
EMPIRICAL VALIDATION OF

OBJECT-ORIENTED METRICS FOR

IMBALANCED CLASSIFICATION USING OPEN

SOURCE SOFTWARE

By

JUHI JAIN
Roll No.: 2k16/Ph.D/CO/03

Under the guidance of
Prof. Ruchika Malhotra

Professor & Head of Department,
Department of Software Engineering

Submitted in fulfillment of the requirements of the degree of
Doctor of Philosophy to the

DELHI TECHNOLOGICAL UNIVERSITY

(FORMERLY DELHI COLLEGE OF ENGINEERING)
SHAHBAD DAULATPUR, MAIN BAWANA ROAD, DELHI 110042

2021



Copyright ©Nov, 2021
Delhi Technological University, Shahbad Daulatpur,
Main Bawana Road, Delhi 110042
All rights reserved



Declaration

I, Juhi Jain, Ph.D. student Roll No.: 2k16/Ph.D/CO/03, hereby declare that the thesis

entitled “Empirical Validation of Object-Oriented Metrics for Imbalanced Classifica-

tion using Open Source Software” which is being submitted for the award of the degree

of Doctor of Philosophy in Computer Science & Engineering, is a record of bonafide re-

search work carried out by me in the Department of Computer Science & Engineering,

Delhi Technological University. I further declare that the work presented in the thesis has

not been submitted to any University or Institution for any degree or diploma.

Date : 8-Nov-2021

Place : Delhi

Juhi Jain

erjuhijain@gmail.com

Roll No.: 2k16/Ph.D/CO/03

Discipline of Software Engineering,

Department Of Computer Science & Engineering,

Delhi Technological University (DTU),

New Delhi -110042





CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI - 110042

Date:

This is to certify that the work embodied in the thesis titled “Empirical Validation of

Object-Oriented Metrics for Imbalanced Classification using Open Source Software”

has been completed by Ms. Juhi Jain Roll No.: 2k16/Ph.D/CO/03 under the guidance of

Prof. Ruchika Malhotra towards fulfillment of the requirements for the degree of Doctor

of Philosophy of Delhi Technological University, Delhi. This work is based on original

research and has not been submitted in full or in part for any other diploma or degree of

any university.

Supervisor

Prof. RUCHIKA MALHOTRA

Professor & Head of Department

Department of Software Engineering

Delhi Technological University, Delhi 110042





“This thesis is dedicated to Three Musketeers of my Life: my

mother Smt. Jeevan Jain, my doting sister Mrs. Ritu Jain,

and my guide Prof. Ruchika Malhotra. ”





Acknowledgment

Working as a Ph.D. student in Delhi Technological University was a magnificent as well as

challenging experience to me. In all these years, many people were instrumental directly

or indirectly in shaping up the academic calendar. It was hardly possible for me to thrive

in my doctoral work without the support of these personalities.

First of all, I would like to thank my supervisor Prof. Ruchika Malhotra for intro-

ducing me to the world of Software Engineering. It was her valuable guidance, cheerful

enthusiasm, and ever supporting nature that pushed me to improve and complete my re-

search goals in a respectable manner. She always leaves a mark in her students’ hearts by

her incredible knowledge, hardwork, punctuality, dedication, credibility and never-give-up

attitude. I feel fortunate that she chose me as her student and guides me both personally

and professionally. Her unconditional support, valuable time and persistent encouragement

have been of inestimable value throughout my journey of research. I am forever indebted

to Ma’am for her endless patience and her innumerable lessons. I am grateful to her for

being a sturdy pillar that helped me complete my research work. I could not have imagined

having a better counsellor and mentor for my PhD study. I am blessed to have a guiding

light for my entire life in the disguise of my Ph.D guide.

I would like to convey my sincere thanks to Prof. Rajni Jindal, HoD, Department of

Computer Science & Engineering, Delhi Technological University for her valuable guid-

ance and encouragement while carrying out this research work.

I am grateful to DRC members, SRC members, Delhi Technological University and

other faculty members of the Department of Computer Science & Engineering, Delhi

Technological University for their help and cooperation while carrying out this research

work.

I would like to say a heartfelt thanks to my husband, Mr. Mitesh Jain who has been my

side throughout this PhD, living every single minute of it, for his encouragement, courage

and invaluable support during the course of my research work. All my love for my darlings



Vivaan and Arha for making my journey easy by adding their smiles and filling my life

with joy and happiness.

There are no proper words to convey my deep gratitude and respect for my parents Sh.

Raja Ram Jain, Smt. Jeevan Jain and my brother Sandeep Jain who are my constant

pillars of strength and support during all these years. My Ph.D journey is generously sup-

ported by my sister Ritu Jain, sister-in-law Parul Jain, and niece-cum-friends Anishka-

Mimansha. I can not be more grateful for their unwavering support for my decisions on

the turning points in life.

Lastly, my regards and appreciation to my parents-in-law Shri Shripal Jain, Smt.

Bimla Jain and my sisters-in-law Monika Jain, Dr. Manisha Gupta, and Ekta Gupta for

providing the emotional support and making it possible for me to complete what I started.

Thank you all for allowing me to chase my dreams and for being the part of this won-

derful journey.

Juhi Jain



Abstract

Software are an inextricable part of our lives. With the ever-growing complexity of soft-

ware, designing and integrating changes in these software is always a tedious task for devel-

opers and software practitioners. One of the prime concerns while implementing changes

is to maintain the quality of software products as there are fewer resources and rigid dead-

lines. If defects are uncovered in later stages of software development, the cost of detecting

and removing them amplifies exponentially. This may result in poor software development

processes and software quality degradation. With the constraints of strict time schedules

and limited resources, it becomes the utmost requirement of software developers and prac-

titioners to discover these defects early. Finding defects or faults in the early phases of

the software development life cycle leads to better planning and reduced cost, effort, and

resources [1].

Software metrics are widely used for generating defect prediction models. Different

object-oriented (OO) metrics define different internal attributes of the software like cohe-

sion, coupling, size, inheritance, encapsulation, etc. Therefore, these metrics are utilized

to envisage whether a software class can be defective or not [2, 3]. Selection of rele-

vant metrics aids in effective predictive modelling for finding defects. We evaluated the

correlation-based feature selection for identifying the important metrics that are related to

defect-prone areas in the software.

Various machine learning (ML) and statistical techniques have been used for develop-

ing prediction models to ascertain defect-proneness in the literature. We discovered a new

category of classification techniques, search-based techniques (SBTs), that is rarely used



in the Software Defect Prediction (SDP) domain. We assessed the effectiveness of ML

techniques and SBTs for developing models that predict defective classes in the OO soft-

ware. We further extended the use of genetic algorithm variants for feature selection and

performed the comparative analysis with Correlation Feature Selection (CFS).

One of the major issues that have been observed in software data is the imbalanced

data problem. If there is a fewer number of instances of one type of class than that of

another class, then data is said to have an imbalanced data problem. For our application,

if in software defective classes are less than non-defective classes, then it is said to be

imbalanced. We conducted a structured review to analyze the ways of tackling imbalanced

data problem for developing the defect prediction models. The review results will help in

identifying best practices and research gaps if any.

Imbalanced data problem can be treated either at the data level or algorithm level. At

the data level, we developed ML models using resampling methods to assess their impact

on defect-proneness. At the algorithm level, cost-sensitive learning is employed to tackle

the imbalanced data issue. The impact of different MetaCost learners was investigated for

optimum defect prediction in the software. Studies in literature have advocated the use of

ensemble methodology for various software prediction tasks. We evaluated the ensemble

methods after treating the data with resampling methods. The incorporation of resampling

methods will alleviate the imbalanced data problem resulting in better model prediction.

We assessed the effectiveness of OO metrics, ML techniques, SBTs, resampling meth-

ods, and MetaCost learners for developing SDP models.
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Chapter 1

Introduction

1.1 Introduction

With the emergence of the information age and ever-growing software, people are depen-

dent on software for day-to-day tasks in their life. Every software organization wants to

deliver reliable and good quality software with the least effort and time. Providing good

quality software is always a demanding task for software developers. For software quality

assurance, it is mandatory to plan software testing. With a large number of modules/classes

in software, it is not feasible to test every part of the code with constrained resources.

Luckily, software follows the Pareto principle [5]. This fact states that usually only 20%

of defective classes are responsible for all the defects in software. Hence, it is important to

identify these classes for proper resource utilization. Defect-prone classes need more re-

sources and more attention from developers. Early detection of the possibility of defective

classes assists in proper resource allocation ensuing in optimizing resource utilization and

increasing user satisfaction and software reliability [1].

The quality of software can be improved by mining existing software repositories for

various software attributes. Many studies in the literature have established a positive re-
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lationship between software metrics and predicting defects in the software. Software is

comprised of classes and classes can be defined by various OO metrics. The OO metrics of

software are good predictors for the development of defect prediction models.

Software quality is of utmost importance to the developer, software practitioner, man-

ager, or researcher. Software quality can be assessed by using internal attributes of software

[6]. According to the Institute of Electrical and Electronics Engineers (IEEE), software

quality is defined as [7] :

• The degree to which a system, component, or process meets specific requirements.

• The degree to which a system, component, or process meets customer or user needs

or expectations

According to [1], software quality determines the quality of design and the quality

of conformance. The design of the software should accommodate features for user satis-

faction with the minimum number of defects. Quality of conformance is evaluated by the

extent to which the software conforms to the developed design.

Software quality can be evaluated in terms of different quality attributes like functional-

ity, maintainability, reliability, etc. The focal point of this research work is defect proneness

or SDP.

1.2 Predictive Modelling

Predictive modelling a.k.a. predictive analytics is a widely used statistical technique to

create a process and validate a type of model that can help in forecasting future outcomes.

It is a data mining technique that helps one to answer the most frequent question of ”What

might happen in the future?” Predictive modelling refers to the construction of models for

determining any particular attribute. The scope of this predictive analysis doesn’t stop here,

it can be applied to any type of unknown event regardless of when it has occurred. They
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are designed in a way to access historical data, observe trends, discover data, customer

trends, and use such information to draw up prediction trends and their economic value.

For instance, if a bank wants to identify which of its customers are likely to engage in

large fragments of money laundering activities, predictive modelling provides the answer.

A predictive model is built using the bank’s customer data around the number of money

transfers that they made during a particular period. The model will be taught to identify the

difference between normal money transactions and money laundering. The model will be

made in a way as to report the bank for the occurrence of fraud by any of the customers.

Similarly, predictive modelling can be extended to any real-life application where we want

to predict or classify based on previous information.

1.2.1 Steps in Predictive Modelling

Steps followed in predictive modelling are illustrated in Figure 1.1 and explained below:

Figure 1.1: Steps in Predictive Modelling

1. Identifying Objective: The typical lifecycle involved in building a predictive model

start with identifying the objective for any application such as the risks, revenue,

fraudulent activities, defect, etc.
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2. Defining Research Questions (RQs): It is a crucial step to define the goals to

achieve the desired objective. In this step, research questions are formulated. A

particular process needs to be defined to answer these RQs.

3. Dataset Preparation: The model needs to be trained using previous data. This

data is collected in form of software metrics from the applications. In this step,

we perform data cleaning and data transformation to make data fit for good quality

prediction.

4. Handling Data Imbalance: Classification can be binary or multiclass depending

on the application. If one of the classes is in majority than other classes, there is

a requirement of application of imbalance learning method to balance the data. If

data is imbalanced, training of the model will be infelicitous resulting in inaccurate

predictions of the outcome.

5. Selection of Performance Measures: Performance measures are selected to evalu-

ate and compare the prediction models. These performance measures can be com-

puted using the confusion matrix obtained after the execution of the developed model.

For imbalanced data, stable measures like G-Mean, Balance, and Area Under Re-

ceiver Operating Characteristic Curve (ROC-AUC) should be exercised.

6. Model Development: The next step on the way to predictive modelling is model

development. For an effective model, several data analysis techniques are opted by

an organization. The model is trained using training data and a test dataset is used to

verify the outcomes of the model.

7. Model Validation: To build a sturdy model, the developed model is validated against

statistical tests.
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1.2.2 Issues in Predictive Modelling

One of the major issues faced by software practitioners is the lack of empirical evidence for

the quality and applicability of the proposed model. This makes the course of acceptance

of that method or technology challenging in the real software industry [8, 9]. Another

important concern in predictive modelling is the imbalanced data problem in real-world

problems. The problem of imbalanced data has gained more attention in the field of soft-

ware engineering recently because of its existence in some of the predominant software

quality attributes like defect prediction. Dealing with imbalanced data problem will help in

the development of a reliable model resulting in quality improvement and user satisfaction.

With such prominent challenges in mining software repositories, there is a need for the

development of new SDP models to anticipate the future defects [10].

1.2.3 Software Defect Prediction

The explosive growth in the availability and size of software data has led to the necessity

of effective software defect prediction models. Early identification of defective classes is

crucial for the project to be successful. It aids in software quality assurance by effective

resource allocation and accurate budget estimation. Software testing if not done compe-

tently can emanate defects in the software, ultimately raising the cost and other resource

requirements [11]. With the limited resources, SDP allows assigning these resources to

those portions of software that tend to embrace more defects. The SDP model can be

defined as a classification model that is used to spot defect-prone zones in the software.

SDP helps in prioritizing testing activities in the software. SDP models not only uncover

the probable defective classes but also helps in the assessment of the influence of various

software metrics on those defective classes. Many software industries like Google [12],

IBM [13], Microsoft Research [14] have reported that the insights provided by the adop-
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tion of SDP models are fruitful for the use of SDP models have assisted them in delivering

quality software products. SDP models target to either envisage the number of defects in

class or predict whether the class can be defective or non-defective. Accordingly, SDP

techniques can be categorized as regression or classification techniques. This work embod-

ies classification techniques only. As we need to predict whether the class is defective or

non-defective, SDP is considered a binary problem.

1.2.3.1 Predictive Modelling in SDP

The important lesson in predictive modelling for SDP is to learn from past mistakes. Or-

ganizations can be benefitted by keeping into consideration the defect data of previous

projects or previous versions of the project [15].

The technique is to plan, structure, and control a developing model in an organization.

The data that is put in the model needs to be balanced in a way as to the presence of the

defective and non-defective data in a balanced way to help develop a model that will be

efficient in a way as to help the organization grow and know more about the trends and

help remove defects.

Figure 1.2 provides the pictorial representation of the process followed in SDP through

predictive modelling.

The process can be broadly divided into three phases.

• Phase 1 Dataset Preparation: Software metrics are collected from the software

repositories for different classes and a defect label is assigned to each class. A class

can be defective or non-defective. Dataset preparation also includes the cleaning of

the data and the transformation of data. The quality of the model depends on the

quality of the data.

• Phase 2 Model Development: In this phase, data is split into a training set and

test set based on the cross-validation method. Data analysis techniques like machine
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Figure 1.2: Predictive Modelling in SDP

learning techniques, statistical techniques, or search-based techniques are selected

according to the nature of the data and used to train the model. The quality of the

constructed model is assessed by classifying the unseen data (test data) as defective

or non-defective.

• Phase 3 Model Validation: SDP models developed need to be evaluated based on

some criteria. Therefore, in this phase performance measures, e.g., accuracy, sensi-

tivity, precision, ROC-AUC, G-Mean, etc are selected and models are validated to

predict new defects. Statistical validation of results is essential to assure the fitness

of the SDP models. Hence statistical tests are carried out to validate the models.

1.2.4 Software Metrics

Many researchers make use of the static code attributes of software to build these SDP

models [3, 16]. Static code attributes are metrics that describe internal quality attributes of

software like size, complexity, cohesion, inheritance, etc. Metrics can be traditional metrics

derived from procedural language software or OO metrics derived from OO software. Pro-

cedural metrics are incapable of capturing the properties of OO software [17]. Further, with
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help of OO metrics, we can foretell defects in the early phases of the software development

lifecycle, e.g., design phase [18]. Since preferred languages by developers and software

practitioners are OO in nature, this thesis work focuses on OO metrics only for analyzing

defect-prone areas in OO software. Details of OO metrics are provided in subsection 1.4.1.

1.3 Imbalanced Data Problem and its Solutions

This section provides a gateway to the most common problem in the underlying data used

for model construction. Real-world data frequently face the data imbalance problem and

measures should be taken to alleviate this problem. The more the balance amongst the type

of classes, the better will be the prediction model trained on that data.

1.3.1 Imbalanced Data Problem

Many real-life problems like medical diagnosis [19, 20], fraud detection [21–23], text cat-

egorization [24, 25], sentiment analysis [26], and churn prediction [27] encounter imbal-

anced data problem. Imbalanced data represents the data in which instances recorded for

one (or more) class type is(are) in minority as compared to other class(es). There is uneven

distribution of instances of different classes. The focus of this thesis work is binary defect

classification. Data is considered imbalanced if the number of defective classes is much

lower than the number of non-defective classes. This imbalanced distribution of defect

data misguides classifiers while learning the defective class correctly and hence results in

biased and inaccurate results. With such imbalanced data defect predictors may be able

to classify non-defective classes rightly, but the same is not true for defective classes. For

example, let us assume a software has 1000 classes. If 10% of the total classes are de-

fective, then we have 900 non-defective classes and 100 defective classes. Now, even if

the classifier is not able to detect a single class as non-defective, still the accuracy of the
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classifier will be 90%. Defective classes are underrepresented and the model depicts good

accuracy. This situation is non-acceptable because the results are misleading. How can a

classifier be reliable when it is incompetent to predict a single defective class? Such models

that seem reliable due to their high accuracy, if implemented, will lead to huge monetary

loss to the company and will tarnish the company’s image. The scarcity of defective data is

responsible for inefficient learning of the model resulting in inaccurate model predictions.

A good defect prediction model will be the one that is trained on the similar distribution

of instances of defective and non-defective classes. Therefore, it is important to handle the

imbalanced data problem for building good quality SDP models and propose solutions to

diminish the skewness in the distribution of defective and non-defective classes.

1.3.2 Ways to alleviate Imbalanced Data Problem

Imbalanced data problem is identified as one of the major apprehensions in data mining

and several imbalance learning methods exist in literature to deal with this issue [28].

Imbalanced data problem can be handled at the following levels to treat the skewness

in data distribution [29]:

Alleviating Imbalanced Data Problem at Data Level

At the data level, modification in the number of data points corresponding to a partic-

ular class is done for the training set [30]. Instances of majority class can be removed or

instances of minority class can be added [31]. The former is referred to as undersampling

and the latter is termed as oversampling. Oversampling and undersampling methods collec-

tively are known as data resampling methods [32]. Oversampling may lead to overfitting

and undersampling tends to have a loss of information. Therefore, to decrease negative

effects and incorporate the benefits of both worlds, the combination of oversampling and

undersampling can also be used.

Alleviating Imbalanced Data Problem at Algorithm Level
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At the algorithm level, either a new algorithm is designed or existing algorithms are

exploited to reduce the bias generated by the imbalanced data. One of the most popular

solutions in this category is cost-sensitive classification. Classification is performed by

penalizing the misclassification costs in the cost matrix. The main objective is to reduce

the cost of wrong classifications for imbalanced data. Another effective way in this area

is the use of ensemble methods. Weak learners are grouped with aim of reducing variance

and bias. Several weak learners get transformed into a strong learner.

Alleviating imbalanced Data Problem using Hybrid Methods

Hybrid methods are generally an amalgamation of methods used at the data level and

algorithm level. Data resampling methods can be integrated with ensemble methods to

form more accurate and robust defect predictors.

In addition to this, the use of stable performance measures also assists in the develop-

ment of correct and credible defect prediction models [33].

1.4 Literature Survey

Software defect prediction is an essential part of software development and aids efficient

resource utilization. Researchers and software practitioners have been working hard to op-

timize the processes and other facets related to defect prediction. In real life, data is mostly

imbalanced. This aggravates the problem and should be maneuvered for construction of

reliable models. Therefore, it is crucial to conduct a comprehensive study of existing liter-

ature covering different elements and processes that require improvement. This would aid

in identification of research gaps and provides motivation to work on different aspects of

this area.

First, we discussed object-oriented metrics that are used to determine software defects.

Next, we discussed the literature studies conducted to construct defect prediction mod-

els with different data analysis techniques, feature selection techniques, and imbalanced
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data learning methods to analyze the current state of SDP. Studies that used feature se-

lection techniques to handle the curse of dimensionality are entailed in subsection 1.4.2.

Subsection 1.4.3 refers to SDP studies incorporating various machine learning methods.

With a recent inclination toward search-based techniques, work done in the SDP field us-

ing these techniques is also summed in subsection 1.4.4. Subsection 1.4.5 summarized the

defect-related studies that used resampling methods, cost-sensitive classification, ensemble

methods, and hybrid methods used to tackle imbalanced data problem.

1.4.1 Object-oriented Metrics

Object-oriented metrics define the internal attributes of the software and provide the context-

independent view of software quality. Internal quality attributes include cohesion, cou-

pling, inheritance, encapsulation, composition, complexity, etc. Assessment of OO metrics

guides to the evaluation of external software quality attributes. One of the early research

that established the relationship between metrics and defect-proneness was carried out by

Akiyama et al. [34]. Studies like [2, 35] have established a strong correlation between OO

metrics and SDP. They proved the effectiveness of Chidamber and Kemerer (CK) metrics

for software quality prediction.

Various OO metric suites have been proposed and explored by the researcher commu-

nity to capture the internal quality attributes of the software.

CK metric suite [36] is a collection of six metrics that includes Response For a Class

(RFC), Weight Methods per Class (WMC), Number Of Children (NOC), Coupling Be-

tween Object classes (CBO), Depth of Inheritance Tree (DIT), and Lack of Cohesion in

Methods (LCOM) metrics.

Quality Model for Object-Oriented Design (QMOOD) metrics suite is proposed by

Bansiya and Davis [37]. This metric suite includes Number of Methods (NOM), Data

Access Metric (DAM), Number of Polymorphic Methods (NOP), Design Size in Classes
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(DSC), Method of Functional Abstraction (MFA), Class Interface Size (CIS), Number of

Hierarchies (NOH), Direct Class Coupling (DCC), Cohesion among Methods of a Class

(CAM), Measure of Aggression (MOA), and Average Number of Ancestors (ANA).

Lorenz and Kidd [38] proposed the following OO metrics: Class Size metrics (CS),

Number of Operations (methods) Overridden by a subclass (NOO), Number of Operations

Added by a subclass (NOA), Number of Public Methods (NPM), and Specialization Index

(SIX).

Li and Henry [18] proposed coupling metrics and size metrics. Coupling metrics consist

of Data Abstraction Coupling (DAC), Message Pass Coupling (MPC), and NOM. Two size

metrics namely SIZE1 and SIZE2 were also part of this metric set.

