PERSONAL PROPERTY.

ELECTRONICS AND COMMUNICATION DEPPT.

Sem-IV

MID SEMESTER EXAMINATION

March - 2019

Paper Code: EC 206

Communication Systems

Time : 1 hr 30 m

Max Marks: 20

Note:

Answer all the questions.

Assume suitable missing data if any.

Use of Scientific Calculator is permitted.

Q. 1

[2+3]

a) Find the convolution of two signals

 $s_1(t) = rect(\frac{t}{T}) \text{ and } s_2(t) = e^{-t} u(t)$

b) Show that Hilbert transform of the signal s (t) = rect (t/T) in given by $(1/\pi) \ln|(2t+T)/(2t-T)|$

Q. 2

[2+3]

a) Given FM and PM modulators with the following specifications

FM modulator

PM modulator

Deviation sensitivity K= 1.5 KHz/v

 $K_P = 0.75 \text{ rad/v}$

Carrier frequency f_c= 500 KHz

f_c= 500 KHz

Modulating signal m(t) = $2 \sin(2\pi . 2x10^3 t)$

 $m(t) = 2 \sin(2\pi . 2x10^3 t)$

- i) Determine the modulation index and sketch the output spectrums for both modulators.
- ii) Change the modulating signal amplitude for both modulators to 4V_P and repeat (i)
- iii) Change the modulating signal frequency for both the modulators to 1 KHz and repeat (i). From the above results comment on the spectrums of FM & PM.

Given

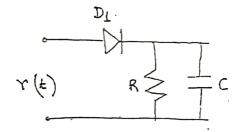
	•		
$J_0(1.5) = 0.5118$	J₁(1.5)= .5579	J ₂ (1.5)= .2321	J ₃ (1.5)= .0610
J ₄ (1.5)= 0.0118	J₅(1.5)= .0018	$J_6(1.5) = .0002$	J ₇ (1.5)= .0000
1 (2) 26			37(1.3)= .0000
J ₀ (3)=26	J ₁ (3)= .34	J ₂ (3)= .48	J₃(3)= .31
J ₄ (3)= .13	J ₅ (3)= .04	1-/2)- 01	
	-5(-)	$J_6(3) = .01$	$J_7(3) = .002$

Q.2

b) A modulating signal m (t) which is band limited up to W Hz is signal sideband modulated using a carrier signal $A_c cos \omega_e t$. Find the expressions for upper side band $u_{ussb}(t)$ and lower sideband $u_{lssb}(t)$. Suggest a scheme to generate $u_{ussb}(t)$. Show that $u_{ussb}(t)$ have both Amplitude modulation (AM) and phase modulation (PM).

Q.3

[3+2]


- a) How varacter diode can be used for FM modulation? Explain with a practical circuit. How balanced Discriminator can be used for FM demodulation? Give all the mathematical justifications.
- b) How AM modulated signals can be generated by means of switching modulator?

Q.4

[2+3]

- a) The received AM signal in absence of noise is given by
- $r(t) = A_c[1+am_n(t)] \cos 2\pi f_c t$.

Where $m_n(t)$ is the normalized message signal with bandwidth W is applied to the input of the demodulator circuit given below.

Determine the upper limit of RC to ensure that the capacitor voltage follows the envelope.

Q. 4

b) Derive the condition that must be satisfied by VSB filter in VSB modulator.