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Abstract

Multi-cue object tracking is a challenging field of computer vision. In particular,

the challenges originate from environmental variations such as occlusion, similar

background and illumination variations or due to variations in target’s appearance

such as pose variations, deformation, fast motion, scale and rotational changes. In

order to address these variations, a lot of appearance model have been proposed but

developing a robust appearance model by fusing multi-cue information is tedious

and demands further investigation and research. It is essential to develop a multi-

cue object tracking solution with adaptive fusion of cues which can handle various

tracking challenges. The goal of this thesis is to propose robust multi-cue object

tracking frameworks by exploiting the complementary features and their adaptive

fusion in order to enhance tracker’s performance and accuracy during tracking

failures.

A real-time tracker using particle filter under stochastic framework has been devel-

oped for target estimation. The inherent problems of particle filter namely, sample

degeneracy and impoverishment have been addressed by proposing a resampling

method based upon meta-heuristic optimization. In addition, an outlier detection

mechanism is designed to reduce the computational complexity of the developed

tracker.

A robust tracking architecture has been proposed under deterministic framework.

Fragment-based tracker with a discriminative classifier has been designed that can

enhance tracker’s performance during dynamic variations. Periodic and temporal



viii

update strategy is employed to make tracker adaptive to changing environment.

Extensive experimental analysis has been performed to prove the effectiveness of

the developed tracking solution.

Multi-stage tracker based on adaptive fusion of multi-cue has been developed for

multi-cue object tracking. The first stage of target rough localization improves

the accuracy of tracker during precise localization. In the appearance model com-

plementary cues are considered to handle illumination variations and occlusion.

Classifier mechanism and fragment based appearance model are proposed to im-

prove the tracker’s accuracy during background clutters and fast motion. Experi-

mental validation on multiple datasets validates the performance and accuracy of

the proposed tracker.
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Chapter 1

Introduction

Object tracking is substantially imperative in computer vision due to various real-

istic applications in video processing, medical imaging, robotics, human-machine

interaction, traffic control, pedestrian tracking, augmented reality, and many more.

However, tracking an object in a video sequence is very tedious due to dynamic

environmental conditions which includes pose variations, illumination variations,

full or partial occlusion, similar background, noise in video (dust, rain, snow, haze

etc.), fast and abrupt object motion.

1.1 Multi-Cue Object Tracking

Earlier, the object tracking methods were proposed considering single cue only.

Cues namely, color, texture, gradient, contour, spatial energy, motion, orientation

or thermal profile were extracted in tracker’s appearance model [1], [2]. However,

now a days most of the research work emphasizes to extract multi-cue features

for target representation in order to cater tracking challenges. Recently. many re-

searchers has investigated and discussed at length that complementary multi-cues

1
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have addressed object tracking challenges in a better way in comparison to single

cue based object tracking [3]. Complementary cues can compensate for each other

when either of the cue performance degrades during tracking challenges. Color cue

requires less computation and processing in comparison to other cues. However,

trackers exploiting only color cue are not able to cope with change in illumination

and full occlusion. On the other hand, HSV color space prove to be robust to

illumination variations but its performance deteriorates in low saturation videos

[4]. Texture cue extracts low level details of the target but fails to handle the scale

and rotational variations in the sequence. Texture cue is augmented with color

cue to improve tracker’s performance during tracking challenges [5]. Gradient cue

can cater scale variations and target’s deformation but performance of the track-

ers exploiting only gradient cue degrades due to background clutters. Motion cue

can be extracted from subsequent frames of the video sequences but lack shape

and gradient information. Inclusion of shape or color cue with motion cue was

proposed in order to improve tracker’s performance during heavy cluttered envi-

ronment [6],[7]. Shape cue can handle deformations in rigid object but is inefficient

in managing the time varying deformation in non-rigid objects [8]. Depth cue can

be extracted from Kinect sensors and RGB-D camera. It can prevent tracker’s

drift during scale variations but it lack’s motion information. Due to which it

is unable to handle fast motion and occlusion [9]. In [10], authors has combined

motion cue, HSV color with depth information to address occlusion, fast motion

and background clutters. Thermal cue extracts from thermal camera determines

the thermal profile of the object and is robust to illumination variations. However,
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trackers based on thermal profile alone are not able to differentiate between the

objects having similar thermal distribution and hence, their performance deterio-

rates under occlusion and background clutters. Complementary cue gray-scale has

been proposed with thermal data in order to overcome its deficiency [11]. Audio

cue can provide new inputs to object tracking as audio signals can handle out

of view and occlusion. But, audio information is very sensitive to background

noise and is not able to discriminate between the sounds coming from front and

rear sources. Depth cue and visual cue information is incorporated with audio to

beaten its shortcomings [12], [13]. Apart from the features extracted from vari-

ous sensors namely, vision, thermal, Kinect and audio, deep features can also be

extracted to improve tracker’s accuracy [14], [15]. Deep features neglect the tar-

get’s appearance and motion information and hence, low level features color and

motion cues are embedded with deep features to avoid tracking failures [16]. In

sum, multi-cues are more efficient and reliable in comparison to single cue. Fu-

sion of complementary cue information not only handles environmental variations

effectively but also enhances tracking accuracy. Hence, researchers are motivated

towards exploiting multi-cue information for developing robust tracking solutions.

Multi-cue object tracking algorithms focus on predicting the target state in the

video sequences. Multi-cue object tracking framework can be broadly categorized

into stochastic framework, deterministic framework and multi-stage framework.

Generally, tracking methods under stochastic framework consider Monte Carlo

simulation for predicting the target state. Under this, particle filter, Kalman filter

and their variants are exploited for providing the robust multi-cue object tracking
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solutions [17], [18]. These methods are widely explored in the object tracking area

due to their wide potential of handling the challenges with simplicity. However,

particle filter [19] is capable of handling the non-linear and non-Gaussian multi-

cue tracking problems with great potential. But, the performance of the tracker

under this approach is heavily affected due to the shortcomings of particle filter

viz. particle degeneracy and sample impoverishment. On the other hand, tracking

methods under deterministic framework work on cost minimization of objective

function by extraction of foreground pixels from the background area. Determin-

istic framework includes tracking methods based on Mean shift, fragment based

tracking, tracking by detection and tracking by parts [20], [21], [22]. Determinis-

tic methods requires less computational load but most of considered methods are

limited to local minima problems for optimal solutions. However, estimation of

local and global minima for tracking solutions is still a open problem. Tracking

methods under multi-stage framework improve tracking accuracy by incorporat-

ing two stage estimation [23]. The coarse to fine localization of target enhances

tracker’s performance during various tracking variations. Multi-cue are exploited

for precise estimation of the target and are fused using either feature level fusion

or score level fusion. Feature level fusion preserves high level relationship among

features in comparison to score level fusion [24]. However, processing of a concate-

nated unified feature requires a lot of computational processing [25]. In sum, a

lot of solutions have been provided under each category but there is still scope of

improvement that can be considered for developing robust tracking frameworks.
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1.2 Thesis Overview

The thesis comprises of six chapters and a brief description of these chapters is

given below:

Chapter 1:- This chapter covers the introduction and purpose of the outlined

research topic. It will also contain the main idea for the development of the thesis.

In addition, the potential application areas and main challenges in multi-cue object

tracking are covered.

Chapter 2:- This chapter covers the state-of-the-art techniques developed in ex-

isting research work on “Multi-cue object tracking under stochastic framework,

deterministic framework, and multi-stage framework”. It will also highlights the

research gaps in the existing work that has stimulated the development of research

objectives. In addition, evaluation metrics and benchmark datasets require for the

performance validation of the proposed trackers are discussed.

Chapter 3:- This chapter highlights the details of the methodology adopted to

accomplish the multi-cue based object tracking under stochastic framework. In

addition, it will also cover the observations and discussion of results.

Chapter 4:- This chapter highlights the details of the methodology adopted to

accomplish the multi-cue based object tracking model under deterministic frame-

work. The obtained experimental results will also be elaborated against the other

compared state-of-the-art.
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Chapter 5:- This chapter highlights the details of the methodology adopted to

accomplish the multi-cue based object tracking under multi-stage tracking frame-

work. The brief details highlighting the accuracy and the effectiveness of the

proposed methodology will also be discussed.

Chapter 6:- This chapter contains the brief summary of all the ideas, observations

and contributions of the resultants obtained in each objective. Also, the future

directions are sketched in this chapter.
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Literature Review

Over the past decade, multi-cue object tracking has been extensively explored and

reviewed. In particular, the success of any object tracking method is highly depen-

dent on developing an efficient and dynamic appearance model. In this direction,

the multi-cue object tracking methods have been proposed under stochastic frame-

work, deterministic framework or multi-stage framework. The various appearance

models under each framework are briefly reviewed and are detailed as follows.

2.1 Stochastic Framework

Generally, multi-cue object tracking methods under stochastic framework consider

Monte Carlo simulation for predicting the target state using particle filter, Kalman

filter and its other variants [17], [26]. Particle filter has potential application in

the field of multi-cue object tracking [27], [28]. In this direction, Xiao et al.[8]

exploited color and shape feature of the target using a particle filter and then,

fused them by normalized weighted feature fusion. Model was made adaptive by

extracting the contextual information. Contextual information for each cue was

8
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determined by analyzing the particles in the search space based on the foreground

and background information encoded in them. Experimental results revealed that

there was no significant improvement in many video sequences by the adaptive

fusion of feature saliency. Walia et al.[5] proposed to fuse color and texture using

fuzzy based adaptive fusion model. The proposed outlier detection mechanism not

only enhanced the performance of crow search based resampling strategy, but also

reduced the computational complexity of the tracker. Also, transductive reliabil-

ity was integrated at each time step for adaptive fusion and faster convergence.

However, the method was analyzed on limited video sequences. In [29], authors

proposed fusion of adaptive patches after extracting Color Histogram (CH) and

Histogram of Oriented Gradient (HOG) features from object. Similarity between

the reference patch and the object’s appearance was calculated using weighted

Bhattacharyya coefficient. Experimental results evaluated the performance of the

method for similar objects only. Similarly, Sardari and Moghaddam [30] deter-

mined CH and HOG for target’s appearance model. Occlusion handling and de-

tection mechanism were exploited to maintain the tracker’s performance during

the challenge. MGbSA based resampling was employed on each particle to reduce

the number of particles using local search and spiralchaoticmove procedure. How-

ever, in [31] blocking strategy was exploited to handle partial occlusion and least

square method for severe occlusion. Integral histogram was proposed to reduce

the computational cost of the method by integrating the colour cumulative his-

togram and Local Binary Pattern (LBP) features using deterministic coefficient.

Color based particle filter in the local region and motion estimation in the global
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region were used to localize the target [32]. Number of particles were reduced

and computational efficiency in the local-global estimation of the method was en-

hanced by deploying chaotic system in the framework. In [33], authors proposed

particle filter for local state estimation and Interacting Multiple Models (IMM)

for global state estimation. Color and texture features were extracted from ap-

pearance model. Color was determined through α-Gaussian mixture model and

texture was extracted through distinctive uniform local binary pattern histogram

based on the uniform LBP operator. Each feature was extracted through H-∞

filtering and combined using linear weighted fusion. On the other hand, Walia et

al. [34] utilized Dezert-Smarandache Theory (DSmT) based PCR-6 for particle

level fusion of the complementary cues viz. color, LBP and edge. Adaptive inte-

gration of the particles was performed in which each particle was discounted with

transductive reliability before fusion. Similarly, Wen et al. [35] used color and mo-

tion information of the target but integrated them using linear weighted method.

Firouznia et al. [32] used motion information to estimate the target’s position

globally and then the color information was extracted to localize target in the lo-

cal region using chaotic particle filter. In [36], author exploited color, thermal and

motion cue for observation model. Conflict amongst various cue was resolved using

Dsmt based PCR-5 rules. Dou and Li [37] used Corrected Background-Weighted

Histogram (CBWH), Completed Local Ternary Patterns (CLTP) and HOG for

the target model. Multiple interactive model probabilities were used for particle

importance. In [38], authors proposed a tracking algorithm using particle filter for

tracking object in InfraRed (IR) video sequences. Co-occurrence matrix moments
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was proposed for the colour and texture features considering the fact that two

similar colour objects could not have same moments. Sample particles weights

were normalized before final state estimation. However, authors exploited sample

constrained particle filter and sparse representation for tracking small objects in

IR videos [39]. Saliency extraction was employed to determine the high frequency

area in the image and hence, to reduce the computational load on the tracker.

Sample constraint was integrated in particle filtering before estimating the final

state. In [40], author used new 6 degree-of-freedom tracking technique in RGB-D

images for 3D pose tracking. Particle Swarm Optimization (PSO) was embedded

in particle filter for evaluation of particles and restricting the search space. To

handle occlusion, depth was integrated in RGB to compute normal vector using

the least-square plane fitting. In [41], authors has extracted color and intensity fea-

tures to localize the target in visual attention integrated particle filter framework.

Salient regions were searched to detect the target in the video but the proposed

work was inefficient in handling target’s appearance variations due to changing en-

vironment. In [42], color, texture and HOG cue were determined for each particle.

Linear normalized weighted fusion of cues was proposed by integrating reliability

at each frame. Linear fusion of cues was less efficient in capture the discriminative

capability of each exploited cue. In addition, the proposed method was compu-

tationally slow and inefficient in handling the background clutters. Zhang et al.

[43] proposed a tracking algorithm exploiting color, HOG and CNN features. In-

terdependencies between each feature was exploited using incremental strategy in

the update model. The method had addressed the particle filter limitations to
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a great extent but was computationally expensive and not suitable for real-time

tracking problems. In sum, the existing works have limitedly addressed real-time

tracking problem which can handle various environmental variations namely, illu-

mination variation, background clutters, full or partial occlusion, scale variations,

deformation, fast motion and motion blur.

In addition, the performance of multi-cue object tracking methods using parti-

cle filter can be improved through resampling methods based on meta-heuristic

approaches. In this direction, Zhang et al. [44] exploited PSO as resampling

technique and determined intensity and gradient cues for each particle. Discrimi-

native weight of each cue was fused adaptively at each frame. In [45], authors pro-

posed immune genetic algorithm as resampling method to address PF problems.

Crossover, mutation, promotion and inhibition parameters were used to ensure

particle diversity in search space. However, the performance of this method was

evaluated only on two video sequences. On the other hand, Yin et al. [46] used

color and motion cues in particle filter based object tracking. CamShift exploited

as optimization to determine the local maxima during environmental variations.

However, the method was evaluated using limited performance metrics. In [47],

authors proposed improved cuckoo search to solve the problems of particle filter for

object tracking. Simulation results on video sequences were presented to prove the

robustness of the proposed methods. In [35], author extracted two features from

the target and fused them using linear weighted method. In sum, many resampling

methods under multi-cue particle filter for tracking the object in video sequence
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has been proposed. However, the shortcomings of particle filter with adaptive

fusion methodology are still need to be addressed for efficient object tracking.

2.2 Deterministic Framework

Multi-cue object tracking methods under deterministic framework focus on cost

minimization of objective function by extraction of foreground pixels from the

background area. Deterministic methods include tracking framework based on

Mean shift, tracking by detection and tracking by parts [48], [49], [50]. Under

this, contour based tracking was proposed by analyzing motion, shape and gabour

features [51]. For background subtraction and to obtain foreground pixels Ex-

pectation Maximization based Effective Gaussian Mixture Model (EMEGMM)

algorithm was exploited. The approach had limited applications and hence, could

be used for tracking non-rigid objects only. In [48], HSV based color model and

LBP based texture features were integrated to address the limitation of mean shift

algorithm. Four neighbourhood search method was used to handle tracker’s drift

during occlusion. However, Circulant Structure Kernels (CSK) was exploited using

patch based tracking to address partial to severe occlusion. Entropy minimization

criterion was employed to redetect the target from the classifier pool after tracking

failure. Yao et al. [49] proposed integration of semantic information with color and

location using scale adaptive based energy minimization method. Segmentation

of the target was done through energy minimization by graph cut algorithm for

accurate localization. Position and shape of the target’s appearance was modeled
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in tracklet-detection based tracking framework [6]. For each tracklet, confidence

score was determined to identify the reliable and unreliable tracklet. Correlation

filter was used to calculate the confidence score and to handle occlusion. Parate et

al. [52] proposed a hybrid solution for efficient tracking by integrating global tem-

plate and patch-based template. Integral Channel Features (ICF) were exploited

for extracting colour and structural features for robust hybrid template. Clustering

and vector quantization were used to handle the background clutters. However, to

handle occlusion and background clutters, multiple variants of texture and color

were integrated in mean shift based tracking framework [53]. Multiple textures

features namely, LBP, Local Ternary Pattern (LTP) and Complete Local Binary

Pattern (CLBP) were extracted to cater fast motion, scale and orientation varia-

tions. Alpha blending was used to integrate the various texture features in colour

information. However, Medouakh et al. [54] proposed to combine texture fea-

ture based on Local Phase Quantization (LPQ) and HSV based CH in mean shift

framework. Hybrid histogram was generated by integrating color-texture features

jointly. Further, the information from two or more sensors can be extracted for

providing efficient tracking under deterministic framework. For this, Li et al. [55]

exploited RGB color features from vision sensor and thermal features from ther-

mal sensor in a manifold ranking patch based tracking framework. Patch weights

and modality weight extracted from structured SVM were combined for state es-

timation. Xie et al. [10] proposed object level segmentation to handle occlusion

combining RGB and depth features in long video sequences. Embedding segmen-

tation mask in keyframes improved the tracker’s performance but this process is



Chapter 2. Literature Review 15

computationally complex and hence, reduces the efficiency in terms of speed. In

order to improve efficiency, Xiao et al. [9] proposed to fuse color information with

depth features directly to handle occlusion and fast motion. Spatial and temporal

consistency constraints were exploited in update modal for continuous relearning

of the tracker. However, color and depth were integrated in a 3-D mean shift

framework to maintain tracker’s performance during occlusion and background

clutters [56]. Color feature was extracted through RGB method as well as HSV

color space and the performance for each feature was compared. However, the

method was failed to handle long-term occlusion. In sum, many solutions have

been proposed to handle partial to severe occlusion, background clutters and fast

motion under the framework. But, there is still scope of improvement in terms of

methodology for multi-cue feature extraction, fusion of multi-cue information and

computational speed.