Braid et al. [39] introduced 18 OO metrics covering majorly the coupling aspects of the

software.

Martin [40] also introduced two coupling metrics namely Afferent Coupling (Ca) and

Efferent Coupling (Ce).

Tang et al. [41] proposed Coupling Between Methods of a Class (CBM), Number of

Object/Memory Allocation (NOMA), Average Method Complexity (AMC), and Inheri-

tance Coupling (IC).

1.4.2 Feature Selection in Software Defect Prediction

A large number of metrics can hamper the defect prediction capabilities of ML models.

The reason is the presence of redundant or irrelevant metrics. This curse of dimensionality

can be reduced by using feature reduction strategies. This involves either feature selec-

tion–reducing the number of features, or feature extraction–extracting new features for

existing ones. Many feature selection (FS) techniques are assessed for the construction of

effective SDP models [42–45]. Malhotra in [46] has extensively investigated 18 ML tech-

niques using ROC-AUC over 33 open-source datasets by collecting their OO metrics. She
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selected relevant metrics using CFS and empirically proved that Naı̈ve Bayes, LogitBoost,

and Multilayer Perceptron built good SDP models. Zhou et al. [47] improved the defect

prediction by proposing the FS using a cascade of random forests which becomes a deep

forest. Xu et al. [48] inspected the effect of 32 FS techniques for the SDP problem on two

NASA datasets and one AEEEM dataset, and their result analysis shows that the effective-

ness of these FS methods on defect prediction performance varied significantly over all the

datasets. Mutukumaran et al. [49] performed an empirical investigation of an embedded

method, seven filter methods, and two wrapper methods and found their performances to

be equivalent. They considered NASA data and AEEEM data for their study. Moreover,

Laradji et al. [50] compared three FS techniques including CFS, and in their findings, they

concluded that the wrapper method- greedy forward selection (GFS) performed better than

the filter method- CFS. They used ROC-AUC as the performance measure. Ghotra et al.

[42] provided the benchmark for SDP using FS techniques. They evaluated the perfor-

mance of 21 ML techniques with 30 FS. They found that the CFS with the best first search

outperforms the other addressed feature selection techniques but they did not explore any

evolutionary methods. A review by Malhotra [51] has revealed that CFS is the most com-

monly used feature selection technique. Ghotra et al. [42] also explored 30 feature selection

techniques and concluded CFS as the best feature predictor. They used NASA datasets and

PROMISE datasets with 21 ML techniques. Balogun et al. [52] explored feature selection

and feature reduction methods for five NASA datasets over four ML techniques and exper-

imentally concluded that FS techniques did not show consistent behavior for the datasets

or ML techniques. Recently, Balogun et al. [53] empirically investigated the effect of 46

feature selection techniques over 25 datasets from different sources using Naı̈ve Bayes and

decision trees. Based on the accuracy and ROC-AUC performance, they also concluded

CFS as the best performer in the FSS category.
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1.4.3 Software Defect Prediction using Machine Learning Techniques

SDP has been always a hot research topic. Still, analysis of different studies projects the

incongruous interpretations [54].

ML techniques are commonly used to build effective defect prediction models [46, 55–

58]. Malhotra and Singh [55] used artificial neural networks, Logitboost, Adaboost, Naı̈ve

Bayes, Bagging, KStar, Logistic Regression, and Random Forest to predict defects using

ROC-AUC on the open-source dataset Arc. Logitboost was concluded as the best performer

with an ROC-AUC of 0.806. Lessman et al. [58] developed the SDP models for ten NASA

datasets and provided an empirical comparison of the performance of 22 ML techniques

based on ROC-AUC. Though model performances were considered good in terms of defect

prediction no statistical difference was found amongst the performance of a wide range of

ML techniques.

Bowes et al. [57] analyzed the performance of Naı̈ve Bayes, Random Forest, SVM,

and RPart on 12 NASA datasets, three commercial datasets, and three open-source datasets

(Ant, Tomcat, and Ivy) and calculated their effectiveness using f-measure and Matthew’s

coefficient of correlation. They found Random Forest as the best ML performer for defect

classification.

Iqbal et al. [56] evaluated the performance of Radial Basis Function Network, Naı̈ve

Bayes, Random Forest, KStar, K Nearest Neighbor, Multi-Layer Perceptron, Support Vec-

tor Machine, Decision Tree, PART, and One Rule over 12 NASA datasets based on accu-

racy, precision, recall, f–measure, Matthew’s coefficient of correlation and ROC-AUC but

they did not execute any statistical validation of their results. They suggested performing

feature selection for better and accurate predictions.
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1.4.4 Software Defect Prediction using Search-based Techniques

With many advantages like easy adaptations and computational efficiency, Harman [59]

advocated analyzing the suitability and applicability of evolutionary techniques in the field

of SDP. Though a lot of studies in the literature have explored the nature of machine learn-

ing techniques for predicting defects [51], comparatively very few studies exist using SBTs

in this direction to date. researchers are exploiting SBTs for feature extraction [60–63],

parameter optimization [63–68] and building defect prediction models [4, 69–71]. A lot of

recent work is done in direction of parameter tuning. In parameter optimization, for exam-

ple, Cai et al. [67] used a hybrid cuckoo search approach, and Wu et al. [68] proposed a

bat algorithm for parameter selection in support vector machine. Cai et al. [67] worked on

7 NASA datasets. But research studies in the other two domains are meager in number.

Singh et al. [70] interpreted the efficacy of gene expression programming for predict-

ing defective modules in industrial software. Carvalho et al. [69] introduced multiobjective

algorithmic solution for SDP. They developed multi-objective particle swarm optimization-

based defect prediction model. This rule-based model illustrated the best ROC-AUC values

for defect prediction in five NASA datasets as compared to the J48, Repeated Incremental

Pruning to Produce Error Reduction (RIPPER), and Non-Nested Generalization (NNge).

Rodriguez et al. [71] also proposed a genetic algorithm (Evolutionary Decision Rules for

Subgroup Discovery) to construct rules for identifying minority classes. Chatterjee et al.

[72] proposed a defect prediction model based on GA with a neuro-fuzzy approach to

predict defects in two continuous datasets whereas Manjula and Florence [73] exploited

GA for feature selection and classified defects in five NASA datasets by deep neural net-

works. Malhotra [4] has extensively analyzed 20 SBTs with their hybrid versions and

machine learning techniques on open source software for SDP and empirically concluded

that models developed using SBTs and their hybrid versions have the good and comparable

predictive capability for defect prediction.
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1.4.5 Software Defect Prediction using Imbalanced Learning Methods

In the last decade, researchers are inclined towards the building of SDP models with im-

proved data. By improved data, the emphasis is on handling the skewness of data.

Areas of SDP and software change prediction [74, 75] are explored to handle imbal-

anced data problem resulting in promising outcomes. Now, to solve this data imbalance

issue, a variety of resampling methods have been proposed in the literature. Oversam-

pling and undersampling methods are the most widely used methods for creating a balance

between defective and non-defective classes. Experimentation by Pelayo and Dick [76]

showed at least 23% improvement in G-Mean values for SDP when the oversampling tech-

nique SMT is used with a C4.5 decision tree classifier. Liu et al. [77] used a combina-

tion of oversampling and undersampling techniques for predicting software defects using

a support vector machine. The performance of developed models was evaluated using F-

Measure, G-Mean, and ROC curve. Kamei et al. [78] analyzed defect prediction power of

four linear and regression models in combination with resampling methods: SMT, Random

OverSampling (ROS), Random UnderSampling (RUS), and One Sided Selection (OSS) for

two industrial sets. Resampling of data shows improvement in linear discriminant analy-

sis and logistic regression analysis models using f-measure but no significant change was

observed in neural network and classification tree models when the resampling method

was incorporated with them. Khoshgoftaar and Gao [79] used the RUS method to handle

imbalanced data problem and also used a wrapper based feature selection technique for

attribute selection. They investigated four different scenarios of sampling techniques and

feature selection combinations to evaluate which model has better predictive capability in

terms of accuracy and ROC-AUC. Galar et al. [30] performed SDP for imbalanced data

using bagging–and boosting–based ensemble techniques with C4.5 as the base classifier.

The performance was evaluated using the ROC-AUC measure. Some other studies support

the application of resampling methods for handling imbalanced data issue [80–83]. Shat-
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wani [84] also performed an empirical comparison of defect prediction models built using

oversampling techniques with three different classifiers on the eclipse dataset. Shatnawi

[84] generated duplicate minority samples based on the number of defects and resulted in

outstanding performance for Naı̈ve Bayes, bayesian network, and k-nearest neighbor when

ROC-AUC was considered for model comparison. Wang and Yao [85] investigated ML

models built using five different resampling methods and their results support the use of

these techniques for imbalanced data handling. Seiffert et al. [82] tried to investigate the

effect of imbalanced data with seven resampling techniques and 11 machine learning al-

gorithms. They also used ROC-AUC for comparing the predictive capabilities of models.

RUS and Wilson’s editing performed better for the most of learners in their study. They

used a dataset written in ADA. Jindaluang et al.[86] proposed the undersampling technique

with the k- centers clustering algorithm which proves to be effective in terms of sensitivity

and F-measure, but they didn’t use any stable metric for imbalanced data like G-Mean or

ROC-AUC. Lingden et al. [87] have proposed a modified undersampling technique that

combines CFS, RUS, and decision forest that gives promising results. Recently, Bejjanki

et al. [88] used eight different classifiers namely AdaBoost, Decision Tree, Extra Tree,

Gradient Boosting, KNN, Logistic Regression, Naı̈ve Bayes, and Random Forest to build

SDP models with novel class reduction methods where new samples are generated by cal-

culating the centroids of the minority samples and evaluated based on accuracy, precision,

sensitivity, F-measure and G-Mean. Malhotra and Kamal [89] inspected the impact of over-

sampling techniques on ML models. They performed the extensive analysis by exploiting

12 benchmark NASA datasets with six oversampling techniques on five classifiers and ad-

vocated the usage of sampling techniques for better SDP. They demonstrated the improve-

ment in ML models with oversampling and proposed a new resampling method–SPIDER3.

Though many studies have been conducted, still there is no particular set of resampling

methods that can be considered the winner of all.

Cost-sensitive learning can be done either by assigning weights to minority samples or
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by penalizing wrongly predicted defective classes in the cost matrix. Rodriguez [83] per-

formed the empirical comparison of models constructed using C4.5 decision tree (J48) and

Naı̈ve Bayes with different resampling techniques, ensemble techniques (AdaBoostM1,

Bagging, and Random Forest), and Metacost learner (with cost = 10). They compared

performances based on MCC and ROC-AUC and found that ensemble-based models per-

formed better than meta cost learners for NASA datasets. Siers and Islam [90] designed

a reduced cost decision tree-based ensemble solution for SDP on six NASA datasets and

used weighted precision and sensitivity metrics. Arar and Ayan [64] exploited neural net-

works to predict defects in five NASA datasets. They trained their neural network using

False Negative Ratio (FNR) and False Positive Ratio (FPR) classification costs. Afterward,

Siers and Islam suggested a balanced cost framework to handle class imbalance as well as

cost sensitivity [91]. A balanced cost matrix was created using Standoff. Though the cost

was reduced, model performances were not evaluated based on any metrics like precision,

sensitivity, etc. Malhotra and Kamal [89] also explored the MetaCost learners with a cost

ratio of 10, 30, and 50 and evaluated performance based on ROC-AUC, sensitivity, and

precision.

Research studies are performed to explore the ensembles’ performance in predicting

software defects. A study by Galar et al. [30] performed an empirical comparison of RUS,

ROS, Synthetic Minority Over-sampling Technique (SMT), modified SMT, and selective

preprocessing of imbalanced data for bagging and boosting ensembles using C4.5 as the

base classifier. The performance was evaluated using the ROC-AUC measure. They advo-

cate the usage of ensemble classifiers for dealing with class imbalance problem. Peng et al.

[92] investigated ten imbalanced NASA datasets for defect prediction using ROC-AUC and

found that the C4.5 classifier with boosting provides comparably better results. Song et al.

[93] provided a comprehensive investigation to study the nature of SDP models for a wide

range of imbalanced datasets using Matthews’s correlation coefficient for eight resampling

based ensemble techniques over different classifiers. Similarly, Chen et al. [16] explored
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nine highly imbalanced data by constructing a model using random undersampling and

AdaBoost and compared performance with state of art models in terms of G-Mean and

ROC-AUC. They also considered class overlap problems. Most of the researchers have

exploited NASA datasets in this research direction.

1.5 Objectives of the Thesis

1.5.1 Vision

Improving software quality by tackling imbalanced data problem in open source software

using efficient models.

1.5.2 Focus

The focus of the work is to empirically evaluate and improve the SDP models. SDP models

are developed using OO metrics. In data analysis techniques, various ML techniques and

SBTs are explored. This thesis strives to understand different facets of the SDP field by

predictive modelling. The distinct work is done in direction of handling the skewness

in data. The confidence in results is ascertained by statistical methods. Thus, the study

explicitly investigates the following aspects to achieve the aforementioned vision:

1. To probe various OO metrics and establishing their association with SDP.

2. To envisage and ameliorate the efficacy of ML techniques for SDP by exercising

different resampling methods.

3. To investigate the efficacy of ensemble methods for SDP by exercising different re-

sampling methods.
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4. To examine the applicability of SBTs for effective model development to predict

defects.

5. To analyze the efficacy of SBTs with resampling methods for SDP.

6. To improve the SDP by using cost-sensitive classification.

7. To perform the comparative analysis of developed models with stable performance

measures.

8. To conduct statistical validation of developed models.

9. To anatomize the conduct of evolutionary techniques for effective feature selection.

1.5.3 Research Questions and Goals

The sorry state of empirical studies in the SDP field motivates us to define the following

research questions (RQ) and goals.

1.5.3.1 Research Questions

1. RQ1: What is the current state of software defect predictive modelling with imbal-

anced data?

2. RQ2: What is the comparative performance of various machine learning techniques

used for detection of defects in OO software?

3. RQ3: What is the predictive performance of various machine learning-based models

when resampling methods are used to handle skewness of data?

4. RQ4: What is the predictive performance of various machine learning-based models

with cost-sensitive classification?
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5. RQ5: What is the predictive performance of various ensembles and hybrid methods

for effective defect classification?

6. RQ6: How effective are search-based techniques for model construction in the SDP

domain?

7. RQ7: What is the predictive performance of various search-based models when re-

sampling methods are used to handle imbalanced data problem?

8. RQ8: Do the SDP models with machine learning techniques perform better when

relevant metrics are selected by an evolutionary technique instead of correlation-

based filter method?

1.5.3.2 Goals

A summary of the goals investigated to corresponding RQ in this work is provided below:

1. Performing Literature Review on Imbalanced Software Defect Prediction for Quality

Improvement

• Study of existing literature studies will help to understand the issues faced in

predicting defects with the aim of software quality improvement in imbalanced

data.

• Survey will give the insight to which imbalance learning methods are generally

addressed by researchers when they tend to envisage future defects.

• With the gaining popularity of search-based strategies in SE, this survey will

also focus on finding the extent of researchers’ inclination towards search-based

defect predictive modelling.

• It will abridge the ML techniques and search-based techniques that are used for

SDP in the imbalanced data domain.
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• Extensive study of existing literature will guide software practitioners in devis-

ing out potential solutions to the problem faced in mining software defects for

assessing the ongoing software projects.

• Exhaustive analysis of present studies will reveal the feature selection tech-

niques, performance measures, statistical tests, and tools used in them.

• Survey will help to identify the problem areas and gaps in the existing literature.

2. Exploration of Machine Learning Techniques for Prediction of software defects

• To empirically validate the association between OO software metrics and defect

proneness.

• To compare the performance of different ML techniques in predicting defects

by experimental analysis.

• To analyze the potential of compared ML techniques using appropriate statisti-

cal tests.

• To engage stable performance measures like G-mean, Balance, and ROC-AUC

owing to the imbalanced nature of the data.

3. Investigation of resampling methods with ML techniques to improve defect predic-

tions.

• To empirically assess the effect of oversampling and undersampling methods in

building better defect prediction models using ML techniques.

• To cater to the imbalanced data problem by balancing defective and non-defective

classes at the data level.

• To determine which data resampling method performs statistically better than

others.
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4. Examination of cost-sensitive classification and ascertain their effectiveness for de-

veloping SDP models.

• To develop SDP models using MetaCost learners and detect future probable

defects.

• To alleviate the data imbalance problem by balancing defective and non-defective

classes at the algorithm level.

• To determine statistically whether the defect prediction models built based on

cost sensitivity are better defect predictors.

5. Assessment of ensemble methods and hybrid methods for effective SDP.

• To construct robust and reliable defect prediction models with ensemble meth-

ods.

• To analyze the impact of ensemble methods with resampling methods to reduce

the imbalanced data problem in the SDP field.

• To statistically assess the capability of ensemble methods in tackling imbal-

anced data problem with help of statistical methods.

6. Exploration of search-based techniques for detection of defects in OO software.

• To validate the competency of search-based techniques for uncovering unseen

software defects.

• To empirically evaluate the impact of search-based techniques in SDP model

construction.

• To determine which search-based technique performs statistically better than

the others.
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7. Investigation of resampling methods with search-based techniques for improved de-

fect prediction.

• To empirically gauge the usefulness of oversampling and undersampling meth-

ods in building the defect prediction models using search-based techniques.

• To conduct an extensive empirical investigation and analyze whether developed

models are efficacious in handling imbalanced data problem or not.

• To determine which data resampling method performs statistically better than

others in constructing SDP models with search-based techniques.

8. Exploration and assessment of evolutionary techniques for determining important

and relevant features of the software.

• To evaluate the fitness of evolutionary techniques for feature selection.

• To develop SDP models based on features selected by variants of genetic al-

gorithm and empirically compare them with correlation feature selection based

models.

• To determine statistically which of the feature selection techniques under con-

sideration is responsible for constructing the best SDP models.

1.6 Organization of the Thesis

This section presents the organization of the thesis. Chapter 1 presents the basic intro-

duction of the work and the motivation of the thesis. Chapter 2 introduces the current

trends and research gaps by conducting a systematic review of existing studies in the field

of SDP. In the presence of systematic literature reviews for SDP, we were motivated to

explore SDP studies tackling the imbalanced data problem. Chapter 3 expounds on the
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research methodology adopted to achieve the goals. Chapter 4 deals with the construc-

tion of SDP models using resampling methods for improved software quality. Chapter 5

presents cost-sensitive classification to alleviate data imbalance problem. Chapter 6 ex-

plores ensemble methods and hybrid methods in developing SDP models for imbalanced

data. Chapter 7 analyzes the applicability of search-based techniques for developing SDP

models. Chapter 8 extends the effectiveness of SBTs by involving resampling methods to

tackle the imbalanced nature of underlying data. Chapter 9 ascertains the importance of

feature selection and analyzes the appositeness of evolutionary techniques for better defect

prediction. Chapter 10 states the conclusion of the thesis.

Figure 1.3 presents an overview of the work accomplished in this thesis.

Chapter 1: This chapter presents the basic concepts of software quality and software

defect prediction. It describes the steps in predictive modelling and the SDP process. It

provides objectives and an overview of the work performed in this thesis.

Chapter 2: This chapter includes a comprehensive systematic literature review of SDP

studies conducted from 2000 to 2020 that address the data imbalance problem. RQs are

formulated and studies are summarized to provide insights to datasets, feature selection

methods, cross-validation methods, classification techniques, imbalance learning methods,

performance measures, statistical tests, and tools used in these 48 studies. Further, research

gaps are ascertained to provide future directions.

Chapter 3: This chapter entails the research methodology adopted in this thesis. It pro-

vides a brief description of datasets, independent variables, and feature selection methods

used in this work. It also summarizes the cross-validation method, classification tech-

niques, and imbalance learning methods employed to construct the SDP models in this

thesis. Further performance measures used to evaluate the models and statistical tests ap-

plied to validate these models are also included.

Chapter 4: In this chapter SDP models are constructed using 15 ML techniques- Naı̈ve

Bayes (NB), Logistic Regression (LR), Simple Logistic (SL), LogitBoost (LB), multi-
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Figure 1.3: An Overview of the Thesis Work

layer perceptron (MLP), K-Nearest Neighbor1 (IBk), K-Nearest Neighbor2 (KStar), Adap-

tive Boosting AdaboostM1 (ABM1), Bagging (Bag), Iterative Classifier Optimizer (ICO),

Logistic Model Tree (LMT), Random Tree (RT), RandomSubSpace (RSS), Partitioning

(PART), and J48 on 12 datasets. As all these datasets were imbalanced, resampling meth-

ods comprising of oversampling and undersampling methods were used to tackle this prob-

lem. (i) Oversampling methods include Adaptive Synthetic Sampling (ADSYN), SMT,

Safe Level Synthetic Minority Over-sampling Technique (SLSMT), Selective Preprocess-
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ing of Imbalanced Data (SPD), ROS, and Agglomerative Hierarchical Clustering (AHC).

(ii) In undersampling methods, RUS, Condensed Nearest Neighbor+Tomek’s modification

of Condensed nearest Neighbor (CNNTL), Neighborhood Cleaning Rule (NCL), and OSS

were used to balance the data. Stable performance measures were used to develop and

compare the models. This study also establishes the relationship of OO metrics with the

defect proneness of the class.

Chapter 5: This chapter examines the effect of cost-sensitive classification in solving

the data imbalance problem. Three datasets are explored with different MetaCost learners

and models are developed using the J48 and ensemble methods (ABM1, Bag, RSS). Model

comparison is performed using stable performance measures.

Chapter 6: Empirical validation of ensemble methods for constructing effective SDP

models is executed in this chapter. The study is based on the datasets derived from 15

OO projects. Ensemble methods includes classic ensemble methods (AdaBoost (AB), Ad-

aBoostNC (ABNC), ABM1, Bag), resampling based boosting ensemble methods (Data-

Boost(DB), MSMOTEBoost (MSMTB), RUSBoost (RUSB), SMOTEBoost (SMTB)), and

resampling based bagging ensemble methods (MSMOTEBagging (MSBAG), OverBag-

ging (OBAG), OverBagging2 (OBAG2), SMOTEBagging (SMTBAG), UnderBagging (UBAG),

UnderBagging2 (UBAG2), UnderOverBagging (UOBAG), IIvotes (IIVOT)).

