$$
-208-
$$

Total Number of pages: 02
SIXTH SEMESTER
MID SEMESTER EXAMINATION

Roll No.
B.Tech. (ENE)
(MARC H-2019)

ENE-306 HYDROLOGY \& GROUNDWATER ENGINEERING

Time : 1 Hour 30

Max. Marks : 25
Note: Answer all questions.
Assume suitable missing data, if any.

Q 1 Answer all the following questions:
(a) Explain a procedure for checking a rainfall data for consistency. 2
(b) Explain the types of Precipitation.
$\begin{array}{ll}\text { (c) Differentiate the } \phi \text {-index and } w \text { - index. } & 2 \\ \text { (d) } & 2\end{array}$
$\begin{array}{ll}\text { (d) Explain Rainfall -Runoff Correlation equation. } & 2\end{array}$
(e) Explain Flow Duration curve.

Q 2 Answer all the following questions:
(a) A catchment area has 7-stations in a year. The annual rainfall
recording by the gauges are follows:-

Station	P	Q	R	S	T	U	V
Rainfa ll (cm)	125	135.4	117	108.7	165.5	148.9	104.5

For a 8% of error in the estimation of mean rainfall calculate the minimum numbers of additional stations required to be establish in the catchment.
(b) A catchment area is in the form of a hexagon having sides 4 25 km . The hexagon having 7 rain gauge stations, 6 located at the vertices \& one in the centre, recording precipitation values as $15,25,39,45,55,61 \& 75 \mathrm{~cm}$ respectively. Determine the average precipitation in the catchment by Thiessen-Polygon method and also show your calculation in a tabular form.
Q 3 Answer all the following questions:
(a) Calculate the potential evapotranspiration from an area near 4.5
P.T.O.

New Delhi in the month
of November by Penman's formula:
The following data are available:-

| Latitude | $=28^{\circ} 5^{\prime} \mathrm{N}$ |
| :--- | :--- | :--- |
| Elevation | $=240 \mathrm{~m}$ |
| Mean Monthly temp. | $=20^{\circ} \mathrm{C}$ |
| Mean relative humidity | $=85 \%$ |
| Mean observed sunshine house | $=8.5 \mathrm{~h}$ |
| Wind Velocity at 2 m height | $=95 \mathrm{~km} /$ day |
| Nature of Surface | $=\quad$ bare land |

$$
\begin{aligned}
& \mathrm{A}=1.00 \mathrm{~mm} /{ }^{\circ} \mathrm{C} \\
& \mathrm{e}_{\mathrm{w}}=16.7 \mathrm{~mm} \text { of } \mathrm{Hg} \\
& \mathrm{Ha}=9.5 \mathrm{~mm} \text { of water/day }
\end{aligned}
$$

$$
N=10.75 \mathrm{hrs}
$$

(b) An isolated storm in a catchment produced a runoff of 4.2 cm .

The mass curve of the average rainfall depth over the catchment was as below:

Time from beginning of the storm (h)	0	1	2	3	4	5	6
Accumulated average rainfall (cm)	0	0.50	1.65	3.55	5.65	6.85	7.95

Calculate the ϕ index for the storm.