2.3 Multi-stage Framework

Multi-cue object tracking methods under multi-stage framework aim to precise

localization of the target. Initially, the target is roughly localized in the first stage

of estimation. Based on the rough estimation, the target is precisely localized in

the final stage of estimation. In this direction, multi-stage tracker [23], tracking

under large motions [57], UGF tracker [25] were proposed. Multi-stage tracker

[23] exploited motion cue for rough estimation of the target. RGB, LBP and

PHOG were extracted in the tracker’s appearance model for precise estimation.
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Multi-cue were fused using non-linear weighted Borda count ranking. Tracker had

addressed many challenges but failed to handle the background clutters, occlusion

and fast motion efficiently. In order to address motion, Kim et al. [57] proposed

coarse to fine estimation of the target. Superpixels were extracted from the target

during coarse estimation which was followed by sampling and similarity determi-

nation for accurate localization. Walia et al. [25] utilized motion descriptor for

initial localization and multi-cue visual descriptors for precise localization of the

target. Multi-cue features were unified using graph cross-diffusion based feature

fusion. The proposed graph fusion had shown efficient experimental results but

was computationally complex. In sum, multi-cue object tracking approach under

multi-stage framework improved the state estimation of the target. However, the

integration of multi-cue can be explored to provide robust solutions.

Multi-cue features can be unified using feature level fusion or score level fusion.

It has been well reviewed in literature that feature level fusion is better in com-

parison to score level fusion in preserving the relationship between the features

[24]. In this direction, authors adaptively fused color and depth information along

with spatio-temporal consistency constraints for tracking the object [9]. Kang et

al. [58] exploited intensity, edge and texture features of the target and fused them

using multi-feature fusion through using a Fisher discrimination criterion. Wang

et al. [59] fused location, color and LBP features of the target. In [11], authors

considered the thermal profile and grayscale features of the target and fused them

using collaborative sparse representation. In [35], authors fused information of
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two channels and epipolar geometry for target estimation. Meng et al. [60] ex-

ploited Hue, Saturation and Value Histogram (HSV) features to cater occlusion

and background clutters. In [61], authors integrated color histogram, HSV color,

texture and motion features for real-time tracking. Wang et al. [62] extracted

color and HOG features from superpixels of the target and used a random forest

regressor to learn the superpixel features. In [63], authors proposed a weighted

local sparse model considering the context information and reliability of each local

patch. The information was fused using an adaptive update template strategy.

Sun et al. [64] proposed a complementary measurement matrix by inducing color

and texture features. The ensemble classifier was used to classify the previous and

current samples in order to avoid tracking failures. In sum, many robust multi-

cue tracking solutions considering feature level fusion under multi-stage framework

has been proposed. However, developing a robust non-linear unified feature for an

adaptive appearance model catering the environmental challenges can be further

explored.

2.4 Performance Validation

For performance validation of the proposed architectures robust evaluation metrics

are chosen. In addition, the challenging video sequences which include the envi-

ronmental variations namely, illumination variation, scale variations, background

clutters, deformation, full or partial occlusion, in-plane & out-of plane rotations,
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fast motion and motion blur are taken from publicly available datasets. The de-

tails related to the exploited evaluation metrics and the benchmark datasets is

discussed in the following sections.

2.4.1 Evaluation Metrics

To prove the effectiveness and accuracy of the proposed trackers over other track-

ers, robust evaluations metrics viz. Center location error, F-Measure [65], AUC

(Area Under Curve), DP (Distance Precision), OP (Overlap precision), Success

plots and Precision plots [66] are considered. Center Location Error (CLE) is

the Euclidean distance between the tracker’s bounding box (BBt) and the ground

truth (BBg). For each frame of a video sequence, CLE can be computed using

Eq. (2.1).

CLE =

√∑M
i=1((X

i
t −Xb)2 + (Y i

t − Yb)2)
M

(2.1)

where, (Xt, Yt) is the coordinate of the BBt, (Xb, Yb) is the coordinate of BBg and

M is independent Monte carlo simulations evaluated for each frame. F-measure

(Fm) is calculated as the harmonic mean of the precision (pr) and Recall (rc) using

Eq. (2.2)

Fm =
2× pr × rc
1 + pr + rc

(2.2)

where, pr is precision and can be defined as the ratio of overlap of target bounding

box and ground truth bounding box with respect to target bounding box and rc
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is recall which is calculated as the ratio of overlap between target bounding box

and ground truth bounding box with respect to ground truth bounding box.

Success plot depicts the success score at different overlap thresholds and mean

precision at multiple center location error is depicted by the precision plots. AUC

is average of success rate determined at different overlap threshold and DP is

average precision score calculated at different location thresholds.

2.4.2 Benchmark Dataset

In the last decade, numerous object tracking algorithms have been proposed by

different authors in different journals. Most of the reported work has been eval-

uated on publicly available datasets. These datasets provide a common base for

evaluation of various tracking algorithm. The details of the publicly available

benchmarked datasets is as follows:

• Amsterdam Library of Ordinary Videos dataset (ALOV++) was one of

the largest dataset containing 316 video sequences with 89364 frames [1].

Dataset contained mainly real-time videos gathered from various online sources.

Dataset focused on single object tracking with one situation per video.

Mostly videos were of short duration with average length of 9.2 sec. Also, 10

long videos with average duration of 1 to 2 mins were included. 64 different

object classes were categorized with 13 aspects of different challenges.
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• OTB-15 dataset contained 100 fully annotated videos sequences with 59040

frames (in total) captured from stationary camera at 30 fps frame rate [66].

The dataset was suitable for single object tracking with video sequences an-

alyzed on 11 attributed environmental challenges. The ground truth of the

object in the scene was available in *.txt format having details of correspond-

ing coordinates in each frame.

• TempleColor-128 dataset (TC-128) contained 128 colored annotated videos

sequences with total 55346 frames captured from stationary camera at 30

fps frame rate [67]. Out of 128 sequences, 78 sequences were new and in-

cluded tough tracking senarios while rest were collected from previous work.

The ground truth information was given in *.txt file along with attributed

challenge details in each video sequence.

• OTB-13 dataset contained 50 fully annotated videos sequences with 29491

frames (in total) captured from stationary camera at 30 fps frame rate [68].

The dataset has video sequences analyzed on 11 attributed environmental

challenges. The ground truth of the object in the scene is available in *.txt

format having details of corresponding coordinates of the target in each

frame. OTB-50 dataset is a subset of both OTB-100 and TC-128 and hence,

contains many common videos.

• UAV-123 dataset consisted of 123 new fully annotated HD videos with more

than 110K frames [69]. Videos were captured from low altitude varying

from 5 to 25 mtr. by a moving camera mounted on an unmanned aerial
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vehicle at resolution of between 720 px to 4K and average 30 fps frame rate.

Dataset included wide range of scenes alongwith different classes of target

in 12 different attributed environmental challenges.

• DTB dataset captured 70 outdoor videos from a moving camera mounted

on an unmanned aerial vehicle or drone at 1280 X 720 resolution [70]. It

includes 12 diversified challenges but majority of videos attributed with fast

camera movements and rotational challenges. The dataset primarily aim to

track two objects namely, people and cars.

• GOT-10k consisted of more than 10K videos with 1.5M frames in total having

563 object classes and 87 different motion classes captured at 10 fps frame

rate [71]. This large dataset was developed to provide enough training data

to the deep learning based trackers. The videos were split into training and

testing datasets with zero overlap.

• Need for Speed dataset (NfS) consisted of 100 video fragments with more

than 380K frames captured at higher data rate of 240 fps [72]. NfS mainly

focused on fast motion with 8 other attributed challenges. Annotation Tool-

box was used in each frame for annotating axis aligned bounding box. The

dataset is suitable to analyze the performance of fast deep learning trackers.

• VIRAT consisted of 17 videos with 23 different events at maximum resolution

of 1920X1080 and 24 fps datarate [73]. The dataset had videos captured from

a stationary camera as well as from a aerial vehicles. Stationary camera

videos were of 25 hours duration in total with 1080px or 720px resolution
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and frame rate upto 30 fps. Aerial camera dataset contained 4 hours of

videos with 640X480 resolution at 30 fps frame rate.

• Large-scale Single Object Tracking (LaSOT) contained more than 1K se-

quences with 3.52M frames having 70 different object classes [74]. LaSOT

provided both visual manual annotation as well as lingual annotation from

natural language. Authors claimed it to be the largest tracking dataset with

high quality annotated videos. Dataset provided large training data to meet

the requirement of deep learning based trackers.

2.5 Research Gap

Based on the literature survey potential research gaps were identified. The details

of the identified research gaps is as follows:

• There are various existing publicly available datasets but these datasets

could not able to cater all dynamic environmental variation in a single test

video. Different object tracking challenges are addressed in different video

sequences.

• The existing datasets are not suitably applicable to the countries like India

with the dynamic environment changes and are not particularly calibrated

as per the essentials of object tracking.
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• The most of the available datasets consider that the object is moving and

the camera is stationary. There is still no available datasets which has been

created in which object stationary and camera moving.

• Most of the existing techniques under stochastic and deterministic model

considered only single cue and considered the video sequences from single

datasets.

• Requirement of a adaptive appearance model which can address the change

in target’s appearance in case of background clutters and abrupt motion.

• Requirement of a technique which can dynamically update the reliabilities

of target, so that scaling can be done in a better way.

• Most of the techniques considered limited performance matrices for the eval-

uation of tracker performance.

• Most of the tracking methods based on particle filter limitedly addressed the

resampling drawbacks namely, sample impoverishment and sample degener-

acy.

• Object Representation model needs to cater for deformation of object due

to fast motion and pose variations for better identification of object in back-

grounds clutters.

• Existing techniques not able to estimate the object location precisely when

its motion is fast and abrupt.
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• Requirement of a better multi-stage tracking framework which can estimate

object location from coarse to fine, in order to achieve high precision.

• Requirement of a adaptive fusion model which can incorporate modalities

on the basis of requirement.

2.6 Research Motivation

Object tracking is an imperative field of computer vision which aim to keep track

of the target’s displacement in the subsequent frames. A lot of work under var-

ious framework has been proposed to keep target’s track but it is still open and

challenging due to dynamic environmental conditions that include pose variations,

scale variations, illumination variations, full or partial occlusion, fast motion and

background clutters. To adapt such variations, single cue is not sufficient to pro-

vide robust tracking solutions. Also, it has well acknowledged by many researchers

that the integration of multi-cue with discounting cue reliability is tedious in pres-

ence of tracking challenges. Most of the present proposed work are not efficient

enough to address more than one environmental challenge concurrently. Hence,

development of a robust appearance model is paramount that can address mul-

tiple tracking challenges. This work is motivated by the fact that multi-cues

are necessary for building a robust appearance model. The adaptive fusion of

multi-cue with online estimation of cue reliability is another direction that can

be evaluated with the aim to provide robust tracking framework. Under particle
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filter framework, robust tracking solutions were provided but the drawbacks of

resampling technique namely, sample impoverishment and degenercy were limit-

edly addressed. Meta-heuristics optimization based resampling methods can be

explored to provide better tracking algorithms. Multi-stage object tracking model

can be explored further with the aim to cater fast motion and motion blur by

diffusing multi-cue in appearance model. Deterministic based solutions suffered

from the local minima problem and tracking samples. This problem can be solved

by multi-cue appearance model with adaptive fusion methods and transductive

reliability.

2.7 Research Objective

This research was focused to develop a robust, adaptive multi-cue object tracking

framework. The objectives which were considered in the current studies are as

follows.

• To review various state-of-the-art techniques and frameworks for multi-cue

object tracking. Experimental statistical comparison of 10 existing tracker

on benchmarked video sequences.

• Review of various available datasets and performance metrics for multi-cue

object tracking. Creation of self-dataset for multi-cue object tracking.
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• Design and development of multi-cue object tracking under stochastic frame-

work. Experimental validation of proposed framework on different datasets.

Performance comparison of proposed method with state-of-the-art techniques.

• Design and development of multi-cue object tracking under deterministic

framework. To validate the proposed framework on different datasets. Per-

formance comparison of proposed framework with state-of-the-art techniques.

• Design and development of a multi-cue object tracking under multi-stage

object tracking framework. Experimental validation of proposed technique

on different datasets. Performance comparison of proposed technique with

state-of-the-art techniques.

2.8 Significant Findings

The following were the key findings of the present work.

• Multiple video sequences were captured and analyzed in a self generated

dataset.

• Captured video sequences were of adequate length and annotated to compare

the performance of various trackers.

• Reviewed the latest trends in multi-cue object tracking frameworks in which

the complementary cue information was extracted either from single sensors

or multiple sensors.
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• Multi-cue object tracking frameworks were elaborated and recent work was

briefly reviewed and investigated.

The self generated dataset along with others significant findings were published in

[75].

In addition, multi-cue object tracking frameworks had been reviewed and cat-

egorized under various methods. We had briefly analyzed the various tracking

benchmark and tabulated their substantial parameters. Also, the experimental

evaluation of the recent state-of-the-art had been performed and results were com-

pared. The literature survey of the recent multi-cue object tracking methodology

and benchmark along with experimental results were published in [76].
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Multi-cue Object Tracking

The aim of this work is to propose a real-time tracker under stochastic framework.

Stochastic framework includes linear & Gaussian state estimation and non linear

& non-Gaussian state estimation. Kalman filter and its other variants addressed

linear and Gaussian state estimation [17], [18]. While particle filer, condensation

filter can be utilized for non-linear and non-Gaussian estimation [19], [77]. Un-

der stochastic framework, particle filter has shown superior performance for state

estimation in multi-cue object tracking [5], [34].

3.1 Introduction

Particle filter (PF) can be defined as bootstrap filter [19] and used for state estima-

tion using Sequential Monte Carlo methods. It consists of two steps: 1) Prediction,

which evolves particle using state model 2) likelihood calculation, which determines

particles weight during update state. The main advantage of PF is that it reduces

29
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the batch of sample patches during tracking and handle the dynamic environment

challenges. Due to this, PF has been widely used in many real-time tracking

frameworks [8],[46]. However, the performance of PF is restricted by its inherent

shortcoming of sample degeneracy. Sample degeneracy is the problem when most

of the particles weight become so negligible that they do not contribute much

towards state estimation. Many resampling techniques [78], [79] were studied to

address the PF drawback. Generally, resampling techniques replace the low weight

particles but this process reduce the diversity in the search space. Hence, most

of the resampling methods contribute to sample impoverishment where maximum

particles accumulated to small area. To solve this, many nature-based optimiza-

tion viz. Firefly algorithm [80], Improved cuckoo search [47], Ant optimization

[81], PSO [44] were explored to a great extent. These methods improved PF based

trackers efficiency by addressing its problems. These techniques were applied as

resampling methods in particle filter tracking framework in which the appearance

model was constructed either through single cue or multi-cue. In this direction,

authors proposed modified galaxy-based search algorithm as resampling technique

for estimating the target’s optimum state [30]. However, the speed of the method

was relatively slow. Zhang et al. [44] exploited PSO as resampling technique and

determined intensity and gradient cues for each particle. But, the performance

of the tracker was degraded during environmental variations. In [45], authors

proposed immune genetic algorithm (IGA) as resampling method to address PF

problems. However, the IGA based resampling method provided limited solution

to PF drawbacks. In [47], authors proposed improved cuckoo search to solve the
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problems of PF for object tracking. Limited experimental results were presented

to prove the efficiency of the method. In sum, many resampling techniques has

been proposed to address PF shortcoming and to provide robust tracking methods.

However, the shortcomings of particle filter with adaptive fusion methodology are

still need to be addressed for efficient real-time object tracking. In order to ad-

dress the shortcomings of the particle filter, an adaptive real-time multi cue object

tracker under stochastic framework has been proposed and is detailed as follows.

3.2 Proposed Tracker Architecture

The proposed method utilizes complementary cues using multi-cue PF framework

tracking the object in a video sequence. Adaptive update model with context

sensitive cue reliability have been proposed for tracker’s quick adaptation to en-

vironmental variations. In addition, problems of PF are addressed by proposing

butterfly search optimization based resampling method. Architecture of the pro-

posed tracker, update model and the proposed resampling technique are depicted

in Fig. 3.1. Initially, the target is segmented from the background using the

GMM subtraction [82]. Particles (N) are instantiated around the centroid of the

detected target. All of these particles are evolved through the state vector (St)

defined by the multi-component state model. Predicted particles are evaluated

for each features descriptor namely color histogram (Fi), texture (Fe) and edge

(Fg) individually. These cues are further subjected to adaptive fusion approach

to obtain the fused weight (Ŵf ). This model ensures the automatic boosting and
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suppression of the particles during environmental challenges. At each time step

t, context sensitive cue reliability (relt) is also calculated to discount the particles

based on each cue performance. The particles so obtained are passed through an

outlier detection mechanism to detect outliers (Ûx) and important particles (Îy).

Outliers are passed through a butterfly optimization based resampling technique

(BOA) to obtain (Ux). BOA based resampling diversifies the unimportant particles

in the search area with its two variables viz. sensor modality and switch proba-

bility. Sensor modality helps in sensing the location of the particles and switch

probability propagates the particles in the high likelihood region. Final state (Gt)

of the target is estimated by the weighted sum of the resampled outliers (Ux) and

the important particles (Îy). This process is repeated iteratively during the entire

video sequence. Reference dictionary (D̂r) is updated by selective replacement of

the important particles. This ensures consistent update of the appearance model

at each time step in accordance with environmental variations. Core design of the

proposed multi-cue tracker is as follows.

3.3 Core Design of Proposed Tracker

In this section, core design of the multi-cue based adaptive tracker is discussed.

The details of the multi-cue particle filter alongwith multi-cue feature extraction

and adaptive multi-cue fusion model are as follow.
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Fig. 3.1 Architecture of the proposed approach. At each time step t, the particles
are initialized and evolved through the state model. Each particle is evaluated for
three cues and reference histogram dictionary is extracted. Cues are integrated
through an adaptive fusion model with context sensitive cue reliability and outlier
detection. Particles are resampled and final state is estimated as the weighted
mean of the outliers and important particles.

3.3.1 Multi-cue Particle Filter

Particle filter utilizes Monte Carlo algorithm for solving the state estimation prob-

lems. Particle filter has two stages: prediction stage and update stage to obtain

the desired PDF. During the prediction stage, particle state is evolved through
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the system model at time t using Eq.(3.1).