Chapter 7: This chapter investigates the applicability of SBTs for constructing SDP

models. Very few studies exist in the literature exploiting the SBTs, therefore this study

verifies the germaneness of SBT for SDP. This objective is achieved by using 13 datasets

and 16 SBTs. SBTs include Bioinformatics-oriented hierarchical evolutionary learning

(BIOHEL), Recombination and Cataclysmic Mutation Adaptative Search for Instance Se-

lection (CHC), CO-Evolutionary Rule Extractor (CORE), Constricted Particle Swarm Op-

timization (CPSO), Genetic Algorithm based Classifier System with Adaptive Discretiza-

tion Intervals (GA ADI), Genetic Algorithm based Classifier System with Intervalar Rule

(GA INT), Generational Genetic Algorithm for Instance Selection (GGA), Incremental
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Learning with Genetic Algorithms (ILGA), Linear Decreasing Weight - Particle Swarm

Optimization (LDWPSO), Memetic Pittsburgh Learning Classifier System (MPLCS), Population-

Based Incremental Learning (PBIL), Real Encoding - Particle Swarm Optimization (REPSO),

Steady-State Genetic Algorithm for Instance Selection (SGA), Supervised Inductive Al-

gorithm (SIA), sUpervised Classification System (UCS), and X-Classifier System (XCS).

Stable performance measures and appropriate statistical tests are used for results verifica-

tion.

Chapter 8: This chapter proposes the SDP framework to empirically evaluate the SBTs

with resampling methods. This study engages ADSYN, SMT, SLSMT, SPD, ROS, CN-

NTL, RUS, NCL, and OSS for dealing with imbalanced data and uses eight SBTs namely

GA INT, MPLCS, UCS, BIOHEL, GA ADI, XCS, CPSO, and LDWPSO. The chapter

evaluates the obtained results using stable performance measures (G-Mean, Balance, and

ROC-AUC) and non-parametric statistical tests.

Chapter 9: Further exploiting the SBTs, this chapter tests the applicability of SBTs-

GGA and SGA for feature selection. We conducted an empirical comparison of defect pre-

diction models developed using 13 datasets and 15 ML techniques when feature selection

is done using GGA, SGA, and CFS. 15 ML techniques used are NB, LR, SL, LB, MLP,

IBk, KStar, ABM1, Bag, ICO, LMT, RT, RSS, PART, and J48. Performance of models

is assessed with help of G-Mean, Balance, and ROC-AUC. Statistical tests- Friedman test

and Wilcoxon-signed rank test are employed to validate the results.

Chapter 10: This chapter summarizes the conclusion of the work performed and enlists

some directions for future work.
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Chapter 2

Systematic Review on Imbalanced

Software Defect Prediction

2.1 Introduction

With the advent of software in day-to-day life, the reliability, and quality of the software

are of utmost importance. Their ever-growing size multifold the problem of delivering

effective and good quality software. The software cannot be completely defect-free and

only small portions of software code are responsible for the majority of the defects. Find-

ing and correcting these defects is time-consuming as well as a resource-draining process.

SDP aids in uncovering these potential defects in the software during the early stages of its

development. Defects discovered in the early stages consume fewer resources. By identify-

ing the probable defective areas, manpower and cost budgets can be scheduled accordingly.

Hence, with a powerful and correct software defect prediction model we can make good

quality software with optimum resource utilization [1]. The capability of SDP models is

largely affected by the nature of data. The results of good SDP models can be undepend-

able if the data on which they are trained are imbalanced. Imbalanced defect data is the data
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that have unequal distribution of defective and non-defective classes. A model trained with

the majority of non-defective classes is likely to predict any class as non-defective only.

This problem is referred to as the data imbalance problem. Most of the real-world data are

imbalanced by their inherent nature and the problem is highly presiding in the SDP domain

[94]. This necessitates the incorporation of effective solutions for data imbalance problem

while constructing SDP models. The data imbalance problem has motivated researchers to

propose solutions to alleviate it resulting in better and sound defect prediction models. As

solving the data imbalance problem in the SDP area is an emerging field, therefore, it is

vital to conduct a review of work done till now to comprehend the related accomplishments.

Catal [95] reviewed SDP studies from 1990 to 2009 and found only two studies that

struggled with the data imbalance issue. The detailed insights are provided on class im-

balance learning by Haixiang et al. [96] in 2017 but they performed the generic review

revolving around imbalanced studies in a wide range of domains including chemical en-

gineering, biomedical engineering, financial management, and information technology ap-

plications. They covered studies published in 2006-2016 and included only three papers

related to imbalanced data problem in the SDP domain. The recent survey embarking on

signs of progress in the SDP domain is conducted by Li et al. [60]. They included eight

SDP studies proposing solutions to imbalanced data problem in the short period of January

2014- April 2017. The most recent survey on imbalanced data is conducted by Kaur et al.

[97]. Though published in 2019, a meager number of SDP related studies are included in

that survey. The authors identified 11 applications facing imbalanced data challenges but

surprisingly, SDP was not able to take its place there.

This current state of the challenging imbalanced data problem in the SDP domain mo-

tivated us to conduct a review that systematically addresses this issue. The purpose of

this review is to summarize the related work accomplished till now. Unlike previous re-

views, this review is an attempt to provide a wider picture to the researchers regarding the

proposed solutions to imbalanced data problem in SDP with the compilation of datasets,

30



Review Process

metrics, classification techniques, validation methods, performance measures, and statisti-

cal tests addressed in them.

The chapter is organized as follows: Section 2.2 addresses the review process and re-

search questions. Section 2.3 entails the review protocol and Section 2.4 scribes the primary

studies identified in this systematic review. Further, Section 2.5 provides detailed answers

to RQs. At last, Section 2.6 identifies the research gaps and brings forth future directions.

The results of the chapter are presented in [98].

2.2 Review Process

The conduct of review follows the directions provided by Kitchenham et al. [99]. The

review is carried out in three phases:

1. Plan the review: This includes identification of the need for the review, designing

of the RQs, and establishing the review protocol. Review protocol aims to carefully

design the search string, inclusion-exclusion criteria, and quality question question-

naire.

2. Conduct the review: In this phase, a search string is formed to get the related studies.

Inclusion-exclusion criteria and quality assessment questionnaire are used to filter

out irrelevant and ineffective studies. Afterward, data is extracted and synthesized

from the relevant studies to answer the RQs.

3. Report the review: The results of the review are portrayed with help of line charts,

tables, and bar graphs.

The need for review, as mentioned in the Introduction section, is to abridge the imbal-

anced learning methods provided for SDP till now. The current literature lacks the review

addressing this issue, particularly in the SDP application area. This review will project
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the future directions in this area and acquaint developers, software practitioners, and re-

searchers with the recent trends followed in the field. The following research questions are

designed to accomplish the required objectives:

• RQ1: Which imbalanced datasets are used in SDP studies?

• RQ2: What are the different feature selection methods used in imbalanced SDP stud-

ies?

• RQ3: Which cross-validation techniques are involved in building SDP models for

imbalanced data?

• RQ4: Which classification techniques are used in imbalanced SDP studies?

• RQ5: What are the different solutions proposed to solve the data imbalance problem

in SDP?

• RQ6: Which performance measures are used in the analysis of SDP models gener-

ated with imbalanced data?

• RQ7: Which statistical tests are used for result validation in imbalanced SDP studies?

• RQ8: Which tools are used by researchers to assist in building effective imbalanced

SDP models?

The answers to these RQs will certainly assist developers to employ the appropriate

metrics, cross-validation, imbalance learning solutions, classification techniques, perfor-

mance evaluators, and statistical tests for SDP model construction while dealing with im-

balanced data.
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2.3 Review Protocol

Review protocol sets the rules for the selection of primary studies for the survey. The

studies are searched in the period from January 2000 to September 2020 and carefully

chosen using a three-level selection procedure.

2.3.1 Three-level selection procedure

1. Level 1 Selection: It requires constituting the search string for the problem. Initially,

an informal search was made using strings like software defect OR bug OR fault

prediction in imbalanced data, class imbalance problem in software defect OR bug

OR fault prediction. The studies emerged as the outcome of these strings helped to

design the formal search string. All the synonyms for the imbalanced, software, de-

fect, prediction, classification techniques are considered. Next, the following string

is formed with the help of Boolean AND and Boolean OR connectors.

( “undersampling” OR “oversampling” OR “resampling” OR “sampling” OR “cost

sensitive” OR “cost-sensitive” OR “hybrid” OR “ensemble” OR “hybrid” OR “bal-

ancing” OR “imbalance”) AND (“software” OR “software quality” OR “open source”

OR “datasets” OR “system” OR “software quality”) AND (“defect” OR “fault” OR

“bug” OR “defective”) AND ( “prediction” OR “proneness” OR “classification” OR

“impact” OR “classifier” OR “empirical” OR “learning”) AND ( “machine learning”

OR “learning” OR “statistical” OR “search based” OR “search-based” OR “evolu-

tionary”)

The search was performed on distinguished digital libraries like IEEE Explore, ACM,

Wiley, Springer, Science Direct, and SCOPUS.

2. Level 2 Selection: At level 2 of study selection, we need to formulate the inclusion-
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exclusion criteria for the selected studies in level 1.

Inclusion Criteria: The empirical studies on software defect prediction dealing with

class or data imbalance issue in machine learning are included. The studies that

compare two or more classification techniques are included. We included studies

that compare two or more solutions for the data imbalance problem in SDP. All the

empirical studies that provide at least a way of handling data imbalance problem us-

ing machine learners, statistical classifiers, search-based techniques, or evolutionary

techniques are included as well. We manually screened the selected papers by first

examining the abstract and conclusion. If required, the entrails of the studies were

also inspected.

Exclusion Criteria: We excluded the review studies done in the area. Studies that

do not hold any empirical evidence or are based on any learning paradigm other

than supervised learning like [100] are excluded. Cross-project studies were also

discarded. We excluded change-based studies like [74, 75] that were selected at

Level 1 as we need to address defects not change in the software. We excluded

studies that do not consider software engineering or NASA datasets like [30, 101].

Based on these inclusion and exclusion criteria, studies were selected prudently.

3. Level 3 Selection: Now, we need to compose the quality questions so that the papers

selected at Level 2 can be judged against their importance. Quality check of Level-2

papers is completed by filling its questionnaire. Three possible values for a particular

question is ‘Yes’, ‘No’, ‘PARTLY’ and their corresponding values are ‘1’, ‘0’, and

‘0.5’ respectively. The studies with a quality score of less than 50% were dropped.

The decision regarding the quality of the paper is taken by both authors. At any point

of disagreement, the final value is assigned only after qualitative and quantitative

discussion among them.
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2.3.2 Designing Quality Questions

The quality questions are designed to select relevant studies required to seek answers to

RQs. Therefore, RQs guide to making quality questions. The higher the quality score of

the paper, the higher will be the relevance of the paper concerning the survey. We identified

11 quality questions to evaluate the goodness of the paper. These quality assessment criteria

are listed in Table 2.1. Both the authors addressed these questions separately. The sum of

their scores for each study was averaged and assigned as its quality score. The studies

whose mean quality score was less than 5.5 were rejected.

Table 2.1: Quality Assessment Questions

S.No. Question Yes Partly NO

1 Are the research questions clearly determined?

2 Are the dependent and independent variables properly specified?

3 Does the study states the imbalance ratio in datasets properly?

4 Is the related work clearly stated in the paper?

5 Does the study states experimental settings clearly?

6 Does the study performs the comparative analysis amongst classifica-

tion techniques?

7 Are the solutions for data imbalance problem described properly?

8 Has the study used an appropriate statistical test?

9 If more than one solution is carried out for the data imbalance problem,

does the study comparatively analyzed their performance?

10 Are the performance measures that are used to compare models for the

imbalanced data stated clearly?

11 If feature selection is done, does the study report selected features prop-

erly?

2.3.3 Data Extraction and Synthesis

Once the primary studies are finalized, it is important to organize the information retrieved

from them in a structured manner. For this purpose, we designed data extraction forms.

Data extraction forms hold related information in several fields including authors, the title

35



Primary Studies of the Review

of the paper, year of publication, name of journal/conference, datasets, classification tech-

nique(s), data imbalance problem solutions, performance measures, statistical tests, and

feature selection technique(s). These data extraction forms are filled disjointedly by the

authors for all the primary studies. Next, data collected in forms is required to be synthe-

sized. The analysis of forms is performed individually by authors and the answers to RQs

are framed collectively with discussion. At any point of disagreement, the concerned RQ

is responded only after qualitative and quantitative discussion among them.

2.4 Primary Studies of the Review

Following the rigorous process of implementing review protocol by [99], we determined

and shortlisted the most relevant studies for our survey. After executing this step, we recog-

nized 48 literature studies as primary studies. Table 2.2 enlists the primary studies with their

unique identifier. The studies are associated with an imbalance problem in SDP. Therefore

they are prefixed with “IS” denoting “Imbalanced Study” before its numeric value.

Table 2.2: Primary Studies scrutinized for the survey

PS Identifier Name Reference PS Identifier Name Reference

IS1 kaminsky2004 [102] IS25 xiang2017 [63]

IS2 pelayo2007 [76] IS26 shatnawi2017 [103]

IS3 riquelme2008 [80] IS27 akour2017 [104]

IS4 khoshgoftaar2009[79] IS28 yang2017 [105]

IS5 pelayo2012 [81] IS29 yohannese2017 [106]

IS6 shatnawi2012 [84] IS30 ibrahim2017 [107]

IS7 gao2012 [108] IS31 bennin2017 [109]

IS8 wang2013 [85] IS32 song2018 [93]

IS9 wahono2013 [110] IS33 chen2018 [16]

IS10 liu2014 [111] IS34 kalsoom2018 [112]

IS11 rodriguez2014 [83] IS35 huda2018 [113]

IS12 seiffert2014 [82] IS36 mousavi2018 [114]

IS13 li2014 [115] IS37 miholca2018 [116]

IS14 wahono2014a [117] IS38 suntoro2018 [118]
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PS Identifier Name Reference PS Identifier Name Reference

IS15 wahono2014b [119] IS39 lingden2019 [87]

IS16 laradji2015 [50] IS40 khuat2019 [120]

IS17 hussain2015 [121] IS41 balogun2019b [122]

IS18 siers2015 [90] IS42 alsaeedi2019 [123]

IS19 arar2015 [64] IS43 cai2020 [67]

IS20 jing2016 [124] IS44 pan2019 [125]

IS21 wu2016 [126] IS45 maruf2019 [127]

IS22 bennin2016 [128] IS46 bejjanki2020 [88]

IS23 li2016 [129] IS47 bal2020 [130]

IS24 siers2016 [91] IS48 pandey2020 [131]

Figure 2.1: Year-wise Publication Trends

The year-wise publication of primary studies is represented in Figure 2.1. Though work

geared up from 2014,the striking interest of the researchers for handling data imbalance is

conspicuous since 2017.

It is worth noting from Figure 2.2 that 26.5% of studies were published in reputed

conferences whereas 73.5% of primary studies were issued in the journals.

Figure 2.2: Venue-wise Primary Studies distribution
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Table 2.3 accords the top five venues of publication of primary studies. None of the

conferences was able to acquire any of the top five positions.

Table 2.3: Top Journal/Conference Venues of Publication

Identifier Name %age of IS IS
J1 IEEE Transactions on Reliability 8.2% IS10, IS47, IS5, IS8
J2 Information and Software Technology 4.1% IS16, IS28
J3 IEEE Transactions on Software Engineering 4.1% IS20, IS32
J4 Advanced Science Letters 4.1% IS14, IS15
J5 Information Sciences 4.1% IS12, IS37

2.5 Review Results and Discussion

2.5.1 Results specific to RQ1

From 2000 to 2020, researchers have exploited a wide range of datasets for model valida-

tion while tackling the data imbalance issue. Datasets used in the selected primary studies

are of varied size with different imbalance ratios. The primary studies have used either

open-source or proprietary software. Approximate 94% of studies have used open-source

software. Proprietary software are used only by three studies [79, 82, 108].

The categorization of datasets used in the primary studies is represented in Table 2.4.

Table 2.4: Datasets Used in the Primary Studies

Datasets PS Identifier Count %age

NASA IS1, IS2, IS3, IS4, IS5, IS8, IS9, IS10, IS11, IS13, IS14, IS15, IS16, IS18,

IS19, IS20, IS21, IS23, IS24, IS25, IS27, IS29, IS30, IS33, IS34, IS35,

IS36, IS38, IS39, IS41, IS42, IS43, IS48

33 68.8%

Apache IS16, IS17, IS20, IS26, IS31, IS32, IS34, IS37, IS39, IS40, IS41, IS44,

IS45, IS46, IS47

15 31.25%

Eclipse IS6, IS23, IS28, IS32, IS39 5 10.42%

Mozilla IS5, IS28, IS39 3 6.25%

SOFTLAB IS20, IS37 2 4.17%

Other OSS IS4, IS7, IS12, IS17, IS20, IS22, IS28, IS31, IS39, IS45 7 14.6%

Proprietary IS4, IS7, IS12 3 6.3%
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Open-source software: These software are publicly available and have open access to

all. Many software repositories provide metric details at the class level or method level for

these software. In the primary studies, the majority of the datasets were downloaded from

the PROMISE repository. The open-source software can be subcategorized as:

• NASA datasets: The most popular datasets are extracted from the NASA MDP pro-

gram and are available on PROMISE repositories. 68.8% of primary studies have

exploited NASA datasets to build SDP models. 32 out of 48 studies used NASA

datasets. Different datasets used from NASA are CM1, JM1, AR1, AR3, AR4, AR5,

AR6, KC1, KC2, KC3, MW1, MC2, PC1, PC2, PC3, PC4, and PC5.

• Eclipse: Eclipse is the toolset for software management. Metric details of Eclipse

software can be accessed by the AEEEM repository. The Eclipse software used in

the studies are JDTCore, platform, PDE UI, and IDE. Five primary studies making

10.42% of the total studies used these datasets.

• SOFTLAB: Datasets from SOFTLAB are available on the PROMISE repository.

These datasets are extracted from the embedded goods manufacturing system. Five

datasets used from SOFTLAB in primary studies are AR1, AR3, AR4, AR5, AR6.

IS37 used all these five datasets whereas IS20 used three datasets- AR3, AR4, AR5.

• Apache: Apache software used in the primary studies are HTTP Server, Ant, Camel,

Ivy, Synapse, Lucene, Mylyn, Poi, Velocity, Xerces. HTTP server data is available

on ReLink, Lucene and Mylyn are accessible at AEEEM; while the rest of Apache

software are available on the PROMISE repository.

• Mozilla: Mozilla-delta is used in IS5. Mozilla is also used in IS28 and IS39.

• Other OSS: There are some other open-source software used in 14.6% of studies.

Examples of such datasets are- learning, Forrest, Zuzel, Berek, Pbean, OpenIntents
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Safe ZXing, equinox, Clam Antivirus, eCos, Helma, NetBSD, OpenBSD, OpenCms,

OpenNMS, Scilab, Spring, Kalkulator, Nieruchomosci, Prop, Bugzilla, Columba,

and PostgreSQL software.

Proprietary software: Proprietary software are industry-specific. This category of soft-

ware cannot be used without the consent of the company or organization that owns it. Only

6.3% of primary studies used proprietary software. Four datasets corresponding to large

legacy telecommunications software system (LLTS) are used in IS4 and IS7. Another soft-

ware that is used by IS12 is CCCS and it is the military control and communication system.

Figure 2.3 shows the graphical representation of the imbalanced datasets used with

respect to the percentage of the studies.

Figure 2.3: Imbalanced Datasets used for constructing SDP models

Table 2.5 depicts the languages in which the discussed software are written. The ma-
jority of the studies exploited project metrics for the JAVA and C software. 81.25% of the
primary studies used JAVA projects and 72.92% of studies used C projects. C++ projects
are used in 27 studies out of total studies.

40



Review Results

Table 2.5: Languages of the Software used in the Primary Studies

Language PS Identifier Count %

C IS1, IS2, IS3, IS4, IS5, IS8, IS9, IS10, IS11, IS13, IS14, IS15,

IS16, IS18, IS19, IS20, IS21, IS22, IS23, IS24, IS25, IS27,

IS29, IS30, IS33, IS34, IS35, IS36, IS37, IS38, IS39, IS41,

IS42, IS43, IS48

35 72.92%

Protel IS4, IS7 2 4.17%

C++ IS2, IS3, IS5, IS8, IS9, IS11, IS13, IS14, IS15, IS16, IS18,

IS19, IS20, IS22, IS23, IS27, IS29, IS33, IS34, IS35, IS36,

IS38, IS39, IS41, IS42, IS43, IS48

27 56.25%

JAVA IS2, IS3, IS6, IS8, IS9, IS10, IS11, IS13, IS14, IS15, IS16,

IS17, IS18, IS19, IS20, IS22, IS23, IS24, IS26, IS28, IS29,

IS31, IS32, IS33, IS34, IS35, IS36, IS37, IS38, IS39, IS40,

IS41, IS42, IS43, IS44, IS45, IS46, IS47, IS48

39 81.25%

ADA IS12 1 2.08%

Figure 2.4 illustrates that there is a single study that used a project in Ada language and

only two studies used a project in Protel language. This is due to the fact that these projects

belong to the proprietary category and are closed source software.

Figure 2.4: Languages of software used in Primary Studies
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2.5.2 Results specific to RQ2

With the plethora of metrics, it becomes difficult to develop effective SDP models. The

more the number of metrics, the more will be the training time required by the model.

Additionally, metrics can be redundant or irrelevant. Redundant metrics may increase bias.

Therefore, it becomes important to apply some feature reduction techniques to scrutinize

important features. This RQ addresses whether the primary studies for imbalanced SDP

employed feature reduction techniques or not. If applied, then which feature reduction

techniques are used? As depicted in Figure 2.5, only 40% of studies have used the reduced

set of features.

Figure 2.5: Feature Reduction

Table 2.6 summarizes the primary studies in which feature selection is done or not done.

A total of 19 studies used feature reduction techniques while the remaining 29 studies did

not perform this step during model development.
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Table 2.6: Feature Reduction in Primary Studies

Feature Reduc-

tion

PS Identifier Count %

Done IS4, IS7, IS9, IS10, IS14, IS16, IS17, IS19, IS20, IS25, IS26,

IS28, IS29, IS30, IS34, IS36, IS37, IS38, IS39

19 39.60%

Not Done IS1, IS2, IS3, IS5, IS6, IS8, IS11, IS12, IS13, IS15, IS18,

IS21, IS22, IS23, IS24, IS27, IS31, IS32, IS33, IS35, IS40,

IS41, IS42, IS43, IS44, IS45, IS46, IS47, IS48

29 60.40%

Next, we explored the different feature reduction techniques involved in the primary

studies. Broadly, the feature reduction or dimensionality reduction techniques can be di-

vided into feature selection and feature extraction.

