 49.74 57.87
CPM 26.18 50.16 42.49 54.47 57.46 40.57 52.04 61.637 49.49
NCL 50.82 55.61 67.44 62.74 26.72 51.47 58.44 49.66 51.21
RUS 63.62 62.68 58.86 64.85 64.22 62.43 71.83 52.54 63.25

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

133

Results and Analysis

Table 4.6: G-Mean Results for Jcs Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 74.62 76.44 71.34 77.47 66.17 80.03 80.44 74.97 80.52
BSMOTE 64.88 78.47 66.90 76.74 72.79 79.21 80.36 77.21 73.51
ROS 72.98 74.68 71.83 72.76 69.92 76.74 83.94 62.74 73.03
SafeSMOTE 80.14 80.89 82.55 74.91 81.02 81.62 77.54 78.63 78.94
SMOTE 77.46 77.96 60.16 80.85 72.52 83.37 79.17 68.60 78.33
SMOTE-ENN 80.30 82.84 70.94 73.54 62.83 84.22 77.26 65.68 76.67
SMOTE-TL 79.21 80.58 77.21 75.31 69.97 81.45 80.03 66.57 77.28
SPIDER 79.84 77.71 75.28 75.52 26.89 79.06 76.44 76.40 85.24
SPIDER II 81.11 76.95 81.17 81.65 55.17 85.35 79.21 76.41 79.49
CNN 75.77 77.21 70.25 62.48 60.35 78.72 75.31 10.84 80.03
CNN-TL 83.67 77.26 76.67 56.09 63.85 80.44 75.02 10.84 78.63
CPM 71.10 68.54 63.45 71.58 49.55 73.98 67.16 63.09 66.96
NCL 87.07 84.95 83.08 74.48 27.13 82.79 78.66 78.01 80.89
RUS 74.08 74.10 72.21 74.56 73.63 78.32 75.32 10.84 75.92

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.7: G-Mean Results for Lang Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 70.74 68.76 67.58 67.82 70.36 81.41 77.38 65.12 81.41
BSMOTE 78.85 67.57 67.01 68.92 46.28 79.29 77.97 69.15 85.41
ROS 73.93 64.92 75.27 66.45 67.18 77.97 76.18 55.13 80.78
SafeSMOTE 80.55 82.04 74.45 66.45 72.92 83.01 77.33 75.95 78.85
SMOTE 82.77 72.58 52.57 69.87 55.91 83.98 77.56 69.65 80.30
SMOTE-ENN 77.75 74.55 73.09 69.33 59.10 82.65 80.06 66.80 79.58
SMOTE-TL 79.09 80.79 73.81 68.99 74.25 83.01 79.09 68.54 80.63
SPIDER 83.26 74.14 75.34 65.31 19.25 83.12 73.30 77.33 79.42
SPIDER II 76.86 73.09 72.67 72.25 37.58 82.42 76.40 77.63 79.58
CNN 81.48 69.43 68.32 61.98 44.37 81.25 73.17 61.33 74.08
CNN-TL 76.18 69.25 73.30 60.70 61.95 72.96 65.31 61.02 69.99
CPM 78.89 67.58 68.03 61.58 35.05 79.34 72.78 58.64 73.21
NCL 79.51 75.99 66.26 66.80 19.20 74.14 75.99 70.77 81.01
RUS 76.88 73.04 76.63 66.49 62.78 80.79 68.54 60.22 77.42

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

134

Results and Analysis

Table 4.8: G-Mean Results for Log4j Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 71.29 62.75 58.79 72.35 53.29 68.96 69.42 68.15 62.65
BSMOTE 59.65 61.66 57.24 73.48 51.96 61.3 67.83 62.32 66.7
ROS 67.83 54.71 61.66 62.75 64.8 59.87 68.7 62.75 65.35
SafeSMOTE 71.13 69.1 64.77 62.36 70.32 72.35 78.73 70.16 69.2
SMOTE 63.87 64.89 61.27 72.48 47.78 67.42 73.82 72.59 69.18
SMOTE-ENN 68.05 73.11 71.53 71.17 42.79 71.53 75.42 73.11 65.8
SMOTE-TL 69.47 71.65 64.71 73.59 60.84 64.52 73.27 70.25 69.84
SPIDER 67.85 58.85 62.52 65.77 21.76 66.09 55.3 62.04 55.93
SPIDER-II 65.13 63.67 65.69 64.28 37.59 64.38 63.85 67.1 60.76
CNN 55.58 67.57 61.55 68.63 52.48 64.28 66.03 63.71 60.07
CNN-TL 70.42 68.98 73.87 70.04 66.67 72.22 66.67 62.64 52.36
CPM 47.52 59.12 59.03 64.51 54.69 57.5 65.42 51.22 57.5
NCL 62.32 71.31 59.56 72.6 21.79 69.42 65.5 71.64 57.5
RUS 72.98 72.97 70.69 66.09 72.19 69.29 66.05 71.41 54.08

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.9: G-Mean Results for Ode Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 50.59 61.36 51 48.42 50.31 61.69 69.48 59.25 71.24
BSMOTE 44.71 51.69 49.41 52.33 43.29 42.89 64.97 49.64 59.65
ROS 55.36 51.36 61.42 42.53 65.06 57.17 72.28 52.49 72.04
SafeSMOTE 69.63 60.66 65.2 42.48 70.29 65.68 72.94 63.33 67.49
SMOTE 56.03 53.1 70.58 60.62 47.18 61.74 71.98 61.73 69.16
SMOTE-ENN 70.71 65.3 74.06 60.97 51.43 65.2 70.71 65.66 71.42
SMOTE-TL 71.76 65.3 70.67 64.26 60.86 63.68 71.76 70.43 72.52
SPIDER 58.3 43.08 58.07 42.45 48.87 53.32 58.3 55.83 66.14
SPIDER-II 62.63 51.2 61.23 45.76 18.72 49.51 62.59 45.49 59.49
CNN 51.69 50.47 45.97 53.41 64.43 55.61 51.69 50.11 66.98
CNN-TL 64.26 52.81 61.53 54.54 13.21 65.89 64.26 55.17 65.41
CPM 50.84 50.09 50.4 46.51 18.69 52.02 50.84 52.18 55.71
NCL 50.46 53.71 56.58 56.23 65.3 61.23 50.46 62.06 45.05
RUS 68.53 66.99 66.69 61.23 65.3 70.71 68.53 59.75 66.91

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

135

Results and Analysis

Figure 4.2: Box-plots for G-Mean Results after Data Resampling

Figure 4.3: Box-plots for Balance Results after Data Resampling

136

Results and Analysis

Table 4.10: Balance Results for Bcel Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 58.83 51.55 62.78 51.5 52.5 69.96 65.08 59.09 68.89
BSMOTE 56.72 52.8 56.62 36.71 47.62 68.48 52.41 48.69 72.32
ROS 56.12 52.44 56.45 33 73.12 60.15 58.41 55.53 52.28
SafeSMOTE 65.78 65.59 58.51 32.96 74.91 69.71 66.94 59.42 58.19
SMOTE 60.03 60.38 59.56 43.74 58.56 60.03 65.65 59.39 59.03
SMOTE-ENN 59.76 60.07 63.27 40.21 62.58 67.77 69.78 55.42 63.15
SMOTE-TL 66.33 59.45 62.18 49.99 70.23 69.3 67.67 65.65 62.02
SPIDER 56.7 48.87 56.4 33 37.15 64.56 48.85 56.43 50.65
SPIDER-II 60.22 52.82 62.78 33 41.01 64.2 52.69 52.28 56.27
CNN 71.47 64.68 59.15 53.64 55.96 74.46 50.92 65.11 73.09
CNN-TL 67.92 64.95 66.53 44.36 65.78 69.7 62.21 56.38 66.94
CPM 54.51 51.1 52.97 39.19 33.02 44.24 31.75 53.36 54.5
NCL 60.64 60.55 56.67 51.16 33.32 52.8 40.98 48.55 44.99
RUS 78.85 79.31 64.79 58.04 70.27 75.3 60.36 47.23 69.43

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.11: Balance Results for Betwixt Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 51.19 60.77 52.73 54.83 54.46 59.91 69.43 56.58 71.84
BSMOTE 41.86 49.68 44.58 46.34 39.34 52.11 59.20 51.19 52.27
ROS 43.78 46.84 54.30 39.08 46.58 56.41 65.94 45.45 70.93
SafeSMOTE 54.46 58.49 61.98 41.46 52.52 68.73 70.28 68.16 58.05
SMOTE 57.86 51.11 48.74 54.46 36.81 61.86 71.02 54.07 64.03
SMOTE-ENN 57.74 54.13 53.25 59.64 34.17 60.89 72.48 54.07 70.28
SMOTE-TL 57.87 54.33 58.27 59.85 39.87 65.41 68.14 52.80 64.48
SPIDER 49.03 44.62 52.39 44.15 34.51 46.89 62.45 55.30 63.57
SPIDER II 52.79 52.22 48.05 49.17 33.71 59.75 66.47 25.27 61.11
CNN 50.35 58.34 53.63 45.71 33.85 46.67 49.64 48.14 49.72
CNN-TL 64.25 61.11 62.98 59.24 49.8 54.69 56.42 37.95 59.74
CPM 43.54 46.5 57.04 40.6 31.12 50.17 50.86 29.29 57.58
NCL 64.41 67.85 58.20 63.54 31.91 69.38 59.37 38.28 55.42
RUS 57.21 67.85 72.30 64.46 51.9 68.83 58.05 38.28 55.87

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

137

Results and Analysis

Table 4.12: Balance Results for Io Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 63.61 43.26 50.11 70.25 43.15 56.82 71.71 42.87 61.65
BSMOTE 50.46 43.35 43.35 64.56 43.41 57.52 53.14 43.30 57.42
ROS 50.37 43.34 42.54 78.61 56.32 57.42 51.57 43.28 76.38
SafeSMOTE 68.96 63.23 63.06 64.58 68.72 69.09 75.53 62.20 69.76
SMOTE 56.93 50.35 42.87 70.25 56.71 50.35 71.01 50.27 56.59
SMOTE-ENN 50.11 50.33 57.45 70.97 42.95 63.87 81.79 50.21 56.39
SMOTE-TL 63.68 50.35 57.24 70.76 48.06 50.35 86.31 57.16 55.78
SPIDER 57.27 50.39 50.18 71.68 50.18 50.39 52.89 50.33 64.20
SPIDER II 57.34 50.39 50.11 57.54 50.18 50.39 52.54 50.21 56.93
CNN 55.78 49.60 56.82 63.06 36.22 49.60 63.51 41.81 75.97
CNN-TL 78.16 73.76 55.94 64.54 36.22 73.76 80.64 39.69 77.48
CPM 75.39 62.98 63.06 63.54 36.24 62.98 65.46 54.32 63.39
NCL 57.54 57.45 57.49 64.24 36.36 57.45 52.420 57.37 84.28
RUS 65.58 55.61 61.76 78.61 71.11 55.61 64.69 40.00 66.41

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.13: Balance Results for Ivy Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 55.03 38.96 38.86 56.95 41.89 57.68 72.63 64.46 65.33
BSMOTE 34.64 41.77 41.71 41.04 33.97 39.25 69.59 55.73 54.64
ROS 53.94 49.38 62.76 39.03 44.43 56.74 67.86 58.63 67.60
SafeSMOTE 67.05 59.54 59.58 41.17 45.77 63.89 64.68 55.36 72.56
SMOTE 61.10 51.78 61.88 46.40 40.94 56.47 72.63 60.95 72.21
SMOTE-ENN 53.76 49.14 49.06 49.40 55.38 48.86 65.88 58.35 67.16
SMOTE-TL 55.03 56.12 46.72 56.87 60.26 53.25 73.39 62.33 66.07
SPIDER 54.27 44.34 54.01 46.51 46.39 46.85 56.89 61.44 57.92
SPIDER II 54.3 51.78 51.09 46.36 43.89 51.74 56.43 59.12 68.88
CNN 41.52 54.96 57.09 54.73 33.74 49.14 58.59 49.20 53.63
CNN-TL 58.29 45.74 61.23 59.59 58.64 67.16 54.76 48.69 57.87
CPM 34.28 48.79 43.34 53.00 55.61 41.65 50.74 61.46 48.49
NCL 49.04 53.56 64.07 61.58 34.34 49.23 54.44 48.57 49.16
RUS 63.62 62.66 58.09 64.6 64.14 62.27 71.73 52.48 63.21

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

138

Results and Analysis

Table 4.14: Balance Results for Jcs Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 73.71 74.86 69.51 76.61 65.19 79.32 80.42 74.96 79.32
BSMOTE 60.54 75.82 63.00 73.41 70.23 76.07 78.25 76.42 70.52
ROS 68.44 70.89 69.77 68.40 69.41 73.41 83.78 61.13 72.51
SafeSMOTE 80.11 80.69 82.40 70.95 80.69 81.62 77.35 78.5 78.83
SMOTE 75.39 75.62 57.36 79.87 71.34 83.28 79.14 67.72 78.17
SMOTE-ENN 79.51 82.22 67.88 71.97 58.04 84.02 77.10 64.82 76.03
SMOTE-TL 78.72 79.69 76.42 74.95 69.45 81.16 79.93 66.57 77.11
SPIDER 78.02 75.51 72.87 72.98 34.51 77.61 74.86 75.82 85.24
SPIDER II 80.04 75.14 80.92 80.35 51.87 84.92 78.72 76.33 78.92
CNN 73.08 75.27 67.59 62.42 57.43 75.91 74.95 29.29 79.32
CNN-TL 82.77 77.10 76.03 55.64 63.64 80.42 74.92 29.29 78.50
CPM 65.91 65.31 60.16 69.64 47.49 70.69 65.87 62.07 64.64
NCL 86.97 84.94 83.02 74.25 34.53 82.75 78.28 78.01 80.69
RUS 74.09 74.10 71.85 74.00 73.50 78.17 75.24 29.29 75.88

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.15: Balance Results for Lang Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 69.17 65.39 64.93 67.61 67.64 81.41 77.20 62.38 81.41
BSMOTE 75.95 63.15 63.03 66.94 44.94 76.09 75.62 65.51 83.68
ROS 70.67 60.55 74.15 62.87 64.74 75.62 74.71 52.45 79.82
SafeSMOTE 80.39 81.62 74.22 62.87 71.6 82.34 76.51 74.58 78.43
SMOTE 82.17 68.36 50.01 68.61 52.65 82.96 76.67 68.47 79.51
SMOTE-ENN 75.52 70.86 70.36 67.16 55.30 80.86 79.34 65.63 78.99
SMOTE-TL 78.63 78.43 72.13 68.00 72.37 82.34 78.63 68.51 80.62
SPIDER 82.50 70.74 72.90 62.46 31.91 81.06 70.45 76.51 77.80
SPIDER II 75.09 70.36 70.18 69.98 39.67 80.75 74.84 77.42 78.99
CNN 80.26 68.32 67.51 60.65 44.42 80.12 72.63 60.81 74.08
CNN-TL 76.14 68.66 73.3 60.01 61.31 72.92 65.15 60.34 68.18
CPM 73.80 67.4 68.02 60.38 38.56 78.81 72.76 58.64 72.98
NCL 76.15 73.16 62.81 65.63 31.91 70.74 73.16 67.81 78.51
RUS 76.76 73.03 76.53 66.49 61.16 80.61 68.51 60.12 77.18

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

139

Results and Analysis

Table 4.16: Balance Results for Log4j Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 70.73 60.21 56.66 71.96 50.83 68.04 69.25 66.93 61.95
BSMOTE 55.98 57.69 54.17 72.87 49.34 57.61 66.08 59.05 63.80
ROS 66.08 52.31 60.79 60.21 63.52 57.14 68.66 60.21 63.17
SafeSMOTE 71.09 68.58 64.71 60.02 69.54 71.96 78.39 70.03 68.21
SMOTE 61.60 62.07 58.65 72.47 46.05 65.05 73.82 71.08 67.59
SMOTE-ENN 66.20 70.49 69.70 70.63 42.69 69.70 75.41 70.49 65.18
SMOTE-TL 68.88 70.48 62.82 73.51 57.48 63.22 72.96 68.94 69.17
SPIDER 65.25 55.76 60.86 63.38 32.66 62.5 52.5 58.96 53.71
SPIDER II 63.06 61.5 65.58 61.8 39.39 61.85 62.31 64.89 60.09
CNN 53.55 66.52 59.61 68.46 50.56 61.8 65.37 63.66 59.54
CNN-TL 69.03 68.78 73.81 69.06 66.67 71.82 66.63 62.06 52.35
CPM 46.91 57.54 58.66 64.46 53.66 56.48 65.16 51.21 57.29
NCL 59.05 68.71 59.53 72.17 32.66 65.86 62.3 69.77 55.24
RUS 72.98 72.63 70.69 65.9 72.08 69.25 65.99 71.19 54

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

Table 4.17: Balance Results for Ode Dataset after Data Resampling

Res. Tech. C4.5 AB IRBFNN KNN KSTAR BG LR MLP-CG RBFNN
Adasyn 49.38 58.38 48.87 47.82 49.24 59.22 69.47 57.87 71.23
BSMOTE 44.06 49.02 47.65 50.04 42.90 42.84 62.68 47.70 56.23
ROS 52.52 48.96 61.27 42.76 62.72 53.85 71.90 50.79 71.89
SafeSMOTE 68.92 58.7 64.8 42.75 68.47 64.16 72.69 62.52 67.33
SMOTE 54.13 51.03 67.20 58.68 46.25 59.24 71.83 59.82 68.98
SMOTE-ENN 70.66 63.91 70.90 59.38 48.97 63.85 70.66 64.92 70.61
SMOTE-TL 71.63 63.91 67.23 63.79 58.19 62.78 71.63 70.28 72.43
SPIDER 54.05 42.87 55.67 42.74 47.86 50.27 54.05 52.64 63.2
SPIDER II 58.78 48.92 60.32 45.11 46.62 47.67 58.77 45.03 56.19
CNN 49.02 49.72 46.07 52.83 31.77 52.58 49.02 50.11 66.86
CNN-TL 63.79 52.8 61.37 54.54 64.27 65.37 63.79 54.75 65.4
CPM 48.83 49.48 49.95 46.73 30.53 49.95 48.83 52.04 53.97
NCL 47.85 51.23 53.68 54.23 31.77 57.52 47.85 58.62 44.12
RUS 68.41 66.99 66.69 61.22 63.91 70.54 68.41 59.69 66.89

Res. Tech. indicates resampling technique, AB indicates AdaBoost, BG indicates Bagging

140

Results and Analysis

4.4.3 Results Specific to RQ3

To assess the performance of data resampling techniques used in this chapter, we

perform the Friedman test with respect to performance metrics G-Mean and Balance

for all eight datasets used in the study along with the scenario when no data resampling

is used. We evaluated the hypothesis stated in Section 4.2.5. The hypothesis for

Friedman and Wilcoxon test is evaluated at a confidence level of 95% (α = 0.05) by

extracting the values of the performance metrics G-Mean and Balance of all datasets

used in this chapter. Table 4.18 shows the Friedman test ranks for G-Mean and

Balance. The higher the rank obtained by the resampling technique, the better would

be that technique.

Table 4.18: Friedman Ranking based on G-Mean and Balance

Based on G-Mean Based on Balance
Technique Mean Rank Technique Mean Rank
SafeSMOTE 11.23 SafeSMOTE 11.35
SMOTE-TL 11.08 SMOTE-TL 11.27
SMOTE-ENN 10.66 SMOTE-ENN 10.44
RUS 10 RUS 9.69
SMOTE 9.49 SMOTE 9.42
Adasyn 8.94 CNN-TL 9.1
CNN-TL 8.65 Adasyn 9.00
NCL 8.45 NCL 7.8
SPIDER II 7.6 SPIDER II 7.29
ROS 7.22 ROS 7.06
SPIDER 7.16 SPIDER 6.47
CNN 6.62 CNN 6.33
BSMOTE 6.42 BSMOTE 5.83
CPM 4.64 CPM 4.72
No-Resampling 2.47 No-Resampling 4.24

On conducting the Friedman test for different data resampling techniques with

respect to G-Mean measure on all eight datasets used in the study, the p-value obtained

is 0.00 (p < 0.05), which means the results of the Friedman test are significant. It

141

Results and Analysis

is evident from Table 4.18 that SafeSMOTE achieves the best rank with respect to

G-Mean. The worst rank was obtained for no resampling situation. Similarly, on

conducting the Friedman test for different data resampling techniques for Balance

measure on all eight datasets used in this chapter, the p-value obtained was 0.00

(p− value < 0.05), which means again the results of the Friedman test are significant

with respect to Balance, the mean rank obtained after the Friedman test for different

data resampling techniques along with no resampling scenario are shown in Table 4.18.

Again, SafeSMOTE yielded the best rank with respect to Balance measure after the

Friedman test is applied, and the worst rank is obtained for the no resampling situation.

As the test statistics of the Friedman test are significant for both G-Mean and Balance,

this leads to rejection of the null hypothesis H0 and H1 and acceptance of the alternate

hypothesis H2 and H3. Therefore, in this way, we observe a significant improvement in

the performance of SMP models developed after applying data resampling techniques

on imbalanced datasets. It is observed that the enhanced version of SMOTE, namely

SafeSMOTE and hybrid resampling techniques, SMOTE-TL, SMOTE-ENN, are

amongst four ranked techniques as per ranking obtained after the Friedman test with

respect to G-Mean and Balance measures. The SafeSMOTE technique emerges as the

best technique to improve the performance of prediction models.

To further extend our analysis, i.e., to get insight into whether the SafeSMOTE

technique is statistically better than other resampling techniques used in the study or

not, we apply Wilcoxon signed-rank test at 95% level of confidence (α = 0.05) by

doing the Bonferroni correction. The set of hypothesis evaluated using the Wilcoxon

test is stated in Section 4.2.5. Using the Wilcoxon signed-rank test, a pair-wise

comparison amongst the SafeSMOTE technique and other resampling techniques is

computed with respect to G-Mean and Balance measures of all ML techniques for all

datasets. The test statistics of Wilcoxon signed-rank are reported in Table 4.19 both

for G-Mean and Balance.

142

Discussion

Table 4.19: Wilcoxon Test Results

Techniques Examined G-Mean Balance
SafeSMOTE vs. SMOTE-TL NS (p-value = 0.0.404) NS (p-value = 0.287)
SafeSMOTE vs. RUS S+ (p-value = 0.161) S+ (p-value = 0.375)
SafeSMOTE vs. SMOTE-ENN NS (p-value = 0.079) NS (p-value = 0.013)
SafeSMOTE vs. SMOTE S+ (p-value = 0.001) S+ (p-value = 0.000)
SafeSMOTE vs. CNN-TL S+ (p-value = 0.003) S+ (p-value = 0.000)
SafeSMOTE vs. Adasyn S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs. NCL S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs. SPIDER II S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs. ROS S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs. SPIDER S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs. CNN S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs. BSMOTE S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs. CPM S+ (p-value = 0.000) S+ (p-value = 0.000)
SafeSMOTE vs.No-Resampling S+ (p-value = 0.000) S+ (p-value = 0.000)

In Table 4.19, S+ means a significant difference in the performance of two corre-

sponding pairs of resampling techniques, and NS signifies that there is no significant

difference. The results depict that SafeSMOTE significantly outperforms than Adasyn,

SMOTE, BSMOTE, SPIDER, SPIDER II, ROS, CNN, CNN-TL, CPM, NCL, and

no resampling by both G-Mean and Balance. Also, the test results depict that SafeS-

MOTE does not significantly outperform compared to SMOTE-TL, SMOTE-ENN,

and RUS. The performance of SMOTE-TL, and SMOTE-ENN is comparable with

SafeSMOTE.

4.5 Discussion

In this chapter we have conducted an empirical evaluation for SMP using the soft-

ware system written in Java language. The datasets corresponding to these software

systems were imbalanced. The data resampling techniques, including oversampling,

undersampling, and hybrid resampling are applied in this chapter to deal with the

143

Discussion

imbalanced data. SMP models are developed using ML techniques. The results of the

chapter show that the performance of ML techniques significantly improved after data

resampling. We observed that that G-Mean values were greater than 50 in 85%, 72%,

84%, 73%, 95%, 95%, 95%, and 83% of the cases respectively for Bcel, Betwixt,

Io, Ivy, Jcs, Lang, Log4j, and Ode datasets after data resampling. Similarly, Balance

values are higher than 50 in 81%, 68%, 83%, 66%, 95%, 95%, 94%, and 87% of the

cases for Bcel, Betwixt, Io, Ivy, Jcs, Lang, Log4j, and Ode datasets respectively after

data resampling. The performance of the SMP models showed an improvement of

31.71% for Bcel, 50.61% for Betwxit, 41.31% for Io, 36.19% for Ivy, 8% for Jcs, 35%

for Lang, 29.42% for Log4j and 78.08% for Ode dataset in terms of G-Mean after data

resampling. Also, in terms of Balance performance measure, the SMP models showed

an improvement of 31.01% for Bcel, 22.38% for Betwxit, 31.88% for Io, 29.25% for

Ivy, 14% for Jcs, 18.84% for Lang, 21.48% for Log4j and 40.60% for Ode dataset

after data resampling.

SMP models developed after resampling with SafeSMOTE performed well on all

the datasets. The SafeSMOTE technique improved the performance of the models in

terms of G-Mean and Balance. According to statistical analysis carried out with the

Friedman test, the SafeSMOTE technique achieved the highest rank whereas the no

resampling situation has attained the worst rank. These results show the competence

of SafeSMOTE technique to deal with the imbalanced data.

The pair-wise comparison of the performance of SafeSMOTE with all other resam-

pling techniques used in this chapter indicates that the performance of SafeSMOTE

was better than all other resampling techniques except SMOTE-TL and SMOTE-

ENN. The performance of two other variants of SMOTE namely SMOTE-TL and

SMOTE-ENN was comparable with the top-ranked technique (i.e., SafeSMOTE).

The superiority of the SafeSMOTE technique over other techniques is because

this technique does not create the same number of synthetic instances for each the

144

Discussion

minority instance; instead, it emphasizes on the instances that fall in the safe-region

and discounts the instances that are noise. The SafeSMOTE technique's superiority

denotes that a data resampling technique should properly use a strategy for generating

the synthetic instances that evade noise and redundancy.

145

Chapter 5

Analysis of Ensemble Techniques for

Imbalance Data Problem

5.1 Introduction

The imbalanced data problem in software maintainability arises when one class which

usually refers to the concept of interest i.e., low maintainability class or positive class is

underrepresented in the training dataset. Alternatively stated, the number of negative

instances i.e., high maintainability class instances overwhelm the number of low

maintainability class instances in the imbalanced dataset. Prediction models developed

using ML techniques with an imbalanced dataset gives suboptimal classification results

as shown in the previous chapter, i.e., majority class instances are predicted with

good accuracy but on the other hand minority class instances are often misclassified

as they are treated as noise during the learning process [74]. The results of the

previous chapter confirm that the performance of the models developed using ML is

significantly improved after data balancing with resampling techniques. Considering

the importance of imbalanced data issues, there is still an active need to explore

147

Introduction

other methods to treat it so that efficient models for maintainability prediction can be

developed. In the last chapter, the data resampling techniques are used that are called

a data level solution to deal with the imbalanced data problem. The data resampling

techniques tend to balance the imbalanced datasets and lower down the skewed data

distribution before learning the prediction model [28, 186–188].

Another approach to deal with imbalanced data is the use of ensemble learning

techniques. The ensemble learning techniques train the multiple base classifiers and

combine their prediction to obtain a single final output class label [25]. Ensemble

techniques combine multiple classifiers to make a single consolidated decision. The

ensembles improve the performance for a classification task because by combining

multiple classifiers the error of a single classifier will be compensated by the other

individual classifiers. Ensemble techniques have been widely used in diverse domains.

In the domain of software engineering, ensembles are used to improve the perfor-

mance of software defect and change prediction models. Although ensembles have

gained popularity in predictive modeling due to their improved performance, they are

not able to tackle the imbalanced data on their own. Therefore, in the framework of

imbalanced data, ensembles are specifically designed by incorporating data resampling

techniques and are called as Ensembles for Imbalanced Data Problem (EIDP). EIDP is

the hybridization of data resampling techniques and ensembles, where data resampling

techniques resolve the skewness in the imbalanced training data set and after that

balanced data, is fed to multiple classifiers comprising an ensemble [195–197].

EIDP techniques are explored by a few of the researchers in the literature to de-

velop prediction models to predict defects in software classes. Wang and Zhou [198]

combined three data resampling techniques with ensembles to develop software defect

prediction models. Wang and Yao [74] compared ML techniques, classic ensembles,

and EIDP techniques to develop software defect prediction models using imbalanced

datasets. Yohannes et al. [199] examined and compared prominent ensembles tech-

148

Introduction

niques and ensembles combined with data balancing techniques for software change

prediction and advocated that data balancing combined with ensembles improves the

performance of models. Therefore, as noticed that though EIDP seems to be very

capable of dealing with the imbalanced data in their concrete framework, still they are

being explored very little literature. Also, the use of EIDP techniques for SMP has

not been explored in literature.

Therefore, this chapter deals with efficiently learning from imbalanced data using

EIDP techniques for developing SMP models to correctly predict low maintainability

classes. In this chapter, we compare and analyze three types of EIDP techniques.

These are Bagging-based ensembles, Boosting-based ensembles, and hybrid ensem-

bles. Bagging-based ensembles are a hybridization of data resampling and Bagging,

Boosting-based ensembles are a hybridization of data resampling and boosting and

whereas hybrid ensembles combine data resampling, Bagging, and boosting in a

single technique. Apart from this, the chapter also develops SMP classic ensembles

(AdaBoost and Bagging) and compares their performance with EIDP techniques. We

explore the following research questions in this chapter.

• RQ1: Are the classic ensembles are capable of predicting low maintainability

classes in imbalanced SMP datasets?

• RQ2: How is the performance of Bagging-based ensembles, Boosting-based

ensembles, and hybrid ensembles for predicting low maintainability classes in

imbalanced SMP datasets?

• RQ3: Which method is the best EIDP technique for SMP in an imbalanced data

framework?

RQ1 aims to assess the predictive capability of classic ensembles techniques for the

development of SMP models using imbalanced data. The predictive capability of

149

An Overview of Ensembles for Imbalanced Data Problem

each classic ensemble techniques is compared with EIDP techniques. We investigate

RQ2 to assess the predictive performance of EIDP techniques for the development of

SMP models. RQ3 aims to determine the best techniques by conducting statistical

analysis on Balance and G-Mean to determine the technique exhibiting the best

predictive capabilities. Moreover, we make pairwise assessments of all the investigated

techniques with the technique that exhibits the best performance. This helps in

evaluating which pairs of techniques are statistically significantly different than that

of the best performing technique. This chapter is organized as follows: Section

5.2 describes be ensembles techniques used in this chapter, Section 5.3 presents the

research background. Section 5.4 presents the results and analysis of RQ's. Section

5.5 presents the discussion. The results of this chapter are published in [200, 201].

5.2 An Overview of Ensembles for Imbalanced Data

Problem

EIDP techniques are the hybridization of data resampling techniques and classical

ensembles. The data resampling techniques provide balanced data distribution to en-

sembles for the learning process. Three categories of EIDP techniques are investigated

in this chapter namely (i) Boosting-based ensembles (ii) Bagging-based ensembles

(ii) Hybrid ensembles. Figure 5.1 describes the ensemble techniques investigated in

each category.

5.2.1 Boosting-based Ensembles

This category includes the ensembles in which data resampling techniques discussed

in Chapter 4 are hybridized with AdaBoost. Boosting improves the performance of

weak learners by concentrating on hard instances that are tough to classify. A series

150

An Overview of Ensembles for Imbalanced Data Problem

Figure 5.1: Ensembles to Address Imbalanced Data Problem

of learners are produced and their collective output is produced using weighted voting

as the outcome of the model. In each step of boosting, the training data points are

re-weighted and carefully chosen based on the performance of earlier learners in the

training process. Throughout each of iteration, boosting tries to yield a new learner that

is better able to predict instances for which the preceding learner's performance was

poor. The Boosting-based techniques investigated in this chapter are SMOTEBoost,

MSMOTEBoost, RUSBoost, DataBoost, and EUSBoost. A brief description of these

techniques is presented below.

• SMOTEBoost

This technique combines SMOTE and AdaBoost as one single approach to

handle imbalanced data. In SMOTEBoost, SMOTE is used to generate synthetic

data points corresponding to minority class to improve the accuracy of the

prediction model over the minority classes, and boosting is used so that the

accuracy of the model over the entire training dataset also not sacrificed [202].

The aim of combining SMOTE with boosting is twofold, first minority class data

points are learned in a better way by the model, and secondly, the classifier is not

151

An Overview of Ensembles for Imbalanced Data Problem

only provided the minority class data points that were incorrectly classified in the

previous iteration but also oversampling with the help of SMOTE provides more

number of minority data points to the classifier. In this way, SMOTEBoost tends

to improve the accuracy of the model towards minority class i.e., to improve

the true positive rate of the model. The classic AdaBoost algorithm gives equal

weights to all incorrectly classified data points. If the dataset is imbalanced,

AdaBoost algorithm would select data points from the pool of data that primarily

belong to the majority class, then in the successive iteration of AdaBoost, the

selection of data points may still be from the skewed data. Although AdaBoost

decreases the bias in the final ensemble, in case of imbalanced data, it might

not hold and the successive iterations may still be biased towards majority

class. In SMOTEBoost, SMOTE is introduced in each iteration of boosting

that will empower each classifier to be able to select more of the minority class

data points and learn a wider and better decision boundary for the minority

class. Combining SMOTE in each iteration of AdaBoost, we are predominantly

improving the probability of selecting a greater number of minority class data

points that were dominated by the majority class due to imbalanced data. Also,

introducing SMOTE in AdaBoost rounds increases the diversity in the classifiers

of the ensemble learner, as SMOTE generates a different set of synthetic data

points in each AdaBoost round.

• RUSBoost

This technique combines random undersampling and AdaBoost as one technique

[203]. It performs just like SMOTEBoost, instead of SMOTE, RUS is applied

in each round of boosting that randomly removes the majority class instances.

As compare to SMOTEBoost, RUSBoost is a simple and faster ensemble to deal

with imbalanced data problem as in each round of boosting, a lesser number of

152

An Overview of Ensembles for Imbalanced Data Problem

instances are fed to the classifiers. Also, the main limitation of RUS, which is

the loss of data, is significantly overcome by merging it with boosting. While

certain data may be absent during a given round of boosting, it will probably

be included when training of models during other iterations. So, in this in

RUSBoost, RUS helps to balance the skewed data, while AdaBoost improves

the performance of the classifiers using the balanced data.

• MSMOTEBoost

This is a hybridization of MSMOTE and AdaBoost. To deal with the imbalanced

data, modified synthetic minority oversampling technique (MSMOTE) is used

to generate synthetic data points in each round of AdaBoost [204]. MSMOTE

is a modified version of SMOTE. Unlike SMOTE that creates synthetic data

points corresponding to each minority class data point, MSMOTE categorizes

the minority data points into three types, secure, border, and noisy. The secure,

noisy, and border data points are is determined as follows. Let X be a minority

class data point. If the label of X is the same as that of its k nearer neighbors,

X would secure. If the class label of X is completely different from that of its

k nearer neighbors, X would be noisy and if X is neither noisy nor secure, it is

considered as a border data point. During the creation of synthetic data points

from the minority class, MSMOTE ignores the noisy data points of the minority

class. The synthetic data points corresponding to secure minority data points

are created by selecting any of its k nearer neighbors, whereas, for border data

points, synthetic data points are created by selecting the only nearest neighbors.

The procedure for creating synthetic data points is the same as that of SMOTE

as discussed in Chapter 4.

• DataBoost

This technique is somewhat different than of the above discussed Boosting-based

153

An Overview of Ensembles for Imbalanced Data Problem

ensemble techniques. It associates data generation and boosting to enhance the

accuracy of both the minority and majority classes. The Databoost algorithm

works in three stages. In the first stage, all the instances in the training dataset

are allotted an identical weight. This dataset is then used for training the first

set of classifiers. In the second stage, the hard instances are identified which

are called seed instances. Corresponding to each of these seed instances, a

set of synthetic instances is created. In the next stage, the synthetic instances

generated in the second stage are combined with the original training data [205].

In this way, the class distribution and the total weights of both of the classes

are re-balanced. The algorithm repeats until classifier's error rate in the current

iteration is worse than a threshold value of 0.5.

• EUSBoost

This technique combines evolutionary undersampling with AdaBoost [206].

The main objective is to improve the accuracy of the base classifier while

maintaining diversity. The algorithm tends to obtain a useful subset of the

original training. To so do, it starts randomly undersampling multiple subsets

of the original training data set. The subsets are evolved until the presently

best-undersampled dataset cannot be improved further. The original training

dataset is denoted as T and it consists of N data points. The search space

associated with T of the EUS algorithm is established by using the subsets of T .

Afterward, the chromosomes characterize the subsets of T . This is done using a

binary representation. A chromosome comprises of genes (one for each data

point of T) with two possible states: 0 and 1. If the gene is 1, then its related

data point is contained within the subset of T characterized by the chromosome.

If it is 0, then this means that a data point is not included. Let ST denoted the

subset of T and that coded by a chromosome. The fitness function of ST in

154

An Overview of Ensembles for Imbalanced Data Problem

EUS is defined as follows:

fitness(ST) = α ∗ Classrate + (1− α) ∗ PR (5.1)

Here, Classrate denotes the classification rate which is defined as the percentage

of correctly classified data points from T using ST when kNN classification is

used. PR denotes the percentage of reduction of data points in T on account of

undersampling and it is given as:

PR = (
|T − ST |
|T |

) ∗ 100 (5.2)

In the equation of fitness function α = 0.5 is considered. After this, the

algorithm fed the best-improved dataset inside the loop of AdaBoost.

5.2.2 Bagging-based Ensembles

Bagging-based ensembles are the hybridization of Bagging and data resampling

techniques. The hybridization of data resampling techniques with Bagging is usually

easier as compare to their integration with boosting techniques as Bagging techniques

do not require any kind of weight updating. The imbalanced data is dealt with in

Bagging-based ensembles by creating bootstrap replicas. The bootstrap replicas are

then used as input to the classifiers in the ensemble. The techniques evaluated in

this category are UnderBagging, OverBagging, SMOTEBagging, MSMOTEBagging,

UnderOverBagging, and IIVotes.

• UnderBagging

UnderBagging combines random undersampling with Bagging to construct

a robust ensemble method [198]. A classifier in the ensemble is iteratively

155

An Overview of Ensembles for Imbalanced Data Problem

constructed using a subset of a balanced training dataset that is generated using

undersampling the majority class instances. Multiple classifiers are trained

using these balanced subsets of the dataset. After construction of the individual

classifiers, when an unseen instance is presented to the ensemble, the majority

voting on the predictions of the individual classifiers is done to output the class

label of the unseen instance.

• OverBagging

OverBagging combines random oversampling with Bagging to construct a

robust ensemble method [198]. A classifier in the ensemble is iteratively con-

structed using the subsets of balanced training dataset that are generated using

oversampling the minority class instances. Multiple classifiers are trained using

these balanced subsets of the dataset. After construction of the individual classi-

fiers, when an unseen instance is presented to the ensemble, the majority voting

on the predictions of the individual classifiers is done to output the class label

of the unseen instance.

• UnderBagging to OverBagging

This technique follows a different strategy than that of UnderBagging and

OverBagging [198]. This technique uses both undersampling and oversampling

to create diversity in the sampled data. In each iteration, a resampling rate is set

that defines the number of instances selected from each class.

• IIvotes

IIvote aggregates SPIDER technique with an adaptive ensemble of classifiers.

As ensembles can adapt to data points that are hard to learn in subsequent

iterations. Such difficult data points from the majority class could be particularly

significant when the training dataset is imbalanced data [207]. In IIvotes, the

156

An Overview of Ensembles for Imbalanced Data Problem

SPIDER technique is incorporated inside the ensemble framework to developed

a classification model to be more focused on minority class. IIvotes generate a

new training set by importance sampling so that the newly generated training set

will encompass nearly the same quantity of correctly and incorrectly classified

data points. In importance sampling, a data point is selected randomly with

all data points of equal probability of being chosen. Then this data point is

classified by ensemble constituting the classifiers that have not learned that

data point. If a data point is incorrectly classified then it is placed into the new

training set Ti. Otherwise, it is sampled into Ti with probability E(i)
1−E(i)

, where

E(i) denotes a generalization error. The sampling process is carried until n data

points are chosen. Each Ti is balanced using SPIDER. The SPIDER technique

is described in detail in Chapter 4.

• SMOTEBagging and MSMOTEBagging

SMOTEBagging combines SMOTE and Bagging to create ensembles to handle

imbalanced data. The available training dataset is divided into k subsets. In each

subset, synthetic instances are generated using SMOTE [198]. Each subset is

oversampled by creating synthetic instances into it according to the resampling

rate. The resampling rate defines the number of synthetic instances to be

created in that subset. MSMOTEBagging integrates MSMOTE technique with

Bagging. In MSMOTEBagging, the subset construct process same as used in

SMOTEBagging except for the minority class instances is generated by the

MSMOTE technique [198].

157

An Overview of Ensembles for Imbalanced Data Problem

5.2.3 Hybrid Ensembles

Hybrid ensembles carry double ensemble learning where the base classifiers are

ensembles rather than single classifiers. The hybrid ensembles investigated in

this chapter are EasyEnsemble and BalanceCascade.

• EasyEnsemble

Drummond and Holte [208] advocated that undersampling is an effective ap-

proach to deal with the imbalanced data problem. But, the disadvantage of

undersampling is that many valuable data points belonging to the majority class

are thrown away. EasyEnsemble tries to explore the majority class data points

that are overlooked by undersampling [209]. The working of the EasyEnsemble

technique is described as follows. Let us consider a training dataset T with

M minority class data points and N majority class data points. The undersam-

pling method randomly selects NT majority class data points from N where

|NT | < |N |. Generally, in undersampling, |NT | = |M | and for a highly imbal-

anced dataset, |NT | is far less than |N |. EasyEnsemble, sample multiple subsets

N1, N2, ..., NM from N. For each subset, Nj (1 ≤ j ≤M) a classifier Ci (i.e.,

AdaBoost) is trained using Nj and all of M . The outcomes of all AdaBoost

classifiers are then voted and the final output is returned.

• BalanceCascade

BalanceCascade trains multiple classifiers in a sequential manner. consider

a training dataset T with M minority class data points and N majority class

data points [209]. The undersampling method randomly selects NT majority

class data points from N where |NT | < |N |. BalanceCascade samples multiple

subsets N1, N2, ..., NM from N. For each subset, Nj (1 ≤ j ≤ M) the first

classifier Ci (i.e., AdaBoost) is trained using Nj and all of M . After Ci is

158

Research Background

trained, all the data points Di that are correctly classified by Ci are removed

from N . Thus, size of N keep on reducing after classifier Ci is trained. The

final classifier would the conjunction of all (Ci)i=1,2....T .

5.3 Research Background

This section gives an overview of independent and dependent variables, model devel-

opment, and evaluation procedure followed in this chapter.

5.3.1 Independent and Dependent Variables

Eighteen OO metrics are used as independent variables in this chapter. These metrics

consist of six metrics from C&K metrics suite (DIT, NOC, RFC, WMC, CBO, and

LCOM), five metrics from the QMOOD metrics suite (MOA, DAM, MFA, CAM, and

NPM), afferent and efferent coupling (Ca & Ce) metrics along with AMC, SLOC,

LCOM3, IC, and CBM metrics. Maintainability is the dependent variable. The

detailed explanation of the variables of this chapter may be referred from Chapter 2.

5.3.2 Empirical Data Collection and Preprocessing

The data is collected from eight Apache open-source systems described in Chapter

2. The same datasets were used in Chapter 4 for developing SMP models using ML

techniques. The data collection process is discussed in Chapter 2 in detail. After data

collection, pre-processing was performed to remove outliers from each dataset.

159

Results and Analysis

5.3.3 Prediction Model Development and Evaluation

Next, we developed SMP models using ten-fold cross-validation to predict software

maintainability. Considering the essence to deal with imbalanced datasets, prediction

models were developed using EIDP techniques. The detailed description of these

techniques is given in Section 5.2. Apart from developing models using EIDP tech-

niques, classic ensembles AdaBoost and Bagging are also investigated in this chapter.

G-Mean and Balance metrics are used to evaluate the predictive performance of the

developed models.

5.3.4 Statistical Analysis and Hypothesis Evaluation

The results of the chapter are statistically evaluated using two non-parametric tests (i.e.

Friedman test and Wilcoxon signed-rank test). RQ1 assesses the capabilities of classic

ensembles AdaBoost and Bagging for developing SMP models. Wilcoxon test is used

in RQ1 for determining the difference in the performance of AdaBoost and Bagging

from base learner C4.5. Furthermore, a comprehensive statistical investigation is

performed in RQ3 to determine the best ensemble technique in the category of

Bagging-based, Boosting-based, and Hybrid ensembles with the aid of the Friedman

test. The Wilcoxon signed-rank test is conducted in RQ3 to determine pairwise

differences between the capabilities of the best ensemble technique in each category

with all other techniques investigated in that category using G-Mean and Balance.

5.4 Results and Analysis

This section describes the answers to the RQ's of the chapter and discusses the obtained

results

160

Results and Analysis

5.4.1 Answer Specific to RQ1

We first developed SMP models using classic ensembles AdaBoost [104] and Bagging

[105]. The performance of constructed models is evaluated using G-Mean and Balance.

The performance of the developed model is considered good if G-Mean and Balance

are equal to greater than 50%. The reason behind choosing this threshold value of 50%

for G-Mean and Balance is as follows: for a class-imbalanced dataset, it is challenging

to develop a model with high Balance and G-Mean. A high Balance value means the

model is giving TP rate equal to 1 (correctly predicting all low maintainability classes)

and an FP rate equal to 0. However, for imbalanced SMP datasets, the model is unable

to effectively learn the characteristics of low and high maintainability class data points

appropriately. That is why a Balance threshold of 50% is taken for designating the

model accurate. Similarly, we consider the G-Mean threshold of 50% as accurate.

We also compare and analyze the performance of models developed using classic

ensembles with the base classifier C4.5. The performance of the developed models is

depicted in Table 5.1.

Table 5.1: Performance of SMP Models Developed using Classic Ensembles and Base
Classifier

Dataset
G-Mean Balance

C4.5 AdaBoost Bagging C4.5 AdaBoost Bagging
Betwixt 26.79 52.39 26.95 34.5 49.97 34.51
Bcel 46.46 52.45 52.36 44.97 48.93 48.92
Io 0.00 62.30 42.55 29.29 57.52 42.15
Ivy 42.01 37.07 26.68 41.91 39.33 34.34
Jcs 70.94 52.45 52.37 65.89 48.93 48.92
Lang 77.89 53.29 67.56 73.69 50.15 63.15
Log4j 56.69 57.49 52.56 52.79 54.24 49.44
Ode 39.44 45.04 39.52 40.45 44.12 40.45
Avg. 45.03 51.56 45.06 47.93 49.14 45.23

Avg. indicates average

161

Results and Analysis

As described in Table 5.1, that G-Mean values for models developed using the

AdaBoost ensemble is either less than 50% or slightly above 50% except for two

datasets: Apache Io and Apache Log4j. Similarily, G-Mean values for Bagging

ensemble have been reported either less than 50% or slightly above 50% on all

datasets except Apache Lang. Also, the Balance values of SMP models developed

using the AdaBoost ensemble are reported either less than 50% or slightly above

50% except for the Apache Lang dataset. In the same way, the Balance values for

SMP models developed using Bagging are less than 50% for all datasets except

for Apache Lang. Also, it evident from Table 5.1 that the mean G-Mean values

attained by AdaBoost and Bagging on all eight datasets are 51.56% and 45.06%,

respectively. Similarly, the mean Balance values on all datasets used in the chpater

were 49.14%, 45.23% for AdaBoost, and Bagging, respectively. We further compare

the performance of AdaBoost and Bagging with C4.5. The average performance of

SMP models developed using C4.5 on eight datasets under investigation in this chapter

was 45.03% and 47.93% concerning G-Mean and Balance respectively. Therefore, it

is evident from Table 5.1 that AdaBoost improves the performance of SMP models

over the C4.5 to a minimal extent but the predictive performance of SMP models built

with Bagging and C4.5 is approximately the same.

Table 5.2: Wilcoxon Test Results for Classic Ensembles and Base classifier

Technique pair Using G-Mean Using Balance
C4.5-AdaBoost 0.484 0.674
C4.5-Bagging 0.674 0.449

To further analyze, if there exists a significant difference in the performance of

SMP models developed using classic ensembles and base classifiers, we test the

following hypothesis.

• Null hypothesis (H0): There is a significant difference in the performance of

162

Results and Analysis

SMP models developed using a base classifier and classic ensembles: AdaBoost

and Bagging for imbalanced SMP datasets.

• Alternate Hypothesis (Ha): There is no significant difference in the perfor-

mance of SMP models developed using a base classifier and classic ensembles:

AdaBoost and Bagging for imbalanced SMP datasets.

To validate the above hypothesis, we do a pair-wise comparison on the performance

of the base classifier and individual ensembles used in the chapter using the Wilcoxon

test concerning G-Mean and Balance at a level of significance, α = 0.05. The results

of the Wilcoxon signed-rank test are given in Table 5.2. As shown in Table 5.2, for

both of the pairs of classic ensembles and base classifier, the p-values are greater than

0.05 which means of the Wilcoxon test are not significant. Therefore, we reject the

H0 which says that there is a substantial difference in the performance of SMP models

developed using a base classifier and classic ensembles. The alternate hypothesis

(Ha) is accepted and leads to the conclusion that the performance of SMP models

developed using classic ensembles does not improve statistically over the SMP models

developed using base classifiers for imbalanced datasets.

Analysis of RQ1

Ensemble techniques combine multiple classifiers to make a single consolidated

decision. The ensembles improve the performance for a classification task because

by combining multiple classifiers the error of a single classifier will be taken care

of by the other individual classifiers. However, on analyzing the results of RQ1, we

found that, for imbalanced datasets, classic ensembles (AdaBoost and Bagging) are

not competent techniques to develop SMP models i.e., the performance of AdaBoost

and Bagging does not improve statistically over their base learner, C4.5 classifier.

163

Results and Analysis

5.4.2 Answer Specific to RQ2

To answer this RQ, we developed SMP models using EIDP. The three types of

EIDP have investigated in this chapter are Bagging-based ensembles, Boosting-based

ensembles, and hybrid ensembles. Tables 5.3 and 5.4 show the results of SMP models

developed using Bagging-based ensembles with respect to G-Mean and Balance.

Table 5.5 shows the G-Mean and Balance results for SMP models developed using

the Boosting-based ensembles.

Table 5.3: G-Mean Results for Models Developed using Bagging-based Ensembles

Technique
Dataset

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
UnderBagging 72.62 66.46 79.28 71.95 72.62 81.48 70.84 69.89
OverBagging 67.35 52.02 53.26 48.37 67.62 78.19 64.49 51.27
SMOTEBagging 77.38 67.35 65.63 55.92 77.38 69.15 63.74 65.43
MSMOTEBagging 51.27 68.85 62.44 56.17 72.14 76.63 66.80 57.24
IIvotes 61.27 51.61 62.04 40.88 61.27 79.42 70.31 42.81
UnderOverBagging 74.37 64.85 59.69 58.52 74.37 81.48 70.14 62.25

Table 5.4: Balance Results for Models Developed using Bagging-based Ensembles

Technique
Dataset

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
UnderBagging 72.19 66.08 79.27 71.52 72.19 80.26 70.83 69.87
OverBagging 66.00 51.02 50.35 46.77 64.13 75.71 61.89 48.94
SMOTEBagging 76.94 66.00 63.31 54.71 76.94 65.51 60.61 63.5
MSMOTEBagging 48.79 66.90 57.54 53.8 68.26 73.38 63.84 53.86
IIvotes 56.72 49.73 57.49 41.74 56.72 77.8 68.23 42.82
UnderOverBagging 71.69 64.18 56.88 56.12 71.69 80.26 68.86 59.46

Table 5.5: G-Mean and Balance Results for Models Developed using Boosting-based
Ensembles

Technique
G-Mean

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
DataBoost 60.59 41.01 31.62 45.27 60.59 71.74 70.86 48.51

164

Results and Analysis

EUSBoost 75.03 68.76 80.54 62.11 60.59 68.96 60.66 69.42
SMOTEBoost 67.62 62.52 68.14 51.22 67.62 78.96 68.98 58.24
RUSBoost 75.03 66.26 71.01 51.12 75.03 81.01 73.98 69.42
MSMOTEBoosting 51.27 68.85 62.58 40.17 51.27 71.38 64.18 50.05

Technique
Balance

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
DataBoost 59.96 42.02 36.36 44.36 59.96 71.44 70.32 46.57
EUSBoost 73.99 66.84 80.54 61.67 59.96 65.45 57.42 68.75
SMOTEBoost 64.13 61.00 64.29 49.16 64.13 77.55 68.78 54.99
RUSBoost 73.99 66.17 69.55 50.75 73.99 79.97 73.24 68.75
MSMOTEBoosting 48.79 66.9 57.55 41.52 48.79 68.03 61.75 47.79

In Table 5.6, G-Mean and Balance results for SMP models developed using hybrid

ensembles are reported. On analyzing Table 5.3, we found that G-Mean values for

Bagging-based ensembles ranged from 40.88% to 85.65%. In 95.31% of the cases,

G-Mean values are more than 50%. The G-Mean values of the models developed

using the UnderBagging technique are ranged from 66.46% to 81.48%.