St = ft−1(St−1, σt−1), (3.1)

where, ft−1 is non-linear state transition function and σt−1 is zero mean white

noise. Particles are distributed on the target to estimate the posterior density

distribution p(St|xt) where, xt = x1, x2...xt is the set of available information at

time t. The measurement xt at time t is determined by the observation model

using Eq. (3.2).

xt = wt(St, Kt) (3.2)

where, wt is the non-linear function and Kt is zero mean white noise, independent

of present and past state. If PDF p(St−1|xt−1) is available at time t− 1, then the

prior PDF is obtained using the Eq.(3.3).

p(St|xt−1) =

∫
p(St|St−1)p(St−1|xt−1)dSt−1, (3.3)

Finally, when the measurement xt is available at time t, then the state is updated

using Baye’s rule given by Eq.(3.4).

p(St|xt) =
p(xt|St)p(St|xt−1)

p(xt|xt−1)
(3.4)

Multi-component model defines state of the particle by the state vector St which

included variables namely Xp, Yp, Vxp, Vyp, rop and αp. (Xp, Yp) is the center of
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rectangle of bounding box. Vxp and Vyp are the velocities in respective directions for

pth particle modeled through constant velocity model. rop and αp are the rotation

and scaling variables of the particle which used random walk model. Predicted

particles are obtained by evolving the particles through the state model using

Eq.(3.1). Each predicted particle is subjected to multi-cue evaluation namely,

color histogram (Fi), texture (Fe) and edge (Fg). Color cue is stable during change

in scale and partial occlusion, texture cue can handle change in illumination and

similar background, and edge cue is invariant object’s deformation and rotation.

These are complementary cues i.e. if one fade others may compensate during the

tracking challenges. Details of the likelihood calculation for these cues is discussed

in the following section.

3.3.2 Multi-cue Feature Extraction

The proposed tracking approach considers three complementary cues namely,

color, LBP and PHOG for each predicted particles. The details of each cue along-

with their likelihood calculation is as follows: RGB color model is exploited for cal-

culating the color histogram. Color histogram for pth particle is F p
i = H1, H2...HN̂b

and determine using Eq. (3.5).

Hc = Z
N̂∑
q=1

B(mq, nq), c = 1, 2....N̂b (3.5)

where Z is the normalizing constant and B(.) represents binning function that

assigned pixel (mq, nq) to one of the N̂b histogram bins. For each particle, color
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histogram (F p
i ) is calculated by mapping it to normalized Hc. Texture cue mea-

sures intensity variations of the targets surface [83]. It is calculated for each

particle using scale-invariant LBP depicted by Eq.(3.6).

LBPα,N̂η =


∑N̂η−1

r=0 (L(Gk −Gc)), ifU(LBPα,N̂η) ≤ 2

η + 1, otherwise

(3.6)

where, Gk is grey value for kth pixel and Gc is grey value for central pixel(c) having

α radius with N̂η as equally spaced neighboring pixels. L(.) is step function.

U(LBPα,N̂η) determine the uniform pattern in the image of the pattern labels.

For each particle, LBP histogram (Fe) is determined by normalizing the value of

the LBPα,N̂η . Spatial distribution of edges is considered for the representation of

target’s shape. Pyramid of Histogram of Oriented Gradients (PHOG) [84] is used

for the extraction of shape information of the target with its spatial distribution. In

this work, PHOG is extracted for each particle considering the target’s shape and

edge orientation. For this, Region Of Interest (I) is extracted and then intensity

gradient values are computed for pixel (mq, nq) using Eq.(3.7).

E(mq, nq) =
√

(I(mq, nq+1)− I(mq, bq−1))2 + (I(mq+1, nq)− I(mq−1, nq))2

(3.7)

For a given image, 20 bins are utilized using orientation which can be depicted

using Eq. (3.8)

θ = tan−1(
I(mq, nq+1)− I(mq, nq−1)

I(mq+1, nq)− I(mq−1, nq)
) (3.8)
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For an image, the final PHOG descriptor is obtained by concatenating all HOG

vector at each pyramid level for each pth particle as Ep
h = H1, H2...HN̂b

. This

depicts the spatial information for the image. Each HOG is normalized to obtain

the final vector considering all the pyramid level. Zero level represents original

image corresponding to b bins of each b HOG vector, level 1 by a 4b vector and the

nth level is represented as
∑n

d=0 22d =
∑n

d=1 42d. For each particle, Edge histogram

(Fg) is determined by normalizing the value of the so obtained PHOG descriptor.

Similarity between each cue histogram (Fl) for pth particle and the corresponding

reference histogram dictionary D̂r is determined using Bhattacharya’s distance.

For this, Bhattacharya’s coefficient is calculated using Eq. (3.9).

βpl (D̂r,l, F
p
l ) =

N̂∑
n=1

√
(D̂r,l)n × (F p

l )n, l ∈ i, e, g (3.9)

This Bhattacharya’s coefficient is used for calculating the Bhattacharya’s distance

[85] between cue histogram (Fl) for pth particle and its corresponding reference

histogram D̂r in the dictionary using Eq. (3.10).

Dp
l (D̂r,l, F

p
l ) =

√
1− βpl (D̂r,l, F

p
l ), l ∈ i, e, g (3.10)

Bhattacharya’s distance corresponding to each component of dictionary is aver-

aged. Further, the likelihood for each cue for pth particle is calculated using

Eq.(3.11).

γpl (D̂r,l, F
p
l ) =

1

σl
√

2π
e
−
D
p
l

(D̂r,l,F
p
l

)2

2σ2
l , l ∈ i, e, g (3.11)
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where, σl represents the Standard deviation for Gaussian noise for each cue. The

next section will detail the adaptive multi-cue fusion model.

3.3.3 Proposed Adaptive Multi-cue Fusion

Each cue likelihood is subjected to adaptive fusion model to obtain the fused weight

Ŵf . Non-linear ranking based score fusion method has been proposed for adaptive

fusion of the cues. This model boosts the important particles and suppresses the

unimportant particles automatically. For this, the likelihoods are obtained for each

cue through Eq.(3.11) for pth particle is assigned as initial weights using Eq.(3.12).

Ĉl,p = γpl (D̂r,l, F
p
l ), p = 1, 2, ...N (3.12)

If N is the total number of particles and l ∈ i, e, g. Then, the individual weights

for each particles of cue can be represented using Eq. (3.13).

Ĉl,N =


Ĉi1 Ĉi2 . . . ĈiN

Ĉe1 Ĉe2 . . . ĈeN

Ĉg1 Ĉg2 . . . ĈgN

 (3.13)

Context reliability value for each cue is calculated at t−1 as r̂lt = (r̂it−1, r̂
e
t−1, r̂

g
t−1).

These values are multiplied with each row corresponding to each cue is obtained
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using Eq.(3.14).

CS r̂l,N =


r̂it−1 ∗ Ĉi1 r̂it−1 ∗ Ĉi2 . . . r̂it−1 ∗ ĈiN

r̂et−1 ∗ Ĉe1 r̂et−1 ∗ Ĉe2 . . . r̂et−1 ∗ ĈeN

r̂gt−1 ∗ Ĉg1 r̂gt−1 ∗ Ĉg2 . . . r̂gt−1 ∗ ĈgN

 (3.14)

After this, particles are ranked based on the obtained score CS r̂l,N for each cue

individually. For each particle, the rank is obtained as Rj = RN , RN−1...R1. In

each row, particle with highest score is ranked as the highest rank (RN) and the

particle with lowest score is given lowest rank (R1). The rank matrix Wl,N is

obtained using Eq.(3.15).

Wl,N =


Rj ∗ Ĉ r̂

i1 Rj ∗ Ĉ r̂
i2 . . . Rj ∗ Ĉ r̂

iN

Rj ∗ Ĉ r̂
e1 Rij ∗ Ĉ r̂

e2 . . . Rj ∗ Ĉ r̂
eN

Rj ∗ Ĉ r̂
g1 Rj ∗ Ĉ r̂

g2 . . . Rj ∗ Ĉ r̂
gN

 (3.15)

These scores are normalized row-wise using the min-max normalization. The nor-

malized score matrix is represented by Eq. (3.16).

W̄l,N =


Wi1 Wi2 . . . WiN

We1 We2 . . . WeN

Wg1 Wg2 . . . WgN

 (3.16)

The normalized score are subjected to f : W̄l,N → W p
fus to obtain the fused score.

W p
fus = [f(W̄i1, W̄e1, W̄g1), ...f(W̄iN , W̄eN , W̄gN)]. The function f for pth particle
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is given by Eq.(3.17). Hence, using this, each particle is assigned weight after its

evaluation over three cues.

W p
fus = f(W̄ip, W̄ep, W̄gp) =

W̄ip

1 + W̄ip × W̄ep × W̄gp

+
W̄ep

1 + W̄ip × W̄ep × W̄gp

+
W̄gp

1 + W̄ip × W̄ep × W̄gp

(3.17)

Next, the fused weight are passed through a non-linear function to boost the

concordant cues and suppress the discordant cues using Eq.(3.18).

Ŵ p
f,t =

eW
p
fus − e−W

p
fus

eW
p
fus + e−W

p
fus

(3.18)

Where, Ŵ p
f,t is the final weight assigned to pth particle at time t. These final weights

are further subjected to an outlier detection mechanism to divide the particles into

important particles (Îy) and unimportant particles (Ûx). Unimportant particles

are mainly affected due to environmental variations and are termed as outliers.

These particles are detected by the outlier detection mechanism using Eq.(3.19).

Ûx = Ŵ p
f , where Ŵ p

f < τs (3.19)

Îy = Ŵ p
f , where Ŵ p

f ≥ τs (3.20)

where, τs is a defined threshold, |x ∪ y = N |, Ûx ∈ [Xt,x, Ytx,] and Îy ∈ [Xt,y, Yt,y].

These outliers are further subjected to Butterfly Optimization Algorithm (BOA)

[86] based resampling technique, which has been discussed in the next section.
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3.3.4 Proposed Optimum Resampling Approach

BOA [86] is a nature-inspired meta-heuristic approach which disperses the outliers

in the high likelihood area by its two parameters namely sensor modality (m̂o)

and switch probability (prob). Sensor modality controls the search space and

determines the convergence speed. Switch probability is used to switch between the

local search and global search. BOA initializes the outliers as butterfly population

(x) and their global position in the solution space is updated using Eq. (3.21).

Ux =


Ûx + (rand2 × b′ − Ûx)× µx if rand ≤ prob

Ûx + (rand2 × Ûj − Ûk)× µx, otherwise

(3.21)

Here, j, k ∈ x, rand ∈ [0, 1] and Ux ∈ [Xx,t, Yx,t]. b
′

represents the best global

position of the particles in the iteration. µx is calculated as: µx = m̂oI
a. Here,

I is correlated with the current position of the particles, m̂o and a are the search

space controlling parameters and varies from 0 to 1. Final centroid Gt of the

target is estimated using fused weight Ŵ p
f to that of outliers weight Ŵx and the

important particles weight Ŵy using Eq.(3.22).

Gt =

∑
x Ŵx × Ux +

∑
y Ŵy × Îy∑N

p=1Wp

, |x ∪ y = N | (3.22)

where, Gt = [Xt, Yt] and Ux, Îy are the state determined by outliers and important

particles respectively. Further, in order to ensure the quick adaptation of the pro-

posed method during dynamic environment the reliability values are determined
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for each cue. Each cue reliability is estimated by calculating the L2-norm distance

between the final estimated state and the state estimated through individual cue.

L2-norm distance is calculated using (3.23).

dt,l = ||Gt −Gl
t|| =

√
(Xt −X l

t)
2 + (Yt − Y l

t )2 ∀ l ∈ i, e, g (3.23)

where, (Xt, Yt) is the centroid of the final estimated state (Gt) and (X l
t , Y

l
t ) is the

centroid of state determined through individual cue at time t. Using dt,l the cue

reliability is calculated by Eq.(3.24).

r̂lt =
tanh(−u(dt,l) + h)

2
+ 0.5 ∀ l ∈ i, e, g (3.24)

where, u and h are constants. The context cue reliability (r̂t) is calculated at state

t and used for discounting the particles at state t+ 1. These reliability values lead

to adaptive fusion of color, texture and edge likelihoods in the update model of the

proposed tracker. Important particles (Îy) and Outliers particles (Ûx) are updated

at each state. Also, reference dictionary is updated by selective replacement of

the important particles. This process is repeated iteratively to keep target’s track

until it is visible in the scene. Once it is lost, the whole tracker is re-initialized

to re-detect the target. Details about the experimental validation of the proposed

tracker are discussed in the next section.
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3.4 Experimental Validation and Discussion

In order to analyze the performance of the proposed approach, we have chosen

publicly available sample video sequences taken from OTB-100 dataset [66] and

VOT dataset [87]. The chosen video sequences are rich in various environmental

challenges such as background clutters, scale variations, deformation, full or partial

occlusion, illumination variations, fast motion and motion blur. Results of the

proposed tracker are analyzed against 13 other trackers viz. ASLA [88], MTT

[89], CT [90], FRAG [91], IVT [92], MIL [93], WMIL [94], DFT [95], PF-PSO

[44], PF [19], CSPF [5], MCPF [43] and STAPLE [96] . The proposed tracker is

implemented in Python2 on a i5 quadcore 2.4 GHz processor with 8 GB RAM.

Initially, the target is detected through GMM subtraction model [82] and N= 49

particles are instantiated on it. The dictionary is updated by selective replacement

of the important particles. Tracker is executed 5 times iteratively to handle the

probabilistic nature of the particle filter. Results depicted are average obtained

over 5 iteration of the algorithm.

3.4.1 Attribute based Evaluation

In this section, the performance of the proposed tracker had been evaluated on

11 attributed challenges namely, illumination variations,background clutters, fast

motion & motion blur, scale variations & deformation, in-plane & out-of-plane

rotations and full or partial occlusion. The details of the tracking challenges
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Table 3.1: Tracking challenge and considered video sequence

Tracking Challenge Video Sequences

Illumination variations Fish, Human8, Skating1, Singer1, Car2, Soccer1,
Singer2, Tiger, Shaking, Basketball, Crossing

Background clutter Basketball, Car2, Pedestrian1, Football, Shaking,
Singer2, Bolt2, MountainBike, Skating1

Fast Motion and Motion Blur CarScale, Pedestrian1, Jumping, Soccer1, Jog-
ging1, Tiger, Human7, Crossing

Scale variations & Deformation CarScale, Shaking, Dancer, Human8, Walking,
Jogging1, Human7, Bolt2, Skating1, Basketball,
Pedestrian1

In-plane & Out-of-plane rotation Basketball, CarScale, Pedestrian1, Football, Shak-
ing, Singer2, Skating1, Soccer1, Tiger, Dancer,
MountainBike

Full or partial occlusion Football, CarScale, Subway, Walking2, Jogging1,
Singer1, Jogging2, Tiger, Basketball

and the considered video sequence is tabulated in Table 3.1. Sample tracking

frames from the considered challenging video sequences under various attributed

challenges is depicted in Fig. 3.2.

Illumination Variations: In Car2 sequence, at frame #380 most of the trackers

have shown drift whilst OURS, Frag and STAPLE are able to manage the change

in illumination in the whole sequence. At frame #128 of Human8, when there is

a sudden variation in illumination, most of the trackers lose the target but the

proposed tracker with STAPLE and MCPF are able to locate the target till the

end. Here, the PHOG cue enhances proposed tracker’s performance by compen-

sating for color and LBP cues. Another challenging sequence under this challenge

is Shaking. Initially, all the trackers are able to keep track of the target with the

marginal error. However, at frame #358 CT, FRAG, PF-PSO, IVT and MTT
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Fig. 3.2 Representative frames from the considered challenging video sequences.
Each frame has been labeled with # frame number and video sequence name on
the left and right corner, respectively.
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have lost the target. OURS with MIL, WMIL, ASLA, and MCPF are able to keep

track the target. This is due to the automatic boosting of good particles and sup-

pression of the unimportant particles by the proposed fusion model. In Singer2,

at frame #180, only our tracker, CSPF and STAPLE are able to locate the target

while others have shown deflection. In Singer1, OURS, CSPF and MCPF have

shown substantially good performance in comparison to other trackers. Fish and

Soccer1 sequences have abrupt illumination variations in which OURS and MCPF

have much better results in comparison to other trackers. In sum, the proposed

tracker have performed with substantially low error under this challenge which is

due to the considered complementary cues in the appearance model. In addition,

consistent updating of the reference dictionary with the important particles im-

prove the performance of the proposed tracker under illumination variations. Also,

the proposed tracker have achieved highest AUC of 0.696 depicted in Fig. 4.8 (a)

and DP score of 0.761 illustrated in Fig. 4.9 (a) under the challenge.

Background Clutters: The sequences viz. Crossing, Car2, Shaking and Singer2

have similar background to that of the target . For crossing sequence, when there

is similar background at frame #90 ASLA, FRAG, MTT and PF lose the target

whilst OURS, CSPF, MCPF and STAPLE locate the target with very small er-

ror. Pedestrian sequence have background clutter at frame #105 when the target

suffers from background clutter then CT, FRAG, PF-PSO, MCPF, and MIL have

lost the target and start tracking the similar objects in the background but OURS

track the target successfully. This is due to the update of important particles

and suppression of unimportant particles by adaptive multi-cue fusion. In Tiger
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.3 Success plot under tracking challenges as (a) Illumination variations
(b) Background Clutters (c) Fast Motion and Motion Blur (d) Scale variations
and Deformation (e) In-plane and Out-of-plane rotation (f) Full or partial oc-
clusion. Legend includes Area Under Curve (AUC) in the bracket.

sequence, trackers viz. CT, ASLA, FRAG, MTT and MCPF could not able to

handle the tracking challenge. In Walking sequence, MTT, STAPLE and MCPF

have shown better performance in comparison to the proposed tracker. This may
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be due to the false update of the particles due to similar background in the pro-

posed tracker’s appearance model during tracking. Bolt2 and Skating1 sequences

have several pose variations with similar background. OURS keep track of the

target in the whole sequence. This is owed by the robust complementary LBP and

PHOG features over color. In sum, the robustness of the proposed tracker under

background clutter is mainly due to the proposed adaptive fusion model which

boosts the important particles and suppresses the unimportant particle during

the challenge. Unimportant particles are detected as outliers by the proposed out-

lier detection mechanism and their position is further improved by the proposed

resampling method. In addition, cue reliability is also discounted for the quick

adaptation of target during background clutters. Under Background clutters chal-

lenge, the proposed tracker have attained highest AUC of 0.662 illustrated in Fig.