1. Feature Selection: Feature selection methods tend to select the features that add the

most information to classify the defects in the model. To accomplish this task, fea-

tures election techniques can be further divided into two subcategories:

• Filter Methods: Features are selected irrespective of the model using scoring

methods and are robust to overfitting. Ten different filter methods are used in

the considered studies for imbalanced SDP. CFS and Information Gain are the

most popular among them. 14 studies used the filter methods and details are

provided in Table 2.7.

• Wrapper Methods: Different subsets of features are tested against the classifi-

cation technique and features that generate the best model are selected. In this

category, selected studies have used either machine learning or evolutionary

techniques. Three evolutionary techniques: Genetic Algorithm, Particle Swarm

Optimization (PSO), and Bat algorithm are used in primary studies to select im-

portant features. IS14 and IS25 used a genetic algorithm to generate the subset

of features. Details are in Table 2.7.
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2. Feature Extraction: Instead of selecting features, original features are transformed

into new features. These derived features led to more accurate prediction models with

less training time and reduced overfitting risk. In the primary studies, only two papers

exploited feature extraction techniques. IS19 used Principal Component Analysis

which is unsupervised feature extraction. IS34 used supervised feature extraction

with Fisher’s Linear Discriminant Analysis.

3. Others: IS10 selected relevant features by cost-sensitive approach. IS26 exploited

AUC values to generate the useful subset of features and proposed the AUCThresh-

olding method for feature selection. IS17 simply selected CK metrics of the projects

and build SDP models based on them. IS28, unlike other studies, chose change met-

rics as features for model development.

Table 2.7: Distribution of Feature Reduction Techniques in the Primary Studies

Feature

Reduction

Method Technique

Feature

Selection

Filter Chi-square (IS7, IS26, IS37), CFS (IS16, IS19, IS36, IS39), Information Gain

(IS7, IS19, IS26, IS29), Average Weight Information Gain (IS38), Fisher’s Crite-

rion (IS16), Forward Feature Selection (IS26), Gain Ratio (IS7), Greedy Forward

Selection (IS16), ReliefF (IS7), Symmetrical Uncertainty (IS7)

Wrapper Support Vector Machine (IS4), Particle Swarm Optimization (IS9), Genetic Al-

gorithm (IS14, IS25), Bat Algorithm (IS30), Forward Feature Selection (IS25),

Backward Feature Elimination (IS25)

Feature

Extraction

Supervised Fisher Linear Discriminant Analysis (IS34)

Unsupervised Principal Component Analysis (IS19, IS20)

Others Cost-sensitive (IS10), CK metrics (IS17), AUCThresholding (IS26), Change

metrics (IS28)
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2.5.3 Results specific to RQ3

It is important to incorporate a cross-validation method to evaluate how well the machine

learning or other classification technique generalizes the unseen data. Cross-validation

reduces the bias and variance of the model. 22.9% of studies did not report the validation

method used. Figure 2.6 depicts the validation methods used with the number of studies.

The cross-validation methods employed in the primary studies are represented in Table 2.8

and can be categorized as below:

• k-fold cross-validation: In k-fold cross-validation, the dataset is divided into k parti-

tions. One partition acts as testing data and the remaining partitions act as training

data. This process is repeated k times and finally, performance values are averaged.

87% of primary studies have used k- fold cross-validation. researchers have used its

three versions: ten-fold, five-fold and 20-fold. In these versions also, few researchers

have used either stratified or repeated forms of validation. Stratified ten-fold cross-

validation is done by IS2, IS9, IS14, IS15, IS16, and IS24. Repeated ten-fold cross-

validation is employed in IS12, IS23, IS26, IS32, and IS44.

Figure 2.6: Validation methods used in Primary Studies
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Table 2.8: Cross-validation Methods used in the Primary Studies

Cross-validation PS Identifier Count %

ten-fold cross-

validation

IS2, IS3, IS5, IS6, IS8, IS9, IS10, IS12, IS14, IS15, IS16,

IS17, IS19, IS22, IS23, IS24, IS26, IS27, IS28, IS29, IS30,

IS31, IS32, IS41, IS42, IS44, IS45, IS46, IS48

29 60.42%

five-fold cross-

validation

IS4, IS11, IS35 3 6.25%

20-fold cross-

validation

IS21, IS33 2 4.17%

Hold-out cross-

validation

IS36, IS38 2 4.17%

Leave-one-out

cross-validation

IS37 1 2.08%

• Hold-out cross-validation: In hold-out cross-validation, data is partitioned into two

subsets. The larger subset is used for training the model and the smaller subset is

used as a training subset. IS36 employed an 80:20 ratio and IS38 performed stratified

hold-out validation with a 70:30 ratio.

• Leave-one-out (LOO) cross-validation: It works similar to k-fold cross-validation

with k=1. Only one of the primary studies (IS37) has used this validation method.

As depicted by Table 2.8, the most stable cross-validation method is ten-fold cross-

validation. Dividing data into 10 parts results in unbiased prediction, unlike hold-out cross-

validation. LOO cross-validation is also not preferred by the software community because

it is very time consuming for mid-sized or large projects.

2.5.4 Results specific to RQ4

Various classification techniques have been proposed in the literature for accurate predic-

tions in SDP considering the imbalanced nature of datasets. These techniques exploit static

features of the datasets and establish their relationship with the dependent variable defect.
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The earliest study that we found in this area was conducted by Kaminsky and Boetticher

[102]. They used the data equalization term for data balancing. The original KC2 dataset

contained 379 samples (after data preprocessing) whereas the equalized dataset had 3013

samples and Genetic Programming (GP) was used to test their performance.

Ma et al. [132] suggested using G-Mean and F-measure for evaluating SDP models

based on imbalanced data. They also experimentally shown that the defects in the large

imbalanced datasets can be correctly detected by balanced random forests (RF).

Based on the primary studies, classification techniques are divided into following cate-

gories:

• Statistical Techniques

• Instance based learning

• Bayesian Learning

• Tree based Learning

• Ranking based Learning

• Support Vector Machines (SVM)

• Neural Networks (NN)

• Rule based Learning

• Extreme Learning

• Evolutionary Learning

• Hybrid Learning
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Figure 2.7: Taxanomy of Classification Techniques used in Primary Studies

This taxonomy of classification techniques with their subcategories (techniques used in

a particular category) is hierarchically presented in Figure 2.7.

Table 2.9 mentions the techniques used in the primary studies within the identified

categories of SDP.

A lot of techniques are applied in the literature. In statistical techniques, LR is used

maximum in 14 studies. Other statistical techniques used for assessing the predictive
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capability are Linear Discriminant Analysis (LDA), FISHER, LR, SL, sparse represen-

tation classifier (SRC), Stochastic Gradient Descent (SGD), collaborative representation

classifier based software defect prediction (CSDP), Least Angle Regression (LARS), Rel-

evance Vector Machine (RVM), Negative Binomial Regression (NBR), Linear classifier

based on principle component analysis (PCLD), Quadratic discriminant classifiers (QDC),

Linear discriminant classifiers (LDC), Quadratic classifier with regularization parameter

(QUADRC), Subspace classifier (SUBC), and Karhunen Loeve Decomposition (KLLD).

In instance-based learning, researchers have majorly built models using K-Nearest

Neighbor (KNN), KStar, Nearest Mean Classifier (NMC), Scaled Nearest Mean Classifier

(NMSC), and Immunos.

Table 2.9: Distribution of Classification Techniques used in Primary Studies for Imbal-
anced SDP

Classification

Category

Technique used

Statistical LDA (IS9, IS14, IS28), FISHER (IS36), LR (IS9, IS12, IS14, IS16, IS20, IS22, IS23,

IS25, IS26, IS32, IS41, IS42, IS44, IS46), SL(IS13, IS17, IS19, IS36), SGD (IS16),

SRC (IS21), CSDP (IS21), LARS (IS22), RVM(IS22), NBR (IS23), PCLD (IS36), QDC

(IS36), LDC (IS36),QUADRC (IS36), SUBC (IS36), KLLD(IS36)
Instance based 1NN (IS6, IS12, IS27, IS36), 5NN (IS6, IS7, IS12, IS26, IS32, IS34, IS36), 10NN (IS36),

KNN(IS9, IS13, IS14, IS22, IS31, IS40, IS41, IS46, IS48), KStar (IS9, IS14, IS22, IS30),

NMC (IS36), NMSC (IS36), Immunos (IS19)
Bayesian Learn-

ing

NB (IS3, IS6, IS9, IS11, IS12, IS13, IS14, IS17, IS19, IS21, IS25, IS26, IS27, IS28, IS30,

IS32, IS34, IS36, IS38, IS41, IS43, IS44, IS46, IS48), Multinomial NB (IS16), Bernoulli

NB (IS16), BN (IS6, IS27, IS40, IS41), UDC (IS36), Parzen (IS36)
Tree-based C4.5 (IS2, IS3, IS5, IS9, IS11, IS12, IS13, IS14, IS17, IS18, IS19, IS24, IS25, IS26, IS27,

IS28, IS29, IS31, IS32, IS36, IS40, IS41, IS44, IS46, IS48), M5 (IS22), RPART (IS22,

IS23), PART(IS27, IS48), RF (IS8, IS9, IS12, IS14, IS16, IS19, IS20, IS21, IS23, IS27,

IS30, IS31, IS32, IS35, IS39, IS41, IS42, IS43, IS44, IS45, IS46, IS48), CART (IS9,

IS14), SysFor (IS18, IS24), DT (IS27), RT(IS27, IS41), LMT (IS41), DS (IS42, IS48),

C5.0 (IS45), ET (IS46)
Ranking-based LTR (IS23), VFI (IS27), TS3WD (IS23)
Evolutionary GP (IS1), AIRS (IS19), GA (IS36)
SVM SVM (IS4, IS7, IS9, IS12, IS13, IS14, IS16, IS18, IS20, IS21, IS28, IS31, IS32, IS34,

IS36, IS40, IS42, IS48), LibSVM (IS9), W-SVM (IS16), SMO (IS17, IS27)
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Classification

Category

Technique used

Neural Networks NN (IS6, IS15, IS19, IS20, IS22, IS28, IS31, IS34), BPNN (IS9, IS10, IS14, IS36),

MLP (IS12, IS30, IS37, IS40, IS45, IS48), RBFN (IS12, IS36, IS37, IS44), VP (IS17),

PERL(IS36), LMNC (IS36), NEURC(IS36)
Rule-based RIPPER (IS12, IS32, IS45, IS48), FURIA (IS30), ZeroR (IS34)
Extreme Learn-

ing

WRELM (IS47)

Hybrid NBTree (IS27), BART (IS23), HYGRAR(GRAR+NN) (IS37), HMOCS-US-SVM (IS43)

In Table 2.9 1NN represents KNN with K=1, 5NN denotes KNN with K=5, 10NN sig-

nifies KNN with K=10. KNN in Table 2.9 denotes the studies that used the KNN technique

but did not report the value of K.

From Bayesian learning, studies have used NB, Multinomial NB, Bernoulli NB, Bayesian

Network (BN), Uncorrelated normal densities based quadratic Bayes classifier (UDC), and

Parzen Window Classifier (Parzen).

Tree-based classifiers used in primary studies include C4.5 or J48, M5, PART, Recur-

sive Partitioning (RPART), RF, Classification and Regression Tree (CART), Decision Table

(DT), RT, LMT, Decision Stump (DS), C5.0, and Extra Tree (ET).

Ranking-based techniques involved learning to rank (LTR), Voting Features Interval

(VFI), and three-way decisions based two-stage ranking method (TS3WD).

SVM is also one of the most frequently used machine learning techniques in research

studies. Its variants include LibSVM, W-SVM, and Sequential Minimization Optimization

(SMO).

Researchers have applied NN for defect prediction. Its variants cover Back Propagation

Neural Network (BPNN), MLP, Radial basis Function Network (RBFN), Voted Perceptron

(VP), Linear perceptron classifier with batch processing (PERL), Levenberg-Marquardt

feed-forward neural network (LMNC), Automatic Levenberg-Marquardt feed-forward neu-

ral network classifier (NEURC).

Six studies have also investigated rule-based classifiers like RIPPER, Fuzzy Unordered
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Rule Induction Algorithm (FURIA), and Zero Rule (ZeroR). In these classifiers, RIPPER

is used in four primary studies.

Recently, Bal and Kumar [130] have tried extreme learning for predicting defects in im-

balanced datasets. They used a weighted regularization extreme learning machine (WRELM)

to achieve the purpose.

Similarly, evolutionary techniques are also emerging solutions for effective defect pre-

diction. We found three studies that used GP, Artificial Immune Recognition System

(AIRS), and Genetic Algorithm (GA) for the early detection of defects.

Hybrid techniques are a combination of two or more techniques. Primary studies have

used Bayesian Additive Regression Trees (BART), NBTree, HYGRAR, and HMOCS-US-

SVM.

Table 2.10 summarizes the top 5 techniques that are used in literature. C4.5 is the most

widely used classification technique. It is used in 52% of total studies. NB, RF, SVM, and

KNN are also amongst the preferred techniques in the literature.

Table 2.10: Top five Classification Techniques used in the Primary Studies

Classification

Techniques

PS Identifier Count %

C4.5 (IS2, IS3, IS5, IS9, IS11, IS12, IS13, IS14, IS17, IS18, IS19,

IS24, IS25, IS26, IS27, IS28, IS29, IS31, IS32, IS36, IS40,

IS41, IS44, IS46, IS48

25 52.08%

NB IS3, IS6, IS9, IS11, IS12, IS13, IS14, IS17, IS19, IS21, IS25,

IS26, IS27, IS28, IS30, IS32, IS34, IS36, IS38, IS41, IS43,

IS44, IS46, IS48

24 50.00%

RF IS8, IS9, IS12, IS14, IS16, IS19, IS20, IS21, IS23, IS27, IS30,

IS31, IS32, IS35, IS39, IS41, IS42, IS43, IS44, IS45, IS46,

IS48

22 45.8%

SVM IS4, IS7, IS9, IS12, IS13, IS14, IS16, IS18, IS20, IS21, IS28,

IS31, IS32, IS34, IS36, IS40, IS42, IS48

18 37.5%

KNN IS6, IS7, IS9, IS12, IS13, IS14, IS22, IS26, IS27, IS31, IS32,

IS34, IS36, IS40, IS41, IS46, IS48

17 35.4%
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2.5.5 Results specific to RQ5

With the uneven distribution of defective and non-defective classes in the projects, the

model prediction results may not be accurate. Therefore, it is recommended to incorporate

some ways to tackle this issue. This RQ reflects the ways that are proposed to handle the

imbalanced data problem in the SDP field. Figure 2.8 illustrates the usage of different

imbalance learning techniques in the SDP literature.

Figure 2.8: Imbalanced Learning Methods proposed in the Primary Studies

Imbalanced Learning Methods used in primary studies are stated in Table 2.11 and are

enumerated below:

1. Resampling Methods: The most commonly used imbalance learning techniques by

the researchers in SDP are resampling methods. 56.25% of primary studies have

explored this method. Resampling methods tackle the data imbalance problem at the

data level.
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Table 2.11: Study-wise Imbalanced Learning Methods in literature

Imbalanced

Learning Meth-

ods

PS Identifier Count %

Resampling IS1, IS2, IS3, IS4, IS5, IS6, IS8, IS11, IS12, IS13, IS20, IS22,

IS25, IS26, IS29, IS30, IS31, IS32, IS34, IS35, IS39, IS40,

IS41, IS42, IS43, IS44, IS46

27 56.25%

Ensemble IS8, IS9, IS11, IS13, IS14, IS15, IS16, IS17, IS20, IS21, IS27,

IS29, IS30, IS32, IS35, IS36, IS40, IS45, IS46, IS48

20 41.67%

Cost-sensitive IS8, IS10, IS11, IS19, IS20, IS21, IS23, IS24, IS32, IS38, IS47 11 22.92%

Hybrid IS7, IS11, IS13, IS18, IS28, IS32, IS33, IS36, IS43, IS48 10 20.83%

Resampling methods can be further recognized as:

• Oversampling methods: The minority samples (defective classes) are increased

to create a balance between minority and majority classes. Out of 48 stud-

ies, 23 studies have used oversampling methods to alleviate the data imbalance

problem.

• Undersampling methods: Some of the majority samples (non-defective classes)

are removed so that the datasets have an almost equal number of samples of

both classes. Out of 48 studies, 15 studies have used undersampling methods to

alleviate the data imbalance problem.

• Underover resampling methods: This subcategory involves both undersampling

and oversampling methods to balance the data. Hence, it includes the benefits

of undersampling as well as oversampling methods. IS5 and IS32 have used the

amalgamation of these methods.

This categorization with PS identifiers is provided in Table 2.12.
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Table 2.12: Category-wise Distribution of Resampling and Hybrid Methods in Pri-
mary Studies

IL Meth-

ods

Subcategory PS Identifier Count %age

Resampling

method

Oversampling IS1, IS2, IS3, IS5, IS6, IS8, IS11, IS12,

IS13, IS20, IS22, IS25, IS26, IS29, IS30,

IS31, IS32, IS34, IS35, IS41, IS42, IS44,

IS46

23 47.9%

Undersampling IS3, IS4, IS5, IS8, IS11, IS12, IS20, IS22,

IS26, IS31, IS32, IS39, IS40, IS41, IS43

15 31.3%

Underover resampling IS5, IS32 2 4.2%

Hybrid

Method

oversampling + ensemble IS11, IS13, IS32, IS36, IS48 5 10.4%

undersampling + Ensem-

ble

IS7, IS11, IS28, IS32, IS33, IS43 6 12.5%

underover + ensemble IS32 1 2.1%

Cost-sensitive + ensemble

+ oversampling

IS18 1 2.1%

useofstablemetric IS37 1 2.1%

2. Ensemble methods: Multiple classifiers are combined to produce better prediction re-

sults than any single model. 41.67% of primary studies have used ensemble methods

in imbalanced SDP.

3. Cost-sensitive based models: In this method, we deal with imbalanced data problem

at the algorithm level. Predictions are improved by exploiting the misclassification

costs. 11 studies have employed cost-sensitive learning for solving data imbalance

issue.

4. Hybrid methods: This includes designing models by merging any two or more imbal-

ance learning methods. Researchers have used oversampling+ensemble, undersam-

pling+ensemble, underoversampling+ensemble, and cost-sensitive+ oversampling+ensemble

methods. Primary studies that employed these hybrid methods can be referred to

from Table 2.12.
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2.5.6 Results specific to RQ6

Once the models are constructed, one needs to evaluate the performance of them. For this

purpose, many performance measures are evaluated by the researcher community so that

correct and reliable assessments can be executed. Various performance measures used in

the primary studies are scribed in Table 2.13. Graphical representation of measures used is

provided in Figure 2.9 for easy interpretation. It represents the percentage of studies that

employ a particular measure.

Figure 2.9: Performance Measures used in the Primary Studies

Table 2.13: Performance Measures used in the Primary Studies

Performance

Measures

PS Identifier Count

ROC-AUC IS3, IS4, IS6, IS7, IS8, IS9, IS11, IS12, IS13, IS14, IS15,

IS16, IS17, IS19, IS20, IS21, IS22, IS26, IS27, IS29, IS30,

IS31, IS33, IS34, IS35, IS36, IS37, IS38, IS41, IS42, IS45,

IS48

32

Sensitivity IS10, IS13, IS17, IS18, IS19, IS20, IS21, IS27, IS31, IS33,

IS34, IS35, IS36, IS37, IS40, IS42, IS43, IS46

18

F-measure IS11, IS17, IS20, IS21, IS22, IS23, IS27, IS28, IS34, IS35,

IS39, IS40, IS42, IS44, IS46, IS48

16
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Performance

Measures

PS Identifier Count

G-Mean IS2, IS8, IS16, IS22, IS31, IS33, IS36, IS43, IS45, IS46 10

Accuracy IS4, IS10, IS13, IS19, IS29, IS35, IS42, IS46 8

Precision IS18, IS27, IS34, IS37, IS40, IS42, IS46 7

FPR IS19, IS20, IS21, IS31, IS33, IS36, IS43 7

Balance IS8, IS19, IS31, IS36 4

Cost IS10, IS18, IS24, IS28 4

MCC IS11, IS32, IS44, IS48 4

Specificity IS37, IS46 2

PRC IS4, IS48 2

Standard Error IS1, IS45 2

Kappa Statistic IS5 1

Coverage IS23 1

AAE IS47 1

AM IS4 1

CV IS41 1

G-measure IS44 1

ARE IS47 1

FNR IS35 1

NECM IS19 1

Fault-Percentile-

Average

IS23 1

The most widely used performance measure for SDP with imbalanced data is the ROC-

AUC. Two-third of the total studies have considered ROC-AUC for model assessment.

Figure 2.9 shows the performance measures used in terms of the percentage of imbalanced

SDP studies. 37.5% of studies employed sensitivity and 33.3% of studies exploited f-

measure for imbalanced defect classification.

Researchers also used G-Mean, accuracy, precision, FPR, Balance, cost, Matthew’s

Correlation Coefficient (MCC), specificity, and Precision-Recall Curve (PRC).

Some other measures are used by only a single study amongst all studies under con-

sideration like Standard Error, Kappa Statistic, Coverage, Average Absolute Error (AAE),

Arithmetic Mean (AM), coefficient of variation (CV), G-measure, Average Relative Error
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(ARE), FNR, Normalized Expected Cost of Misclassification (NECM) and Fault-Percentile-

Error. The performance measures that are used only in one study are clubbed together and

denoted as others in Figure 2.9.

2.5.7 Results specific to RQ7

Statistical Tests are important to quantify the reliability of the results. Statistical validation

enhances confidence in the conclusions of the research. Table 2.14 shows whether the study

supported statistical validation or not. Only 58.33% of studies have conducted statistical

tests to strengthen their results.

Table 2.14: Statistical Validation in the Primary Studies

Statistical Test PS Identifier Count %

NO IS2, IS3, IS10, IS13, IS16, IS17, IS18, IS22, IS24, IS25, IS27,

IS29, IS30, IS34, IS35, IS39, IS40, IS41, IS42, IS43

20 41.67%

YES IS1, IS4, IS5, IS6, IS7, IS8, IS9, IS11, IS12, IS14, IS15, IS19,

IS20, IS21, IS23, IS26, IS28, IS31, IS32, IS33, IS36, IS37,

IS38, IS44, IS45, IS46, IS47, IS48

28 58.33%

Statistical tests can be further categorized into parametric and non-parametric tests.

Details of statistical tests used in the primary studies are presented in Table 2.15. The

percent-wise distribution of statistical tests used in primary studies is illustrated in Figure

2.10.