Table 5.6: G-Mean and Balance Results for Models Developed using Hybrid Ensem-
bles

Technique
G-Mean

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
BalanceCascade 71.87 60.33 84.09 70.30 71.87 71.98 61.30 65.09
EasyEnsemble 67.23 60.33 84.09 74.22 67.23 70.27 67.34 64.79

Technique
Balance

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
BalanceCascade 71.87 60.17 83.28 70.10 71.87 71.65 57.61 65.09
EasyEnsemble 67.22 60.17 83.28 73.50 67.22 70.14 67.03 64.79

For OverBagging the range of G-Mean values was 48.37%-78.19% over all the

datasets. The G-Mean results are in the range of 51.27% to 76.63% and 40.88% to

79.42% for SMOTEBagging and MSMOTEBagging techniques respectively. The

SMP models developed using the UnderOverBagging technique gave G-Mean results

in the range of 58.52%-81.48%. On evaluating the values of G-Mean on individual

165

Results and Analysis

Figure 5.2: Average G-Mean of different Ensemble Techniques

166

Results and Analysis

Figure 5.3: Average Balance of different Ensemble Techniques

167

Results and Analysis

datasets, it was noticed that all Bagging-based ensembles except SMOTEBagging gave

the best G-Mean results on the Apache Lang dataset. The best G-Mean performance of

the SMOTEBagging technique was observed on the Apache Jcs dataset. The Balance

results of the SMP models developed using all Bagging-based ensembles ranged from

41.74% to 85.14%. In 90.62% of the cases, the Balance results are greater than 50%.

All Bagging techniques except SMOTEBagging obtained the best Balance results on

the Apache Lang dataset. The underBagging technique obtained the best Balance

result on the Apache IO dataset. The performance of the SMOTEBagging technique

was best on the Apache Jcs dataset in terms of Balance.

Similarly, on analyzing the performance of the Boosting-based ensembles, we

found that G-Mean results (Table 5.5) of these techniques ranged from 31.62% to

81.01% over all the datasets. In 88% of the cases, Balance results were greater than

50%. The Balance results of DataBoost techniques were in the range of 31.62% to

71.74%. The EUSBoost technique obtained Balance values ranging from 60.59% to

80.54%. The Balance results for SMOTEBoost and MSMOTEBoosting techniques

were in the range of 51.22%-78.96% and 40.17%-71.38%, respectively. The perfor-

mance of RUSBoost was in the range of 51.12%-81.01% in terms of Balance. Again,

it was observed that all Boosting-based ensembles except RUSBoost performed best

on the Apache Lang dataset in terms of G-Mean.

On analyzing the performance of Boosting-based ensembles in terms of Balance

(Table 5.5), we found that the performance of SMP models on all datasets under

investigation in the chapter ranged from 36.36% to 80.54% and to further analyze;

it was observed that in 77.50% of the cases Balance values were greater than 50%.

On further analysis, we found that the performance of Boosting-based ensembles:

DataBoost, SMOTEBoost, MSMOTEBoost, and RUSBoost was best on the Apache

Lang dataset. The EUSBoost performance in terms of Balance was best on the

Apache IO dataset. There were two hybrid ensembles, namely, BalanceCascade and

168

Results and Analysis

EasyEnsemble analyzed in this chapter. The performance of SMP models developed

using BalanceCascade and EasyEnsembles was in the range of 60.33%-84.09% and

57.61%-83.28% for G-Mean and Balance, respectively (Table 5.6).

Figures 5.2 and 5.3 show the comparison of the performance of the SMP models

developed using Bagging-based ensembles, Boosting-based and hybrid ensembles

with the classic ensembles in terms of average G-Mean and Balance. According to

Figure 5.2, the average G-Mean values of the SMP models developed using AdaBoost

and boosting were 45.06% and 51.06%, respectively. The average G-Mean values

of various Bagging-based ensembles ranged from 58.70% to 73.14%. Except for

IIvotes, the average G-Mean of all Bagging-based ensembles was greater than 60%. It

is quite clear from Figure 5.2 that the average G-Mean results of models developed

using various Boosting-based ensembles are very good. The average G-Mean values

of various Boosting-based ensembles ranged from 53.77% to 70.36%. Also, it can

be seen from Figure 5.2 that the hybrid ensembles also gave an exceptionally good

performance. The average G-Mean performance of both of the hybrid ensembles is

nearly 70%. It can be seen from Figure 5.3 that classic ensembles gave an average

Balance value of merely 49.14% and 45.23%, but the EIDP gave very good results.

It is quite clear from Figure 5.3 that the majority of the Bagging-based ensembles

and Boosting-based ensembles gave average Balance values greater than 60%. Also,

average Balance results for both of the hybrid ensembles used in the chapter are quite

near to 70%.

Analysis of RQ2

On analyzing the performance of various EIDP techniques according to G-Mean

and Balance values, it is evident that the SMP models built using all of such techniques

are better than those developed by the classic ensembles. This is because the EIDP

incorporates the advantages of both the data resampling and constituent ensembles to

perform effectively for imbalanced data.

169

Results and Analysis

5.4.3 Answer Specific to RQ3

To figure out whether the different EIDP techniques significantly improve the per-

formance of SMP models built using an imbalanced dataset, we used the Friedman

test. The smaller the rank acquired by the given technique, the better that technique

is considered. We find the best techniques among each category of EIDP techniques

and examine whether those techniques significantly improve the performance of SMP

models over other techniques in that category.

5.4.3.1 Statistical Analysis for Different Bagging-based Ensembles

To analyze the best techniques among the Bagging-based ensembles, we evaluate the

following hypothesis by conducting the Friedman test. We compare the 10 techniques

(8 Bagging-based ensembles and 2 classic ensembles) for performance metrics: G-

Mean and Balance.

• Null Hypothesis (H01): SMP models built using Bagging-based ensembles:

UnderBagging, OverBagging, SMOTEBagging, MSMOTEBagging, IIvotes,

UnderOverBagging, and classic ensembles: AdaBoost and Bagging do not show

a significant difference in terms of G-Mean.

• Alternate Hypothesis (Ha1): SMP models built using Bagging-based ensembles

techniques: UnderBagging, OverBagging, SMOTEBagging, MSMOTEBag-

ging, IIvotes, UnderOverBagging, and classic ensembles techniques: AdaBoost

and Bagging show a significant difference when the performance of the model

is analyzed using G-Mean.

• Null Hypothesis (H02): SMP models built using Bagging-based ensembles tech-

niques: UnderBagging, OverBagging, SMOTEBagging, MSMOTEBagging,

IIvotes, UnderOverBagging, and classic ensembles: AdaBoost and Bagging

170

Results and Analysis

techniques do not show a significant difference when the performance of the

model is analyzed using Balance.

• Alternate Hypothesis (Ha2): SMP models built using Bagging-based ensembles

techniques: UnderBagging, OverBagging, SMOTEBagging, MSMOTEBag-

ging, IIvotes, UnderOverBagging, and classic ensembles techniques: AdaBoost

and Bagging show a significant difference when the performance of the model

is analyzed using Balance.

Table 5.7: Friedman Test Results for Bagging-based Ensembles

Technique Mean Rank using G-Mean Mean Rank using Balance
UnderBagging 1.81 1.44
UnderOverBagging 2.94 3.06
SMOTEBagging 3.00 3.00
MSMOTEBagging 3.88 4.00
OverBagging 5.25 5.00
IIVotes 5.25 5.13
AdaBoost 6.25 6.50
Bagging 7.63 7.88

The UnderBagging technique got the best rank followed by UnderOverBagging

techniques using G-Mean. The p-value obtained after the Friedman test was 0.00.

As the results of the test are significant at α = 0.05, the null hypothesis H01 is

rejected. This implies that the different techniques behave differently when SMP

models developed using these techniques are analyzed using G-Mean. Table 5.7 also

shows the mean ranks obtained by different Bagging-based ensembles and classic

ensembles after the Freidman test when SMP models are evaluated using Balance.

According to Table 5.7, the best rank is obtained by the UnderBagging technique

followed by UnderOverBagging techniques for Balance. The worst ranks are obtained

by classic ensembles. The p-value obtained was 0.00, which indicates that the results

of the Friedman test are significant and thus the null hypothesis H02 is also rejected.

171

Results and Analysis

This implies that the techniques examined using the Friedman test behave differently

when the SMP models developed using these techniques are evaluated based on

Balance. The Friedman test gave significant results, stating UnderBagging as the

best technique, and we further carry out post-hoc analysis using the Wilcoxon test to

evaluate the pairwise differences amongst the performance of the different techniques

with respect G-Mean and Balance. We would evaluate the following hypothesis using

the Wilcoxon test at α = 0.05.

• Null Hypothesis (H03): The UnderBagging technique and all other Bagging-

based ensembles and classic ensembles do not show a significant difference in

the performance when SMP models are analyzed using G-Mean.

• Alternate Hypothesis (Ha3): The UnderBagging technique and all other Bagging-

based ensembles and classic ensembles show a significant difference in the

performance when SMP models are analyzed using G-Mean.

• Null Hypothesis (H04): The UnderBagging technique and all other Bagging-

based ensembles and classic ensembles do not show a significant difference in

the performance when SMP models are analyzed using Balance.

• Alternate Hypothesis (Ha4): The UnderBagging technique and all other Bagging-

based ensembles and classic ensembles show a significant difference in the

performance when SMP models are analyzed using Balance.

Table 5.8 reports the pair-wise comparison with the help of the Wilcoxon test be-

tween the performance of the UnderBagging technique with all other Bagging-based

ensembles and classic ensembles based on G-Mean and Balance.

172

Results and Analysis

Table 5.8: Wilcoxon Signed Rank Test Results for Bagging-based Ensembles

Technique Pair Using G-Mean Using Balance
UnderBagging Vs. OverBagging Sig+ Sig+
UnderBagging Vs. SMOTEBagging Not Sig+ Not Sig+
UnderBagging Vs. MSMOTEBagging Sig+ Sig+
UnderBagging Vs. IIvotes Sig+ Sig+
UnderBagging Vs. UnderOverBagging Not Sig+ Not Sig+
UnderBagging Vs. AdaBoost Sig+ Sig+
UnderBagging Vs. Bagging Sig+ Sig+

As shown in Table 5.8, the UnderBagging technique significantly outperforms

(p−value < 0.05) all other Bagging-based ensembles and classic ensembles respect to

performance measures G-Mean and Balance over all the datasets except for three cases.

These three cases are SMOTEBagging and UnderOverBagging. Therefore, except

for SMOTEBagging, and UnderOverBagging, for all other techniques, we accept

the alternate hypothesis: Ha3 and Ha4 and state that the UnderBagging technique

significantly outperformed all other Bagging-based ensembles techniques except for

SMOTEBagging, and UnderOverBagging.

5.4.3.2 Statistical Analysis for Different Bootsing-based Ensembles

We evaluate the following hypothesis by conducting the Friedman test. The objective

of the Friedman test is to find the best techniques among Boosting-based ensembles.

We compare the seven techniques (five Boosting-based ensembles and two classic

ensembles) with respect to G-Mean and Balance.

• Null Hypothesis (H05): SMP models developed using Boosting-based en-

sembles techniques RUSBoost, EUSBoost, SMOTEBoost, MSMOTEBoost,

DataBoost, and classic ensembles techniques AdaBoost and Bagging do not

show a significant difference when G-Mean is used to evaluate the performance

of the models.

173

Results and Analysis

• Alternate Hypothesis (Ha5): SMP models developed using Boosting-based

ensembles RUSBoost, EUSBoost, SMOTEBoost, MSMOTEBoost, DataBoost,

and classic ensembles techniques AdaBoost and Bagging show a significant

difference when G-Mean is used to evaluate the performance of the models.

• Null Hypothesis (H06): SMP models developed using Boosting-based en-

sembles techniques: RUSBoost, EUSBoost, SMOTEBoost, MSMOTEBoost,

DataBoost, and classic ensembles AdaBoost and Bagging techniques do not

show a significant difference when Balance is used to evaluate the performance

of the models.

• Alternate Hypothesis (Ha6): SMP models developed using Boosting-based

ensembles techniques: RUSBoost, EUSBoost, SMOTEBoost, MSMOTEBoost,

DataBoost, and classic ensembles techniques: AdaBoost and Bagging show a

significant difference Balance is used to evaluate the performance of the models.

The above hypothesis is evaluated by the Friedman test at α = 0.05. The Friedman

test is conducted by taking the G-Mean and Balance results achieved by all the

Boosting-based ensembles techniques and classic ensembles techniques on all datasets

in this chapter. Table 5.9 reports the mean rank obtained by various techniques after

applying the Friedman test on G-Mean and Balance.

Table 5.9: Friedman Test results for Boosting-based Ensembles

Technique Mean Rank using G-Mean Mean Rank using Balance
RUSBoost 1.75 1.63
EUSBoost 2.56 2.56
SMOTEBoost 2.75 2.88
MSMOTEBoost 4.38 4.38
DataBoost 4.44 4.44
AdaBoost 5.63 5.63
Bagging 6.50 6.50

174

Results and Analysis

As reported in Table 5.9 that the best rank was secured by RUSBoost followed

by EUSBoost when the performance of SMP models is evaluated by Balance and

G-Mean. In both of the cases, the p-value obtained after the Friedman test was 0.00.

As the results of the test are significant at α = 0.05, the null hypothesis H05 and

H06 are rejected. The rejection of H05 and H06 leads to the conclusion that different

techniques behaved differently when SMP models developed using these techniques

are evaluated by Balance and G-Mean. As the results of the Friedman test result are

significant, stating RUSBoost as the best technique, we further carry out Wilcoxon

signed-rank test as the post-hoc analysis to evaluate the pairwise differences amongst

the performance of the different Boosting-based ensembles and classic ensembles.

The following hypothesis are evaluated for this purpose.

• Null Hypothesis (H07): There is no significant difference amongst the perfor-

mance of the RUSBoost technique, all other Boosting-based ensembles and

classic ensembles when SMP models are evaluated using G-Mean.

• Alternate Hypothesis (Ha7): There is a significant difference amongst the

performance of the RUSBoost technique, all other Boosting-based ensembles

and classic ensembles when SMP models are evaluated using G-Mean.

• Null Hypothesis (H08): There is no significant difference in the performance

of the RUSBoost technique, all other Boosting-based ensembles and classic

ensembles when SMP models are evaluated using Balance.

• Alternate Hypothesis (Ha8): There is a significant difference amongst the

performance of the RUSBoost technique, all other Boosting-based ensembles

and classic ensembles when SMP models are evaluated using G-Mean.

Table 5.10 reports the pair-wise comparison with the help of the Wilcoxon signed-

rank test between the performance of the RUSBoost technique with all other Boosting-

175

Results and Analysis

based ensembles and classic ensembles with respect to performance measures G-Mean

and Balance.

Table 5.10: Wilcoxon Signed Rank Test Results for Boosting-based Ensembles

Technique Pair Using G-Mean Using Balance
RUSBoost Vs. EUSBoost Not Sig+ Not Sig+
RUSBoost Vs. SMOTEBoost Sig+ Sig+
RUSBoost Vs. MSMOTEBoost Sig+ Sig+
RUSBoost Vs. DataBoost Sig+ Sig+
RUSBoost Vs. AdaBoost Sig+ Sig+
RUSBoost Vs. Bagging Sig+ Sig+

As shown in Table 5.10, the RUSBoost technique significantly outperforms (p−

value < 0.05) all other Boosting-based ensembles and classic ensembles respect to

performance measures G-Mean and Balance over all the datasets except for EUSBoost.

Therefore, except for EUSBoost, for all other techniques, we accept the alternate

hypothesis Ha7 and Ha8. We report that the RUSBoost technique significantly

outperformed all other Boosting-based ensembles and classic ensembles.

5.4.3.3 Statistical Analysis of Hybrid Ensembles

To evaluate the best techniques among the hybrid ensembles, we would evaluate the

following hypothesis with the help of the Friedman test. Here, we compare four

techniques (two hybrid ensembles and two classic ensemble techniques).

• Null Hypothesis (H09): SMP models built using hybrid ensembles BalanceCas-

cade, EasyEnsemble, and classic ensembles techniques: AdaBoost and Bagging

do not show a significant difference when the performance of the model is

analyzed using G-Mean.

• Alternate Hypothesis (Ha9): SMP models built using hybrid ensembles Bal-

anceCascade, EasyEnsemble, and classic ensembles techniques AdaBoost and

176

Results and Analysis

Bagging show a significant difference when the performance of the model is

analyzed using G-Mean.

• Null Hypothesis (H010): SMP models built using hybrid ensembles BalanceCas-

cade, EasyEnsemble, and classic ensembles techniques AdaBoost and Bagging

do not show a significant difference when the performance of the model is

analyzed using Balance.

• Alternate Hypothesis (Ha10): SMP models built using hybrid ensembles tech-

niques BalanceCascade, EasyEnsemble, and classic ensembles techniques Ad-

aBoost and Bagging show a significant difference when the performance of the

model is analyzed using Balance.

We evaluated the above hypothesis by applying the Friedman test at α = 0.05.

Table 5.11 reports the mean rank obtained by hybrid ensembles and classic ensembles

after the Friedman test according to G-Mean and Balance. Rank one was obtained

by the BalanceCascade technique followed by the EasyEnsemble technique both for

G-Mean and Balance. The test statistic obtained after the Friedman test was 0.00.

Table 5.11: Friedman Test Results for Hybrid Ensembles

Technique Mean Rank using G-

Mean

Mean Rank using Bal-

ance
BalanceCascade 1.38 1.38
EasyEnsemble 1.63 1.63
AdaBoost 3.13 3.13
Bagging 3.88 3.88

As the results of the test are significant at α = 0.05, the null hypothesis, H09, and

H010 are rejected which means that different techniques behave differently when SMP

models developed using these techniques are analyzed using G-Mean and Balance.

As the results of the Friedman test result are significant, BalanceCascade has emerged

177

Results and Analysis

as the best technique, we further carry out post-hoc analysis using the Wilcoxon

signed-rank test to evaluate the pairwise differences amongst the performance of the

different techniques with respect to the performance measures G-Mean and Balance.

We would evaluate the following hypothesis using the Wilcoxon signed-rank test at a

level of significance, α = 0.05.

• Null Hypothesis (H011): There is no significant difference in the performance of

BalanceCascade and EasyEnsemble and classic ensembles when SMP models

are evaluated using G-Mean.

• Alternate Hypothesis (Ha11): There is a significant difference amongst the

performance of BalanceCascade and EasyEnsemble and classic ensembles

when SMP models are evaluated using G-Mean.

• Null Hypothesis (H012): There is no significant difference in the performance of

BalanceCascade and EasyEnsemble and classic ensembles when SMP models

are evaluated using Balance.

• Alternate Hypothesis (Ha12): There is a significant difference amongst the

performance of BalanceCascade and EasyEnsemble and classic ensembles

when SMP models are evaluated using Balance.

Table 5.12 reports the pair-wise comparison with the help of Wilcoxon signed-rank

test between the performance of BalanceCascade technique with EasyEnsemble and

classic ensembles with respect to performance measures G-Mean and Balance. As

per Table 5.12, no significant difference is noted in the predictive performance of

hybrid ensembles, BalanceCascade and EasyEnsemble (p−value < 0.05) both for G-

Mean and Balance-null hypothesis H011 and H012 are accepted) but BalanceCascade

techniques are significantly better than that of both of the classic ensembles.

178

Discussion

Table 5.12: Wilcoxon Signed Rank Test Results for Hybrid Ensembles

Technique Pair Using G-Mean Using Balance
BalanceCascade Vs. EasyEnsemble Not Sig+ Not Sig+
BalanceCascade Vs. AdaBoost Sig+ Sig+
BalanceCascade Vs. Bagging Sig+ Sig+

Analysis of RQ3

On statistically examining the three categories of EIDP techniques, we found

that for imbalanced data, EIDP techniques are better in terms of their predictive

performance as compared to classic ensembles. It is discovered that UnderBagging

techniques performed best in the category of Bagging-based ensembles and RUSBoost

techniques performed best in the Boosting-based ensembles. This is the positive

synergy between the random undersampling and ensembles that have contributed

toward the excellent performance of RUSBoost and UnderBagging. The performance

of both hybrid ensembles is almost the same. Further, in the category of Bagging-based

ensembles, the performance of SMOTEBagging is comparable with the UnderBagging

technique. In the group of Boosting-based ensembles, the performance of EUSBoost

is comparable to the RUSBoost technique.

5.5 Discussion

In this chapter we evaluated whether the use of ensemble methodology aggregated

with data resampling i.e., EIDP techniques obtain effective results for predicting low

maintainability classes effectively. The results indicate improved performance of the

EDIP over the classic ensemble learners. The average G-Mean of AdaBoost and

Bagging was observed to be 51.56 and 45.06 respectively. However, the average

G-Mean performance of Bagging-based EDIP techniques were observed in the range

of 60.32-73.14.

179

Discussion

Similarly, the performance of Bagging-based EDIP techniques was in the range

of 60.80-72.77 in terms of average Balance whereas the classis ensemble techniques

AdaBoost and Bagging gave average Balance of 49.14 and 45.23 respectively. The

Boosting-based EIDP techniques gave average G-Mean performance of SMP models

in the range of 53.77 to 70.36 and average Balance in the range of 53.77-70.36. Both

of hybrid EDIP techniques used in this chapter (EasyEnsemble and BalanceCascade)

improved the performance of SMP models in terms of G-Mean and Balance. Both of

these hybrid EDIP techniques gave average G-Mean and Balance of nearly 70.00.

The improvement in the results was statistically evaluated using Friedman test and

was found to be significant. The reason for favourable results of the EDIP techniques

was the diversity introduced due to constituent data resampling techniques. Their

diversity would result in an improved SMP models by predicting higher number of

correct low maintainability classes. The Wilcoxon test results depicted an improve-

ment in G-Mean and Balance performance measures using EDIP techniques over

the classic ensemble techniques for developing SMP models from the imbalanced

datasets.

180

Chapter 6

Empirical Evaluation of

Search-Based Techniques for

Software Maintainability Prediction

with Imbalanced Data

6.1 Introduction

Various prediction models have been developed in the past literature to forecast the

maintainability in the earlier phases of software development by using the historical

datasets and different ML techniques [13, 13, 20, 56, 57]. From the last few years,

in addition to ML techniques, SB techniques are gaining popularity in predictive

modelling. In software engineering domain SB techniques have been applied to

develop effective prediction models to predict the defective and change-prone classes

[17, 210]. These techniques aid the developers and project managers in determining

181

Introduction

optimal solutions for constructing effective prediction models. SB techniques search

the entire search solution space and give an optimal or nearly optimal solution for the

problem in hand. The prediction models developed using SB techniques have delivered

better performance than that of ML techniques for various prediction problems. In

SB techniques, the search process is directed by a fitness function that establishes the

suitability of a solution [211].

Harman and Jones [212] and Harman [213] encouraged the application of SB tech-

niques in the software engineering predictive modeling domain as these techniques

are effective in handling constraints and conflicts. Furthermore, these techniques are

also effective in dealing with noisy, somewhat inaccurate, and inadequate datasets.

According to Harman and Jones [212] robustness and simple problem-solving ap-

proach are other prime advantages of the SB technique. These techniques conduct

the global search competently by avoiding getting stuck in local optima. The study

by Harman and Clark [214] has advocated that the evaluation metrics such as the

accuracy, specificity, sensitivity can be used as fitness functions by SB techniques

and henceforth can be used to develop prediction models for software. Therefore,

keeping in mind the recently acknowledged association amongst the SB techniques

and predictive modeling, this chapter evaluates the effectiveness of SB techniques for

developing prediction models for software maintainability.

Also, according to systematic literature review conducted by Malhotra et al. [215],

SB techniques exhibited effective results for developing predictive models in software

engineering domain, however there are very few studies that have evaluated these

techniques for SMP. Therefore, more empirical studies are required, which evaluate

and compare the effectiveness of SB techniques for SMP. In this chapter, we compare

the performance of SB techniques with ML techniques. The performance of fourteen

SB techniques (BIOHEL, CHC, CPSO, GGA, GA-ADI, GA-Int, IGA, LWPSO, PBIL,

MPLCS, UCS, XCS, SGA, SSMA) and ML techniques (C4.5, AdaBoost, Bagging,

182

Introduction

C4.5, PART, RIPPER, SLIPPER, BNGE, EACH, RISE, KNN, LR, KSTAR, PUBLIC,

CHI-RW) is appraised on eight open-source datasets used in the previous chapter for

developing models. The imbalanced datasets before the application of the SB and

ML are balanced by applying same data resampling techniques. To deal with the

non-deterministic nature nature of SB techniques and provide unbiased predictions, we

carried out several executions of SB techniques. In this chapter, we used performance

measures G-Mean and Balance to assess the performance of SMP models. Also, the

performance the models is statistically evaluated with the help of Friedman and the

Wilcoxon signed-rank test. The following research questions are answered in this

chapter.

• RQ1: What is the comparative performance of SMP models developed with SB

and ML techniques with imbalanced data?

• RQ2: Does the performance of maintainability prediction models developed

using SB techniques improve after employing data resampling methods and to

what extent the performance of the models improves?

• RQ3: Which data resampling method best improves the performance of the

SMP models developed from SB and ML techniques?

• RQ4: What is the comparative performance of ML and SB techniques after data

resampling for developing SMP models?

This chapter is organized as follows: Section 6.2 states the experimental design

and framework for conducting the empirical experiment. Section 6.3 states the results

and analysis of the chapter. Finally, Section 6.4 states the discussion of the results.

The results of this chapter are published in [216].

183

Elements of Experimental Design

6.2 Elements of Experimental Design

This section discusses the various experimental design elements. The experiment eval-

uates the performance of SB techniques for developing SMP models. The performance

of models developed by SB techniques is also compared with the models developed

using ML techniques. Before developing the models using SB and ML techniques,

the imbalanced datasets are balanced with the help data resampling techniques used in

Chapter 4. This section explains the datasets and variables, and performance measures

which are used to validate the experimental results.

6.2.1 Dependent and Independent Variables

In this chapter independent and dependent variables used are the same as that used

in Chapter 4 and Chapter 5. However, to incorporate the correlation of independent

variables, CFS is applied to select the best predictors out of independent variables

in the datasets. CFS is described in Chapter 2. This chapter focuses on predicting

whether the maintainability of a class is low or high i.e., maintainability is a binary

dependent variable in this chapter.

6.2.2 Datasets

In this chapter, the same datasets have been used, which were used in Chapter 4 and

Chapter 5 (i.e., Bcel, Betwixt, Io, Ivy, Jcs, lang, Log4j, Ode).

6.2.3 Data Resampling Techniques

The data resampling techniques investigated in Chapter 4 are considered in this chapter

for balancing the datasets. These techniques are SMOTE, Adasyn, SafeSMOTE,

184

Elements of Experimental Design

BSMOTE, SMOTE-ENN, SMOTE-TL, SPIDER, SPIDER II, ROS, RUS, NCL, and

CNN.

6.2.4 Model Development and Evaluation

Model training and validation are two imperative processes in developing a predic-

tion model. The training process includes a classification technique (SB or ML)

to recognize classification rules which can successfully differentiate between low

maintainability and high maintainability classes. The set of these rules formulate a

prediction model. The validation process tests these rules to predict low maintainabil-

ity and high maintainability classes. Training of models in this chapter has been done

using fourteen SB techniques and fourteen ML techniques. The fitness functions and

parameters used for each of these techniques are described in Chapter 2. Ten-fold

cross-validation is employed as a validation method of each of the investigated classi-

fication techniques. The performance of the models is assessed using G-Mean and

Balance. According to Ali et al. [217], it is essential to perform multiple iterations

to effectively handle the stochastic nature of SB techniques. Hence, in this chapter,

we developed SMP models using 10 runs of SB techniques and evaluated the median

values of the performance measures attained over 10 runs. A similar practice has been

followed by many researchers in the literature of search-based software engineering

[210, 213, 218]. Also, the developed models are statistically evaluated using the

Friedman test and Wilcoxon signed-rank test. For experimental simulation, the KEEL

tool has been used. The default parameter settings of the KEEL tool are used for

each technique. The parameter of each technique is stated in Chapter 2. According to

Arcuri and Fraser [219], the use of default parameter settings should be used as the

parameter tuning is an expensive procedure. Arcuri and Fraser [219] also advocated

that parameter tuning may always not produce significant improvement in results in

185

Results and Analysis

all models. Therefore, we used the default parameter setting of each of the SB and

ML techniques for developing prediction models.

6.3 Results and Analysis

This section describes the results of the chapter.

6.3.1 CFS Results

The results on each dataset after application of the CFS method are shown in Table

6.1. The WMC metric was selected in five datasets. In six out of eight datasets SLOC

metric was selected for developing SMP models. The LCOM and CAM metrics were

selected by five datasets. The RFC metric was selected by Betwixt and Ode datasets.

The NOC and DIT metrics were not selected for any of the datasets that show less

use of the inheritance metrics (NOC and DIT) while developing models for predicting

software maintainability. As the selected metrics are dependent on characteristics of

datasets and change statistics due to which the features selected with CFS are different

for each dataset.

6.3.2 Results Specific to RQ1

To answer this RQ, we developed SMP models by using the imbalanced datasets. The

ML and SB techniques described were used to create the models by providing the

datasets using ten-fold cross-validation. The performance of developed models is

assessed using G-Mean and Balance metrics (shown in Table 6.2 and Table 6.3).

In Table 6.2 and Table 6.3, the first fourteen rows show the G-Mean results of

SMP models developed using SB techniques and the next fourteen rows depict the

performance of models developed using the ML technique. For SB techniques, we

186

Results and Analysis

developed models by running each technique ten times to take care of the scholastic

nature of these techniques and reported the median values for the performance metrics

G-Mean and Balance.

For each of 14 ML techniques on 8 datasets, 14 × 8 =112 models were developed.

For each of 14 SB techniques on 8 datasets by running each SB technique 10 times,

14 × 8 × 10 = 1120 models were developed. Thus, in this experiment, we assessed

the performance of 1232 (112+1120) SMP models. On analyzing the G-Mean results

(Table 6.2) it was observed that G-Mean values are less than 50 in 42.85% of the cases

for the Bcel dataset, 85.71% of the cases for Betwixt dataset, 53.57% of the cases

for the Io dataset, 92.85% of the cases for Ivy dataset, 17.85% of the cases for Jcs

dataset 7.14% of the cases for Lang dataset, 57.14% of the cases for Log4j dataset and

85.71% of the cases of Ode dataset. Similarly, the performance analysis on Balance

results (Table 6.3) it was discovered that Balance values were less than 50 in 50% of

the cases for the Bcel dataset, 89.28% of the cases for the Betwixt dataset, 53.57% of

the cases for Io dataset, 92.85% of the cases for Ivy dataset, 25% of the cases for Jcs

dataset 10.72% of the cases for Lang dataset, 51.14% of the cases for Log4j dataset

and 100% of the cases of Ode dataset. The median of G-Mean and Balance of the

SMP models developed on imbalanced datasets are reported in Figure 6.1 and Figure

6.2.

As shown in Figure 6.1 median G-Mean values for all datasets except Jcs and

Lang are very low for models developed with both SB and ML techniques. Except

for Bcel, Jcs, and Lang datasets, for remaining datasets used in this chapter median

G-Mean values were low. A similar trend prevails for median Balance values in case

of imbalanced datasets. For most of the datasets, the median Balance was just close to

50 for models developed using SB techniques, and neither of SB and ML techniques

performed well in terms of Balance measure when the datasets are imbalanced (Figure

6.2). Therefore, it can be seen that the performance of SMP models developed from

187

Results and Analysis

Figure 6.1: Median G-Mean values of SMP Models Developed For Imbalanced
Datasets

Figure 6.2: Median Balance values of SMP Models Developed For Imbalanced
Datasets

188

Results and Analysis

the imbalanced dataset is very poor. The reason for the poor performance is the

fact that the datasets have very few instances of the low maintainability classes due

to which the models have not competently been able to learn the instances of low

maintainability classes and resulted in very low true positive rate.

Table 6.1: CFS Results

Dataset Selected Features
Bcel WMC, CBO
Betwixt WMC, CBO, RFC, LCOM, SLOC, CAM
IO NPM, LCOM3
Ivy WMC, NPM, SLOC, CAM
Jcs WMC, LCOM3, SLOC, CAM
Lang NPM LCOM3, SLOC
Log4j NPM LCOM3, SLOC, DAM, CAM
Ode WMC, CBO, RFC, LCOM, SLOC, CAM, MOA, Ca, Ce

Table 6.2: G-Mean Results of SMP Models on Imbalanced Datasets

Technique
Dataset

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
BIOHEL 61.67 35.74 46.54 40.5 67.11 76.42 58.67 44.25
CHC 52.29 0 31.62 18.87 63.1 79.07 21.61 37.37
CPSO 70.69 52.75 73.11 44.36 57.92 79.31 53.21 39.95
GGA 46.84 0 40.74 18.79 77.22 79.29 45.78 41.66
GA-Int 66.14 0 54.66 26.69 74.91 67.94 58.68 29.58
GA-ADI 46.84 26.78 0 37.41 65.28 75.37 54.94 37.42
IGA 46.69 40.7 43.96 31.76 68.54 60.26 44.67 48.51
LWPSO 67.54 56.37 77.08 31.91 40.69 77.63 44.67 51.85
MPLCS 57.18 33.03 44.53 32.68 69.86 77.9 57.18 32.41
PBIL 57.09 0 31.62 18.84 79.95 79.51 40.54 37.42
SGA 61.67 18.93 31.62 33.09 63.86 79.29 44.48 34.92
SSMA 57.09 18.93 31.49 26.98 52.31 65.27 54.55 29.79
UCS 40.76 19.11 54.66 32.49 52.48 65.45 56.69 41.63
XCS 23.57 0 44.63 26.73 42.65 60.22 27.23 26.47
AdaBoost 57.18 75.11 62.44 49.19 64.07 70.12 58.43 48.57
Bagging 57.28 0 0 37.58 65.68 79.72 50.54 41.63
C4.5 33.17 0 0 32.64 62.5 76.84 30.69 41.73
PART 0 0 31.42 0 26.98 50.25 37.37 0

189

Results and Analysis

RIPPER 58.82 60.41 70.65 56.63 78.8 76.63 65.56 51.33
SLIPPER 66.14 36.96 54.43 41.51 71.63 65.45 61.93 48.54
CHI-RW 0 0 0 26.73 0 39.12 22.06 19.38
KNN 52.29 44.12 54.54 60.45 65.61 72.78 32.85 50.05
KSTAR 46.92 0 54.66 26.61 58.3 62.49 46.1 0
LR 33.23 33.18 54.66 46.09 67.88 57.59 34.31 27.47
PUBLIC 23.53 0 0 0 39.85 74.34 0 29.62
BNGE 38.91 41.73 54.19 47.18 64.27 67.01 60 47.18
EACH 60.7 32.79 74.75 32.68 80.71 27.15 48.57 32.11
RISE 57.09 51.08 62.44 47.97 64.96 58.94 26.76 52.02

Table 6.3: Balance Results of SMP Models on Imbalanced Datasets

Technique
Dataset

Bcel Betwixt Io Ivy Jcs Lang Log4j Ode
BIOHEL 56.76 38.98 44.97 41.63 63.05 73.31 55.7 43.96
CHC 48.92 29.29 36.36 31.81 63.05 76.02 32.64 39.21
CPSO 70.23 51.43 70.68 44.14 54.98 79.23 50.8 41.35
GGA 45 29.28 41.07 31.81 73.54 76.09 44.42 41.69
GA-Int 60.7 29.28 50.5 34.34 70.95 63.22 54.47 35.49
GA-ADI 45 34.49 29.29 39.37 60.61 71.04 51.14 39.21
IGA 44.99 41.9 43.38 36.73 65.31 57.4 44.23 46.57
LWPSO 65.9 54.36 76.24 36.77 41.9 77.42 44.23 49.89
MPLCS 52.84 37.13 43.43 36.87 65.7 73.69 52.84 36.73
PBIL 52.83 29.29 36.36 31.81 76.25 76.15 41.07 39.21
SGA 56.76 31.87 36.36 37.14 60.29 76.09 52.84 37.97
SSMA 52.83 31.87 36.36 34.52 49.95 60.61 51.1 35.6
UCS 41.07 31.9 50.5 36.86 49.99 60.63 52.79 41.69
XCS 33.22 29.29 43.43 34.34 42.37 55.45 34.59 34.25
AdaBoost 52.84 71.4 57.54 46.92 60.35 65.76 54.44 46.58
Bagging 52.85 29.26 29.29 39.39 60.66 76.2 47.78 41.69
C4.5 37.14 29.28 29.29 36.86 58 73.44 36.02 41.69
PART 29.29 29.29 36.35 29.29 34.52 47.59 39.37 29.29
RIPPER 56.1 58.73 69.32 53.97 77.46 74.97 63.28 48.95
SLIPPER 60.7 39.51 50.49 41.86 68.11 60.63 57.75 46.58
CHI-RW 29.29 29.29 29.29 34.34 29.28 40.17 32.74 31.96
KNN 48.92 44.31 50.5 56.78 62.58 68.4 37.36 47.79
KSTAR 45 29.29 50.5 34.34 55.1 57.99 44.44 29.29
LR 37.14 37.14 50.5 44.44 63.5 52.86 37.7 32.25

190

Results and Analysis

PUBLIC 33.22 29.29 29.29 29.29 40.98 70.8 29.29 35.49
BNGE 40.72 42.23 50.48 39.35 60.4 63.03 56.05 45.39
EACH 57.86 37.11 74.44 36.87 80.34 34.53 47.34 36.6
RISE 52.83 49.53 57.54 46.26 62.31 55.26 34.55 49.07

6.3.3 Results Specific to RQ2

In the second experiment conducted in this chapter, we developed SMP models by

applying data resampling techniques on the imbalanced datasets. We developed the

prediction models using ten-fold cross-validation and evaluated the performance with

the help of G-Mean and Balance metrics. On each dataset, 28 learning techniques

(14 ML techniques and 14 SB techniques) in conjunction with 12 data resampling

techniques are used to develop the prediction models for software maintainability. For

each dataset, using 14 ML techniques over 12 data resampling techniques, 14 × 12 =

168 combinations are explored. As we have used 8 datasets in this chapter, therefore in

the case of ML techniques, 8 datasets× 168 combinations = 1344 models are assessed

to formulate our results. To take care of the stochastic nature of SB techniques, we

run each of these techniques ten times and reported the median values of G-Mean and

Balance performance metrics. For each dataset, using 14 SB techniques over 12 data

resampling techniques and 10 runs, 14 × 12 × 10 = 1680 combinations are explored.

For 8 datasets in the case of SB techniques, 8 datasets × 1680 combinations = 16800

models are developed, and median values of G-Mean and Balance performance metrics

are reported. G-Mean results of the SMP models developed after data resampling

are presented in Table 6.4-6.11 for Bcel, Betwixt, Io, Ivy, Jcs, Lang, Log4j, and

Ode datasets. Tables 6.12-6.19 show the Balance performance metric results for all

eight datasets used in the chapter. On analyzing Tables 6.4-6.11, it was noted that

G-Mean values are higher than 50 in 88.99% of the cases for the Bcel dataset, 67.26%

of the cases for Betwixt dataset, 93.15% of the cases for the Io dataset, 77.68% of

191

Results and Analysis

Figure 6.3: Median Balance values of SMP Models Developed with SB and ML
Techniques after Data Resampling

the cases for Ivy dataset, 96.13% of the cases for Jcs dataset, 93.75% of the cases

for Lang dataset, 92.55% of the cases for Log4j dataset, and 80.65% of the cases

for Ode dataset. The analysis of Balance results presented in Tables 6.12-6.19, for

SMP models after data resampling revealed that Balance values are greater than 50

in 87.89% of the cases for the Bcel dataset, 67.26% of the cases for Betwixt dataset,

92.86% of the cases for Io dataset, 71.43% of the cases for Ivy dataset, 94.34% of the

cases for Jcs dataset, 91.36% of the cases for Lang dataset, 92.69% of the cases for

Log4j dataset, and 78.86% of the cases for Ode dataset. Figure 6.3 and 6.4 shows the

median of G-Mean and Balance results of SMP models developed using SB and ML

techniques after employing data resampling techniques. It is evident from Figures

6.3 and 6.4 that there is a substantial positive enhancement in the performance of

prediction models after data resampling as compare to the situation when prediction

models were developed from the imbalanced datasets (Figure 6.1 and Figure 6.2).

Also, Figures 6.3 and 6.4 indicate that the performance of models developed using

SB techniques after data resampling is better than that of ML techniques both with

respect to G-Mean and Balance performance measures.

192

Results and Analysis

Ta
bl

e
6.

4:
G

-M
ea

n
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

B
ce

lD
at

as
et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

73
.7

5
75

.6
6

72
.0

4
78

.0
8

71
.1

6
69

.9
2

69
.9

1
68

.9
68

.6
7

69
.3

6
75

.7
9

75
.7

4

C
H

C
71

.0
1

75
.4

70
.4

3
79

.4
2

73
.7

2
69

.9
2

73
.9

2
69

.2
4

72
.7

5
72

.0
2

76
.0

4
74

.7
7

C
PS

O
65

.1
6

69
.2

8
66

.7
7

68
.3

2
65

.9
6

69
.4

7
65

.6
66

64
.7

8
47

.1
6

69
.5

8
67

.7
4

G
G

A
70

.7
1

76
.0

4
74

.2
2

79
.7

1
76

.4
5

69
.8

1
70

.6
4

69
.0

1
75

.9
1

71
.5

3
75

.9
1

74
.4

9

G
A

-I
nt

77
.5

4
75

.4
76

.6
4

79
.5

7
77

.5
4

69
.9

2
77

.1
3

69
.4

7
75

.7
9

68
.9

75
.7

9
74

.6
8

G
A

-A
D

I
79

.1
6

75
.2

7
73

.7
6

79
.1

6
79

.1
6

70
.0

4
75

.7
9

69
.9

2
65

.1
9

42
.5

4
65

.8
2

79
.4

2

IG
A

73
.9

2
74

.8
9

76
.6

2
74

.2
4

72
.5

3
65

.9
2

73
.5

3
60

.5
6

66
.6

8
66

.5
6

46
.1

6
74

.7
7

LW
PS

O
65

.1
5

69
.3

6
68

.1
2

67
.9

3
66

.8
8

65
.7

6
66

.2
8

68
.7

4
75

.1
2

54
.3

5
67

.5
1

60
.5

9

M
PL

C
S

79
.1

6
75

.7
9

77
.5

4
79

.1
6

79
.1

6
70

.0
4

79
.1

6
65

.7
1

68
.7

8
65

.2
8

65
.8

2
79

.8
5

PB
IL

72
.0

4
75

.2
7

72
.2

7
79

.4
2

74
.2

4
69

.9
2

73
.9

2
69

.2
4

75
.7

9
66

.5
6

75
.9

1
74

.7
7

SG
A

70
.8

6
75

.5
3

71
.1

8
79

.4
2

72
.3

9
69

.9
2

74
.3

5
72

.5
72

.6
2

72
.7

5
76

.3
76

.4
9

SS
M

A
66

.1
9

74
.6

3
65

.9
4

81
.0

7
77

.4
1

61
.6

7
48

.3
6

73
.4

7
75

.4
72

.7
5

76
.3

76
.4

9

U
C

S
40

.7
6

40
.7

6
40

.7
6

40
.7

6
40

.7
6

40
.7

6
40

.7
6

40
.7

6
40

.7
33

.2
8

33
.2

8
33

.2
8

X
C

S
67

.2
7

72
.1

4
63

.1
5

63
.4

2
55

.0
7

69
.9

2
58

.4
6

57
.3

7
61

.7
7

52
.0

3
69

.4
7

70
.5

9

A
da

B
oo

st
73

.6
75

.5
3

59
.1

8
77

.2
7

74
.3

7
73

.4
7

80
.8

7
65

.5
69

.0
1

56
.2

4
76

.0
4

77
.1

8

B
ag

gi
ng

73
.2

9
75

.2
7

69
.1

1
76

.7
2

75
.6

1
73

.4
7

74
.3

5
65

.3
9

68
.3

2
70

.7
9

76
.1

7
76

.0
4

C
4.

5
72

.8
2

75
.2

7
68

.8
3

77
.1

3
74

.5
65

.7
1

72
.5

3
65

.5
71

.6
5

55
.1

2
72

.7
5

79
.1

3

PA
R

T
75

.2
7

75
.2

7
74

.6
3

61
.4

7
64

.7
4

0
75

.0
5

0.
00

0
0

0
0

R
IP

PE
R

0
33

.2
8

0
23

.4
6

0
73

.4
7

52
.3

7
55

.4
8

57
.0

8
53

.2
9

56
.3

8
80

.9
9

SL
IP

PE
R

71
.4

5
72

.0
2

75
.2

7
75

.5
3

75
.2

7
73

.4
7

76
.8

6
72

.6
2

73
.1

1
67

.2
7

79
.5

6
76

.4
9

C
H

I-
R

W
76

.5
5

57
.3

7
61

.8
7

61
.6

7
61

.6
7

46
.9

9
76

.1
7

33
.2

3
33

.2
3

64
33

.2
3

61
.5

7

K
N

N
61

.8
7

57
.2

8
40

.5
52

.2
9

57
.2

8
61

.9
7

79
.9

5
92

.8
65

.1
7

51
.3

2
76

.0
4

40
.9

5

K
ST

A
R

71
.1

6
72

.0
2

55
.1

3
75

.7
5

70
.5

69
.9

2
72

.9
1

69
.0

1
68

.7
8

47
.4

4
65

.5
75

.1
3

L
R

77
.8

2
0

77
.9

5
80

.1
4

80
.2

8
70

.0
4

76
.7

9
69

.7
73

.2
3

33
.2

3
69

.7
76

.0
4

PU
B

L
IC

75
.2

4
75

.2
7

62
.3

9
79

.1
3

70
.2

2
70

.0
4

70
.2

2
72

.5
72

.2
6

57
.6

4
69

.4
7

74
.1

1

B
N

G
E

68
.9

68
.7

8
63

.2
7

68
.1

1
66

.1
1

73
.5

9
66

.7
6

62
.6

4
64

.7
5

35
.8

7
68

.2
75

.4
4

E
A

C
H

60
.7

60
.7

60
.7

60
.7

60
.7

60
.7

60
.7

60
.7

60
.7

60
.7

60
.7

60
.7

R
IS

E
67

.1
3

72
.0

2
55

.3
6

79
.1

3
70

.0
9

69
.9

2
84

.1
9

72
.7

5
72

.5
55

.6
9

72
.5

57
.0

9

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

193

Results and Analysis
Ta

bl
e

6.
5:

G
-M

ea
n

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
B

et
w

ix
tD

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

50
.0

8
51

.6
1

40
.0

5
62

.8
5

52
.6

2
56

.9
3

59
.6

3
46

.7
8

47
.2

8
47

.2
5

70
.6

9
62

.1
3

C
H

C
72

.3
1

55
.4

5
47

.6
4

69
.2

2
69

.6
6

70
.6

7
65

.9
5

69
.2

2
68

.7
7

0
69

.9
5

71
.1

9

C
PS

O
65

.4
3

67
.5

8
40

.5
8

65
.9

64
.0

7
71

.0
3

59
.9

61
.4

6
62

.1
7

63
.5

8
65

.0
7

68
.4

G
G

A
63

.8
6

40
.2

8
46

.8
67

.9
4

66
.0

4
62

.2
1

65
.0

3
67

.2
2

60
.4

1
32

.7
9

67
.9

2
70

.5
1

G
A

-I
nt

65
.2

4
40

.4
9

46
.0

9
67

.7
3

64
.4

9
64

.7
1

64
.7

3
50

.8
2

61
.9

1
51

.2
2

70
.6

9
67

.9
8

G
A

-A
D

I
61

.4
6

43
.4

3
45

.0
7

64
.2

8
65

.3
3

63
.2

1
59

.9
50

.6
8

54
.0

4
52

.0
1

70
.1

4
66

.0
4

IG
A

58
57

.8
4

42
.4

9
64

.1
2

59
.3

57
.2

9
61

.2
8

51
.5

8
47

.8
9

19
.0

2
61

.4
6

68
.6

3

LW
PS

O
65

.4
3

66
.4

41
.4

8
63

.7
8

67
.0

5
58

.6
5

51
.8

8
66

.7
8

60
.7

3
69

.1
7

62
.8

8
64

.9
1

M
PL

C
S

63
.7

8
40

.1
7

40
.8

2
65

.6
7

62
.4

6
58

.1
3

58
.9

3
54

.3
2

53
.3

3
40

.9
1

65
.9

8
51

.7

PB
IL

62
.2

4
55

.5
7

44
.3

2
69

.9
1

64
.7

67
.4

6
66

.7
2

61
.7

4
58

.4
8

19
.0

2
63

.2
3

68
.6

3

SG
A

64
.9

1
47

.9
1

42
.5

6
67

.7
67

.9
4

62
.4

4
65

.9
5

56
.3

7
61

.5
8

42
.0

3
60

.9
1

72
.0

9

SS
M

A
64

.7
51

.6
1

43
.1

9
67

.4
6

68
.4

68
.9

7
66

.5
59

.2
7

58
.3

2
42

.0
3

60
.9

1
72

.0
9

U
C

S
32

.9
5

32
.9

5
24

.6
5

32
.9

5
32

.9
5

32
.9

5
33

.0
3

33
.0

3
27

.0
3

32
.5

6
32

.5
6

32
.5

6

X
C

S
58

.5
8

40
.4

9
35

.6
3

65
.7

2
66

.1
68

.6
3

53
.1

8
48

.1
6

47
.1

6
57

.2
9

65
.0

7
54

.7
2

A
da

B
oo

st
58

53
.9

32
.1

59
.2

2
47

.5
57

.4
7

63
.8

6
50

.1
4

46
.5

2
26

.3
6

71
.7

61
.6

9

B
ag

gi
ng

67
.1

7
36

.8
1

28
.3

4
68

.6
5

61
.6

9
58

.7
3

59
.9

4
43

.5
4

45
.3

6
43

.6
6

73
.2

9
68

.4
1

C
4.

5
60

.5
2

44
.5

8
31

.4
4

45
.3

4
61

.4
1

55
.1

2
64

.7
1

39
.5

4
44

.7
32

.6
4

68
.2

9
66

.2
6

PA
R

T
57

.6
5

49
.3

2
0

60
.5

5
26

.9
53

.8
2

26
.0

7
0

0
26

.6
5

18
.9

8
59

.9
3

R
IP

PE
R

45
.8

8
49

.0
1

32
.0

1
63

.6
4

54
.2

1
55

.0
1

57
.0

2
61

.4
6

58
.7

58
.1

3
68

.6
3

60
.7

3

SL
IP

PE
R

57
.8

2
54

.6
41

.5
1

67
.9

8
62

.0
7

58
.3

2
64

.4
5

50
.1

4
46

.4
52

.0
6

70
.4

8
57

.9
1

C
H

I-
R

W
70

.9
66

.8
6

22
.9

4
60

.0
8

69
.3

1
71

.0
9

69
.6

1
19

.6
3

50
.3

0
34

69
.8

1

K
N

N
58

.7
66

.8
5

6.
73

43
.5

4
67

.3
4

60
.9

1
62

.3
5

50
.6

8
55

.3
54

.5
1

63
.4

68
.4

K
ST

A
R

56
.5

8
43

.1
9

33
.8

2
47

.8
9

45
.7

5
48

.2
1

48
.9

4
31

.4
4

37
.4

4
25

.4
1

32
.6

4
62

.5
6

L
R

71
.3

9
30

.6
4

22
.1

7
71

.8
7

72
.1

72
.1

68
.4

8
56

.2
1

63
.9

6
41

.6
3

65
.2

5
70

.0
5

PU
B

L
IC

68
.7

9
51

.4
8

28
.5

7
62

.5
6

68
.1

8
62

.3
5

64
.4

1
57

.6
5

62
.7

0
41

.6
3

16
.2

8

B
N

G
E

63
.2

1
63

.0
5

27
.9

5
52

.9
65

.3
3

59
.3

3
61

.4
7

50
.8

2
54

.4
6

60
.2

4
68

.1
8

63
.0

1

E
A

C
H

32
.7

9
32

.7
9

30
.8

32
.7

9
32

.7
9

32
.7

9
32

.7
9

32
.7

9
32

.7
9

32
.7

9
32

.7
9

32
.7

9

R
IS

E
55

.3
50

.4
1

32
.2

2
63

.8
2

61
.3

60
.5

2
61

47
.4

1
53

.3
3

60
.3

3
69

.2
4

60
.3

7

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

194

Results and Analysis

Ta
bl

e
6.