4.8 (b) and DP score of 0.668 illustrated in Fig. 4.9 (b).

Fast Motion and Motion Blur: Generally, fast motion and motion blur occur in a

sequence either by abrupt target’s motion or camera movement. Pedestrian1 and

Human7 sequences have motion blur due to sudden camera motion. OURS have

handled the challenge gracefully in these sequences. It is due the rotational factor

in the state model and the detection of the affected particles by the proposed

outlier detection mechanism. In Tiger and Soccer1 sequences, target is moving

very fast and trackers viz. STAPLE, CSPF, MIL, MTT and ASLA are not able

to keep track of the target. But, OURS and MCPF have shown considerably

good performance. Jumping sequence have tough tracking scenario with both fast

motion and motion blur. The proposed tracker performs well in comparison to
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.4 Precision plot under tracking challenges as (a) Illumination variations
(b) Background Clutters (c) Fast Motion and Motion Blur (d) Scale variations
and Deformation (e) In-plane and Out-of-plane rotation (f) Full or partial oc-
clusion. Legend includes average Distance Precision (DP) score in the bracket.

other trackers by the proposed fusion model which suppresses the affected particles

and boosts the good particles. Under fast motion & motion blur challenge, the
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proposed tracker have achieved highest AUC of 0.664 as shown in Fig. 4.8 (c) and

highest average DP score of 0.753, shown in Fig. 4.9 (c).

Scale Variations and Deformation: For sequence Dancer, the proposed tracker with

MTT, IVT, CSPF, STAPLE and MCPF are able to handle the target deformation

due to scale variations. However, MIL and WMIL are slightly deflected from the

target. At frame #140, in MountainBike sequence target have scale variations and

deformation due to its sudden movement which PF, FRAG, CT and WMIL could

not able to handle. OURS, ASLA, MIL, MCPF and STAPLE have handled this

variation with minimal error. In CarScale sequence, at frame #160 most of the

tracker lose the target as these tracker’s appearance model is inefficient to handle

large scale variation. But, MCPF and STAPLE have performed marginally better

than the proposed tracker. In Basketball, ASLA, MIL, CT, MTT and DFT lose

the target whilst OURS with FRAG, WMIL,CSPF and MCPF have shown better

performance. This is due to the scale-invariant LBP feature in the proposed tracker

which have handled the target variations. OURS have shown better performance

in comparison to others in Walking2 throughout the whole sequence. It may be

due to the scaling factor of the state model which have catered the scale variation

in the sequence. In sum, OURS is robust under scale variations which is mainly

attributed by the incorporation of scale-invariant LBP feature in the appearance

model. Moreover, the incorporation of the scaling factor in the random walk

model of the state model have strengthened our method under this challenge.

Under the challenge, the proposed tracker have attained the second highest AUC



Chapter 3. Stochastic Framework for Multi-cue Object Tracking 51

score of 0.631 depicted in Fig. 4.8 (d) and second highest average DP score of

0.761 depicted in Fig. 4.9 (d).

In-plane and Out-of-plane rotation: These rotations appear frequently in a se-

quence when the target move in or out of the image plane. In sequences, Bas-

ketball, Pedestrian1 and Football the target rotate in and out of the image plane

suddenly. The proposed tracker has handled these variations by adaptive boosting

of the LBP and PHOG features over color. In Singer2 and Soccer1, most of the

trackers are not able to keep track of the target. However, OURS has shown sub-

stantially better performance. OURS, CSPF, MCPF and STAPLE have shown

good tracking results in comparison to other trackers in the sequence Tiger and

Shaking. The proposed tracker is able to handle the challenge to a great extent.

The rotational component in the state model of the proposed tracker and the

complementary cues, color, LBP and HOG in the appearance model of the tracker

enhances its performance under the challenge. Moreover, the proposed tracker

outperforms the other trackers by achieving the highest AUC of 0.664 as illus-

trated in Fig. 4.8 (e) and second highest DP score of 0.683 as illustrated in Fig.

4.9 (e) under the challenge.

Full or Partial Occlusion: Severe occlusion have been noticed in the Jogging1 and

Jogging2 sequence, when the pillar is occluded the moving target. Most of the

trackers have shown drift while the proposed tracker and MCPF are able to track

the target after it recover from the full occlusion. Soccer1 sequence have multiple

full and partial occlusion challenge. At frame #312 when the target is partially
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occluded by the similar objects most of the tracker are deflected from the target.

However, the proposed method gracefully handle the challenge and track the target

successfully. This is due to the complementary cues exploited in the appearance

model. There are multiple full and partial occlusion of the target in Subway

sequence. At frame #156 when the target is occluded, then ASLA, WMIL and

MTT totally lose the target. Only OURS, CSPF, MCPF and STAPLE can keep

track of the target even after occlusion. Generative based trackers are not able to

handle occlusion as their appearance model is inefficient in handling this challenge.

For Football sequence, when target is occluded by the other players then OURS

with MCPF track the target successfully. This is due to the selective boosting of

the color and LBP features and suppression of the PHOG by the proposed fusion

model during occlusion. In Tiger, the proposed tracker with CSPF have shown

better tracking results in comparison to other trackers. The adaptiveness of the

proposed tracker under full or partial occlusion is primarily due to the proposed

fusion model which suppressed the unimportant particles whose weight decreased

due to occlusion and boosted the other important particle. These unimportant

particles are detected by the outlier mechanism and hence, prevents erroneous

update of the tracker due to occlusion. These particles are further subjected to

the proposed resampling method in order to enhance their contribution to the

state estimation. Also, as shown in Fig. 4.8 (f) and Fig. 4.9 (f) the proposed

tracker have achieved AUC of 0.693 and average DP score of 0.840, respectively

under full or partial occlusion challenge.
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Table 3.2: Comparison of contribution of each feature

Video Sequence Color LBP PHOG CH+LBP LBP+PHOG CH+PHOG Ours
Car2 41.82 25.06 18.29 28.5 19.61 41.12 5.15
MountainBike 49.36 165.76 85.64 18.36 16.22 15.81 7.69
Jogging1 29.12 26.77 24.55 11.24 13.13 13.55 6.85
Crossing 11.77 11.85 75.51 13.84 13.66 34.13 4.77
Shaking 121.48 183.42 49.08 29.6 31.97 27.51 18.25
CarScale 39.14 94.88 36.83 18.44 26.93 17.44 10.85
Soccer1 199.9 118.2 174.49 25.09 25.87 28.04 11.31
Pedestrian1 43.16 43.91 25.65 22.09 20.74 17.96 12.26
Human8 29.43 68.85 29.02 29.43 18.71 18.84 9.67
Dancer 34.23 69.06 40.43 17.8 16.74 26.16 4.1
Subway 46.98 44.98 38.56 10.5 11.82 7.98 6.19
Tiger 219.4 107.55 210.91 37.69 39.69 43.7 7.28

3.4.2 Analysis of Feature Contribution

The performance of the proposed method considering individual feature and all

possible multiple combination of the features in terms of CLE has been tabulated

in Table 3.2. Challenging video sequences are considered in order to prove the

robustness of exploiting three complementary multi-cue in the appearance model

of the proposed tracker. Results infer that single cue is inefficient in handling the

various environmental variations. Multiple cues namely, color and LBP, LBP and

PHOG or PHOG and color when integrated together then, performance of the

tracker improves marginally. However, when these cues are combined using the

proposed fusion approach, performance of the tracker substantially enhanced by

addressing the various environmental challenges.

3.4.3 Computational Complexity

In order to analyze the real-time computational complexity of the proposed tracker,

we have calculated the average computational speed score of the proposed tracker
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and compare the results with other trackers. Average speed score is calculated by

average fps obtained over all the video sequences. Table 3.3 tabulates the computa-

tional speed analysis of the proposed method in comparison to the other methods.

It has been evident from the table that the proposed tracker had shown real-time

performance with high accuracy. The proposed tracker have shown comparable

Table 3.3: Tracking Speed Analysis (FPS)

Tracker ASLA MIL DFT WMIL CT FRAG STAPLE MCPF PSO CSPF OURS

Speed (FPS) 16 7 9 18 19 14 18.4 0.57 15 21 20

Accuracy 0.0745 0.3823 0.5090 0.4533 0.1285 0.1175 0.5847 0.6112 0.1437 0.3604 0.7035

performance against other methods and outperforms trackers namely, ASLA, MIL,

DFT, WMIL, CT, FRAG, STAPLE, MCPF, PSO and CSPF in terms of accuracy

by 89.41%, 45.65%, 27.64%, 35.56%, 81.73%, 83.29%, 16.88%, 13.12%, 79.57%

and 48.77% respectively. Although, MCPF have shown comparable performance

to the proposed tracker but it is computationally slow.

3.4.4 Overall Performance Evaluation

Table 3.4: Comparison results for average CLE. First, Second and Third
results are shown, respectively.

Challenge ASLA MTT MIL DFT WMIL IVT CT FRAG PSO PF MCPF STAPLE CSPF OURS

Illumination Variations 70.93 162.236 62.16 63.66 63.32 79.07 83.00 78.75 69.43 178.317 23.36 29.27 17.53 7.87

Scale variations & Deformation 87.11 108.78 56.52 66.69 64.99 67.79 73.74 60.26 48.06 108.74 26.27 34.44 17.74 7.68

Fast Motion & Motion Blur 69.20 96.25 42.93 55.03 53.28 74.12 63.11 49.85 52.30 98.97 10.82 30.71 27.19 7.03

Background Clutters 73.06 111.88 64.17 68.28 81.35 78.98 103.13 87.98 56.88 135.82 52.24 33.11 14.56 9.22

Full or partial Occlusion 77.13 142.25 61.92 33.81 64.03 66.66 59.95 38.28 45.36 131.111 5.92 33.28 19.04 6.31

In-plane and Out-of-plane rotation 74.47 124.58 60.50 67.15 70.11 81.64 96.49 83.90 69.18 149.31 24.24 34.60 18.79 8.88

Overall 76.92 108.08 50.49 47.91 66.43 65.59 70.35 61.10 46.75 110.27 24.19 28.26 16.55 6.89

In order to evaluate the overall performance of the proposed approach, Table 3.4

and Table 3.5 have tabulated the average CLE (in pixels) and average F-Measure
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(a) (b)

Fig. 3.5 Overall performance comparison of the proposed tracker with other
trackers: (a) Success plot (b) Precision plot. Legend includes the AUC for
success plot and average DP for precision plot respectively, in the brackets.

Table 3.5: Comparison results for average F-Measure. First, Second and Third
results are shown, respectively.

Challenge ASLA MTT MIL DFT WMIL IVT CT FRAG PSO PF MCPF STAPLE CSPF OURS

Illumination Variations 0.193 0.153 0.378 0.434 0.389 0.205 0.278 0.319 0.259 0.148 0.708 0.701 0.634 0.804

Scale variations & Deformation 0.155 0.259 0.332 0.339 0.437 0.200 0.332 0.411 0.371 0.235 0.739 0.661 0.587 0.734

Fast Motion & Motion Blur 0.186 0.242 0.367 0.350 0.376 0.156 0.277 0.466 0.365 0.203 0.700 0.602 0.464 0.764

Background Clutters 0.271 0.334 0.332 0.439 0.417 0.277 0.268 0.367 0.344 0.294 0.630 0.671 0.669 0.772

Full or partial Occlusion 0.241 0.254 0.347 0.503 0.401 0.222 0.365 0.526 0.463 0.197 0.815 0.662 0.632 0.799

In-plane and Out-of-plane rotation 0.244 0.289 0.384 0.457 0.462 0.235 0.293 0.409 0.366 0.193 0.715 0.647 0.639 0.769

Overall 0.232 0.294 0.402 0.450 0.385 0.288 0.338 0.425 0.381 0.258 0.716 0.681 0.628 0.786

of the proposed tracker along with 13 other state-of-the-art, respectively. The

proposed tracker has achieved an average mean CLE of 6.89 (in pixels) and average

mean F-Measure of 0.786 when analyzed on challenging videos. Overall success

and precision plots are depicted in Fig. 3.5. Success plot illustrates that the

proposed tracker has achieved high AUC score of 0.678 and precision plot depicts

the high precision score of 0.790 at 10px for our tracker.

In sum, low CLE value and high F-Measure of the proposed tracker reveals its

robustness against various environmental challenges. Also, Success vs overlap

threshold plots and precision vs CLE threshold (in pixel) plots indicates that the
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proposed tracker is able to locate the target precisely. The drawbacks of par-

ticle filter viz. particle degeneracy and sample impoverishment are handled by

the proposed butterfly optimization based resampling technique. Our tracker is

computationally efficient as it only resampled the outlier particles. Unimportant

particles which contribute less in the state estimation or are affected due to illu-

mination variation, occlusion, background clutters, fast motion and in-plane and

out-of-plane rotations were detected as outliers by the outlier detection mecha-

nism. In addition, the proposed adaptive fusion model integrates the multi-cue

weight through context cue reliability which ensures consistent updation of the

tracker. The fusion model boosts the important particles and suppresses the unim-

portant particles for the final state estimation. Our tracker can deal with various

tracking challenges to a great extent. On the other hand, generative trackers viz.

IVT, FRAG and MTT tend to drift under full occlusion and background clutters.

Discriminative trackers viz. MIL and CT are prone to illumination and scale varia-

tions. Particle filter based trackers viz. PF and PF-PSO have limited performance

due to the limitation of the resampling method. WMIL has exploited random Haar

features and is not able to handle the object’s deformation and rotation. STA-

PLE is not able to cater dynamic appearance variations. CSPF is susceptible to

fast motion and motion blur. MCPF have shown comparable performance but

it is not suitable for real-time tracking. However, Our tracker achieves real-time

performance with high accuracy under various environmental variations.
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3.5 Significant Findings

The following were significant findings of the proposed multi-cue object tracking

model under stochastic framework.

• A real-time multi-cue object tracking solution using particle filter under

stochastic framework by adaptive fusion of the cues had been proposed.

• Adaptive fusion model boosted the important particles and suppressed the

unimportant particles to handle occlusion, background clutters and motion

blur.

• Outlier detection mechanism was able to disparate the low performing parti-

cles affected due to environmental variations. These particles were relocated

to high likelihood area by the proposed resampling method.

• The meta heuristic optimization based resampling method not only ad-

dressed the drawbacks of particle filter but also enhanced tracker’s perfor-

mance.

• Multi-cue appearance model was efficient in handling the illumination vari-

ations and scale variations. Inclusion of scaling and rotation factor in state

model catered the change in scale, fast motion, in-plane and out-of-plane

rotation of the target.

• Context sensitive cue reliability discounted the particles for the quick adap-

tation of the proposed approach to the dynamic environment.
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• On average of the outcome, our tracker achieved precision score of 0.790,

center location error of 6.89 (in pixels), F-measure of 0.786, and success rate

of 0.678 when evaluated on OTB-100 and VOT datasets against 13 others

state-of-the-art.

• The proposed tracker exhibits real-time computational performance of 20

frames/sec.

The experimental results alongwith other findings were published in [97].

In addition, the application of meta-heuristic optimization technique, chaotic crow

search algorithm had been studied as a resampling approach for addressing particle

filter drawbacks. Results pertaining to one dimensional problem and 2-D bearing

only tracking problem were published in [98].
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The aim of this work is to propose a multi-cue object tracking model under deter-

ministic framework. Deterministic framework focus on cost minimization by ex-

ploiting both foreground and background information for providing robust tracking

solutions. The framework includes tracking methods based on Mean shift, tracking

by detection and fragment based tracking [56], [23]. Under this, multi-cue object

tracking method in fragment based architecture has been proposed in which the

features were adaptively fused using a fuzzy based fusion model.

4.1 Introduction

Recently, multi-cue object tracking algorithms under deterministic framework had

been reviewed extensively. Trackers based on deterministic framework exploits

both foreground as well as background information for providing efficient tracking

solutions [20], [99]. In this direction, Zhang et al. [20] modeled the discriminative

60
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appearance of the target using Fisher vectors. Linear kernel classifier was used to

classify the target from the background. In [21], authors proposed an observation

model based on dual features and ICA with hierarchical reference maps. Stochastic

and periodic update was used for keeping track of variations in target’s appear-

ance. Yu et al. [100] proposed an appearance model in which semi supervised

random forest was used to preserve the similarity between the foreground and

background. Target’s structure information was presented using a patch based

grid structure. Zhou et al. [101] proposed class specific dictionary learning to

distinguish the target from the background and adopted a mechanism to capture

the outliers. However, in [102], authors utilized dual discriminative dictionary to

store the background template information and manifold regularization to calcu-

late the similarity between the reference template and the target template. Dual

dictionaries improved the discriminating ability of the tracker but their regular

update reduced the processing of the tracker. Xu et al. [99] exploited supervised

tensor flow learning with an support tensor classifier for developing discriminative

tracker. Tracker demonstrated superior performance in presence of occlusion and

background clutters. Despite this, online update, feature extraction and tracker’s

training required a lot of processing power.

In addition, the methods considering complementary multi-cue in the tracker’s ap-

pearance model were also proposed under deterministic framework. Complemen-

tary multi-cue were visual cues which compensated for each other if performance

of any cue deteriorated due to tracking challenges. Multi-cue based trackers in-

tegrated the multiple extracted cue utilizing either score fusion or feature fusion.
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Score fusion combined the different scores obtained from multiple classifier to seg-

ment the target from the background. Under this, multicue tracker [35], multistage

tracker [23], and weighted part model [103] considered score fusion. However, fea-

ture fusion integrated the different extracted feature vector from each cue into

a single feature vector. In this direction, Lan et al. [24] exploited feature level

fusion using joint sparse representation for integrating reliable features. Intensity,

texture and HOG features were fused into a unified robust feature by graph cross

diffusion mechanism [25]. Chi et al. [21] considered edge, shape and geometric fea-

tures for object representation. Li et al. [104] performed weighted feature fusion

on the basis of similarity variance between the target and candidate templates. In

sum, feature fusion had been investigated in many recent object tracking works

under deterministic framework. However, feature fusion is inefficient in captur-

ing the target’s non-linear variations that occur due to change in environment.