• Parametric Tests: These tests can be conducted if we have a normal distribution

of data. These tests may have additional requirements to be fulfilled before their

application. Many parametric tests are used by the selected primary studies like T-

test, ANOVA, and Welch’s F-Test. 25% of the primary studies have employed the

T-test. IS4, IS5, and IS12 have used ANOVA to statistically validate the results and

carried out post-hoc analysis using Tukey’s Test.
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Figure 2.10: Statistical Tests used in the Primary Studies

Table 2.15: Statistical Tests employed in the Primary Studies

Statistical Test PS Identifier Count %

Parametric Tests

T-test IS1, IS6, IS7, IS8, IS9, IS11, IS14, IS15,

IS23, IS36, IS37, IS38

12 25.0%

ANOVA IS4, IS5, IS12, IS46 4 8.33%

Welch’s F-test IS45 1 2.08%

Non-parametric

Tests

Friedman Test IS19, IS20, IS33, IS44, IS47 5 10.42%

Wilcoxon signed

rank test

IS26, IS28, IS32, IS48, IS47 5 10.42%

Mcnemar Test IS21 1 2.08%

Brunner’s Test IS31 1 2.08%

Post-hoc Analysis

Parametric Tests Tukey’s Test IS4, IS5, IS12 3 6.25%

Non-parametric

Tests

Bonferroni

Correction

IS20, IS28, IS44 3 6.25%
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• Non-parametric Tests: These tests do not require any underlying assumption to be

met, hence have wider applicability. Friedman Test and Wilcoxon signed-rank test

are used by 10.42% of studies each. Other non-parametric tests used in the primary

studies are Brunner’s test and the Mcnemar test. Brunner’s test is used in IS31 and

McNemar Test is used in IS21. After the Friedman testing, post-hoc analysis in IS44

and IS20 is carried out using the Friedman test followed by Bonferroni correction.

IS28 applied the Wilcoxon signed-rank test with Bonferroni correction.

It is important to carry post-hoc analysis after conducting the statistical test to eradi-

cate family-wise errors. This ensures that results achieved are not by chance and hence

strengthens the validation of results. Very few studies have incorporated post-hoc analysis.

Researchers should understand the importance of statistical validation and also conduct

post-hoc analysis for unbiased predictions.

2.5.8 Results specific to RQ8

The tools reported in the primary studies are recorded in Table 2.11. We identified three

categories of tools used in the primary studies:

1. Tools used for Model Construction:

• WEKA: The most commonly used tool by the primary studies is the Waikato

Environment for Knowledge Analysis (WEKA). WEKA is open-source soft-

ware that provides an integrated platform for predictive classification with a

wide range of machine learning techniques. 21 studies out of the total used

WEKA classifiers for building models.

• RapidMiner 5.2: Like WEKA, RapidMiner is also predictive analytics soft-

ware that supports data mining data preprocessing, machine learning, and deep

learning. IS9, IS14, and IS15 employed RapidMiner 5.2.
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2. Tool used for Metric Extraction: IS5 used Krakatau Professional metrics tool to ex-

tract class-level metrics from Mozilla-Delta.

3. Tools used for conducting Statistical Tests: Two tools ASTASTA and SPSS were

reported by one primary study each. ASTASTA tool was used by IS44 to carry out

the Friedman test and post-hoc Bonferroni test. IS46 has reported usage of the SPSS

tool for single-factor ANOVA to perform multiple comparisons.

Figure 2.11: Tools used in the Primary Studies

Table 2.16: Tools

Purpose Tool Used PS Identifier Count %

Model

Construction

WEKA IS3, IS4, IS5, IS6, IS7, IS8, IS11, IS12, IS13, IS17,

IS23, IS27, IS29, IS30, IS32, IS34, IS36, IS40, IS41,

IS47, IS48

21 43.75%

RapidMiner 5.2 IS9, IS14, IS15 3 6.25%

Metric Extraction Krakatau Profes-

sional (KP)

IS5 1 2.08%

Statistical Test
ASTATSA IS44 1 2.08%

SPSS IS46 1 2.08%
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2.6 Discussion and Future Directions

An extensive literature review was performed to assess the current state-of-art of SDP stud-

ies with an imbalanced data problem. Studies from 2000 to 2020 were examined. 48

studies were selected by following the systematic procedure. Analysis of these selected

studies was performed to answer various RQs. Discussion of these RQs paved the way for

this thesis work by identifying the potential research gaps.

The information retrieved for each RQ from this survey is listed below:

• RQ1: Out of 48 studies, 45 studies have used open-source datasets. Approximate

70% of studies are based on NASA datasets. Studies lack proprietary software as

their code has copyright issues. Apart from NASA datasets, other open-source soft-

ware are used in fewer studies.

• RQ2: Dimensionality reduction is not carried out by 60% of studies. Only 19 stud-

ies have used some strategy to get a reduced set of metrics. Studies that have used

feature selection techniques include filter and wrapper methods. The most widely

used amongst all are filter methods that are involved in 10 primary studies. Wrapper

methods include evolutionary techniques like PSO, GA, and Bat algorithm. Feature

extraction is observed by three studies only. They addressed Fisher LDA and Princi-

pal Component Analysis (PCA). One study explored a cost-sensitive approach while

another one makes use of AUC thresholding to scrutinize important features.

• RQ3: The majority of studies have employed the ten-fold cross-validation for model

validation. Two studies have used hold-out validation whereas only one of the pri-

mary studies conducted LOO cross-validation to validate the model.

• RQ4: Varied techniques are used for defect prediction. We categorized these tech-

niques under 11 headings and provide the taxonomy for SDP studies that deal with
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imbalanced data. The prominent techniques used in the literature are C4.5, NB, RF,

SVM, and KNN.

• RQ5: Solutions to the data imbalance problem in literature comprise of resampling

methods, ensemble methods, cost-sensitive methods, and hybrid methods. 56.25%

of studies have used the resampling methods to deal with the data imbalance prob-

lem and successfully resolved the problem to an extent. 20 studies depicted using

ensembles for alleviating the problem. The cost-sensitive approach is applied only

by 11 studies. Hybrid methods are also proposed as imbalanced learning methods by

20.83% of the studies.

• RQ6: ROC-AUC being the stable metric is used in 66.67% of the primary studies for

performance evaluation. Developed models were evaluated with help of sensitivity

and f-measure in 18 and 16 studies respectively. G-Mean is used only by 10 studies.

Balance is also used which is a promising measure in the imbalanced domain but it

is assessed by only 4 studies. Other measures include accuracy, precision, FPR, cost,

MCC, specificity, etc.

• RQ7: Statistical validation is performed only in 58.33% of the primary studies. From

these studies, 60.7% of studies have used parametric tests. Studies used T-test,

ANOVA, and Welch’s F-test in the parametric category. From the non-parametric

domain, the Friedman test and Wilcoxon signed-rank test are the most prominently

used. Mcnemar test and Brunner’s test are also observed in one study each. Post-

hoc analysis is done after both parametric and nonparametric tests in three studies

each. Parametric tests used Tukey’s test whereas non-parametric tests used Bonfer-

roni correction for the post-hoc analysis. 20 studies did not report for any statistical

test.

• RQ8: This RQ revealed that the use of WEKA is reported by 43.8% of the primary
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studies. Three studies also used RapidMiner 5.2 for developing classification models.

One study reported feature extraction from Krakatau Professional. ASTASTA and

SPSS are used to apply the statistical test in one study each.

After taking into account the result discussion specific to each RQ in the preceding section,

we propose the following future directions.

• In literature studies, approximately 70% of studies have used data imbalance problem

with NASA datasets. Datasets related to the software engineering domain are not

explored much. Therefore, more studies should be carried out using the imbalanced

open-source software data so that results can be generalized.

• Feature reduction techniques are employed by approximately 40% of the primary

studies only. The reduced set of features save time and assist in delivering effective

and accurate SDP models. Therefore, future studies should consider effective feature

selection techniques to reduce the dimensionality of data.

• The results of the systematic review indicate that only four studies have determined

the useful metrics with the help of search-based techniques. Future work should fo-

cus on conducting more studies with search-based feature selection. Literature holds

some studies that empirically prove CFS as the worthy feature selection technique in

filter and wrapper methods. But it lacks studies that can assess and compare model

performances when features are selected by CFS and any of evolutionary techniques.

Thus, in the future, such studies need to be performed for new findings.

• Less use of search-based techniques in feature selection intrigued us to probe its

use in model development. Not so surprising, there were very few studies [4, 70]

achieving this target. Future work should encompass software defect classification

using search-based techniques.
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• In continuation with the above observation, researchers should investigate the ef-

fect of imbalance learning methods like resampling methods with the search-based

classification for varied datasets and establish their applicability for SDP. There is

no such study in the literature that involved resampling methods with search-based

techniques for SDP to date.

• Even though resampling methods are the most commonly used imbalanced learning

method, future studies should include their assessment with open-source datasets.

For example, Apache datasets are analyzed with resampling methods only in 20.8%

of the total primary studies. Hence, there arises a need to reexamine the oversampling

and undersampling methods with ML techniques for such datasets in the context of

solving the data imbalance problem.

• Similar reflections were made for ensemble methods. Out of all the studies that

addressed ensemble methods as the solution to the data imbalance problem, 76.5%

of studies exploited NASA datasets. Only 12.5% of total primary studies evaluated

ensemble-based models with Apache datasets. Also, there is only one study IS32 that

used a hybrid method that combined the resampling method and ensemble method

for better classification in Apache datasets. Future work should focus on the devel-

opment of machine learning models with ensemble methods and resampling-based

ensembles with datasets other than NASA datasets.

• It has been observed that only three studies used Apache datasets for providing a cost-

sensitive solution to the data imbalance problem. Therefore, future research work

should include studies examining the cost-sensitive models for SDP in imbalanced

data.

• The systematic review has revealed that approximately 42% of concerned studies

did not statistically verify their results. Future studies should include the statistical

64



Discussion and Future Directions

validation of their results as it increases the credibility of the research done.
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Chapter 3

Research Methodology

3.1 Introduction

After the identification of the research gaps in Section 2.6 and objectives in subsection

1.5.3.2, there is a need to design the research methodology to achieve these objectives. The

research methodology is the systematic outline of steps to be carried out to perform robust

and reliable empirical experimentations. It is a structured and organized approach followed

to achieve the desired objectives. The roadmap is conceived for empirical investigation of

the research problem and experimentally sound, reasonable solutions are proposed.

This chapter is organized as follows: Section 3.2 portrays the research process complied

in designing and execution of empirical experiments. Further sections explain the steps

involved in the research process. Research problem and research questions are established

in Section 3.3. Section 3.4 presents the summary of existing literature. Next, Section 3.5

defines the independent and dependent variables used in this research work. Section 3.6

gives the source and brief description of the datasets used. The preprocessing steps applied

to these datasets are scribed in Section 3.7. Imbalance learning methods used to tackle

data imbalanced data problem are mentioned in Section 3.8. Section 3.9 abridges the data
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analysis techniques used in subsequent chapters to develop models. Section 3.10 briefly

outlines the SDP model development and cross-validation method used in this research

work. Performance measures used for model evaluation are addressed in Section 3.11.

Finally, Section 3.12 introduces the statistical tests used in proceeding chapters to validate

the results.

3.2 Research Process

The research process elaborates on all the necessary steps required for conducting the re-

search work. Figure 3.1 gives a thumbnail sketch of these steps that are elaborated in the

following sections of this chapter.

3.3 Identification of Research Problem

To initiate the research, we need to formulate the research problem. In this step, we identify

the research problem and state it in form of RQs. RQs are carefully designed to fulfill

research objectives.

RQs addressed in this thesis are stated in subsection 1.5.3.1.

3.4 Reviewing the Literature

A survey of existing related studies is required for a better understanding of the problem. It

provides us with information about the extent to which the research problem has been inves-

tigated by previous studies. Many empirical studies have been successfully executed in the

SDP domain establishing a strong relationship between OO metrics and defect proneness

of classes [2, 3, 35, 133–138]. Various ML techniques are exploited to build SDP mod-

els and a broad picture of their usage in the literature world is provided by many studies
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Figure 3.1: Research Process
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[51, 57, 139–141].

We performed the systematic literature review concerning software defect prediction in

Chapter 2. According to Koru and Tian [5] software data follows the Pareto principle and

only 20% of classes are responsible for all defects present in the software. Keeping this

in consideration, the survey was done with attention to imbalanced data. With the help of

directions provided by conducted review and existing reviews in literature, further course

of action is set to seek answers for RQs set in Section 3.3.

3.5 Recognition of Research Variables

There are two kinds of research variables that need to be identified for empirical investiga-

tions of any study:

• Independent Variables: Independent variables are the predictor variables of the sys-

tem. These variables help the researcher to predict the dependent variable of the

study. Independent variables need to be independent of each other to reduce the

model bias. We have used OO metrics of the software as the independent variables

in the research work. Details are provided in subsection 3.5.1.

• Dependent Variable: Dependent variable is the variable that we need to predict. It is

also known as the target variable or response variable. In this thesis, the defect is the

dependent variable and is explained in subsection 3.5.2.

3.5.1 Independent Variables

The independent variables used in this thesis are different OO metrics characterizing a

software system from various aspects. The OO metrics used in this thesis work include–

• Chidamber and Kemerer (CK) Metric suite [36]: Six popularly used metrics namely
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WMC, DIT, NOC, LCOM, RFC, and CBO are incorporated in this metric suite. This

metric suite has been validated in many empirical studies for developing SDP models.

• Quality Model for Object-Oriented Design metric suite (QMOOD) [37]: The study

uses few metrics from this metric suite namely NPM, DAM, MFA, MOA, and CAM

along with CK metrics for developing defect prediction models. These metrics are

also well exploited in related studies to develop effective software quality prediction

models.

• Metrics proposed by Tang et al. [41]: Three metrics CBM, AMC, and IC that were

proposed by Tang et al. [41] after analysis of CK metrics are used to predict defects

in this thesis.

• Metrics proposed by Martin [142]: In this thesis, two coupling metrics are explored

that are suggested by Martin [142]. These metrics are Ca and Ce.

• Li and Henry Metric [143]: LCOM3 metric is a variant of LCOM and was proposed

in [143]. This metric is also utilized to find the possibility of probable defects in the

early phases of software development.

• McCabe’s Metric: Cyclomatic complexity (CC) is proposed by McCabe and is in-

cluded in the set of independent variables. Two variants of Cyclomatic complex-

ity, Maximum Cyclomatic complexity (Max CC) and average cyclomatic complexity

(Avg CC), are considered.

• Lines of Code (LOC), a popular size metric, is also a part of the independent vari-

ables’ set in addition to the above metrics. LOC, CBM, AMC, and LCOM3 are

explained by Henderson-Sellers [18].

These metrics have been widely used by the researcher community and software

practitioners as independent variables. These metrics are summarized in Table 3.1.
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Table 3.1: Independent Variables

S. No. OO Metric Definition Source

1 Coupling between

Objects (CBO)

It signifies the count of classes coupled to a particular class.

Interdependence between classes exist because of inheritance,

method calls, arguments, etc.

[36]

2 Response for a Class

(RFC)

It is computed as the count of different methods that can be

executed on receiving message by any object of that class

[36]

3 Coupling Between

Methods (CBM)

It represents the total count of new or redefined methods to

which all the inherited methods are coupled.

[41]

4 Inheritance Coupling

(IC)

It provides the count of parent classes to which a given class is

coupled.

[41]

5 Afferent coupling

(Ca)

For a class, Ca is defined as the count of classes that uses or

calls it.

[40]

6 Efferent coupling

(Ce)

For a class, Ce signifies the count of classes that are used by

that class.

[40]

7 Number of Children

(NOC)

It provides the count of immediately derived classes for the

base class.

[36]

8 Depth of Inheritance

Tree (DIT)

It computes the levels of inheritance a class depicts in object

hierarchy.

[36]

9 Measure of Func-

tional Abstraction

(MFA)

It is computed as the ratio of count of inherited methods in a

class to the count of accessible methods (that are accessible by

member methods) in the class.

[37].

10 Weighted methods per

class (WMC)

It is calculated as the addition of its methods’ complexities. [36]

11 Number of Public

Methods (NPM)

It represents the count of public methods in the class. [37].

12 Lines of Code (LOC) It is a size metric and accounts for number of fields, methods,

and instructions in every method of given class.

[41]

13 Average Method

Complexity (AMC)

This metric measures the average method size for each class. [41]

14 Lack of cohesion in

methods (LCOM)

This metric determine the sets of class methods that are not

related through the sharing of some of the class’s fields.

[36]

15 Cohesion Among

Methods of Class

(CAM)

This metric computes the relatedness among methods of a class

based upon the parameter list of the methods.

[37].
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S. No. OO Metric Definition Source

16 Lack of cohesion in

methods (LCOM3)

LCOM3 gives the count of connected methods in a class.

Methods are connected iff thet share atleast one instance vari-

able. It varies between 0 and 2.

LCOM3 =

1
a
(
∑a

j=1 µ
(
Aj
)
−m

1−m
(3.1)

where m - number of methods in class, a - number of variables

in class, µ(A) - number of methods that access a variable

[143]

17 Measure of Aggrega-

tion (MOA)

This metric is a count of number of data fields in a class whose

type is user-defined.

[37].

18 Data Access Metric

(DAM)

It is computed as the ratio of the number of private or protected

attributes to the total number of attributes declared in the class.

[37].

19 Average Cyclo-

matic Complexity

(Avg CC)

CC is the count of independent paths in a method of a class.

Avg CC represents the mean of CC of all methods in a class.

[144]

20 Maximum Cyclo-

matic Complexity

(Max CC)

Max CC signifies the highest CC gained by all methods in a

class.

[144]

These OO metrics are related to internal quality attributes (IQAs) of the software. Dif-

ferent IQAs covered through the OO metrics used in this thesis are coupling, inheritance,

size, cohesion, composition, encapsulation, and complexity. Table 3.2 provides these IQAs

with their definitions and related OO metrics.

Table 3.2: IQAs and related OO Metrics

S.No. IQA Definition OO Metrics

1 Coupling Coupling represents the extent to which one class is

dependent on other classes in the software. Low cou-

pling is preferred in good quality software.

CBO, RFC, CBM, IC, Ca,

Ce

2 Inheritance Inheritance signifies the tendency of one class to gain

characteristics from another class(es). The class that

inherits is called Derived class and class whose prop-

erties are inherited is called Base class

NOC, DIT, MFA
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S.No. IQA Definition OO Metrics

3 Size Size of a class represents the way to measure it. It

can be determined by the number of data members,

methods, or code length.

WMC, NPM, LOC, AMC

4 Cohesion Cohesion defines the extent to which data and meth-

ods in a class are interrelated. High cohesion is de-

sired in good quality software.

LCOM, CAM, LCOM3

5 Composition Composition defines the has-a relationship between a

class and a user-defined class that is used as an in-

stance of former.

MOA

6 Encapsulation Encapsulation refers to hiding the internal details of a

class from the classes that use it.

DAM

7 Complexity Complexity is the extent to which any class or com-

ponent of the software is difficult to understand and

manage.

Avg CC, Max CC

3.5.2 Dependent Variable

Datasets collected contain a continuous variable ‘bug’ representing the number of defects

in a particular class. A class can be either defective or non-defective. While there is no

defect observed in non-defective classes, a defective class can have one or more defects.

In this research work, we address the binary defect prediction problem in OO software.

Therefore, ‘bug’ is converted into a binary variable by replacing ‘0’ with ‘No’ and natural

numbers with ‘Yes’. The designed binary dependent variable is named ‘defect’. It can have

two possible values- ‘Y’ and ‘N’ that reflect whether the software class is defective or not.

3.6 Empirical Data Collection

Data for empirical validation may be collected from industrial software, open-source soft-

ware, or academic software. Industrial software are proprietary software that are not easily

available to the researcher community. Academic software are student projects in uni-
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versities and colleges, and hence not reliable because of lack of expertise. Over the last

few years, therefore open-source software have been popular and widely used for empir-

ical validation. The main reasons for their increased usage are cost-effectiveness, ease of

availability, and ease of replicability. This thesis also employed open-source software for

developing SDP models.

Datasets of JAVA open-source projects were collected from the Promise repository

(http://openscience.us/repo). Jureczko and Madeyski [145] extracted 20 OO metrics dis-

cussed in subsection 3.5.1 of these software with the help of the CKJM and Bugzilla tool.

Additionally, the number of defects in each class is required to be recorded. Data, then,

need to be preprocessed and require data cleaning. Data is checked for the existence of any

missing data or redundant classes. Jureczko and Madeyski [145] provided good quality

datasets as there is no missing data and redundant class in them.

Empirical data is collected from 21 versions of nine OO software systems. Apache

datasets used in this work are -Ivy, Tomcat, Xerces, Synapse, Camel, Ant, Log4j, and

Xalan. Jedit metrics were also collected.

A brief description of the software is provided below:

• Apache Ivy is an application package to manage project dependencies. It includes

tracking, recording, and resolving project dependencies and is characterized by its

flexibility. Above all, it is very easy and simple to use. Being highly flexible, exten-

sible, and easily integrable with Apache Ant, it is very useful and popular.

• Apache Tomcat is an open-source container for servlets and JavaServer Pages. It is a

lightweight application server and has captured 60% of the market.

• Apache Synapse is a service-oriented architecture framework that provides web ser-

vices. It fulfills web requests and can simultaneously handle load balancing, protocol

switching, and routing.
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• Apache Xerces provides a library for an XML parser. It allows parsing, manipulating,

and validating XML data. Xerces enables the applications to read and write XML

documents.

• Apache Camel provides a single platform to work with different kinds of transports,

pluggable components, and messaging models. Transports are executed like com-

ponents of Camel. It exploits a uniform resource identifier to accomplish this task.

Version Camel1.6 resolved 169 issues including two new components and three new

data formats with respect to the previous version.

• Apache Ant is used to build applications in JAVA language. It has built-in support

for compiling, testing, and running the concerned application.

• Apache Log4j provides utilities for asynchronous logging services. It is a fast and re-

liable logging package with three primary components: logger, appender, and layout.

The logger captures the logging information. Appender is accountable for publishing

the logging information, whereas the layout component formats the information in

different formats.

• Apache Xalan is an XSLT processor and has food library support. It is used for

converting XML documents into HTML, text, or other XML document types.

• Jedit is a text editor software with strong macros and plugin support. It comes with

easy configuration and customization features.