6:
G

-M
ea

n
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

Io
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

59
.6

9
53

.7
3

51
.3

4
67

.3
6

52
.5

4
61

.0
8

74
.1

3
78

.9
6

58
.2

7
72

.7
6

60
.9

4
80

.3
4

C
H

C
70

.4
7

68
.6

68
.9

5
71

.0
1

71
.1

8
70

.8
3

71
.1

8
54

.4
3

53
.2

6
44

.3
4

61
.6

3
73

.5
6

C
PS

O
74

.2
5

78
.5

9
78

.0
8

79
.7

1
73

.1
6

80
.1

3
60

.2
5

79
.8

9
84

.3
2

69
.0

3
88

.4
7

84
.0

2

G
G

A
70

.8
3

61
.9

62
.8

5
64

.9
8

72
.0

6
66

.8
9

65
.3

54
.0

8
61

.0
8

53
.3

7
54

.1
9

71
.1

3

G
A

-I
nt

64
.3

3
61

.7
7

53
.9

6
71

.0
1

72
.0

6
65

.6
3

58
.8

4
62

.5
8

54
.1

9
68

.2
9

61
.9

78
.2

2

G
A

-A
D

I
63

.5
1

68
.9

1
69

.2
6

76
.7

70
.2

9
64

.6
6

71
.1

8
54

.3
1

53
.9

6
66

.7
4

60
.8

1
74

.3
6

IG
A

76
.1

2
61

.0
8

70
.8

5
70

.8
3

64
.3

3
69

.3
9

69
.5

7
61

.4
9

53
.0

2
62

.3
1

31
.1

5
75

.3
4

LW
PS

O
78

.5
1

84
.0

2
77

.5
6

78
.7

5
69

.0
3

76
.7

0
40

.5
8

78
.4

3
65

.5
9

79
.2

8
75

.3
1

M
PL

C
S

63
.3

5
61

.9
61

.6
2

76
.5

65
.4

7
72

.0
6

76
.3

1
54

.4
3

53
.8

4
78

.7
8

61
.3

6
79

.0
7

PB
IL

70
.6

5
60

.9
4

68
.0

6
64

.9
8

65
.3

71
.5

4
71

.5
4

54
.0

8
53

.0
2

62
.3

1
53

.7
3

75
.3

4

SG
A

65
.1

4
69

.2
1

81
.6

9
70

.2
9

71
.5

4
72

.2
4

71
.3

6
54

.4
3

53
.2

6
54

.0
8

61
.6

3
72

.3
6

SS
M

A
64

68
.1

4
68

.4
2

68
.8

4
63

.6
8

67
.9

2
62

.1
7

54
.3

1
62

.1
7

54
.0

8
61

.6
3

72
.3

6

U
C

S
44

.3
4

44
.4

4
49

.5
44

.4
4

44
.4

4
44

.4
4

54
.6

6
54

.5
4

44
.5

3
62

.5
8

62
.5

8
62

.5
8

X
C

S
80

.9
6

61
.2

2
59

.6
9

72
.2

4
72

.4
1

72
.2

4
71

.8
9

47
.0

4
54

.3
1

72
.0

6
54

.0
8

75
.3

4

A
da

B
oo

st
59

.1
3

61
.4

9
60

.9
4

70
.8

3
60

.6
7

68
.7

5
67

.9
8

53
.7

3
61

.2
2

69
.0

6
61

.0
8

89
.1

B
ag

gi
ng

65
.3

62
.0

4
59

.2
7

67
.7

4
65

.6
3

66
.2

6
72

.4
1

62
.4

4
53

.3
7

80
.6

2
60

.9
4

77
.4

6

C
4.

5
71

.5
4

62
.3

1
59

.8
3

66
.8

66
.8

9
59

.9
7

67
.0

5
53

.9
6

60
.9

4
68

.7
5

61
.0

8
79

.9
2

PA
R

T
80

.9
6

53
.6

1
80

.1
3

60
.4

6
73

.7
6

68
.1

1
66

.8
6

31
.4

9
59

.4
1

23
.9

9
61

.2
2

0

R
IP

PE
R

75
.9

8
62

.4
4

62
.8

5
44

.5
3

62
.7

1
75

.3
4

62
.0

4
71

.0
1

70
.8

3
73

.1
6

70
.1

1
83

.4
1

SL
IP

PE
R

72
.0

6
61

.9
67

.0
5

69
.9

3
72

.0
6

59
.8

3
66

.1
62

.4
4

61
.7

7
78

.9
6

61
.6

3
78

.8
6

C
H

I-
R

W
78

.3
2

56
.3

9
75

.4
1

75
.7

3
72

.8
2

70
.9

4
73

.0
8

47
.0

4
47

.0
4

46
.5

4
47

.0
4

76
.5

7

K
N

N
51

.5
7

61
.7

7
54

.5
4

83
.1

4
59

.8
3

59
.2

7
71

.7
1

54
.5

4
53

.0
2

79
.7

1
61

.0
8

71
.7

1

K
ST

A
R

65
.9

4
62

.3
1

50
.4

6
71

.1
3

69
.3

6
68

.6
68

.4
5

53
.9

6
52

.9
59

.6
9

54
.4

3
69

.7
5

L
R

85
.2

1
68

.9
1

85
.8

7
77

.6
5

79
.7

1
81

.1
7

79
.4

9
69

.5
1

74
.9

8
0

69
.5

1
85

.8
7

PU
B

L
IC

75
.5

4
61

.0
8

53
.2

6
65

.8
5

65
.1

4
71

.5
4

72
.0

6
44

.5
3

58
.9

8
0

62
.4

4
85

.0
1

B
N

G
E

52
.6

6
61

.6
3

53
.9

6
62

.6
8

61
.0

8
68

.6
74

.1
3

53
.9

6
53

.3
7

73
.9

6
61

.0
8

79
.4

9

E
A

C
H

74
.7

5
74

.7
5

74
.7

5
74

.7
5

74
.7

5
74

.7
5

80
.1

6
74

.7
5

74
.7

5
74

.7
5

74
.7

5
74

.7
5

R
IS

E
60

.3
9

94
61

.6
3

72
.4

1
60

.3
9

61
.0

8
70

.7
1

53
.8

4
53

.6
1

78
.4

68
.1

4
80

.3
4

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

195

Results and Analysis
Ta

bl
e

6.
7:

G
-M

ea
n

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
Iv

y
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

66
.3

7
53

.8
1

50
.8

6
69

.7
7

58
.0

3
61

.2
2

64
.1

55
.1

4
50

.1
6

58
.1

9
60

.6
1

67
.8

4

C
H

C
73

.7
9

51
.6

3
69

.6
9

68
.7

6
62

.9
7

62
.0

4
65

.5
49

.4
9

55
.0

2
32

.4
54

.6
8

69
.6

6

C
PS

O
68

.7
5

69
.6

2
70

.3
6

62
.6

9
68

.7
6

70
.5

47
.8

6
45

.4
7

61
.6

8
61

.2
3

45
.9

8
70

.1

G
G

A
63

.7
2

53
.8

64
.5

3
67

.7
1

61
.2

1
55

.8
9

50
.5

4
52

.0
3

53
.7

2
37

.1
3

51
.4

7
73

.5
3

G
A

-I
nt

70
.7

6
49

.6
4

64
.2

8
68

.4
7

61
.7

3
59

.9
4

66
.5

7
81

.0
4

57
.9

44
.3

6
57

.9
66

.9
3

G
A

-A
D

I
73

.0
8

53
.3

2
64

.4
1

69
.4

8
62

.6
1

62
.9

8
61

.5
5

52
.3

5
51

.7
9

54
.7

6
54

.8
5

71
.0

7

IG
A

66
.5

7
60

58
.7

8
65

.0
4

57
.9

4
53

.3
58

.8
8

58
.6

2
51

.4
1

37
.3

5
54

.4
2

68
.9

1

LW
PS

O
71

.8
4

67
.6

9
68

.0
3

60
.1

3
63

.6
8

60
45

.8
2

62
.2

4
66

.1
9

49
.4

3
43

.2
9

67
.9

2

M
PL

C
S

65
.4

5
63

.6
6

50
.3

5
67

.3
2

65
.0

5
63

.7
2

52
.1

52
.3

5
51

.6
3

41
.2

54
.1

6
71

.6
3

PB
IL

68
.6

2
54

.1
9

62
.9

66
.6

6
65

.8
9

58
.5

2
62

.7
55

.2
7

50
.5

7
37

.3
5

51
.3

9
68

.9
1

SG
A

66
.5

7
55

.7
1

57
.5

7
62

.3
9

64
.0

9
63

.2
3

59
.5

2
55

.0
2

51
.3

1
36

.3
9

43
.6

5
69

.5
1

SS
M

A
68

.7
6

53
.4

1
68

.8
7

59
.6

7
64

61
.8

62
.0

4
58

.3
5

60
.3

5
36

.3
9

43
.6

5
69

.5
1

U
C

S
26

.6
9

26
.6

9
26

.6
3

26
.6

1
26

.6
9

32
.5

9
70

.3
32

.5
9

32
.5

9
37

.5
8

37
.5

8
37

.5
8

X
C

S
71

.6
8

53
.9

9
62

.7
5

69
.7

7
66

.3
7

67
.1

71
.1

7
41

.8
2

45
.6

8
48

.0
7

52
.6

7
72

.5
9

A
da

B
oo

st
67

.7
6

54
.5

51
.7

1
72

.4
1

57
59

.1
58

.1
3

48
.6

54
.0

7
37

.5
2

53
.9

9
66

.9
3

B
ag

gi
ng

67
.0

7
53

.9
9

62
.4

4
74

.9
8

63
.0

8
63

.0
8

71
.5

2
54

.6
8

57
.2

7
45

.4
1

54
.7

6
36

.7
3

C
4.

5
66

.1
9

56
.5

4
50

.8
2

70
.0

7
64

.4
6

61
.5

1
25

.1
51

.6
3

50
.8

2
81

.0
5

54
.5

68
.0

2

PA
R

T
62

.2
5

55
.9

8
62

.4
4

69
.2

60
.2

63
.2

2
55

.5
5

18
.7

3
26

.2
5

0
0

60
.9

2

R
IP

PE
R

51
.3

1
36

.6
8

44
.2

4
60

.0
7

63
.3

3
64

.3
6

56
.5

4
66

.5
7

66
.7

2
69

.3
6

60
.5

7
66

.1
9

SL
IP

PE
R

74
.1

50
.9

62
.7

4
70

.2
7

69
.1

5
67

.0
7

64
.6

8
58

.2
6

53
.8

1
23

.4
5

56
.0

8
73

.8
4

C
H

I-
R

W
68

.4
2

64
.3

4
60

.9
2

60
.3

64
61

.6
3

69
.5

4
26

.7
3

26
.7

3
26

.7
3

26
.7

3
60

.6
1

K
N

N
65

.1
3

56
.1

2
60

.6
3

60
.6

3
61

.0
9

55
.6

7
63

.1
63

.0
3

57
.1

8
61

.4
5

65
.0

2
66

.9
3

K
ST

A
R

62
.1

5
47

.0
7

62
.1

5
67

.8
4

62
.8

7
59

.8
8

65
.8

9
37

.1
9

51
.1

4
44

.9
3

75
.6

3
36

.7
3

L
R

67
.1

8
67

.3
2

67
.6

9
68

.1
68

.7
5

70
.3

4
70

.3
3

55
.7

8
65

.8
1

58
.8

55
.6

1
66

.9
3

PU
B

L
IC

71
.9

5
51

.5
40

.6
9

73
.9

9
68

.7
2

60
.2

5
61

.8
6

51
.3

1
32

.5
5

0
37

.4
1

36
.7

3

B
N

G
E

64
.4

6
47

.7
6

41
.2

6
63

.5
1

56
.7

2
53

.2
9

56
.1

2
52

.1
1

54
.2

5
59

.5
7

56
.7

2
36

.7
3

E
A

C
H

32
.6

8
32

.6
8

32
.6

8
32

.6
8

32
.6

8
32

.6
8

32
.6

8
27

.4
9

32
.6

8
27

.1
8

32
.6

8
36

.7
3

R
IS

E
56

.7
2

50
.9

8
45

.2
7

67
.6

9
52

.8
4

52
.6

7
56

.1
2

48
.6

7
56

.9
1

52
.9

2
60

.4
36

.7
3

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

196

Results and Analysis

Ta
bl

e
6.

8:
G

-M
ea

n
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

Jc
s

D
at

as
et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

77
.0

9
75

.7
7

78
.9

2
77

.2
6

75
.5

2
78

.2
7

78
.9

4
79

.8
7

81
.1

1
65

.4
8

82
.0

1
75

.0
3

C
H

C
86

.4
7

82
.5

7
78

.6
4

81
.9

4
83

.7
6

83
.7

6
85

.8
6

79
.4

9
85

.8
3

71
.4

86
.4

1
82

.2
1

C
PS

O
79

.2
1

66
.9

6
80

.9
7

73
.5

6
74

.1
78

.0
1

71
.9

3
70

.6
2

73
.3

58
.7

5
81

.0
2

73
.5

6

G
G

A
84

.9
5

75
.0

3
81

.5
4

81
.6

2
84

.9
5

81
.0

3
82

.8
5

79
.4

9
84

.6
5

85
.2

9
43

.6
9

84
.3

5

G
A

-I
nt

84
.2

2
72

.7
9

85
.7

1
79

.5
4

78
.1

83
.1

6
81

.3
3

74
.2

9
81

.4
5

68
.3

4
81

.7
3

80
.8

9

G
A

-A
D

I
83

.6
5

75
.1

5
75

.7
3

81
.6

2
78

.6
6

83
.3

7
83

.1
6

74
.0

4
83

.3
7

59
.5

84
.9

5
77

.7
1

IG
A

77
.5

4
80

.1
73

.5
8

74
.6

8
74

.7
5

81
.6

4
81

.3
3

76
.0

3
78

.8
8

88
.1

9
79

.2
1

80
.3

2

LW
PS

O
80

.5
2

57
.9

2
78

.7
7

73
.9

2
74

.6
8

75
.2

76
.3

4
72

.9
3

78
.6

3
60

.9
1

82
.7

6
78

.9
4

M
PL

C
S

83
.1

6
76

.4
4

83
.8

8
79

.4
9

75
.1

5
80

.3
2

81
.9

2
79

.8
7

79
.7

6
66

.0
4

34
.9

1
78

.5
9

PB
IL

82
.5

5
79

.8
4

82
.8

3
82

.2
1

83
.1

6
83

.7
6

84
.6

4
77

.7
4

85
.8

3
88

.1
9

85
.2

4
80

.3
2

SG
A

83
.7

6
77

.7
1

89
.0

9
80

.0
3

82
.5

81
.6

2
83

.7
6

79
.7

6
83

.6
5

81
.3

8
81

.4
5

10
0

SS
M

A
83

.3
9

82
.4

5
76

.8
2

80
.3

2
85

.5
6

82
.8

5
81

.6
4

78
.7

2
83

.4
6

81
.3

8
81

.4
5

10
0

U
C

S
67

.5
3

67
.5

3
66

.3
5

67
.5

3
67

.5
3

67
.5

3
67

.5
3

67
.7

9
70

.7
1

53
.3

53
.3

53
.3

X
C

S
85

.5
3

78
.3

9
65

.6
1

85
.5

6
81

82
.5

82
.8

5
79

.5
8

81
34

.1
9

84
.7

9
79

.3
1

A
da

B
oo

st
80

.0
3

75
.2

8
67

.8
7

78
.6

6
79

.0
6

81
.4

5
77

.7
4

75
.4

1
77

.4
7

70
.1

1
80

.0
3

73
.9

2

B
ag

gi
ng

79
.2

1
78

.8
76

.9
5

78
.8

8
78

.9
4

80
.0

3
76

.6
7

69
.0

7
79

.7
6

65
.1

8
75

.9
3

73
.9

2

C
4.

5
80

.8
9

70
.4

8
68

.0
9

78
.8

8
80

.0
3

79
.2

1
79

.4
9

76
.9

4
76

.4
73

.0
3

70
.8

5
75

.2
6

PA
R

T
66

.5
33

.1
4

32
.4

4
75

.7
7

37
.8

27
.0

7
48

.4
6

0
19

.1
3

73
.3

0
71

.0
9

R
IP

PE
R

71
.1

7
73

.9
8

71
.6

3
73

.0
3

72
.0

7
79

.4
6

78
.2

7
78

.6
6

79
.2

1
59

.3
4

84
.3

5
71

.0
9

SL
IP

PE
R

73
.2

8
75

.0
3

72
.5

5
78

.1
79

.0
6

78
.0

1
77

.7
4

79
.7

6
79

.4
9

68
.8

8
84

.9
5

74
.6

8

C
H

I-
R

W
82

.7
1

84
.3

4
83

.3
7

83
.6

9
82

.7
1

82
.3

9
82

.3
9

82
.1

1
85

.3
5

77
.6

9
84

.0
2

80
.0

5

K
N

N
66

.7
3

70
.2

5
65

.6
1

65
.6

1
70

.8
5

80
.8

9
79

.4
6

74
.0

4
71

.0
9

55
.3

1
84

.3
5

71
.0

9

K
ST

A
R

69
.1

1
66

.9
6

73
.9

2
78

.5
9

72
.5

2
70

.1
1

69
.6

1
77

.7
4

82
.2

1
64

.1
3

78
.5

4
73

.9
2

L
R

82
.2

5
85

.2
4

83
.4

6
83

.1
6

83
.4

6
84

.6
4

84
.0

2
81

.9
2

84
.2

2
43

.0
8

81
.3

8
75

.2
6

PU
B

L
IC

78
.0

1
75

.6
7

72
.7

9
74

.6
8

76
.4

1
74

.4
8

73
.5

6
80

.4
4

76
.9

8
38

.4
9

84
.0

6
81

.1
7

B
N

G
E

76
.4

4
76

.9
5

75
.2

8
76

.4
77

.7
4

80
.8

9
80

.0
3

78
.5

4
80

.0
3

69
.6

6
83

.9
4

73
.9

2

E
A

C
H

80
.7

1
80

.7
1

80
.7

1
80

.7
1

80
.7

1
80

.7
1

80
.7

1
80

.7
1

80
.7

1
80

.7
1

80
.7

1
71

.0
9

R
IS

E
66

.5
66

.9
6

70
.7

1
70

.0
1

66
.9

6
77

.2
6

76
.4

1
74

.3
6

78
.6

6
61

.5
7

82
.2

5
73

.9
2

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

197

Results and Analysis
Ta

bl
e

6.
9:

G
-M

ea
n

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
L

an
g

D
at

as
et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

77
.0

9
79

.2
9

74
.7

6
79

.0
3

58
.9

4
76

.8
4

79
.4

2
75

.1
3

80
.7

8
68

.2
9

81
.2

5
76

.6
3

C
H

C
79

.0
9

83
.5

8
81

.0
1

83
.5

82
.8

9
80

.7
9

81
.7

2
81

.4
6

83
.3

5
79

.5
1

82
.8

9
79

.8
2

C
PS

O
76

.0
5

82
.2

8
82

.1
8

79
.5

8
79

.8
2

83
.2

1
74

.6
5

79
.5

8
78

.7
8

67
.7

5
81

.9
1

81
.1

5

G
G

A
77

.3
8

81
.6

8
79

.3
8

80
.0

6
62

.2
2

80
.7

9
79

.8
8

81
.4

6
83

.5
8

79
.7

2
81

.2
4

82
.5

3

G
A

-I
nt

80
.3

81
.2

4
79

.6
5

82
.8

9
78

.4
1

84
.9

3
82

.4
2

78
.8

5
82

.8
9

70
.9

1
78

.5
82

.7
7

G
A

-A
D

I
81

.7
9

79
.2

9
82

.5
4

82
.6

5
80

.7
9

82
.1

9
84

.7
80

.5
7

82
.4

2
73

.1
7

82
.1

9
83

.0
1

IG
A

72
.7

77
.3

72
.4

5
75

.7
7

78
.2

7
78

.1
2

68
.9

2
73

.5
1

70
.1

9
77

.4
8

70
.7

7
78

.8
5

LW
PS

O
74

.4
2

76
.8

8
78

.7
7

77
.4

9
79

.8
80

.0
1

76
.1

8
75

.7
5

74
.6

5
66

.4
4

72
.1

7
73

.9
8

M
PL

C
S

78
.3

6
81

.2
4

77
.3

83
.7

4
80

.3
3

83
.1

2
80

.3
3

83
.1

2
83

.1
2

68
.3

79
.4

2
84

.9
7

PB
IL

79
.2

9
83

.5
8

71
.6

1
80

.1
1

69
.4

81
.2

4
81

.7
2

83
.1

2
79

.0
7

77
.4

8
82

.6
5

78
.8

5

SG
A

77
.8

7
81

.2
4

79
.3

8
81

.2
5

79
.0

7
82

.6
5

77
.0

8
81

.6
8

82
.8

9
77

.2
7

49
.8

5
78

.6
1

SS
M

A
79

.0
3

81
.4

6
82

.4
2

83
.7

4
77

.5
3

82
.4

2
81

.4
8

84
.9

3
83

.2
6

77
.2

7
82

.8
9

78
.6

1

U
C

S
65

.2
7

65
.2

7
69

.4
2

65
.2

7
62

.6
6

65
.2

7
62

.6
6

65
.2

7
65

.4
5

67
.9

4
67

.9
4

67
.9

4

X
C

S
79

.8
2

81
.4

6
79

.5
9

82
.4

2
80

.3
3

80
.7

9
82

.1
9

78
.6

3
82

.6
5

65
.5

6
79

.8
8

80
.6

3

A
da

B
oo

st
72

.7
74

.7
5

63
.4

8
82

.5
3

78
.6

3
75

.9
9

77
.0

8
75

.5
6

75
.1

3
75

.4
2

77
.7

5
67

.9
4

B
ag

gi
ng

75
.0

4
79

.0
7

75
.1

3
83

.2
6

81
.0

1
82

.8
9

80
.7

8
66

.6
1

79
.4

2
68

.9
9

79
.8

8
75

.0
4

C
4.

5
76

.6
2

83
.3

5
72

.0
3

83
.2

6
84

.4
6

79
.8

8
73

.8
2

79
.4

2
78

.5
71

.3
4

79
.6

5
75

.0
4

PA
R

T
27

.4
9

83
.3

5
53

.4
4

65
.6

2
80

.7
9

42
.4

7
48

.3
7

32
.8

1
27

57
.0

3
0

44
.7

6

R
IP

PE
R

69
.7

3
59

.4
2

67
.7

5
61

.9
8

65
.0

9
79

.2
9

76
.2

77
.5

6
79

.0
9

89
.2

2
78

.6
1

78
.1

9

SL
IP

PE
R

75
.4

9
76

.8
4

73
.3

79
.8

8
80

.1
1

76
.2

73
.8

1
77

.7
5

77
.0

8
66

.2
6

76
.1

8
79

.5
4

C
H

I-
R

W
77

.9
77

.5
8

81
.1

7
76

.8
82

.3
1

81
.4

75
.7

8
51

.7
5

51
.7

5
69

.1
6

51
.7

5
85

.0
9

K
N

N
72

.4
7

76
.6

3
72

.7
8

72
.7

8
75

.9
9

77
.0

8
76

.1
8

74
.5

5
67

.9
8

64
.1

1
79

.1
9

67
.9

4

K
ST

A
R

66
.3

8
69

.5
4

65
.9

7
80

.5
4

71
.5

8
77

.0
5

80
.5

6
76

.6
3

71
.4

5
68

.7
9

79
.0

7
75

.0
4

L
R

85
.8

5
86

.6
9

85
.4

6
86

.3
7

85
.2

1
84

.2
2

81
.9

3
81

.4
6

80
.5

5
81

.4
8

82
.8

9
67

.9
4

PU
B

L
IC

78
.1

2
83

.5
8

76
.1

8
85

.6
4

82
.6

5
82

.8
9

82
.1

9
73

.9
3

72
.4

9
30

.1
9

79
.0

7
75

.9
5

B
N

G
E

65
.1

2
72

.1
8

64
.2

77
.0

9
71

.3
8

76
.2

78
.2

7
32

.8
5

70
.6

9
64

.6
2

76
.6

3
67

.9
4

E
A

C
H

27
.1

5
27

.1
5

27
.1

5
27

.1
5

27
.1

5
27

.1
5

27
.1

5
27

.1
5

23
.6

2
27

.1
5

27
.1

5
75

.0
4

R
IS

E
62

.2
64

.5
6

57
.9

5
76

.1
3

74
.1

4
78

.6
3

81
.0

1
70

.3
6

69
.7

3
61

.1
7

76
.4

67
.9

4

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

198

Results and Analysis

Ta
bl

e
6.

10
:G

-M
ea

n
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

L
og

4j
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

63
.3

6
57

.3
2

63
.8

6
67

.3
3

66
.4

9
65

.8
7

64
.8

67
.7

4
70

.2
5

63
.9

79
.7

7
71

.4
2

C
H

C
74

.2
3

76
.7

79
.7

7
75

.8
6

77
.8

8
75

.2
8

75
.7

4
62

.6
1

67
.5

3
60

.0
8

72
.1

73
.6

9

C
PS

O
62

.9
9

74
.0

1
55

.7
7

73
.5

6
68

.8
4

71
.1

7
66

.4
3

70
.1

4
62

.8
7

65
.3

5
67

.2
7

75
.4

2

G
G

A
69

.2
3

71
.8

7
67

.0
8

74
.3

6
70

.4
5

72
.2

2
77

.0
1

62
.4

2
71

.5
3

47
.2

9
74

.4
5

36
.6

8

G
A

-I
nt

70
.5

8
71

.9
8

71
.2

8
74

.9
1

72
.4

7
73

.1
3

77
.0

7
62

.9
8

62
.8

5
91

.0
5

72
.2

4
70

.8
6

G
A

-A
D

I
68

.1
6

67
.6

1
69

.0
9

73
.8

5
72

.1
6

75
.5

4
74

.7
6

65
.8

63
.7

7
62

.6
3

70
.9

7
69

.6
5

IG
A

68
.8

9
73

.2
3

70
.7

3
69

.5
1

71
.4

2
67

.8
8

69
.0

2
66

.8
2

69
.2

9
55

.6
3

63
.2

5
76

.4
5

LW
PS

O
68

.3
9

71
.4

5
66

.1
74

.3
6

69
.4

73
.7

6
67

.4
9

60
.5

3
68

.9
7

67
.3

3
67

.7
6

67
.7

1

M
PL

C
S

73
.3

7
71

.8
7

66
.9

2
71

.2
9

70
.9

5
71

.0
5

69
.9

6
60

.7
5

67
.7

4
56

.8
5

67
.2

1
67

.0
8

PB
IL

68
.7

3
72

.6
5

73
.4

7
75

.3
2

74
.2

3
71

.5
4

75
.5

6
65

.7
68

.0
6

55
.6

3
68

.7
7

76
.4

5

SG
A

65
.6

7
67

.9
4

72
.3

4
73

.1
1

70
.2

9
72

.2
2

75
66

.3
9

72
.6

6
55

.8
8

68
.9

4
74

.3

SS
M

A
69

.9
1

70
.3

7
69

.1
8

74
.2

3
71

.1
7

77
.0

5
74

.0
9

69
.4

2
65

.6
6

55
.8

8
68

.9
4

74
.3

U
C

S
54

.7
9

54
.7

9
54

.4
3

54
.0

8
54

.7
9

58
.5

2
54

.7
9

54
.9

4
54

.9
4

56
.6

1
56

.6
1

56
.6

1

X
C

S
72

.9
1

65
.7

65
.8

5
73

.3
6

69
.6

3
68

.6
1

72
.6

57
.1

3
66

.9
1

62
.8

5
69

.7
4

71
.0

1

A
da

B
oo

st
64

.8
61

.1
2

60
.2

64
.2

61
.4

7
61

.4
7

64
.6

63
.3

5
65

.4
5

61
.9

3
67

.9
4

56
.6

1

B
ag

gi
ng

69
.4

7
64

.3
2

64
.2

8
69

.6
8

63
.1

5
67

.7
2

72
.0

3
56

.8
9

59
.3

6
61

.3
9

69
.0

1
56

.6
1

C
4.

5
70

.1
9

60
.6

6
63

.6
7

71
.4

64
.8

8
61

.6
5

65
.6

9
63

.8
4

66
.9

9
58

.0
9

61
.4

7
67

.9
5

PA
R

T
59

.2
9

55
.1

7
66

.4
1

60
.1

7
63

.6
4

59
.9

5
53

.9
7

21
.7

3
37

.4
8

56
.3

7
21

.7
9

50
.5

3

R
IP

PE
R

64
.8

2
57

.9
2

60
.5

7
71

.3
59

.9
2

70
.8

7
63

.6
7

65
.6

9
65

.3
4

52
.1

7
71

.9
3

62
.3

1

SL
IP

PE
R

63
.6

4
63

.9
3

64
.6

9
67

.3
3

64
.9

2
67

.1
67

.6
1

55
.4

65
.5

63
.4

2
63

.9
8

63
.9

6

C
H

I-
R

W
70

.9
4

77
.8

76
.3

2
74

.5
1

75
.7

8
76

.8
72

.5
8

30
.7

6
57

.2
3

29
.7

1
51

.8
9

70
.8

9

K
N

N
69

.1
5

66
.4

8
44

44
70

.0
3

74
.2

3
73

.1
3

17
.0

2
81

.5
7

49
.3

60
.7

1
62

.3
1

K
ST

A
R

48
.7

2
61

.9
3

72
.2

8
73

.9
8

54
.1

6
54

.3
9

63
.7

4
56

.6
1

61
.2

1
69

.2
6

54
.5

5
70

.8
9

L
R

72
.6

6
74

.2
3

74
72

.4
8

74
.2

9
75

.7
4

74
.5

2
59

.4
7

72
.6

5
47

.5
73

62
.3

1

PU
B

L
IC

67
.1

70
.9

5
71

.0
5

67
.1

9
66

.4
1

69
.1

73
.2

7
55

.1
3

54
.8

8
0

61
.5

7
86

.5
7

B
N

G
E

61
.4

7
62

.2
3

64
.4

2
67

.6
1

62
.3

6
66

.2
3

64
.3

5
61

.2
1

65
.5

63
.5

6
69

.6
6

70
.8

9

E
A

C
H

48
.5

7
48

.5
7

44
.3

48
.5

7
48

.5
7

48
.5

7
48

.5
7

48
.5

7
48

.5
7

48
.5

7
48

.5
7

74
.3

R
IS

E
56

.9
5

60
.5

7
57

.6
8

67
.2

7
60

.5
65

.1
3

64
.3

5
68

.3
8

64
.7

1
60

.4
3

69
.9

6
74

.3

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

199

Results and Analysis
Ta

bl
e

6.
11

:G
-M

ea
n

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
O

de
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

63
.7

8
54

.6
2

58
.3

2
65

.6
8

62
.4

67
.3

9
65

.3
5

52
.2

8
61

.6
9

38
.5

7
55

.3
3

64
.9

1

C
H

C
69

.2
1

58
.0

3
71

.1
7

71
.0

5
64

.2
5

68
.6

69
.7

7
55

.6
5

61
.7

4
48

.9
3

61
.9

9
71

.1
8

C
PS

O
51

.5
9

62
.7

8
62

.3
9

58
.0

3
55

.1
56

.1
5

73
.1

6
57

.9
1

63
.2

3
62

.4
2

55
.9

1
57

.2
6

G
G

A
59

.7
59

.3
8

63
.2

7
68

.1
1

66
.0

7
65

.5
2

65
.2

6
60

.9
6

55
.9

50
.7

1
57

.6
1

71
.7

5

G
A

-I
nt

70
.2

4
57

.9
5

67
.8

2
71

.1
70

.1
9

69
.8

9
66

.1
8

43
.4

8
58

.5
8

46
.7

1
49

.9
2

72
.9

G
A

-A
D

I
69

.5
8

64
.2

5
66

.0
8

71
.5

3
71

.1
5

72
.5

5
69

.7
47

.1
2

60
.8

7
44

.3
7

51
.6

6
73

.9
4

IG
A

57
.1

3
58

.5
5

55
.5

66
.0

8
65

.9
2

62
.4

7
66

.5
1

53
.2

8
58

.2
8

49
.0

8
59

.5
3

70
.5

7

LW
PS

O
56

.2
9

57
.2

2
57

.2
7

61
.3

56
.8

9
60

.0
7

52
.5

9
64

.7
1

55
.5

2
54

.6
4

61
.4

2
54

.6
2

M
PL

C
S

68
.2

8
53

.7
4

65
.7

3
69

.0
5

71
67

.2
70

.5
1

50
.2

4
56

.6
1

46
.7

4
56

.3
3

70
.9

6

PB
IL

60
.8

4
63

.1
3

62
.1

3
66

.9
4

62
66

.9
4

68
.2

2
58

.4
5

58
.4

7
49

.0
8

59
.8

4
70

.5
7

SG
A

58
.2

2
55

.6
59

.7
8

68
.2

1
64

.1
2

62
.6

3
69

59
.8

5
54

.3
1

48
.9

9
54

.4
5

71
.4

9

SS
M

A
60

.7
4

60
.2

7
56

.4
7

69
.2

6
66

.3
3

64
.0

2
65

.2
6

58
.2

7
59

.3
48

.9
9

54
.4

5
71

.4
9

U
C

S
41

.4
3

39
.4

5
43

.5
7

41
.4

3
41

.4
8

34
.7

9
41

.4
8

45
.3

8
43

.6
1

37
.1

9
37

.1
9

37
.1

9

X
C

S
67

.2
9

52
.8

58
.8

9
69

.9
66

.7
66

.9
9

69
.8

1
43

.6
1

46
.4

8
58

.8
7

44
.9

9
67

.0
9

A
da

B
oo

st
58

.9
7

52
.9

8
51

.0
7

67
.5

61
.9

1
66

.4
7

66
.8

9
59

.2
6

55
.9

52
.6

7
60

.5
5

71
.4

9

B
ag

gi
ng

62
.3

53
.1

8
55

.1
1

69
.4

1
63

.7
1

68
.6

4
67

.6
8

54
.7

6
54

.2
7

48
.3

1
57

.2
1

67
.0

9

C
4.

5
65

.0
2

51
.3

42
.1

8
69

.4
6

65
.9

4
70

.8
4

67
.1

5
57

.5
59

.3
8

44
.6

5
57

.8
3

67
.8

2

PA
R

T
45

.4
4

35
.6

2
56

.6
9

56
.5

8
54

.4
1

30
.0

9
46

.0
9

18
.7

1
22

.6
8

0
0

53
.4

4

R
IP

PE
R

57
.5

6
78

.6
1

55
.7

1
72

.8
3

67
.7

7
71

.8
8

67
.1

4
64

.7
9

63
.5

3
52

.6
2

70
.1

2
63

.4
5

SL
IP

PE
R

62
.1

3
55

.6
5

53
.6

4
64

.0
1

63
.9

7
65

.9
7

68
.6

3
57

.5
52

.8
8

54
.7

59
.3

4
67

.0
6

C
H

I-
R

W
68

.1
4

85
.5

6
75

.5
2

70
.4

9
71

.7
8

70
.0

6
69

.1
5

30
.5

1
30

.5
1

30
.4

2
37

.8
2

69
.9

8

K
N

N
55

.7
9

61
.8

9
50

.0
5

49
.1

6
62

.5
9

62
62

.7
7

50
.0

2
53

.9
6

44
.6

5
54

.4
1

67
.0

6

K
ST

A
R

50
.8

4
50

.7
4

62
.1

7
65

.1
9

60
.5

9
62

.2
5

65
.3

5
0

18
.6

6
32

.1
3

0
63

.4
5

L
R

71
.3

2
68

.9
2

72
.6

6
71

.4
3

73
72

.7
8

73
.1

47
.0

3
57

.2
4

41
.0

5
47

67
.0

6

PU
B

L
IC

72
.3

1
54

.1
51

.3
3

66
.7

3
68

.8
9

72
.2

1
67

.2
1

58
.7

5
60

.9
6

0
52

.7
4

65
.6

6

B
N

G
E

57
.5

6
69

.0
6

61
.1

5
64

.1
7

72
.4

6
71

.4
9

69
.1

6
50

.4
56

.7
2

46
57

.0
6

67
.0

9

E
A

C
H

62
.2

5
32

.3
9

32
.3

9
32

.3
9

32
.3

9
32

.3
9

32
.3

9
32

.3
9

32
.3

9
32

.3
9

32
.3

9
63

.4
5

R
IS

E
38

.7
4

63
.1

1
54

.3
1

64
.0

8
65

.6
1

66
.9

4
66

.9
9

48
.6

51
.6

3
53

.1
1

60
.0

7
63

.4
5

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

200

Results and Analysis

Ta
bl

e
6.

12
:B

al
an

ce
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

B
ce

lD
at

as
et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

73
.5

6
72

.1
4

71
.6

9
75

.6
7

69
.7

8
64

.6
1

67
.4

4
64

.4
6

64
.4

2
69

.2
9

72
.1

7
75

.5
6

C
H

C
70

.8
72

.0
6

69
.9

7
78

.4
1

71
.4

1
64

.6
1

73
.2

64
.5

3
68

.3
9

68
.2

2
72

.2
4

73
.8

1

C
PS

O
63

.3
7

65
.0

9
63

.7
6

64
.6

5
63

.5
6

68
.3

3
59

.7
2

64
64

.3
47

.1
8

63
.5

3
61

.7
4

G
G

A
70

.5
4

72
.2

4
72

.4
4

78
.6

74
.8

7
64

.6
1

69
.5

9
64

.4
9

72
.2

1
68

.0
8

72
.2

1
73

.6
1

G
A

-I
nt

75
.4

3
72

.0
6

74
.9

2
78

.5
1

75
.4

3
64

.6
1

75
.2

3
64

.5
6

72
.1

7
64

.4
6

72
.1

7
74

.6

G
A

-A
D

I
76

.0
5

72
.0

2
71

.7
7

76
.0

5
76

.0
5

64
.6

2
72

.1
7

64
.6

1
62

.1
9

42
.4

9
60

.6
8

78
.4

1

IG
A

73
.2

71
.8

9
74

.9
1

71
.6

4
70

.7
9

60
.6

9
72

.5
1

56
.6

63
.7

9
63

.7
4

44
.9

3
73

.8
1

LW
PS

O
63

.4
65

.0
9

65
.5

8
64

.2
64

65
.7

6
60

.3
9

65
.9

6
74

.3
1

54
.1

61
.5

1
55

.2
5

M
PL

C
S

76
.0

5
72

.1
7

74
.1

3
76

.0
5

76
.0

5
64

.6
2

76
.0

5
60

.6
6

64
.4

4
60

.6
1

60
.6

8
78

.6
8

PB
IL

71
.7

72
.0

2
71

.3
7

78
.4

1
71

.6
4

64
.6

1
73

.2
64

.5
3

72
.1

7
63

.7
4

72
.2

1
73

.8
1

SG
A

70
.6

7
72

.1
69

.9
5

78
.4

1
70

.7
2

64
.6

1
73

.5
1

68
.3

4
68

.3
7

68
.3

9
72

.3
76

.2
1

SS
M

A
65

.3
5

71
.8

65
.5

5
80

.8
4

75
.3

7
56

.7
6

47
.7

2
68

.5
1

72
.0

6
68

.3
9

72
.3

76
.2

1

U
C

S
41

.0
7

41
.0

7
41

.0
7

41
.0

7
41

.0
7

41
.0

7
41

.0
7

41
.0

7
41

.0
7

37
.1

5
37

.1
5

37
.1

5

X
C

S
67

.0
9

69
.6

5
61

.7
5

60
.5

53
.5

64
.6

1
53

.4
6

52
.8

5
56

.7
7

48
.9

64
.5

6
70

.5
6

A
da

B
oo

st
73

.5
7

72
.1

57
.9

5
75

.3
71

.6
9

68
.5

1
80

.7
6

60
.6

4
64

.4
9

54
.8

2
72

.2
4

77
.1

7

B
ag

gi
ng

73
.2

7
72

.0
2

68
.4

6
75

.0
2

74
.3

7
68

.5
1

73
.5

1
60

.6
2

64
.3

3
67

.8
2

72
.2

7
75

.8
2

C
4.

5
72

.8
1

72
.0

2
68

.2
4

75
.2

3
71

.7
5

60
.6

6
70

.7
9

60
.6

4
68

.1
2

52
.4

4
68

.3
9

78
.2

3

PA
R

T
72

.0
2

72
.0

2
71

.8
56

.7
4

60
.5

1
29

.2
9

74
29

.2
9

29
.2

9
29

.2
9

29
.2

9
29

.2
9

R
IP

PE
R

0
37

.1
5

0
33

.2
1

0
68

.5
1

48
.9

2
52

.1
8

53
.5

1
50

.3
9

53
.9

79
.3

1

SL
IP

PE
R

70
.1

4
68

.2
2

72
.0

2
72

.1
72

.0
2

68
.5

1
75

.0
9

68
.3

7
68

.4
6

64
.0

1
76

.1
6

76
.2

1

C
H

I-
R

W
72

.3
5

52
.8

5
56

.7
7

56
.7

6
56

.7
6

45
72

.2
7

37
.1

4
37

.1
4

29
.2

9
37

.1
4

56
.7

5

K
N

N
56

.7
7

52
.8

5
41

.0
6

48
.9

2
52

.8
5

56
.7

8
76

.2
5

91
.0

9
60

.5
9

63
.5

72
.2

4
41

.1
5

K
ST

A
R

70
.9

4
68

.2
2

54
.1

1
74

.4
6

69
.5

64
.6

1
72

.4
2

64
.4

9
64

.4
4

47
.2

60
.6

4
75

.0
2

L
R

77
.2

8
68

.4
4

75
.6

1
78

.8
5

78
.9

4
64

.6
2

76
.4

6
64

.5
9

68
.4

8
37

.1
4

64
.5

9
75

.8
2

PU
B

L
IC

75
.1

6
72

.0
2

61
.3

3
78

.2
3

69
.3

64
.6

2
69

.3
68

.3
4

68
.2

9
55

.5
8

64
.5

6
71

.5
8

B
N

G
E

68
.8

5
64

.4
4

61
.9

4
67

.9
8

65
.9

2
68

.5
2

65
.0

6
59

.8
5

62
.8

5
38

.9
1

64
.3

75
.2

9

E
A

C
H

57
.8

6
57

.8
6

57
.8

6
57

.8
6

57
.8

6
57

.8
6

57
.8

6
57

.8
6

57
.8

6
57

.8
6

57
.8

6
57

.8
6

R
IS

E
66

.8
2

68
.2

2
54

.2
6

78
.2

3
69

.2
64

.6
1

83
.6

7
68

.3
9

68
.3

4
52

.6
68

.3
4

69
.0

9

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

201

Results and Analysis
Ta

bl
e

6.
13

:B
al

an
ce

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
B

et
w

ix
tD

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

49
.7

1
49

.7
3

48
.8

5
62

.5
1

52
.0

4
56

.3
58

.9
4

46
.4

7
46

.7
3

47
.3

9
53

.2
2

64
.9

1

C
H

C
72

.2
7

53
.8

9
69

.8
5

69
.0

2
69

.2
8

70
.2

2
65

.5
3

67
.1

67
.8

5
29

.2
8

57
.7

3
71

.1
7

C
PS

O
65

.4
2

66
.9

4
59

.4
6

65
.8

9
63

.9
1

70
.0

6
58

.3
2

60
.2

9
60

.7
7

61
.6

2
54

.0
7

54
.2

8

G
G

A
63

.7
2

41
.7

2
56

.8
8

67
.8

9
65

.9
7

62
.2

1
64

.8
5

64
.7

6
58

.7
3

37
.1

1
53

.9
4

71
.7

3

G
A

-I
nt

64
.4

9
41

.8
2

60
.3

5
67

.4
3

64
.4

8
64

.6
9

64
.7

49
.4

2
59

.5
3

49
.5

8
47

.7
6

72
.8

9

G
A

-A
D

I
60

.2
9

43
.9

7
65

.0
8

64
.2

2
65

.0
5

63
.1

2
59

.9
49

.3
6

52
.0

5
49

.8
6

49
.0

2
73

.9
2

IG
A

57
.9

8
56

.2
3

62
.1

6
63

.5
9

59
.2

4
57

.1
9

61
.2

6
50

.7
5

47
.9

5
31

.8
9

56
.2

70
.5

5

LW
PS

O
65

.4
2

65
.3

5
61

.3
1

63
.7

3
67

.0
5

58
.6

2
51

.6
9

65
.6

2
59

.7
8

68
.1

3
59

.6
4

51
.4

1

M
PL

C
S

62
.7

41
.6

7
46

.1
6

65
.6

6
61

.7
1

57
.7

1
58

.7
1

52
.1

7
51

.7
3

41
.9

8
52

.7
4

70
.9

5

PB
IL

61
.9

7
52

.5
7

66
.6

1
69

.3
9

64
.4

9
67

.4
66

.3
5

59
.4

5
56

.5
9

31
.8

9
56

.2
8

70
.5

5

SG
A

64
.6

8
47

55
.8

8
67

.6
5

67
.8

9
62

.4
4

65
.5

3
54

.3
6

59
.3

7
42

.2
9

51
.4

3
71

.4
7

SS
M

A
64

.4
9

49
.7

3
56

.2
6

67
.4

68
.3

8
68

.7
6

66
.4

56
.9

8
56

.5
42

.2
9

51
.4

3
71

.4
7

U
C

S
37

.1
3

37
.1

3
34

.5
2

37
.1

3
37

.1
3

37
.1

3
37

.1
3

37
.1

3
34

.5
2

37
.0

6
39

.2
1

39
.2

1

X
C

S
57

.4
5

41
.8

2
45

.5
2

65
.7

2
66

.0
9

68
.6

3
53

.1
2

47
.0

9
46

.6
7

55
.2

6
44

.1
1

66
.9

7

A
da

B
oo

st
57

.1
2

51
.9

9
43

.6
4

59
.2

2
47

.4
6

56
.7

2
63

.3
7

49
.1

46
.3

4
34

.3
1

57
.3

3
71

.4
7

B
ag

gi
ng

66
.6

2
39

.5
8

56
.3

2
68

.6
3

61
.1

58
.5

3
59

.8
6

44
.0

3
45

.6
3

44
.0

9
53

.8
5

66
.9

7

C
4.

5
60

.1
2

44
.5

47
.9

6
45

.4
8

61
.2

3
54

.7
9

64
.6

9
41

.3
4

45
.1

7
37

.0
8

53
.9

8
67

.8
1

PA
R

T
56

.8
6

48
.6

6
29

.2
9

59
.6

4
34

.5
1

53
.3

8
34

.2
7

29
.2

9
29

.2
9

34
.4

6
29

.2
9

52
.4

8

R
IP

PE
R

45
.9

6
47

.3
7

43
.7

1
63

.5
2

53
.1

5
54

.8
9

55
.7

3
60

.2
9

58
.1

8
58

.0
6

68
.2

3
62

.0
2

SL
IP

PE
R

56
.9

9
52

.2
7

36
.3

2
67

.7
5

61
.4

1
57

.8
7

63
.8

6
49

.1
46

.2
6

51
.8

7
56

.1
4

67

C
H

I-
R

W
70

.8
9

65
.7

7
68

.3
5

59
.7

69
.2

9
71

.0
8

69
.2

7
32

.0
7

48
.6

3
29

.2
6

39
.5

6
69

.5
3

K
N

N
57

.6
2

64
.9

4
44

.3
1

44
.0

3
67

.1
8

60
.4

6
62

.2
9

49
.3

6
53

.8
53

.9
3

52
.7

9
67

K
ST

A
R

56
.0

1
43

.8
4

45
.0

3
47

.9
7

46
.0

8
48

.2
3

48
.9

5
36

.6
7

39
.8

7
33

.9
29

.2
9

62
.0

2

L
R

71
.3

2
36

70
.2

8
71

.8
2

72
.0

6
72

.0
6

68
.2

3
54

.2
8

62
.8

3
42

.2
1

45
.3

7
67

PU
B

L
IC

68
.4

49
.6

8
58

.5
3

59
.6

6
68

.1
4

60
.7

7
62

.9
1

56
.8

6
61

.1
1

29
.2

9
50

.1
5

64
.9

2

B
N

G
E

62
.2

9
61

.3
2

56
.7

5
51

.5
1

65
.0

5
59

.0
8

61
.4

4
49

.4
2

52
.2

2
58

.6
3

53
.8

2
66

.9
7

E
A

C
H

37
.1

1
37

.1
1

37
.1

1
37

.1
1

37
.1

1
37

.1
1

37
.1

1
37

.1
1

37
.1

1
37

.1
1

36
.7

3
62

.0
2

R
IS

E
53

.8
49

.2
3

39
.2

6
63

.8
1

60
.7

8
60

.1
2

60
.8

5
46

.7
8

51
.7

3
59

.9
5

57
.1

6
62

.0
2

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

202

Results and Analysis

Ta
bl

e
6.

14
:B

al
an

ce
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

Io
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

56
.8

8
50

.4
3

50
.0

1
66

.8
8

50
.1

8
57

.3
1

70
.7

6
77

.4
2

56
.2

5
70

.5
2

57
.2

7
80

.3
3

C
H

C
69

.2
64

.4
66

.7
9

69
.5

5
69

.6
5

69
.4

3
75

.5
4

50
.4

9
50

.3
5

43
.4

2
57

.4
2

73
.4

C
PS

O
73

.8
6

75
.8

1
77

.1
45

79
.7

73
.0

4
80

.1
3

57
.2

2
77

.8
9

83
.5

5
69

.0
2

88
.3

9
79

.2

G
G

A
69

.4
3

57
.4

7
60

.0
25

62
.9

8
70

.1
6

63
.8

7
63

.1
5

50
.4

7
57

.3
1

50
.3

7
50

.4
8

71
.1

1

G
A

-I
nt

62
.6

1
57

.4
5

53
.1

35
69

.5
5

70
.1

6
63

.3
1

69
.8

6
57

.5
5

50
.4

8
64

.3
3

57
.4

7
78

.1
6

G
A

-A
D

I
62

.1
64

.4
7

66
.8

25
75

.9
7

69
.0

9
62

.7
9

69
.6

5
50

.4
9

50
.4

6
63

.8
1

57
.2

4
74

.1

IG
A

75
.5

4
57

.3
1

67
.6

69
.4

3
62

.6
1

68
.4

6
68

.5
9

57
.4

50
.3

57
.5

2
36

.3
3

74
.9

3

LW
PS

O
76

.6
2

79
.2

76
.6

2
76

.9
1

69
.0

2
76

.5
4

58
.6

9
42

.0
7

78
.3

9
64

.3
9

79
.2

7
72

.9
2

M
PL

C
S

61
.9

9
57

.4
7

59
.6

05
75

.8
3

63
.2

3
70

.1
6

75
.6

8
50

.4
9

50
.4

5
77

.3
2

57
.3

7
79

.0
6

PB
IL

69
.3

2
57

.2
7

64
.2

5
62

.9
8

63
.1

5
69

.8
6

70
.0

6
50

.4
7

50
.3

57
.5

2
50

.4
3

74
.9

3

SG
A

63
.0

6
64

.5
2

79
.1

05
69

.0
9

69
.8

6
70

.2
5

69
.7

6
50

.4
9

50
.3

5
50

.4
7

57
.4

2
72

.2
9

SS
M

A
62

.4
1

64
.2

9
64

.4
3

68
.0

5
62

.2
67

.3
3

61
.1

7
50

.4
9

57
.5

1
50

.4
7

57
.4

2
72

.2
9

U
C

S
43

.4
2

43
.4

2
46

.9
6

43
.4

2
43

.4
2

43
.4

2
50

.4
9

50
.5

43
.4

3
57

.5
5

57
.5

5
57

.5
5

X
C

S
80

.9
4

57
.3

4
56

.8
75

70
.2

5
70

.3
4

70
.2

5
70

.0
6

45
50

.4
9

70
.1

6
50

.4
7

74
.9

3

A
da

B
oo

st
56

.6
5

57
.4

57
.2

7
69

.4
3

57
.2

64
.4

3
64

.2
4

50
.4

3
57

.3
4

64
.4

9
57

.3
1

86
.0

1

B
ag

gi
ng

63
.1

5
57

.4
9

56
.7

1
67

.1
9

63
.3

1
63

.6
1

70
.3

4
57

.5
4

50
.3

7
78

.1
9

57
.2

7
76

.5

C
4.