Hence, feature fusion for developing a adaptive robust appearance model under

deterministic framework can be further explored.

4.2 Proposed Tracker Architecture

The proposed object tracking architecture exploits multiple visual descriptors for

the object’s localization in the video sequences. Initially, the tracker is initialized

with positive samples (P+) and two types of negative samples (N−, N−−) in the

reference dictionary (Dr). P+ andN− are obtained by sampling the target and the

target’s background area whileN−− is captured by sampling the other target in the
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Fig. 4.1 Overview of the proposed tracker architecture. At each time step (t=1),
robust unified feature is generated by the multi-cue fusion model for each posi-
tive and negative fragments. Complementary features namely, color and HOG
are extracted and fragments are initialized on the target after rough localization.
Tracker is made adaptive considering random forest classifier and reference dic-
tionary update.

scene. This set of negative samples improves the tracker’s discriminative ability in

presence of the other target in the scene. In addition, the proposed tracker employs

a robust fusion model and random forest classifier (Rc) to adapt to the dynamic

environmental variations. Fig. 4.1 illustrates a detailed methodology with the

core design architecture of the proposed tracker. The proposed tracker adopts

two stage estimation approach for better estimation of the target in the video

sequences. During the first stage, the target is roughly localized (Ǵt) exploiting

the motion cue extracted using Horn-Schunk optical flow method. The next stage
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of precise localization improves the previously localized centroid of the target.

For this, multi-cue features namely, color (Mr) and HOG (Mo) are extracted for

target appearance model. These extracted features are further subjected to the

proposed fuzzy based fusion model which assures that the target’s eminent features

are captured well in the robust unified feature (US). The conflict between the

cue is resolved by introducing two parameters namely, fuzzy nearness (Fn) and

correlation coefficient (Cor) in the fuzzy inference model. After this, the fragments

are passed through a random forest classifier (Rc). This classifier classifies the

fragments into positive and negative fragments. The final state (Gt) of the target is

determined by the weighted mean of the centroid of fragments with high confidence

score. The tracker is temporally made adaptive to environment variations with

the selective replacement of the samples in the reference dictionary (Dr). Detailed

design of the rough localization is discussed in the next section.

4.2.1 Multi-cue Feature Extraction

During rough localization, the target’s location is promptly estimated by evaluat-

ing the motion cue using the optical flow method. Optical flow method determines

the motion descriptor by considering the change in pixel intensity and their related

movement between the consecutive frames. In the proposed tracker architecture,

Horn-Schunk (HS) optical method [105] has been utilized for quick estimation of

the target centroid during initial stage. HS method assumes that there is no illu-

mination variation between the consecutive frames and calculates I(x, y, t) using
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Eq.(4.1).

Ixpx + Iyqy + It = 0 (4.1)

where, Ix and Iy are spatial gradient of intensity, px and qy are change in pixel

displacement w.r.t time in x-direction and y-direction, respectively. It is change

in pixel intensity w.r.t time t. In order to minimize the total error in optical flow

components, the HS method includes smoothness constraints with spatial gradient.

The minimizing total error εt is given by Eq.(4.2).

ε2t =

∫ ∫
(Ixpx+Iyqy +It)2 +υ2

((
∂px
∂x

)2

+

(
∂px
∂y

)2

+

(
∂qy
∂x

)2

+

(
∂qy
∂y

)2)
dxdy

(4.2)

where, υ2 is the weighting factor that measures the smoothness constraint term. If

Ov optical flow vectors are considered for evaluation around the precise localized

target centroid Gt−1 in the previous frame, then the target’s rough centroid Ǵt in

the present frame is localized using the Eq. (4.3).

Ǵt,(x,y) = Gt−1,(x,y) +
1

Ov

N∑
j=1

(pjx, q
j
y) (4.3)

where, (pjx, q
j
y) are the optical flow vectors for jth pixel in x-direction and y-

direction, respectively. After rough localization, during the next stage of precise

localization the target’s centroid is computed by extracting multiple features from

the candidate fragments. Candidate fragments Fi ∈ {F1,F2...FI} are initialized

by sampling the target around the previous localized centroid Ǵt through random
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walk model. Each random walk model has a scale factor(s) and angular displace-

ment (φ) to address the scaling and rotational variation of the target. For this,

the state Ǵt = (s, φ)c for each candidate fragment is propagated through random

walk model using Eq.(4.4).

Ǵt+1 = Ǵt + ϑ (4.4)

where, ϑ ∼ g(0, c) is zero mean Gaussian noise and c is a covariance matrix

depicting state vector uncertainty. Each candidate fragments is scaled and rotated

using Eq.(4.4) and then subjected to feature extraction. In the proposed tracker,

multi-cue complementary features namely, color and HOG are extracted for each

candidate fragments to describe its appearance characteristics. The details of the

multiple feature extraction are Color is an efficient feature for object tracking as

it is invariant to object’s scaling and can cater partial occlusion challenge. Also,

color requires low computational power for its extraction. For each candidate

fragment, color cue is extracted using RGB color histogram model (CH). The CH

M = {M1,M2, ...MNb} for each pixel locations {(a1, b1), (a2, b2)...(an, bn)} in the

fragment is calculated using Eq.(4.5).

M i = α

n∑
j=1

δ(I(aj, bj)), i = 1, 2, ...Nb (4.5)

where, I(.) assigns each pixel (aj, bj) to one of the Nb bin, δ(.) is Kronecker-delta

function and α is the normalizing factor determined as
∑Nb

i=1M
i = 1. For ith

fragment, the color histogram is determined as M i
r.

Unlike color, the HOG feature is invariant to illumination variations and can
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handle background clutters efficiently. HOG [106] defines the shape structures of

each candidate fragments and hence, can acquire the distribution of horizontal

gradient intensity and vertical gradient intensity w.r.t edge directions. For this,

the image is filtered with kernel functions depicted in Eq.(4.6).

[−1, 0, 1] and [−1, 0, 1]′ (4.6)

The magnitude ω and direction Φ for horizontal gradient values Ix and vertical

gradient values Iy for each pixel (a, b) can be determined using Eqs.(4.7) and (4.8).

ω(a, b) =
√

(Ix(a, b))2 + (Iy(a, b))2 (4.7)

Φ(a, b) = arctan
Ix(a, b)
Iy(a, b)

(4.8)

Each candidate fragment region in the image is divided into small spatial regions

called cell. Each cell has an edge orientation histogram and each pixel (a, b) in

the cell casts a weighted vote for its orientation histogram and neighboring pixels

orientation histogram. If Np defines the number of pixels in a cell, then the bin

(ξ) for each histogram cell (d) can be computed using Eq.(5.10).

M̂d(ξ) =

Np∑
i=1

ω(a, b)δ(Φ̇(a, b)− ξ) (4.9)

where, Φ̇(a, b) is quantized orientation calculated from Φ(a, b) and δ(.) is Kronecker-

delta function. Further, gradient values in each cell are normalized using L2-norm

to cope with illumination variation and shading effect and L2-norm is computed
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by Eq. (5.11).

M̂o(ξ) =
Ṁo(ξ)√∑d×d×Nb

j=1 Ṁo(j)2 + ν2
(4.10)

where, ν is a regulation parameter, d and Nb are the total number of cells and

number of bins per cell, respectively. After normalization, the gradient histogram

of bins for ith candidate fragment is stored as M i
o as HOG feature.

Further, the similarity between each candidate fragment and the samples stored in

the reference dictionary is determined. At t = 1, P+, N− andN−− are saved in the

dictionary Dr. The Bhattacharya distance [? ] is calculated between the extracted

features Mk ∈ {Mr,Mo} of the candidate fragment and the corresponding feature

from each sample of the reference dictionary s ∈ Dr = {P+,N−,N−−}. For this,

Bhattacharya’s coefficient is computed using Eq. (4.11).

βi(Dr,M i
k) =

N∑
n=1

√
(Dr)n × (M i

k)
n

(4.11)

Using Eq.(4.11), the Bhattacharya’s distance between ith fragment feature and the

corresponding feature from each sample of the reference dictionary Dr is deter-

mined using Eq. (4.12).

Bi(Dr,M i
k) =

√
1− βi(Dr,M i

k) (4.12)

After this, the likelihood for each feature is determined and the similarity matrix

Γi ∈ Rs×1 for each feature k in ith candidate fragment can be computed using
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Eq.(4.13).

λi,k(Dr,M i
k) =

1

σk
√

2π
e
−
B2
i,k

2σ2
k , k ∈ r, o (4.13)

where, σk denotes cue standard deviation. The discussions related to multi-cue

feature fusion model will be detailed in the next section.

4.2.1.1 Proposed Multi-cue Feature Fusion

The proposed fusion model performs a non-linear fusion of multi-cue features in

a fuzzy inference model [107]. The fusion model not only captures the eminent

relationship between the features but also resolve the conflict between the features.

For this, fuzzy nearness and correlation coefficient [108] are induced in a fuzzy

fusion model. Fuzzy nearness matrix Fn ∈ Rs×s measures the similarity between

the features for ith fragment using Eq. (4.14).

Fn,i(Mr,u,Mo,v) =

∑n
p=1min(λpr,u, λ

p
o,v)∑n

p=1max(λpr,u, λ
p
o,v)

, u, v = 1, 2...s (4.14)

Next, the correlation coefficient qualitatively measures the degree of conflict be-

tween two sources of evidence. The correlation coefficient matrix Cor ∈ Rs×s

measures the difference of conflict between two features for ith fragment and de-

termined by Eq. (4.15).

Cori(Mr,u,Mo,v) =


λmaxr,u +λmaxo,v

2
, if λmaxr,u = λmaxo,v

λminr,u +λmino,v

2
, if λmaxr,u 6= λmaxo,v

(4.15)
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The non-linear and complex relationship between the fuzzy nearness and correla-

tion coefficient can be modeled using fuzzy theory. For this, the obtained fuzzy

nearness Fn and correlation coefficient Cor are fuzzified. For fuzzification process,

the sample set S = {vl, l,m, s, vs} defined the very large, large, medium, small

and very small for x ∈ {Fn,i or Cori} . Membership functions are computed for

each set using Eqs.(4.16-4.20).

µvl(x) = 1/1 + e−pvl(x−qvl) (4.16)

µl(x) = e
−(x−pl)

2

q2
l (4.17)

µm(x) = e
−(x−pm)2

q2m (4.18)

µs(x) = e
−(x−ps)2

q2s (4.19)

µvs(x) = 1/1 + e−pvs(x−qvs) (4.20)

Where, pvl, qvl, pl, ql, pm, qm, ps, qs, pvs and qvs are linguistic parameters defined for

each membership function in the sample set respectively. In order to map the

relationship between the fuzzy nearness Fn and correlation coefficient Cor, the

fuzzy inference rules are defined in the Table 4.1.

The crisp values for the similarity matrix Ṡ ∈ Rs×s are obtained by the COG

method. COG values between the Fn and Cor can be determined using Eq.
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Table 4.1: Fuzzy inference rules

Ṡ Fn
vl l m vs s

Cor

vl vl vl l l l
l vl vl m m m
m l m m s vs
s l m s vs vs
vs l m vs vs vs

(4.21).

COGFn,Cor =

∑
Fn

∑
Cor µṠ(x)x∑

Fn

∑
Cor µṠ(x)

(4.21)

After, the defuzzification process, the values for the similarity matrix S ∈ Rs×s

for ith fragment can be obtained using the Eq. (4.22).

Si =

∑
Fn

∑
Cor ΛFn,Cor × COGFn,Cor∑
Fn

∑
Cor ΛFn,Cor(Ṡ)

(4.22)

Where, ΛFn,Cor = min(µCor(ṠCor), µFn(ṠFn)) is fuzzy control rule. This is followed

by column-wise normalization of Si to obtain the final unified robust feature US i ∈

Rs×1 for ith fragment Fi as Eq.(4.23).

US(Fi) =
Si(Fi)∑s

j=1 |Si(Fi)|
(4.23)

This robust feature US(Fi) is subjected to random forest classifier Rc for predic-

tion. Random forest classifier Rc creates multiple regression decision tree in which

each subset tree votes for the candidate fragment based on its branching struc-

ture. Breiman et al. [109] bagging algorithm has been exploited which generates a

strong classifier from many homogeneous weak classifiers. Random forest assigns
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each candidate fragment a value [0,1] based on its analogy to positive fragment

and negative fragment learned during the classifier training. In addition, At each

frame, I scores are generated as Ψ = {ψ1, ψ2...ψI}. The high confidence score

candidates are selected as F̃i = {F̃1, F̃2...F̃Ĩ} and their score is averaged using

Eq.(4.24).

Υi =
eψi∑Ĩ
j=1 e

ψj
(4.24)

Using this, the target is precisely localized and the final estimated state at time t

is given by Eq.(4.25).

Gt,(x,y) =
Ĩ∑
i=1

ΥiF̃i(x, y) (4.25)

where, F̃i(x, y) is the centroid of the ith fragment. Further, to prevent tracker’s

drift during long-term tracking the proposed tracker adopted a re-detection strat-

egy. Also, to improve tracker’s performance during abrupt environmental varia-

tions when all the candidate fragments are classified as negative, the whole tracker

is reinitialized to re-detect the target. The details related to the experimental anal-

ysis of the proposed tracker is as follows.

4.3 Experimental Analysis and Discussion

In this section, the experimental results related to the performance of the pro-

posed tracker has been analyzed and discussed. For this, the challenging video

sequences which include the tracking challenges namely, illumination & scale vari-

ations, background clutters & deformation, full or partial occlusion, in-plane (IPR)
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& out-of plane rotation (OPR), fast motion & motion blur, and low resolution &

out-of view are selected from OTB-2015 [66] and VOT-2017 [87] datasets. Exper-

imental tracking results are compared with seven other trackers namely, MEEM

[110], STAPLE [96], DCFCA [111], SiamDW [112], RT-MPF [97], SiamRPN++

[113], and UGF [25]. We have implemented the proposed tracker in Python3 on

a machine with core i5 2.53 GHz processor and 4 GB RAM. Firstly, the tracker

is initialized by generating the candidate fragments on the target. The number of

initialized fragments will substantially be based on the dimension of the target.

During initialization, a small size target requires less fragments in comparison to

a large and high-resolution target. Also, the positive and two kinds of negative

samples in the reference dictionary Dr are initialized as P+,N− and N−− = 40.

The rigorous experimental analysis has been performed to demonstrate the adapt-

ability of the proposed tracker against various tracking variations. For this, the

qualitative and quantitative analysis of the proposed tracker has been detailed in

the following subsection.

4.3.1 Qualitative Analysis

In this section, the qualitative evaluation of our tracker has been discussed. The

detail of each challenge with the analyzed video sequence is follow in turn.
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(a)

(b)

(c)

Fig. 4.2 Sample Tracking frames on some critical video data with illumination
& scale variation challenge: a) Shaking b) Singer1 c) Basketball

4.3.1.1 Illumination & Scale variations

Under the challenge, video sequences viz. Shaking, Singer1 and Basketball are

evaluated. Shaking has sudden and abrupt changes in illumination throughout

the whole sequence. Some representative tracking frames for the video sequences

are shown in Fig. 4.2 (a). At frame #240, OURS, SiamDW and DCF-CA have

performed significantly better against STAPLE, and RT-MPF. This is due to

exploited multi-cue complementary features, viz. color and HOG in the proposed

tracker’s appearance model. Some frames for Singer1 are depicted in Fig. 4.2

(b). Sequence has illumination variations with scale variations due to sudeen

camera motion. OURS, STAPLE, SiamRPN++ and UGF track the target in
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the whole sequence. In Basketball sequence, SiamDW, DCF-CA and OURS have

shown good results than the SiamRPN++, and MEEM. It is due to the consistent

update of the reference dictionary with the candidate samples in the proposed

tracker. In sum, OURS has shown good performance during the challenge due to

complementary multi-cue features in the appearance model. When color cue fails

to handle the illumination variation, HOG cue compensate during the challenge.

Also, the inclusion of scale and rotation parameters in the proposed tracker’s

random walk model handle the variations and aids in the improved performance

of the tracker.

(a)

(b)

(c)

Fig. 4.3 Sample tracking frames on some critical video data with full or partial
occlusion challenge: a) Football b) Subway c) Jogging1
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4.3.1.2 Full occlusion (FOC) or Partial occlusion (POC)

Critical frames of video sequences having FOC or POC variations are illustrated

in Fig. 5.4. In Football sequence, OURS, RT-MPF and SiamRPN++ are able to

handle the challenge when the other players in the scene occlude the target. It

is due to the multi-cue feature fusion, which ensures the high level relationship

of the multi-cue is acquired well in the robust unified feature. At frame #40, in

Subway sequence, when the object recover from multiple POC and FOC from the

other persons, STAPLE, MEEM, and DCF-CA has shown failure in comparison

to STAPLE, SiamRPN++ and OURS. In Jogging1, OURS, UGF and SiamDW

are able to handle the challenge in comparison to other trackers and the same is

illustrated in Fig. 5.4 (c). In sum, the proposed tracker has managed the challenge

gracefully. It is due to the fuzzy based fusion of the proposed tracker which gener-

ates the robust unified feature. In addition, the random forest classifier classifies

the affected fragments due to occlusion and prevents the inaccurate update of the

proposed tracker.

4.3.1.3 Deformation & Background clutter

Deformation challenge occurs in the sequence due to the target’s sudden pose

variations or similar backgrounds. For this, video sequences viz. Bolt2, Dancer2

and Walking2 are considered and the representative frames are shown in Fig. 5.5.

Bolt2 has a target’s deformation accompanied by a change in pose and background

clutters. At frame #282, MEEM, SiamDW, and RT-MPF have drifted away
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(a)

(b)

(c)

Fig. 4.4 Sample tracking frames on some critical video data with deformation
& background clutter challenge: a) Bolt2 b) Dancer2 c) Walking2

from the target. However,OURS, STAPLE and UGF track the target successfully.

Target has deformation due to its pose variations in Dancer2 and is depicted in Fig.

5.5. Mostly trackers have shown better performance in the sequence but OURS

tracks the target with minimal error. In Walking2, at frame #270, when another

person is in the scene, the trackers viz. SiamRPN++, DCFCA, and MEEM keep

its track and lost the target. OURS, STAPLE, UGF and RT-MPF keep track of

the target. In sum, the tracker performance during the challenge primarily due to

positive and negative samples in the reference dictionary. These sets improve the

discriminating ability of the proposed tracker in the presence of the other objects.