Table 3.3 describes the addressed datasets with their statistics. #Total represents the to-

tal number of classes, #ND represents the number of non-defective classes, #D corresponds

to the number of defective classes in the particular dataset. %age#D symbolizes the per-

centage of defective classes in the corresponding software. #IR determines the imbalance

ratio (IR) of the particular version of the software.
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IR is calculated as:

IR =
No. of Non−Defective classes

No. of Defective classes
(3.2)

Table 3.3: Description of Datasets

Dataset Name #Total #ND #D %age#D IR
Jedit4.3 492 481 11 2.23 43.73
Ivy1.4 241 225 16 6.64 14.06
Tomcat6.0 858 781 77 9.85 10.14
Synapse1.0 157 141 16 10.19 8.81
Ivy2.0 352 312 40 11.36 7.8
Jedit4.2 367 319 48 13.08 6.65
Xalan2.4 723 613 110 15 5.57
Xerces1.3 453 384 69 15.23 5.57
Xerces1.2 440 369 71 16.13 5.2
Camel1.4 872 727 145 16.63 5.01
Camel1.6 965 777 188 19.48 4.13
Ant1.7 745 580 166 22.28 3.49
Jedit4.0 306 231 75 24.51 3.08
Log4j1.0 135 101 34 25.18 2.97
Jedit4.1 312 233 79 25.3 2.95
Synapse1.1 222 162 60 27.02 2.7
Jedit3.2 272 182 90 33.1 2.02
Synapse1.2 256 170 86 33.5 1.98
Log4j1.1 109 72 37 33.95 1.95
Xalan2.6 885 474 411 46.44 1.15
Xalan2.5 803 416 387 48.19 1.07

3.7 Data Preprocessing

This section describes the descriptive statistics of OO metrics of the datasets and data pre-

processing steps. Datasets are thoroughly checked for redundant data or missing data. If

present, such data need to be removed to achieve accurate and precise model predictions.

In software engineering predictive modelling, data preprocessing is the crucial step.
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3.7.1 Descriptive Statistics

Empirical data need to be understood properly, therefore descriptive statistics are calculated

for each dataset. The descriptive statistics for each dataset are presented in Appendix A.

The following descriptive statistics are reported for OO metrics.

• Minimum: The minimum statistic for an OO metric reports the minimum value of

the corresponding metric in the dataset.

• Maximum: The maximum statistic for an OO metric reports the maximum value of

the corresponding metric in the dataset.

• Mean: The mean statistic states the average value for an OO metric in the dataset.

• Median: The median statistic gives facts about the frequency distribution of the

classes for an OO metric in the dataset. Median is preferable to mean when data

has outliers.

• Standard Deviation (SD): It projects the central tendency of the OO metric and mea-

sures the dispersion in data.

• Skewness: The measure of skewness tells about the data normality of the OO metric.

For normal data, skewness = 0.

• Standard Error of Skewness (SES): It accounts for the normality check for an OO

metric. It is calculated as the ratio of skewness to its standard error.

Cumulative descriptive statistics of datasets are reported in Table 3.4.

Table 3.4: Descriptive Statistics of Cumulative Datasets

Metric Minimum Maximum Mean Median SD Skewness SES
WMC 0.00 413 10.82 6 17.57 8.6 0.025
DIT 0.00 8 2.2 2 1.51 1.22 0.025
NOC 0.00 102 0.5 0 2.71 13.42 0.025
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Metric Minimum Maximum Mean Median SD Skewness SES
CBO 0.00 499 11.16 7 18.63 8.96 0.025
RFC 0.00 583 29.78 18 39.82 4.64 0.025
LCOM 0.00 41713 127.76 4 944.76 25.74 0.025
Ca 0.00 498 5.61 2 16.74 11.37 0.025
Ce 0.00 101 5.79 3 7.69 3.03 0.025
NPM 0.00 231 8.25 4 12.99 5.79 0.025
LCOM3 0.00 2 1.11 0.87 0.68 0.28 0.025
LOC 0.00 23683 311.24 108 779.54 12.3 0.025
DAM 0.00 1 0.51 0.63 0.47 -0.07 0.025
MOA 0.00 41 0.79 0 1.79 5.84 0.025
MFA 0.00 1 0.43 0.43 0.43 0.13 0.025
CAM 0.00 1 0.48 0.44 0.25 0.61 0.025
IC 0.00 5 0.54 0 0.87 1.79 0.025
CBM 0.00 33 1.48 0 3.25 3.65 0.025
AMC 0.00 2052 28.41 14 72.16 11.16 0.025
Max CC 0.00 167 4.39 2 7.65 8.59 0.025
Avg CC 0.00 28.67 1.37 1 1.26 5.47 0.025

The following observations have been made after analyzing the descriptive statistics.

• Median of NOC is 0 and DIT is 2. MFA also has a low median value of 0.43. This

signifies that inheritance was not preferred in these software. Inheritance metrics,

therefore, will have a low impact on building defect prediction models.

• Mean of CBO, RFC, CBM, and IC is 11.16, 29.78, 1.48, and 0.54 respectively. These

values are different from corresponding median values. Therefore, the fact signifies

that underlying data does not have a normal distribution. The same observation was

made for other metrics except for DIT, LCOM3, DAM, MFA, and CAM.

• SD is maximum for LCOM and is computed as 944.76. The more the SD, the more

is the dispersion of data from its mean value.

• For the normal distribution, skewness is 0. Only three metrics- LCOM3, DAM, and

MFA have low skewness values of 0.28, -0.07, and 0.13 respectively. The mean of

negatively skewed data will be less than the median. Except for DAM, every metric

has a mean greater than the median, signifying the long tail in the right direction.
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3.7.2 Feature Selection

In predictive modelling, it is important to identify the most relevant and important features.

The models are constructed by using a reduced set of features. In our research problem,

features are OO metrics. Applying feature selection techniques will aid in building better

SDP models in terms of accuracy with less computation time. Feature selection can be

accomplished by implementing either filter methods or wrapper methods.

3.7.2.1 Filter Methods

Filter methods detect the association of features and the dependent variable based on some

statistics or measures. There are several filter methods used in literature like Chi-square,

infogain, ReliefF, consistency-based FS, etc. Though in the literature some researchers find

it difficult to empirically validate any single FS technique as the best, still CFS is the most

used one.

• Correlation Feature Selection: CFS [146] finds the subset of features based on Pear-

son’s correlation coefficient. It is independent of any learning technique. It identifies

the features that have a high correlation with the class label (defect) and a low correla-

tion with other features. It performs the univariate analysis. The predictive capability

of an individual feature is explored from the subsets of features and the best subset

wins. In this thesis work, CFS is used because it is the most preferred FS technique

according to the survey in 2015 [51] and recently Ghotra et al. [42] also concluded

CFS to be the best FS strategy after extensive analysis of 30 FS techniques. Parame-

ters defined for CFS in our experimentation are local predictive = True, missingSep-

arate = False, numThreads = 1, poolSize = 1 and preComputeCorrelationMatrix =

False.

Table 3.5 reports the OO metrics selected by CFS in the datasets used in this thesis.
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Table 3.5: Feature Selection with CFS

Dataset OO Metrics selected by CFS
Tomcat6.0 CBO, RFC, LCOM, LOC, MOA, AMC, Max CC, Avg CC
Synapse1.0 RFC, LCOM, Ce, LOC, DAM, MFA, CAM, IC, AMC, Max CC, Avg CC
Ivy2.0 RFC, CE, LOC, MOA, AMC, NPM, CBO, WMC, LCOM, LCOM3, CAM
Jedit4.2 RFC, CA, CE, NPM, LCOM3, CAM, Max CC, CBM, LCOM, MOA, LOC,

CBO, AMC
Xalan2.4 RFC, LCOM, LOC, CBM, Max CC, WMC, AMC, CBO, LCOM3, Avg CC
Xerces1.3 WMC, DAM, IC, CBM, AMC, CE, LCOM, MOA
Camel1.4 WMC,CBO,RFC,Ca,Ce,NPM,IC,CBM
Camel1.6 DIT, NOC, CBO, LCOM, Ca, NPM, LCOM3, CAM, IC, CBM, AMC, Max CC,

Avg CC
Ant1.7 CAM, RFC, LOC, AMC, Max CC, LCOM, Ce, CBO, MOA
Jedit4.0 WMC, LCOM, LOC, DAM, MOA, Max CC, RFC, CBM, CA, CE, NPM,

LCOM3, DIT, CBO, Avg CC
Log4j1.0 CBO, CA, NPM, WMC, RFC, LCOM, CE, DAM, Avg CC, LOC, CAM
Jedit4.1 RFC, CE, LOC, MOA, CAM, LCOM, Max CC, WMC, IC, DAM, Avg CC
Synapse1.1 CBO, CE, LCOM, DAM, DIT, RFC, CAM, MFA, Max CC
Jedit3.2 DIT, RFC, LCOM, CE, DAM, MOA, IC, CBM, Max CC, CBO, LCOM3, LOC,

MFA, NPM, AMC
Synapse1.2 CBO, RFC, CE, LOC, AMC, CA, WMC, MOA, CAM, CBM, Max CC
Log4j1.1 WMC, RFC, LCOM, CE, NPM, LCOM3, MFA, MOA
Xalan2.6 NPM, LCOM3, LOC, AMC, Avg CC

3.7.2.2 Wrapper Methods

Wrapper methods find an effective subset of features with the help of learning techniques

involved and cross-validation. Many ML techniques like J48, k-Nearest Neighbor (KNN),

Naı̈ve Bayes, Logistic Regression have been used in literature for selecting the important

metrics of the software. One of the aims of this thesis is to explore the search-based wrapper

method to find their competency in the area of feature selection in SDP. Two variants of the

popular genetic algorithm used to gain the purpose are GGA and SGA. These search-based

techniques are inspired by evolution, therefore also referred to as evolutionary techniques.

Individuals are selected from the population and a new population is created by crossover

and mutation operations.

• Generational Genetic Algorithm (GGA) [147] : Generational Genetic Algorithm is

a Pittsburgh style learning classifier system. In GGA, during evolution, numerous
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candidate chromosomes are crossovered to generate new offsprings which are then

mutated and added into a temporary population. The selection of candidate chro-

mosomes from the main population is done through elitism and when the temporary

population reaches its maximum number, then it replaces the old population. Fitness

function is based on accuracy and cost and is defined as:

fitness(x) = acc(x)− cost(x)

acc(x) + 1
+max cost (3.3)

Ten fold cross-validation is done and each partition is used for training GGA for five

times. Parameters are set as: Cross Probability = 0.7, Mutation Probability = 0.01,

Population Size = 50, Number of Evaluations = 10000, Beta Equilibrate Factor =

0.99, Number of Neighbors in KNN = 1, Use Elitism = Yes.

• Steady-State Genetic Algorithm (SGA) [148]: SGA is Michigan style learning clas-

sifier system and is much simpler than GGA. Only two individuals are selected in

one iteration to create offsprings. Out of two parents and two children, only two in-

dividuals that have the best fitness values are populated back in the pool. It requires a

replacement algorithm as no intermediate population can be generated and offsprings

are added to the same population. In SGA, the number of features selected is limited

explicitly. In this study, the number of features selected is set to be 8 by varying it

from 3 to 10. The fitness function of SGA is defined by precision obtained by KNN.

Parameters of algorithm are set as: k in KNN = 1, number of evaluations = 5000,

popLength = 100, number of features = 8.

Features selected by GGA and SGA are discussed in detail in Ch 9.
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3.8 Imbalance Learning Methods

Uneven distribution of defective and non-defective classes in the software results in biased

training of the classification model. This will deteriorate the software quality as the model

predictions may not be accurate and reliable. Hence, in this section, we have incorpo-

rated imbalance learning methods employed in this thesis to solve imbalanced classification

problem and attain the set objectives.

3.8.1 Resampling Methods

In resampling methods, the number of datapoints is changed to create a balance between

majority and minority classes. If we increase the minority class samples, it is known as

oversampling and if we decrease the majority class samples, it is called undersampling.

3.8.1.1 Oversampling Methods

1. ADAptive SYNthetic Sampling (ADSYN) [149]: In ADSYN, synthetic samples are

generated by finding the density distribution of minority classes. Density distribution

is computed using a k-nearest neighbor with Euclidian distance. It is an extension of

the Synthetic Minority Oversampling Technique. It focuses on the samples that are

hard to classify.

2. Synthetic Minority Over-sampling Technique (SMT) [150]: The number of minority

class samples is increased by generating artificial samples in direction of k nearest

neighbors of minority class samples. If one neighbor is selected, then one synthetic

sample is generated corresponding to that original minority sample resulting in 100%

oversampling of minority classes. In this study, k=5 results in a 500% oversampling

of minority classes.
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3. Safe Level Synthetic Minority Over-sampling Technique (SLSMT) [151]: Unlike

the SMT version, where synthetic samples are generated randomly, in SLSMT first

safe levels are calculated that helps in determining safe positions for generating the

synthetic samples. If the safe level value is close to 0, it is considered noise and if

the safe level value is close to k for k nearest neighbor implementation, then it is

considered safe resulting in producing synthetic minority samples there.

4. Selective Preprocessing of Imbalanced Data (SPD) [152]: This technique categorizes

the sample as either safe or noise based on the nearest neighbor rule where distance

measurement is done using a heterogeneous value distance metric. If an instance is

accurately classified by its k nearest neighbors, it is considered safe otherwise it is

considered noise and then discarded.

5. Random OverSampling (ROS) [153]: ROS is a very simple oversampling technique

in which minority class instances are replicated at random with the sole aim of cre-

ating a balance between majority and minority class instances.

6. Agglomerative Hierarchical Clustering (AHC) [154]: In AHC, each class is decom-

posed into sub-clusters and synthetic samples are generated corresponding to cluster

prototypes. Since artificial samples are created as centroids of sub-clusters of classes,

they, therefore extract the characteristics of that class and represent better samples

than randomly generated samples.

3.8.1.2 Undersampling Methods

1. Random UnderSampling (RUS) [153] : RUS, like ROS, is a non-heuristic technique.

But in this instead of replicating minority class instances, majority class instances

are removed with aim of creating a balance between majority and minority class

instances. The problem with this technique is that some important or useful data may
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be rejected as it is based on random selection.

2. Condensed Nearest Neighbor (CNN) + Tomek’s modification of Condensed Nearest

Neighbor (CNNTL) [153]: First CNN is applied to find a consistent subset of samples

that helps to eliminate majority class samples that are far from the decision border.

Then Tomek links [46] are made between samples. If it exists between any two

samples, then either both are borderline samples or one of them is noise. Samples

with Tomek links that fit in majority classes are removed.

3. Neighborhood Cleaning Rule (NCL) [155]: NCL uses the edited nearest-neighbor

(ENN) rule to remove majority class samples. For each training sample Si, first it

finds three nearest neighbors. If Si= majority class sample, then discard it if more

than two nearest neighbors incorrectly classifies it. If Si = minority class sample,

then discard the nearest neighbors if they incorrectly classify it.

4. One Sided Selection (OSS) [156] : OSS and CNNTL have similar working. The

difference lies in the order of the application of CNN and the determination of Tomek

links. OSS identifies unsafe samples using Tomek links and then applying CNN.

Noisy and borderline samples are considered unsafe. Small noise may result in the

flipping of the decision border of the borderline samples; therefore, they are also

considered unsafe. CNN eliminates the majority of samples that are far away from

decision boundaries.

3.8.2 Cost Sensitive Learning

Cost-sensitive classification can be conducted in two ways; either by adding weights to

samples or by using a cost matrix to penalize type-I and type-II errors. Meta cost learners

were proposed by [157] in which penalization is done in cost matrix and training instance

is relabeled based on the majority voting. These errors are actually false positives and false
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negatives in the model prediction. In this work, meta-cost classifiers are used and the cost

penalization of wrongly predicted defective classes is done at different levels- 5, 10,15, 20,

20, 40, and 50 times the cost of wrongly predicted non-defective classes.

3.8.3 Ensemble Methods

Ensemble learning involves combining several ML techniques into one predictive model

to reduce bias or variance and build robust learners. Ensemble learners explored in this

thesis can be categorized as :(1) Classic ensemble methods (2) Resampling-based boosting

ensembles methods and (3) Resampling-based bagging ensemble methods.

Description of Ensemble Methods

1. Classic Ensemble Methods

• AdaBoost (AB) [158]: AB significantly enhances the efficacy of weak classi-

fiers by performing the plurality of learning iterations. The training set gen-

erated by a particular iteration acts as an input for the next iteration, thereby

multiple learning iterations generate a better classifier by using misclassified

weak classifiers.

• AdaBoostNC (ABNC) [159] : ABNC demonstrates low computation cost and

much better classification accuracy than negative correlation learning (NCL)

algorithms. ABNC reduces error correlation and is mostly preferred in the case

of recognizing minority classes.

• AdaBoostM1 (ABM1) [160, 161] : ABM1 is an algorithm for binary classifica-

tion to train the learners sequentially. It is an ensemble technique where num-

bers of weak classifiers are used iteratively to improve the overall performance.

It augments the performance of weak learners by adjusting the weak hypothe-

sis returned by the weak learner. The base decision tree used in ABM1 is J48.
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J48 learns from the previous trees about misclassified instances and calculates

the weighted average. NumIterations in parameters represent the number of

classifiers involved in this ensemble. This technique helps in reducing the bias

in the model. It handles primarily nominal class which drastically improves

performance. However, ABM1 lacks when the model overfits.

• Bagging (Bag) [162, 163]: Bagging or bootstrap aggregation is also one of an

ensemble technique that improves the predictive capability of base classifiers

by making bags of training data. Bag involves bootstrapped replicas referring

to the original training data set, to be substantively used for the creation of

different classifiers. Furthermore, the replicas are used to bag a weak learner

such as a decision tree. The bagged tree efficacy is enhanced by the random

selection of predictors. Models work in parallel and their results are averaged.

Bagging reduces the variance. The default number of bags is 10 and the base

classifier used is J48.

2. Resampling-based Boosting Ensemble Methods

• DataBoost (DB) [164] : DB creates synthetic samples for both the majority

class and minority class by identifying hard samples. It rebalances the weights

of both the classes resulting in improved predictions for the majority as well as

the minority class. It blends data generation and boosting.

• MSMOTEBoost (MSMTB) [165] : MSMTB is a combination of AB and MSMOTE.

It is preferred when a highly accurate prediction is required for the minority

class.

• RUSBoost (RUSB) [166]: RUSB combines boosting and random undersam-

pling method to alleviate the imbalanced classification problem. Before each

iteration of boosting, some of the majority class instances are randomly re-

moved to construct a Balance between both classes.
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• SMOTEBoost (SMTB) [167]: Minority class samples, which are not properly

classified by the base classifier during the learning iteration phase, are effi-

ciently oversampled by SMTB. More data corresponding to minority class can

be added during any learning iteration.

3. Resampling-based Bagging Ensemble Methods

• MSMOTEBagging (MSBAG) [168] : MSBAG is tweaked from SMOTE for

efficient usage of the feature space. It creates multiple synthetic instances of

the minority class by selecting nearest neighbors.

• OverBagging (OBAG) [168]: OBAG employs one or more oversampling meth-

ods while preprocessing data. In other words, oversampling of the minor-

ity class observations are performed in each iteration. To enhance variability

among training sets, majority classes are considered.

• OverBagging2 (OBAG2) [168]: OBAG2 involves preprocessing of different

data through sampling method. The sampling method can be oversampling

rather than random sampling. Such an instance involves an increase in the

minority data set.

• SMOTEBagging (SMTBAG) [168]: SMTBAG is a merger of selective ensem-

ble and BAG, and it is applied for binary classification. It enhances the count

of minority instances to Balance the outspreading of classes. SMTBAG aims to

equate instances of majority and minority.

• UnderBagging (UBAG) [169]: UBAG provides compiled weak learners which

are developed over undersampled training sets. The undersampled data is ran-

domly selected.

• UnderBagging2 (UBAG2) [168]: UBAG2 is used to multiply the size of pos-

itive instances. In particular, this bagging implementation involves the resam-
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pling model to double the size of positive instances that are retrieved from a set

of data values.

• UnderOverBagging (UOBAG) [167]: UOBAG applies the bagging technique to

the instances of every bag by using any resampling mechanism. For an instance

the resampling mechanism includes oversampling or undersampling.

• IIvotes (IIVOT) [170]: IIVOT is implemented for selective data preprocessing

by using the SPD method for selective data preprocessing into the adaptive

Ivotes ensemble. The SPD is effective while preprocessing particular learning

samples as this enhances the accuracy of derived classifiers.

3.9 Selection of Data Analysis Techniques

This work was empirically carried out using several data analysis techniques including sta-

tistical techniques, ML techniques, and SBTs. In this work, we analyzed 15 ML. Statistical

and ensemble techniques are covered under the umbrella of ML. Further, the performances

of SDP models were evaluated with 16 SBTs.

3.9.1 Machine Learning Techniques

3.9.1.1 Statistical Techniques

• Naı̈ve Bayes (NB) [171]: Naı̈ve Bayes is a probability-based classifier that works on

Bayes theorem. It is an instance-based learner that computes class wise conditional

probabilities. Features need to be conditionally independent with each other. It pro-

vides fair results even in violation of this assumption. This ML technique works well

for both categorical and numerical variables.

• Logistic Regression (LR) [172]: Logistic Regression is also a probabilistic classifier
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used for dichotomous variables and assumes that the data follows Gaussian distri-

bution. It works well in case of assumption desecration. During training coefficient

values are minimized by ridge estimator to solve multicollinearity and this makes the

model simpler. The algorithm runs until it converged.

• Simple Logistic (SL) [173]: Simple Logistic uses LogitBoost to construct logistic

regression models. LogitBoost uses the logit transform to predict the probabilities.

With each repetition, one simple regression model is added for each class. The pro-

cess terminates when there is no more reduction in classification error.

• LogitBoost (LB) [174]: LogitBoost is an additive logistic regression with a decision

stump as the base classifier. It maximizes the likelihood and, therefore, generalizes

the linear logistic model. The base classifier taken is the decision stump which con-

siders entropy for classification.

3.9.1.2 Neural Networks

• MultiLayerPerceptron (MLP) [175]: It is a backpropagation neural network that uses

sigmoid function as the activation function. The number of hidden layers in the

network is determined by the average of the number of attributes and total classes

for a particular dataset. The error is backpropagated in every epoch and reduced via

gradient descent. The network is then learned based on revised weights.

3.9.1.3 Nearest Neighbors

• IBk [176]: IBk is an instance-based K-nearest neighbor learner. It calculates the

Euclidian distance measure of the test sample with all the training samples to find

its ‘k’ nearest neighbors. It then assigns the class label to the testing instance based

on the majority classification of nearest neighbors. Only one nearest neighbor is
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determined with k=1 and the class label of that nearest neighbor is assigned to the

testing instance.

• KStar [177]: Like Ibk, KStar is also an instance-based learning algorithm. The dif-

ference between the two techniques is about the similarity measures they use. IBk

exploits Euclidian distance and KStar uses the similarity measure based on entropy.