5
69

.8
6

57
.5

2
56

.9
3

66
.4

1
63

.8
7

56
.9

8
63

.9
3

50
.4

6
57

.2
7

64
.4

3
57

.3
1

79
.9

2

PA
R

T
80

.9
4

50
.4

1
80

.1
3

59
.8

6
73

.5
8

67
.4

8
66

.7
9

36
.3

6
56

.7
7

29
.6

4
57

.3
4

29
.2

9

R
IP

PE
R

71
.5

9
57

.5
4

57
.5

6
43

.4
3

57
.5

6
74

.9
3

57
.4

9
69

.5
5

69
.4

3
73

.0
4

68
.9

6
83

.1
2

SL
IP

PE
R

70
.1

6
57

.4
7

63
.9

3
68

.8
4

70
.1

6
56

.9
3

63
.5

4
57

.5
4

57
.4

5
77

.4
2

57
.4

2
78

.8
4

C
H

I-
R

W
72

.6
7

52
.7

5
75

.3
3

75
.2

4
70

.4
2

70
.5

1
70

.7
45

45
44

.9
7

45
74

.6
8

K
N

N
49

.8
6

57
.4

5
50

.5
78

.7
7

56
.9

3
56

.7
1

69
.9

7
50

.5
50

.3
77

.8
57

.3
1

71
.0

6

K
ST

A
R

63
.4

6
57

.5
2

49
.3

6
71

.1
1

64
.5

4
64

.4
64

.3
6

50
.4

6
50

.2
7

56
.8

8
50

.4
9

68
.7

2

L
R

84
.6

1
64

.4
7

85
.4

76
.6

3
79

.7
81

.1
4

79
.4

9
64

.5
6

71
.3

7
29

.2
64

.5
6

85
.4

PU
B

L
IC

75
.0

8
57

.3
1

50
.3

5
65

.5
8

63
.0

6
69

.8
6

70
.1

6
43

.4
3

56
.5

9
29

.2
9

57
.5

4
80

.3
9

B
N

G
E

50
.2

1
57

.4
2

50
.4

6
61

.5
3

57
.3

1
64

.4
71

.1
50

.4
6

50
.3

7
71

.0
4

57
.3

1
79

.4
9

E
A

C
H

74
.4

4
74

.4
4

74
.4

4
74

.4
4

74
.4

4
74

.4
4

78
.0

1
74

.4
4

74
.4

4
74

.4
4

74
.4

4
74

.4
4

R
IS

E
57

.1
2

93
.4

9
57

.4
2

70
.3

4
57

.1
2

57
.3

1
64

.6
4

50
.4

5
50

.4
1

77
.1

64
.2

9
80

.3
3

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

203

Results and Analysis
Ta

bl
e

6.
15

:B
al

an
ce

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
Iv

y
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

64
.8

4
51

.5
1

49
.0

8
68

.8
8

55
.9

58
.6

3
62

.4
6

53
.3

4
48

.7
9

47
.3

9
53

.2
2

67
.8

2

C
H

C
73

.7
7

51
.1

3
69

.4
9

68
.7

5
62

.9
4

61
.9

65
.2

7
47

.1
9

51
.8

4
29

.2
8

57
.7

3
69

.6
3

C
PS

O
68

.6
9

69
.5

9
70

.1
1

62
.6

6
68

.7
5

69
.9

3
46

.8
9

44
.3

9
60

.8
1

61
.6

2
54

.0
7

70
.0

9

G
G

A
62

.9
8

52
.6

1
63

.6
8

67
.2

7
60

.4
5

55
.2

8
50

.4
5

49
.3

6
51

.4
8

37
.1

1
53

.9
4

73
.2

4

G
A

-I
nt

70
.5

9
49

.2
6

63
.7

2
68

.4
7

61
.3

4
59

.7
4

66
.5

6
77

.1
6

54
.3

4
49

.5
8

47
.7

6
66

.8
7

G
A

-A
D

I
72

.2
3

52
.3

1
63

.5
1

69
.4

5
62

.0
9

62
.3

9
61

.5
4

49
.4

1
49

.3
1

49
.8

6
49

.0
2

70
.9

2

IG
A

65
.7

9
58

.9
3

57
.3

6
64

.9
1

57
.3

6
52

.8
1

58
.7

7
56

.1
6

50
.4

31
.8

9
56

.2
68

.8
5

LW
PS

O
71

.7
3

67
.5

8
68

58
.4

5
62

.5
7

56
.4

1
45

.6
6

59
.0

3
65

.5
68

.1
3

59
.6

4
67

.5
5

M
PL

C
S

65
.2

8
62

.1
9

49
.7

7
66

.9
3

64
.5

7
62

.9
8

51
.8

3
49

.4
1

49
.2

7
41

.9
8

52
.7

4
71

.1
7

PB
IL

68
.0

1
52

.8
4

61
.2

7
66

.3
6

64
.5

4
58

.0
4

62
.5

2
51

.8
9

48
.9

5
31

.8
9

56
.2

8
68

.8
5

SG
A

65
.7

9
54

.5
8

55
.7

75
61

.3
3

63
.2

6
63

59
.0

7
51

.8
4

49
.1

9
42

.2
9

51
.4

3
69

.4
7

SS
M

A
68

.5
8

52
.3

7
66

.2
35

58
.6

8
62

.4
1

60
.9

61
.9

54
.4

2
56

.7
6

42
.2

9
51

.4
3

69
.4

7

U
C

S
34

.3
4

34
.3

4
34

.3
35

34
.3

4
34

.3
4

36
.8

6
64

.6
4

36
.8

6
36

.8
6

37
.0

6
39

.2
1

39
.3

9

X
C

S
71

.5
7

52
.7

2
60

.6
3

68
.8

8
64

.8
4

65
.6

4
71

.0
5

41
.9

44
.4

1
55

.2
6

44
.1

1
72

.5
3

A
da

B
oo

st
65

.6
5

51
.7

2
49

.2
9

72
.1

6
54

.1
56

.3
6

55
.9

4
46

.8
2

51
.5

9
34

.3
1

57
.3

3
66

.8
7

B
ag

gi
ng

65
.2

7
51

.5
7

59
.0

9
74

.8
1

60
.8

60
.8

70
.0

7
51

.7
6

54
.1

8
44

.0
9

53
.8

5
39

.5
7

C
4.

5
65

.5
53

.9
4

49
.0

4
69

.7
2

62
.6

8
59

.3
3

33
.4

9
49

.2
7

49
.0

4
37

.0
8

53
.9

8
67

.2
2

PA
R

T
62

.0
2

55
.8

8
62

.4
2

68
.9

2
59

.9
8

63
.1

52
.5

2
31

.8
34

.2
9

34
.4

6
29

.2
9

60
.8

7

R
IP

PE
R

49
.1

9
39

.2
5

44
.8

56
.6

8
59

.3
4

64
.2

7
53

.9
4

63
.7

4
65

.0
6

58
.0

6
68

.2
3

65
.5

SL
IP

PE
R

72
.7

2
49

.0
6

59
.1

8
69

.2
5

67
.5

7
65

.2
7

62
.8

1
54

.4
1

51
.5

1
51

.8
7

56
.1

4
73

.5
8

C
H

I-
R

W
67

.1
1

62
.6

1
58

.5
58

.2
62

.4
1

58
.8

69
.2

6
34

.3
4

34
.3

4
29

.2
6

39
.5

6
58

.3
5

K
N

N
63

.0
6

54
.8

4
56

.8
3

56
.8

3
60

.3
6

55
.1

62
.8

8
59

.2
7

54
.1

5
53

.9
3

52
.7

9
66

.8
7

K
ST

A
R

61
.1

6
46

.3
6

61
.1

6
67

.3
7

60
.6

9
57

.9
8

64
.5

4
39

.3
5

49
.1

4
33

.9
29

.2
9

39
.5

7

L
R

66
.8

2
66

.3
5

66
.6

1
67

.5
9

68
.1

1
69

.9
5

70
.2

7
51

.9
6

61
.8

2
42

.2
1

45
.3

7
66

.8
7

PU
B

L
IC

71
.5

2
50

.4
5

41
.6

9
73

.7
5

68
.5

4
59

.6
8

61
.4

5
49

.1
9

37
.1

8
29

.2
9

50
.1

5
39

.5
7

B
N

G
E

61
.4

46
.6

1
41

.8
2

61
54

.0
1

51
.3

1
54

.8
4

49
.3

7
51

.6
5

58
.6

3
53

.8
2

39
.5

7

E
A

C
H

36
.8

7
36

.8
7

36
.8

7
36

.8
7

36
.8

7
36

.8
7

36
.8

7
33

.5
2

36
.8

7
37

.1
1

36
.7

3
39

.5
7

R
IS

E
54

.0
1

49
.0

9
44

.3
6

66
.6

1
51

.1
3

51
.0

5
54

.8
4

46
.8

4
54

.0
7

59
.9

5
57

.1
6

39
.5

7

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

204

Results and Analysis

Ta
bl

e
6.

16
:B

al
an

ce
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

Jc
s

D
at

as
et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

76
.3

4
70

.6
9

68
.2

05
77

.1
72

.9
8

77
.1

4
78

.5
72

.8
7

80
.0

4
65

.1
9

81
.6

74
.7

2

C
H

C
86

.2
9

82
.0

2
85

.5
3

81
.9

1
83

.7
1

83
.7

1
85

.6
84

.0
2

85
.8

1
68

.0
4

86
.3

6
82

.2

C
PS

O
78

.8
3

64
.6

4
71

.4
4

72
.9

3
74

.1
78

.0
1

68
.8

3
70

.6
2

72
.7

2
56

.7
2

80
.6

9
72

.9
3

G
G

A
84

.5
4

75
87

.0
7

81
.6

2
84

.5
4

81
.0

3
82

.7
3

79
.3

2
84

.6
4

83
.6

3
44

.1
84

.3
4

G
A

-I
nt

84
.0

2
70

.1
3

82
.9

1
79

.4
7

77
.8

2
83

.0
6

81
.3

3
74

.5
6

81
.1

6
67

.5
3

81
.3

8
80

.6
9

G
A

-A
D

I
83

.5
3

75
.2

7
82

.2
1

81
.6

2
78

.2
8

83
.2

8
83

.0
6

73
.7

1
83

.2
8

58
.8

3
84

.9
4

77
.7

1

IG
A

76
.7

1
78

.1
4

68
.9

8
74

.6
8

74
.4

9
81

.3
8

81
.0

4
74

.2
4

78
.8

6
84

.2
9

78
.7

2
80

.1
9

LW
PS

O
79

.3
2

59
.3

6
75

.7
2

73
.7

6
74

.6
8

74
.7

2
72

.0
1

72
.9

3
78

.5
59

.9
1

81
.9

8
78

.8
3

M
PL

C
S

83
.0

6
72

.5
2

80
.4

2
78

.9
2

74
.0

7
80

.1
9

81
.9

1
79

.8
7

79
.1

3
64

.1
5

81
.1

6
78

.5
8

PB
IL

82
.4

78
.0

2
85

.6
82

.0
6

83
.0

6
83

.7
1

84
.1

8
81

.6
85

.8
1

84
.2

9
85

.2
4

80
.1

9

SG
A

83
.7

1
77

.6
1

85
.9

2
79

.9
3

82
.4

8
81

.6
2

83
.5

2
81

.6
83

.5
3

78
.6

4
81

.1
6

65
.2

4

SS
M

A
82

.7
2

74
.8

6
85

80
.1

9
85

.2
5

82
.7

3
81

.3
8

78
.7

2
83

.3
9

78
.6

4
81

.1
6

65
.2

4

U
C

S
63

.1
4

63
.1

4
65

.6
2

63
.1

4
63

.1
4

63
.1

4
63

.1
4

63
.1

4
67

.7
9

50
.1

6
50

.1
6

50
.1

6

X
C

S
85

.5
3

76
.8

5
62

.4
9

85
.2

5
80

.6
5

82
.4

8
82

.7
3

79
.1

3
80

.6
5

37
.0

3
84

.4
9

79
.2

A
da

B
oo

st
79

.3
2

72
.8

7
65

.0
5

78
.2

8
77

.6
1

81
.1

6
76

.7
9

74
.2

4
76

.6
1

68
.7

7
79

.3
2

73
.7

6

B
ag

gi
ng

78
.7

2
77

.4
6

75
.1

4
78

.8
6

78
.5

79
.9

3
76

.0
3

67
.0

3
79

.1
3

62
.4

74
.5

6
73

.7
6

C
4.

5
80

.6
9

67
.6

9
65

.1
4

78
.8

6
79

.3
2

78
.7

2
78

.9
2

76
.2

3
75

.8
2

72
.5

1
69

.2
3

75
.2

4

PA
R

T
64

.4
37

.1
4

37
.0

3
73

.0
8

39
.7

1
34

.6
4

48
29

.2
9

31
.9

72
.7

2
29

.2
9

69
.3

7

R
IP

PE
R

67
.9

6
70

.6
9

68
.1

1
71

.6
7

69
.9

79
.4

1
77

.1
4

78
.2

8
78

.7
2

59
.3

4
84

.3
4

69
.3

7

SL
IP

PE
R

71
.8

2
72

.7
6

70
.1

3
77

.8
2

77
.6

1
76

.9
7

76
.7

9
79

.1
3

78
.9

2
68

.8
4

84
.9

4
74

.6
8

C
H

I-
R

W
80

.9
1

82
.8

9
81

.7
82

.1
80

.9
1

80
.5

1
80

.5
1

81
.4

9
85

.0
9

76
.1

82
.6

7
77

.7

K
N

N
64

.5
2

67
.5

9
62

.5
8

62
.5

8
69

.2
3

80
.6

9
79

.4
1

72
.2

6
69

.3
7

55
.1

7
84

.3
4

69
.3

7

K
ST

A
R

68
.0

9
64

.6
4

73
.7

6
78

.5
8

71
.3

4
68

.7
7

68
.4

4
76

.7
9

82
.2

63
.9

8
77

.3
73

.7
6

L
R

82
.0

6
85

.2
4

83
.3

9
83

.0
6

83
.3

9
84

.1
8

83
.4

6
80

.5
84

.0
2

43
.7

8
80

.2
75

.2
4

PU
B

L
IC

78
.0

1
74

.4
70

.2
3

74
.6

8
76

.3
3

74
.2

5
72

.9
3

80
.4

2
76

.8
5

40
.6

7
84

.0
2

80
.0

8

B
N

G
E

74
.8

6
75

.1
4

72
.8

7
75

.8
2

76
.7

9
80

.6
9

79
.9

3
77

.3
79

.3
2

69
.1

9
83

.7
8

73
.7

6

E
A

C
H

80
.3

4
80

.3
4

80
.3

4
80

.3
4

80
.3

4
80

.3
4

80
.3

4
80

.3
4

80
.3

4
80

.3
4

80
.3

4
69

.3
7

R
IS

E
64

.4
64

.6
4

67
.7

9
69

.9
64

.6
4

77
.1

76
.3

3
73

.5
2

78
.2

8
61

.3
7

82
.0

6
73

.7
6

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

205

Results and Analysis
Ta

bl
e

6.
17

:B
al

an
ce

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
L

an
g

D
at

as
et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

76
.3

4
76

.0
9

72
.6

2
79

.0
1

73
.3

1
73

.4
4

77
.8

72
.8

1
79

.8
2

68
.2

6
80

.1
2

76
.5

3

C
H

C
78

.6
3

81
.2

3
78

.5
1

82
.6

6
80

.9
6

78
.4

3
80

.3
9

78
.6

6
81

.1
5

76
.1

5
80

.9
6

79
.1

7

C
PS

O
75

.6
6

81
.8

1
82

.1
55

78
.9

9
82

.6
7

83
.1

4
72

.4
8

79
.5

1
78

.7
6

65
.7

5
81

.6
9

81
.1

5

G
G

A
77

.2
78

.7
3

77
.0

25
79

.3
4

80
.7

5
78

.4
3

78
.0

4
78

.6
6

81
.2

3
76

.2
78

.5
9

81
.9

9

G
A

-I
nt

79
.5

1
78

.5
9

77
.1

35
80

.9
6

81
.0

6
83

.4
7

80
.7

5
75

.9
5

80
.9

6
70

.8
1

77
.2

8
82

.1
7

G
A

-A
D

I
81

.4
3

76
.0

9
80

.8
81

.4
3

78
.5

1
80

.6
4

83
.3

5
78

.2
4

80
.7

5
72

.6
3

80
.6

4
82

.3
4

IG
A

72
.2

5
75

.3
2

71
.8

95
75

.3
5

77
.1

3
77

.8
4

66
.9

4
71

69
.6

2
73

.6
67

.8
1

78
.4

3

LW
PS

O
69

.8
4

76
.5

8
78

.6
1

77
.4

9
80

.3
5

78
.7

1
74

.2
3

74
.6

5
71

.6
7

62
.6

3
70

.5
9

72
.6

4

M
PL

C
S

78
.0

4
78

.5
9

74
.5

1
82

.8
1

80
.7

5
81

.0
6

78
.2

4
81

.0
6

81
.0

6
68

.0
4

77
.8

84
.6

2

PB
IL

79
.2

5
81

.2
3

70
.3

15
78

.1
4

75
.6

2
78

.5
9

80
.3

9
81

.0
6

76
.0

2
73

.6
80

.8
6

78
.4

3

SG
A

77
.6

3
78

.5
9

77
.0

25
80

.1
2

76
.0

9
80

.8
6

75
.2

1
78

.7
3

80
.9

6
73

.5
6

80
.9

6
77

.9
4

SS
M

A
79

.0
1

78
.6

6
80

.7
4

82
.8

1
81

.0
6

80
.7

5
80

.2
6

83
.4

7
82

.5
73

.5
6

80
.9

6
77

.9
4

U
C

S
60

.6
1

60
.6

1
64

.5
6

60
.6

1
60

.6
1

60
.6

1
58

.0
2

60
.6

1
60

.6
3

63
.2

2
63

.2
2

63
.2

2

X
C

S
79

.1
7

78
.6

6
77

.0
9

80
.7

5
78

.2
4

78
.4

3
80

.6
4

75
.8

8
80

.8
6

65
.2

78
.0

4
80

.6
2

A
da

B
oo

st
71

.4
5

70
.9

1
60

.1
7

81
.9

9
75

.8
8

73
.1

6
75

.2
1

72
.9

9
72

.8
1

75
.0

5
75

.5
2

63
.2

2

B
ag

gi
ng

73
.9

9
76

.0
2

72
.8

1
82

.5
78

.5
1

80
.9

6
79

.8
2

63
.1

6
77

.8
68

78
.0

4
73

.9
9

C
4.

5
75

.9
9

81
.1

5
69

.8
8

82
.5

83
.2

3
78

.0
4

73
.8

2
77

.8
77

.2
8

70
.5

1
77

.9
2

73
.9

9

PA
R

T
34

.8
5

81
.1

5
50

.1
7

60
.6

5
78

.4
3

42
.3

5
47

.6
5

37
.1

1
34

.5
2

57
.0

3
29

.2
9

44
.5

6

R
IP

PE
R

65
.6

7
55

.3
6

63
.1

9
57

.9
60

.5
8

79
.2

5
73

.2
4

76
.6

7
78

.6
3

89
.1

1
78

.2
4

75
.7

1

SL
IP

PE
R

74
.2

9
73

.4
4

70
.4

5
78

.0
4

78
.1

4
73

.2
4

72
.1

3
75

.5
2

75
.2

1
65

.8
6

74
.7

1
79

.4
8

C
H

I-
R

W
77

.7
7

77
.5

7
79

.7
3

72
.6

5
81

.6
3

79
.8

5
74

.8
1

48
.3

3
48

.3
3

68
.5

7
48

.3
3

84
.5

5

K
N

N
71

.3
1

73
.3

8
68

.4
68

.4
73

.1
6

75
.2

1
74

.7
1

70
.8

6
67

.2
5

64
.0

7
77

.6
8

63
.2

2

K
ST

A
R

64
.3

3
65

.6
2

64
.1

1
79

.6
7

68
.1

73
.5

78
.3

4
73

.3
8

71
.1

9
68

.7
5

76
.0

2
73

.9
9

L
R

85
.8

4
85

.8
84

.9
9

86
.3

2
84

.8
1

84
.0

2
81

.9
3

78
.6

6
80

.5
4

80
.2

6
80

.9
6

63
.2

2

PU
B

L
IC

77
.8

4
81

.2
3

74
.7

1
83

.7
8

80
.8

6
80

.9
6

80
.6

4
70

.6
7

72
.4

3
36

.0
4

76
.0

2
74

.5
8

B
N

G
E

62
.3

8
68

.2
7

60
.3

8
76

.3
4

68
.0

3
73

.2
4

77
.1

3
37

.3
3

70
.0

2
64

.6
74

.9
7

63
.2

2

E
A

C
H

34
.5

3
34

.5
3

34
.5

3
34

.5
3

34
.5

3
34

.5
3

34
.5

3
34

.5
3

32
.2

4
34

.5
3

34
.5

3
73

.9
9

R
IS

E
59

.6
6

60
.4

7
54

.9
9

76
.0

7
70

.7
4

75
.8

8
79

.9
7

67
.6

4
69

.2
6

61
.0

1
74

.8
4

63
.2

2

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

206

Results and Analysis

Ta
bl

e
6.

18
:B

al
an

ce
R

es
ul

ts
of

SM
P

M
od

el
s

af
te

rD
at

a
R

es
am

pl
in

g
on

L
og

4j
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

61
.3

3
54

.1
9

59
.5

5
66

.3
6

63
.7

1
63

.4
3

63
.5

2
65

.2
1

68
.9

4
62

.9
79

.3
3

71
.1

9

C
H

C
74

.2
3

76
.2

6
79

.7
3

75
.8

77
.8

4
75

.0
7

75
.6

3
59

.1
5

65
.1

1
56

.0
7

70
.0

1
73

.6
3

C
PS

O
62

.9
2

73
.6

9
55

.9
2

73
.5

67
.9

5
70

.6
3

64
.1

9
68

.8
6

61
.6

7
63

.1
7

66
.7

4
75

.4
1

G
G

A
69

.1
7

69
.8

9
65

.6
1

74
.2

5
69

.6
3

71
.8

5
76

.9
7

59
.0

9
69

.7
45

.9
6

72
.9

3
39

.3
9

G
A

-I
nt

70
.4

8
69

.9
5

70
.2

3
74

.4
2

71
.0

1
72

.0
9

77
.0

6
59

.2
5

60
.2

5
91

.0
5

70
.8

6
70

.8
3

G
A

-A
D

I
68

.1
5

65
.9

4
67

.5
2

73
.1

5
71

.3
9

74
.9

1
74

.6
62

.4
1

61
.5

5
60

.9
2

68
.5

6
69

.6
4

IG
A

68
.6

9
72

.6
7

69
.4

3
69

.5
1

70
.8

2
67

.2
2

68
.8

1
64

.8
4

67
.6

6
52

.5
9

61
.2

8
76

.3
8

LW
PS

O
68

.1
5

71
.2

65
.7

5
74

.2
5

67
.7

3
73

.4
7

67
.2

59
.0

1
68

.9
2

67
.2

6
67

.1
3

67
.6

M
PL

C
S

73
.1

3
69

.8
9

64
.8

2
70

.2
4

69
.3

7
70

.0
7

69
.2

6
57

.4
5

65
.2

1
54

.9
3

64
.9

5
67

.0
8

PB
IL

68
.5

4
71

.7
5

72
.5

9
75

.2
9

74
.1

2
70

.9
2

75
.5

5
62

.3
7

65
.3

5
52

.5
9

66
.8

6
76

.3
8

SG
A

65
.3

8
66

.1
4

70
.9

1
72

.9
69

.9
1

71
.8

5
74

.9
8

62
.5

9
70

.2
9

52
.6

5
66

.6
7

74
.2

5

SS
M

A
69

.5
9

69
.0

1
67

.5
8

74
.2

3
70

.6
3

76
.8

9
74

65
.8

6
63

.3
3

52
.6

5
66

.6
7

74
.2

5

U
C

S
51

.1
3

51
.1

3
51

.0
7

51
.0

2
51

.1
3

56
.2

3
51

.1
3

51
.1

4
51

.1
4

52
.7

8
52

.7
8

52
.7

8

X
C

S
72

.2
7

62
.3

7
62

.9
6

72
.7

7
67

.8
6

67
.2

3
72

.1
7

53
.3

3
63

.8
8

60
.2

5
67

.9
2

70
.9

3

A
da

B
oo

st
63

.5
2

57
.5

6
57

.2
6

64
.0

5
58

.7
3

58
.7

3
62

.7
6

60
.4

6
63

.2
2

57
.7

5
66

.1
4

52
.7

8

B
ag

gi
ng

68
.8

8
60

.8
1

61
.8

69
.1

4
61

.2
2

66
.0

1
71

.3
54

.0
6

56
.9

3
57

.6
3

65
.7

2
52

.7
8

C
4.

5
70

.1
8

57
.4

2
61

.5
71

.3
4

64
.0

7
59

.6
6

64
.0

9
60

.6
5

64
.8

4
54

.3
8

58
.7

3
67

.4
5

PA
R

T
58

.6
53

.9
7

61
.2

60
.1

3
63

.5
3

59
.1

50
.8

32
.6

5
39

.3
8

52
.7

4
32

.6
6

50
.0

4

R
IP

PE
R

62
.8

8
54

.3
4

57
.3

9
69

.5
7

57
.1

6
70

.7
8

61
.5

64
.6

7
64

.4
2

52
.1

3
71

.8
4

60
.7

3

SL
IP

PE
R

62
.1

8
60

.6
8

61
.9

8
66

.3
6

62
.9

4
64

.8
9

65
.9

4
55

.2
4

62
.3

62
.0

4
61

.6
5

63
.9

6

C
H

I-
R

W
69

.1
9

77
.6

9
75

.7
4

73
.6

9
75

.4
9

76
.6

71
.0

1
36

.1
5

54
.5

5
35

.8
3

49
.6

7
69

.6
4

K
N

N
68

.9
2

65
.2

3
44

.0
2

44
.0

2
69

.9
1

74
.1

2
73

.1
2

31
.1

9
80

.6
48

.8
7

59
.6

6
60

.7
3

K
ST

A
R

47
.3

9
57

.7
5

71
.4

8
73

.2
4

51
.0

4
51

.0
8

60
.6

1
52

.7
8

57
.5

8
66

.8
3

51
.1

69
.6

4

L
R

71
.5

4
74

.1
2

73
.7

6
72

.4
7

74
.0

7
75

.6
3

74
.0

3
55

.9
3

71
.7

5
46

70
.4

4
60

.7
3

PU
B

L
IC

66
.2

2
69

.3
7

70
.0

7
66

.8
7

66
.3

7
68

.5
8

72
.9

6
52

.4
5

52
.3

7
29

.2
9

57
.6

7
84

.5

B
N

G
E

58
.7

3
59

.0
2

60
.8

4
65

.9
4

60
.0

2
64

.4
2

63
.2

2
57

.5
8

62
.3

61
.4

4
67

.5
2

69
.6

4

E
A

C
H

47
.3

4
47

.3
4

44
.8

8
47

.3
4

47
.3

4
47

.3
4

47
.3

4
47

.3
4

47
.3

4
47

.3
4

47
.3

4
74

.2
5

R
IS

E
54

.9
8

57
.3

9
55

.3
2

66
.7

4
58

.3
63

.0
6

63
.2

2
65

.4
8

62
.8

2
58

.9
5

69
.2

6
74

.2
5

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

207

Results and Analysis
Ta

bl
e

6.
19

:B
al

an
ce

R
es

ul
ts

of
SM

P
M

od
el

s
af

te
rD

at
a

R
es

am
pl

in
g

on
O

de
D

at
as

et

Te
ch

ni
qu

e
A

da
sy

n
B

SM
O

T
E

R
O

S
SS

M
O

T
E

SM
O

T
E

SM
E

N
N

SM
T

L
SP

SP
II

C
N

N
N

C
L

R
U

S
B

IO
H

E
L

62
.0

3
51

.4
6

59
.5

4
64

.5
9

60
.7

2
66

.1
7

64
.6

7
50

.6
9

59
.2

2
53

.2
2

53
.2

2
67

.8
2

C
H

C
69

.0
3

55
.6

6
70

.8
4

70
.8

4
63

.6
5

68
.3

3
69

.7
2

51
.6

57
.6

4
57

.7
3

57
.7

3
69

.6
3

C
PS

O
50

.5
62

.7
7

60
.1

2
57

54
.0

1
54

.8
71

.5
3

55
.6

62
.4

4
54

.0
7

54
.0

7
70

.0
9

G
G

A
58

.8
7

56
.1

5
67

.4
2

67
.4

2
65

.2
3

65
.0

7
65

.2
3

56
.5

52
.6

5
53

.9
4

53
.9

4
73

.2
4

G
A

-I
nt

70
.2

4
55

.6
2

63
.7

2
70

.3
7

69
.6

6
69

.6
3

66
.1

1
42

.9
2

55
.0

8
47

.7
6

47
.7

6
66

.8
7

G
A

-A
D

I
68

.9
8

60
.9

6
69

.1
2

70
.6

9
70

.0
2

71
.9

5
69

.7
45

.3
8

57
.4

3
49

.0
2

49
.0

2
70

.9
2

IG
A

56
.0

9
55

.8
7

62
.5

4
64

.8
6

65
.1

1
61

.8
5

66
.4

9
50

.2
6

55
56

.2
56

.2
68

.8
5

LW
PS

O
53

.4
4

57
.1

9
61

.0
9

60
.0

3
56

.0
5

59
.2

3
51

.0
2

63
.5

2
54

.8
9

59
.6

4
59

.6
4

67
.5

5

M
PL

C
S

67
.2

51
.2

4
66

.0
7

68
.1

3
69

.9
1

66
.4

1
70

.4
9

47
.8

2
53

.6
9

52
.7

4
52

.7
4

71
.1

7

PB
IL

59
.7

3
60

.5
2

66
.4

9
66

.4
8

60
.8

7
65

.1
3

68
.2

2
54

.0
6

55
.0

5
56

.2
8

56
.2

8
68

.8
5

SG
A

57
.1

8
53

.3
4

65
.3

8
67

.5
63

.4
2

61
.9

7
69

55
.3

51
.3

9
51

.4
3

51
.4

3
69

.4
7

SS
M

A
59

.6
3

57
.2

4
68

.8
9

68
.8

9
65

.4
2

63
.0

3
65

.2
3

54
.0

4
56

.1
3

51
.4

3
51

.4
3

69
.4

7

U
C

S
41

.6
7

40
.4

5
40

.4
4

41
.6

7
41

.6
8

37
.9

6
41

.6
8

44
.1

5
42

.9
3

39
.2

1
39

.2
1

39
.3

9

X
C

S
66

.1
50

.4
2

63
.3

2
68

.5
4

64
.7

3
65

.8
9

69
.3

5
42

.9
3

45
.2

9
44

.1
1

44
.1

1
72

.5
3

A
da

B
oo

st
56

.7
50

.2
48

.8
9

65
.7

7
59

.3
1

65
.1

3
65

.8
2

55
.2

2
52

.6
5

57
.3

3
57

.3
3

66
.8

7

B
ag

gi
ng

60
.1

3
50

.2
4

52
.4

4
68

.3
9

61
.4

3
67

.4
4

67
.0

9
51

.4
9

51
.3

9
53

.8
5

53
.8

5
39

.5
7

C
4.

5
62

.7
48

.9
5

42
.6

1
68

.4
3

63
.7

7
70

.1
7

66
.6

6
53

.9
2

56
.1

5
53

.9
8

53
.9

8
67

.2
2

PA
R

T
45

.4
7

38
.8

6
56

.6
4

54
.3

9
54

.0
9

35
.9

8
46

.1
4

31
.7

7
32

.9
9

29
.2

9
29

.2
9

60
.8

7

R
IP

PE
R

56
.8

3
76

.2
9

53
.9

7
72

.5
9

66
.8

3
70

.4
9

66
62

.5
8

61
.3

4
68

.2
3

68
.2

3
65

.5

SL
IP

PE
R

60
.0

3
52

.5
9

51
.2

1
62

.6
4

62
.1

3
64

.3
4

67
.8

2
53

.9
2

50
.1

8
56

.1
4

56
.1

4
73

.5
8

C
H

I-
R

W
68

.1
84

.6
9

72
.6

6
69

.7
4

71
.3

1
69

.9
8

68
.7

3
35

.9
5

35
.9

5
39

.5
6

39
.5

6
58

.3
5

K
N

N
54

.0
1

58
.5

7
47

.7
9

47
.1

7
60

.8
2

60
.8

7
62

.5
47

.7
8

51
.3

52
.7

9
52

.7
9

66
.8

7

K
ST

A
R

48
.8

3
48

.8
60

.0
6

63
.3

7
57

.3
4

59
.4

6
63

.9
5

29
.2

9
31

.7
7

29
.2

9
29

.2
9

39
.5

7

L
R

71
.3

67
.1

3
72

.4
4

70
.9

4
72

.7
4

72
.7

72
.9

2
45

.3
7

53
.8

6
45

.3
7

45
.3

7
66

.8
7

PU
B

L
IC

72
.2

6
51

.3
4

49
.7

65
.7

1
68

.3
3

72
.0

4
67

.1
7

55
.9

4
58

.8
6

50
.1

5
50

.1
5

39
.5

7

B
N

G
E

56
.8

3
65

.8
6

57
.5

60
.9

3
71

.7
5

70
.9

9
69

.1
1

47
.8

4
52

.8
53

.8
2

53
.8

2
39

.5
7

E
A

C
H

62
.0

2
36

.7
3

36
.7

3
36

.7
3

36
.7

3
36

.7
3

36
.7

3
36

.7
3

36
.7

3
36

.7
3

36
.7

3
39

.5
7

R
IS

E
40

.2
8

58
.8

8
51

.3
9

60
.9

63
.6

65
.8

6
66

.5
2

46
.5

9
49

.0
1

57
.1

6
57

.1
6

39
.5

7

SS
M

O
T

E
in

di
ca

te
s

Sa
fe

SM
O

T
E

,S
P

in
di

ca
te

s
SP

ID
E

R
,S

PI
Ii

nd
ic

at
es

SP
ID

E
R

II
,S

M
T

L
in

di
ca

te
s

SM
O

T
E

-T
L

,S
M

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

208

Results and Analysis

Figure 6.4: Median G-Mean values of SMP Models Developed with SB and ML
Techniques after Data Resampling

6.3.4 Results Specific to RQ3

As discussed in Section 6.3.3, the performance of the SMP models has shown a vast

improvement in terms of G-Mean and Balance performance metrics. To carry our

investigation further, we were interested in detecting which of the data resampling

technique would improve the performance of SMP models. To investigate this, we

carried out statistical analysis using the Friedman test. We applied the Friedman test

by evaluating the G-Mean and Balance of prediction models developed after all data

resampling techniques on all datasets under examination in this work. The Friedman

test is applied at a level of significance α = 0.05 with 12 degrees of freedom. We

tested the following hypothesis using the Friedman test.

• Null hypothesis-Ho1: SMP models built after pre-processing the imbalanced

datasets with the data resampling techniques (Adasyn, BSMOTE, ROS, SafeS-

MOTE, SMOTE, SMOTE-ENN, SMOTE-TL, SPIDER, SPIDER II, CNN,

NCL, RUS) do not show a significant difference in the G-Mean performance.

209

Results and Analysis

• Alternate hypothesis-Ha1: SMP models built after pre-processing the imbal-

anced datasets with the data resampling techniques (Adasyn, BSMOTE, ROS,

SafeSMOTE, SMOTE, SMOTE-ENN, SMOTE-TL, SPIDER, SPIDER II, CNN,

NCL, RUS) show a significant difference in the performance evaluated in terms

of performance metric G-Mean.

• Null hypothesis-Ho2: SMP models built after pre-processing the imbalanced

datasets with the data resampling techniques (Adasyn, BSMOTE, ROS, SafeS-

MOTE, SMOTE, SMOTE-ENN, SMOTE-TL, SPIDER, SPIDER II, CNN,

NCL, RUS) do not show a significant difference in the performance evaluated

in terms of performance metric Balance.

• Alternate hypothesis-Ha2: SMP models built after pre-processing the imbal-

anced datasets with the data resampling techniques (Adasyn, BSMOTE, ROS,

SafeSMOTE, SMOTE, SMOTE-ENN, SMOTE-TL, SPIDER, SPIDER II, CNN,

NCL, RUS) show a significant difference in the performance evaluated in terms

of performance metric Balance.

Table 6.20 shows the results of the Friedman test carried out for G-Mean and

Balance performance metrics. The p-value obtained after the Friedman test was 00

(i.e., p-value < 0.05) both for G-Mean and Balance, i.e., the results of the Friedman

test were significant.

Table 6.20: Results of Friedman Test

Data Resampling Tech-

nique

Mean Rank with respect to

G-Mean

Mean Rank with respect to

Balance
SafeSMOTE 4.41 (Rank 1) 4.24 (Rank 1)
RUS 4.88 (Rank 2) 5.61 (Rank 5)
SMOTE-ENN 5.37 (Rank 3) 5.33 (Rank 3)
SMOTE-TL 5.39 (Rank 4) 5.17 (Rank 2)
SMOTE 5.70 (Rank 5) 5.42 (Rank 4)

210

Results and Analysis

Adasyn 6.14 (Rank 6) 5.72 (Rank 6)
NCL 6.62 (Rank 7) 7.33 (Rank 8)
BSMOTE 7.10 (Rank 8) 7.49 (Rank 9)
SPIDERII 7.64 (Rank 9) 7.68 (Rank 10)
ROS 7.97 (Rank 10) 7.32 (Rank 7)
SPIDER 8.56 (Rank 11) 8.73 (Rank 11)
CNN 9.70 (Rank 12) 9.41 (Rank 12)
No-Resampling 11.51 (Rank 13) 11.54 (Rank 13)

Therefore, the null hypothesis Ho1 and Ho2 were rejected, which stated that the

performance of SMP models after applying different data resampling techniques is the

same. The mean ranks assigned to each data resampling technique for performance

metrics G-Mean and Balance are presented in Table 6.20. It is to be noted that the

SafeSMOTE technique has obtained the best rank (lowest rank values) for G-Mean and

Balance performance metrics. The data resampling techniques RUS, SMOTE-ENN,

SMOTE-TL, and SMOTE are amongst the top five rankers as per the Friedman test

analysis for G-Mean and Balance. The performance of the software maintainability

models is very poor when datasets are imbalanced as the no-resampling scenario has

obtained the worst rank in Friedman test analysis.

As per the results of the Friedman test, SafeSMOTE was the best data resampling

technique that improved the performance of SMP models for G-Mean and Balance. To

further examine and confirm whether SafeSMOTE is superior to other data resampling

techniques used in this work, post-hoc analysis by Wilcoxon signed-rank test with

Bonferroni correction was carried out. The performance of models employed after

SafeSMOTE and other data-resampling techniques was compared in terms of G-Mean

and Balance. In this work, for the Wilcoxon signed-rank test, the null and alternative

hypothesis are given as follows:

Ho3: G-MeanSafeSMOTE = G-MeanX

Ha3: G-MeanSafeSMOTE 6= G-MeanX

211

Results and Analysis

where X denotes Adasyn, BSMOTE, ROS, SMOTE-ENN, SMOTE-TL, SMOTE,

SPIDER, SPIDER II, CNN, NCL, RUS. Similarly, the null and alternate hypothesis

for Balance is given as follows:

Ho4: BalanceSafeSMOTE = BalanceX

Ha4: BalanceSafeSMOTE 6= BalanceX

The level of significance α = 0.05, with Bonferroni correction, was taken for

Wilcoxon signed-rank test. As we compared 12 pairs of resampling techniques with

the Wilcoxon signed-rank test, so with Bonferroni correction if the p-value obtained

would be greater than 0.004 (i.e., 0.05/12 = 0.004), the null hypothesis Ho3 or Ho4

would be rejected. The results of Wilcoxon signed-rank on evaluating the G-Mean

and Balance performance of SMP models after employing SafeSMOTE and other

data resampling techniques are shown in Table 6.21.

Table 6.21: Results of Wilcoxon Test

Pair of Techniques G-Mean Balance
SafeSMOTE vs. Adasyn Sig.(p-value = 0.000) Sig.(p-value = 0.000)
Safe- SMOTE vs. BSMOTE Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. SMOTE-ENN Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. SMOTE Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. SMOTE-TL Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. SPIDER Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. SPIDERII Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. ROS Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. CNN Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. NCL Sig.(p-value = 0.000) Sig.(p-value = 0.000)
SafeSMOTE vs. RUS NotSig.(p-value = 0.878) NotSig.(p-value = 0.005)
SafeSMOTE vs. No-Resampling Sig.(p-value = 0.000) Sig.(p-value = 0.000)

Table 6.21 shows the test statistics obtained after applying the Wilcoxon signed-

rank test on the pair-wise performance of SafeSMOTE and all other data resampling

techniques used in this chapter. In Table 6.21, Sig. indicates the significant difference

in the performance of a pair of compared techniques and NotSig. denoted that there

212

Results and Analysis

is no significant difference in the corresponding pair of techniques. The results of

the Wilcoxon signed-rank test indicate that the SafeSMOTE technique is significantly

superior to Adasyn, BSMOTE, ROS, SMOTE-ENN, SMOTE-TL, SMOTE, SPIDER,

SPIDER II, CNN, NCL, and No-Resampling scenario in terms of G-Mean and Balance

performance metrics. However, the RUS technique that was amongst the top five

rankers according to the Friedman test results in terms of G-Mean and Balance, is

not found significantly different (p-value > 0.004) in the performance in terms of

G-Mean and Balance according to the results of Wilcoxon signed-rank test i.e., the

performance of RUS is comparable with SafeSMOTE.

6.3.5 Results Specific to RQ4

In this RQ, we compare the performance of different classification techniques after data

resampling. To make this comparison, we conducted the Friedman test for G-Mean

and Balance after applying all data resampling techniques. For example, to evaluate

the performance of the X technique, we extracted the G-Mean and Balance values

of SMP models developed on all eight datasets after applying all data resampling

techniques. The Friedman test analysis was carried out at a significance level of

α = 0.05 with 27 degrees of freedom (28 classification techniques). The Friedman

test assesses the hypothesis that the performance of different ML and SB techniques

on all datasets is not different from each other. The mean ranks obtained after the

Friedman test in terms of G-Mean and Balance values of all ML and SB techniques

(median G-Mean and Balance on ten runs of SB techniques) on all eight datasets and

all data resampling techniques are depicted in Table 6.22. The p-values obtained after

conducting the test were 0.00 both for G-Mean and Balance that indicate the results

are significant. It yields the rejection of the null hypothesis and leads to the conclusion

that the performance of different ML and SB techniques on all datasets are different

213

Results and Analysis

from each other. As shown in Table 6.22, the CHC technique has obtained the best

rank in terms of G-Mean and second-best rank in terms of Balance whereas the LR

technique has obtained the best rank in terms of G-Mean and second-best rank in terms

of Balance. It is to be noted that CHC, SGA, PBIL, SSMA, GA-Int, GA-ADI, GGA,

MLPCS, and CSPO are the top ten classification techniques as per the Friedman test

ranking in terms of G-Mean and Balance and all these techniques are SB techniques.

This implies that these techniques can be used for developing prediction models for

software maintainability across different software systems. The worst performing

techniques in terms of G-Mean and Balance are RIPPER, AB, BNGE, RISE, KNN,

KSTAR, EACH, PART, and UCS. The PART technique has obtained the worst rank.

As the results of the Friedman test were significant, we further carry out post-hoc

analysis with the help of the Wilcoxon signed-rank test with Bonferroni correction

where we have adjusted the level of significance to α = 0.05/27 = 0.001 as we

have evaluated 27 pairs of classification techniques. The results of the Wilcoxon

test are shown in Table 6.23. As per the Friedman test ranking the most accurate

method for predicting the software maintainability was LR in terms of G-Mean values.

Also, according to the Wilcoxon signed-rank test, LR is significantly superior to 20

out of 28 classification techniques. Further LR is not significantly different in the

performance in terms of G-Mean at α = 0.05/27 = 0.001 for 7 out of 28 classification

techniques namely CHC, SGA, PBIL, SSMA, GA-ADI, GA-Int, and CPSO. CHC

technique was the best SB technique for predicting the software maintainability in

terms of Balance values. Also, CHC is found superior to 23 out of 28 classification

techniques according to the Wilcoxon signed-rank test at α = 0.05/27=0.001. CHC

is not significantly different in the performance in terms of Balance for 6 out of 28

classification techniques namely LR, SSMA, CPSO, GA-ADI, GA-Int, and CPSO.

Also, CHC, LR, SGA, PBIL, SSMA, GA-Int, GA-ADI, GGA, MLPCS, and CSO

are the top ten classification techniques as per the Friedman test. All of these are SB

214

Results and Analysis

techniques except LR.

Table 6.22: Friedman Test Results for Performance of Classification Techniques

Classification Tech-

niques

Category Balance

Rank

Classification Tech-

niques

Category G-Mean

Rank
CHC SB 7.79 LR ML 7.57
LR ML 7.8 CHC SB 8.06
SGA SB 10.51 GA-Int SB 10.1
PBIL SB 10.51 GA-ADI SB 10.5
SSMA SB 10.51 SSMA SB 10.57
GA-Int SB 10.66 PBIL SB 10.72
GA-ADI SB 10.68 SGA SB 10.94
GGA SB 11.38 GGA SB 11.73
MPLCS SB 11.91 MPLCS SB 11.77
CPSO SB 12.05 CPSO SB 12.85
LWPSO SB 13.13 XCS SB 13.19
SLIPPER ML 13.41 SLIPPER ML 13.56
XCS SB 13.63 CHIRW ML 13.86
Bagging ML 14.65 Bagging ML 13.93
IGA SB 14.72 LWPSO SB 14.63
PUBLIC ML 14.84 PUBLIC ML 14.87
CHIRW ML 14.95 BIOHEL SB 14.91
C4.5 ML 15.04 C4.5 ML 15.05
BIOHEL SB 15.38 IGA SB 15.13
RIPPER ML 15.59 RIPPER ML 15.86
AB ML 15.94 AB ML 15.98
BNGE ML 16.87 BNGE ML 16.68
RISE ML 17.46 RISE ML 17.55
KNN ML 17.61 KNN ML 17.83
KSTAR ML 20.25 KSTAR ML 19.4
EACH ML 21.14 EACH ML 21.18
PART ML 22.38 PART ML 22.57
UCS SB 25.25 UCS SB 25.01

Table 6.23: Wilcoxon Test Results for Performance of Classification Techniques

Pair Examined G-Mean Pair Examined Balance
LR vs. CHC NotSig.(p-value = 0.324) CHC vs. LR NotSig. (p-value = 0.423)
LR vs. SGA NotSig. (p-value = 0.001) CHC vs. SGA Sig. (p-value = 0.000)

215

Discussion

LR vs. PBIL NotSig. (p-value = 0.002) CHC vs. PBIL Sig. (p-value = 0.000)
LR vs. SSMA NotSig. (p-value = 0.005) CHC vs. SSMA NotSig. (p-value = 0.001)
LR vs. GA-Int NotSig. (p-value = 0.008) CHC vs. GA-Int NotSig. (p-value = 0.001)
LR vs. GA-ADI NotSig. (p-value = 0.003) CHC vs. GA-ADI NotSig. (p-value = 0.001)
LR vs. GGA Sig. (p-value = 0.000) CHC vs. GGA Sig. (p-value = 0.000)
LR vs. MPLCS Sig. (p-value = 0.000) CHC vs. MPLCS Sig. (p-value = 0.000)
LR vs. CPSO NotSig. (p-value = 0.010) CHC vs. CPSO NotSig. (p- value = 0.011)
LR vs. LWPSO Sig. (p-value = 0.000) CHC vs. LWPSO Sig. (p-value = 0.000)
LR vs. SLIPPER Sig. (p-value = 0.000) CHC vs. SLIPPER Sig. (p-value = 0.000)
LR vs. XCS Sig. (p-value = 0.000) CHC vs. XCS Sig. (p-value = 0.000)
LR vs. Bagging Sig. (p-value = 0.000) CHC vs. Bagging Sig. (p-value = 0.000)
LR vs. IGA Sig. (p-value = 0.000) CHC vs. IGA Sig. (p-value = 0.000)
LR vs. PUBLIC Sig. (p-value = 0.000) CHC vs. PUBLIC Sig. (p-value = 0.000)
LR vs. CHIRW Sig. (p-value = 0.000) CHC vs. CHIRW Sig. (p-value = 0.000)
LR vs. C4.5 Sig. (p-value = 0.000) CHC vs. C4.5 Sig. (p-value = 0.000)
LR vs. BIOHEL Sig. (p-value = 0.000) CHC vs. BIOHEL Sig. (p-value = 0.000)
LR vs. RIPPER Sig. (p-value = 0.000) CHC vs. RIPPER Sig. (p-value = 0.000)
LR vs. AB Sig. (p-value = 0.000) CHC vs. AB Sig. (p-value = 0.000)
LR vs. BNGE Sig. (p-value = 0.000) CHC vs. BNGE Sig. (p-value = 0.000)
LR vs. RISE Sig. (p-value = 0.000) CHC vs. RISE Sig.(p-value = 0.000)
LR vs. KNN Sig.(p-value = 0.000) CHC vs. KNN Sig.(p-value = 0.000)
LR vs. KSTAR Sig.(p-value = 0.000) CHC vs. KSTAR Sig.(p-value = 0.000)
LR vs. EACH Sig.(p-value = 0.000) CHC vs. EACH Sig.(p-value = 0.000)
LR vs. PART Sig.(p-value = 0.000) CHC vs. PART Sig.(p-value = 0.000)
LR vs. UCS Sig.(p-value = 0.000) CHC vs. UCS Sig.(p-value = 0.000)

6.4 Discussion

The results stated in previous sections indicate good performance for the development

of classification models that identify maintainability of classes in a software dataset

after data resampling techniques compared to a situation when the datasets are imbal-

anced. We also analyzed percentage improvement in the performance of the models

developed using SB & ML techniques after data resampling. For SMP models devel-

oped using SB techniques after data resampling showed an improvement of 23.99%

216

Discussion

on the Bcel dataset after data resampling, 222.61% for the Betwixt dataset,48.48%

for the Io dataset, 90.87% for the Ivy dataset, 23.63% for Jcs dataset, 3.34% for Lang

dataset, 39.94% for Log4j dataset, and 85.36% for Ode dataset respect to performance

metric G-Mean. For SMP models developed using ML techniques after data resam-

pling showed an improvement of respect to performance metric G-Mean, 39.70%

on the Bcel dataset after data resampling, 69.58% for the Betwixt dataset,22.75%

for the Io dataset, 44.70% for the Ivy dataset, 17.62% for Jcs dataset, 14.04% for

Lang dataset, 53.09% for Log4j dataset, and 45.17% for Ode dataset. Also, there

is a relatively significant improvement in the performance of the prediction models

after data resampling for the Balance performance metric. The prediction models

developed using SB techniques after data resampling gave a gain of 29.45% for Bcel

86.01% for the Betwixt dataset, 47.08% for the Io dataset, 60.49% for the Ivy dataset,

27.77% for the Jcs dataset, 6.12% for the Lang dataset, 34.35% for Log4j dataset, and

53.02% for Ode dataset with respect to Balance. The prediction models developed

using ML techniques after data resampling gave a gain of 39.25% for Bcel 47.19% for

the Betwixt dataset, 26.61% for Io dataset, 37.16% for the Ivy dataset, 25.56% for the

Jcs dataset, 16.45% for the Lang dataset, 45.57% for Log4j dataset, and 34.32% for

Ode dataset with respect to Balance. The results of this chapter indicate that after data

resampling, the performance of models developed with SB techniques is better than

that of models developed using ML techniques. Also, the results of the Friedman test

indicate that SafeSMOTE is an effective technique to deal with the imbalanced data,

and the performance of models developed after SafeSMOTE is significantly superior

to that of models developed after data resampling with other investigated techniques.

It was also observed that SB techniques CHC, SGA, PBIL, SSMA, GA-ADI,

GA-Int, and CPSO are the competent techniques for predicting low maintainability

software classes accurately. The worst performing techniques in terms of G-Mean and

Balance are BNGE, RISE, KNN, KSTAR, EACH, PART, and UCS. All of these are

217

Discussion

ML techniques except UCS, which is an SB technique. Furthermore, the result of the

Wilcoxon test indicates that the performance of the CHC technique was better than the

majority of the other techniques explored in this chapter. The superior performance of

the CHC technique could be attributed to its effective fitness function which tries to

balance the complexity as well as the accuracy of the rule set obtained for classifying

low maintainability. The results indicate better performance of SB techniques as

compared to ML techniques. Hence, this empirical experiment favors of development

of prediction models using SB techniques for the identification of low maintainability

classes in OO systems. Such models can be efficiently used for OO software projects

so that low maintainability classes can effectively be identified.

218

Chapter 7

Hybridized Techniques for Software

Maintainability Prediction with

Imbalanced Data

7.1 Introduction

To develop effective software quality models, numerous classification techniques

including statistical techniques, ML techniques, and SB techniques are available. In

recent literature, various researchers encouraged the use of SB techniques to develop

software quality models [211–213]. These techniques explore a large solution space

to find an optimal solution to a problem where each solution is gauged by making

use of a fitness function to discover the correctness of the obtained solution [220].

The parallel and robust nature of SB techniques permits exploring a considerable

solution space with a challenge to ascertain an optimal solution. Various operators

like crossover, mutation, etc. are used for discovering the optimal or near-optimal

219

Introduction

solution [220]. Also, the ability to handle noisy data makes SB techniques effective

for predictive modeling [212]. The performance metrics are represented as the fitness

functions, which are then optimized in order to find the best solution for a predictive

modeling task [211]. The results of Chapter 3 indicate that the HB techniques exhibit

good performance to develop SMP models. However, very few studies in the literature

evaluated their effectiveness.

Therefore, it is important to assess the competence of HB techniques in the domain

of SMP. HB techniques are another category of SB technique, as these techniques

associate SB techniques with ML techniques as one single method. HB techniques

may yield improved results by incorporating the competence of both ML and SB

techniques into one single technique. A study by [221] documented the capability

of HB techniques for software defect prediction and specified that the use of these

techniques would help in producing optimal solutions. Malhotra and Khanna [17]

advocated the use of HB techniques to develop change-proneness prediction models.

In predictive modeling, combining ML techniques with SB techniques increase the

convergence speed of prediction models during development. These characteristics of

HB techniques motivate us to analyze their effectiveness in SMP.

