Total No. of Pages 2
SEMESTER -IV
MID SEMESTER EXAMINATION

Roll No.
B.Tech. (ECE)
(MAR. 2019)

EE-262 ELECTROMAGNETICS

Time: 1 Hour 30 Minutes
Max. Marks: 25
Note: Answer all questions. Assume suitable missing data, if any.

Q1. (i) The circular current loop shown in Fig. 1 is in the plane $z=h$, parallel to a uniform current sheet, $K=K_{0} \hat{a}_{y}$, at $\mathrm{z}=0$.
(a) Express the force on a differential length of the loop.
(b) Calculate the total force on the loop.

Fig. 1
(ii) If $A=\rho \cos \phi a_{\rho}+\sin \phi a_{\phi}$, evaluate $\oint A . d l$ around the path shown in Fig. 2 below using Stoke's theorem.

Fig. 2
Q2. A spherically symmetric charge distribution is given by

$$
\rho_{v}=\left\{\begin{array}{ll}
\rho_{0}\left(1-\frac{r}{a}\right)^{2}, & r \leq a \tag{2}\\
0, & r \geq a
\end{array}\right\}
$$

(i) Find E and V for $r \geq a$.
(ii) Find E and V for $r \leq a$.
(iii) Find the total charge.

Q3. A unit normal vector from region $2\left(\mu=2 \mu_{0}\right)$ to region $1\left(\mu=\mu_{0}\right)$ is $a_{n 21}=\left(6 a_{x}+2 a_{y}-3 a_{z}\right) / 7$. If $H_{1}=10 a_{x}+a_{y}+12 a_{z} \mathrm{~A} / \mathrm{m}$ and $H_{2}=H_{2 x} a_{x}-5 a_{y}+4 a_{z} \mathrm{~A} / \mathrm{m}$. Determine (i) $H_{2 x}$
(ii) The surface current density \mathbf{K} on the interface.
(iii) The angles B_{1} and B_{2} make with the normal to the interface.

Q4. A lossy dielectric has an intrinsic impedance of $200 \angle 30^{\circ} \Omega$ at a particular radian frequency ω. If, at that frequency, the plane wave propagating through the dielectric has the magnetic field component $H=10 e^{-\alpha x} \cos \left(\omega t-\frac{1}{2} x\right) a_{y} \mathrm{~A} / \mathrm{m}$. Find E and α. Also determine the skin depth.

Q5. In a nonmagnetic material, $E=30 \cos \left(2 \pi \times 10^{8} t-6 x\right) a_{y} \mathrm{mV} / \mathrm{m}$. Determine
(i) the intrinsic impedance
(ii) the Poynting vector
(iii) the time- average power crossing the surface $x=1,0<y<2,0<z<3 \mathrm{~m}$.