KStar exhibits good classification competence for noisy and imbalanced data.

3.9.1.4 Ensemble Methods

Ensemble methods are promising ML techniques because in addition to classification they

also assist in solving imbalance issue as discussed above. Apart from ABM1 and Bag, we

use following ensemble methods for defect classification.

• Iterative Classifier Optimizer (ICO): LogitBoost is used as the iterative classifier in

this technique. Cross-validation is utilized for its optimization. In the experiments

conducted, it goes through 50 iterations to decide for the best cross-validation.

• Logistic Model Tree (LMT) [173, 178]: Logistic Model Tree is a meta-learning al-

gorithm that uses logistic regression at leaf nodes for classification. A combination

of linear logistic regression and decision tree helps in dealing with the bias-variance

tradeoff. This technique is robust to missing values and can handle numeric as well

as nominal attributes.

• Random Tree (RT) [179]: Random Tree is an ensemble-based supervised learner

where different trees are constructed from the same population. Random samples

of the population are generated to form different trees with a random selection of

features. After bags are constructed, models are developed and majority voting is

performed to classify the class.
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• Random SubSpace method (RSS) [180]: Random SubSpace is used to construct

random forest. Randomly feature subsets are selected to generate multiple trees.

Bagging is performed with Reptree. Reptree is faster than the basic decision tree and

generates multiple trees in each iteration. It then selects the tree whose performance

is the best.

3.9.1.5 Decision Trees

• Pruning rule-based classification tree (PART) [181]: PART is a rule-based learning

algorithm that exploits partial C4.5 decision trees and generates rules at each itera-

tion. PART stands for a pruning rule-based classification tree. The rule that results in

the best classification is selected. MDL is used to find the optimal split. smaller the

confidence factor more will be the pruning done.

• J48 [162]: J48 is a JAVA implementation of the C4.5 decision tree. It follows the

greedy technique to build a decision tree and uses the gain ratio as splitting criteria.

Leaf nodes are the classification labels- defective and non-defective and rules can be

derived by traversing from root to leaf node. By default, it generates a binary tree,

and one-third of the data is used for reduced error pruning.

Parameter settings of these ML techniques are scribed in Table 3.6.

Table 3.6: Parameter Settings of ML Techniques

Category ML tech-

nique

Parameter Settings

Statistical ML

techniques

NB useKernelEstimator = false, displayModelInOldFormat = false, useSupervised-

Discretization = false

LR Ridge: 1.0E-8, useConjugateGradientDescent = false, maxIts = -1

SL Heuristic Stop = 50, Max Boosting Iterations = 500, useCrossValidation = True,

weightTrimBeta = 0.0
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Category ML tech-

nique

Parameter Settings

LB Zmax = 3.0, likelihoodThreshold = -1.7976931348623157E308, numIterations

= 10, numThreads = 1, poolSize = 1, seed = 1, shrinkage = 1.0, useResampling

= False, weightThreshold = 100

Neural Networks MLP Hidden layer = a, Learning rate = 0.3, Momentum = 0.2, Training time = 500,

Validation threshold =20

Nearest

Neighbour

Methods

IBk KNN = 1, nearestNeighbourSearchAlgorithm = LinearNNSearch,

KStar globalBlend = 20, entropicAutoBlend = False

Ensemble

Methods

ABM1 numIterations = 10, weightThreshold = 100, seed =1, classifier = J48: confi-

denceFactor = 0.25, minNumObj = 2, numFolds = 3, seed = 1, subtreeRaising =

True, useMDLcorrection = True

Bag numIterations = 10, numExecutionSlots = 1, seed =1, bagSizePercent = 100,

classifier = J48: confidenceFactor = 0.25, minNumObj = 2, numFolds = 3, seed

= 1, subtreeRaising = True, useMDLcorrection = True

ICO evaluationMetric = RMSE, lookAheadIterations = 50, numFolds = 10, numRuns

= 1, numThreads = 1, poolsize = 1, seed = 1, stepSize = 1, iterativeClassifier =

LogitBoost

LMT errorOnProbabilities = False, fastRegression = True, minNumInstances = 15,

numBoostingIterations = -1, weightTrimBeta = 0.0

RT KValue = 0, breakTiesRandomly = False, maxDepth = 0, minNum = 1, minVari-

anceProp = 0.001, numFolds = 0, seed = 1

RSS numExecutionSlots = 1, numIterations = 10, seed = 1, subSpaceSize = 0.5, clas-

sifier = Reptree: initialCount = 0.0, maxDepth = -1, minNum = 2.0, minVarian-

ceProp = 0.001, numFolds = 3, seed = 1

Decision Tree
PART confidenceFactor = 0.25, minNumObj = 2, numFolds = 3, reducedErrorPruning

= False, seed = 1, useMDLcorrection = True

J48 confidenceFactor = 0.25, minNumObj = 2, numFolds = 3, seed = 1, subtreeRais-

ing = True, useMDLcorrection = True

3.9.2 Search-based Techniques

3.9.2.1 Genetic Algorithm based SBTs

• Genetic Algorithm based Classifier System with Adaptive Discretization Intervals

(GA ADI) [182] is a genetic-based classifier system that follows the Pittsburgh ap-
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proach. Instead of being static, discretization intervals are adaptive in this SBT.

• Genetic Algorithm based Classifier System with Intervalar Rule (GA INT) [182] is

also a genetic-based Pittsburgh style classifier system where the fitness function is a

combination of complexity and accuracy. Following the minimum description length

(MDL) principle, it keeps control of the length of candidate chromosomes.

• In the Generational Genetic Algorithm for Instance Selection (GGA) [183] parent se-

lection, crossover, and mutation are performed on population till the optimal solution

is obtained. A large population is replaced by fitter chromosomes in each generation.

• Steady-State Genetic Algorithm for Instance Selection (SGA) [183] is a plain flavor

of the GA where only a few chromosomes are replaced in each generation when

crossover and mutation are performed. It is simpler than GGA but requires more

generations to converge.

• Incremental Learning with Genetic Algorithms (ILGA) [184] exploits the GA by

providing incremental learning to accommodate changes in the number of classes

and the addition of new training examples or predictors. Agents can learn from co-

agents (cooperative learning) or their environment.

• Memetic Pittsburgh Learning Classifier System (MPLCS) [182] hybridizes GAssist

with local search algorithms to find the set with the minimum rules that yield the

maximum accuracy while training. Incremental learning makes it to converge faster.

• Linear Decreasing Weight - Particle Swarm Optimization (LDWPSO) [185] is the

modification of PSO implemented with a GA, similar to CPSO. The difference lies

in its implementation strategy. It uses linear decreasing weight function instead of

constriction coefficients while exploring for a solution in search space.
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• sUpervised Classification System (UCS) [186] is an accuracy based classification

system developed for supervised learning. The fitness function is calculated as the

ratio of the number of correct classification to the number of matches for a rule. It

ignores incorrect rule sets and applies GA only on correct rule sets.

• X –Classifier System (XCS) [187] uses a GA with reinforcement learning. For each

action by the system, a suitable reward is given for the correct action. The algorithm

evolves as a population of classifiers. Each classifier has a rule and some parameters

for estimating the rule’s quality. The parameter settings of XCS and UCS are the

same.

• Bioinformatics-oriented hierarchical evolutionary learning (BIOHEL) [188] amalga-

mates features of GAssist with iterative rule learning. It works on the Pittsburgh-style

learning classifier system.

3.9.2.2 Particle Swarm Optimization based SBTs

• Constricted Particle Swarm Optimization (CPSO) [185] is the variant of PSO and

GA. CPSO uses constriction coefficients efficiently to avoid the explosion of search

space while searching for an optimum solution and therefore results in comparatively

less execution time.

• In Real Encoding - Particle Swarm Optimization (REPSO) [189], rules are deter-

mined with the assistance of particle swarm optimization for the continuous and cat-

egorical data type. It is a type of Michigan style classifier system where the only

single rule is determined in each generation.
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3.9.2.3 Instance-based SBTs

• Adaptative Search for Instance Selection (CHC) [183] uses a unique recombination

operator that swaps half of the bits of parents that are different. The best chromosome

achieved by this process in a generation is used to seed the population for the next

generation.

• Population-Based Incremental Learning (PBIL) [183] is an effective evolutionary

technique for problems with binary search space. The probability vector contains

probability values which in turn are responsible for the creation of a solution vector.

3.9.2.4 Rule-based SBT

CO-Evolutionary Rule Extractor (CORE) [190] uses the Michigan approach for population

generation and Pittsburgh approach for coding chromosomes in co-population, therefore,

utilizing the benefits of both approaches and supporting cooperative coevolution. The limit

of rules in the rule-set defines the number of co-populations.

3.10 Development and Validation of SDP Models

3.10.1 Model Development

This thesis develops SDP models to uncover probable defects in future software based on

historic data. Supervised models are constructed with various data analysis techniques

that are described in Section 3.9. As discussed in Chapter 1, defect prediction models

are designed as illustrated in Figure 1.3. Once the model is developed, it is tested against

unseen data points and these data points are classified as defective or non-defective. Classes

that have a high probability to be defective will be assigned more resources allocated to the

project. We need to validate the empirically driven model and there are many ways to
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achieve this like hold-out validation, LOO validation, and ten-fold cross-validation. In this

thesis, we have used a ten-fold cross-validation method.

3.10.2 Validation Method

Ten-fold cross-validation is carried out to reduce the partitioning bias. Data is divided into

ten partitions. Nine partitions are used for the training part and the remaining one partition

is used for the testing part [191]. Then performance measures are averaged across ten folds.

Applying ten-fold cross-validation reduces the bias of the models [134].

Figure 3.2: Ten-fold Cross-validation
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3.11 Performance Measures

Performance measures are the metrics that are used to quantify the performance of con-

structed defect prediction models. When we build any defect prediction model, it predicts

the probability of whether the concerned class is defective or non-defective. Broadly, we

can categorize them into two headings:

• Performance Measures that are dependent on the threshold: Accuracy, sensitivity,

specificity, G-Mean, Balance, etc.

• Performance Measures that are independent of threshold: ROC-AUC

For threshold-dependent metrics, the probability of defect-proneness is calculated for a

particular class. Generally, if it is greater than 0.5, the class is predicted as defective, oth-

erwise not. These performance measures can be calculated by using the confusion matrix

shown in Table 3.7.

Table 3.7: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

TP represents the number of defective classes predicted correctly. TN represents the

number of non-defective classes predicted correctly. FP represents the number of non-
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defective classes that are wrongly predicted as defective classes. FN represents the number

of defective classes that are wrongly predicted as non-defective classes.

When it comes to imbalanced data, the selection of appropriate performance evaluators

plays a critical role. The use of accuracy to evaluate performance is specious when data is

imbalanced. Instead, robust performance evaluators like ROC-AUC, G-Mean, and Balance

should be used in the class imbalance framework [192, 193]. This thesis work employs

ROC-AUC because it is a threshold independent metric and a stable metric [58, 194]. In

addition to this, ROC-AUC is capable of handling skewness of data [74, 195]. The use

of G-Mean and ROC-AUC is advocated by [63] to handle the class imbalance problem.

Balance is also one of the reliable measures used in defect prediction studies [196].

Various performance measures can be defined as follows:

• Sensitivity: The sensitivity indicates the probability of correctly predicted defective

classes out of total defective classes. whereas specificity refers to the probability of

identifying non-defective classes correctly. Sensitivity or True Positive Rate (TPR)

is defined as –

Sensitivity =
TP

TP + FN
X100 (3.4)

• Specificity: It is defined as the percentage of correctly predicted non-defective classes

amongst actual non-defective classes. Specificity is calculated as –

Specificity =
TN

TN + FP
X100 (3.5)

• False Positive Rate (FPR): FPR is the probability of false alarm. It exemplifies

the proportion of non-defective classes that are misclassified as defective classes
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amongst actual non-defective classes. It is computed as –

FPR =
FP

FP + TN
X100 (3.6)

• G-Mean: G-Mean is defined as the geometric mean of sensitivity and specificity for

any classifier. G-Mean maintains a balance between both these accuracies [196].

Therefore, it is wise to use G-Mean as an effective measure to assess imbalanced

data. It is calculated as–

GMean =
√
SensitivityXSpecificity (3.7)

• Balance: Balance corresponds to the Euclidean distance between a pair of sensitivity

and FPR [196]. It is desired to have high sensitivity and low FPR. Balance can be

computed as–

Balance = 1−
√

(0− FPR)2 + (1− Sensitivity)2

2
(3.8)

• Area under the curve (ROC-AUC): ROC-AUC is widely accepted as a consistent

and robust performance evaluator for predictions in imbalanced data [74, 195]. It

is threshold independent and can handle skewed data. It is a measure to distinguish

between the two classes. The range of ROC-AUC is (0, 1). Higher the ROC-AUC

value, the better the prediction model. ROC-AUC value of 0.5 signifies that the model

cannot differentiate between the two classes. ROC-AUC values from 0.7 to 0.8 are

considered acceptable. ROC-AUC values greater than 0.8 are considered excellent.
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3.12 Result Analysis and Statistical Validation

The results need to be statistically verified because without the involvement of statistics

results may be misleading [58]. Statistical tests strengthen the conclusion validity of the

study. The survey conducted also revealed that only 40% of relevant SDP studies used

statistical tests. Therefore, to affirm the resultant model predictions we performed statistical

tests. Statistical tests used are non-parametric. We preferred non-parametric statistical tests

because the data under consideration does not follow a normal distribution as discussed in

subsection 3.7.1. Results are statistically validated using Friedman test [197] and Wilcoxon

signed-rank test [198].

• Friedman Test: Friedman test is used to find the rankings of performance of k tech-

niques with multiple datasets [197]. It is based on the assumption that the perfor-

mance measures of techniques computed over different datasets are independent of

each other. The Friedman test hypothesis can be stated as follows:

– Null Hypothesis (H0): The performance of different techniques is not signifi-

cantly different from each other.

– Alternate Hypothesis (Ha): The performance of different techniques is signifi-

cantly different from each other.

The nonparametric tests are exercised in this thesis because software data do not fol-

low normal distribution [199]. These tests work well for data that have outliers or

cases where data distribution is not normal [199]. The Friedman test is executed for

different performance evaluators for establishing the statistical difference amongst

the performance of developed SDP models. We need to compare several ML mod-

els built for several datasets. Therefore, Friedman rankings are computed using the

Friedman test.
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The Friedman test is based on chi-square statistic χ2, which can be computed as

follows:

χ2 =
12

nk(nk + 1)

k∑
i=1

T 2
i − 3n(k + 1) (3.9)

where Ti is the rank total of ith technique, n is the number of total datasets, k−1 is

degree of freedom of the Friedman test.

Friedman test statistic is computed at α = 0.05. Empirical results must be 95%

significant to strengthen conclusion validity. Friedman test is used in many defect

prediction studies [200, 201]. Demsar recommends using it as a nonparametric alter-

native to the parametric ANOVA test [199].

• Wilcoxon-signed Rank test: If the Friedman test results tend to be positive, post

hoc analysis is carried by Wilcoxon signed-rank test to find pair-wise significant

differences. It reduces the family-wise error.

This test is exploited in this thesis in two ways: (i) post-hoc test after the Friedman

test results come to be significant and (ii) an independent test performed to compare

the pairwise performance of two techniques. The Wilcoxon signed-rank test is a pair

test applicable only when two different techniques are evaluated on the same set of

datasets [202]. Wilcoxon signed-rank test is one of the most preferred tests when

SDP studies are performed [200].

The hypothesis tested against Wilcoxon signed-rank test is defined as follows:

– Null Hypothesis (H0): The performance of the two techniques is not signifi-

cantly different from each other.

– Alternate Hypothesis (Ha): The performance of the two techniques is signifi-

cantly different from each other.
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The wilcoxon signed-rank test statistic W is also computed at α = 0.05 using the

following formula:

W =
Q− 1

4
nr(nr + 1)√

1
24
nr(nr + 1)(2nr + 1)

(3.10)

where Q is the minimum of S+ and S−, S+ is the sum of ranks where the difference

is positive, S− is the sum of ranks where the difference is negative, nr is number of

reduced pairs.

We can reject the null hypothesis if W statistic is less than 0.05. This will conclude in

the significant difference between the two techniques that are compared with each other.

The Wilcoxon test was performed with Bonferroni correction to remove family-wise error.

With Bonferroni correction, a p-value is considered significant only if it is less than BonC

value.

BonC =
0.05

NumberofComparisons
(3.11)

To include family-wize errors, we reject the null hypothesis if W statistic is less than

BonC value.

Results must be statistically analyzed and reported to increase their reliability.

103





Chapter 4

Tackling Class Imbalance Problem at

Data Level: Resampling Methods

4.1 Introduction

SDP deals with uncovering the probable future defects. With the increasing complexity of

software, early prediction of defects, and assurance of good software quality of projects

becomes a difficult task. Efficient defect prediction helps in the timely identification of

areas in software which can lead to defects in software owing to better resource utilization

[1]. As discussed in previous chapter source code metrics give useful insights to software

quality attributes like cohesion, coupling, size, inheritance, etc, and are extensively used

in developing software defect models [2, 3, 137]. Effective models can be generated using

the OO metrics. To achieve this task of SDP, various ML techniques have been used by

several researchers from the past two decades [51] but software defect data is mostly im-

balanced [203]. This issue of SDP has recently gained a high interest in researchers in the

software engineering community. As discussed earlier, data is imbalanced if the number

of minority classes, in our case, defective classes, is much lower than the majority class,
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i.e., non-defective classes. This imbalanced distribution of data misguides classifiers while

learning the defective class correctly and hence results in biased and inaccurate results.

A good defect prediction model will be the one that is trained on the similar distribution

of instances of defective and non-defective classes. In this chapter, we addressed the im-

balanced ratio of defective and non-defective classes of software and provided its solution

by modifying these ratios by either increasing samples of minority classes or decreasing

samples of majority classes.

Many real-world problems encounter this imbalanced data problem [19–22, 24–26].

Researchers are actively participating in finding solutions for imbalanced classification in

the software engineering domain for the last two decades. One of the prominent solutions is

using resampling methods comprising of undersampling and oversampling methods [28].

A large number of software metrics adds to the problem of constructing good SDP

models. This curse of dimensionality is handled by selecting important and distinct fea-

tures using CFS. CFS is selected as it is widely accepted FS technique and emerged as an

effective FS technique in a benchmark study [42]. This study deals with the application of

resampling methods to handle imbalanced data problem for 12 Apache datasets and per-

forming a comparative analysis of various SDP models developed using ML techniques.

In this study, six oversampling methods and four undersampling methods are explored on

different datasets to deal with their imbalanced nature. Oversampling methods used are

SMT, SLSMT, SPD, ADSYN, ROS, and AHC. Undersampling methods considered here

are CNNTL, RUS, NCL, OSS. The main objective of this chapter is to ascertain the impor-

tance of dealing with imbalanced data problem using (1) resampling methods and (2) stable

performance measures to build correct and effective SDP models. The research work done

in this chapter also identifies the important IQAs of software on which developers need to

focus on. RQs to achieve the aforementioned objectives are designed as follows:

• RQ1: Which features are repeatedly selected by CFS in software engineering datasets?

106



Introduction

• RQ2: What is the performance of ML techniques on imbalanced data while building

SDP models?

• RQ3a: What is the comparative performance of various SDP models developed using

resampling methods?

RQ3b: Is there any improvement in the performance of SDP models developed using

resampling methods?

• RQ4: Which resampling method outperforms the addressed undersampling and over-

sampling methods for building an efficient SDP model?

• RQ5: Which ML technique performs the best for SDP in imbalanced data?

The answers to these questions are explored by building ML models on CFS selected fea-

tures using ten-fold cross-validation. Predictive performances of developed models are

evaluated using stable performance evaluators like sensitivity, G-Mean, Balance, and ROC-

AUC. Statistical validation is carried out using the Friedman test followed by post-hoc

analysis that is performed using the Wilcoxon signed-rank test with Bonferroni correction.

The conducted study will acquaint developers with useful resampling methods and perfor-

mance evaluators that will assist them to solve imbalanced data problem. This study also

guides developers and software practitioners about the important metrics that affect the

SDP potential of ML models. The result examination ascertained ROS-based ML models

as the best defect predictors for datasets related to the software engineering domain. With

ROS as a resampling method, nearest neighbors and ensemble methods gave a comparable

performance in SDP.

This chapter is organized as follows: Section 4.2 presents the research background.

The design framework for the empirical study is explained in Section 4.3. Section 4.4

summarizes the results with their interpretation. Section 4.5 presents the conclusions with

potential future directions.
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The results of this work are communicated in [204].

4.2 Research Background

This section describes the research elements and framework established to build a classifi-

cation model for defect prediction from dataset collection to model validation.

4.2.1 Independent and Dependent Variable(s)

The independent variables are 20 OO metrics described in Table 3.1. The dependent vari-

able is defect and is explained in subsection 3.5.2.

4.2.2 Empirical Data Collection

Datasets mined from the promise repository are used for empirical predictive modelling

and validation. We have used 12 datasets to perform the experiments. Datasets used are

Tomcat6.0, Synapse1.0, Ivy2.0, Jedit4.2, Xerces1.3, Camel1.6, Ant1.7, Jedit4.0, Log4j1.0,

Synapse1.1, Synapse1.2, and Log4j1.1. Details of these datasets can be referred from

Section 3.6. The percentage of defective classes in addressed projects in the study varies

from 9.85% to 33.9%. This low percentage represents the imbalanced ratio of defective

and non-defective classes in the datasets. The statistics of datasets used in this chapter are

listed in the Table 3.3 of Section 3.6.

4.2.3 Feature Selection

To achieve the objectives set in this chapter, we need to build SDP models that are trained

on good quality data. With large number of metrics used to train model, the results can

be of less credibility because of some extraneous features. We employed CFS to eradicate
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these unnecessary metrics because it is widely accepted technique in literature for feature

selection [51]. Recently many studies like [42, 53] have empirically proved CFS to be

the best feature selection technique. Features that are highly correlated with the depen-

dent variable ‘Defect’ are selected. A list of metrics selected by CFS for each dataset is

presented in Table 3.5.

4.2.4 Model Development and Performance Measures

Model development involves applying resampling methods for treating imbalanced data

problem. Six oversampling methods and four undersampling methods were applied to

create a balance between majority and minority classes. Details of these methods are given

in subsection 3.8.1. These methods are implemented using a knowledge extraction tool

based on evolutionary learning (KEEL) [205]. Default parameter settings are used in the

execution of models so that study can be easily repeated and replicated.

We developed models based on 15 ML techniques that are explained in subsection 3.9.1.

