Total No. of Pages 2

SEMESTER-IV

Roll No.

B.Tech. (ECE)

MID SEMESTER EXAMINATION

(MAR. 2019)

EE-262 ELECTROMAGNETICS

Time: 1 Hour 30 Minutes

Max. Marks: 25

Note: Answer all questions. Assume suitable missing data, if any

Q1. (i) The circular current loop shown in Fig.1 is in the plane z = h, parallel to a uniform current sheet, $K=K_0\hat{a}_y$, at z=0.

(a) Express the force on a differential length of the loop.

(2)

(b) Calculate the total force on the loop.

(1)

Fig.1

(ii) If $A = \rho \cos \phi \ a_{\rho} + \sin \phi \ a_{\phi}$, evaluate $\oint A. \ dl$ around the path shown in Fig.2 below using Stoke's theorem. (2)

Fig.2

Q2. A spherically symmetric charge distribution is given by

$$\rho_{v} = \left\{ \begin{array}{l} \rho_{0} \left(1 - \frac{r}{a} \right)^{2}, r \leq a \\ 0, r \geq a \end{array} \right\}$$

- (i) Find E and V for $r \ge a$.
- (ii) Find E and V for $r \le a$.

. (2)

(iii) Find the total charge.

(1)

Q3.	. A unit normal vector from region 2 ($\mu = 2\mu_0$) to region 1 ($\mu = \mu_0$) is	
	$a_{n21} = (6a_x + 2a_y - 3a_z)/7$. If $H_1 = 10a_x + a_y + 12a_z$ A/m and	
	$H_2 = H_{2x}a_x - 5a_y + 4a_z$ A/m. Determine	
	$\begin{array}{ccc} \text{(i)} & H_{2x} \end{array}$	(2)
	(ii) The surface current density K on the interface.	(2) (2)
	(iii) The angles B ₁ and B ₂ make with the normal to the interface.	(1)
Q4.	A lossy dielectric has an intrinsic impedance of $200\angle 30^0\Omega$ at a particular radian frequency ω . If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component $H = 10e^{-\alpha x}\cos\left(\omega t - \frac{1}{2}x\right)a_y$ A/m. Find E and α . Also determine the	
	skin depth.	(5)
Q5.	In a nonmagnetic material, $E = 30 \cos(2\pi \times 10^8 t - 6x) a_y$ mV/m. Determine (i) the intrinsic impedance (ii) the Poynting vector (iii) the time- average power crossing the surface $x = 1$, $0 < y < 2$, $0 < z < 3$ m.	(1) (2) (2)