To investigate the application of HB techniques for the determination of the

maintainability of classes, we used the open-source project datasets used in Chapters

4, 5, and 6. Like Chapters 4 and 6, in this chapter, we efficiently preprocess the

imbalanced datasets in order to attain a uniform distribution of datapoints of low

maintainability and high maintainability class datapoints before developing the SMP

models using HB techniques. To do so, we apply data resampling methods used in

Chapters 4 and 6. Also, in order to investigate the effective application HB techniques

for SMP, we follow a generalized and repeatable approach in this chapter, similar

to the one followed in Chapter 6. The approach includes the complete specification

of parameter settings and using multiple executions of these techniques due to their

220

Framework of Experiment

stochastic nature. SMP models are developed using eleven HB techniques in this

chapter. These techniques DT-GA, TARGET, GFS-LB, GFS-MaxLB, GFS-AB, GP-

COACH, PSOLDA, GFS-GP, GFS-GPG, GFS-SP and GFS-GCCL. The results are

analyzed with the data resampling methods namely SMOTE, BSMOTE, SafeSMOTE,

Adasyn, ROS, RUS, SPIDER, SPIDER II, SMOTE-ENN, SMOTE-TL, CNN, CNN-

TL, and NCL. The following research questions are addressed in this chapter.

• RQ1) What is the effect of data resampling techniques on the SMP models? Do

the data resampling techniques improve the performance of SMP models?

• RQ2) Is the effect of data resampling methods on the SMP models statistically

significant regarding the performance metrics used?

• RQ3) Which is the best performing HB technique for predicting software

maintainability? Is the best HB technique statistically better than the other

investigated techniques?

The organization of this chapter is as follows: Section 7.1 describes the framework

of the experiment, Section 7.2 describes results and analysis. Section 7.3 presents a

discussion. The results of this chapter are published in [222, 223].

7.2 Framework of Experiment

This section describes the experimental framework of the chapter.

7.2.1 Datasets and Variables used for Empirical Validation

This chapter makes use of the eight open-source datasets for empirical validation.

These datasets have been used in the previous chapters i.e., in Chapters 4 to 6. The

data points in these datasets are eighteen OO metrics describing various characteristics

221

Framework of Experiment

of OO software. A detailed description of these variables is given in Chapter 2. The

dependent variable used in this chapter is “maintainability“. This is a binary variable.

The data collection procedure from the datasets has been discussed in detail in the

previous chapters.

7.2.2 Model Development and Validation

In this chapter, the imbalanced datasets are preprocessed with the same data resampling

techniques investigated in previous chapters (i.e., Chapters 4 and 6). SMP models are

then trained with the aid of HB techniques and results are analyzed with the help of

G-Mean and Balance performance metrics. The models are developed using ten-fold

cross-validation with ten runs of each HB technique on each dataset.

7.2.3 Statistical Analysis

To test whether there is a statistical difference in the performance of investigated

techniques, we gave statistical support to the results. Two non-parametric statistical

tests are used for statistical analysis at a level of significance of α = 0.05. We perform

two types of statistical comparison in this chapter namely multiple and pairwise.

Multiple comparisons are performed among a group of techniques for which we use

the Friedman test. In multiple-comparison with the Friedman test, we determined if

the performance of the different techniques is the same or different. With the Friedman

test, we want to find out which technique is better than the rest of the investigated

techniques. The pairwise comparison is made between a pair of techniques (best

techniques obtained after the Friedman test and all other techniques) for which we

used the Wilcoxon signed-rank test.

222

Results and Analysis

7.3 Results and Analysis

This section presents the answers to the research questions of this chapter and their

analysis.

7.3.1 Results and Analysis of RQ1

To assess the effect of data resampling on the performance of the SMP models

developed after the application of HB techniques, we developed the models with the

datasets in an imbalanced scenario, and after applying resampling techniques stated

in Section 7.1. The performance of the developed models for eight datasets used in

the chapter using ten-fold cross-validation by applying different HB techniques is

reported in Tables 7.1 to 7.8. For each dataset, we run each HB technique ten-times

to deal with the stochastic nature of these techniques. For each run, we recorded

the performance of the developed SMP models with respect to G-Mean and Balance

performance metrics, and the median of all ten runs are logged in Tables 7.1 to 7.8 for

the eight datasets used in the chapter. As shown in Table 7.1, for the Bcel dataset, in

the no resampling situation i.e., when the SMP models are developed from imbalanced

data, the G-Mean, and Balance results are in the range of 0-69.94 and 29.29-69.01

respectively. In the resampling situation, for the Bcel dataset, the average G-Mean

values of the SMP models developed using various HB techniques is 38.52, and the

average of Balance values just 43.61. Except for the PSOLDA, for all other techniques,

the performance of the SMP models on imbalanced Bcel dataset was very poor in

terms of G-Mean and Balance. In 63.64% of the cases, the G-Mean values were less

than 50, and in 81.81% of the cases, the Balance values were less than 50 when the

models are developed with an imbalanced Bcel dataset.

When we applied different data resampling techniques before developing the SMP

223

Results and Analysis

models on the Bcel dataset, in 71.32% of the cases, the G-Mean values were reported

to be greater than 60, and the average G-Mean was 61.80. Similarly, the average

Balance values of the SMP after data resampling was 62.22, and in 69% of the cases,

the Balance results were greater than 60. An analysis of Table 7.2 indicated that on

applying different data resampling techniques on the Betwixt dataset, the average

G-Mean and Balance results were reported to be 60.07 and 60.24, respectively. After

applying different data resampling techniques on the Betwixt dataset, in 67.83% of the

cases, the G-Mean values were found to be higher than 60. In 58.73% of the cases, the

Balance results of the SMP models were reported to be more than 60. The performance

of the SMP models after applying different data resampling techniques and in the

imbalanced situation for the Io dataset is shown in Table 7.3. On analyzing this Table

7.3, we found that using data resampling techniques, improved the performance of

the SMP models a lot. For the Io dataset, the average G-Mean and Balance values

were reported to be 69.52 and 67.69, respectively. After applying data resampling

techniques, 82.52% of the cases the G-Mean values were obtained to be greater than

60, and Balance results were found to be higher than 60 in 72.72% of the cases. When

the Io dataset was imbalanced, the developed SMP models have shown an inferior

predictive performance in terms of G-Mean and Balance, i.e., the average of G-Mean

and Balance was 38.78 and 44.07, respectively. For the Io dataset, in the imbalanced

scenario, the G-Mean values of all HB techniques were observed to be very close to

54, and Balance values were observed to be very close to 50.51 except for DT-GA,

GFS-GCCL, and TARGET. For DT-GA, GFS-GCCL, and TARGET, the G-Mean

values were 0, and Balance values were 29.29.

224

Results and Analysis

Ta
bl

e
7.

1:
G

-M
ea

n
an

d
B

al
an

ce
R

es
ul

ts
fo

rB
ce

lD
at

as
et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

74
.1

1
75

.1
3

79
.5

6
52

.7
78

.7
6

65
.6

77
.9

5
78

.0
8

75
.0

8
77

.9
5

70
.0

1
B

SM
O

T
E

75
.2

7
73

.2
3

61
.9

7
47

.1
4

61
.5

7
69

.0
1

74
.5

75
.5

3
61

.9
7

61
.9

7
74

.0
8

R
O

S
68

.8
3

78
.4

1
69

.7
47

.1
4

75
.1

9
47

.1
4

75
.1

5
78

.0
8

61
.9

7
69

.7
71

.7
1

Sa
fe

SM
O

T
E

77
.2

7
76

.4
9

73
.1

1
46

.9
9

76
.6

4
64

.3
75

.6
6

79
.8

5
65

.9
2

73
.1

1
70

.2
2

SM
O

T
E

74
.1

7
76

.7
2

73
.2

3
47

.1
4

76
.8

6
52

.5
71

.4
6

74
.8

2
69

.9
8

71
.4

6
70

.2
2

SM
E

N
N

73
.4

7
62

.0
6

46
.9

9
46

.9
9

52
.5

4
65

.9
2

73
.4

7
73

.5
9

11
.7

7
52

.5
4

69
.1

1
SM

O
T

E
-T

L
72

.3
9

74
.6

8
79

.5
6

46
.9

9
76

.1
9

46
.9

9
75

.4
77

.1
3

76
.0

4
76

.0
4

69
.1

5
SP

ID
E

R
65

.5
66

.0
3

0
46

.9
9

69
.8

1
46

.9
9

69
.9

2
69

.8
1

0
46

.9
9

73
.1

3
SP

ID
E

R
II

71
.5

3
69

.7
23

.5
46

.9
9

73
.2

3
46

.9
9

75
.7

9
72

.2
6

11
.7

7
46

.9
9

73
.9

C
N

N
54

.0
5

57
.3

7
0

47
.1

4
47

.1
4

57
.5

5
47

.0
7

69
.8

1
0

47
.1

4
69

.9
1

C
N

N
-T

L
69

.3
9

76
.3

0
46

.9
9

69
.3

6
66

.1
4

72
.6

2
71

.6
5

0
66

.1
4

69
.6

7
N

C
L

72
.7

5
61

.9
7

0
46

.9
9

69
.7

46
.9

9
69

.3
6

69
.2

4
0

46
.9

9
73

.1
3

R
U

S
78

.5
5

74
.9

8
69

.5
8

65
.0

9
76

.9
4

61
.7

5
77

.6
8

79
.1

3
61

.7
7

69
.5

8
70

.0
3

N
o

R
es

.
40

.5
7

57
.5

5
0

47
.1

4
52

.5
4

47
.1

4
40

.7
6

52
.3

7
0

47
.1

4
69

.9
4

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

72
.8

1
75

.0
2

76
.1

6
48

.9
3

78
.7

4
60

.6
5

75
.6

1
75

.6
7

70
.4

45
71

.9
75

65
.7

6
B

SM
O

T
E

72
.0

2
68

.4
8

56
.7

8
45

.0
0

56
.7

5
64

.4
9

71
.7

5
72

.1
56

.7
8

72
.0

2
73

.9
2

R
O

S
68

.2
4

77
.7

2
64

.5
9

45
.0

0
74

.1
45

71
.9

8
75

.6
7

56
.7

8
77

.7
2

70
.4

7
Sa

fe
SM

O
T

E
75

.0
3

76
.2

1
68

.4
6

45
.0

0
76

.3
3

60
.4

1
72

.1
4

78
.6

8
60

.6
9

76
.0

5
68

.8
2

SM
O

T
E

71
.6

4
76

.4
0

68
.4

7
45

.0
0

76
.5

2
48

.9
3

68
.0

6
71

.8
7

64
.6

2
72

.0
8

68
.8

2
SM

E
N

N
68

.5
1

56
.7

8
45

45
.0

0
48

.9
3

60
.6

85
68

.5
1

68
.5

2
31

.2
55

68
.5

1
68

.4
6

SM
O

T
E

-T
L

70
.7

2
74

.6
76

.1
6

45
.0

0
75

.9
5

45
.0

0
72

.0
6

75
.2

3
72

.2
4

68
.3

4
66

.4
SP

60
.6

4
60

.6
9

29
.2

9
45

.0
0

64
.6

45
.0

0
64

.6
1

64
.6

29
.2

8
68

.1
5

73
.1

2
SP

II
68

.0
8

64
.5

9
33

.2
2

45
.0

0
68

.4
8

45
.0

0
72

.1
7

68
.2

9
31

.2
5

71
.8

5
73

.4
7

C
N

N
52

.0
6

52
.8

5
29

.2
9

45
.0

0
45

52
.8

6
45

.0
0

64
.6

29
.2

9
56

.5
1

67
.4

4
C

N
N

-T
L

68
.6

8
72

.3
0

29
.2

9
45

.0
0

64
.5

4
60

.7
68

.3
7

68
.1

2
29

.2
9

71
.8

68
.8

9
N

C
L

68
.3

9
56

.7
8

29
.2

9
45

.0
0

64
.5

9
45

.0
0

64
.5

4
64

.5
3

29
.2

9
76

.0
5

73
.1

2
R

U
S

77
.8

2
74

.8
8

64
.5

7
64

.3
7

76
.5

8
60

.8
6

75
.4

9
78

.2
3

56
.7

7
78

.0
3

68
.6

1
N

o
R

es
.

41
.0

7
52

.8
6

29
.2

9
45

.0
0

48
.9

3
45

.0
0

41
.0

7
48

.9
2

29
.2

9
45

.0
0

69
.0

1
R

es
.T

ec
h.

in
di

ca
te

s
R

es
am

pl
in

g
Te

ch
ni

qu
e,

H
B

Te
ch

.i
nd

ic
at

es
H

B
te

ch
ni

qu
e,

G
FS

-M
L

B
in

di
ca

te
s

G
FS

-M
ax

L
B

,N
o

R
es

.i
nd

ic
at

es
N

o
re

sa
m

pl
in

g,
SM

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

225

Results and Analysis
Ta

bl
e

7.
2:

G
-M

ea
n

an
d

B
al

an
ce

R
es

ul
ts

fo
rB

et
w

ix
tD

at
as

et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

60
.3

3
71

.9
3

71
.1

8
66

.5
64

.0
5

69
.6

69
.6

6
68

.4
1

60
.3

4
62

.0
7

67
.7

7
B

SM
O

T
E

40
.8

52
.9

66
.4

56
.5

3
56

.8
2

60
.7

3
39

.3
2

57
.5

1
60

.4
1

59
.7

2
71

.0
6

R
O

S
41

.6
3

63
.4

3
72

.1
70

.7
7

62
.0

7
72

.5
7

55
.7

69
.8

2
67

.3
4

60
.6

1
64

.8
8

Sa
fe

SM
O

T
E

60
.5

6
67

.9
8

70
.6

7
65

.9
5

68
.6

5
66

.5
64

.0
4

68
.6

3
26

.2
6

59
.4

7
69

.3
6

SM
O

T
E

58
.7

69
.9

5
71

.6
8

61
.3

3
65

.5
4

64
.2

8
64

.0
5

68
.7

2
68

.6
1

65
.4

6
64

.8
4

SM
E

N
N

63
.6

6
68

.4
8

72
.4

2
67

.5
8

66
.9

8
67

.9
5

57
.5

66
.0

1
73

.0
4

89
.1

2
60

.9
1

SM
O

T
E

-T
L

73
.1

64
.4

9
69

.6
1

64
.6

6
64

.4
9

72
.3

6
63

.3
6

66
.5

1
67

.0
5

58
.5

2
73

.6
4

SP
ID

E
R

53
.0

4
53

.6
2

0
51

.8
8

56
.8

2
56

.8
2

56
.5

2
56

.2
1

53
.0

4
45

.4
9

68
.8

2
SP

ID
E

R
II

60
.3

7
59

.0
4

45
.6

59
.7

3
61

.8
1

61
.2

8
60

.7
5

64
.4

4
63

.0
5

61
.5

1
69

.2
1

C
N

N
32

.1
7

45
.1

5
0

19
.1

1
42

.5
4

54
.7

4
55

.4
4

45
.8

2
32

.4
8

19
.2

4
50

.5
6

C
N

N
-T

L
59

.7
3

64
.9

6
65

.7
7

61
.1

4
64

.7
8

58
.8

7
69

.1
2

56
.4

62
.5

6
57

.3
5

76
.5

5
N

C
L

73
.1

60
.0

7
0

60
.8

3
68

.5
8

54
.1

8
60

.5
8

61
.9

1
66

.3
3

18
.8

4
56

.3
9

R
U

S
68

.6
3

68
.1

8
72

.8
1

69
.2

2
62

.2
4

60
.5

8
69

.0
3

64
.2

8
68

.8
5

60
.0

8
74

.5
1

N
o

R
es

.
0

26
.8

4
0

19
.2

5
32

.6
4

19
.2

18
.8

4
18

.9
3

0
0

50
.6

8

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

59
.9

5
71

.5
8

70
.7

7
66

.4
63

.5
4

69
.1

6
69

.2
68

.3
8

59
.1

4
59

.9
7

67
.0

1
B

SM
O

T
E

41
.9

4
51

.5
1

65
.3

5
55

.4
1

54
.5

6
59

.7
8

41
.2

1
56

.0
4

58
.7

3
59

.0
8

69
.3

8
R

O
S

42
.8

4
63

.3
2

72
.0

6
69

.7
7

61
.4

1
72

.5
5

54
.8

3
69

.8
2

67
.1

8
57

.8
1

63
.4

5
Sa

fe
SM

O
T

E
60

.5
4

67
.7

70
.5

6
65

.5
3

68
.6

3
66

.4
64

.0
3

67
.4

1
34

.3
5

56
.2

2
68

.2
7

SM
O

T
E

58
.1

8
69

.8
71

.3
1

61
.2

65
.2

3
64

.0
7

63
.5

4
68

.4
9

68
.3

1
60

.9
9

64
.1

8
SM

E
N

N
63

.2
68

.2
3

72
.1

2
66

.8
5

66
.9

67
.9

4
57

.3
9

65
.8

9
73

.0
3

88
.9

5
59

.9
1

SM
O

T
E

-T
L

71
.7

1
64

.4
6

67
.7

6
62

.5
64

.4
8

70
.8

1
63

.3
6

65
.7

67
.0

5
56

.1
5

73
.4

4
SP

51
.5

9
51

.8
7

29
.2

9
49

.8
2

54
.5

6
54

.5
6

54
.4

3
54

.2
8

51
.5

9
45

.8
65

.3
4

SP
II

59
.5

1
57

.8
6

44
.8

2
58

.3
1

60
.5

4
60

.1
7

58
.9

2
62

.0
7

61
.3

2
61

.7
4

67
.1

C
N

N
36

.9
6

44
.6

9
29

.2
8

31
.9

42
.3

6
52

.3
2

52
.5

4
44

.8
7

37
.0

4
31

.9
1

47
.6

1
C

N
N

-T
L

58
.6

3
64

.9
4

65
.6

3
60

.4
6

64
.5

9
58

.1
5

69
.1

1
56

.1
8

62
.4

8
55

.5
4

75
.5

8
N

C
L

71
.7

1
58

.5
3

29
.2

9
57

.6
67

.7
1

52
.1

1
58

.8
3

59
.5

3
64

.3
1

31
.8

3
52

.7
5

R
U

S
67

.9
8

68
.1

6
72

.7
9

69
.0

2
61

.9
7

60
.5

7
68

.6
7

64
.1

1
68

.8
60

.3
74

.2
8

N
o

R
es

.
29

.2
9

34
.5

29
.2

9
31

.9
1

37
.0

8
31

.9
1

31
.8

5
31

.8
7

29
.2

9
29

.2
9

47
.6

2
R

es
.T

ec
h.

in
di

ca
te

s
R

es
am

pl
in

g
Te

ch
ni

qu
e,

H
B

Te
ch

.i
nd

ic
at

es
H

B
te

ch
ni

qu
e,

G
FS

-M
L

B
in

di
ca

te
s

G
FS

-M
ax

L
B

,N
o

R
es

.i
nd

ic
at

es
N

o
re

sa
m

pl
in

g,
SM

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

226

Results and Analysis

Ta
bl

e
7.

3:
G

-M
ea

n
an

d
B

al
an

ce
R

es
ul

ts
fo

rI
o

D
at

as
et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

77
.9

3
80

.1
3

74
.8

1
79

.2
8

81
.6

8
72

.5
6

81
.5

7
78

.3
9

77
.4

6
87

.5
7

77
.7

8
B

SM
O

T
E

62
.3

1
62

.4
4

73
.7

9
68

.6
61

.4
9

53
.8

4
68

.9
1

68
.7

5
61

.4
9

61
.7

7
82

.2
7

R
O

S
60

.5
3

83
.8

7
75

.3
1

79
.2

8
85

.8
7

80
.6

5
84

.0
9

80
.3

4
78

.4
80

.1
3

80
.4

4
Sa

fe
SM

O
T

E
54

.7
76

.1
2

78
79

.2
8

76
.3

1
77

.2
7

78
.0

3
76

.5
78

.7
8

76
.7

76
.9

6
SM

O
T

E
72

.2
4

77
.7

8
77

.3
5

78
76

.1
2

79
.0

7
72

.4
1

66
.1

81
.4

8
71

.1
8

78
.3

2
SM

E
N

N
66

.7
4

72
.2

4
79

.0
7

78
76

.1
2

76
.7

73
.1

1
72

.2
4

75
.0

4
70

.8
3

79
.1

2
SM

O
T

E
-T

L
72

.4
1

80
.3

4
78

.9
9

78
.8

6
76

.1
2

75
.5

4
73

.1
1

66
.2

6
75

.0
4

69
.3

9
77

.5
1

SP
ID

E
R

44
.1

5
76

.9
7

44
.7

2
54

.5
4

54
.3

1
54

.5
4

54
.1

9
54

.0
8

80
.0

7
0

44
.7

2
SP

ID
E

R
II

53
.4

9
69

.6
6

44
.6

7
54

.5
4

61
.7

7
54

.5
4

61
.4

9
53

.4
9

87
.6

2
52

.3
44

.7
2

C
N

N
68

.7
5

62
.3

1
44

.6
3

44
.4

4
69

.0
6

76
.9

7
74

.3
66

.4
2

69
.5

1
67

.3
6

62
.7

1
C

N
N

-T
L

77
.2

7
72

.9
3

74
.2

5
69

.2
1

65
.6

3
75

.5
4

78
.4

3
69

.0
3

83
.0

1
82

.4
83

.5
1

N
C

L
60

.9
4

62
.8

5
15

.8
1

54
.5

4
61

.6
3

54
.5

4
61

.7
7

68
.2

9
70

.1
1

15
.7

4
31

.6
2

R
U

S
79

.9
2

79
.9

2
74

.3
77

.5
7

85
.6

5
76

.0
4

80
.8

8
84

.9
9

80
.4

4
80

.1
3

79
.6

5
N

o.
R

es
.

0
54

.6
6

0
54

.6
6

54
.5

4
54

.5
4

54
.6

6
54

.3
1

54
.6

6
0

44
.7

2

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

76
.8

80
.1

3
72

.3
4

79
.2

7
81

.2
5

72
.4

8
81

.1
4

76
.4

8
76

.5
83

.5
1

72
.0

7
B

SM
O

T
E

57
.5

2
57

.5
4

70
.9

7
64

.4
57

.4
50

.4
5

64
.4

7
64

.4
3

57
.4

57
.4

5
81

.1
1

R
O

S
57

.1
6

83
.0

1
72

.9
2

79
.2

7
85

.4
79

.1
6

83
.2

8
80

.3
3

77
.1

80
.1

3
75

.0
4

Sa
fe

SM
O

T
E

53
.9

8
75

.5
4

77
.9

4
79

.2
7

75
.6

8
76

.3
8

76
.8

7
75

.8
3

77
.3

2
75

.9
7

71
.1

8
SM

O
T

E
70

.2
5

77
.7

1
77

.2
5

77
.7

1
75

.5
4

78
.8

4
70

.3
4

63
.5

4
75

.5
7

69
.6

5
72

.6
7

SM
E

N
N

63
.8

1
70

.2
5

79
.0

6
77

.9
4

75
.5

4
75

.9
7

70
.6

8
70

.2
5

69
.1

69
.4

3
73

.5
6

SM
O

T
E

-T
L

70
.3

4
80

.3
3

77
.1

9
78

.8
4

75
.5

4
75

.0
8

70
.6

8
63

.6
1

69
.1

68
.4

6
71

.7
8

SP
ID

E
R

43
.4

71
.7

43
.4

3
50

.5
50

.4
9

50
.5

50
.4

8
50

.4
7

77
.9

7
29

.2
9

43
.4

3
SP

ID
E

R
II

50
.3

9
64

.5
8

43
.4

3
50

.5
57

.4
5

50
.5

57
.4

50
.3

9
87

.4
2

50
.1

1
43

.4
3

C
N

N
64

.4
3

57
.5

2
43

.4
3

43
.4

2
64

.4
9

71
.7

71
.1

6
63

.6
8

64
.5

6
64

.0
5

57
.5

6
C

N
N

-T
L

76
.3

8
70

.6
73

.8
6

68
.3

2
63

.3
1

75
.0

8
78

.3
9

68
.1

9
77

.3
05

82
.2

7
78

.6
1

N
C

L
57

.2
7

57
.5

6
32

.8
3

50
.5

57
.4

2
50

.5
57

.4
5

64
.3

3
64

.6
2

32
.8

25
36

.3
6

R
U

S
79

.9
2

79
.9

2
71

.7
7

77
.4

8
85

.1
4

75
.8

2
79

.4
3

84
.3

5
74

.4
80

.1
3

74
.1

5
N

o.
R

es
.

29
.2

9
50

.5
29

.2
9

50
.5

50
.5

50
.5

50
.5

50
.4

9
50

.5
29

.2
9

43
.4

3
R

es
.T

ec
h.

in
di

ca
te

s
R

es
am

pl
in

g
Te

ch
ni

qu
e,

H
B

Te
ch

.i
nd

ic
at

es
H

B
te

ch
ni

qu
e,

G
FS

-M
L

B
in

di
ca

te
s

G
FS

-M
ax

L
B

,N
o

R
es

.i
nd

ic
at

es
N

o
re

sa
m

pl
in

g,
SM

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

227

Results and Analysis
Ta

bl
e

7.
4:

G
-M

ea
n

an
d

B
al

an
ce

R
es

ul
ts

fo
rI

vy
D

at
as

et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

68
.4

9
71

.1
7

69
.5

8
85

.5
9

73
.8

7
68

.4
9

65
.9

9
64

.5
6

72
.9

6
66

.6
2

71
.5

8
B

SM
O

T
E

51
.3

9
65

.6
9

69
.1

9
65

.8
5

70
.0

7
63

.1
62

.7
4

66
.2

7
60

.8
1

67
.3

8
71

R
O

S
47

.6
1

69
.8

1
40

.7
7

70
.1

9
71

.6
6

60
67

.5
8

62
.5

7
64

.2
8

70
.1

8
67

.3
1

Sa
fe

SM
O

T
E

72
.5

4
65

.9
9

61
.3

3
61

.3
6

69
.1

3
68

.9
1

58
.9

4
66

.0
8

60
.6

8
67

.7
6

70
.2

SM
O

T
E

66
.8

3
62

.9
8

65
.8

5
67

.4
9

67
.1

8
68

.8
6

54
.8

6
65

.3
1

65
.8

2
65

.5
2

75
.8

3
SM

E
N

N
61

.0
2

62
.1

1
60

.1
2

73
.3

69
.4

65
.9

4
55

.4
2

62
.5

7
63

.5
4

65
.5

2
68

.1
9

SM
O

T
E

-T
L

67
.1

8
62

.8
4

67
.4

6
67

.6
2

69
.1

9
70

.0
4

63
.1

1
66

.7
9

70
.4

7
67

.1
8

64
.7

4
SP

ID
E

R
54

.7
6

49
.5

6
26

.7
3

41
.3

2
52

.3
5

56
.0

3
41

.0
3

52
.5

9
57

.8
1

55
.0

2
26

.6
8

SP
ID

E
R

II
44

.0
1

51
.7

1
22

.5
48

.8
9

55
.2

7
49

.2
7

55
.6

9
59

.2
66

.3
7

40
.9

4
41

.9
4

C
N

N
68

.7
5

62
.3

1
44

.6
3

44
.4

4
69

.0
6

76
.9

7
74

.3
66

.4
2

69
.5

1
67

.3
6

26
.7

2
C

N
N

-T
L

41
.3

9
49

.6
6

43
.4

4
72

.1
5

61
.8

9
56

.4
58

.5
2

67
.4

5
46

.0
9

45
.8

8
54

.4
1

N
C

L
51

.5
5

55
.4

4
26

.7
3

41
.3

2
61

.1
1

41
.5

7
58

.7
1

40
.5

6
58

.1
7

44
.2

9
37

.6
8

R
U

S
67

.1
8

69
.0

5
72

.8
9

74
.6

5
70

.3
3

73
.2

1
71

.3
76

.3
6

66
.6

72
.9

66
.4

8
N

o
R

es
.

37
.6

9
26

.6
9

26
.7

3
26

.7
3

42
.1

3
26

.7
1

32
.5

9
26

.6
5

32
.6

4
18

.8
4

32
.7

3

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

67
.9

70
.8

8
69

.5
5

82
.2

5
73

.7
9

67
.9

65
.7

7
64

.4
7

71
.3

6
66

.1
6

71
.4

3
B

SM
O

T
E

49
.2

1
65

.1
69

.1
8

65
.6

5
69

.7
25

62
.8

8
61

.5
8

66
.2

5
60

.7
5

67
.2

6
70

.5
R

O
S

46
.5

6
69

.5
42

.2
2

70
.1

3
71

.0
2

58
.9

3
67

.1
6

62
.4

63
.9

2
69

.5
7

66
.3

5
Sa

fe
SM

O
T

E
72

.2
8

65
.7

7
60

.5
4

61
.2

7
68

.9
1

68
.9

57
.4

3
66

.0
6

59
.3

9
67

.3
8

69
.8

4
SM

O
T

E
65

.1
3

62
.3

9
65

.6
5

67
.4

66
.8

2
68

.6
6

53
.2

65
.1

6
65

.7
9

65
.4

8
75

.8
2

SM
N

N
58

.5
4

61
.6

7
59

.0
1

73
.2

6
69

.1
4

65
.3

53
.4

8
62

.4
62

.1
2

65
.4

8
67

.8
SM

O
T

E
-T

L
65

.3
3

62
.7

6
67

.4
5

67
.5

3
69

.1
8

70
62

.4
9

66
.3

3
70

.4
66

.3
63

.7
SP

ID
E

R
51

.7
8

46
.9

5
34

.3
4

41
.8

3
49

.4
1

51
.9

9
42

.1
6

49
.4

4
54

.3
2

51
.8

4
34

.3
4

SP
ID

E
R

II
44

.0
3

49
.2

9
31

.1
8

46
.8

8
51

.8
9

46
.9

3
51

.9
5

56
.4

64
.8

4
41

.7
6

87
.9

8
C

N
N

39
.3

8
36

.8
5

34
.3

4
36

.6
7

46
.8

6
46

.8
5

54
.5

56
.4

7
39

.3
9

39
.3

9
79

.6
9

C
N

N
-T

L
41

.8
4

48
.5

7
43

.8
72

.1
5

60
.1

5
56

.0
6

56
.1

2
67

.0
5

46
.3

3
44

.4
3

64
.6

7
N

C
L

49
.2

5
51

.9
2

34
.3

4
41

.8
3

56
.9

3
41

.8
7

54
.4

8
41

.6
5

54
.3

9
44

.1
2

63
.1

4
R

U
S

66
.3

69
.0

4
72

.8
4

73
.2

8
70

.2
7

72
.9

71
.1

7
74

.3
2

64
.9

9
72

.5
6

85
.6

2
N

o
R

es
.

39
.3

9
34

.3
4

34
.3

4
34

.3
4

41
.9

1
34

.3
4

36
.8

6
34

.3
4

36
.8

6
31

.8
1

36
.8

7
R

es
.T

ec
h.

in
di

ca
te

s
R

es
am

pl
in

g
Te

ch
ni

qu
e,

H
B

Te
ch

.i
nd

ic
at

es
H

B
te

ch
ni

qu
e,

G
FS

-M
L

B
in

di
ca

te
s

G
FS

-M
ax

L
B

,N
o

R
es

.i
nd

ic
at

es
N

o
re

sa
m

pl
in

g,
SM

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

228

Results and Analysis

Ta
bl

e
7.

5:
G

-M
ea

n
an

d
B

al
an

ce
R

es
ul

ts
fo

rJ
cs

D
at

as
et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

78
.6

6
82

.5
81

.8
5

88
.2

5
82

.8
5

86
.1

7
87

.4
1

86
.4

7
85

.7
5

79
.2

1
86

.1
4

B
SM

O
T

E
74

.4
1

82
.5

85
.7

5
65

.8
5

79
.4

9
85

.2
4

79
.4

9
78

.3
8

85
.7

5
78

.3
88

.1
1

R
O

S
67

.6
4

81
.0

3
84

.1
5

84
.6

5
81

.6
2

85
.2

5
83

.6
5

86
.1

7
85

.2
5

82
.1

8
86

.7
9

Sa
fe

SM
O

T
E

78
.5

9
82

.7
6

83
.1

7
81

.9
2

83
.1

6
84

.6
4

79
.4

6
81

.6
2

84
.4

7
78

.1
9

87
.4

4
SM

O
T

E
77

.4
7

83
.0

8
83

.5
82

.2
1

81
.6

2
86

.4
7

79
.4

6
79

.1
7

84
.7

9
78

.1
9

87
.7

8
SM

E
N

N
79

.2
1

82
.4

5
83

.1
7

81
.9

2
81

.3
3

80
.0

3
79

.4
6

81
.0

3
85

.4
3

76
.7

8
87

.7
8

SM
O

T
E

-T
L

76
.1

8
81

.8
1

83
.1

7
79

.1
7

83
.1

6
81

.9
2

80
.7

4
81

.0
3

85
.1

1
76

.5
3

85
.4

8
SP

ID
E

R
70

.3
6

79
.7

6
33

.1
4

77
.4

7
76

.9
4

85
.2

4
76

.9
4

78
.0

1
86

.7
80

.5
1

85
.7

9
SP

ID
E

R
II

76
.4

81
.9

2
69

.4
2

82
.7

9
77

.8
2

87
.0

7
80

.0
3

76
.4

84
.7

9
81

.5
2

88
.5

6
C

N
N

73
.0

3
54

.2
3

75
.1

5
68

.6
70

.3
6

69
.3

9
64

.9
3

64
.6

4
76

.4
1

73
.9

2
80

.5
7

C
N

N
-T

L
66

.4
71

.9
5

54
.2

7
69

.5
9

66
.7

8
72

.3
1

60
.7

1
67

.1
7

73
.8

74
.1

68
.4

4
N

C
L

71
.8

3
81

.4
5

38
.3

8
80

.3
84

.0
6

86
.1

7
83

.3
7

75
.6

7
86

.3
8

83
.3

7
67

.5
2

R
U

S
75

.8
4

78
.9

4
84

.1
5

77
.2

6
78

.0
1

82
.2

1
78

.3
8

80
.7

4
81

.1
7

80
.5

2
87

.7
7

N
o

R
es

.
59

.9
6

59
.9

6
0

53
.9

5
69

.6
4

68
.7

6
78

.9
6

69
.6

4
84

.3
5

42
.4

50
.4

6

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

78
.2

8
82

.4
8

79
.7

6
87

.6
1

82
.7

3
85

.9
5

84
.2

4
86

.2
9

84
.5

3
77

.7
7

83
.5

7
B

SM
O

T
E

72
.5

2
82

.4
8

84
.5

3
65

.6
5

78
.9

25
85

.2
4

78
.9

2
78

.0
6

84
.5

3
78

.2
9

84
.1

9
R

O
S

64
.8

5
81

.0
3

82
.5

6
84

.6
4

81
.6

2
84

.9
83

.5
3

85
.9

5
84

.9
80

.1
6

84
.3

9
Sa

fe
SM

O
T

E
78

.8
6

81
.9

8
81

.3
6

81
.9

1
83

.0
6

84
.1

8
79

.4
1

81
.6

2
82

.9
5

77
.4

5
83

.3
6

SM
O

T
E

76
.7

9
82

.3
5

81
.7

6
82

.2
81

.6
2

86
.2

9
79

.4
1

79
.1

4
83

.3
5

77
.4

5
83

.7
8

SM
E

N
N

78
.9

2
81

.6
81

.3
6

81
.9

1
81

.3
3

79
.9

3
79

.4
1

81
.0

3
84

.1
4

76
.4

7
83

.7
8

SM
O

T
E

-T
L

74
.5

6
80

.8
4

81
.3

6
79

.1
4

83
.0

6
81

.9
1

80
.7

3
81

.0
3

83
.7

4
76

.5
82

.7
5

SP
ID

E
R

69
.0

8
79

.1
3

37
.1

4
76

.6
1

76
.2

3
85

.2
4

76
.2

3
76

.9
7

85
.6

95
78

.1
5

81
.6

6
SP

ID
E

R
II

76
.0

3
81

.9
1

65
.5

9
82

.7
5

77
.5

9
86

.9
7

79
.9

3
75

.8
2

83
.3

5
79

.3
6

87
.9

8
C

N
N

72
.5

1
53

.1
6

74
.0

7
66

.7
6

68
.9

3
68

.9
7

64
.2

4
63

.2
9

76
.3

3
73

.2
8

79
.6

9
C

N
N

-T
L

65
.4

71
.0

8
50

.8
5

69
.5

9
64

.7
2

72
.2

8
60

.5
7

67
.1

70
.4

2
73

.9
3

64
.6

7
N

C
L

69
.6

4
81

.1
6

39
.7

6
79

.5
1

84
.0

2
85

.9
5

83
.2

8
74

.4
85

.3
1

83
.2

8
63

.1
4

R
U

S
75

.7
7

78
.8

3
82

.5
6

77
.1

78
.0

1
82

.2
78

.0
6

80
.7

3
80

.0
8

79
.3

2
85

.6
2

N
o

R
es

.
55

.4
5

55
.4

3
29

.2
9

50
.2

2
65

.6
5

65
.3

9
75

.9
9

65
.6

5
84

.3
4

42
.3

5
47

.6
1

R
es

.T
ec

h.
in

di
ca

te
s

R
es

am
pl

in
g

Te
ch

ni
qu

e,
H

B
Te

ch
.i

nd
ic

at
es

H
B

te
ch

ni
qu

e,
G

FS
-M

L
B

in
di

ca
te

s
G

FS
-M

ax
L

B
,N

o
R

es
.i

nd
ic

at
es

N
o

re
sa

m
pl

in
g,

SM
E

N
N

in
di

ca
te

s
SM

O
T

E
-E

N
N

229

Results and Analysis
Ta

bl
e

7.
6:

G
-M

ea
n

an
d

B
al

an
ce

R
es

ul
ts

fo
rL

an
g

D
at

as
et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

76
.8

6
81

.5
4

77
.7

6
80

.3
7

83
.2

1
80

.1
1

82
.0

4
75

.4
2

76
.3

3
73

.4
1

77
.7

6
B

SM
O

T
E

83
.3

5
78

.9
6

78
.6

1
78

.7
8

83
.5

8
78

.7
8

81
.6

8
81

.2
4

76
.1

8
81

.4
6

84
.0

3
R

O
S

71
.7

1
81

.4
2

78
.3

9
80

.9
6

84
.3

4
78

.1
9

83
78

.5
2

75
.3

1
80

.4
5

83
.5

Sa
fe

SM
O

T
E

83
.7

4
81

.3
80

.6
3

82
.4

4
84

.9
7

79
.0

5
82

.6
5

82
.6

5
78

.7
3

84
.7

81
.9

SM
O

T
E

84
.4

6
82

.5
3

80
.0

5
80

.8
83

.9
8

75
.4

9
85

.6
4

81
.0

1
73

.9
8

81
.2

4
82

.4
4

SM
E

N
N

84
.2

2
83

.2
1

81
.3

84
.4

7
86

.2
75

.9
1

82
.8

9
83

.1
2

77
.7

5
84

.9
3

83
.1

1
SM

O
T

E
-T

L
82

.1
9

83
.5

1
77

.1
5

78
.6

1
84

.4
7

79
.5

8
82

.1
9

83
.1

2
74

.9
6

84
.9

3
81

.6
6

SP
ID

E
R

78
.8

5
84

.2
6

42
.9

2
64

.3
8

85
.4

1
53

.1
5

81
.0

1
81

.4
6

79
.0

9
79

.5
1

57
.7

3
SP

ID
E

R
II

82
.5

3
86

.4
4

42
.9

2
79

.6
5

85
.7

1
60

.9
5

84
.2

2
78

.6
3

77
.3

8
74

.5
5

63
.6

6
C

N
N

73
.3

7
84

.4
7

77
.9

7
78

.2
4

69
.2

5
80

.3
73

.8
1

78
.8

5
67

.7
5

72
.6

7
78

.8
8

C
N

N
-T

L
81

.5
4

71
.1

8
3.

53
62

.7
2

60
.3

2
64

.9
8

65
.3

6
72

.4
6

47
.4

9
80

.0
6

45
.4

1
N

C
L

79
.6

5
81

.4
6

9.
6

79
.2

9
84

.4
6

64
.7

4
78

.8
5

78
.6

3
77

.3
80

.1
1

54
.4

3
R

U
S

77
.0

9
85

.0
8

82
.1

8
78

.7
8

84
.9

7
78

.7
8

83
.7

4
80

.0
6

75
.8

8
77

.7
5

82
.8

3
N

o
R

es
.

76
.6

3
63

0
63

.5
65

.8
50

.5
2

62
.4

9
72

.1
8

63
.5

57
.2

8
54

.4
3

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

76
.1

7
81

.2
3

76
.9

6
80

.3
5

83
.1

4
80

.0
7

81
.6

2
75

.0
5

75
.3

2
72

.8
1

76
.9

6
B

SM
O

T
E

81
.1

5
77

.4
9

78
.2

4
78

.7
6

81
.2

3
78

.7
6

78
.7

3
78

.5
9

74
.2

3
78

.6
6

84
R

O
S

69
.7

15
81

.0
3

78
.3

9
80

.6
2

83
.1

65
77

.4
5

81
.0

1
75

.8
4

74
.1

5
78

.2
9

83
.4

4
Sa

fe
SM

O
T

E
82

.8
1

80
.8

2
80

.6
2

82
.4

2
84

.6
2

78
.9

5
80

.8
6

80
.8

6
77

.4
2

83
.3

5
81

.6
9

SM
O

T
E

83
.2

3
81

.8
1

79
.9

5
80

.6
1

82
.9

6
75

.0
4

83
.7

8
78

.5
1

72
.6

4
78

.5
9

82
.2

8
SM

E
N

N
83

.1
82

.9
1

81
.0

3
84

.2
3

85
.5

75
.8

7
80

.9
6

81
.0

6
74

.9
83

.4
7

81
.3

SM
O

T
E

-T
L

80
.6

4
83

.7
2

76
.8

8
78

.2
4

84
.2

3
79

.5
1

80
.6

4
81

.0
6

72
.8

3
83

.4
7

79
.5

3
SP

ID
E

R
75

.9
5

81
.3

7
42

.3
8

60
.4

3
83

.6
8

50
.1

3
78

.5
1

78
.6

6
78

.6
3

76
.1

5
52

.8
6

SP
ID

E
R

II
81

.9
9

85
.5

42
.3

8
77

.9
2

85
.1

7
57

.6
4

83
.1

75
.8

8
77

.2
70

.8
6

58
.1

C
N

N
71

.8
7

84
.2

3
77

.7
8

78
.0

7
68

.8
6

80
.1

7
72

.1
3

77
.4

85
65

.7
5

70
.1

8
78

.2
6

C
N

N
-T

L
81

.2
3

68
.2

4
29

.4
5

59
57

.5
61

.1
8

64
.4

6
70

.0
1

46
.2

5
79

.3
4

44
.7

9
N

C
L

77
.9

2
78

.5
9

30
.6

76
.0

9
83

.2
3

60
.5

1
75

.9
5

75
.8

8
75

.3
2

78
.1

4
50

.2
4

R
U

S
76

.3
4

84
.8

2
81

.9
9

78
.7

6
84

.6
2

78
.6

6
82

.8
1

79
.3

4
72

.7
5

75
.5

2
82

.0
7

N
o

R
es

.
73

.3
8

58
.0

4
29

.2
9

58
.0

9
60

.6
7

47
.6

1
57

.9
9

68
.2

7
58

.0
9

52
.8

5
50

.2
4

R
es

.T
ec

h.
in

di
ca

te
s

R
es

am
pl

in
g

Te
ch

ni
qu

e,
H

B
Te

ch
.i

nd
ic

at
es

H
B

te
ch

ni
qu

e,
G

FS
-M

L
B

in
di

ca
te

s
G

FS
-M

ax
L

B
,N

o
R

es
.i

nd
ic

at
es

N
o

re
sa

m
pl

in
g,

SM
E

N
N

in
di

ca
te

s
SM

O
T

E
-E

N
N

230

Results and Analysis

Ta
bl

e
7.

7:
G

-M
ea

n
an

d
B

al
an

ce
R

es
ul

ts
fo

rL
og

4j
D

at
as

et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

64
.7

9
73

.9
3

76
.5

2
67

.5
8

72
.2

1
70

.2
5

57
.3

9
69

.6
3

71
.9

3
63

.2
8

77
.7

6
B

SM
O

T
E

55
.1

3
70

.8
6

73
.3

6
62

.5
2

72
.5

9
72

.0
3

71
.8

7
71

.4
1

76
.1

9
75

.0
9

72
.2

7
R

O
S

59
.4

5
70

.4
2

74
.8

9
73

.4
5

78
.0

2
74

.0
7

72
.7

3
73

.8
2

76
.4

5
70

.8
3

74
.6

5
Sa

fe
SM

O
T

E
69

.7
9

72
.5

8
76

.3
9

71
.1

3
70

.2
9

75
.7

4
73

.8
3

75
.1

5
73

.1
6

70
.2

8
78

.5
5

SM
O

T
E

64
.9

1
68

.6
1

77
.2

1
67

.2
1

65
.5

8
56

.2
71

.5
4

68
.2

8
73

.3
6

66
.1

4
75

.9
3

SM
E

N
N

60
.7

9
67

.7
2

77
.3

4
65

.3
5

63
.0

5
63

.3
6

74
.9

7
71

.0
5

73
.8

5
67

.8
73

.3
5

SM
O

T
E

-T
L

64
.2

8
74

.5
8

77
.7

4
73

.2
7

71
.8

4
67

.8
75

.8
6

70
.2

9
72

.0
7

68
.2

4
77

.1
8

SP
ID

E
R

63
.0

5
57

.7
5

7.
72

56
.8

5
60

.7
5

56
.7

7
57

.4
1

52
.0

3
53

.6
1

30
.4

3
46

.1
6

SP
ID

E
R

II
66

.4
9

61
.6

6
7.

67
59

.7
3

62
.3

6
46

.7
4

57
.6

8
62

.5
6

65
.6

6
7.

72
54

.7
8

C
N

N
74

.6
7

42
.6

1
37

.4
8

56
.6

9
55

.6
3

60
.8

4
53

.8
4

58
.4

56
.7

7
53

.2
9

46
.9

9
C

N
N

-T
L

61
.2

9
70

.1
7

72
.7

2
61

.7
9

69
.2

8
64

.6
6

69
.2

2
69

.3
1

68
.8

2
66

.5
4

71
.6

4
N

C
L

61
.8

5
63

.5
4

7.
69

54
.1

6
70

.0
8

51
.8

8
57

.7
7

64
.0

3
74

.2
3

33
.4

4
57

.4
1

R
U

S
67

.9
5

66
.8

4
72

.8
5

61
.6

8
64

.6
4

70
.2

3
66

.1
7

68
.9

6
71

.1
1

65
.0

9
74

.3
9

N
o

R
es

.
26

.5
8

30
.6

5
0

50
.4

7
57

.3
4

30
.5

2
40

.5
4

40
.1

4
40

.6
6

26
.6

2
40

.7
1

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

64
.5

9
73

.6
8

76
.5

3
66

.7
4

72
.2

68
.8

5
56

.6
9

69
.2

7
71

.1
5

60
.5

2
76

.6
5

B
SM

O
T

E
52

.4
5

68
.5

1
72

.7
7

60
.8

6
71

.0
8

71
.3

69
.8

9
70

.3
2

75
.8

4
74

.0
3

71
.4

8
R

O
S

56
.9

7
70

.0
1

74
.7

2
73

.3
6

77
.9

6
73

.1
2

72
.2

7
73

.8
2

76
.3

8
70

.5
6

74
.2

1
Sa

fe
SM

O
T

E
69

.4
8

72
.4

4
76

.3
9

71
.0

9
70

.1
5

75
.6

3
73

.7
5

74
.9

5
72

.5
1

70
.2

7
78

.4
6

SM
O

T
E

63
.6

67
.2

3
77

.1
9

64
.9

5
64

.0
3

54
.5

9
70

.9
2

66
.3

3
72

.7
7

66
.0

8
75

.6
3

SM
E

N
N

58
.4

4
66

.0
1

77
.3

2
63

.1
7

61
.1

6
61

.3
3

73
.9

5
70

.0
7

73
.1

5
66

.6
9

72
.7

7
SM

O
T

E
-T

L
62

.5
8

74
.3

9
77

.5
8

73
.2

6
71

.5
3

67
.2

8
75

.8
69

.9
1

72
.0

7
68

77
.1

4
SP

ID
E

R
60

.3
4

54
.3

30
.1

3
52

.8
1

57
.4

5
52

.8
54

.2
2

49
.3

6
50

.9
1

35
.9

9
44

.4
4

SP
ID

E
R

II
63

.7
1

58
.8

1
30

.1
3

57
.0

8
60

.0
2

45
.8

1
55

.3
2

60
.1

2
63

.3
3

30
.1

3
51

.1
3

C
N

N
71

.0
3

42
.6

6
39

.3
8

52
.7

9
52

.5
9

57
.4

8
50

.9
7

55
.6

1
55

.9
5

50
.8

3
47

.1
4

C
N

N
-T

L
61

.0
6

69
.8

72
.5

6
60

.3
9

69
.0

3
64

.4
8

68
.6

8
68

.3
68

.8
2

66
.1

3
70

.4
8

N
C

L
58

.8
9

60
.5

4
30

.1
3

51
.0

4
68

.1
1

49
.3

3
55

.3
6

60
.7

2
73

.4
3

37
.5

6
52

.8
5

R
U

S
67

.4
5

66
.6

4
72

.8
4

61
.6

6
64

.5
9

69
.9

1
65

.8
1

68
.9

6
71

.1
1

63
.7

1
74

.0
1

N
o

R
es

.
34

.3
4

36
.0

2
29

.2
9

47
.7

7
52

.8
5

36
41

.0
7

41
.0

3
41

.0
7

34
.3

4
41

.0
7

R
es

.T
ec

h.
in

di
ca

te
s

R
es

am
pl

in
g

Te
ch

ni
qu

e,
H

B
Te

ch
.i

nd
ic

at
es

H
B

te
ch

ni
qu

e,
G

FS
-M

L
B

in
di

ca
te

s
G

FS
-M

ax
L

B
,N

o
R

es
.i

nd
ic

at
es

N
o

re
sa

m
pl

in
g,

SM
E

N
N

in
di

ca
te

s
SM

O
T

E
-E

N
N

231

Results and Analysis
Ta

bl
e

7.
8:

G
-M

ea
n

an
d

B
al

an
ce

R
es

ul
ts

fo
rO

de
D

at
as

et

R
es

.T
ec

h.
H

B
Te

ch
.G

-M
ea

n
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

60
.7

67
.2

7
72

.5
6

71
.0

2
65

.7
9

70
.1

1
58

.7
3

68
.5

3
70

.8
7

68
.7

2
59

.4
1

B
SM

O
T

E
46

.5
4

69
.6

6
70

.8
6

70
.0

8
63

.3
1

71
.1

6
64

.7
2

61
.2

2
72

.2
6

62
.2

1
59

.4
1

R
O

S
50

.9
4

66
.7

72
.6

8
70

.5
4

61
.1

1
68

.8
64

.9
4

71
.7

8
72

.3
8

64
.9

9
64

.9
9

Sa
fe

SM
O

T
E

69
.9

5
69

.4
6

72
.0

8
71

.7
8

67
.7

7
68

.4
2

68
.4

67
.6

9
65

.1
8

72
.6

9
57

.3
5

SM
O

T
E

65
.0

6
71

.7
8

71
.7

9
71

.3
6

69
.1

5
69

.3
4

69
.4

2
72

.7
3

71
.1

1
69

.7
7

63
.7

3
SM

E
N

N
67

.9
4

71
72

.2
2

71
.3

2
55

.5
6

69
.0

6
68

.8
7

70
.6

6
70

.0
8

72
.2

7
61

.9
9

SM
O

T
E

-T
L

66
.2

3
69

.0
6

68
.8

1
68

.8
3

70
.3

67
.8

9
67

.5
69

.3
9

68
.2

5
70

.2
3

72
.1

7
SP

ID
E

R
58

.0
1

53
.4

2
26

.4
9

32
.1

5
47

.0
6

37
.3

3
43

.5
3

43
.2

4
34

.8
5

56
.5

43
.7

1
SP

ID
E

R
II

64
.9

3
60

.8
3

26
.4

9
57

.2
4

49
.5

4
48

.5
1

54
.5

5
59

.1
8

39
.0

9
52

.6
7

55
.6

8
C

N
N

40
.9

9
52

.8
9

29
.6

36
.1

8
31

.9
7

52
.1

3
48

.5
4

45
.7

9
45

.6
1

48
.2

9
49

.4
9

C
N

N
-T

L
61

.4
7

55
.1

8
62

.6
9

67
.8

8
56

.0
1

60
.1

57
.7

9
65

.8
4

60
.6

8
63

.7
3

68
.6

9
N

C
L

53
.4

2
53

.2
8

18
.7

39
.2

6
55

.1
39

.5
2

45
.4

1
48

.3
8

39
.4

22
.7

5
49

.3
2

R
U

S
69

.8
4

67
.2

70
.3

8
71

.4
4

63
.2

6
71

.3
68

.0
5

72
.0

2
68

.9
6

67
.8

4
60

.0
7

N
o

R
es

.
37

.2
6

37
.3

5
6.

