Total Number of pages: 02

Roll No.

-208-

SIXTH SEMESTER

B.Tech. (ENE)

MID SEMESTER EXAMINATION

(MARCH-2019)

ENE-306 HYDROLOGY & GROUNDWATER ENGINEERING

Time : 1Hour 30

Max. Marks: 25

2

2

2

2

Note : Answer all questions. Assume suitable missing data, if any.

Q 1 Answer all the following questions:

(a)	Explain a procedure for	checking a rainfall data for consistency.	h
(h)	Explain the time of a	a rainan data for consistency.	2

- (b) Explain the types of Precipitation.
- (c) Differentiate the ϕ index and w- index.
- (d) Explain Rainfall Runoff Co-relation equation.
- (e) Explain Flow Duration curve.
- Q 2 Answer all the following questions:
 - (a) A catchment area has 7- stations in a year. The annual rainfall 3.5 recording by the gauges are follows:-

Station	Р	Q	R	S	Т	TI	X7
Rainfa ll(cm)	125	135.4	117	108.7	165.5	148.9	V 104.5
D	1 0						

For a 8% of error in the estimation of mean rainfall calculate the minimum numbers of additional stations required to be establish in the catchment.

- (b) A catchment area is in the form of a hexagon having sides 4 25km. The hexagon having 7 rain gauge stations, 6 located at the vertices & one in the centre, recording precipitation values as 15, 25, 39, 45, 55, 61 & 75 cm respectively. Determine the average precipitation in the catchment by Thiessen-Polygon method and also show your calculation in a tabular form.
- Q 3 Answer all the following questions:
 - (a) Calculate the potential evapotranspiration from an area near

4.5

P.T.O.

-208A

New Delhi in the month

of November	· by	Penman	s	formul	a:
-------------	------	--------	---	--------	----

The following data are available:-

Latitude	-	28°5	S'N	
Elevation	=	240	m	
Mean Monthly temp.		Ξ	20°C	
Mean relative humidity			=	85%
Mean observed sunshine ho	ouse		=	8.5h
Wind Velocity at 2m height		=	95kn	n/day
Nature of Surface		=		bare land
A = 1.00mm/ ^o C				
e _w = 16.7mm of Hg				
Ha = 9.5 mm of water	/day			

N = 10.75hrs.

(b) An isolated storm in a catchment produced a runoff of 4.2 cm. The mass curve of the average rainfall depth over the catchment was as below:

3 🅻

Time from	0	1	2	3	4	5	6
beginning of							
the storm (h)							
Accumulated	0	0.50	1.65	3.55	5.65	6.85	7.95
average							
rainfall (cm)							

Calculate the ϕ index for the storm.

-END-