Also, the update of these samples in the subsequent frame enhances the adaptive

ability of the tracker during the challenge.
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(a)

(b)

(c)

Fig. 4.5 Sample tracking frames on some critical video data with IPR & OPR
challenge: a) Soccer1 b) Pedestrian1 c) Jogging2

4.3.1.4 In-plane and Out-of-plane rotation

Generally, in-plane (IPR) and out-of plane (OPR) rotation occur in the video se-

quence due to the frequent movement and rotation of the target in and out of the

image plane. Fig. 4.5 (a) depicts the representative frames for Soccer1 sequence.

The sequence has IPR and OPR in the whole sequence due to target movement.

The proposed tracker has handled the rotation with minimal error in comparison

to the other trackers. This is due to the regular update of the samples of refer-

ence dictionary which addresses the eventual changes. Pedestrian1 sequence has

variations due to the camera’s abrupt movement. In frame # 116, all trackers

distract away from the target as shown in Fig. 4.5 (b). Only OURS, MEEM and
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SiamDW successfully locate the target till end. In Jogging2, OURS with MEEM

and SiamRPN++ has tracked the target successfully at frame #280 while the rest

of the trackers failed to keep the track. In sum, OURS has performed considerably

better in comparison to the other trackers. It is due to the rotational component

of the random walk which handles the variations gracefully. The motion cue ex-

tracted during rough localization will cater the rotational changes. Also, the uni-

fied robust fused feature which exaggerates the complementary HOG feature over

the RGB feature to accommodate the appearance variations under the challenge.

(a)

(b)

(c)

Fig. 4.6 Sample tracking frames on some critical video data with fast motion
& motion blur challenge: a) Bolt2 b) Crossing c) MountainBike
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4.3.1.5 Fast motion & Motion blur

Sample video frames under fast motion and motion blur challenge are presented

in Fig. 5.6. In Bolt2, at frame #40 DCFCA and MEEM have lost the target while

other trackers can locate the target. However, at frame #242 OURS, STAPLE

and SiamRPN++ have shown better results than others. The performance of our

tracker in the sequence is mainly attributed to the random forest classifier which

classifies the affected fragments from the others. In crossing sequence, OURS and

SiamDW have shown marginally less error in comparison to other state-of-the-

arts. MountainBike sequence has fast motion challenge. At frame #164, OURS,

SiamRPN++ and SiamDW track the target with a small error in comparison to

RT-MPF, MEEM and UGF. In sum, the performance of our tracker during fast

motion and motion blur is due to the proposed classifier mechanism. This classifier

not only classifies the affected fragments but also prevents the false periodic update

of the tracker with positive samples. Also, the rotational component in the random

walk model ensures the high performance of the tracker under the challenge.

4.3.1.6 Low resolution & Out-of-view

In Fig. 4.7, representative frames under the low resolution and out-of-view chal-

lenge are illustrated. Tiger sequence, at frame #240 UGF, RT-MPF, MEEM

and DGFCA fail to keep target’s track but OURS and SiamDW keep track till

the end. In Walking2, OURS has shown comparatively good performance with

respect to other trackers. This is due to the proposed fusion of multi-cue which
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(a)

(b)

(c)

Fig. 4.7 Sample tracking frames on some critical video data with low resolution
& out-of view challenge: a) Tiger b) Walking2 c) Walking

captures the eminent relationship between the cues well. OURS, SiamRPN++,

and SiamDW have shown better results in comparison to others in the Walking

sequence. In sum, the proposed tracker is able to address the challenge in the

video sequences gracefully. It is due to the proposed fuzzy based fusion of multi-

cue which captures the eminent relationship between cues and diminishes the low

level relationship. In addition, the visual cues viz. color and HOG with motion

descriptor in the proposed tracker’s appearance model improve its performance

under the low resolution and out-of-view challenge.
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Table 4.2: Comparative average centre location error tracking results (in pix-
els). First, second and third results are highlighted respectively.

Challenge DCFCA MEEM STAPLE SiamDW RT-MPF SiamRPN++ UGF OURS
Illumination & Scale variations 8.94 18.27 10.45 10.94 49.24 24.36 7.55 6.78
Full or partial Occlusion 35.52 14.05 35.60 5.72 7.53 5.38 7.33 4.69
Fast motion & Motion blur 102.92 85.79 5.82 15.46 13.83 4.30 7.78 4.95
In-plane & Out-of-plane rotations 63.44 37.93 82.40 25.27 47.44 10.06 14.18 4.93
Deformations & Background clutter 35.52 12.65 35.60 5.72 37.71 5.38 7.13 6.29
Low resolution & Out-of view 12.76 33.15 5.31 7.99 3.30 19.95 21.11 7.05
Average 43.18 33.64 29.20 11.85 26.51 11.57 10.85 5.78

Table 4.3: Comparative average F-Measure tracking results. First, second
and third results are highlighted respectively.

Challenge DCFCA MEEM STAPLE SiamDW RT-MPF SiamRPN++ UGF OURS
Illumination & Scale variations 0.718 0.683 0.821 0.813 0.289 0.765 0.834 0.851
Full or partial Occlusion 0.571 0.708 0.575 0.832 0.748 0.799 0.752 0.833
Fast motion & Motion blur 0.555 0.527 0.835 0.736 0.382 0.852 0.805 0.839
In-Plane & Out-of-plane rotations 0.386 0.554 0.339 0.609 0.256 0.765 0.613 0.768
Deformations & Background clutter 0.571 0.739 0.575 0.832 0.281 0.789 0.765 0.791
Low resolution & Out-of view 0.689 0.563 0.842 0.791 0.524 0.693 0.619 0.754
Average 0.582 0.629 0.664 0.769 0.413 0.777 0.731 0.806

4.3.2 Quantitative Analysis

For the quantitative evaluation of the proposed tracker, robust performance met-

rics are considered. Two performance metrics namely, Center location error (CLE)

and F-Measure [65] are tabulated. Two plots, namely precision plot and success

plot [66] are plotted to prove the effectiveness of the proposed tracker. In addition,

Area under the curve (AUC) and mean precision are also computed for comparing

the proposed tracker’s performance with other state-of-the-arts. Center location

error (CLE) can be computed as the distance between the tracked bounding box

and the ground truth. F-Measure is described as f ′m = (2×rc′×pr′)/(1+rc′+pr′).

Here, rc′ is recall defined as the overlap ratio between BBt and BBg with respect

to BBg and pr′ is precision calculated as the overlap ratio between BBt and BBg

with respect to BBt. BBt and BBg are target’s bounding box and ground truth

bounding box, respectively. Precision plot illustrates mean precision at multiple
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location error thresholds. Success plot depicts the percentage of correctly tracked

frames at different overlap thresholds.

(a) (b)

(c) (d)

(e) (f)

Fig. 4.8 Success plot under tracking variations (a) Illumination & Scale varia-
tions (b) Full or partial Occlusion (c) Fast motion & Motion blur (d) In-plane &
Out-of-plane rotation (e) Deformation & Background clutter (f) Low resolution
& Out-of-view . Legend includes AUC in the bracket.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.9 Precision plot under tracking variations (a) Illumination & Scale vari-
ations (b) Full or partial Occlusion (c) Fast motion & Motion blur (d) In-plane
& Out-of-plane rotation (e) Deformation & Background clutter (f) Low resolu-
tion & Out-of-view. Legend includes mean precision overlap score in the bracket.

Table 4.2 and Table 4.3 tabulate the average center location error (CLE) and av-

erage F-Measure of the trackers, respectively. The proposed tracker has attained
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average mean CLE of 5.78 (in pixels) and average mean F-measure of 0.806 when

evaluated on challenging benchmark video sequences. Also, the success plots and

precision plots, as per the attributed challenge are illustrated in Figs. 4.8 and 4.9,

respectively. High mean precision score and AUC demonstrate the efficiency of

the proposed tracker during various environmental variations. During illumination

and scale variations, our tracker’s outstanding performance proves the effective-

ness of the exploited complementary multi-cue namely, RGB and HOG in the

target’s appearance model. Our tracker has achieved the highest AUC of 0.748,

as depicted by Fig. 4.8 (a). In sequences with full occlusion and partial occlu-

sion, the tracking results reveal the strength of the unified feature generated by

the proposed fusion model against tracking variations. The proposed tracker has

attained the highest mean precision of 0.957 during full and partial occlusion and

the same is illustrated in Fig. 4.9 (b). During fast motion & motion blur, our

tracker has attained second highest 0.729 AUC and 0.913 mean precision as de-

picted in Figs. 4.8 and 4.9 (c), respectively. The motion cue descriptor during

rough localization alongwith sample update of effective fragment over the affected

fragment ensures high mean precision of 0.876 during in-plane and out-of plane

rotation. Highest AUC 0.763 and mean overlap precision 0.932 during deforma-

tion and background clutter confirm the robustness of the fused feature alongwith

the adaptive appearance model which consistently updates the target’s appear-

ance. The tracker has attained 0.651 AUC and 0.852 mean precision during low

resolution & out-of-view challenge depicted by Figs. 4.8 and 4.9 (f), respectively.

In sum, the proposed tracker has shown efficient performance addressing various
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environmental variations.

The proposed tracker outperforms other state-of-the-art trackers. Discriminative

tracker, UGF is not robust to target’s rotation and deformations. Particle filter

based tracker, RT-MPF is inefficient in handling the low resolution and out-of view

challenge. STAPLE is unable to cope with target’s deformation due to dynamic

variations. Deep learning based trackers viz. SiamRPN++ and SiamDW have

shown comparable performance but their realization requires specialized hardware

for their execution. DCFCA is comparatively slow and not appropriate for real-

time scenarios. MEEM exploits quantized color features in the target’s appear-

ance model and fail to cater background clutters when accompanied with out-of

plane rotations. To summarize, the proposed tracker shows favorable performance

against existing state-of-the-art in both object overlap and mean precision with

leading average F-Measure and minimum average CLE on challenging benchmark

sequences.

4.4 Significant Findings

The significant highlights of the present work are as follows.

• Proposed a robust object tracking architecture under deterministic frame-

work based on adaptive feature fusion of complementary features and a dis-

criminative classifier which was able to cope with various visual tracking

challenges.



Chapter 4. Deterministic Framework for Multi-cue Object Tracking 87

• Complementary cues namely, color and HOG build robust appearance model

invariant to illumination variations and scale variations.

• The proposed tracker has exhibited real-time performance with 24fps.

• The proposed fusion model generated robust unified feature robust to back-

ground clutters and occlusion.

• Random forest classifier created discriminative decision boundary between

the target fragments and background fragments. Hence, ensured tracker’s

quick adaptation under various visual tracking challenges.

In addition, experimental results along with other findings were published in [114].



Chapter 5

Multi-stage Framework for

Multi-cue Object Tracking



Chapter 5

Multi-stage Framework for

Multi-cue Object Tracking

The aim of this research is to propose an adaptive multi-cue object tracking model

under multi-stage framework. For this, target is localized from coarse to fine

using a discriminative approach [25]. The extracted multi-cue features are fused

adaptively using feature level fusion.

5.1 Introduction

In multi-cue object tracking, feature level fusion has been extensively explored.

In this direction, Fu et al. [115] proposed structural similarity in order to de-

termine the sample importance with a bag probability function. Classifier scores

were used to obtain the final fused vector. Feng et al. [116] constructed weighted

map for each frame by incorporating target saliency. Weight map was updated

dynamically using the level-set algorithm. Xiao et al. [9] fused contextual informa-

tion with depth cue in a two layered target model. Adaptive multi-feature fusion

89



Chapter 5. Multi-stage Framework for Multi-cue Object Tracking 90

was proposed to stabilize tracker’s performance during camera motion and other

tracking variations. Authors proposed multi-task kernel based tracking framework

[58]. Similarity between features was determined to discriminate the reliable fea-

tures from unreliable ones. In [59], authors proposed multi-feature fusion using

regional covariance matrices. Covariance matrices provided accurate and reliable

tracking results. However, direct fusion using covariance matrices was computa-

tionally complex. However, authors [64] proposed complementary measurement

matrix for fusion of multi-cue features. The method was efficient in handling full

or partial occlusion. However, scale variations and out-of-view challenges were ne-

glected. Wang et al. [62] combined two random forest based discriminative model

to provide robust discriminative appearance model. The method had shown ef-

ficient tracking performance under various tracking challenges. In [51], authors

extracted optical flow and gabor features based on contours for the object’s ap-

pearance model. On the other hand, Walia et al. [25] considered optical flow for

coarse estimation of the target. After this, intensity, texture and edge features

were exploited in the appearance model for the fine estimation. These features

were fused using cross-diffusion mechanism to generate a unified robust feature.

In sum, many robust multi-cue tracking solutions considering feature level fusion

has been proposed. However, developing a robust non-linear unified feature for an

adaptive appearance model catering the environmental challenges can be further

explored.
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Fig. 5.1 Overview of the proposed tracker. Tracker is initialized with positive
and negative fragments in the reference dictionary. Stage I, target is roughly
localized through optical flow. Then, fragments are generated around the localized
target and LBP-HOG features are extracted. Unified feature is generated and
transductive reliability is calculated for each localized fragment. Tracker is made
adaptive by classifier score and transductive reliability.

5.2 Proposed Tracker Architecture

The proposed multi-stage tracker considers both motion cue and visual feature

descriptor for target localization in video sequences. At stage I, the target is

roughly localized by exploiting the optical flow. This provided a much better

feature sampling for the next stage of precise localization. During precise local-

ization, candidate fragments are generated around the approximated centroid of
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the previous stage and complementary multi-cue features namely, LBP (Ve) and

HOG (Vh) are extracted. For each candidate fragment, Euclidean distance (Ef )

is calculated between each feature descriptor and the corresponding feature of the

positive sample (P) and negative samples (N ) from the dictionary. The robust

unified feature vector (Rf ) is generated by averaging the obtained distances which

ensured that the high level features are captured well and low-level features are

suppressed. Further, the unified feature is averaged to determine the confidence

score (µf ) for each fragment. Fig. 5.1 represents the architecture of the pro-

posed tracker. Initially, a set of positive samples (P) and negative samples (N )

are stored in the reference dictionary (Dk). These samples are updated with the

reliable samples in the subsequent frames. Next, the fragments obtain by the pro-

posed multi-cue feature fusion are passed through a K-Means classifier to classify

them into the positive samples (CP) and the negative samples (CN ). At each time

step t, transductive reliability (r(Cf )) is calculated to assure the consistent upda-

tion of the tracker with reliable fragments catering the dynamic environment. The

final state (St) of the target is obtained by the mean of the high confidence and

high reliability fragments. Confidence score and tranductive reliability ensure that

the tracker is updated with high confidence score reliable samples only. Also, the

reference dictionary (Dk) is updated with the selective replacement of the positive

samples and the negative samples. The next section details the first stage of the

proposed tracker.
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5.2.1 Stage I: Rough Localization

During rough localization, the target is localized through optical flow. Optical flow

considers the rate of movement of the pixel in the respective directions between

the consecutive frames. In the proposed method, Horn-Schunck method (HS) is

used to determine the optical flow [105]. Optical flow determines the change in

pixel intensity I(x, y, t) at point (x, y) at time t assuming the change in brightness

between the consecutive frames was constant and the same has been depicted using

Eq.(5.1)

I(x, y, t) = Ixvx + Iyvy + It (5.1)

where, vx = dx
dt

and vy = dy
dt

represents the change in pixel displacement in x and

y direction w.r.t. change in dt respectively. Smoothness constraint is determined

by minimizing the error given by Eq. (5.2).

ε2 =

∫ ∫
(I(x, y, t)2 + α2

((∂vx
∂x

)2
+
(∂vx
∂y

)2
+
(∂vy
∂x

)2
+
(∂vy
∂y

)2)
dxdy (5.2)

Where, α2 scale the second term which is smoothness constraint. If we have se-

lected N flow vectors around the precise localized centroid St−1,(x,y) in the previous

frame, then the centroid Ŝt in the current frame is roughly localized and depicted

using the Eq. (5.3).

Ŝt,(x,y) =

(
St−1,x +

1

N

( N∑
i=1

vix

)
, St−1,y +

1

N

( N∑
i=1

viy

))
(5.3)
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This roughly localized centroid is used for generating the candidate fragments for

precise localization of the target. The next section will detail about the precise

localization of the target.

5.2.2 Stage II: Precise Localization

During this stage, the target localization is accomplished through multi-cue feature

fusion of each candidate fragments. For this, candidate fragments are generated by

sampling the target around the centroid (Ŝt) determined in stage I using random

walk model. Random walk caters for object’s scaling and rotational variations.

For each fragment, state (Ŝt) is propagated through the random walk model using

Eq.(5.4).

Ŝt+1 = Ŝt + ηt (5.4)

Where, Ŝt = (c, τ)m in which c represents the scaling factor and τ is angular

displacement for each fragment. m is a covariance matrix used to describe the

uncertainty in state vector as m = diag(σc, στ ). ηt is zero mean Gaussian noise

through a random walk model. Each localized fragment is scaled and rotated

using the random walk model and multi-cue features are then extracted. In the

proposed tracker, we have considered complementary cues viz. Texture and HOG

and their extraction details are as follows.

Texture cue extracts the low level image features with spatial arrangement of pixels

in the image plane. Texture cue is robust to scaling and rotational variations. For
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each fragment, texture cue is extracted using scale-invariant LBP [83]. Further, the

normalized histograms are obtained by the uniformity LBP measure for each pixel.

Uniformity LBP is determined considering central pixel (pc, qc) and neighborhood

pixel (po, qo) in radius γ using Eq. (5.5).

U(LBPγ,Nb(pc, qc)) = |β(Ij−1(pj−1, qj−1)− Ic(pc, qc))− β(Io(po, qo)− Ic(pc, qc))|

+

Nb−1∑
j=0

|β(Ij(pj, qj)− Ic(pc, qc))− β(Ij−1(pj−1, qj−1)− Ic(pc, qc))|

(5.5)

LBPγ,Nb(pc, qc) =


∑Nb−1

j=0 |β((Ij(pj, qj)− Ic(pc, qc))|, U(LBPγ,Nb(pc, qc)) ≤ 2

j + 1, otherwise

(5.6)

Where, Ic is gray value of central pixel (pc, qc) in radius γ, Ij is gray value of jth

pixel (pj, qj) and Io is gray value of Nb equally spaced neighboring pixels (po, qo).