62
29

.6
37

.3
3

26
.4

7
37

.3
3

37
.4

22
.9

4
0

45
.8

2

R
es

.T
ec

h.
H

B
Te

ch
.B

al
an

ce
Va

lu
es

D
T-

G
A

G
FS

-A
B

G
FS

-G
C

C
L

G
FS

-G
P

G
FS

-L
B

G
FS

-G
PG

G
FS

-M
L

B
G

FS
-S

P
G

P-
C

A
O

C
H

TA
R

G
E

T
PS

O
L

D
A

A
da

sy
n

58
.1

2
66

.9
8

72
.5

6
69

.8
8

65
.2

9
68

.8
7

58
.4

7
68

.5
3

70
.6

8
68

.1
6

56
.9

1
B

SM
O

T
E

45
.2

95
69

.4
4

70
.4

7
68

.8
5

60
.6

70
.7

2
63

.0
9

58
.9

9
72

.0
9

60
.0

8
56

.9
1

R
O

S
48

.8
6

66
.6

8
72

.6
7

70
.4

9
59

.8
9

68
.4

4
64

.5
7

71
.4

8
72

.1
9

64
.3

9
64

.3
9

Sa
fe

SM
O

T
E

69
.1

6
69

.4
5

72
.0

4
71

.7
8

66
.8

3
67

.6
7

67
.9

4
65

.8
8

64
.2

3
71

.5
54

.7
SM

O
T

E
62

.7
2

71
.7

8
71

.7
6

71
.3

6
68

.5
5

69
.3

3
68

.7
5

71
.9

5
70

.8
9

68
.6

4
60

.7
7

SM
E

N
N

66
.5

3
70

.8
1

72
.2

71
.1

5
55

.1
35

68
.5

25
68

.8
25

70
.3

05
69

.9
65

71
.2

2
59

.3
5

SM
O

T
E

-T
L

65
.3

4
68

.5
3

68
.0

2
68

.6
4

70
.2

7
66

.4
3

67
.3

5
69

.3
4

67
.6

5
69

.9
9

71
.4

6
SP

ID
E

R
54

.9
2

50
.2

8
34

.2
5

36
.7

2
45

.3
8

39
.2

1
42

.9
2

42
.8

9
37

.9
7

53
.6

6
42

.9
3

SP
ID

E
R

II
I

62
.6

5
57

.4
2

34
.2

5
53

.8
6

47
.6

8
46

.5
75

51
.4

45
56

.0
9

40
.4

1
50

.1
35

51
.6

C
N

N
41

.6
2

50
.9

5
35

.4
9

39
.0

3
36

.7
49

.9
8

46
.5

8
45

.1
2

44
.1

7
46

.5
4

46
.6

6
C

N
N

-T
L

61
.3

2
54

.7
5

62
.4

2
67

.7
6

56
.0

1
60

.0
1

57
.7

1
65

.8
4

59
.4

3
62

65
.7

2
N

C
L

50
.2

8
50

.2
6

31
.7

7
40

.4
3

51
.5

4
40

.4
5

44
.1

6
46

.5
5

40
.4

4
33

46
.6

5
R

U
S

67
.4

5
66

.6
4

72
.8

4
61

.6
6

64
.5

9
69

.9
1

65
.8

1
68

.9
6

71
.1

1
63

.7
1

56
.3

4
N

o
R

es
.

39
.2

1
39

.2
1

29
.2

9
35

.4
9

39
.2

1
34

.2
5

39
.2

1
39

.2
1

33
.0

1
29

.2
9

44
.1

8
R

es
.T

ec
h.

in
di

ca
te

s
R

es
am

pl
in

g
Te

ch
ni

qu
e,

H
B

Te
ch

.i
nd

ic
at

es
H

B
te

ch
ni

qu
e,

G
FS

-M
L

B
in

di
ca

te
s

G
FS

-M
ax

L
B

,N
o

R
es

.i
nd

ic
at

es
N

o
re

sa
m

pl
in

g,
SM

E
N

N
in

di
ca

te
s

SM
O

T
E

-E
N

N

232

Results and Analysis

Figure 7.1: Boxplot analysis of G-Mean Results after Applying Data Resampling for
Different Datasets (a) Bcel (b) Betwixt (c) IO (d) Ivy (e) JCS (f) Lang (g) Log4j (h)
Ode.

In the no resampling situation, for the Ivy dataset (Table 7.4), the average G-Mean

values of the SMP models developed using various HB techniques was 30.01, and the

average of Balance values just 44.07. For all techniques, the performance of the SMP

models on the imbalanced Ivy dataset was inferior in terms of G-Mean and Balance.

The G-Mean and Balance values were less than 40 when the models are developed

with imbalanced Ivy dataset, and for the GFS-LB technique, the G-Mean and Balance

values were just close to 40. When we applied different data resampling techniques

before developing the SMP models on the Ivy dataset, in 66.43% of the cases, the

G-Mean values were reported to be higher than 60, and the average G-Mean was

60.79. Similarly, the average Balance values of the SMP after data resampling was

59.84, and in 60.13% of the cases, the Balance results were greater than 60. Table 7.5

233

Results and Analysis

Figure 7.2: Boxplot analysis of Balance Results after Applying Data Resampling for
Different Datasets (a) Bcel (b) Betwixt (c) IO (d) Ivy (e) JCS (f) Lang (g) Log4j (h)
Ode.

indicates the performance of the SMP models after applying different data resampling

techniques and the imbalanced Jcs dataset.

Also, for the Jcs dataset (Table 7.5), applying data resampling techniques improved

the performance of the SMP models. For this dataset, the average G-Mean and Balance

result after data resampling were 78.86 and 77.97, respectively. After applying data

resampling techniques, 97.20% of the cases the G-Mean and Balance values were

found to be higher than 60. But on the imbalanced Jcs dataset, the constructed SMP

models have shown a poorer performance in terms of both G-Mean and Balance. The

average of G-Mean and Balance was 58.00 and 57.94, respectively. In Table 7.6, the

predictive performance of the SMP models developed on imbalanced and resampled

Lang dataset is recorded. On analyzing the predictive performance of the SMP models

recorded in Table 7.6, the average of G-Mean and Balance values was reported to

234

Results and Analysis

be 76.73 and 75.68, respectively. For data resampling on the Lang dataset, 76.24%

of the SMP models gave G-Mean greater than 60, and 76.24% of the SMP models

gave G-Mean greater than 60 and 90.09% of the SMP models gave Balance greater

than 60. For this dataset, no resampling case gave the poor performance of the SMP

models with average G-Mean and Balance results of 34.93 and 29.45, respectively.

Like Betwixt, Io, Ivy, Jcs, and Lang dataset, data resampling techniques have also

improved the performance of the SMP models for Log4j, and Ode datasets for the

effective prediction of low maintainability classes. The average G-Mean results of

the models after applying data resampling techniques were 64.58 and 60.29 for Log4j

(Table 7.7) and Ode datasets (Table 7.8), respectively.

In the case of the Log4j dataset, for the no resampling situation, the average

G-Mean and Balance performance of the models was 34.93 and 39.43, respectively.

In the case of imbalanced Ode, the average G-Mean and Balance results were 28.92

and 36.51, respectively. We also analyzed the results of the SMP models in terms

of G-Mean and Balance before and after applying data resampling with the help of

boxplots shown in Figure 7.1 and Figure 7.2 respectively. As shown in Figure 7.1(a),

the G-Mean values of the SMP models developed after the majority of data resampling

techniques reach up to 80 for the Bcel dataset, and the median of G-Mean values

reported to be close to 75. The no resampling situation lead to a median of G-Mean

slightly above 40. For the Betwixt dataset median of G-Mean values reported to be

higher than 60 for the majority of the data resampling techniques, but the median of

G-Mean in the imbalanced scenario is very poor as indicated in Figure 7.1(b). The

G-Mean results shown in Figure 7.1(c) for the IO dataset have a median G-Mean

greater than 75 for the majority of data resampling techniques, and in Figure 7.1(d) Ivy

datasets median G-Mean results found to be higher than 65 for most of the examined

data resampling techniques. Median G-Mean results were greater than 80 for most

of the data resampling techniques for the JCS and Lang datasets. Similarity G-Mean

235

Results and Analysis

results of remaining datasets, namely Log4j and ODE, were very good, as shown in

Figure 7.1(g) and Figure 7.1(h) when data resampling techniques were used.

According to Figure 7.2(a), the Balance values of the SMP models developed after

the majority of data resampling techniques reach up to 75 for the Bcel dataset, and the

median of Balance values found to be greater than 70 for most of the data resampling

techniques. The no resampling situation in the case on the Bcel dataset has to the

median of Balance values slightly above 40. For the Betwixt dataset median of Balance

values reported to be greater than 65 for the majority of the data resampling techniques,

whereas the median of Balance is less than 20 in no resampling situation shown in

Figure 7.2(b). The Balance results are shown in Figure 7.2(c) for the IO dataset have

median Balance results greater than 75 for the majority of data resampling techniques.

As in Figure 7.2(d), for the Ivy dataset, the median Balance results were observed to

be higher than 65 for most of the investigated data resampling techniques. The median

of Balance results was higher than 80 for most of the data resampling techniques for

Jcs and Lang datasets. Also, the Balance results of Log4j and Ode were very good, as

shown in Figure 7.2(g) and Figure 7.2(h) when data resampling techniques were used.

Therefore, after analyzing the results of Tables 7.1 to 7.8, and Figures 7.1 and 7.2,

we come to the conclusion that the application of data resampling techniques on the

imbalanced datasets used in the chapter has improved the performance of the SMP

models because the values of both the performance measures, G-Mean and Balance,

have increased after applying data resampling.

7.3.2 Results and Analysis of RQ2

As the analysis of results of RQ1 indicates that the performance of the models has

improved after data resampling, it is necessary to analyze the results strengthen the

results statistically. In this section, the statistical difference in the performance of

236

Results and Analysis

the SMP models developed after data resampling methods used in this chapter has

been discussed. The results of Section 7.3.2 are evaluated the help of two statistical

tests, namely the Freidman test and the Wilcoxon signed-rank test in this section. The

following hypothesis is evaluated with the help of the Friedman test.

• Null hypothesis H01: The performance of the SMP models evaluated in terms

of G-Mean does not show a significant difference after applying data resampling

techniques, namely SMOTE, BSMOTE, SafeSMOTE, Adasyn, ROS, SMOTE-

ENN, SMOTE-TL, SPIDER, SPIDER II, RUS, CNN, CNN-TL, NCL.

• ALternate hypothesis Ha1: The performance of the SMP models evaluated in

terms of G-Mean shows a significant difference after applying data resampling

techniques, namely SMOTE, BSMOTE, SafeSMOTE, Adasyn, ROS, SMOTE-

ENN, SMOTE-TL, SPIDER, SPIDER II, RUS, CNN, CNN-TL, NCL

• Null hypothesis H02: The performance of the SMP models evaluated in terms

of Balance does not show a significant difference after applying data resampling

techniques, namely SMOTE, BSMOTE, SafeSMOTE, Adasyn, ROS, SMOTE-

ENN, SMOTE-TL, SPIDER, SPIDER II, RUS, CNN, CNN-TL, NCL

• Alternate hypothesis Ha2: The performance of the SMP models evaluated in

terms of Balance shows a significant difference after applying data resampling

techniques, namely SMOTE, BSMOTE, SafeSMOTE, Adasyn, ROS, SMOTE-

ENN, SMOTE-TL, SPIDER, SPIDER II, RUS, CNN, CNN-TL, NCL.

In order to evaluate the above hypothesis, we apply the Freidman test at a level

of significance, α = 0.05, with 13 degrees of freedom (as the performance of 13 data

resampling along with one case of no resampling is compared). To do so, we extracted

the G-Mean and Balance results of ten runs of the SMP models before and after

applying data resampling techniques. The results of the Friedman test analysis are

237

Results and Analysis

presented in Table 7.9. The outcome of the Friedman test is the rank assigned to each

resampling technique according to its performance. If a technique X obtained a lower

rank than that of technique Y , it means X is better than Y .

Table 7.9: Friedman Ranking based on G-Mean and Balance

Based on G-Mean Based on Balance
Technique Mean Rank Technique Mean Rank
Adasyn 4.72 Adasyn 4.66
SafeSMOTE 4.72 SafeSMOTE 4.66
RUS 5.06 RUS 4.73
SMOTE 5.36 ROS 5.21
ROS 5.41 SMOTE 5.38
SMOTE-TL 5.48 SMOTE-TL 5.45
SMOTE-ENN 5.82 SMOTE-ENN 5.78
BSMOTE 6.89 BSMOTE 6.99
SPIDERII 8.79 CNN-TL 8.57
CNN-TL 8.85 SPIDERII 8.71
NCL 9.73 NCL 9.78
CNN 10.39 SD1 10.66
SPIDER 10.53 CNN 11.07
No resampling 13.25 No resampling 13.33

The p-value obtained after the Friedman test was zero when the test was applied to

the G-Mean and Balance results of SMP models constructed after using various data

resampling techniques. This means that the outcome of the Friedman test is significant

as p < 0.05. Therefore, in this case, we rejected H01 and H02, which states that all

data resampling techniques have the same effect on the performance of the developed

SMP models. We, therefore, accepted the alternate hypothesis, Ha1, and Ha2. As

shown in Table 7.9, the lowest (i.e., best) rank is attained by Adasyn and SafeSMOTE

techniques both for G-Mean and Balance. This means these two techniques are equally

competent techniques to improve the performance of the SMP models developed from

datasets. Therefore, to conclude, we can state that SafeSMOTE and Adasyn are the

238

Results and Analysis

best data resampling techniques to build efficient SMP models. It is to be noted that

the no resampling case (i.e., the case when the datasets are imbalanced) has attained

the worst rank both with respect to G-Mean and Balance. This means that the situation

when we develop the SMP models from the imbalanced dataset, the objective of

developing the models to predict low maintainability classes accurately is not met

even when the models are developed using HB techniques.

As the outcome of the Friedman analysis was significant, we further examined

whether Adasyn and SafeSMOTE are significantly better than the rest of the data

resampling techniques or not. To investigate this, we used the Wilcoxon signed-rank

test and performed a pairwise comparison of the G-Mean and Balance performance

of Adasyn and SafeSMOTE techniques with all other examined data resampling

techniques. The Wilcoxon signed-rank test is performed with Bonferroni correction to

cut down the family-wise error when comparing multiple techniques, i.e., α = 0.05/13

= 0.0038 is taken as a confidence level to compare techniques. The outcome of the

Wilcoxon signed-rank test is recorded in Table 7.10 and Table 7.11 for techniques

Adasyn and SafeSMOTE, respectively. In Tables 7.10 and 7.11 Sig.+ indicates that

there is a significant difference in the performance of a pair of resampling techniques,

and NotSig.+ indicated no significant difference. As shown in Table 7.10, in six of

the thirteen pairs, Adasyn is not significantly different in terms of its performance

both w.r.t. G-Mean and Balance because p-values for these pairs is higher than 0.0038.

A similar situation is observed after analyzing the results of the Wilcoxon signed-

rank of SafeSMOTE (Table 7.11) with other resampling techniques. Again as per

Table 7.11, the SafeSMOTE technique is not significantly different in terms of its

performance both w.r.t. G-Mean and Balance from Adasyn, SMOTE, SMOTE-ENN,

SMOTE-TL, ROS, and RUS. This leads to the conclusion that ROS, SMOTE, SMOTE-

ENN, SMOTE-TL, and RUS are comparable in their performance with Adaysn and

SafeSMOTE. These techniques can effectively be applied in case of imbalanced data

239

Results and Analysis

scenarios to develop competent SMP models that can predict low maintainability

classes accurately.

Table 7.10: Wilcoxon Test Results of Adasyn with all other Resampling Techniques
w.r.t G-Mean and Balance

Based on G-Mean Based on Balance
Adasyn vs. p-value Significance Adasyn vs. p-value Significance
BSMOTE 0.000 Sig.+ BSMOTE 0.000 Sig.+
ROS 0.105 Not Sig.+ ROS 0.271 Not Sig.+
SafeSMOTE 0.359 Not Sig.+ SafeSMOTE 0.692 Not Sig.+
SMOTE 0.032 Not Sig.+ SMOTE 0.028 Not Sig.+
SMOTE-ENN 0.004 Not Sig.+ SMOTE-ENN 0.005 Not Sig.+
SMOTE-TL 0.094 Not Sig.+ SMOTE-TL 0.086 Not Sig.+
SPIDER 0.000 Sig.+ SPIDER 0.000 Sig.+
SPIDERII 0.000 Sig.+ SPIDERII 0.000 Sig.+
CNN 0.000 Sig.+ CNN 0.000 Sig.+
CNN-TL 0.000 Sig.+ CNN-TL 0.000 Sig.+
NCL 0.000 Sig.+ NCL 0.000 Sig.+
RUS 0.745 Not Sig.+ RUS 0.691 Not Sig.+
No resampling 0.000 Sig.+ No resampling 0.000 Sig.+

Table 7.11: Wilcoxon Test Results of SafeSMOTE with all other Resampling Tech-
niques w.r.t G-Mean and Balance

Based on G-Mean Based on Balance
SafeSMOTE vs. p-value Significance SafeSMOTE vs. p-value Significance
Adasyn 0.359 Not Sig.+ Adasyn 0.58 Not Sig.+
BSMOTE 0.000 Sig.+ BSMOTE 0.000 Sig.+
ROS 0.460 Not. Sig.+ ROS 0.468 Not. Sig.+
SMOTE 0.055 Not. Sig.+ SMOTE 0.035 Not. Sig.+
SMOTE-ENN 0.002 Sig.+ SMOTE-ENN 0.001 Sig.+
SMOTE-TL 0.314 Not. Sig.+ SMOTE-TL 0.215 Not. Sig.+
SPIDER 0.000 Sig.+ SPIDER 0.000 Sig.+
SPIDERII2 0.000 Sig.+ SPIDERII 0.000 Sig.+
CNN 0.000 Sig.+ CNN 0.000 Sig.+
CNN-TL 0.000 Sig.+ CNN-TL 0.000 Sig.+
NCL 0.000 Sig.+ NCL 0.000 Sig.+
RUS 0.777 Not. Sig.+ RUS 0.792 Not. Sig.+
No resampling 0.000 Sig.+ No resampling 0.000 Sig.+

240

Results and Analysis

7.3.3 Results and Analysis of RQ3

The second aspect of this study was to examine the best HB technique to develop

SMP models. For this examination, we evaluated the performance of the SMP models

developed with different HB techniques for all eight datasets used in the study. For

each dataset, after applying a data resampling technique, we run each HB technique

ten times. The median of G-Mean and Balance performance of the models after ten

runs were recorded, which we analyzed further to determine the best HB technique.

We analyzed the G-Mean and Balance results with the help of the Friedman and

the Wilcoxon signed-rank test. The following hypothesis was evaluated using the

Friedman test.

• Null hypothesis H03 : The G-Mean performance of SMP models developed

using HB techniques, DT-GA, GFS-AB, GFS-GCCL, GFS-GP, GFS-LB, GFS-

GPG, GFS-maxLB, GFS-SP, GP-COACH, TARGET, PSOLDA does not show

a significant difference.

• Alternate hypothesis Ha3: The G-Mean performance of SMP models devel-

oped using HB techniques, DT-GA, GFS-AB, GFS-GCCL, GFS-GP, GFS-LB,

GFS-GPG, GFS-maxLB, GFS-SP, GP-COACH, TARGET, PSOLDA have a

significant difference.

• Null hypothesis H04: The Balance performance of SMP models developed

using HB techniques, DT-GA, GFS-AB, GFS-GCCL, GFS-GP, GFS-LB, GFS-

GPG, GFS-maxLB, GFS-SP, GP-COACH, TARGET, PSOLDA does not show

a significant difference.

• Alternate hypothesis Ha4: The Balance performance of SMP models devel-

oped using HB techniques, DT-GA, GFS-AB, GFS-GCCL, GFS-GP, GFS-LB,

241

Results and Analysis

GFS-GPG, GFS-maxLB, GFS-SP, GP-COACH, TARGET, PSOLDA have a

significant difference.

We applied the Freidman test at a level of significance, α = 0.05, with 10 degrees

of freedom (as the performance of 11 data HB techniques is compared). The results

of the Friedman test analysis are depicted in Table 7.12.

Table 7.12: Friedman ranking of HB techniques

Based on G-Mean Based on Balance

Technique Mean Rank Technique Mean Rank

GFS-LB 4.97 GFS-LB 4.92

PSOLDA 4.99 PSOLDA 4.94

GFS-AB 5.35 GFSAB 5.26

GFS-SP 5.42 GFS-SP 5.51

GP-COACH 5.85 GFS-MxaLB 6.02

GFS-MaxLB 5.86 GP-COACH 6.02

GFS-GPG 6.16 GFS-GPG 6.07

GFS-GP 6.4 GFS-GP 6.39

GFS-GCCL 6.86 TARGET 6.8

TARGET 7.03 GFS-GCCL 6.89

DT-GA 7.12 DT-GA 7.17

The p-value was 0.000 both for G-Mean and Balance for the Friedman test. As

p-value obtained was less than 0.05, we rejected the null hypothesis H03 and H04

that stated the existence of no significant difference in the performance of the SMP

models developed after applying different HB techniques. We, therefore, accepted the

alternate hypothesis and concluded that the performance of SMP models is different in

term of G-Mean and Balance with different HB technique. The GFS-LB technique has

attained the best rank w.r.t. G-Mean and Balance. The second best rank is assigned to

PSOLDA techniques. The worst rank is assigned to DT-GA with respect to both of the

performance measures. We further investigated that the performance of the best two

242

Results and Analysis

HB techniques (GFS-LB and PSOLDA) has a significant difference from the rest of the

examined techniques or not. To do so, we conducted a post-hoc comparison with the

Wilcoxon signed-rank test first of GFS-LB with all other investigated techniques and

then of PSOLDA with all other investigated techniques. The post-hoc investigation

with the Wilcoxon signed-rank test was carried out at significance level of α = 0.05

with Bonferroni correction (i.e., α = 0.05/10 = 0.005) and 10 degree of freedom. Table

7.13 presents the results of the Wilcoxon signed-rank test of pairwise comparison

of GFS-LB and PSOLDA with all other HB techniques with respect to G-Mean and

Balance.

Table 7.13: Wilcoxon Test Results of SafeSMOTE with all other Resampling Tech-
niques w.r.t. G-Mean and Balance

Based on G-Mean Based on Balance

PSOLDA vs. p-value Significance PSOLDA vs. p-value Significance

DT-GA 0.000 Sig.+ GFS-GCCL 0.000 Sig.+

GFS-AB 0 0.00 Sig.+ DT-GA 0.002 Sig.+

GFS-GCCL 0.006 Not Sig.+ TARGET 0.002 Sig.+

GFS-GP 0.007 Not Sig.+ GFS-GPG 0.007 Not Sig.+

GFS-LB 0.011 Not Sig.+ GFS-GP 0.009 Not Sig.+

GFS-GPG 0.146 Not Sig.+ GP-COACH 0.066 Not Sig.+

GFS-MaxLB 0.592 Not Sig.+ GFS-MaxLB 0.157 Not Sig.+

GFS-SP 0.673 Not Sig.+ GFS-SP 0.72 Not Sig.+

GP-COACH 0.833 Not Sig.+ GFS-AB 0.893 Not Sig.+

TARGET 0.005 Sig.+ GFS-LB 0.99 Not Sig.+

Based on G-Mean Based on Balance

GFS-LB vs. p-value Significance GFS-LB vs. p-value Significance

DT-GA 0.000 Sig.+ GFS-GCCL 0.000 Sig.+

GFS-GCCL 0.000 Sig.+ GFS-GP 0.000 Sig.+

GFS-GP 0.000 Sig.+ TARGET 0.000 Sig.+

TARGET 0.000 Sig.+ DT-GA 0.000 Sig.+

GFS-GPG 0.006 Not Sig.+ GFS-GPG 0.008 Not Sig.+

GFS-MaxLB 0.033 Not Sig.+ GFS-MaxLB 0.01 Not Sig.+

GP-COACH 0.048 Not Sig.+ GP-COACH 0.012 Not Sig.+

243

Results and Analysis

GFS-AB 0.543 Not Sig.+ GFS-SP 0.472 Not Sig.+

GFS-SP 0.545 Not Sig.+ GFS-AB 0.515 Not Sig.+

PSOLDA 0.673 Not Sig.+ PSOLDA 0.99 Not Sig.+

As shown in Table 7.13, the PSOLDA technique is significantly better (p-value <

0.005) than DT-GA, GFS-AB, and TARGET in terms of its performance with respect

to G-Mean. Also, with respect to Balance, PSOLDA is significantly better (p-value <

0.005) performing technique than DT-GA, GFS-GFS-GCCL, and TARGET. However,

for the performance of PSOLDA is better but not significantly than GFS-AB, GFS-GP,

GFS-LB, GFS-GPG, GFS-maxLB, GFS-SP, and GP-COACH with respect to Balance.

On comparing the relative performance of GFS-LB with all other techniques according

to the results of the Wilcoxon signed-rank test with respect to G-Mean and Balance, it

is to be noted that GFS-LB is significantly better than DT-GA, GFS-GCCL, GFS-GP,

and TARGET in terms of its performance with respect to G-Mean and Balance as the

obtained p-values are less than 0.005. However, the performance of GFS-LB is better

but not significantly than GFS-GPG, GFS-MaxLB, GP-COACH, GFS-SP, GFS-AB,

and PSOLDA with respect to G-Mean and Balance.

To conclude, we say that PSOLDA and GFS-LB are the best techniques for

developing SMP models in order to correctly predict low maintainability classes.

The performance of the other techniques except DT-GA, TARGET, GFS-AB, and

GFS-GCCL is comparable with PSOLDA. The performance of GFS-GPG, GFS-

MaxLB, GP-COACH, GFS-SP, GFS-AB is comparable with GFS-LB. In the GFS-LB

technique, the logit boost boosting mechanism boosts the performance of fuzzy

classifiers, and GA helps to form the optimal rule set with the aim of enhancing the

accuracy of the fuzzy classifier. The PSOLDA technique that the hybridization of PSO

and LDA uses PSO for the optimal selecting set of features that are then presented to

the LDA classifier. Since the LDA is a competent classification technique, using PSO

244

Discussion

with LDA further enhances the classification capability of LDA.

7.4 Discussion

The chapter assessed the predictive capability of the HB techniques for developing

efficient SMP models by treating the imbalanced data. The results of the chapter

advocate that the use of data resampling improved the performance of the SMP

models.The SafeSMOTE and Adasyn are reported to be the the best techniques to

handle imbalanced data and enhance the performance of the SMP models. Also,

the performance of ROS, SMOTE, SMOTE-ENN, SMOTE-TL, and RUS is found

comparable to Adasyn and SafeSMOTE both with respect to G-Mean and Balance as

per post-hoc analysis carried out with the help of the Wilcoxon signed-rank test.

The experimental set up of this chapter took into account the non-deterministic

nature of HB techniques by performing ten runs of each HB technique to develop SMP

models. GFS-LB and PSOLDA were observed as the best performing HB techniques

after data resampling. The performance of SMP models developed using GFS-LB and

PSOLDA gave median G-Mean of 70.77 and 70.22 respectively. The median Balance

values of SMP models developed using GFS-LB and PSOLDA reported to be 70.00

and 70.47 respectively.

245

Chapter 8

Modified Safe Level Synthetic

Minority Oversampling Technique for

Handling Imbalanced Data in

Software Maintainability Prediction

8.1 Introduction

Numerous studies in the literature [9, 13, 56, 168] and previous chapters have ascer-

tained the application of several categories of techniques for developing prediction

models to determine the maintainability software classes on different datasets. The

results to the previous chapters advocate that in order to develop a useful maintainabil-

ity prediction model, it is vital to have the efficient training datasets, which contains

a sufficient number of data points corresponding to low maintainability and high

maintainability classes so that the prediction model can be trained effectively and

247

Introduction

identify the maintainability of the future classes.

Numerous strategies have been proposed to mitigate the problem of imbalanced

in which data resampling techniques have been much abundantly advocated. The

results of the previous chapter also confirm that data resampling improved the per-

formance of the SMP models learned from imbalanced datasets. Oversampling and

undersampling based data resampling techniques are investigated in the previous

chapters. Oversampling techniques work by boosting the minority class's strength

by adding more data points into that class, whereas undersampling techniques work

by reducing the strength of the majority class by randomly discarding that results

in data loss. Consider a training dataset with 10000 data points in which 500 data

points belong to the minority class, and 9500 data points are of the majority class.

To achieve perfect balance with undersampling, resulting data would contain only

1000 data points (500 minority and 500 majority data points). In this way, 90% of the

training data (i.e., 9000 data points) would be lost. However, with oversampling, there

will be no such loss of data and it would result in 20000 data points (10000 minority

and 10000 majority). The training dataset after data resampling with oversampling

either have synthetic or duplicated minority class data points.

In oversampling techniques, SMOTE [28] and its variants like BSMOTE [186],

SafeSMOTE [187] have been widely used in the literature and also validated in

previous chapters. SMOTE blindly creates the synthetic data points for each minority

class data points. Han et al. [186] revised the SMOTE and proposed BSMOTE,

which preprocesses the training data to generate synthetic samples corresponding

to borderline minority class data points. Bunkhumpornpat et al. [187] proposed

SafeSMOTE, another modification of SMOTE that generates synthetic data points

only corresponding to safe minority data points as discussed in Chapter 4. In an

imbalanced data, every minority data point is important, however, the data resampling

techniques like BSMOTE and SafeSMOTE oversample only a few of the minority

248

Introduction

data points BSMOTE oversamples only the borderline data points, and SafeSMOTE

oversamples minority data points in accordance with their Safe-Levels. This would

result in decreasing the minority class recognition rate of the model.

To contribute to handle the imbalanced data problem in SMP and to use it to

improve the predictions of maintainability prediction models, this chapter proposes a

novel oversampling technique MSLSMOTE. The proposed technique is a modification

of SafeSMOTE and generates synthetic data points carefully. The MSLSMOTE finds

the safe and noisy minority class data points using a weighted KNN algorithm and

then carefully creates the synthetic data points both corresponding to safe and noisy

minority class data points very precisely according to their Safe-Levels.

MSLSMOTE is proposed as a modification of one of the variants of SMOTE (i.e.,

SafeSMOTE). This chapter presents an extensive empirical investigation comparing

the performance of MSLSMOTE with SMOTE and its two variants SafeSMOTE and

BSMOTE at different rates of oversampling. Using eleven different ML techniques

and three different performance metrics, the performance of MSLSMOTE, SMOTE,

BSMOTE, and SafeSMOTE on eight imbalanced datasets in the domain of software

maintainability is assessed. Precisely the following research questions are addressed

in this chapter.

• RQ1) At different oversampling rates, what is the performance of MSLSMOTE,

SMOTE, BSMOTE, and SafeSMOTE for predicting software maintainability?

• RQ2) Does MSLSMOTE significantly improves the performance of SMP mod-

els as compare to SMOTE, BSMOTE, and SafeSMOTE?

The above RQs are empirically evaluated using eight open-source datasets. ML

techniques used in this chapter are AdaBoost, Bagging, C4.5, RIPPER, SLIPPER,

KNN, KSTAR, LR, BNGE, EACH, and RISE. The chapter is organized in the follow-

ing manner: Section 8.2 explains the proposed MSLSMOTE technique along with

249

The Proposed MSLSMOTE Technique

its pseudocode. Section 8.3 states the experimental framework which includes the

datasets used, performance measures, and other design considerations of the chapter.

Section 8.4 states the results of the investigated RQs and analyzes them. In section

8.5 a comparison of the previous chapter results and the results of literature studies is

presented. Finally, Section 8.6 summarizes the findings of the chapter. The results of

this chapter are reported in [224].

8.2 The Proposed MSLSMOTE Technique

Bunkhumpornpat et al. [187], modified the SMOTE and came up with SafeSMOTE.

As BSMOTE synthesizes only the borderline minority data points as discussed in

Chapter 4, the resultant dataset after oversampling still may contain too few data points

of the minority class compared to the majority class. Instead of only oversampling the

borderline minority data points, SafeSMOTE oversamples the minority class data point

Di in accordance with its Safe-Level ratio. For a minority data point Di Safe-Level

ratio is given as a ratio of Safe-Level of Di to that nearest neighbor's Safe-Level. The

Safe-Level of a data point is given as the number of minority class data points in its

KNN. The focus of the SafeSMOTE technique is to generate synthetic data points in

safe regions.

Generally, the isolated data points whose surrounding data points belong to a

different class and located far away from a group of the same class data points are

treated as noise. Many of the classification techniques overlook the noisy data points

in the classification process. The mentioned noisy data points can be either from the

positive (minority) class or negative (majority) class, but only noisy data points from

the minority class are treated as minority outcast data points. In an imbalanced dataset,

each minority class data point is rare and vital, eliminating these minority outcast data

points decreases the model’s positive recognition rate.

250

The Proposed MSLSMOTE Technique

SafeSMOTE discards the minority outcast data point during the synthesizing.

After synthesizing, the resulting dataset decreases the positive recognition rate of

the model that leads the algorithm to attain the lower recall. This chapter proposes

an oversampling technique, MSLSMOTE that modifies the SafeSMOTE in such a

way that there are no minority outcasting. Considering each minority class data point

is rare and vital and its elimination can decrease the model's positive recognition

rate, MSLSMOTE does not discard these data points during synthesizing. It rather

generates synthetic data points very carefully surrounding such data points as per

their Safe-Level ratio. In MSLSMOTE, we distinguish between the two types of data

points from the minority class safe and noisy.

The first function takes a minority class data point, i ∈ Dmin using weighted

KNN and returns the classification status. The KNN uses a majority voting approach

for classification in which every neighbor has the same impact on the classification.

However, the closest neighbors have more impact on classifying a data point than

the distant neighbors. The proposed technique MSLSMOTE uses weighted KNN

that weights each nearest neighbor according to its distance. The pseudo-code of the

MSLSMOTE is given in Figure 8.1.

In Figure 8.1,Dmin denotes the minority class andDmaj denotes the majority class.

The correctly classified minority class data points by the weighted-KNN are considered

safe, whereas incorrectly classified minority class data points are considered noisy.

The minority class data points are then oversampled considering whether they are

safe or noisy. All the noisy data from the minority class are oversampled more

carefully. We use two functions: Classify-wKNN(i, k) and Compute-KNN(i, k).

The second function determines the KNN of i from Dmin ∪ Dmaj . In the pseudo-

code shown in Figure 8.1, various variables are described as follows: T denotes the

original training dataset, T ′ indicates the dataset after oversampling. i is a data point

in the set of minority class data points Dmin. A synthetic data point generated by the

251

The Proposed MSLSMOTE Technique

Figure 8.1: MSLSMOTE Pseudocode
252

The Proposed MSLSMOTE Technique

algorithm is denoted by s. The nearest neighbor of i is denoted by n. r is a random

numeral between 0 and 1. All the minority data points that are flagged as safe in step

2 are oversampled using SMOTE and the generated synthetic data points are added in

T ′. The steps 4 onwards describe how data points flagged as noisy are oversampled.

In step 4, the function Compute-KNN(i, k) determines the nearest neighbors of i

that are flagged as noisy. Also, the Safe-Level of each data point i is computed and

denoted as Safe-Level(i).

Step 1 describes that at the beginning of the algorithm, T ′ contains original training

data. In step 2, we classify each minority class data points into safe and noisy using

weighted KNN. All the minority data points that are flagged as safe in step 2 are

oversampled with the help of SMOTE and all the generated synthetic data points

are added in the set T ′ as shown in step 3. The steps 4 onwards describe how data

points flagged as noisy are oversampled. In step 4, the function Compute-KNN(i, k)

determined the nearest neighbors of i that is flagged as noisy. Also, the Safe-Level

of each data point i and it is denoted as Safe-Level(i). Similarly, Safe-Level of each

of the nearest neighbor n of i Safe-Level(n) is computed. The Safe-Level of a data

point i ∈ Dmin is defined as the number of data points belong to minority class in

KNN of in the whole training data. In step 4, Safe-Ratio is computed as the ratio

of Safe-Level(i) to that of Safe-Level(n). The Safe-Ratio would be helpful in the

generation of synthetic samples in step 5. The generation of synthetic samples using

Safe-Level and Safe-Ratio is similar to SafeSMOTE. In step 5, if the Safe-Level of

both i and n is zero, no synthetic sample is generated corresponding to i.

If the Safe-Level of i is not zero but the Safe-Level of n is zero, n is considered

as noise and i is oversampled by merely creating a copy of it and the duplicated data

point is added in T ′. If the Safe-Level of i is the same as that of n, the synthetic data

points corresponding to i is created by interpolating i and n i.e., using the procedure

adopted by SMOTE. In the next case, if the Safe-Level of i is greater than that of

253

Research Methodology

Safe-Level of n, the synthetic data point is created close to i rather than n. For this,

the random number is generated between [0, 1/Safe-Ratio] and synthetic data point

is generated by interpolating i and n. For the last case, if the Safe-Level of i is less

than that of the Safe-Level of n, in this case, the synthetic data point is created nearest

to n rather than i. For generating the synthetic data point close to n, the random

number is generated between [1-Safe-Ratio, 1] and i and n are interpolated taking

the random number. The above procedure is repeated for each i ∈ Dmin. When the

algorithm terminates, the training dataset would have the original data in addition to

the synthetic data generated by the above procedure.

8.3 Research Methodology

This section states the research methodology followed in this chapter.

8.3.1 Datasets and Variables

In this chapter eight Apache open-source software datasets have been used for empiri-

cal validation. These datasets have been validated in Chapters 4 to 6. Each dataset

contains eighteen OO metrics described in Chapter 2. In this chapter, the best pre-

dictors are selected using the CFS method. The selected predictors corresponding to

each dataset are given in Chapter 6 (Section 6.3.1). The dependent variable in this

chapter is “maintainability“.

8.3.2 Model Development and Evaluation

In this chapter, each dataset is oversampled at different oversampling rates with pro-

posed MSLSMOTE, SafeSmote, BSMOTE, and SMOTE. The different oversampling

rates were 100%, 200%, 300%, 400%, and 500%. The resampled dataset is then

254

Results and Analysis

divided into ten partitions and SMP models are developed using ML techniques given

Section 8.1. For training the models, nine partitions are utilized after that for vali-

dating the developed model, the tenth partition is used. To allow each partition to

participate in training and validation, the complete process is carried out ten times.

The performance metrics AUC, G-Mean, and Balance are used to evaluate the models.

The Friedman test and Wilcoxon signed-rank test is used for statistical evaluation of

the developed models.

8.4 Results and Analysis

This section presents the results and analysis of answers to the research questions.

8.4.1 Results and Analysis of RQ1

The aim of the chapter is to develop SMP models to predict the low maintainability

software classes accurately. After data resampling, the maintainability prediction

models are developed with eleven ML techniques. The performance evaluators,

Balance, AUC, and G-Mean are used to assess the performance of models. In the

first experiment, the predictive performance of the maintainability prediction models

on original imbalanced data is observed. The original imbalanced datasets are taken,

and after learning the data through the classification methods, the SMP models

are developed. In Table 8.1, for ML technique on all eight datasets, the average

performance in AUC, G-Mean, and Balance is reported.

Table 8.1: Results on Imbalanced Data

ML Technique AUC G-Mean Balance
Adaboost 52.68 52.68 52.68

Bagging 47.14 47.14 47.14

C4.5 42.72 42.72 42.72

255

Results and Analysis

RIPPER 62.85 62.85 62.85

SLIPPER 53.20 53.20 53.20

KNN 52.08 52.08 52.08

KSTAR 43.24 43.24 43.24

LR 44.44 44.44 44.44

BNGE 49.71 49.71 49.71

EACH 50.64 50.64 50.64

RISE 50.92 50.92 50.92

For experimental simulation with learning techniques, the KEEL tool is used

with the default parameter setting of different techniques. As shown in Chapter 5

and in Table 8.1, on the imbalanced data, the model's performance in terms of AUC,

G-Mean, and Balance is not appropriate. In terms of AUC, except the RIPPER, the

average AUC for all other ML techniques are close to less or than 0.50. Similar is the

performance of the maintainability prediction models in terms of G-Mean and Balance

in the imbalanced scenario, i.e., except RIPPER for no other learning technique, the

models could achieve G-Mean or Balance of even 60%. As in the imbalanced datasets,

there are skewed distributions of the low maintainability and high maintainability data

points; the prediction models resulted in a very low positive rate. That resulted in

the poor performance of the models in terms of AUC, G-Mean, and Balance. In the

second phase of the experiment, the performance of SMP models developed after data

resampling with MSLSMOTE, SafeSMOTE, BSMOTE, and SMOTE is compared.

All tested resampling methods are combined with eleven ML techniques and SMP

models are developed. To determine the best degree of oversampling of the data

resampling methods, the different oversampling rates are tried for each method from

100% to 500%. The different oversampling rates for the data resampling techniques

have been tested because the imbalanced datasets may have different skewness levels.

In this experiment, all eight datasets used in the chapter are oversampled at different

rates using MSLSMOTE, SLSMOTE, BSMOTE, and SMOTE. After oversampling

256

Results and Analysis

a dataset with the different oversampling techniques at an oversampling rate, ML

techniques have been applied to develop the prediction models. The oversampling

rate depends on the selection of the nearest neighbors n out of k of a minority class

data point. For instance, in the case of generation of synthetic data points using

100% oversampling, one nearest neighbor n, out of k is picked that participates

in generating synthetic data points. Similarly, for an oversampling rate of 200%,

two neighbors out of k are picked, and so on. For instance, in the case of SMOTE

at an oversampling rate of 100%, corresponding to each minority class instance, a

synthetic data point is generated, and 100% oversampling doubles the strength of

the minority class. In this chapter, the nearest neighbors were determined with k

= 5. All the experiments were developed after the ten-fold cross-validation. After

different oversampling rates, during the experiments, sensitivity, and specificity values

are determined and values of Balance, G-Mean and AUC are computed. The average

AUC, Balance, and G-Mean values for all eight datasets at a different oversampling

rate (OR) are shown in Table 8.2, 8.3 and 8.4 respectively. For a straightforward

interpretation of the results, the best outcome for each oversampling technique is

highlighted in bold. As shown in Table 8.2, at OR=100%, the average AUC of SMP

models for oversampling with MSLSMOTE range from 0.62 to 0.75 whereas, for

SafeSMOTE, BSMOTE, and SMOTE, the average AUC ranged from 0.60 to 0.69,

0.58 to 0.69, and 0.59 to 0.68 respectively. At OR=200%, the average AUC of SMP

models for oversampling with MSLSMOTE range from 0.62 to 0.78, whereas for

SafeSMOTE, BSMOTE, and SMOTE, the average AUC ranged from 0.60 to 0.68,

0.59 to 0.69, and 0.59 to 0.68 respectively. The average AUC ranged for MSLSMOTE

is 0.62 to 0.78, whereas, for SafeSMOTE, BSMOTE, and SMOTE, the average AUC

ranged from 0.60 to 0.68, 0.59 to 0.70 and 0.59 to 0.69 respectively at OR= 300%.

On OR=400% and 500%, for MSLSMOTE, the average AUC range was observed to

be 0.58 to 0.78. The performance of the prediction models using MSLSMOTE does

257

Results and Analysis

not improve beyond OR=400%. For SLSMOTE, at OR=400% and 500%, the average

AUC range was observed to be 0.60 to 0.69 and 0.61 to 0.69, respectively, and it was

observed that SafeSMOTE was the second-best performer after MSLSMOTE in terms

of average AUC at OR=400% and 500%. The average Balance for all datasets at

different oversampling rates is recorded in Table 8.3. As evident from Table 8.3, at the

low rate of oversampling, the performance of SMP models in terms of Balance is not

satisfactory. Except for the RIPPER for all other ML techniques and MSLSMOTE

combinations, the average Balance over all datasets reported less than 65%. At

OR=100%, for SLMSOTE, BSMOTE, and SMOTE, the average Balance values are

reported being very poor i.e., less than 60% for all ML techniques. At OR=200%, for

MSLSMOTE and different ML techniques combinations, the performance of models

has been improved in terms of Balance. Unlike MSLSMOTE, however, this trend

is not evident for SafeSMOTE, BSMOTE, and SMOTE. At a further increased rate

of oversampling, i.e., at OR=300%, 400%, and 500% of MSLSMOTE, prediction

models developed with different ML techniques showed improved Balance results.

As shown in Table 8.3, at OR=300%, for six out of eleven MSLSMOTE and ML

techniquesâ combinations, the average Balance is higher than 70%. For OR=400%,

further, improvement has been observed in the case of MSLMOTE for all classifiers,

i.e., at this rate of oversampling, for eight of the eleven classifiers, the average Balance

is higher than 70%, and we can see from Table 8.3, that at OR=500%, there is

saturation, the average Balance has not increased. However, unlike MSLSMOTE,

similar trends are not evident for the other data resampling techniques used in the

chapter. For SafeSMOTE, the best results have been reported at OR=500%, but the

average Balance range reported being quite low, i.e., the lowest average Balance

was 46.79% and the highest 66.46%. Like SafeSMOTE, the performance of other

resampling methods, BSMOTE and SMOTE, were highest at OR=500%, but the range

was quite inferior. The average Balance values for BSMOTE and SMOTE at OR=500%

258

Results and Analysis

ranged from 45.35 to 62.51% and 47.28 to 64.595, respectively. The performance

of SMP models at different rates of oversampling analyzed in terms of G-Mean is

given in Table 8.4. At the lowest rate of oversampling, SMP models’ performance

in terms of G-Mean is reported to be very poor. Except for the RIPPER, SLIPPER,

and KNN, for all other classifiers and MSLSMOTE combinations, the average G-

Mean was less than 65%. Similar to analysis in terms of Balance, at OR=100%,

for SafeSMOTE, BSMOTE, and SMOTE and different classifiers combinations, the

average G-Mean values were very poor and less than 60% for the majority of the cases.

At OR=200%, for MSLSMOTE and different classifiers combinations, SMP models’

performance has shown improvement in terms of G-Mean also. But like MSLSMOTE,

there are no significant improvements in average G-Mean values for SafeSMOTE,

BSMOTE, and SMOTE at OR=200%. At a further increased rate of oversampling, i.e.,

at OR=300%, 400%, and 500% of MSLSMOTE, prediction models developed with

different classifiers showed improved results in terms of G-Mean. As shown in Table

8.4, at OR=300%, for seven out of eleven MSLSMOTE and classifiers combinations,

average G-Mean values are higher than 70%. For OR=400%, further, improvement

has been observed in the case of MSLMOTE for all classifiers and eight of the eleven

classifiers, the average G-Mean values reported greater than 70%. Like the Balance

results, at OR=500%, there is saturation, the average G-Mean has not increased further.

Unlike MSLSMOTE, the other data resampling techniques used in the chapter have

not shown such performance in terms of G-Mean. For SafeSMOTE, the best results

have been reported at OR=500%, but the range of average G-Mean was very low, i.e.,

the lowest average G-Mean was 46.61% and the highest being 67.94%. Similar to

SLSMOTE, the performance of other resampling methods, BSMOTE and SMOTE,

was highest at OR=500%, but the range was quite lower. The average Balance values

for BSMOTE and SMOTE at OR=500% ranged from 41.45 to 64.35% and 43.23 to

66.29%. The experimental results depicted in Tables 8.2 to 8.4 are summarised in

259

Results and Analysis

Figure 8.2.

The x-axis in Figure 8.2 signifies the different oversampling rate of the minority

class, and the y-axis symbolizes the performance evaluators; AUC, G-Mean, and

Balance in sequence from Figure 8.2(a)-8.2(c). In Figure 8.2, SLSMOTE stands for

SafeSMOTE. Analysis of Figure 8.2 indicates that MSLSMOTE achieves the highest

performance on AUC, G-Mean, and Balance. Also, it is apparent for MSLSMOTE,

AUC, G-Mean, and Balance are better with an increase in the rate of oversampling

on the minority class. But, improved performance with an increase in the rate of

oversampling on the minority class is not much prevalent for the other resampling

techniques used in the chapter.

Table 8.2: AUC Result of SMP Models

ML Technique MSLSMOTE SafeSMOTE BSMOTE SMOTE
OR=100%

AdaBoost 0.69 0.64 0.65 0.65

Bagging 0.7 0.63 0.62 0.62

C4.5 0.68 0.6 0.61 0.6

RIPPER 0.75 0.69 0.69 0.69

SLIPPER 0.70 0.66 0.66 0.64

KNN 0.71 0.64 0.64 0.64

KSTAR 0.64 0.60 0.58 0.59

LR 0.66 0.62 0.62 0.62

BNGE 0.70 0.62 0.62 0.62

EACH 0.62 0.62 0.62 0.61

RISE 0.68 0.66 0.63 0.64

OR=200%
AdaBoost 0.73 0.64 0.65 0.65

Bagging 0.74 0.63 0.64 0.63

C4.5 0.73 0.61 0.6 0.62

RIPPER 0.78 0.68 0.68 0.68

SLIPPER 0.75 0.67 0.66 0.64

KNN 0.74 0.64 0.65 0.64

KSTAR 0.66 0.60 0.59 0.59

LR 0.69 0.63 0.63 0.63

260

Results and Analysis

BNGE 0.74 0.62 0.62 0.62

EACH 0.62 0.62 0.61 0.61

RISE 0.73 0.66 0.64 0.64

OR=300%
AdaBoost 0.76 0.64 0.63 0.63

Bagging 0.76 0.63 0.65 0.64

C4.5 0.77 0.63 0.61 0.62

RIPPER 0.78 0.68 0.7 0.69

SLIPPER 0.77 0.67 0.65 0.66

KNN 0.76 0.64 0.65 0.64

KSTAR 0.69 0.6 0.59 0.59

LR 0.71 0.64 0.64 0.64

BNGE 0.74 0.63 0.63 0.61

EACH 0.62 0.62 0.62 0.61

RISE 0.73 0.66 0.64 0.64

OR=400%
AB 0.77 0.63 0.65 0.64

Bagging 0.77 0.62 0.65 0.64

C4.5 0.77 0.63 0.6 0.61

RIPPER 0.78 0.69 0.69 0.69

SLIPPER 0.76 0.66 0.66 0.67

KNN 0.76 0.64 0.65 0.65

KSTAR 0.72 0.61 0.59 0.59

LR 0.72 0.64 0.65 0.64

BNGE 0.74 0.63 0.64 0.62

EACH 0.58 0.62 0.61 0.62
RISE 0.74 0.66 0.64 0.64

OR=500%
AdaBoost 0.75 0.65 0.67 0.65

Bagging 0.76 0.65 0.66 0.63

C4.5 0.76 0.63 0.63 0.63

RIPPER 0.78 0.71 0.68 0.69

SLIPPER 0.75 0.67 0.68 0.65

KNN 0.74 0.64 0.66 0.65

KSTAR 0.72 0.61 0.59 0.61

LR 0.74 0.65 0.66 0.64

BNGE 0.74 0.64 0.65 0.63

261

Results and Analysis

EACH 0.58 0.62 0.61 0.61

RISE 0.72 0.66 0.64 0.64

Table 8.3: Balance Result of SMP Models

ML Technique MSLSMOTE SafeSMOTE BSMOTE SMOTE
OR=100%

AdaBoost 60.06 53.13 54.53 55.03

Bagging 60.21 49.78 47.54 47.67

C4.5 57.26 45.77 46.7 45.41

RIPPER 72.43 63.94 64.42 63.35

SLIPPER 64.02 55.67 54.67 53.54

KNN 64.5 52.35 53.88 54.11

KSTAR 50.29 43.48 43.78 43.82

LR 54.11 47.32 47.88 47.09

BNGE 61.88 50.95 51.29 50.63

EACH 48.89 50.65 50.65 50.65
RISE 61.09 56.7 53.68 53.93

OR=200%
AdaBoost 67.18 51.4 53.17 52.73

Bagging 65.46 48.83 51.49 50.69

C4.5 66.22 46.63 47.4 47.89

RIPPER 75.13 63.48 62.77 63.03

SLIPPER 69.47 56.76 56.57 52.52

KNN 69.92 52.92 55.44 54.51

KSTAR 54.21 45.01 43.77 43.93

LR 59.19 48.11 48.68 48.05

BNGE 69.35 50.81 50.82 50.57

EACH 49.01 50.65 50.65 50.65
RISE 68.07 57.13 54.37 54.26

OR=300%
AdaBoost 71.02 52.74 51.25 52.07

Bagging 70.92 49.79 51.77 51.65

C4.5 46.78 50.17 47.68 48.05

RIPPER 74.4 62.59 64.5 64.47

SLIPPER 72.66 56.33 56.51 54.84

KNN 72.42 52.92 55.66 56.05

262

Results and Analysis

KSTAR 59.92 46.74 44.57 44.45

LR 63.33 49.02 46.79 49.94

BNGE 71.67 52.03 52.25 49.7

EACH 48.6 51.28 50.65 51.28

RISE 64.7 57.12 54.4 54.24

OR=400%
AdaBoost 73.02 51.46 54.02 53.2

Bagging 73.49 47.84 53.73 52.16

C4.5 74 48.28 45.7 47.67

RIPPER 74.64 64.41 63.34 65

SLIPPER 72.56 55.29 55.67 58.22

KNN 76.34 52.92 56.52 56.61

KSTAR 63.47 47.1 46.48 45.82

LR 65.88 50.1 50.98 49.24

BNGE 71.57 52.95 53.11 51.46

EACH 41.79 51.28 49.17 51.28
RISE 71.87 57.15 56.77 54.64

OR=500%
AdaBoost 71.36 54.49 56.98 59.1

Bagging 72.09 52.02 54.47 49.98

C4.5 71.54 50.58 50.42 50.69

RIPPER 75.03 66.47 62.51 64.59

SLIPPER 71.32 57.05 56 53.65

KNN 72.63 52.92 56.44 56.27

KSTAR 61.97 46.79 45.35 47.28

LR 64.64 51.52 52.92 51.5

BNGE 70.69 55.42 53.83 52.82

EACH 42.66 50.66 50.66 50.66
RISE 67.78 57.09 54.15 54.55

Table 8.4: G-Mean Result of SMP Models

ML Technique MSLSMOTE SafeSMOTE BSMOTE SMOTE
OR=100%

AdaBoost 62.84 54.9 57.32 58.35

Bagging 63.32 49.93 44.36 44.41

C4.5 59.49 38.7 40.73 38.74

263

Results and Analysis

RIPPER 73.38 65.61 66.39 65.35

SLIPPER 67.07 58.33 57.96 56.69

KNN 67.22 54.43 56.75 56.95

KSTAR 48.05 36.8 37.17 37.5

LR 55.87 47.82 48.7 47.68

BNGE 64.51 52.96 53.68 52.97

EACH 47.62 48.72 48.72 48.72
RISE 63.94 59.8 56.83 57

OR=200%
AdaBoost 70.24 53.26 55.44 49.69

Bagging 68.91 46.15 52.51 51.58

C4.5 69.61 39.94 43.69 42.33

RIPPER 76.47 66.03 65.33 65.11

SLIPPER 72.61 59.98 59.58 54.41

KNN 72.25 55.5 58.2 57.44

KSTAR 53.69 38.8 37.12 37.44

LR 61.85 48.6 49.54 48.53

BNGE 71.67 52.82 52.25 51.94

EACH 48.30 48.72 48.72 48.72
RISE 70.66 60.14 57.58 57.34

OR=300%
AdaBoost 73.51 55.13 50.11 54.4

Bagging 73.55 48.61 53.25 52.15

C4.5 73.63 47.75 44.23 43.49

RIPPER 76.38 64.78 67.05 66.83

SLIPPER 75.06 59.83 60.18 57.37

KNN 74.11 55.5 58.5 58.98

KSTAR 61.6 43.58 38.52 40.11

LR 66.34 46.93 47.75 50.93

BNGE 73.61 53.67 54.32 50.67

EACH 47.79 49.91 48.72 49.91
RISE 65.50 60.13 57.62 57.3

OR=400%
AdaBoost 75.2 53.42 56.79 55.53

Bagging 75.59 46.26 55.78 53.55

C4.5 75.95 42.28 38.56 43.74

RIPPER 76.64 65.76 65.52 67.22

264

Results and Analysis

SLIPPER 74.64 58.22 58.99 61.39

KNN 77.36 55.5 59.38 59.44

KSTAR 65.49 40.7 42.99 41.32

LR 68.44 51.08 52.68 50.23

BNGE 73.23 55.06 55.61 53.62

EACH 38.58 49.91 48.37 49.91
RISE 73.45 60.42 59.9 57.54

OR=500%
AdaBoost 72.81 56.59 60.24 61.77

Bagging 73.3 52.8 56.97 50.46

C4.5 73.06 51.25 51.45 51.24

RIPPER 76.66 67.95 64.35 66.29

SLIPPER 72.68 60.07 58.08 56.84

KNN 73.68 55.5 59.34 59.02

KSTAR 64.15 42.61 41.46 43.24

LR 70.68 53.16 55.03 53.12

BNGE 72.22 57.95 56.56 55.39

EACH 41.17 48.77 48.77 48.77
RISE 65.03 60.17 57.21 57.47

8.4.2 Results and Analysis of RQ2

As among the four data resampling techniques, the bar plots depict that the perfor-

mance of MSLSMOTE is the best in terms of all three overall performance met-

rics (Figure 8.2(a)-(c)); results are statistically analyzed with the Friedman test and

Wilcoxon signed-rank test with Bonferroni correction (significance level of α = 0.05/3

= 0.0166. The Friedman test is applied at a confidence level equal to 95% (α = 0.05).

