Total No. of Pages 02
FOURTH SEMESTER
MID SEMESTER EXAMINATION

Roll No.
B.Tech [EH]

March-2019

EC202 ANALOG ELECTRONICS

Time: 1:30 Hours
Max. Marks: 20
Note: Answer all questions. Assume suitable missing data, if any.
1 (a) A CE amplifier having load resistance $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\pi}=100 \mathrm{fF}$, $\mathrm{C}_{\mu}=20 \mathrm{fF}, \beta_{0}=100$ is biased at 1 mA . Using Miller theorem derive the expression for input impedance and compute the value of resistance and capacitance at the input of the transistor.
(b) For the circuit shown in Fig. 1 derive the voltage transfer function $\frac{V_{L}(s)}{V_{S}(s)}$ and draw Bode magnitude and phase plots if $\mathrm{L}=1 \mathrm{mH}$ and $\mathrm{R}=1 \mathrm{k} \Omega$.

Fig. 1

Fig. 2

2 (a) For the amplifier circuit shown in Fig. 2 derive the expression for lower cut off frequency.
P.T.O.
(b) An amplifier with mid-band gain of 200 and high frequency poles at 50 KHz and 4 MHz is connected in negative feedback loop with $\beta=0.02$ Calculate the closed loop gain and the upper cutoff frequency of the feedback amplifier.

3 Determine the upper cut off frequency for the cascaded amplifier showiC in Fig. 3 assuming dominant pole approximation is valid. Given that $\mathrm{C}_{\mathrm{gs} 1}=\mathrm{C}_{\mathrm{gs} 2}=250 \mathrm{fF}, \mathrm{C}_{\mathrm{gd1}}=\mathrm{C}_{\mathrm{gd} 2}=80 \mathrm{fF}, \mathrm{C}_{\mathrm{db} 1}=\mathrm{C}_{\mathrm{db} 2}=100 \mathrm{fF} ; \mathrm{Rs}=200 \Omega_{\mathrm{s}}$ $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{g}_{\mathrm{m}}=150 \mathrm{~S}$. Consider $\lambda=0$.

Fig. 3
4 (a) Derive the expression for input impedance of a series-series negative feedback amplifier.
(b) Derive relation for the transit frequency (f_{T}) of a MOSFET. If the minimum channel length of MOSFET is scaled from $1 \mu \mathrm{~m}$ to 65 nm then the overdrive voltage reduces from 400 mV to 100 mV due to inevitable reduction in power supply. By what factor the f_{T} of MOSFET increases?