These values are used to determine the bit wise transition in the uniform image

pattern for calculating texture uniformity LBP. For each candidate fragment, these

histograms are concatenated to obtain a single feature vector as V f
e .

HOG feature [106] is used to represent the edge information of the target. HOG

captures the edge directions w.r.t. distribution of horizontal and vertical gradient

intensities. The distribution of gradient intensities are determined by filtering the

image with the kernels given by Eq.(5.7).

[−1, 0, 1] & [−1, 0, 1]T (5.7)
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If Gx(p, q) and Gy(p, q) represent the gradient values in the horizontal and vertical

directions respectively. then, the magnitude (M̂) and orientation(θ) for each pixel

is calculated using Eq.(5.8) and Eq. (5.9).

M̂(p,q) =
√

(Gx(p, q))2 + (Gy(p, q))2 (5.8)

θ(p,q) = arctan

(
Gy(p, q)
Gx(p, q)

)
(5.9)

Further, ROI(Region of Interest) of the image is divided into 9 rectangular cells

and for each pixel in a cell a weighted vote for each edge orientation is calculated.

Votes are bilinearly interpolated between the magnitude and the orientation for

each bin. Here, cell histogram for each bin is calculated and bin (γ) for each cell

is determined using Eq.(5.10).

Gh(γ) =
Ns∑
l=1

(M̂l,(p,q)δ(θ
‘
l,(p,q) − γ)) (5.10)

Where, δ(.) is Kronecker delta function, θ‘(p,q) is quantized orientation and Ns

is the number of pixels in each cell. To address the illumination variations and

contrast, gradient values are normalized using L2-norm and final concatenated

feature vector is obtained by Eq.(5.11).

V f
h = Vh(γ)/

√√√√( c×c×Nb∑
l=1

Vh(l)2
)

+ ℵ2 (5.11)
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Here, c is the number of cells and Nb is the number of bins per cell and ℵ is a

constant. For each candidate fragment HOG feature vector is determined as V f
h .

5.2.2.1 Multi-cue Feature Fusion

For each candidate fragment f , the individual feature vector of LBP (V f
e ) and

HOG (V f
h ) are unified to form a robust feature vector (Rf ). Initially, a set of pos-

itive samples (P) and negative samples (N ) are stored in the reference dictionary

(Dk). In each frame, for each fragment the distance is calculated between the fea-

ture descriptor and the corresponding feature from the positive samples and the

negative samples of the reference dictionary. Fig. 5.2 illustrates the calculation of

distance between the feature vector and the corresponding feature vector from the

positive sample and the negative sample of the reference dictionary. Further, the

(a) (b)

Fig. 5.2 Description of distance calculation for feature descriptor (a) LBP (b)
HOG

Euclidean distance between the ith LBP feature point (ai) and the corresponding
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feature point (aiP) of the positive sample and (aiN ) the negative sample, respec-

tively from the reference dictionary is depicted in Fig. 5.2 (a) and is calculated

using Eqs.(5.12), (5.13).

Ef
e,N(iP) = (ai − aiP), for 1 ≤ i ≤ m; 1 ≤ P ≤ N (5.12)

Ef
e,N(iN ) = (ai − aiN ), for 1 ≤ i ≤ m; 1 ≤ N ≤ N (5.13)

Here, m is the length of LBP feature vector and N represents the number of

positive samples and the negative samples in the reference dictionary. Similarly,

distance between jth HOG feature point (bj) and the corresponding feature point

(bjP) of the positive sample and (bjN ) the negative sample, respectively from the

reference dictionary is depicted in Fig. 5.2 (b) and is calculated using Eqs.(5.14),

(5.15).

Ef
h,N(jP) = (bj − bjP), for 1 ≤ j ≤ n; 1 ≤ P ≤ N (5.14)

Ef
h,N(jN ) = (bj − bjN ), for 1 ≤ j ≤ n; 1 ≤ N ≤ N (5.15)

Here, n is the length of HOG feature vector and N represents the number of

positive samples and the negative samples in the reference dictionary. Finally, the

unified feature vector for f th fragment between the features Ve and Vh is determined

using Eq.(5.16).

Rf =
√

(Ef
e,k)

2 + (Ef
h,k)

2 k ∈ P ,N (5.16)
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The obtained unified feature vector (Rf ) will preserve the high-level relationship

and suppress the low-level relationship among the feature vectors. This feature

vector is averaged to obtain R̄f . For each fragment, confidence score is calculated

using Eq.(5.17).

µf =
1

2πσf
e
− (

¯Rf )2

2σ2
f (5.17)

where, σf is the standard deviation of Gaussian noise in calculation process of

the unified feature. Further, the obtained confidence scores of each fragments

are subjected to K-Means classifier. The classifier provides the value [0,1] to the

candidate fragments as per their resemblance into the positive samples and the

negative samples. For f fragments, f scores are generated as (µ1.µ2...µf ), K-Means

clustering is used to partition the fragments into K classes as C1, C2...CK . If f th

fragment belongs to Kth cluster then f ∈ CK and CK = [CP , CN ]. If w(CK) is

the measure of within-cluster variations then the objective function which is to be

minimized is given by Eq.(5.18).

argmin

K∑
i=1

∑
i∈CK

||w(CK)|| (5.18)

Here, the within-clusters variations w(CK) is determined using sum of squares

method. For this, pairwise squared deviations of p points within the clusters is

defined using Eq.(5.19).

w(CK) =
1

|CK |

p∑
r=1

∑
a,b∈CK

||ar − br||2 (5.19)
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Where, |CK | represents the number of fragments in Kth cluster. Using Eqs.(5.18)

and (5.19), the K-means clustering is defined using Eq.(5.20), Eq.(5.21).

argmin
K∑
i=1

1

|CK |

p∑
r=1

∑
a,b∈CK

||ar − br||2 (5.20)

argmin
∑
ar∈CK

p∑
r=1

||ar − φf ||2 =
∑

ar 6=br∈CK

p∑
r=1

(ar − φf )(φf − br) (5.21)

Where, φf is mean of p points in cluster CK . Clusters centroid is determined as

the mean of all the fragments score assigned to each cluster. K-Means algorithm

determines the local cluster and hence, executes iteratively to determine the near-

est centroid. Also, the transductive reliability is calculated for each candidate

fragment. The final state is estimated by taking the mean of the fragments with

high confidence and high reliability using Eq.(5.22).

St,(x,y) =
N̂∑
n=1

(Cn(x, y)) (5.22)

Where, CN̂(x, y) is the centroid and N̂ is the number of candidate sample with high

confidence score and high reliability, respectively. Reliability of each candidate

fragment is calculated in order to ensure the tracker is adaptive with change in the

environment. Reliability (r(Cf )) of the candidate fragment (Cf ) can be calculated

using Eq.(5.23).

r(Cf ) =
u(tanh(−(Cf − St + v)))

2
+ w (5.23)
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Where, u, v and w are constant to outline the shape of tanh function. Further,

to improve the performance during long term tracking a re-detection strategy has

been employed in the proposed tracker. In case, the tracker drifts away from the

target due to the sudden change in the environmental condition, the tracker is

re-initialized to re-detect the target. The experimental validation of the proposed

method will follow in turn.

5.3 Experimental Validation

For rigorous performance analysis, the proposed tracker is evaluated on challeng-

ing video sequences taken from OTB-100 dataset [66], VOT dataset [87] and

UAV123 dataset [69]. The considered video sequences include various environ-

mental challenges viz. illumination variation, full or partial occlusion (FOC or

POC), background clutters, fast motion and deformation. The experimental re-

sults are compared against 13 others state-of-the-art trackers namely, ASLA [88],

STRUCK [117], MTT [89], IDCT [118], DFT [95], L1-APG [119], CT [90], WMIL

[94], fDSST [120], CSPF [5], BIT [121], STAPLE [96] and DCF-CA [111]. Pub-

licly available author’s release code of these trackers is used for fair performance

comparison. The proposed tracker is implemented on MATLAB 2018 on a 2.4GHz

processor machine with 6 GB RAM. Initially, the fragments are initialized on the

target with minimal overlap. The number of fragments initialized is highly de-

pendent on the size of the target. Small and low resolution target requires fewer

fragment during initialization in comparison to high resolution target. Also, The
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reference dictionary is updated with P = 20 and N = 20. To prove the robust-

ness of our tracker during various environmental challenges the qualitative and

quantitative analysis is described in the following sections.

5.3.1 Qualitative analysis

In this section, the qualitative analysis of the proposed tracker was performed.

The details of video sequence and the considered challenge is as follows.

5.3.1.1 Illumination Variation

Sample frames under the illumination variation challenge are shown in Fig.5.3.

When there is sudden change in illumination at frame #48 for Human8 sequence,

the proposed approach and STAPLE successfully tracked the target. This is due to

the HOG feature descriptor in the appearance model of the proposed model which

compensated for the LBP feature which was susceptible to illumination variation.

OURS, DFT, WMIL, BIT and STAPLE have tracked the target with minimal error

in comparison to other trackers as shown in Fig. 5.3 (b). Here, the transductive

reliability with proposed fusion of multi-cue will suppress the unreliable features

during tracking and prevented drift. In Fish sequence, OURS, STAPLE, STRUCK

and DCF-CA can keep track of the target successfully and the same is depicted

in Fig.5.3 (c). In Fig.5.3 (d), when there is illumination variations alongwith

In-plane rotation in frames (#148 and #314), then only the proposed method

with fDSST and STAPLE have shown relatively good performance. It is due to
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.3 Critical tracking frames from video sequence under Illumination vari-
ation challenge: a) Human8 b) Tiger c) Fish d) Tiger1 e) Car2 f) boat5
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.4 Critical tracking frames from video sequence under FOC or POC chal-
lenge: a) Jogging1 b) Subway c) Walking2 d) car15 e) Walking f) Football
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the exploited HOG and the rotation-invariant LBP features in the tracker which

addressed the challenge gracefully. In Car2 sequence, OURS, MTT and IDCT had

performed substantially better in comparison to L1-APG, ASLA, WMIL, DFT

and CSPF. Fig. 5.3 (f) has depicted that ASLA, OURS, DCF-CA and STAPLE

have performed better in comparison to others. This is due to the robust unified

feature that have been constructed by the fusion of multi-cue in the proposed

tracker. Moreover, the complementary features LBP and HOG in the appearance

model of the tracker improves the performance under the challenge.

5.3.1.2 Full or Partial Occlusion

Representative tracking results for Jogging1 during full or partial occlusion are

shown in Fig. 5.4 (a). At frame #78, target is fully occluded by the pillar,

then OURS, IDCT, BIT and CSPF located the target successfully. This is due

to the classifier mechanism which eliminated the non-reliable fragments from the

tracker. In Subway sequence, target is occluded by various person several times.

At frame #106, Generative trackers viz. ASLA, MTT and L1-APG have lost the

trackers as their appearance model lack drift alleviation mechanism. However, at

frame #162 trackers fDSST, STRUCK, BIT, STAPLE and OURS have performed

considerably better. Here, the LBP feature has compensated for the HOG feature

for developing robust appearance model to handle the challenge. Some tracking

frames for Walking2 sequence are depicted in Fig. 5.4 (c). In this sequence,

target is partially occluded by the similar object. At frame #260 IDCT, ASLA
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.5 Critical tracking frames from video sequence under Background Clut-
ters challenge: a) Singer2 b) MountainBike c) Shaking d) Bolt2 e) bike2
f)Soccer1
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5.6 Critical tracking frames from video sequence under Fast Motion and
Deformation challenge: a) Dancer b) Jogging2 c) person23 d) Jumping e)
Pedestrian1 f) Surfer
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and STRUCK have lost the target and locate the other object in the scene. While

OURS, STRUCK, MTT and L1-APG have kept track of the target till end. This

is due to complementary LBP-HOG features exploited in the appearance model.

In addition, the proposed classifier mechanism also prevents the false updation of

the reference dictionary. In sequence Walking, ASLA, IDCT and DFT have lost

the target while the rest of the trackers tracked the target with minimal error.

In sequence car15, the target size is small, which OURS, STAPLE and STRUCK

able to track while other trackers have deflected from the target. Tracking results

for Football sequence are shown in Fig. 5.4 (d). In subsequent frames (#290 and

#326), when target is occluded by other players OURS, fDSST and DFT have

shown relatively good performance in comparison to STRUCK, IDCT, L1-APG,

STAPLE and DCF-CA. The performance of the proposed approach under the

challenge is mainly attributed due to the generated unified robust feature. Also,

the proposed classifier mechanism which has classified the affected fragment during

occlusion to prevent the drift of the tracker.

5.3.1.3 Background Clutters

Tracking results of the proposed tracker under this challenge are depicted in Fig.

5.5. Tracking frames results for Singer2 are shown in Fig. 5.5 (a). At frame

#280, OURS with STAPLE and DCF-CA has handled the challenge efficiently in

comparison to other trackers. Here, the exploited features descriptor in the ap-

pearance model have supported the performance of the proposed approach under
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the challenge. In MountainBike sequence, at frame #210 STRUCK, L1-APG and

CT have drifted away from the target whilst OURS, BIT and MTT kept track of

the target in the whole sequence. Shaking sequence has similar background with

illumination variations in the whole sequence. CT, MTT, CSPF and DFT are

failed to handle the challenge and hence, drift away from the target. However,

OURS, DCF-CA, BIT and WMIL have performed considerably better in the se-

quence. Fig.5.5 (d), at frame #276 OURS and STAPLE have tracked the target

while the other trackers have located the other similar object in the scene. Critical

tracking frames for bike2 are depicted in Fig.5.5 (e), in which OURS has shown

relatively better performance against other trackers. In Soccer1 sequence, DCF-

CA has performed better with marginal less error in comparison to the proposed

tracker. It may be due to false updation of the proposed tracker by the unreliable

fragment during the challenge. In sum, the proposed approach is able to handle

the similar background as the proposed fusion of the multi-cue suppress the low

level features and boost the high level features accompanied by the transductive

reliability at each stage. In addition, the proposed classifier mechanism will replace

the unreliable fragments and update the reference dictionary in order to maintain

the performance of tracker during the challenge.

5.3.1.4 Fast Motion and Deformation

Critical tracking results illustrating the performance of the proposed approach un-

der the challenge are shown in Fig.5.6. In Dancer sequence, the deformation of the
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target due to fast motion which is accompanied by pose variations. ASLA has lost

the target but OURS with other trackers have shown better performance. Fig5.6

(b) presents the tracking results for Jogging2 sequence. At frame #290, IDCT,

ASLA, STRUCK, WMIL, STAPLE, DCF-CA and DFT have lost the target but

OURS and L1-APG have tracked the target with minimal error till end. Jumping

sequences has high target’s deformation with motion blur and fast motion. OURS,

STRUCK, and DCF-CA have catered this deformation to a great extent in com-

parison to other trackers. person23 sequence has fast motion challenge which

OURS, DCF-CA, STAPLE and CSPF have handled gracefully. In Pedestrian1

sequence, at frame #132 DCF-CA, STAPLE, L1-APG, DFT and BIT have lost

the target due to inefficient appearance model which is not able to handle the tar-

get’s deformation due to fast motion and out-of plane rotation. OURS, CSPF and

STRUCK have efficiently handled the deformation due to fast motion. It is due to

rough localization of the target through optical flow which exploited the motion

cue of the target. Tracking results for Surfer sequence is depicted in Fig.5.6 (e).

At frame #119, the appearance model of FRAG, L1-APG, DFT, MTT and IDCT

get corrupted and lose the target. OURS, STRUCK and DCF-CA have handled

the variations due to fast motion and in plane rotations. This may be due to pe-

riodic updation of the tracker which removed the erroneous unreliable fragments

from the tracker. In addition, the rough localization of the target by optical flow

have exploited the motion cue in the appearance model. Transductive reliability is

also integrated at each time step to prevent drift under target’s deformation when

accompanied by several pose variations, fast motion and motion blur.
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Table 5.1: CLE (in pixels). Red, blue and green represent the best results.

Video Sequence ASLA STRUCK MTT DFT L1-APG STAPLE WMIL DCF-CA CT fDSST IDCT CSPF BIT [121] OURS

Walking2 19.98 4.21 3.96 31.70 3.99 3.79 59.90 22.07 63.20 10.67 64.78 7.21 28.77 3.73

Jogging1 99.36 123.00 107.90 34.86 88.47 91.20 94.37 89.68 92.95 102.65 15.65 12.38 3.62 7.43

Car2 20.32 3.41 1.35 31.51 12.68 1.35 42.54 5.25 102.98 3.15 21.32 23.87 5.56 5.03

Jogging2 143.90 162.08 152.78 44.01 11.59 146.76 138.36 148.57 116.98 155.17 123.06 8.07 2.84 10.11

Shaking 19.98 107.36 188.94 103.06 122.16 137.60 11.01 8.01 162.88 7.57 134.62 47.91 7.33 5.67

Singer2 193.91 166.91 197.55 39.58 182.60 7.57 160.98 10.82 121.21 12.25 27.38 14.85 180.55 9.43

Tiger 62.61 66.83 204.21 11.57 119.75 11.57 28.31 13.27 70.27 11.04 84.41 56.7 24.9 11.53

Jumping 34.13 8.31 58.89 69.40 77.69 24.82 53.84 2.94 50.85 125.46 79.40 33.99 41.43 17.26

Human8 65.56 56.44 162.03 71.05 112.73 5.77 79.25 3.02 82.65 2.55 43.13 5.58 33.61 4.02

Dancer 23.11 9.37 7.94 12.35 9.04 6.34 17.63 7.29 23.21 6.75 21.21 71.2 66.8 5.64

Pedestrian1 96.23 7.61 55.39 119.69 22.92 34.65 39.78 20.11 79.30 40.01 23.63 15.22 18.72 7.58

Soccer1 121.81 110.59 36.84 112.41 61.76 65.80 84.34 21.65 80.62 11.45 87.96 40.88 7.12 5.70

Football 15.30 13.37 12.39 9.93 17.55 13.02 14.51 13.96 15.63 6.41 70.14 10.62 14.55 9.71

Subway 145.04 4.01 165.30 5.88 149.41 2.59 136.73 2.92 11.58 2.81 8.45 4.97 3.87 2.44

MountainBike 21.73 12.36 5.62 10.30 171.98 9.03 7.11 8.20 192.44 8.59 15.43 14.89 9.54 107.06

Fish 70.91 5.98 43.88 8.51 57.35 4.29 30.99 4.51 13.06 3.59 79.34 54.08 54.83 4.26

car15 - 3.53 - - - 1.93 217.7 - 15.51 211.83 - 8.49 221.57 6.34

Tiger1 96.71 76.84 110.77 73.56 119.51 56.34 - 13.56 55.07 62.97 61.90 65.41 54.99 17.99

Surfer 10.56 9.78 44.31 215.73 139.05 27.39 63.74 4.98 45.58 4.11 47.36 36.96 24.01 5.25

bike2 150.65 104.8 138.67 - 153.4 206.82 284 - - 153.22 209.31 67.08 176.43 29.89

boat5 14.81 28.67 25.36 29.11 23.84 13.67 26.48 13.74 29.11 29.08 24.85 27.69 29.52 17.89

Walking 247.76 3.13 3.41 14.29 2.73 2.09 8.63 2.94 8.55 2.09 116.83 7.35 4.27 2.70

Bolt2 102.92 - 110.46 15.20 - 6.96 119.07 - 13.03 - 150.00 9.08 36.23 11.20

person23 357.73 52.26 6.82 91.98 15.88 8.06 410.14 8.73 41.15 153.83 85.69 6.12 7.71 5.15

Average 92.76 49.60 80.21 52.53 76.19 37.06 97.07 20.30 64.69 49.01 69.38 27.11 44.12 8.88

5.3.2 Quantitative Analysis

In order to evaluate the performance of the proposed tracker under quantitative

analysis four performance metrics are exploited. Two performance evaluations are

tabulated as CLE and F-Measure [65]. In addition, Success plots and Precision

plots are plotted to prove the robustness of the proposed approach. CLE and

F-Measure comparison results on challenging benchmark video sequences are tab-

ulated in Table 5.1 and Table 5.2 respectively. Our tracker has attained average
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Table 5.2: F-Measure. Red, blue and green represent the best results.