With the help of the Friedman test, the statistically best performing technique was

identified. The hypothesis for conducting the Friedman test is:

• Null hypothesis H0: The maintainability prediction models after MLSMOTE,

SafeSMOTE, BSMOTE., and SMOTE have the same performance in terms of

AUC, Balance, and G-Mean.

265

Results and Analysis

Figure 8.2: The Results (a) average AUC (b) average G-Mean (c) average Balance of
SMP Models

266

Results and Analysis

• Alternate hypothesisHa: The maintainability prediction models after MLSMOTE,

SafeSMOTE, BSMOTE, and SMOTE do have the same performance in terms

of AUC, Balance, and G-Mean.

The Friedman test gives a mean rank to each compared technique in terms of its

performance. The mean ranks attained by each technique by the Friedman test

for performance measure Balance, AUC, G-Mean are shown in Table 8.5. The p-

values obtained were 0.00 for all three performance measures which mean that the

performance of the compared techniques differs significantly in terms of Balance,

G-Mean, and AUC. As in all three cases, MSLSMOTE has attained the lowest rank,

which implies that MSLMSOTE is a statistically best-performing data resampling

technique.

Table 8.5: Friedman Test Ranking

Technique Mean Rank (Balance) Mean Rank (G-Mean) Mean Rank (AUC)
MSLSMOTE 1.33 1.27 1.1.5

SafeSMOTE 2.84 2.94 2.76

BSMOTE 2.8 2.73 2.86

SMOTE 3.04 3.06 3.22

With the Wilcoxon test 's help, the performance of models predicting software

maintainability developed after data resampling with MSLSMOTE is compared

against those developed after data resampling with SafeSMOTE, BSMOTE, SMOTE.

The pairwise performance with regard to Balance, G-Mean, and AUC on all datasets is

compared irrespective of the ML technique used in the chapter. In the test procedure,

the null hypothesis is set as a difference between average AUC, G-Mean, and Balance

from MSLSMOTE and other data resampling techniques; SafeSMOTE, BSMOTE,

and SMOTE are not significant. The test's alternative hypothesis evaluated was the

difference between average AUC, G-Mean, and Balance after data resampling with

267

Results and Analysis

MSLSMOTE and other data resampling techniques is significant.

Table 8.6: Friedman Test Ranking

Dataset MSLSMOTE vs. p-value

Bcel

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

Betwixt

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

Io

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

Ivy

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

Jcs

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

Lang

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

Log4j

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

Ode

SafeSMOTE 0.000
BSMOTE 0.000
SMOTE 0.000

For the test, the sample is chosen independently of the ML techniques. The

p-values obtained after the Wilcoxon signed-rank test are recorded in Table 8.6. In

all the comparisons, the p-values were lesser than 0.0166 the led to the rejection

of null hypothesis. The alternate, which states that the difference between average

AUC, G-Mean, and Balance after data resampling with MSLSMOTE and other data

resampling techniques is significant, is accepted. From the test result, it is concluded

268

Comparison of Various Studies

that in terms of G-Mean, AUC, and Balance, maintainability models developed after

data resampling with MSLSMOTE are significantly superior to those built after the

data resampling using SafeSMOTE, BSMOTE, and SMOTE independent of ML

techniques.

8.5 Comparison of Various Studies

In this section, our results are compared with literature studies and previous chapters

in terms of various performance measures (AUC, G-Mean, and Balance). The values

of different performance measures from previous chapters and literature studies

are presented in Table 8.7. In this table, we reported the median values of each

performance measure, obtained over all the datasets in a chapter or a study. It is to be

noted that the values for only that technique are stated in Table 8.7 which is the best in

the chapter or a study and prediction models are developed using OO metrics. In Table

8.7, “–“ denotes that corresponding performance measure value could not be extracted

from the study. It is to be noted that, the literature studies for comparison with our

results are those in which the prediction models are developed for identifying change

prone classes. Table 8.7, the LR technique was the best in Chapter 4, underbagging

technique was the best in Chapter 5. CHC, an SB technique was best in Chapter 6 and

two HB techniques PSOLDA and GFS-LB exhibited the best performance Chapter

7. Catolino et al. [183] assessed a number of a different set of predictors (number of

developers, structural and semantic scattering of developers, evolution-based metrics,

and OO metrics)

269

Comparison of Various Studies

Table 8.7: Results of Comparison of Classification Techniques

Performance

Measure

Chapter

4 (LR)

Chapter

5 (UB)

Chapter

6

(CHC)

Chapter 7

(GFS-LB,

PSOLDA)

[225]

(MPLCS)

[17]

(PSOLDA)

[183]

(Vot)

[21]

(NB)

G-Mean 68.35 72.28 71.17 (70.77, 70.22) 70 69 – –

Balance 68.00 71.85 70.10 (70, 70.47) 69.06 66 – –

AUC – – – – – – 0.56 0.74

UB indicates underbagging, vot indicates voting ensemble

Table 8.8: Results of Comparison of Imbalance Learning Techniques

Performance

Measure

Chapter

4 (SafeS-

MOTE)

Chapter 5

(UB)

Chapter

6 (SafeS-

MOTE)

Chapter

7 (SafeS-

MOTE)

Chapter 8

(MSLSMOTE)

[74]

(ANC)

[74]

(DANC)

G-Mean 69.14 72.28 71.01 73.11 73.70 68.09 70.02

Balance 68.34 71.85 71.01 72.21 70.48 68.34 69.53

AUC – – – – 0.76 0.80 0.79

UB indicates underbagging, ANC indicates AdaBoost.NC, DANC indicates Dynamic AdaBoost.NC

using the ML techniques NB, LR, MLP, Bagging, RF, and voting ensemble

technique for developing change prediction models. The results of this study advocated

a voting-based ensemble as the best technique with a median AUC of 0.56. Romano

and Pinzger [21] investigated ML techniques namely NB, SVM, and NB. The NB, an

ML technique reported best in terms of median AUC value of 0.74, The results of our

Chapter 4 advocated that LR is the best technique with median G-Mean and Balance

of 68.35 and 68 respectively. The results of Chapter 4 could not be compared with the

results of Calolino et al. [183] and Romano and Pinzger [21] because of the use of

different performance measures. The study by Malhotra and Khanna [17] advocated

the PSOLDA as best technique for predicting change-prone software classes. Their

270

Comparison of Various Studies

results were validated on six open-source datasets and we reported the median results

on these six datasets. Another study by Malhotra and Khanna [225] evaluated eight

open-source datasets for identifying change prone classes using eight SB techniques,

four ML, and one statistical technique. We reported the median value of the best

technique amongst all investigated techniques. The results depicted in Table 8.7 shows

that underbagging technique showed the best G-Mean and Balance values in Chapter

5. The G-Mean result of underbagging technique was closely followed by the CHC,

GFS-LB, and PSOLDA techniques. CHC is an SB technique, whereas PSOLDA

and GFS-LB are HB techniques. Thus, we advocate underbagging, PSOLDA, GFS-

LB, and CHC techniques for predicting software maintainability. Also, the study by

Malhotra and Khanna [17] investigated HB techniques on eight open-source datasets

and they advocated PSOLDA as the best HB technique with a median G-Mean of 69

and median Balance of 66. In Chapter 7, PSOLDA is advocated as one of the best

HB techniques with a median G-Mean of 70.22 and median Balance of 70.47 and

there is a small difference performance of the two (the performance of PSOLDA in

the Chapter 7 and reported by [17]. Therefore, we advocate the effectiveness of the

PSOLDA technique in the domain of SMP.

To take care of the imbalanced data problem, data resampling techniques have

been investigated in the thesis. SMP models have been developed with ML, SB, and

HB techniques in previous chapters after balancing data with resampling techniques.

It is to be noted that we have examined the same set of data resampling techniques on

the same datasets to establish their effectiveness with a different set of classification

techniques. In Chapter 5, data resampling techniques are aggregated with ensemble

learners to provide algorithmic level solutions to the imbalanced data problem in

SMP. The best resampling technique in each chapter and literature studies of change

prediction are reported in Table 8.8. It is to be noted that the imbalanced data problem

is not addressed in any of the software maintainability studies in the literature and

271

Comparison of Various Studies

very few studies in the for prediction of change-prone software classes addressed this

issue. Therefore, we could compare the results with only those studies.

In Table 8.8, values of performance best performing data resampling technique

from previous chapters and literature studies have been reported. Wang & Yao [74]

evaluated the use of five class imbalance learning methods and found Adaboost.NC

to be best for the ten investigated datasets. They further proposed a new method

Dynamic Adaboost.NC. The G-Mean values were 68.9 and 70.2 for Adaboost.NC

and Dynamic AdaBoost.NC respectively whereas the Balance values were 68.34 and

69.53 respectively. Both Adaboost.NC and Dynamic AdaBoost.NC are the algorithmic

level solution to the imbalanced data problem. In Chapter 5, we have investigated

algorithmic level techniques to take care of imbalance data problem and underbagging

technique was the best with a median G-Mean of 72.18 and a median Balance of

72.21. As shown in Table 7.15, the best performing data resampling technique

in Chapter 4 was SafeSMOTE i.e., SMP models developed using ML techniques

performed best after data resampling with SafeSMOTE. The SafeSMOTE technique

performed best with a median G-Mean of 69.14 and a median Balance Value of 68.34

in Chapter 4. Also, SMP models developed using SB techniques performed best

after data resampling with SafeSMOTE in Chapter 5. The SafeSMOTE technique

performed best with a median G-Mean of 71.01 and a median Balance value of 71.07

in Chapter 5. A similar trend prevailed in the Chapter 7. In Chapter 7, the SafeSMOTE

technique was investigated as the best technique. The SMP models developed using

HB techniques after data resampling with SafeSMOTE performed best with a median

G-mean of 73.11 and a median Balance of 72.21 in Chapter 7. Thus, we favor the use

of the SafeSMOTE technique as ML, SB, and HB techniques investigated in this thesis

performed best with SafeSMOTE. In the current chapter, we proposed MSLSMOTE

that is the modification of SafeSMOTE. The SMP models are developed using ML

techniques after data resampling with MSLSMOTE gave median G-Mean, Balance

272

Discussion

and AUC of 73.70, 70.48 and 0.76 respectively. It is to be noted that SMP models

on the same ML techniques after data resampling with SafeSMOTE gave median

G-Mean and Balance of 69.14 and 68.34 respectively in Chapter 4. Therefore, these

results indicate that MSLSMOTE is an effective technique to deal with the imbalanced

data.

8.6 Discussion

The objective of this chapter was to determine the low maintainability software classes

accurately. We examined four data resampling techniques including the proposed

technique MSLSMOTE at different rates of oversampling with ML techniques. The

oversampling rates determines the number of sythetic data points to be introduced in

the imbalanced training dataset. MSLMSOTE offers an effective enhancement in the

performance of prediction models of software maintainability, according to AUC, Bal-

ance, and G-Mean at different oversampling rates. However, at oversampling rate of

400% and 500%, the SMP models developed using MSLSMOTE gave the highest per-

formance in terms of G-Mean and Balance. The highest performance of MSLSMOTE

at these oversampling rates was due to the reason that at these oversampling rates,

MSLSMOTE able to get more synthetic instances of low maintainability class data

points to make a appropriate balance with the data points of high maintainability class

data points.

MSLMSOTE offers an substantial enhancement in the performance of prediction

models of software maintainability, according to AUC, Balance, and G-Mean. Its

efficacy is shown as being the best resampling technique in all datasets and ML

techniques. The results of Wilcoxon signed-rank test also confirmed that the signif-

icant positive difference using AUC, Balance, and G-Mean from MSLSMOTE to

SafeSMOTE, BSMOTE, and SMOTE is attained autonomously of datasets and ML

273

Discussion

techniques.

In this chapter, MSLSMOTE has been applied to imbalanced maintainability

prediction datasets to accurately predict low maintainability classes. This resam-

pling technique can be useful to an imbalanced dataset to obtain a balanced dataset

containing the original minority class data and synthetic data points. The balanced

dataset can benefit training a valuable model to forecast unknown data points. The

proposed approach introduces an effective way to handle imbalanced data that results

in developing efficient SMP models.

274

Chapter 9

Inter-Project Validation For Software

Maintainability Prediction

9.1 Introduction

Researchers have developed various prediction models in the literature to accurately

predict the software maintainability [8, 13, 56, 66, 173]. The development of such

models requires a dataset for training. The training dataset for the development

of SMP model comprises of software metrics and maintainability of the concerned

project in the form of lines of code added, deleted, or modified in the maintenance

period. This data collection for training the prediction model is one of the difficult

tasks because in most cases either such data is unavailable or it is difficult to collect.

In order to overcome this limitation of historical data collection, the development

of generalized maintainability prediction models is necessary where the historical

data of a particular project can be utilized for other similar kinds of projects. This

approach is called inter-project or inter-project validation. Thus, the situation in which

there is the inadequacy of resources and lack of time to capture training data for

275

Introduction

the development of maintainability prediction model, inter-project validation can be

employed. This chapter investigates the applicability of the inter-project validation

approach where the training dataset of one project is validated on other projects. In

software engineering predictive modeling, inter-project validation is the process of

validating or testing a prediction model that is being developed by making use of

training data of some other project. Thus, in order to investigate the effectiveness of

this strategy, several studies have been published. Kitchenham et al. [226], analyzed

ten studies that compared cost estimation models developed using within company

and inter-company projects datasets. The results of their analysis were declared

inconclusive as in three studies under their analysis, inter-company models were

equally good as within company models while in four studies within company models

outperformed compared to inter-company estimation models. Turhan et al. [227]

investigated the suitableness of inter-project strategy for the development of defect

prediction models. They used analogy-based learning to inter-company data to fine-

tune the models for prediction of defects in software classes. The performance of

inter-company defect prediction models was compared with defect prediction models

developed using within-company data in this study. The performance of both was

found comparable in their study. Canfora et al. [228] presented an inter-project defect

prediction model using multi-objective regression analysis. The model was empirically

validated on ten datasets and gave quite promising results. Watanabe et al. advocated

the use of inter-project validation for fault prediction. A large-scale study, examining

the use of inter-project defect prediction by analyzing twelve real-world projects

was conducted by Zimmermann et al. [229]. The study revealed that inter-project

prediction models developed using the projects with the same domain are not always

successful and this study determined the factors that strongly influence inter-project

defect prediction. He et al. [143] conducted three large experiments on 34 datasets

extracted from 10 open-source projects to examine the effectiveness of inter-project

276

Introduction

validations. Their research revealed that in some cases inter-project validation strategy

gives better estimation. Malhotra et al. [230] developed change proneness prediction

models to predict change-prone classes using ML and statistical techniques. They

advocated that inter-project validation helps in developing generalized prediction

models. Thus, all the above studies attributed to establishing the capability of inter-

project validation in predictive modelings like defect prediction, prediction of change

proneness, and cost estimation. However, to the best of our knowledge inter-project

validation for SMP has not been investigated in the literature. Also, the existence of

this research gap was ascertained by the review conducted in Chapter 3. We investigate

the following RQs in this chapter.

• RQ1) What is the predictive performance of SMP models developed using

inter-project validation?

• RQ2: What is the predictive performance of SMP models that are trained and

tested on the same dataset using ten-fold validation?

• RQ3: Does the performance of models developed for predicting software

maintainability using inter-project validation and ten-fold validation differ sig-

nificantly?

In order to answer the above research questions, the SMP models developed using

ML techniques (RF, DS, AR, Bagging, KNN, KSTAR, MLR, PART, CART, MLP-BP,

RBFNN, REPTree, SVM). The experiments were conducted on three open-source

software datasets (HtmlUnit, Click, and Maven). This chapter is structured as follows:

Section 9.2 presents an experimental framework for developing SMP models using

inter-project validation. Section 9.3 presents the results using ten-fold cross validation.

Section 9.4 presents inter-project validation results. The statistical analysis of models

developed using ten-fold cross-validation and inter-project validation is described in

277

Research Methodology

section 9.5. Finally, Section 9.6 presents the discussion. The results of this chapter

are published in [231].

9.2 Research Methodology

This section describes the research methodology followed in this chapter. Figure 9.1

presents the experimental framework of this chapter.

Figure 9.1: Experimental Framework for Developing SMP Models using Click Project

9.2.1 Independent and Dependent Variables

Training a model in order to accomplish a prediction task requires a dataset comprising

of independent variables and dependent variables. Independent variables used in this

chapter are C&K metrics [36]. Maintenance effort is termed as CHANGE (total SLOC

changed) is used as the dependent variable used in this chapter. This is a continuous

variable and is defined as the total number of source code lines changed in a class.

278

Inter-Project Validation Results

9.2.2 Empirical Data Collection

In order to validate inter-project validation, three Apache application packages (Htm-

lUnit, Maven and Click) are used in this chapter. The datasets from these projects are

collected according to the data extraction procedure described in Chapter 2.

9.2.3 Model Development and Performance Evaluation

In this chapter, SMP models are developed using inter-project validation and ten-fold

cross-validation. The predictive performance of the models developed using both

strategies is compared with the help of performance measures MMRE and Pred.

The formulae to compute MMRE and Pred are given in Chapter 2. The statistical

comparison is carried with the help of the Wilcoxon signed-rank test.

9.3 Inter-Project Validation Results

The performance of SMP models developed using inter-project validation is reported

in this section.

9.3.1 Answer Specific to RQ1

In order to answer RQ1, we used the HtmlUnit dataset for training and applied

ML techniques stated in Section 9.1 to develop maintainability prediction models.

These models are then validated using test datasets. In this experiment, we used two

datasets for validating the prediction models developed using the HtmlUnit dataset.

These datasets are the Maven dataset and the Click dataset. SMP models developed

using the HtmlUnit dataset as training are validated on the above-mentioned datasets

individually. This explains the process of inter-project validation. The process of

279

Inter-Project Validation Results

inter-project validation is schematically described in Figure 9.1. The performance of

the maintainability prediction models built using inter-project validation is described

with the help of performance measures given stated in Section 9.2. The reason for

considering these performance measures for the purpose of evaluation of the developed

prediction models is that these are the de-facto standard for performance evaluation

for predictive modeling. The performance of models in terms of MMRE and Pred,

developed by applying inter-project validation for Click and Maven datasets is shown

in Table 9.1 and Table 9.2 respectively.

Table 9.1: Performance of Click dataset using inter-project validation

ML Technique MMRE Pred(25)% Pred(30)% Pred(75)%
AR 0.73 14 24 55
Bagging 0.64 14 17 49
DS 0.66 13 14 54
RF 0.67 15 17 50
KNN 0.79 16 18 55
KSTAR 0.68 08 14 55
MLR 1.02 10 11 44
PART 0.71 17 22 59
CART 0.72 16 21 52
MLP-BP 1.20 36 37 57
RBFNN 0.68 13 16 50
REPTree 0.66 14 17 50
SVM 1.59 14 18 46

As shown in Table 9.1, when the prediction model trained using HtmlUnit dataset

with the application of the Bagging technique is validated on the Click dataset, it gave

an MMRE of 0.64. Other ML techniques: DS, REPTree, RF, KSTAR, and RBFNN

gave an MMRE of 0.66, 0.66, 0.67, 0.67, and 0.68 respectively. It is to be noted that

the MMRE of the above-mentioned ML techniques is in the range of 0.64 to 0.68

which is quite encouraging. The PART technique gave the highest Pred(75) perfor-

mance of 59% whereas the MLP-BP technique outperforms with a with respect to

280

Inter-Project Validation Results

Pred(25) and Pred(30) with a value of 36% and 37% respectively. As shown in Table

9.2 when the prediction model trained using HtmlUnit dataset with the application

of the CART technique is validated on the Maven dataset, it gave MMRE of 0.61.

Except for SVM and MLP-BP, the results of all other ML techniques for inter-project

validation carried out using the Maven dataset are in the range of 0.61 to 0.68. For

this dataset, KNN outperforms with respect to Pred(25), Pred(30), and Pred(75) with

values 26%, 27%, and 65% respectively.

Table 9.2: Performance of Maven dataset using inter-project validation

ML Technique MMRE Pred(25)% Pred(30)% Pred(75)%
AR 0.65 09 19 56
Bagging 0.67 12 14 46
DS 0.63 14 14 44
RF 0.67 13 13 53
KNN 0.63 26 27 65
KSTAR 0.63 15 18 57
MLR 0.64 14 16 64
PART 0.64 13 14 51
CART 0.61 12 14 51
MLP-BP 0.75 17 20 62
RBFNN 0.67 12 13 46
REPTree 0.66 13 13 45
SVM 0.73 13 16 45

we used Friedman Test at 95% level of significance with 12 degrees of freedom (13

ML techniques) with respect to performance measure MMRE to statistically examine

the performance of thirteen ML techniques for inter-project validation. The result of

the Friedman Test is shown in Table 9.3. The p-value obtained after the Friedman test

was 0.000 that indicated that result of the Friedman test is significant.

281

Ten Fold Cross-Validation Results

Table 9.3: Ranking produced by Friedman Test According to MMRE for inter-Project
Validation

Technique Mean Rank

DS 2.75

KSTAR 4.25

CART 5.50

REPTree 6.25

Bagging 6.50

KNN 7.50

PART 7.50

RF 7.50

RBFNN 8.75

MLR 9.75

AR 10.00

MLP-BP 14.50

SVM 14.50

As shown in Table 9.3, with respect to MMRE, the DS technique is best for

maintainability prediction for inter-project validation as this technique has obtained

the smallest rank amongst all 13 ML techniques used in this chapter followed by the

KSTAR technique. Therefore, for RQ1 we conclude that for inter-project validation,

maintainability prediction models developed with the applications of DS, REPTree,

RF, KSTAR, and RBFNN techniques gave MMRE in a range of 0.63 to 0.68 over

both datasets which are quite encouraging. Also, DS is the best technique among all

ML techniques selected in this chapter for predicting software maintainability.

9.4 Ten Fold Cross-Validation Results

The performance of SMP models developed using ten-fold cross-validation is reported

in this section.

282

Ten Fold Cross-Validation Results

9.4.1 Answer Specific to RQ2

In the second experiment, the predictive performance of the SMP models that are

trained and tested on the same dataset is analyzed. In this experiment, we developed

maintainability prediction models for Click and Maven datasets using ten-fold cross-

validation. The performance of the developed models for Click and Maven datasets is

reported in Table 9.4 and Table 9.5 respectively.

Table 9.4: Performance of Click dataset using Ten-Fold cross-validation

ML Technique MMRE Pred(25)% Pred(30)% Pred(75)%
AR 0.62 16 19 57
Bagging 0.64 14 19 50
DS 0.69 12 15 45
RF 0.64 15 17 54
KNN 0.76 09 28 63
KSTAR 0.59 20 25 65
MLR 0.62 15 17 52
PART 0.66 15 18 52
CART 0.66 14 15 50
MLP-BP 0.84 13 15 50
RBFNN 0.68 11 12 50
REPTree 0.68 11 13 47
SVM 0.66 15 22 61

As shown in Table 9.4, for the Click dataset, the KSTAR technique gave the lowest

MMRE of 0.59 followed by AR and LR. Also, For the Click dataset, the KSTAR

technique gave the best Pred(25) and Pred(75). The corresponding values of Pred(25)

and Pred(75) of the KSTAR technique are 20% and 65% respectively. KNN technique

reported the highest Pred(30) of 28%. For the Maven dataset, again KSTAR gave the

lowest MMRE of 0.53 followed by AR as shown in Table 9.5.

Table 9.5: Performance of Maven dataset using Ten-Fold cross-validation

ML Technique MMRE Pred(25)% Pred(30)% Pred(75)%
AR 0.60 11 15 69

283

Ten Fold Cross-Validation Results

Bagging 0.61 12 14 55
DS 0.64 13 17 51
RF 0.66 12 16 50
KNN 0.90 31 31 56
KSTAR 0.53 23 27 73
MLR 0.61 16 19 54
PART 0.61 15 17 61
CART 0.62 15 18 59
MLP-BP 0.69 16 20 63
RBF 0.62 10 16 55
REPTree 0.61 15 15 48
SVM 0.74 16 20 69

Also, the performance of the KSTAR technique is best in terms of Pred(75)

whereas, KNN is best in terms of Pred(25) and Pred(30) as shown in Table 9.4.

Further, in order to statistically examine the performance of ML techniques for ten-

fold validation over two datasets, we apply Freidman Test at a 95% level of significance

with 12 degrees of freedom (13 ML techniques) with respect to performance measure

MMRE. The results of the Freidman Test are depicted in Table 9.6.

Table 9.6: Ranking produced by Friedman Test according to MMRE for Ten-Fold
cross-validation

Technique Mean Rank
KSTAR 1.0
AR 2.25
MLR 3.75
BAGG 5.25
PART 6.75
REPTree 8.25
RF 8.75
CART 8.75
RBFNN 10.25
SVM 11.25
DS 12.00
MLP-BP 14.00
KNN 14.

284

Statistical Analysis using Wilcoxon Signed-Rank Test

Thus, as shown in Table 9.6, the KSTAR technique is best for maintainability

prediction for when prediction models are trained and tested on the same datasets

considered in this chapter. This technique has obtained the smallest rank amongst all

ML techniques used in this chapter followed by AR technique which has obtained

a rank of 2.25. Therefore, for RQ2 we conclude that For ten-fold cross-validation,

maintainability prediction models developed with the application of AR, Bagging,

RF, KSTAR, MLR, PART, CART, RBFNN, and REPTree techniques gave MMRE

in a range of 0.61 to 0.68 over both datasets which is a quite acceptable range. Also,

KSTAR is the best technique amongst all ML techniques selected in this chapter for

predicting software maintainability on the basis of ranking given by the Friedman test

on ten-fold cross-validation.

9.5 Statistical Analysis using Wilcoxon Signed-Rank

Test

To establish the applicability of inter-project validation in the prediction of software

maintainability, the performance of the prediction model developed by applying

a particular ML technique using inter-project validation (Section 9.3) should not

differ significantly from that of the models developed using ten-fold cross-validation

by applying the same ML technique (Section 9.4). The existence of a significant

difference in the performance weakens the applicability of inter-project validation.

The following hypothesis is tested.

• Null Hypothesis (H0): There is no significant difference in the performance of

the maintainability prediction model developed using inter-project validation

and ten-fold cross-validation.

285

Statistical Analysis using Wilcoxon Signed-Rank Test

• Alternate Hypothesis (Ha): The performance of the maintainability prediction

model developed using inter-project validation and ten-fold cross-validation

differs significantly.

Therefore, in order to statistically validate the feasibility of inter-project validation,

we apply the pairwise Wilcoxon test at a 95% significance level (α = 0.05) on the

performance of each of the thirteen ML techniques for inter-project validation and

ten-fold validation and validated H0 and Ha. The performance of individual ML

technique with respect to MMRE values for inter-project validation and ten-fold

cross-validation approach is compared over the two datasets considered under this

chapter. Table 9.7 shows the pairwise results of the Wilcoxon test for each of the

thirteen ML techniques for inter-project and ten-fold validation.

Table 9.7: Results of Wilcoxon Test on cross-validation vs Ten fold validation

Technique p-value
ARC-ART 0.65
BaggingC-BaggingT 0.31
DSC-DST 0.18
RFC-RFT 0.18
KNNC-KNNT 0.65
KSTARC-KSTART 0.18
MLRC-MLRT 0.18
PARTC-PARTT 0.65
CARTC-CARTT 0.65
SVMC-SVMT 0.65
REPTreeC- REPTreeT 0.65
RBFNNC-RBFNNT 0.31
MLP-BPC-MLP-BPT 0.18

Table 9.7 depicts the p-value of the pairwise comparison of different techniques

for inter-project and ten-fold validation. It is evident from Table 9.7 that for all of the

12 pairs, the p-value is greater than 0.004 (with Bonferroni correction). Therefore,

we accept the null hypothesis and reject the alternate hypothesis. Therefore, for

286

Discussion

RQ3, on the basis of the results of the pairwise Wilcoxon test, it is concluded that

the performance of maintainability prediction models developed using inter-project

validation and ten-fold validation does not differ significantly. Thus, a training dataset

computed from the past project can effectively be utilized to predict the maintainability

of the software project under development.

9.6 Discussion

The aim of this chapter was to investigate the applicability of inter-project validation

for the prediction of software maintainability. To assess and analyze the capability of

inter-project validation, three datasets namely HtmlUnit, Click, and Maven are used.

Two experiments are being conducted in this chapter.

In the first experiment, the SMP models are developed using inter-project vali-

dation and the performance of the models is examined. In the second experiment

SMP models are developed using ten-fold cross-validation and the performance of

the developed models is compared with the models developed using inter-project

validation. The performance of SMP models in terms of mean MMRE, Pred(25%),

Pred(50%), and Pred(75%) for click dataset in case of inter-project validation was

observed to be 0.81, 15.33, 18.73, 52.20 respectively and for ten-fold cross-validation

the performance of models for Click dataset was in was 0.67, 14, 18.20, and 53.33

respectively in terms of mean MMRE, Pred(25%), Pred(50%), and Pred(75%). Sim-

ilarly, for Maven dataset, the performance of SMP models was 0.66, 14.13, 16.46,

and 52.60 in terms of mean mean MMRE, Pred(25%), Pred(50%), and Pred(75%)

respectively in case of inter-project validation whereas same dataset for ten-fold

cross-validation gave a performance of 0.64, 15.60, 18.80, and 57.73 respectively

in terms of mean MMRE, Pred(25%), Pred(50%), and Pred(75%). Therefore, these

results clearly indicate that the performance of SMP models developed using ten-fold

287

Discussion

cross-validation and inter-project validation is nearly same.

Also, results of the Wilcoxon test confirmed that there is no significant difference

in the performance of the SMP models developed with the help of two approaches.

Therefore, the results of this chapter confirm that the training dataset of one software

project can be utilized effectively to develop generalised prediction models to forecast

software maintainability.

288

Chapter 10

Conclusion

10.1 Summary of the Work

Software systems are subjected to continuous modifications and evolution to respond

to the changes in the real world. The changes in the software systems are due to

multiple causes, few of which include enhancing existing features, adding new features,

and correction of the existing defects. As the complexity of software is increasing,

maintaining such complex systems is becoming a challenge for software practitioners.

The modifications may result in drastic changes in the structure and design of software

components. As software maintenance costs a significant amount in the software

development life cycle, therefore it is essential to take care that the modifications

should not degrade the software quality. The prime aim of the work carried out in this

thesis is to develop model effective models to determine the software maintainability

of OO software systems by dealing with imbalanced data. As imbalanced data limits

the performance and accuracy SMP models, various techniques have been applied in

the thesis to overwhelm the adverse effects of imbalanced data. These approaches

have been validated using various classification techniques to get the generalized SMP

289

Summary of the Work

models with validation on various datasets. The classification techniques ranging

from ML techniques widely applied in predictive modeling to ML techniques never

explored in the domain of SMP are examined in this thesis with data resampling

techniques. For effective identification of low maintainability classes, a wide array

of SB and HB techniques have also been investigated in this work with various data

resampling techniques. The thesis also evaluates many ensembles learning techniques

to effectively handle imbalanced data. To develop models, the thesis evaluated a

number of predictors from various OO metric suites well established in software

engineering predictive modeling. The work is conducted in this thesis in the form

of organized and rigorous empirical experiments that make it very useful for the

researchers and software practitioners. The empirical experiments are conducted

systematically and properly in the thesis. The sequence of steps to conduct the

experiments is discussed. The independent and dependent variables are described.

All the data analysis techniques to develop models in the thesis are described with

their basic functioning, characteristics, and parameter setting. This work focused on

predicting the maintainability of datasets extracted from the open-source software

systems. The open-source software systems are continuously modified by developers

all over the world but due to lack of documentation and technical support, it is difficult

to estimate their maintainability. In the area of SMP, hardly a few studies have

developed models by extracting datasets from open-source software systems. The

open-source project datasets aid easy replicability and generalizability of the results.

For each dataset used in this thesis, we mentioned its descriptive statistics. The data

preprocessing steps such as data discretization, outlier analysis, and feature selection

method is described. The validation methods used to validate the prediction models

are described. We also defined various performance metrics used in this thesis to

evaluate the performance of the models and statistical. We also describe the statistical

analysis methods that are used to statistically analyze the results of the chapters of the

290

Summary of the Work

thesis.

To assess and analyze works done in literature in software maintainability, we

performed a systematic literature review in which we systematically reviewed 34

primary studies in the period from January 1990 to October 2019. The data extracted

from these studies is analyzed with respect to various RQs framed to cater to the need

for the systematic review. These studies were analyzed to answer various RQs with

respect to the type of variables used for developing the models, categories of various

data analysis techniques used for developing models, datasets used, the predictive

performance of various techniques (most popular category of data analysis techniques

found), validation methods used for validation of the models, the statistical tests used

for results verification and the threats encountered and addressed model development.

It was found that a majority of studies in literature used OO metrics for developing

models and C&K metrics are popular metric suite in the literature studies, as predictors

to develop models. The ML techniques were used and found effective in developing

SMP models. In ML techniques, NN was explored by the majority of the studies to

develop maintainability prediction models. The GMDH in the category was found

effective to develop models. The performance of a few HB techniques was found

effective, but we found a lack of studies (only eight studies) that assessed the HB

techniques. It was found that most of the work in SMP was carried out on public

datasets, UIMS, and QUES. There is a lack of studies that validated open-source or

proprietary project datasets. Based on the review results, we also identified several

future directions in the domain. As UIMS and QUES are very small sized datasets

investigated in the majority of the studies, the large size dataset should be evaluated.

There is no study in the literature, that has examined cross-project validation. So,

cross-project validation should be explored to get generalized prediction models.

Furthermore, more studies are required to empirically verify, assess, and compare

the performance of various categories of data analysis techniques. Moreover, the

291

Summary of the Work

comparison results should be statistically assessed as according to the systematic

review, 62% of primary studies did not use any statistical test for solidifying their

conclusions. To fill the above-stated gaps, we develop SMP models using various

ML techniques on eight open-source datasets. As investigated in the literature review,

ML techniques are the most popular in the domain of SMP. ML techniques are

effective, adaptive, and can learn easily from historical data. But imbalanced data

puts hurdles for the effective training of models using ML techniques. Therefore,

we preprocessed the imbalanced datasets with different data resampling techniques

before the learning process. The results of the models are evaluated using G-Mean

and Balance metrics. The performance of ML techniques significantly improved after

the use of different sampling methods. The SMP models developed after resampling

with SafeSMOTE performed well on all the datasets. The SafeSMOTE technique

improved the performance of the models in terms of G-Mean and Balance. According

to statistical analysis carried out with the Friedman test, the SafeSMOTE technique

achieved the highest rank in terms of G-Mean and Balance.

The literature review conducted on software maintainability also pointed a few

recent studies have explored the use of ensemble learners for developing models to

predict software maintainability. We also assessed the use of ensembles techniques

as they result in improved prediction than individual learners. Taking care of the

imbalanced nature of data, ensemble techniques used in this thesis include the en-

sembles aggregating data resampling techniques with them. The performance of

several bagging-based, boosting-based, and hybrid ensembles is evaluated. Amongst

bagging-based ensembles, underbagging performed best with an average G-Mean of

73.14 and an average Balance of 72.77. In the category of Boosting based ensembles,

RUSBoost outperformed with average G-Mean and average Balance 70.36 and 69.55

respectively. Both hybrid ensembles, EasyEnsemble, and BalanceCascade also found

it effective to develop competent models with average G-Mean and Balance greater

292

Summary of the Work

than 69.00.

As the results of models developed using ML techniques and ensembles were found

suitable, we also explored the use of SB techniques, a sub-category of ML techniques

for predicting software maintainability. We completed a comparative empirical study

with an effective experimental setup using multiple runs, use of firm performance

metrics, and rigorous statistical evaluation, to construct SMP models using fourteen

SB and fourteen ML fourteen datasets. Also, in this work, the imbalanced data is

handled with data resampling techniques. The SMP models developed using the

CHC technique, an SB technique obtained best results than all the other investigated

techniques when assessed using the Friedman test on G-Mean and Balance results.

The average G-Mean and Balance result of SMP models developed using the CHC

technique on all the fourteen investigated datasets were 71.17 and 70.01 respectively.

The successful results of the models developed using the CHC technique was because

of its fitness function that analyzed the accuracy and the complexity of the ruleset.

The pairwise comparisons of the models developed using the CHC technique and the

other investigated techniques were evaluated using the Wilcoxon test. It was found

that the models developed using the CHC technique were better than most of the other

compared techniques. Also, in this work, the SafeSMOTE data resampling technique

was advocated as the best data resampling technique.

As both ML and SB techniques were found effective, we further explored HB tech-

niques for SMP. The HB techniques combined an ML technique with the SB technique.

Combining ML techniques with SB resulted in effective models as HB techniques

combine the characteristics and strengths of both of its constituent techniques. We

examined the efficacy of eleven HB techniques after balancing datasets with data

resampling techniques. Again, the consistent result was obtained in this work and

the SafeSMOTE technique resulted in effective models with HB techniques. The

SMP models developed using HB techniques after data resampling with SafeSMOTE

293

Summary of the Work

performed best with a median G-Mean of 73.11 and a median Balance of 72.21. The

prediction models developed from GFS-LB and PSO-LDA were best performers in

terms of their predictive power. The average values of the models developed using the

PSOLDA technique were 70.22 and 70.47 respectively and the average values of the

models developed using the GFS-LB technique were 70.77 and 70.00 respectively.

These results were also statistically assessed by the use of the Wilcoxon test. The

performance of GFS-LB and PSOLDA was was compared with other HB techniques

and significant results have been obtained.

The systematic literature review conducted on software maintainability also

pointed out the models constructed for predicting the maintainability of a project

are trained using the past data of the same project. Sometimes, there is a lack of

availability of the training dataset or it difficult to collect. Therefore, it was essential

to examine the scenario where the historical datasets from one project can be validated

on another project. For empirical evaluation using cross-project validation, we used

three datasets Htmlunit, Maven, and Click. The prediction models are developed

using the Htmlunit project dataset and Maven and Click datasets were used for valida-

tion. The prediction models were also developed using ten-fold cross-validation with

Click and Maven datasets. The performance of the models developed using the two

approaches (ten-fold and inter-project validation) was compared with the aid of the

Wilcoxon signed-rank test. The results of the analysis indicated that models developed

using ten-fold validation (i.e., trained and tested on the same project) and inter-project

validation exhibited no significant difference in their performance. Therefore, these

results advocated the applicability of inter-project validation in the domain of SMP.

As SafeSMOTE was found effective with ML, SB, and HB techniques, we pro-

posed a novel data resampling technique (MSLSMOTE). The idea was to further

improve the performance of the models by handling imbalanced data. The proposed

technique is an enhanced version of SafeMSOTE that distinguishes between the safe

294

Application of the Work

and noisy datapoints more carefully with weighted K nearer neighbor algorithm

and then generates synthetic data points according to Safe-Level of each data point.

The imbalanced datasets are oversampled at a different rate of oversampling. SMP

models are developed with ML techniques after oversampling data at different over-

sampling rates with MSLSMOTE. The performance of MSLSMOTE is compared with

SafeSMOTE, BSMOTE, and SMOTE concerning G-Mean, Balance, and AUC. The

MSLSMOTE techniques attained Friedman rank according to G-Mean, Balance, and

AUC. Also, the Wilcoxon signed-rank test confirmed that MSLSMOTE is statistically

better than SafeSMOTE, BSMOTE, and SMOTE.

10.2 Application of the Work

The work conducted in the thesis would aid the Software practitioners and researchers

in the following ways:

• A well-defined and systematic approach for developing effective prediction

models can be used for further experiments in SMP domain.

• As multiple techniques have been evaluated in this work to determine a tech-

nique that can provide effective balanced data to develop efficient SMP models,

it will guide researchers to select an appropriate technique to deal with the

imbalanced data problem.

• Predicting low maintainability classes in advance with the effective SMP models,

the design engineers will have appropriate time to improve designs, including

new plans or resources to get the recognized difficulties. Also, the efficient

SMP models aid in the development of quality software which is reliable too.

• The efficient SMP models would also highlights for the designers, those areas

295

Future Work

of poor maintainability which justify product improvement, modification, or a

change of design.

• Software developers can strategically utilize the resources, enhance process

efficiency, and optimize/reduce the associated maintenance costs. It will also

enable the project managers to compare the productivity and cost amongst

projects and keep the maintenance cost and effort under control.

• Software testers can devote extra time to the testing phase for testing the low

maintainability classes that would lessen the chances of discovering faults in

these classes during software maintenance.

• Regression testing effort will be reduced as the SMP models developed can be

used in early phases for predicting low maintainable classes.

10.3 Future Work

The work conducted in this thesis evaluated wide array of classification techniques on

open-source datasets for SMP with methods to handle imbalanced data. Future studies

may plan to replicate this work on datasets belonging to other applications developed

in other programming languages. The replication would increase in generalizability of

the findings of this work. The ensemble techniques for imbalanced data problem may

also be investigated further with SB techniques as base learners. Further, researchers

may investigate SB and HB techniques to develop SMP models using inter-project

validation as these techniques are found as efficient modelling techniques in this

work. Inter-project validation with SB and HB techniques would aid in developing

generalized models to predict software maintainability. The MSLSMOTE for learning

from imbalanced data proposed in this thesis may be also be evaluated further by using

296

Future Work

SB and HB techniques. The replication of the empirical investigation is important as

it aid in addition of evidence based on which the application of work in the real-word

scenario is ensured. Therefore, to obtain generalized conclusions and strengthen the

findings, this work may be replicated.

297

Appendices

299

Descriptive Statistics of Datasets

The descriptive statistics of datasets used in this thesis as given below.

Descriptive Statistics Bcel dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 0 181 8.8 19.61 4
DIT 0 6 0.46 0.79 0
NOC 0 36 0.63 3.10 0
CBO 0 20 0.45 2.03 0
RFC 0 182 9.81 19.61 5
LCOM 0 16290 226.28 1590.12 6
Ca 0 13 0.24 1.41 0
Ce 0 9 0.22 1.06 0
NPM 0 181 7.43 19.10 3
LCOM3 1.01 2 1.68 0.42 2
SLOC 10 1086 54.29 119.31 24
DAM 0 1 0.36 0.47 0
MOA 0 121 0.69 6.47 0
MFA 0 1 0.03 0.162 0
CAM 0 1 0.5 0.25 0.5
IC 0 2 0.02 0.15 0
CBM 0 2 0.02 0.15 0
AMC 0 5 1.59 2.25 0

Descriptive Statistics Betwixt dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 1 55 7.2 7.27 5
DIT 0 4 0.72 0.50 1
NOC 0 38 0.26 2.33 0
CBO 0 39 2.68 4.40 1
RFC 1 63 10.36 8.80 8
LCOM 0 1485 42.19 157.35 6
Ca 0 38 1.32 3.67 0
Ce 0 11 1.44 1.83 1
NPM 1 47 6.43 5.92 5
LCOM3 0 2 1.11 0.70 1
SLOC 11 2760 66.78 177.90 36
DAM 0 1 0.63 0.47 1
MOA 0 7 0.39 0.84 0
MFA 0 1 0.0097 0.09 0
CAM 0.07 1 0.55 0.21 0.53
IC 0 1 0.043 0.20 0
CBM 0 1 0.043 0.20 0
AMC 0 304.78 5.50 18.64 4.58

300

Descriptive Statistics Io dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 2 101 11.51 13.69 8
DIT 0 4 0.75 0.90 1
NOC 0 19 0.25 1.52 0
CBO 0 20 1.14 1.82 1
RFC 3 102 12.50 13.69 9
LCOM 1 50 153.86 537.06 28
Ca 0 19 0.428 1.77 0
Ce 0 3 0.75 0.70 1
NPM 0 97 9.84 13.18 6
LCOM3 1.01 2 1.44 0.40 1.25
SLOC 18 61 71.06 83.45 52
DAM 0 1 0.57 0.47 1
MOA 0 3 0.27 0.68 0
MFA 0 1 0.11 0.25 0
CAM 0.08 1 0.49 0.20 0.45
IC 0 2 0.19 0.43 0
CBM 0 9 0.41 1.23 0
AMC 0 5 2.49 2.48 1.36

Descriptive Statistics Ivy dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 1 206 11.26 19.93 6
DIT 0 4 0.67 0.62 1
NOC 0 19 0.23 1.43 0
CBO 0 19 2.19 2.95 1
RFC 2 207 12.26 19.93 7
LCOM 0 21 255.88 1661.74 15
Ca 0 19 1.08 2.45 0
Ce 0 12 1.18 1.56 1
NPM 0 180 9.36 17.52 5
LCOM3 1 2 1.47 0.41 1.25
SLOC 96 1282 67.39 123.65 37
DAM 0 1 0.61 0.47 1
MOA 0 6 0.27 0.74 0
MFA 0 1 0.02 0.14 0
CAM 0.07 1 0.56 0.27 0.5
IC 0 2 0.06 0.24 0
CBM 0 2 0.06 0.24 0
AMC 0 5 2.7 2.39 5

301

Descriptive Statistics Jcs dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 0 39 8.07 7.44 5
DIT 0 4 0.89 0.48 1
NOC 0 7 0.05 0.49 0
CBO 0 7 0.85 0.95 1
RFC 0 40 9.05 7.47 6
LCOM 0 741 56.14 112.43 10
Ca 0 7 0.32 0.75 0
Ce 0 3 0.54 0.74 0
NPM 0 35 7.04 6.9 5
LCOM3 1.03 2 1.5 0.41 1.33
SLOC 13 247 44.62 44.94 30
DAM 0 1 0.51 0.47 0.5
MOA 0 3 0.21 0.52 0
MFA 0 0.95 0.02 0.12 0
CAM 0 1 0.49 0.25 0.44
IC 0 1 0.03 0.18 0
CBM 0 1 0.03 0.18 0
AMC 0 5 3.41 2.18 5

Descriptive Statistics Lang dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 1 175 20.61 25.38 14
DIT 0 5 0.66 0.86 1
NOC 0 5 0.1 0.59 0
CBO 0 8 1.37 1.18 2
RFC 2 176 21.61 25.38 15
LCOM 0 15225 522.97 1824.29 91
Ca 0 8 0.27 0.92 0
Ce 0 3 1.12 0.93 1
NPM 0 172 18.54 23.97 12
LCOM3 1.01 2 1.46 0.45 1.16
SLOC 62 1070 126.19 154.54 87
DAM 0 1 0.4 0.47 0
MOA 0 12 0.54 1.54 0
MFA 0 1 0.04 0.16 0
CAM 0.06 1 0.37 0.21 0.33
IC 0 2 0.12 0.34 0
CBM 0 3 0.18 0.52 0
AMC 0 5 2.51 2.45 4.28

Descriptive Statistics Log4j dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 1 104 7.92 8.48 5
DIT 0 6 1.12 1.08 1

302

NOC 0 4 0.11 0.47 0
CBO 0 12 1.16 1.74 1
RFC 2 105 8.92 8.48 6
LCOM 0 5356 63.3 283.04 10
Ca 0 11 0.53 1.48 0
Ce 0 5 0.64 0.85 0
NPM 0 48 6.1 6.25 4
LCOM3 1.01 2 1.49 0.4 1.33
SLOC 66 653 50.14 54.58 31
DAM 0 1 0.31 0.42 0
MOA 0 14 0.32 1.38 0
MFA 0 1 0.12 0.31 0
CAM 0 1 0.47 0.23 0.44
IC 0 2 0.08 0.31 0
CBM 0 3 0.11 0.46 0
AMC 0 5 3.83 2.02 5

Descriptive Statistics Ode dataset

Metric Minimum Maximum Mean Std. Dev. Median
WMC 0 76 6.79 8.63 4
DIT 0 4 0.69 0.7 1
NOC 0 29 0.35 1.92 0
CBO 0 40 2.19 3.3 1
RFC 0 77 7.77 8.66 5
LCOM 0 2850 56.9 221.95 6
Ca 0 40 1.05 2.95 0
Ce 0 10 1.22 1.43 1
NPM 0 76 5.66 7.6 3
LCOM3 0 2 1.6 0.42 1.5
SLOC 10 456 40.23 52.77 24
DAM 0 1 0.5 0.47 0.5
MOA 0 8 0.32 0.87 0
MFA 0 1 0.04 0.18 0
CAM 0 1 0.58 0.29 0.58
IC 0 1 0.02 0.14 0
CBM 0 2 0.02 0.15 0

303

Descriptive Statistics HtmlUnit dataset

Metric Minimum Maximum Mean Std. Dev.
LCOM 0 100 21.69 36.822
CBO 1 593 12.34 26.924
DIT 0 10 2.64 1.944
NOC 0 454 1.81 20.503
WMC 1 13818 40.61 540.928
RFC 14 13913 144.11 546.551
SLOC 16 90956 361.1 3566.075

Descriptive Statistics Maven dataset

Metric Minimum Maximum Mean Std. Dev.
LCOM 0 100 47.12 35.178
CBO 0 78 12.88 10.926
DIT 0 3 0.32 0.637
NOC 0 6 0.2 0.719
WMC 0 2 05 20.513
RFC 13 265 31.21 40.381
SLOC 15 2552 158.63 237.772

Descriptive Statistics Click dataset

Metric Minimum Maximum Mean Std. Dev.
LCOM 0 100 52.47 38.45
DIT 0 5 1.43 1.07
CBO 0 72 10.94 9.34
NOC 0 25 0.58 2.25
WMC 0 97 10.39 15.4
RFC 13 208 64.21 46.28
SLOC 12 1421 115.5 183.03

304

Bibliography

[1] Y. Singh and R. Malhotra, Object-oriented software engineering. PHI Learning

Pvt. Ltd., 2012.

[2] K. Erdil, E. Finn, K. Keating, J. Meattle, S. Park, and D. Yoon, “Software main-

tenance as part of the software life cycle,” Comp180: Software Engineering

Project, pp. 1–49, 2003.

[3] L. C. Briand, C. Bunse, J. W. Daly, and C. Differding, “An experimental

comparison of the maintainability of object-oriented and structured design

documents,” Empirical Software Engineering, vol. 2, no. 3, pp. 291–312, 1997.

[4] I. S. S. Engineering, IEEE Std. 828-1998 IEEE Standard for Software Con-

figuration Management Plans standard. Standards Committee of the IEEE

Computer Society, 1998.

[5] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,”

Journal of systems and software, vol. 23, no. 2, pp. 111–122, 1993.

[6] M. Dagpinar and J. H. Jahnke, “Predicting maintainability with object-oriented

metrics-an empirical comparison,” in Proceedings of the 10th IEEE Working

Conference on Reverse Engineering, WCRE, 2003, pp. 155–170, Victoria, B.C.,

Canada.

305

Bibliography

[7] Y. Zhou and H. Leung, “Predicting object-oriented software maintainability

using multivariate adaptive regression splines,” Journal of systems and software,

vol. 80, no. 8, pp. 1349–1361, 2007.

[8] L.-j. Wang, X.-x. Hu, Z.-y. Ning, and W.-h. Ke, “Predicting object-oriented

software maintainability using projection pursuit regression,” in 2009 First

International Conference on Information Science and Engineering. IEEE,

2009, pp. 3827–3830.

[9] K. Aggarwal, Y. Singh, A. Kaur, and R. Malhotra, “Application of artificial

neural network for predicting maintainability using object-oriented metrics,”

Transactions on Engineering, Computing and Technology, vol. 15, pp. 285–289,

2006.

[10] B. P. Lientz and E. B. Swanson, “Problems in application software maintenance,”

Communications of the ACM, vol. 24, no. 11, pp. pp. 763-769, 1981.

[11] A. G. Koru and H. Liu, “Identifying and characterizing change-prone classes

in two large-scale open-source products,” Journal of Systems and Software,

vol. 80, no. 1, pp. 63–73, 2007.

[12] A. G. Koru and J. Tian, “Comparing high-change modules and modules with

the highest measurement values in two large-scale open-source products,” IEEE

Transactions on Software Engineering, vol. 31, no. 8, pp. 625–642, 2005.

[13] V. C. Koten and A. R. Gray, “An application of bayesian network for pre-

dicting object-oriented software maintainability,” Information and Software

Technology, vol. 48, no. 1, pp. pp. 59-67, 2006.

[14] M. M. Thwin and T. S. Quah, “Application of neural networks for software qual-

306

Bibliography

ity prediction using object-oriented metrics,” Journal of systems and software,

vol. 76, no. 2, pp. pp. 147-156, 2005.

[15] M. O. Elish and K. O. Elish, “Application of treenet in predicting object-

oriented software maintainability: A comparative study,” in Proceedings of

the 13th European Conference on Software Maintenance and Reengineering,

CSMR, 2009, pp. 69–78, Kaiserslautern, Germany.

[16] L. Kumar, S. Lal, and L. B. Murthy, “Estimation of maintainability parameters

for object-oriented software using hybrid neural network and class level metrics,”

International Journal of System Assurance Engineering and Management,

vol. 10, no. 5, pp. 1234–1264, 2019.

[17] R. Malhotra and M. Khanna, “An exploratory study for software change pre-

diction in object-oriented systems using hybridized techniques,” Automated

Software Engineering, vol. 24, no. 3, pp. 673–717, 2017.

[18] Y. Zhou, H. Leung, and B. Xu, “Examining the potentially confounding effect

of class size on the associations between object-oriented metrics and change-

proneness,” IEEE Transactions on Software Engineering, vol. 35, no. 5, pp.

607–623, 2009.

[19] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, “The ability of object-oriented

metrics to predict change-proneness: a meta-analysis,” Empirical software

engineering, vol. 17, no. 3, pp. 200–242, 2012.

[20] M. O. Elish and M. Al-Rahman Al-Khiaty, “A suite of metrics for quantifying

historical changes to predict future change-prone classes in object-oriented

software,” Journal of Software: Evolution and Process, vol. 25, no. 5, pp.

407–437, 2013.

307

Bibliography

[21] D. Romano and M. Pinzger, “Using source code metrics to predict change-

prone java interfaces,” in 2011 27th IEEE International Conference on Software

Maintenance (ICSM). IEEE, 2011, pp. 303–312.

[22] A. C. Bahnsen, A. Stojanovic, D. Aouada, and B. Ottersten, “Cost sensitive

credit card fraud detection using bayes minimum risk,” in 2013 12th interna-

tional conference on machine learning and applications, vol. 1. IEEE, 2013,

pp. 333–338.

[23] A. Abbasi and H. Chen, “A comparison of fraud cues and classification methods

for fake escrow website detection,” Information Technology and Management,

vol. 10, no. 2-3, pp. 83–101, 2009.

[24] P. C. Lane, D. Clarke, and P. Hender, “On developing robust models for favoura-

bility analysis: Model choice, feature sets and imbalanced data,” Decision

Support Systems, vol. 53, no. 4, pp. 712–718, 2012.

[25] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions

on knowledge and data engineering, vol. 21, no. 9, pp. 1263-1284, 2009.

[26] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera, “A review

on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-

based approaches,” IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), vol. 42, no. 4, pp. 463–484, 2011.

[27] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Special issue on learning from

imbalanced data sets,” ACM SIGKDD explorations newsletter, vol. 6, no. 1, pp.

1–6, 2004.

[28] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “Smote: Synthetic mi-

308

Bibliography

nority over-sampling technique,” Journal of Artificial Intelligence Research,

vol. 16, pp. 321–357, 2002.

[29] B. Zadrozny and C. Elkan, “Learning and making decisions when costs and

probabilities are both unknown,” in Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, 2001, pp.

204-213.

[30] E. B. Swanson, “The dimensions of maintenance,” in Proceedings of the 2nd

international conference on Software engineering, ICSE, 1976, pp. 492–497,

Estoril, Portugal.

[31] R. C. Martin, Agile software development: principles, patterns, and practices.

Prentice Hall, 2002.

[32] J. T. Nosek and P. Palvia, “Software maintenance management: changes in the

last decade,” Journal of Software Maintenance: Research and Practice, vol. 2,

no. 3, pp. pp. 157-174, 1990.

[33] H. Halstead, Elements of Software Science. Elsevier North-Holland, ISBN

0-444-00205-7, 1977.

[34] J. T. McCabe, “A complexity measure,” IEEE Transactions on Software Engi-

neering, vol. 2, no. 4, pp. pp. 308-320, 1976.

[35] H. D. Rombach, “Design measurement: Some lessons learned,” Software, IEEE,

vol. 7, no. 2, pp. pp. 17-25, 1990.

[36] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”

IEEE Transactions on software engineering, vol. 20, no. 6, pp. 476–493, 1994.

309

Bibliography

[37] W. Li, S. Henry, D. Kafura, and R. Schulman, “Measuring object-oriented

design,” Journal of Object-Oriented Programming, vol. 8, no. 4, pp. pp. 48-55,

1995.

[38] M. Lorenz and J. Kidd, Object-oriented software metrics: A Practical Guide.

Prentice-Hall, Inc., 1994.

[39] F. B. e Abreu and W. Melo, “Evaluating the impact of object-oriented design

on software quality,” in Software Metrics Symposium, 1996., Proceedings of

the 3rd International. IEEE, 1996, pp. 90–99.

[40] L. C. Briand, , C. Bunse, and J. Daly, “A controlled experiment for evaluating

quality guidelines on the maintainability of object-oriented designs,” IEEE

Transactions on Software Engineering, vol. 27, no. 6, pp. pp. 513-530, 2001.

[41] J. Bansiya and C. Davis, “A hierarchical model for object-oriented design

quality assessment,” IEEE Transactions on Software Engineering, vol. 28,

no. 1, pp. pp. 4-17, 2002.

[42] M.-H. Tang, M.-H. Kao, and M.-H. Chen, “An empirical study on object-

oriented metrics,” in Software Metrics Symposium, 1999. Proceedings. Sixth

International. IEEE, 1999, pp. 242–249.

[43] Y.-S. Lee, “Measuring the coupling and cohesion of an object-oriented program

based on information flow,” in Proc. Int. Conf. on Software Quality, 1995, 1995,

pp. 81–90.

[44] J. M. Bieman and B.-K. Kang, “Cohesion and reuse in an object-oriented

system,” ACM SIGSOFT Software Engineering Notes, vol. 20, no. SI, pp.

259–262, 1995.

310

Bibliography

[45] R. Malhotra and A. Chug, “Software maintainability prediction using machine

learning algorithms,” Software Engineering: An International Journal (SEIJ),

vol. 2, no. 2, pp. pp. 19-36, 2012.

[46] A. Kaur, K. Kaur, and R. Malhotra, “Soft computing approaches for prediction

of software maintenance effort,” International Journal of Computer Applica-

tions, vol. 1, no. 16, pp. pp. 80-86, 2010.

[47] V. Basili, L. Briand, and W. Melo, “A validation of object-oriented design

metrics as quality indicators,” IEEE Transaction on Software Engineering,

vol. 22, no. 10, pp. pp. 751-761, 1996.

[48] F. Fioravanti and P. Nesi, “Estimation and prediction metrics for adaptive

maintenance effort of object-oriented systems,” IEEE Transactions on Software

Engineering, vol. 27, no. 12, pp. pp. 1062–1084, 2001.

[49] J. Al Dallal, “Object-oriented class maintainability prediction using internal

quality attributes,” Information and Software Technology, vol. 55, no. 11, pp.

2028–2048, 2013.

[50] C. Jin and J. A. Liu, “Applications of support vector mathine and unsuper-

vised learning for predicting maintainability using object-oriented metrics,”

in Proceedings of the Second International Conference on Multimedia and

Information Technology (MMIT), 2010, pp. 24–27, Kaifeng, China.

[51] S. C. Misra, “Modeling design/coding factors that drive maintainability of

software systems,” Software Quality Journal, vol. 13, no. 3, pp. pp. 297-320,

2005.

[52] M. Jorgensen, “Experience with the accuracy of software maintenance task

311

Bibliography

effort prediction models,” IEEE Transactions on Software Engineering, vol. 21,

no. 8, pp. pp. 674-681, 1995.

[53] A. D. Lucia, E. Pompella, and S. Stefanucci, “Assessing effort estimation

models for corrective maintenance through empirical studies,” Information and

Software Technology, vol. 47, no. 1, pp. pp. 3-15, 2005.

[54] W. Scacchi, “Understanding the requirements for developing open source

software systems,” Software IEE Proceedings, vol. 149, no. 1, pp. pp. 24-39,

2002.

[55] Y. Zhou and B. Xu, “Predicting the maintainability of open source software

using design metrics,” Wuhan University Journal of Natural Sciences, vol. 13,

no. 1, pp. pp. 14-20, 2008.

[56] W. Zhang, L. Huang, V. Ng, and J. Ge, “Smplearner: learning to predict

software maintainability,” Automated Software Engineering, vol. 22, no. 1, pp.

111–141, 2015.

[57] A. Chug and R. Malhotra, “Benchmarking framework for maintainability

prediction of open source software using object oriented metrics,” International

Journal of Innovative Computing, Information and Control, vol. 12, no. 2, pp.

615–634, 2016.

[58] F. Ramil, Juan, A. Lozano, M. Wermelinger, and A. Capiluppi, “Empirical stud-

ies of open source evolution,” in Book Chapter : Software evolution, Springer,

2008, pp. 263–288.

[59] X. Wang, A. Gegov, F. Arabikhan, Y. Chen, and Q. Hu, “Fuzzy network based

framework for software maintainability prediction,” International Journal of

312

Bibliography

Uncertainty, Fuzziness and Knowledge Based Systems, vol. 27, no. 05, pp.

841–862, 2019.

[60] M. Schnappinger, M. H. Osman, A. Pretschner, and A. Fietzke, “Learning a

classifier for prediction of maintainability based on static analysis tools,” in

2019 IEEE/ACM 27th International Conference on Program Comprehension

(ICPC). IEEE, 2019, pp. 243–248.

[61] T. Back, D. B. Fogel, and Z. Michalewicz, Handbook of evolutionary computa-

tion. IOP Publishing Ltd., 1997.

[62] G. F. Miller, P. M. Todd, and S. U. Hegde, “Designing neural networks using

genetic algorithms,” in Proceedings of the third international conference on

Genetic algorithms, 1989, pp. 379–384, Virginia, USA.

[63] F. Li, R. Morgan, and D. Williams, “Hybrid genetic approaches to ramping rate

constrained dynamic economic dispatch,” Electric Power Systems Research,

vol. 43, no. 2, pp. pp. 97-103, 1997.

[64] E. Alba, “Parallelism and evolutionary algorithms,” IEEE Transactions on

Evolutionary Computation, vol. 6, no. 5, pp. pp. 443-462, 2002.

[65] G. Balogh, A. Zoltan, and A. Baszedes, “Prediction of software development

effort enhanced by a genetic algorithm,” in Proceedings of the International

Conference on Software Maintenance and Evolution (ICSME), 2015, pp. 28–30,

Bremen, Germany.

[66] L. Kumar and S. K. Rath, “Hybrid functional link artificial neural network

approach for predicting maintainability of object-oriented software,” Journal

of Systems and Software, vol. 121, pp. 170–190, 2016.

313

Bibliography

[67] P. Sun and X. Wang, “Application of ant colony optimization in preventive

software maintenance policy,” in Proceedings of the International Conference

on Information Science and Technology (ICIST), Guangdong, China, 2012, pp.

141–144, Guangdong, China.

[68] T. Choeikiwong and P. Vateekul, “Software defect prediction in imbalanced

data sets using unbiased support vector machine,” in Information Science and

Applications. Springer, 2015, pp. 923–931.

[69] K. Gao, T. M. Khoshgoftaar, and A. Napolitano, “Combining feature subset

selection and data sampling for coping with highly imbalanced software data.”

in SEKE, 2015, pp. 439–444.

[70] I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect prediction using

ensemble learning on selected features,” Information and Software Technology,

vol. 58, pp. 388–402, 2015.

[71] M. J. Siers and M. Z. Islam, “Software defect prediction using a cost sensitive

decision forest and voting, and a potential solution to the class imbalance

problem,” Information Systems, vol. 51, pp. 62–71, 2015.

[72] L. Pelayo and S. Dick, “Applying novel resampling strategies to software defect

prediction,” in NAFIPS 2007-2007 Annual meeting of the North American fuzzy

information processing society. IEEE, 2007, pp. 69–72.

[73] Z. Sun, Q. Song, and X. Zhu, “Using coding-based ensemble learning to

improve software defect prediction,” IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1806–1817,

2012.

314

Bibliography

[74] S. Wang and X. Yao, “Using class imbalance learning for software prediction,”

IEEE Transactions on Reliability, vol. 62, no. 2, pp. 434–443, 2013.

[75] J. Zheng, “Cost-sensitive boosting neural networks for software defect pre-

diction,” Expert Systems with Applications, vol. 37, no. 6, pp. 4537–4543,

2010.

[76] R. Malhotra and M. Khanna, “An empirical study for software change prediction

using imbalanced data,” Empirical Software Engineering, vol. 22, no. 6, pp.

2806–2851, 2017.

[77] K. K. Aggarwal and Y. Singh, “Software engineering programs documentation,

operating procedures,” New Age international publishers, 2008.

[78] M. Riaz, E. Mendes, and E. Tempero, “A systematic review of software main-

tainability prediction and metrics,” in Proceedings of the 3rd International

Symposium on Empirical Software Engineering and Measurement, ESEM,

Orlando, 2009, pp. 367–377, Florida, USA.

[79] F. Calzolari, P. Tonella, and G. Antonioli, “Dynamic model for maintenance

and testing effort,” in Proceedings of the International Conference on Software

Maintenance, ICSM, 1998, pp. 104–112, Maryland, USA.

[80] S. Ghosh, A. Rana, and A. Kumar, “Comparative study of the factors that affect

maintainability,” International Journal on Computer Science and Engineering,

vol. 3, no. 12, pp. pp. 3763-3769, 2011.

[81] J. Saraiva, “A roadmap for software maintainability measurement,” in Proceed-

ings of the 35th International Conference on Software Engineering (ICSE).

IEEE, 2013, pp. 1453–1455 , San Francisco, CA, USA.

315

Bibliography

[82] S. Gupta and A. Chug, “Software maintainability prediction of open source

datasets using least squares support vector machines,” Journal of Statistics and

Management Systems, pp. 1–11, 2020.

[83] S. Gupta and A. Chug, “Software maintainability prediction using an enhanced

random forest algorithm,” Journal of Discrete Mathematical Sciences and

Cryptography, vol. 23, no. 2, pp. 441–449, 2020.

[84] K. El Emam, W. Melo, and J. C. Machado, “The prediction of faulty classes

using object-oriented design metrics,” Journal of systems and software, vol. 56,

no. 1, pp. 63–75, 2001.

[85] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented

metrics on open source software for fault prediction,” IEEE Transactions on

Software engineering, vol. 31, no. 10, pp. 897–910, 2005.

[86] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.

Prentice-Hall, Inc., 1995.

[87] Y. Singh, A. Kaur, and R. Malhotra, “Empirical validation of object-oriented

metrics for predicting fault proneness models,” Software quality journal, vol. 18,

no. 1, p. 3, 2010.

[88] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Empirical

validation of three software metrics suites to predict fault-proneness of object-

oriented classes developed using highly iterative or agile software development

processes,” IEEE Transactions on software Engineering, vol. 33, no. 6, pp.

402–419, 2007.

[89] S. Kpodjedo, F. Ricca, P. Galinier, Y.-G. Guéhéneuc, and G. Antoniol, “Design

316

Bibliography

evolution metrics for defect prediction in object oriented systems,” Empirical

Software Engineering, vol. 16, no. 1, pp. 141–175, 2011.

[90] M. O. Elish and M. Al-Rahman Al-Khiaty, “A suite of metrics for quantifying

historical changes to predict future change-prone classes in object-oriented

software,” Journal of Software: Evolution and Process, vol. 25, no. 5, pp.

407–437, 2013.

[91] D. Radjenović, M. Heričko, R. Torkar, and A. Živkovič, “Software fault pre-

diction metrics: A systematic literature review,” Information and software

technology, vol. 55, no. 8, pp. 1397–1418, 2013.

[92] H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen, “The ability of object-oriented

metrics to predict change-proneness: a meta-analysis,” Empirical software

engineering, vol. 17, no. 3, pp. 200–242, 2012.

[93] S. Eski and F. Buzluca, “An empirical study on object-oriented metrics and

software evolution in order to reduce testing costs by predicting change-prone

classes,” in 2011 IEEE Fourth International Conference on Software Testing,

Verification and Validation Workshops. IEEE, 2011, pp. 566–571.

[94] S. Haykin, “A comprehensive foundation: Neural networks,” 1999.

[95] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The weka data mining software: an update,” ACM SIGKDD explorations

newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[96] D. Broomhead and D. Lowe, “Multivariable functional interpolation and adap-

tive networks,” Complex Systems, vol. 11, pp. 321–355, 1988.

[97] J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kauffman, 1993.

317

Bibliography

[98] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regres-

sion Trees. Chapman and Hall (Wadsworth and Inc.), 1984.

[99] R. Rastogi and K. Shim, “Public: A decision tree classifier that integrates

building and pruning,” Data Mining and Knowledge Discovery, vol. 4, no. 4,

pp. 315–344, 2000.

[100] Y. Zhao and Y. Zhang, “Comparison of decision tree methods for finding active

objects,” Advances in Space Research, vol. 41, no. 12, pp. 1955–1959, 2008.

[101] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining. Pearson

Education India, 2016.

[102] W. Cohen, “Fast effective rule induction,” in Machine Learning: Proceedings

of the Twelfth International Conference, 1995, pp. 1–10.

[103] E. Frank and I. Witten, “Generating accurate rule sets without global optimiza-

tion,” in Proceedings of the Fifteenth International Conference on Machine

Learning, 1998, pp. 144–151.

[104] Y. Freund and R. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” Journal of Computer and System

Sciences, vol. 55, no. 1, pp. 119–139, 1997.

[105] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–140,

1996.

[106] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic regres-

sion. John Wiley & Sons, 2013, vol. 398.

[107] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier,

2011.

318

Bibliography

[108] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Transac-

tions on Information Theory, vol. 13, pp. 21–27, 1967.

[109] J. Cleary and L. Trigg, “K*: An instance-based learner using an entropic

distance measure,” in Proceedings of the 12th International Conference on

Machine Learning, 1995, pp. 108–114.

[110] D. Wettschereck and T. Dietterich, “An experimental comparison of the nearest-

neighbor and nearest-hyperrectangle algorithms,” Machine Learning, vol. 19,

pp. 5–27, 1995.

[111] S. Salzberg, “A nearest hyperrectangle learning method,” Machine Learning,

vol. 6, pp. 251–276, 1991.

[112] P. Domingos, “Unifying instance-based and rule-based induction,” Machine

Learning, vol. 24, no. 2, pp. 141–168, 1996.

[113] J. Cano, F. Herrera, and M. Lozano, “Using evolutionary algorithms as instance

selection for data reduction in kdd: An experimental study,” IEEE Transactions

on Evolutionary Computation, vol. 7, no. 6, pp. 561–575, 2003.

[114] S. Ho, C. Liu, and S. Liu, “Design of an optimal nearest neighbor classifier

using an intelligent genetic algorithm,” Pattern Recognition Letters, vol. 23, pp.

1495–1503, 2002.

[115] S. Garcı́a, J. Cano, and F. Herrera, “A memetic algorithm for evolutionary

prototype selection: A scaling up approach,” Pattern Recognition, vol. 41, no. 8,

pp. 2693–2709, 2008.

[116] J. S. Aguilar-Ruiz, J. C. Riquelme, and M. Toro, “Evolutionary learning of hier-

archical decision rules,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), vol. 33, no. 2, pp. 324–331, 2003.

319

Bibliography

[117] J. Bacardit and J. Garrell, “Evolving multiple discretizations with adaptive

intervals for a pittsburgh rule-based learning classifier system,” in Genetic and

Evolutionary Computation Conference(GECCO’03), ser. Lecture Notes on

Computer Science, vol. 2724. Lecture Notes on Computer Science, 2003, pp.

1818–1831.

[118] J. Bacardit and J. Garrell, “Bloat control and generalization pressure using

the minimum description length principle for a pittsburgh approach learning

classifier system,” in Advances at the frontier of Learning Classifier Systems, ser.

Lecture Notes on Computer Science, vol. 4399. Springer Berlin-Heidelberg,

2007, pp. 61–80.

[119] S. Wilson, “Classifier fitness based on accuracy,” Evolutionary Computation,

vol. 3, no. 2, pp. 149–175, 1995.

[120] E. Bernadó-Mansilla and J. Garrell, “Accuracy-based learning classifier sys-

tems: Models and analysis and applications to classification tasks,” Evolution-

ary Computation, vol. 11, no. 3, pp. 209–238, 2003.

[121] J. Bacardit, E. Burke, and N. Krasnogor, “Improving the scalability of rule-

based evolutionary learning,” Memetic computing, vol. 1, no. 1, pp. 55–67,

2009.

[122] J. Bacardit and N. Krasnogor, “Performance and efficiency of memetic pitts-

burgh learning classifier systems,” Evolutionary Computation, vol. 17, no. 3,

pp. 307–342, 2009.

[123] D. Carvalho and A. Freitas, “A hybrid decision tree/genetic algorithm method

for data mining,” Information Sciences, vol. 163, no. 1, pp. 13–35, 2004.

320

Bibliography

[124] J. Gray and G. Fan, “Classification tree analysis using target,” Computational

Statistics and Data Analysis, vol. 52, no. 3, pp. 1362–1372, 2008.

[125] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in

MHS’95. Proceedings of the Sixth International Symposium on Micro Machine

and Human Science. Ieee, 1995, pp. 39–43.

[126] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and conver-

gence in a multidimensional complex space,” IEEE transactions on Evolution-

ary Computation, vol. 6, no. 1, pp. 58–73, 2002.

[127] T. Sousa, A. Silva, and A. Neves, “Particle swarm based data mining algorithms

for classification tasks,” Parallel Computing, vol. 30, pp. 767–783, 2004.

[128] S. Lin and S. Chen, “Psolda: A particle swarm optimization approach for

enhancing classification accuracy rate of linear discriminant analysis,” Applied

Soft Computing, vol. 9, pp. 1008–1015, 2009.

[129] J. Otero and L. Sánchez, “Induction of descriptive fuzzy classifiers with the

logitboost algorithm,” Soft Computing, vol. 10, no. 9, pp. 825–835, 2006.

[130] M. del Jesus, F. Hoffmann, L. Junco, and L. Sánchez, “Induction of fuzzy-rule-

based classifiers with evolutionary boosting algorithms,” IEEE Transactions on

Fuzzy Systems, vol. 12, no. 3, pp. 296–308, 2004.

[131] L. Sánchez and J. Otero, “Boosting fuzzy rules in classification problems under

single-winner inference,” International Journal of Intelligent Systems, vol. 22,

no. 9, pp. 1021–1034, 2007.

[132] L. Sánchez, I. Couso, and J. Corrales, “Combining gp operators with sa search

to evolve fuzzy rule based classifiers,” Information Sciences, vol. 136, no. 1-4,

pp. 175–192, 2001.

321

Bibliography

[133] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation of fuzzy

classifier systems for multidimensional pattern classification problems,” IEEE

Transactions on Systems and Man and and Cybernetics and Part B: Cybernetics,

vol. 29, no. 5, pp. 601–618, 1999.

[134] F. Berlanga, A. Rivera, M. del Jesus, and F. Herrera, “Gp-coach: Genetic

programming based learning of compact and accurate fuzzy rule based classifi-

cation systems for high dimensional problems,” Information Sciences, vol. 180,

no. 8, pp. 1183–1200, 2010.

[135] R. Malhotra, N. Pritam, K. Nagpal, and P. Upmanyu, “Defect collection and

reporting system for git based open source software,” in 2014 International

Conference on Data Mining and Intelligent Computing (ICDMIC). IEEE,

2014, pp. 1–7.

[136] M. A. Hall, “Correlation-based feature selection for machine learning,” 1999.

[137] M. A. Hall and G. Holmes, “Benchmarking attribute selection techniques

for discrete class data mining,” IEEE Transactions on Knowledge and Data

engineering, vol. 15, no. 6, pp. 1437–1447, 2003.

[138] R. Malhotra, “A systematic review of machine learning techniques for software

fault prediction,” Applied Soft Computing, vol. 27, pp. 504–518, 2015.

[139] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and compre-

hensive investigation of methods to build and evaluate fault prediction models,”

Journal of Systems and Software, vol. 83, no. 1, pp. 2–17, 2010.

[140] A. B. De Carvalho, A. Pozo, and S. R. Vergilio, “A symbolic fault-prediction

model based on multiobjective particle swarm optimization,” Journal of Systems

and Software, vol. 83, no. 5, pp. 868–882, 2010.

322

Bibliography

[141] R. Malhotra and M. Khanna, “Investigation of relationship between object-

oriented metrics and change proneness,” International Journal of Machine

Learning and Cybernetics, vol. 4, no. 4, pp. 273–286, 2013.

[142] M. Stone, “Cross-validatory choice and assessment of statistical predictions,”

Journal of the Royal Statistical Society: Series B (Methodological), vol. 36,

no. 2, pp. 111–133, 1974.

[143] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An investigation on the feasibility

of cross-project defect prediction,” Automated Software Engineering, vol. 19,

no. 2, pp. 167–199, 2012.

[144] F. Peters, T. Menzies, and A. Marcus, “Better cross company defect prediction,”

in 2013 10th Working Conference on Mining Software Repositories (MSR).

IEEE, 2013, pp. 409–418.

[145] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27,

no. 8, pp. 861–874, 2006.

[146] K. Gao, T. M. Khoshgoftaar, and A. Napolitano, “Combining feature subset

selection and data sampling for coping with highly imbalanced software data.”

in SEKE, 2015, pp. 439–444.

[147] T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald, “Problems with

precision: A response to” comments on’data mining static code attributes to

learn defect predictors’”,” IEEE Transactions on Software Engineering, vol. 33,

no. 9, pp. 637–640, 2007.

[148] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classi-

fication models for software defect prediction: A proposed framework and

323

Bibliography

novel findings,” IEEE Transactions on Software Engineering, vol. 34, no. 4, pp.

485–496, 2008.

[149] R. Shatnawi, “Improving software fault-prediction for imbalanced data,” in

2012 international conference on innovations in information technology (IIT).

IEEE, 2012, pp. 54–59.

[150] M. Friedman, “A comparison of alternative tests of significance for the problem

of m rankings,” The Annals of Mathematical Statistics, vol. 11, no. 1, pp. 86–92,

1940.

[151] D. W. Zimmerman and B. D. Zumbo, “Relative power of the wilcoxon test,

the friedman test, and repeated-measures anova on ranks,” The Journal of

Experimental Education, vol. 62, no. 1, pp. 75–86, 1993.

[152] R. Malhotra and K. Lata, “A systematic literature review on empirical studies

towards prediction of software maintainability.”

[153] B. A. Kitchenham, D. Budgen, and P. Brereton, Evidence-based software

engineering and systematic reviews. CRC press, 2015, vol. 4.

[154] S. O. Olatunji and A. Ajasin, “Sensitivity-based linear learning method and

extreme learning machines compared for software maintainability prediction of

object-oriented software systems,” ICTACT Journal On Soft Computing, vol. 3,

no. 03, 2013.

[155] T. M. Khoshgoftaar and R. M. Szabo, “Improving code churn predictions

during the system test and maintenance phases.” in ICSM, vol. 94, 1994, pp.

58–67.

324

Bibliography

[156] T. M. Khoshgoftaar, “Improving neural network predictions of software quality

using principal components analysis,” in Proceedings of 1994 IEEE Interna-

tional Conference on Neural Networks (ICNN’94), vol. 5. IEEE, 1994, pp.

3295–3300.

[157] R. Malhotra and A. Chug, “Application of group method of data handling

model for software maintainability prediction using object oriented systems,”

International Journal of System Assurance Engineering and Management,

vol. 5, no. 2, pp. 165–173, 2014.

[158] M. O. Elish, H. Aljamaan, and I. Ahmad, “Three empirical studies on predicting

software maintainability using ensemble methods,” Soft Computing, vol. 19,

no. 9, pp. 2511–2524, 2015.

[159] S. Manchanda and A. Chug, “Cfs based feature subset selection for software

maintenance prediction,” International Journal of Advance Foundation and

Research in Computer (IJAFRC), vol. 2, 2015.

[160] S. Mishra and A. Sharma, “Maintainability prediction of object oriented soft-

ware by using adaptive network based fuzzy system technique,” International

Journal of Computer Applications, vol. 119, no. 9, 2015.

[161] L. Kumar and S. K. Rath, “Neuro–genetic approach for predicting maintainabil-

ity using chidamber and kemerer software metrics suite,” in Recent Advances

in Information and Communication Technology 2015. Springer, 2015, pp.

31–40.

[162] H. Sharma and A. Chug, “Dynamic metrics are superior than static metrics

in maintainability prediction: An empirical case study,” in 2015 4th Inter-

325

Bibliography

national Conference on Reliability, Infocom Technologies and Optimization

(ICRITO)(Trends and Future Directions). IEEE, 2015, pp. 1–6.

[163] L. Kumar, D. K. Naik, and S. K. Rath, “Validating the effectiveness of object-

oriented metrics for predicting maintainability,” Procedia Computer Science,

vol. 57, pp. 798–806, 2015.

[164] L. Kumar and S. K. Rath, “Predicting object-oriented software maintainability

using hybrid neural network with parallel computing concept,” in Proceedings

of the 8th India software engineering conference, 2015, pp. 100–109.

[165] D. Chandra, “Support vector approach by using radial kernel function for

prediction of software maintenance effort on the basis of multivariate approach,”

International Journal of Computer Applications, vol. 51, no. 4, 2012.

[166] S. Tarwani and A. Chug, “Predicting maintainability of open source software

using gene expression programming and bad smells,” in 2016 5th International

Conference on Reliability, Infocom Technologies and Optimization (Trends and

Future Directions)(ICRITO). IEEE, 2016, pp. 452–459.

[167] S. K. Dubey, A. Rana, and Y. Dash, “Maintainability prediction of object-

oriented software system by multilayer perceptron model,” ACM SIGSOFT

Software Engineering Notes, vol. 37, no. 5, pp. 1–4, 2012.

[168] R. Malhotra and K. Lata, “An exploratory study for predicting maintenance

effort using hybridized techniques,” in Proceedings of the 10th Innovations in

Software Engineering Conference, 2017, pp. 26–33.

[169] S. S, “Software maintainability prediction using neural networks,” Int J Eng

Res Appl (IJERA), vol. 2, no. 2, pp. 750–755, 2012.

326

Bibliography

[170] L. Kumar and S. K. Rath, “Software maintainability prediction using hybrid

neural network and fuzzy logic approach with parallel computing concept,”

International Journal of System Assurance Engineering and Management,

vol. 8, no. 2, pp. 1487–1502, 2017.

[171] M. A. Ahmed and H. A. Al-Jamimi, “Machine learning approaches for predict-

ing software maintainability: a fuzzy-based transparent model,” IET software,

vol. 7, no. 6, pp. 317–326, 2013.

[172] R. Malhotra and K. Lata, “On the application of cross-project validation for

predicting maintainability of open source software using machine learning

techniques,” in 2018 7th International Conference on Reliability, Infocom Tech-

nologies and Optimization (Trends and Future Directions)(ICRITO). IEEE,

2018, pp. 175–181.

[173] A. Kaur and K. Kaur, “Statistical comparison of modelling methods for software

maintainability prediction,” International Journal of Software Engineering and

Knowledge Engineering, vol. 23, no. 06, pp. 743–774, 2013.

[174] S. Bhutani and A. Chug, “Software maintainability prediction using hybrid

neural network and fuzzy logic approach with parallel computing concept,”

International Journal of Computer Science and Communication Networks,

vol. 5, no. 2, pp. 92–95, 2015.

[175] A. Jain, S. Tarwani, and A. Chug, “An empirical investigation of evolutionary

algorithm for software maintainability prediction,” in 2016 IEEE Students’

Conference on Electrical, Electronics and Computer Science (SCEECS). IEEE,

2016, pp. 1–6.

[176] V. Kumar, R. Kumar, and A. Sharma, “Maintainability prediction from project

327

Bibliography

metrics data analysis using artificial neural network: an interdisciplinary study,”

Middle-East J. Sci. Res, vol. 19, no. 10, pp. 1412–1420, 2014.

[177] S. D. Conte, H. E. Dunsmore, and Y. Shen, Software engineering metrics and

models. Benjamin-Cummings Publishing Co., Inc., 1986.

[178] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature review

of machine learning based software development effort estimation models,”

Information and Software Technology, vol. 54, no. 1, pp. 41–59, 2012.

[179] D. T. Campbell and J. C. Stanley, Experimental and quasi-experimental designs

for research. Ravenio Books, 2015.

[180] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for the detection

of oil spills in satellite radar images,” Machine learning, vol. 30, no. 2-3, pp.

195–215, 1998.

[181] T. Fawcett and F. Provost, “Adaptive fraud detection,” Data mining and knowl-

edge discovery, vol. 1, no. 3, pp. 291–316, 1997.

[182] P. L. Braga, A. L. Oliveira, and S. R. Meira, “Software effort estimation

using machine learning techniques with robust confidence intervals,” in 7th

international conference on hybrid intelligent systems (HIS 2007). IEEE,

2007, pp. 352–357.

[183] G. Catolino and F. Ferrucci, “An extensive evaluation of ensemble techniques

for software change prediction,” Journal of Software: Evolution and Process,

vol. 31, no. 9, p. e2156, 2019.

[184] R. Malhotra and K. Lata, “An empirical study on predictability of software

maintainability using imbalanced data,” Software Quality Journal, pp. 1–34,

2020.

328

Bibliography

[185] S. Kotsiantis, D. Kanellopoulos, P. Pintelas et al., “Handling imbalanced

datasets: A review,” GESTS International Transactions on Computer Science

and Engineering, vol. 30, no. 1, pp. 25–36, 2006.

[186] H. Han, W. Wang, and B. Mao, “Borderline-smote: a new over-sampling

method in imbalanced data sets learning,” in 2005 International Conference on

Intelligent Computing(ICIC05), ser. Lecture Notes on Computer Science, vol.

3644. Springer-Verlag, 2005, pp. 878–887.

[187] C. Bunkhumpornpat, K. Sinapiromsaran, and C. Lursinsap, “Safe-level-smote:

Safe-level-synthetic minority over-sampling technique for handling the class

imbalanced problem,” in Pacific-Asia Conference on Knowledge Discovery and

Data Mining(PAKDD09), ser. Lecture Notes on Computer Science, vol. 5476.

Springer-Verlag, 2009, pp. 475–482.

[188] H. He, Y. Bai, E. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling

approach for imbalanced learning,” in 2008 International Joint Conference on

Neural Networks(IJCNN08), 2008, pp. 1322–1328.

[189] G. Batista, R. Prati, and M. Monard, “A study of the behavior of several methods

for balancing machine learning training data,” SIGKDD Explorations, vol. 6,

no. 1, pp. 20–29, 2004.

[190] J. Stefanowski and S. Wilk, “Selective pre-processing of imbalanced data for

improving classification performance,” in 10th International Conference in

Data Warehousing and Knowledge Discovery(DaWaK2008), ser. Lecture Notes

on Computer Science, vol. 5182. Springer, 2008, pp. 283–292.

[191] K. Napierala, J. Stefanowski, and S. Wilk, “Learning from imbalanced data in

presence of noisy and borderline examples,” in 7th International Conference

329

Bibliography

on Rough Sets and Current Trends in Computing(RSCTC2010), 2010, pp.

158–167.

[192] P. Hart, “The condensed nearest neighbour rule,” IEEE Transactions on Infor-

mation Theory, vol. 14, no. 5, pp. 515–516, 1968.

[193] J. Laurikkala, “Improving identification of difficult small classes by balancing

class distribution,” in 8th Conference on AI in Medicine in Europe(AIME01), ser.

Lecture Notes on Computer Science, vol. 2001. Springer Berlin / Heidelberg,

2001, pp. 63–66.

[194] K. Yoon and S. Kwek, “An unsupervised learning approach to resolving the

data imbalanced issue in supervised learning problems in functional genomics,”

in 5th International Conference on Hybrid Intelligent Systems(HIS05), 2005,

pp. 303–308.

[195] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak, “Ensem-

ble learning for data stream analysis: A survey,” Information Fusion, vol. 37,

pp. 132–156, 2017.

[196] P. Zhang, X. Zhu, J. Tan, and L. Guo, “Classifier and cluster ensembles for

mining concept drifting data streams,” in Data Mining (ICDM), 2010 IEEE

10th International Conference on. IEEE, 2010, pp. 1175–1180.

[197] A. Topchy, B. Minaei-Bidgoli, A. K. Jain, and W. F. Punch, “Adaptive clustering

ensembles,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th

International Conference on, vol. 1. IEEE, 2004, pp. 272–275.

[198] S. Wang and X. Yao, “Diversity analysis on imbalanced data sets by using

ensemble models,” in Computational Intelligence and Data Mining, 2009.

CIDM’09. IEEE Symposium on. IEEE, 2009, pp. 324–331.

330

Bibliography

[199] C. W. Yohannese, T. Li, M. Simfukwe, and F. Khurshid, “Ensembles based

combined learning for improved software fault prediction: A comparative

study,” in Intelligent Systems and Knowledge Engineering (ISKE), 2017 12th

International Conference on. IEEE, 2017, pp. 1–6.

[200] R. Malhotra and K. Lata, “Using ensembles for class-imbalance problem to

predict maintainability of open source software,” International Journal of

Reliability, Quality and Safety Engineering, p. 2040011, 2020.

[201] R. Malhotra and K. Lata, “Tackling the imbalanced data in software main-

tainability prediction using ensembles for class imbalance problem,” in In

International Conference on Recent Trends in Engineering, Technology and

Business Management (ICRTETBM). Springer, 2019.

[202] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:

Improving prediction of the minority class in boosting,” in European conference

on principles of data mining and knowledge discovery. Springer, 2003, pp.

107–119.

[203] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napolitano, “Rusboost: A

hybrid approach to alleviating class imbalance,” IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, vol. 40, no. 1, pp. 185–197,

2010.

[204] S. Hu, Y. Liang, L. Ma, and Y. He, “Msmote: improving classification perfor-

mance when training data is imbalanced,” in Computer Science and Engineer-

ing, 2009. WCSE’09. Second International Workshop on, vol. 2. IEEE, 2009,

pp. 13–17.

[205] H. Guo and H. L. Viktor, “Learning from imbalanced data sets with boosting

331

Bibliography

and data generation: the databoost-im approach,” ACM Sigkdd Explorations

Newsletter, vol. 6, no. 1, pp. 30–39, 2004.

[206] M. Galar, A. Fernández, E. Barrenechea, and F. Herrera, “Eusboost: Enhancing

ensembles for highly imbalanced data-sets by evolutionary undersampling,”

Pattern Recognition, vol. 46, no. 12, pp. 3460–3471, 2013.

[207] J. Błaszczyński, M. Deckert, J. Stefanowski, and S. Wilk, “Integrating selective

pre-processing of imbalanced data with ivotes ensemble,” in International

Conference on Rough Sets and Current Trends in Computing. Springer, 2010,

pp. 148–157.

[208] C. Drummond, R. C. Holte et al., “C4. 5, class imbalance, and cost sensitivity:

why under-sampling beats over-sampling,” in Workshop on learning from

imbalanced datasets II, vol. 11. Citeseer, 2003, pp. 1–8.

[209] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for class-

imbalance learning,” IEEE Transactions on Systems and Man and and Cyber-

netics and Part B, vol. 39, no. 2, pp. 539–550, 2009.

[210] S. Hosseini, B. Turhan, and M. Mäntylä, “A benchmark study on the effective-

ness of search-based data selection and feature selection for cross project defect

prediction,” Information and Software Technology, vol. 95, pp. 296–312, 2018.

[211] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search based software en-

gineering: Techniques, taxonomy, tutorial,” in Empirical software engineering

and verification. Springer, 2010, pp. 1–59.

[212] M. Harman and B. F. Jones, “Search-based software engineering,” Information

and software Technology, vol. 43, no. 14, pp. 833–839, 2001.

332

Bibliography

[213] M. Harman, “The relationship between search based software engineering and

predictive modeling,” in Proceedings of the 6th International Conference on

Predictive Models in Software Engineering, 2010, pp. 1–13.

[214] M. Harman and J. Clark, “Metrics are fitness functions too,” in 10th Interna-

tional Symposium on Software Metrics, 2004. Proceedings. Ieee, 2004, pp.

58–69.

[215] R. Malhotra, M. Khanna, and R. R. Raje, “On the application of search-based

techniques for software engineering predictive modeling: A systematic review

and future directions,” Swarm and Evolutionary Computation, vol. 32, pp.

85–109, 2017.

[216] R. Malhotra and K. Lata, “An empirical study to investigate the impact of data

resampling techniques on the performance of class maintainability prediction

models,” Neurocomputing, 2020.

[217] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A systematic

review of the application and empirical investigation of search-based test case

generation,” IEEE Transactions on Software Engineering, vol. 36, no. 6, pp.

742–762, 2009.

[218] F. Ferrucci, C. Gravino, R. Oliveto, and F. Sarro, “Genetic programming for

effort estimation: an analysis of the impact of different fitness functions,” in

2nd International Symposium on Search Based Software Engineering. IEEE,

2010, pp. 89–98.

[219] A. Arcuri and G. Fraser, “Parameter tuning or default values? an empirical

investigation in search-based software engineering,” Empirical Software Engi-

neering, vol. 18, no. 3, pp. 594–623, 2013.

333

Bibliography

[220] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engineering:

Trends, techniques and applications,” ACM Computing Surveys (CSUR), vol. 45,

no. 1, pp. 1–61, 2012.

[221] C. Grosan and A. Abraham, “Hybrid evolutionary algorithms: methodologies,

architectures, and reviews,” in Hybrid evolutionary algorithms. Springer,

2007, pp. 1–17.

[222] R. Malhotra and K. Lata, “Using hybridized techniques for prediction of soft-

ware maintainability using imbalanced data,” in 2020 10th International Confer-

ence on Cloud Computing, Data Science & Engineering (Confluence). IEEE,

2020, pp. 787–792.

[223] R. Malhotra and K. Lata, “Improving software maintainability predictions

using data oversampling and hybridized techniques,” in 2020 IEEE Congress

on Evolutionary Computation (CEC). IEEE, 2020, pp. 1–7.

[224] R. Malhotra and K. Lata, “Modified safe level synthetic minority oversampling

techniques for software maintainability prediction,” IEEE Transactions of

Emerging Topics in Computational Intelligence, 2020.

[225] R. Malhotra and M. Khanna, “The ability of search-based algorithms to predict

change-prone classes,” Software Quality Professional, vol. 17, no. 1, p. 17,

2014.

[226] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-

company cost estimation studies: A systematic review,” IEEE Transactions on

Software Engineering, vol. 33, no. 5, pp. 316–329, 2007.

[227] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value

334

Bibliography

of cross-company and within-company data for defect prediction,” Empirical

Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

[228] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and

S. Panichella, “Multi-objective cross-project defect prediction,” in 2013 IEEE

Sixth International Conference on Software Testing, Verification and Validation.

IEEE, 2013, pp. 252–261.

[229] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, “Cross-

project defect prediction: a large scale experiment on data vs. domain vs.

process,” in Proceedings of the 7th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, 2009, pp. 91–100.

[230] R. Malhotra, V. Gupta, and M. Khanna, “Applicability of inter project validation

for determination of change prone classes,” Int. J. Comput. Appl, pp. 0975–

8887, 2014.

[231] R. Malhotra and K. Lata, “On the application of cross-project validation for

predicting maintainability of open source software using machine learning

techniques,” in 2018 7th International Conference on Reliability, Infocom Tech-

nologies and Optimization (Trends and Future Directions)(ICRITO). IEEE,

2018, pp. 175–181.

335

Supervisor’s Biography

Dr. Ruchika Malhotra
Associate Head & Associate Professor

Discipline of Software Engineering
Department of Computer Science & Engineering

Delhi Technological University
Email: ruchikamalhotra@dtu.ac.in

Educational Qualifications:
Postdoc (Indiana University-Purdue University Indianapolis, USA), Ph.D (Computer Applica-
tions)

Ruchika Malhotra is an Associate Professor in Discipline of Software Engineering, Depart-
ment of Computer Science Engineering, Delhi Technological University, Delhi, India. She is
Associate Dean in Industrial Research and Development, Delhi Technological University. She
has been awarded prestigious UGC Raman Postdoctoral Fellowship by the Indian government
for pursuing postdoctoral research from the Department of Computer and Information Science,
Indiana University-Purdue University, Indianapolis, USA. She was an Assistant Professor at
the University School of Information Technology, Guru Gobind Singh Indraprastha University,
Delhi, India. She has received IBM Faculty Award 2013. She is the recipient of Commendable
Research Award by Delhi Technological University for her research in the year 2017, 2018 and
2019. She is the author of book titled “Empirical Research in Software Engineering“ published
by CRC press and co-author of a book on “Object Oriented Software Engineering“ published
by PHI Learning. Her research interests are in software testing, improving software quality,
statistical and adaptive prediction models, software metrics and the definition and validation
of software metrics. She has published more than 190 research papers in international journals
and conferences. Her h-index is 28 as reported by Google Scholar.

Author’s Biography

Kusum Lata
Research Scholar

Department of Computer Science & Engineering
Assistant Professor

University School of Management and Entrepreneurship
Delhi Technological University
Email: er.kusum82@gmail.com

Educational Qualifications:
M.E (CTA), B.Tech (CSE)

Kusum Lata is currently pursuing her doctoral degree from Delhi Technological University.
She is currently working as Assistant Professor in University School of Management and
Entrepreneurship, Delhi Technological University. She completed her master's degree in
Computer Technology and Applications in 2010 from the Delhi College of Engineering,
University of Delhi, India. She received her bachelor degree in Computer Science and
Engineering in 2003 from Beant College of Engineering and Technology, Punjab Technical
University, India. Her research interests are in software quality improvement, validation of
software metrics and predictive modeling in software engineering domain.

	List of Tables
	List of Figures
	List of Publications
	Abbreviations
	Introduction
	Introduction
	What is Software Maintenance?
	Types of Software Maintenance

	What is Software Maintainability?
	What is Predictive Modelling?
	 Steps in Predictive Modelling
	Predictive Modelling for Software Maintainability
	Issues in Predictive Modelling for Software Maintainability

	What is Imbalanced Data Problem?
	Tackling with the Imbalanced Data Problem
	Data Level Techniques
	Algorithm Level Techniques

	Literature Survey
	Software Metrics
	Software Maintainability Prediction
	Software Quality Predictive Modelling using Imbalanced Data

	Objectives of the Thesis
	Vision
	Focus
	Goals

	Organization of the Thesis

	Research Methodology
	Introduction
	Research Process
	Define Research Problem
	Literature Survey
	Defining Variables
	Independent Variables (OO metrics)
	Dependent Variable

	Data Analysis Methods
	 Artificial Neural Network
	Decision Tree
	Rule-Based Classifiers
	Ensemble Learning Techniques
	Logistic Regression
	Support Vector Machine
	Instance-based Learning Techniques
	Genetic Algorithm based Classifier System
	Learning Classifier System
	Decision Trees with Genetic Algorithm
	Constricted and Linear Decreasing Weight Particle Swarm Optimization
	Particle Swarm Optimization with Linear Discriminant Analysis
	Genetic-Fuzzy Based Classification Techniques

	Experimental Design Framework
	Empirical Data Collection
	Software Systems used for Data Collection
	Data collection Procedure
	Data Preprocessing
	Data Balancing
	Prediction Model Development and Validation
	Performance Measures
	Statistical Analysis

	Systematic Literature Review
	Introduction
	Review Protocol
	Search Strategy
	Inclusion and Exclusion Criteria
	Quality Assessment Criteria

	Review Results
	Results Specific to RQ1
	Results Specific to RQ2
	Results Specific to RQ3
	Results Specific to RQ4
	 Results Specific to RQ5
	Results Specific to RQ6
	Results Specific to RQ7

	Discussion and Future Directions

	Software Maintainability Prediction using Machine Learning Techniques by Handling Imbalanced Data
	Introduction
	Research Background
	Independent and Dependent Variables
	Datasets
	Data Resampling
	Model Development and Validation
	Hypothesis Evaluation using Statistical Tests

	Research Methodology
	SMOTE
	BSMOTE
	SafeSMOTE
	Adasyn
	SMOTE-TL
	SMOTE-ENN
	SPIDER
	ROS and RUS
	CNN and CNN-TL
	NCL
	CPM

	Results and Analysis
	Results Specific to RQ1
	Results Specific to RQ2
	Results Specific to RQ3

	Discussion

	Analysis of Ensemble Techniques for Imbalance Data Problem
	Introduction
	An Overview of Ensembles for Imbalanced Data Problem
	Boosting-based Ensembles
	Bagging-based Ensembles
	Hybrid Ensembles

	Research Background
	Independent and Dependent Variables
	Empirical Data Collection and Preprocessing
	Prediction Model Development and Evaluation
	Statistical Analysis and Hypothesis Evaluation

	Results and Analysis
	Answer Specific to RQ1
	Answer Specific to RQ2
	Answer Specific to RQ3

	Discussion

	Empirical Evaluation of Search-Based Techniques for Software Maintainability Prediction with Imbalanced Data
	Introduction
	Elements of Experimental Design
	Dependent and Independent Variables
	Datasets
	Data Resampling Techniques
	Model Development and Evaluation

	Results and Analysis
	CFS Results
	Results Specific to RQ1
	Results Specific to RQ2
	Results Specific to RQ3
	 Results Specific to RQ4

	Discussion

	Hybridized Techniques for Software Maintainability Prediction with Imbalanced Data
	Introduction
	Framework of Experiment
	Datasets and Variables used for Empirical Validation
	Model Development and Validation
	Statistical Analysis

	Results and Analysis
	Results and Analysis of RQ1
	Results and Analysis of RQ2
	Results and Analysis of RQ3

	Discussion

	Modified Safe Level Synthetic Minority Oversampling Technique for Handling Imbalanced Data in Software Maintainability Prediction
	Introduction
	The Proposed MSLSMOTE Technique
	Research Methodology
	Datasets and Variables
	Model Development and Evaluation

	Results and Analysis
	Results and Analysis of RQ1
	Results and Analysis of RQ2

	Comparison of Various Studies
	Discussion

	Inter-Project Validation For Software Maintainability Prediction
	Introduction
	Research Methodology
	Independent and Dependent Variables
	Empirical Data Collection
	Model Development and Performance Evaluation

	Inter-Project Validation Results
	Answer Specific to RQ1

	Ten Fold Cross-Validation Results
	Answer Specific to RQ2

	Statistical Analysis using Wilcoxon Signed-Rank Test
	Discussion

	Conclusion
	Summary of the Work
	Application of the Work
	Future Work

	Appendices
	Bibliography
	Supervisor's Biography
	Author's Biography