Video Sequence ASLA STRUCK MTT DFT L1-APG STAPLE WMIL DCF-CA CT fDSST IDCT CSPF BIT OURS

Walking2 0.464 0.652 0.869 0.506 0.846 0.873 0.344 0.594 0.315 0.767 0.334 0.777 0.551 0.849

Jogging1 0.161 0.188 0.201 0.221 0.191 0.201 0.138 0.204 0.191 0.207 0.767 0.718 0.884 0.790

Car2 0.551 0.743 0.929 0.492 0.679 0.929 0.258 0.781 0.030 0.860 0.371 0.173 0.771 0.782

Jogging2 0.133 0.151 0.147 0.271 0.741 0.161 0.133 0.139 0.092 0.144 0.152 0.820 0.091 0.742

Shaking 0.323 0.081 - 0.236 - 0.057 0.781 0.821 0.051 0.848 0.020 0.292 0.051 0.903

Singer2 0.053 0.054 0.049 0.561 0.044 0.875 0.064 0.836 0.137 0.811 0.699 0.751 0.138 0.859

Tiger 0.127 0.262 - 0.813 - 0.805 0.587 0.786 0.191 0.807 0.251 0.249 0.588 0.809

Jumping 0.176 0.707 0.113 0.031 0.126 0.343 0.049 0.579 0.055 0.061 0.071 0.211 0.055 0.508

Human8 0.130 0.193 - 0.127 - 0.749 0.087 0.127 0.063 0.887 0.284 0.749 0.250 0.827

Dancer 0.631 0.811 0.814 0.745 0.788 0.872 0.732 0.773 0.662 0.874 0.703 0.227 0.250 0.881

Pedestrian1 0.056 0.601 0.334 0.020 0.360 0.596 0.526 0.527 0.237 0.530 0.434 0.542 0.524 0.738

Soccer1 0.059 0.156 - 0.200 - 0.260 0.182 0.494 0.197 0.663 0.302 0.213 0.722 0.766

Football 0.631 0.671 0.671 0.706 0.574 0.678 0.593 0.664 0.612 0.777 0.113 0.692 0.627 0.711

Subway 0.194 0.801 0.081 0.768 0.186 0.850 0.189 0.844 0.699 0.836 0.757 0.758 0.818 0.877

MountainBike 0.633 0.774 0.824 0.804 0.308 0.832 0.436 0.822 0.222 0.838 0.713 0.728 0.822 0.871

Fish 0.171 0.885 0.297 0.854 0.072 0.877 0.471 0.909 0.774 0.905 0.147 0.276 0.250 0.929

car15 - 0.643 0.066 0.062 - 0.676 0.092 0.059 0.418 0.072 0.043 0.292 0.032 0.519

Tiger1 - 0.213 - 0.303 - 0.303 - 0.820 0.125 0.268 0.732 0.221 0.311 0.736

Surfer 0.512 0.651 0.056 0.025 0.033 0.275 0.038 0.666 0.087 0.815 0.213 0.182 0.250 0.817

bike2 - 0.268 0.049 0.048 0.214 0.146 0.001 0.049 0.002 0.212 0.05 0.001 0.143 0.139

boat5 0.003 0.585 0.601 0.578 0.707 0.629 0.572 0.602 0.565 0.587 0.549 0.633 0.699 0.777

Walking 0.069 0.811 0.841 0.475 0.744 0.848 0.659 0.686 0.643 0.860 0.324 0.550 0.769 0.866

Bolt2 0.024 0.019 0.013 0.669 0.013 0.803 0.387 0.014 0.645 0.014 0.162 0.759 0.250 0.679

person23 - 0.528 0.808 0.047 0.664 0.844 0.035 0.776 0.272 0.06 0.453 0.862 0.836 0.875

Average 0.261 0.477 0.409 0.398 0.405 0.603 0.319 0.566 0.303 0.571 0.360 0.487 0.445 0.760

CLE of 8.88 (in pixels) and average F-Meaure of 0.760. In addition, in Figs. 5.7

and 5.8 precision plot and success plot are illustrated, respectively. Plots reveal

that our tracker has attained high precision values and high success rate. In se-

quences with illumination variation challenge, the proposed tracker has achieved

superior performance due to exploited complementary HOG and LBP features.

High precision values during FOC and POC have confirmed the effectiveness of

the proposed fusion of multi-cue features. During background clutters, deforma-

tion and fast motion, the suppression of deteriorating cue over the effective cues
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(a)

(b)

(c)

(d)

Fig. 5.7 Precision Plot under visual tracking challenges: a) Illumination Varia-
tions (Human8, Tiger1, boat5, Tiger2) b) Full or Partial Occlusion ( Jogging1,
Subway, Walking2, Walking) c) Background Clutters (Singer2, Soccer, Shak-
ing, Bolt2) d) Deformation and Fast Motion (Dancer, Jumping, Couple, per-
son23)

by the transductive reliability alongwith the proposed classifier mechanism have

validated the strength of the proposed method. Also, rough localization of the

target using optical flow has estimated the motion information more accurately.
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(a)

(b)

(c)

(d)

Fig. 5.8 Success plot under visual tracking challenges: a) Illumination Varia-
tions (Human8, Tiger1, boat5, Tiger2) b) Full or Partial Occlusion ( Jogging1,
Subway, Walking2, Walking) c) Background Clutters (Singer2, Soccer, Shak-
ing, Bolt2) d) Deformation and Fast Motion (Dancer, Jumping, Couple, per-
son23)

Our tracker has performed well in tough situations by catering various dynamic

environmental challenges.
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Our tracker has shown eminent performance in comparison to the existing state-of-

the-art trackers. Low mean CLE and high mean F-Measures validate the strength

of proposed tracker. In addition, Precision plot and success plot reveal that the

proposed tracker outperformed the other trackers. Generative trackers, like MTT,

ASLA, and L1-APG are not able to handle background clutters and FOC. Discrim-

inative trackers, like WMIL and CT are failed to handle target’s deformation due

to pose variations. STAPLE and CSPF are not able to handle target’s deformation

due to fast motion and motion blur efficiently. DCF-CA has shown comparable

performance but not suitable for real-time computation whereas fDSST has shown

resistance to occlusion and fast motion. STRUCK is able to handle background

clutters challenge to a great extent but was relatively slow due to complex learning

methods in the update model. WMIL had random Haar-like features in appear-

ance model and not able to cater target deformation due to rotation. MTT and

L1-APG has exploited sparse representation using single feature in the appearance

model and drift away from the target during tough environmental challenges. In

sum, the proposed tracker has performed better than the other trackers by ex-

ploiting complementary multi-cue LBP and HOG in the appearance model during

precise localization of the target. During rough localization, proposed approach

has exploited the motion cue using optical flow to handle the target deformation

due to fast motion. The fusion of multi-cue generated a robust unified feature to

overcome occlusion and background clutters. Nevertheless, the proposed K-Means

based classifier mechanism has classified the positive reliable fragments and hence,
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prevents the false updation of the reference dictionary during environmental chal-

lenges.

5.4 Significant Findings

The following were the key highlights of the proposed multi-cue tracker under

multi-stage framework.

• A novel multi-stage tracking framework for object tracking.

• Optical flow exploited the motion cue for rough estimation of the target.

• During precise localization, complementary features viz. scale-invariant LBP

and HOG in appearance model handled scale variations and occlusion.

• The proposed fusion of feature vectors improved the computational efficiency

of the tracker during background clutters.

• K-Means based classifier mechanism classified the positive fragments and the

negative fragments and hence, prevented the false updation of the reference

dictionary.

• Transductive reliability of each fragment was integrated for quick adaptation

of the target during environmental challenges.

• The proposed method has achieved the computational efficiency of 22 frames/sec.
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• Quantitative and qualitative analysis on challenging video sequences inferred

the competitive results of the proposed tracker against 13 other trackers.

In addition, the experimental results along with significant findings of the proposed

work were published in [122].
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This chapter will summarize the major contributions and achievements that come

out of the present work. Despite the significant contributions, no research is

said to be complete unless it directs to a few topics for future research. Hence,

the potential work that can be explored further under present studies is briefly

discussed as directions to future work in the Section. 6.2.

6.1 Summary of Major Contributions

The key idea of this thesis work was to design and develop a robust multi-cue

object tracking model under various frameworks namely, stochastic, deterministic

and multi-stage. To address the limitations of each individual framework, several

novel contributions proposed under present work sre summarized as follows.

• Multiple video sequences were captured from vision camera and analyzed in

a self generated dataset. Captured video sequences were of adequate length

and annotated to determine the real-time performance of various trackers.

119
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In addition, latest trends in multi-cue object tracking frameworks which ex-

ploited the complementary cue information were analyzed. Multi-cue object

tracking under various frameworks was investigated and briefly reviewed.

• A real-time multi-cue tracker under particle filter framework was proposed in

which likelihood model was constructed by considering three complementary

multi-cues namely CH, LBP and PHOG. RGB cue was robust against change

in scale and partial occlusion but deteriorates during illumination variations

and background clutter. However, LBP texture cue was invariant to change

in illumination and background clutters but could not handle scale variations

and target’s deformation. while the PHOG can efficiently handle the target’s

deformation and rotation. These complementary cues were considered with

the aim so that if one cue fail the other may compensate during the dynamic

environment. Resampling technique based on Butterfly search optimization

was proposed to address the shortcomings of PF. This optimization had a

fast convergence rate along-with its two parameters: 1) Switch probability

2) Solution vector. These two parameters diversified the particles in high

likelihood area of search space to prevent particle degeneracy and sample

impoverishment. An adaptive fusion method for fusion of multi-cue was

proposed to cater dynamic environmental variations. This fusion model en-

sured the automatic boosting of the important particles and suppression of

the unimportant particles during occlusion, background clutter and target’s

deformation. In addition, context sensitive cue reliability was estimated to

ensure the quick adaptation of the tracker during real-time environmental
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challenges. Also, outlier detection mechanism was exploited to detect low

performing particles as outliers. In each subsequent frame, outliers were de-

tected which dispense less towards the state estimation. This mechanism not

only helped in improving the efficiency of the proposed resampling method

but also reduced the computational complexity of the proposed tracker.

• A robust object tracking framework was proposed which included fuzzy based

fusion of multi-cue to create the clear determination boundary between the

positive fragments and the negative fragment. The proposed fusion model

ensured the high level relationships between the features were captured and

their weak relationships were suppressed to make tracker robust to back-

ground clutters and pose variations. The multi-stage estimation considered

the coarse to fine localization of the target. The two step localization of

target’s position not only enhanced tracker’s accuracy during environmental

challenges but also, reduced its computational load. During rough localiza-

tion, the motion cue was calculated using optical flow to address the fast

motion and rotational variations in target. This enhanced tracker’s per-

formance during next step of localization. During precise localization, an

adaptive appearance model was proposed to maintain the target’s temporal

and context consistency. For this, complementary multi-cue namely, RGB

and HOG were exploited in the tracker’s appearance model. RGB cue was

computationally inexpensive and robust to scale variations and partial occlu-

sion but failed to address full occlusion, similar background and illumination

variations. Unlike RGB cue, HOG was invariant to these challenges and had
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effectively improved the tracker’s performance under the tracking variations.

Random forest based discriminative classifier mechanism ensured the highly

marginalized boundary was created between the positive fragments and the

negative fragments. The classifier provided confidence score to each candi-

date fragment and helped in the decision to select the efficient fragments

for precise localization of target. In addition, this also assured the periodic

update of the reference dictionary with effective fragments and hence, pre-

vented the eventual drift of the tracker during occlusion and background

clutter.

• Multi-stage tracking framework was proposed which included the coarse to

fine estimation of the target. This multi-stage estimation reduced the compu-

tational complexity of the tracker. For this, initially the target was roughly

localized using optical flow. Optical flow estimated the motion cue for each

pixel of the target and hence, improved the accuracy of tracker during precise

localization. During precise estimation of the target complementary features

namely, LBP and HOG were exploited in the appearance model to handle

illumination variation, background clutters and occlusion. Scale-invariant

LBP feature determined local pattern information while HOG feature cal-

culated edge information of the target and hence, was complementary to

each other. Strength of scale invariant LBP feature vector and HOG fea-

ture vector were fused by determining the Euclidean distance between the

feature vectors. The distance is determined between the feature descriptors

and the samples from the reference dictionary. The proposed fusion not
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only analyzed the high order relationship between the features but also di-

minished the weak relationship among them. At each step, the tracker was

made adaptive by integrating transductive reliability for each fragment sam-

ple. This reliability ensured that the tracker was adaptive with the change

in the environment. Discriminative classifier mechanism based on K-Means

was proposed to classify the positive samples from the negative samples.

Classifier score created a clear decision boundary between the positive frag-

ment samples and negative fragment samples. This process maintained the

tracker’s accuracy during background clutters and occlusion by preventing

the false updation of the tracker.

• The proposed tracker using stochastic approach under particle filter frame-

work had shown efficient tracking performance by handling the various track-

ing challenges. Multi-cue based appearance model exploited complementary

cue information in which each cue compensated for each other during change

in environmental conditions. Outlier detection mechanism was able to iden-

tify the low performing particles which were affected due to visual tracking

challenges and dispensed less towards state estimation. Meta-heuristic op-

timization based resampling technique addressed the shortcomings of the

particle filter effectively. The proposed tracker under particle filter frame-

work had shown effective and efficient performance under various tracking

challenges. However, the tracker tended to drift under occlusion and pose

variations due to lack of background information in the appearance model.

In order to address this, we have proposed a tracker under deterministic
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framework. This tracker exploited fragment based approach in the appear-

ance model. In addition, the reference dictionary was initialized with a set of

positive and two set of negative samples to include both foreground as well

as background information. The set of positive samples included the target

region, one set of negative sample comprised of the nearby background area

of the target and the another negative set contained the samples of the other

target present in the scene. The periodic update of reference dictionary en-

sured the consistent performance of the tracker during tough environmental

challenges. The appearance model was made robust to occlusion, deforma-

tions and background clutters by exploiting the multi-cue and background

information. In order to further enhanced the tracker’s performance under

visual tracking challenges by improving the computational complexity, we

have proposed a tracking architecture under multi-stage framework. The

rough localization of the target during initial stage improved its precise lo-

calization during the final state estimation. This multi-stage estimation

reduced the computational complexity of the tracker and handled fast mo-

tion and target’s rotational challenges effectively. Also, reliability metric

was computed to prevent the appearance model from updating with frag-

ments containing background clutters. Nevertheless, using regular updates

for a dynamic appearance model and periodic updates of reference templates

prevented the eventual drift of tracker in long video sequences.

• Exhaustive experimental evaluation that included both qualitative and quan-

titative analyses on benchmark video sequences from OTB, VOT2017 and
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UAV123 proved the robustness of the various proposed trackers against other

state-of-the-art trackers during various object tracking challenges. Under

particle filter framework, the proposed approach achieved superior perfor-

mance against 13 other stat-of-the-art trackers. On average of the outcome,

our tracker under stochastic approach achieved CLE 6.89 (in pixels) and F-

measure of 0.786 against 13 others state-of-the-art. Further, the proposed

tracker under deterministic approach attained average CLE of 5.78 and aver-

age F-Measure of 0.806 on challenging video sequences under various tracking

variations. However, the tracker proposed under multi-stage framework ex-

hibited real-time performance and attained average CLE of 8.88 (in pixels)

and average F-measure of 0.760 on video sequences from multiple bench-

marked datasets.

6.2 Directions of Future Work

In the present work, multi-cue object tracking model under various framework

were investigated and explored at length to provide novel contributions to the

domain. Despite that, there are certain research areas that emerge out of the

present work which demand future investigation. These areas are summarized as

directions to future work and are detailed as follows.

• Object tracking work under particle filter framework can be extended to

track multiple people in the video. Also, adaptive online learning can be
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explored for directing particles under uncertain environmental variations.

• Spatial and context relationships between the subsequent frames to develop

a holistic representation of the targeted object can be further investigated.

• Outlier detection procedure can be explored with fuzzy decision boundary

for generating the clearer decision discriminability.

• Multi-stage tracker can be explored for integrating more visual cue at each

stage to provide more robust tracking solution.

• Another possible extension can be made by utilizing the multi-modal infor-

mation captured from multiple sensors in the tracker’s appearance model.

• The fusion model can be explored by incorporating user-defined source im-

portance information as another potential direction for the future undertak-

ing.
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