Talking of imbalanced data, the selection of appropriate performance measures plays a

critical role. The predictive performance of the developed models are realized using four

performance measures- sensitivity, Balance, G-Mean and ROC-AUC. These measures are

summarized in Section 3.11.

4.3 Experimental Framework

This section discusses the design framework established to build a classification model for

defect prediction from dataset collection to model validation.

Figure. 4.1 explains the experimental setup for the study.

Ten-fold cross-validation is carried out to reduce the partitioning bias. The working of

ten-fold cross-validation is mentioned in subsection 3.10.2.
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Figure 4.1: Experimental framework for SDP in imbalanced data

4.3.1 Statistical Analysis and Hypothesis Evaluation

The results need to be statistically verified because results may be misleading without the

involvement of statistics [58]. The results of the chapter are statistically evaluated using two

non-parametric test Friedman test and Wilcoxon signed-rank test. Bonferroni correction is

included to remove family-wize error. These tests are explained in Section 3.12.
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4.4 Experimental Results and Analysis

This section describes the answers to the RQs of the chapter and discusses the obtained

results.

4.4.1 RQ1: Which features are repeatedly selected by CFS in software

engineering datasets?

Software engineering datasets refer to software engineering research data or software de-

velopment related data. OO metrics of these software act as the predictor in predictive

modelling. 20 OO metrics of datasets fundamentally define the IQAs of the software and

can be grouped into cohesion, coupling, size, complexity, inheritance, encapsulation, and

composition metrics as explained in subsection 3.5.1.

Proportion selection of IQAs and CFS selected metrics are scribed in Table 4.1. #Se-

lected denotes the number of times a particular metric is selected by CFS for all datasets.

LCOM was selected by 11 datasets whereas the Ce metric was selected by 10 datasets.

This RQ contemplates the metrics that are important for SDP. The weightage of each met-

ric that was selected by CFS for 12 datasets is considered and their proportion selection

was determined for each IQA.

In cohesion metrics, LCOM, CAM, and LCOM3 were chosen by 91.67%, 66.67%, and

41.67% of datasets respectively. The cumulative proportion of the selection of cohesion

metrics is 66.7%. This shows that cohesion metrics are important for SDP and while de-

veloping the software, developers can focus more on LCOM and CAM values. Similarly,

the composition metric, MOA, was selected by 66.67% of the datasets.

Exploring Table 4.1, though the cumulative proportion of coupling metrics is 55.6% its

significance can be judged by selecting the top three selected metrics–RFC, Ca, and Ce.

RFC is picked by 10 datasets whereas Ca and Ce are opted by 9 datasets each. Considering
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only these three metrics, the proportion selection of coupling metrics raises from 55.65%

to 77.78%.

In size metrics, LOC and AMC are more preferred software metrics for defect predic-

tion. The least selected metrics belong to the inheritance category for all datasets. There-

fore, resource investment can be done wisely by developers. The number of times any

metric is selected for all the datasets guides developers and software practitioners in deter-

mining its worth for SDP.

Table 4.1: Proportion Selection of IQAs and CFS selected metrics

IQA OO Metric #Selected Proportion Selection

Cohesion
LCOM 11

0.667CAM 8
LCOM3 5

Composition MOA 8 0.667

Size

WMC 6

0.583
NPM 6
LOC 8
AMC 8

Coupling

Ca 9

0.556

Ce 10
CBO 5
RFC 9
CBM 3
IC 4

Complexity
Avg CC 4

0.5Max CC 8
Encapsulation DAM 5 0.462

Inheritance
NOC 1

0.194MFA 3
DIT 3

4.4.2 RQ2: What is the performance of ML techniques on imbalanced

data while building SDP models?

Figure 4.2 presents the boxplots depicting predictive capability of ML models on imbal-

anced data in terms of ROC-AUC, Balance, G-Mean, and sensitivity.

Tables 4.2, 4.3, 4.4, and 4.5 presents the dataset wise predictive capability of ML mod-
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Figure 4.2: Boxplot representation of ML Models’ Performance with Original Data (NS)

els on imbalanced data in terms of ROC-AUC, Balance, G-Mean, and sensitivity.

ROC-AUC Analysis:

The ROC-AUC of ML models of imbalanced data varies from 0.52 to 0.86 with a

median value of 0.76. Only 55.6% of models have ROC-AUC greater than 0.75. ROC-

AUC is less than 0.85 in 97.8% of cases. Log4j1.1 depicted the best ROC-AUC value

of 0.86 with NB. Analysis of Table 6 reveals that statistical techniques, NB and SL, have

performed fairly good in terms of ROC-AUC, depicting the highest ROC-AUC values for

Log4j1.1, Ant1.7, Jedit4.2, Log4j1.0, and Tomcat6.0. Similarly, LMT models were able to

predict the highest ROC-AUC values for five datasets. Overall, 25% of ML models have

ROC-AUC less than 0.7.

Table 4.2: ROC-AUC values of SDP models with imbalanced data-Without Resampling
methods

Dataset NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT RSS PART J48

Ant1.7 0.8 0.82 0.83 0.8 0.81 0.69 0.78 0.78 0.8 0.79 0.83 0.67 0.8 0.76 0.74

Camel1.6 0.68 0.69 0.68 0.73 0.69 0.64 0.67 0.71 0.72 0.73 0.68 0.59 0.69 0.68 0.59
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NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT RSS PART J48

Ivy2.0 0.79 0.79 0.76 0.77 0.73 0.68 0.73 0.73 0.81 0.72 0.73 0.61 0.83 0.72 0.72

Jedit4.0 0.76 0.78 0.76 0.78 0.79 0.72 0.75 0.78 0.74 0.76 0.77 0.66 0.77 0.71 0.67

Jedit4.2 0.83 0.8 0.84 0.82 0.82 0.66 0.74 0.75 0.82 0.83 0.84 0.59 0.84 0.84 0.69

Log4j1.0 0.83 0.82 0.85 0.78 0.73 0.64 0.73 0.71 0.77 0.76 0.85 0.62 0.78 0.73 0.65

Log4j1.1 0.86 0.84 0.83 0.83 0.82 0.75 0.82 0.76 0.82 0.81 0.81 0.68 0.85 0.8 0.72

Synapse1.0 0.74 0.72 0.67 0.73 0.74 0.66 0.67 0.64 0.59 0.73 0.68 0.58 0.59 0.52 0.59

Synapse1.1 0.75 0.74 0.77 0.69 0.77 0.7 0.76 0.78 0.77 0.7 0.77 0.66 0.75 0.67 0.66

Synapse1.2 0.78 0.8 0.79 0.78 0.76 0.67 0.77 0.75 0.8 0.76 0.82 0.67 0.76 0.73 0.74

Tomcat6.0 0.78 0.8 0.81 0.79 0.78 0.64 0.72 0.73 0.77 0.81 0.81 0.58 0.78 0.75 0.67

Xerces1.3 0.78 0.76 0.73 0.81 0.72 0.77 0.82 0.76 0.8 0.79 0.76 0.68 0.83 0.77 0.6

Balance Analysis:

The range of Balance in NS is from 29.20 to 76.55. In Tomcat6.0, only 59.01 value

is achieved as the maximum value by NB. Balance values achieved by RSS, PART, and

LMT are comparatively lower than other ML techniques. The median value for Balance

for all models in the NS case is 56.35. Ivy2.0, Synape1.0, and Tomcat6.0 attained the max-

imum Balance value with NB. IBk also resulted in maximum Balance values for Jedit4.0,

Synapse1.1, and Xerces1.3. 68.3% of datasets have a Balance value of less than 65. Only

3.3% of datasets have a Balance value greater than 75.

Table 4.3: Balance values of SDP models with imbalanced data-Without Resampling meth-
ods

NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT RSS PART J48

Ant1.7 64.16 56.81 55.17 67.82 61.32 63.66 58.32 62.07 63.32 69.46 55.17 63.27 62.13 65.82 68.55

Camel1.6 43.82 36.42 36.04 37.9 38.21 52.16 47.66 51.13 44.95 38.65 37.54 52.48 31.54 38.64 42.22

Ivy2.0 58.88 45.18 38.12 43.4 41.65 57.25 48.55 50.35 46.84 43.33 38.1 51.69 32.82 38.12 38.12

Jedit4.0 50.67 57.26 56.48 60.06 58.23 67.65 57.81 60.81 62.86 65.56 57.33 62.14 57.26 53.61 62.24

Jedit4.2 57.05 48.4 45.47 48.37 51.35 55.58 49.72 55.58 51.31 46.92 45.47 49.28 38.12 44 45.39

Log4j1.0 66.61 66.13 64.4 65.68 55.97 59.29 47.63 59.29 68.17 59.99 64.4 56.54 54.16 58.12 60.09

Log4j1.1 76.55 74.46 74.84 73.63 75.07 74.33 69.03 69.92 66.33 72.11 74.67 66.06 69.36 70.73 70.52

Synapse1.0 68.04 60.17 42.51 42.49 51.26 50.95 50.95 42.33 42.49 42.53 42.51 46.5 29.29 29.2 33.62

Synapse1.1 63.68 61.93 56.22 53.22 61.99 65.25 61.39 62.43 61.65 52.13 56.22 64.51 51.59 58.69 58.89

Synapse1.2 67.44 62.4 59.83 67.12 70.13 64.95 68.76 66.83 69.14 68.49 64.57 64.78 62.36 67.56 69.04

Tomcat6.0 55.6 42.13 38.47 43.06 36.63 45.53 41.17 44.78 43.04 40.3 38.47 45.57 32.05 35.72 33.88
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NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT RSS PART J48

Xerces1.3 56.67 44.62 39.51 56.87 53.74 63.66 60.95 58.71 56.84 53.84 51.79 59.77 47.73 50.72 54.8

G-Mean Analysis:

As depicted from Table 4.4, NB achieved the highest G-Mean values for 58.33% of

datasets. When no resampling method is used, G-Mean ranges from 0 to 0.79.

Table 4.4: G-Mean values of SDP models with imbalanced data-Without Resampling meth-
ods

NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT RSS PART J48

Ant1.7 0.68 0.61 0.59 0.71 0.65 0.66 0.61 0.65 0.67 0.72 0.59 0.65 0.66 0.69 0.71

Camel1.6 0.44 0.31 0.31 0.34 0.35 0.54 0.49 0.53 0.46 0.36 0.34 0.54 0.18 0.36 0.42

Ivy2.0 0.62 0.47 0.35 0.44 0.41 0.61 0.51 0.53 0.49 0.44 0.35 0.54 0.22 0.35 0.35

Jedit4.0 0.53 0.61 0.61 0.64 0.62 0.7 0.61 0.64 0.67 0.69 0.61 0.64 0.61 0.57 0.65

Jedit4.2 0.61 0.51 0.47 0.51 0.55 0.59 0.52 0.59 0.55 0.49 0.47 0.51 0.35 0.45 0.47

Log4j1.0 0.71 0.69 0.69 0.68 0.59 0.62 0.49 0.62 0.71 0.63 0.69 0.58 0.58 0.62 0.64

Log4j1.1 0.79 0.77 0.78 0.75 0.79 0.75 0.73 0.71 0.69 0.74 0.78 0.67 0.74 0.74 0.73

Synapse1.0 0.71 0.65 0.43 0.43 0.55 0.53 0.53 0.42 0.43 0.43 0.43 0.47 0 0 0.24

Synapse1.1 0.66 0.66 0.6 0.55 0.66 0.66 0.64 0.65 0.65 0.54 0.6 0.65 0.55 0.61 0.61

Synapse1.2 0.7 0.66 0.63 0.69 0.71 0.66 0.71 0.68 0.71 0.7 0.67 0.66 0.65 0.68 0.7

Tomcat6.0 0.59 0.42 0.36 0.44 0.32 0.46 0.4 0.46 0.44 0.39 0.36 0.47 0.2 0.3 0.25

Xerces1.3 0.6 0.46 0.38 0.61 0.57 0.67 0.66 0.63 0.61 0.58 0.56 0.64 0.51 0.54 0.59

The median value of G-Mean for all datasets is observed as 0.6. Considering the models

for all datasets with 15 different ML techniques, only 14.4% of models achieved G-Mean

greater than 0.7. 30.6% of models have G-Mean value less than 0.5.

Sensitivity Analysis:

Models depicted low predictability in terms of sensitivity also. Sensitivity is less than

60% in 93.9% of cases. The median value of sensitivity is only 0.39. This corroborates

the low predictive capability of developed models when imbalanced data problem is not

handled. Sensitivity values lie between 0 and 0.63. Only 0.6% of cases have sensitivity

greater than 70% which is not an acceptable achievement for any prediction model. The

maximum sensitivity value obtained in the NS case is 0.7 by IBk, the nearest neighbor
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technique, in the Log4j1.1 dataset.

Table 4.5: Sensitivity values of SDP models with imbalanced data (Without Resampling
methods)

NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT RSS PART J48

Ant1.7 0.5 0.39 0.37 0.55 0.46 0.51 0.42 0.48 0.49 0.58 0.37 0.51 0.47 0.52 0.57

Camel1.6 0.21 0.1 0.1 0.12 0.13 0.34 0.27 0.32 0.22 0.13 0.12 0.35 0.03 0.13 0.19

Ivy2.0 0.43 0.23 0.13 0.2 0.18 0.4 0.28 0.3 0.25 0.2 0.13 0.33 0.05 0.13 0.13

Jedit4.0 0.31 0.4 0.39 0.44 0.41 0.56 0.41 0.45 0.48 0.52 0.4 0.49 0.4 0.35 0.48

Jedit4.2 0.4 0.27 0.23 0.27 0.31 0.38 0.29 0.38 0.31 0.25 0.23 0.29 0.13 0.21 0.23

Log4j1.0 0.53 0.53 0.5 0.53 0.38 0.44 0.26 0.44 0.56 0.44 0.5 0.41 0.35 0.41 0.44

Log4j1.1 0.68 0.65 0.65 0.65 0.65 0.7 0.57 0.62 0.54 0.62 0.65 0.57 0.57 0.59 0.59

Synapse1.0 0.56 0.44 0.19 0.19 0.31 0.31 0.31 0.19 0.19 0.19 0.19 0.25 0 0 0.06

Synapse1.1 0.5 0.47 0.38 0.35 0.47 0.55 0.47 0.48 0.47 0.33 0.38 0.55 0.32 0.43 0.43

Synapse1.2 0.56 0.48 0.44 0.57 0.63 0.55 0.58 0.58 0.58 0.58 0.51 0.55 0.49 0.59 0.6

Tomcat6.0 0.38 0.18 0.13 0.19 0.1 0.23 0.17 0.22 0.19 0.16 0.13 0.23 0.04 0.09 0.06

Xerces1.3 0.39 0.22 0.14 0.39 0.35 0.49 0.45 0.42 0.39 0.35 0.32 0.43 0.26 0.3 0.36

Thus, the overall performance of SDP models developed using ML techniques on im-

balanced data is not satisfactory for high-quality predictions.

4.4.3 RQ3a: What is the comparative performance of various SDP

models developed using resampling methods?

RQ3b: Is there any improvement in the performance of SDP models developed using

ML techniques on the application of resampling methods?

To answer these questions, we exploited performance measures–Sensitivity, G-Mean,

Balance, and ROC-AUC values that are calculated with help of a confusion matrix ob-

tained by ten-fold cross-validation trained models developed using resampling methods.

The boxplots in Figure 4.3 depicts the predictive capability of ML models on resampled

data in terms of ROC-AUC, Balance, G-Mean, and sensitivity.

Values for all these metrics for resampling methods corresponding to each dataset are
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Figure 4.3: Boxplot representation of ML Models’ Performance with Resampled Data (SS)

recorded in Appendix A. We developed 1800 resampling based ML models and analyzed

their performance based on mean, median, minimum, and maximum values obtained for

the cumulative ML techniques of considered performance measures.

4.4.3.1 Comparative Performance of various SDP Models developed using Resam-

pling Methods

The result summary of models developed using resampling methods based on ROC-AUC,

G-Mean, Balance, and Sensitivity are abridged in Tables 4.6 4.7, 4.8, and 4.9 . For all

the ML techniques, maximum (max), minimum (min), mean, and median values are noted

for resampling methods. The maximum value achieved row-wise is boldfaced. NS case is

included to provide fair comparison only.
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Table 4.6: ROC-AUC Performance of SDP models for imbalanced data (With Resampling
methods)

NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Ant1.7

Max 0.83 0.85 0.88 0.83 0.96 0.98 0.96 0.83 0.79 0.90 0.79

Min 0.67 0.74 0.74 0.69 0.77 0.81 0.79 0.66 0.62 0.78 0.66

Mean 0.78 0.79 0.83 0.79 0.86 0.89 0.86 0.77 0.73 0.86 0.75

Median 0.80 0.78 0.83 0.81 0.87 0.88 0.84 0.8 0.75 0.88 0.77

Camel1.6

Max 0.73 0.83 0.83 0.69 0.95 0.98 0.94 0.68 0.72 0.84 0.72

Min 0.59 0.67 0.68 0.57 0.69 0.68 0.68 0.57 0.57 0.69 0.57

Mean 0.68 0.74 0.75 0.64 0.82 0.84 0.81 0.64 0.65 0.77 0.65

Median 0.68 0.73 0.74 0.65 0.85 0.89 0.81 0.64 0.65 0.78 0.65

Ivy2.0

Max 0.83 0.93 0.93 0.86 0.97 0.99 0.98 0.81 0.77 0.86 0.74

Min 0.61 0.79 0.82 0.77 0.79 0.84 0.84 0.61 0.58 0.61 0.55

Mean 0.74 0.85 0.86 0.82 0.89 0.93 0.91 0.75 0.70 0.80 0.64

Median 0.73 0.85 0.86 0.83 0.9 0.93 0.90 0.76 0.72 0.81 0.63

Jedit4.0

Max 0.79 0.86 0.87 0.79 0.96 0.98 0.95 0.78 0.73 0.87 0.74

Min 0.66 0.69 0.73 0.65 0.74 0.78 0.77 0.66 0.59 0.72 0.60

Mean 0.75 0.77 0.80 0.73 0.87 0.89 0.86 0.73 0.66 0.82 0.68

Median 0.76 0.76 0.78 0.74 0.88 0.88 0.84 0.75 0.67 0.83 0.69

Jedit4.2

Max 0.84 0.9 0.9 0.84 0.98 1.00 0.99 0.83 0.78 0.89 0.72

Min 0.59 0.78 0.79 0.75 0.81 0.85 0.85 0.61 0.59 0.71 0.60

Mean 0.78 0.83 0.84 0.80 0.89 0.93 0.91 0.75 0.71 0.84 0.66

Median 0.82 0.83 0.83 0.80 0.88 0.94 0.92 0.77 0.73 0.85 0.67

Log4j1.0

Max 0.85 0.83 0.86 0.79 0.96 0.97 0.96 0.82 0.89 0.92 0.87

Min 0.62 0.70 0.75 0.61 0.82 0.85 0.80 0.65 0.69 0.81 0.70

Mean 0.75 0.80 0.82 0.70 0.87 0.90 0.86 0.74 0.80 0.87 0.80

Median 0.76 0.80 0.82 0.71 0.87 0.90 0.87 0.73 0.79 0.88 0.83

Log4j1.1

Max 0.86 0.84 0.89 0.84 0.97 0.95 0.93 0.84 0.86 0.95 0.86

Min 0.68 0.73 0.75 0.70 0.76 0.80 0.79 0.69 0.70 0.79 0.69

Mean 0.80 0.78 0.84 0.79 0.89 0.87 0.85 0.77 0.79 0.87 0.77

Median 0.82 0.78 0.84 0.79 0.92 0.87 0.84 0.80 0.78 0.87 0.78

Synapse1.0

Max 0.74 0.92 0.92 0.85 0.96 0.99 0.97 0.79 0.79 0.88 0.72

Min 0.52 0.81 0.81 0.76 0.83 0.88 0.87 0.59 0.59 0.61 0.48

Mean 0.66 0.86 0.87 0.82 0.91 0.94 0.92 0.71 0.72 0.77 0.61

Median 0.67 0.86 0.87 0.83 0.92 0.94 0.92 0.73 0.73 0.77 0.61

Synapse1.1

Max 0.78 0.83 0.84 0.72 0.95 0.95 0.92 0.79 0.72 0.86 0.79

Min 0.66 0.69 0.73 0.60 0.70 0.77 0.75 0.57 0.6 0.69 0.59

Mean 0.73 0.76 0.77 0.67 0.84 0.85 0.83 0.70 0.67 0.80 0.68

Median 0.75 0.77 0.75 0.68 0.87 0.85 0.83 0.72 0.67 0.80 0.67

Synapse1.2

Max 0.82 0.80 0.83 0.79 0.93 0.94 0.93 0.79 0.80 0.91 0.83
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NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Min 0.67 0.68 0.73 0.63 0.82 0.76 0.76 0.64 0.64 0.77 0.68

Mean 0.76 0.74 0.77 0.73 0.86 0.84 0.82 0.74 0.75 0.86 0.78

Median 0.76 0.75 0.77 0.75 0.85 0.84 0.82 0.76 0.77 0.87 0.80

Tomcat6.0

Max 0.81 0.93 0.91 0.85 0.97 1.00 0.98 0.80 0.77 0.88 0.71

Min 0.58 0.78 0.79 0.77 0.77 0.80 0.79 0.64 0.63 0.71 0.57

Mean 0.75 0.85 0.84 0.80 0.89 0.92 0.90 0.74 0.70 0.84 0.64

Median 0.78 0.84 0.84 0.80 0.92 0.95 0.90 0.75 0.71 0.86 0.63

Xerces1.3

Max 0.83 0.92 0.92 0.81 0.95 0.97 0.97 0.82 0.84 0.87 0.84

Min 0.60 0.73 0.78 0.73 0.73 0.79 0.80 0.66 0.68 0.74 0.65

Mean 0.76 0.83 0.86 0.77 0.85 0.90 0.90 0.75 0.77 0.82 0.75

Median 0.77 0.86 0.87 0.77 0.86 0.94 0.90 0.76 0.79 0.83 0.75

ROC-AUC Analysis:

Investigation of Table 4.6 reveals the fact that 51.4% of models have ROC-AUC greater

than 0.8. From Table 4.6, it is visible that ROS performance is the best amongst others.

ROS attained the highest mean and median value for Ant1.7, Camel1.6, Ivy2.0, Jedit4.0,

Jedit4.2, Log4j1.0, Synapse1.0, Tomcat6.0, and Xerces1.3, It also showed the highest mean

value for Synapse1.1. Median values for ROC-AUC for the best resampling method and

NS Models are recorded in Figure 4.4.

Figure 4.4: Comparison of median ROC-AUC value for NS Models and Models with Re-
sampling Methods
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Other resampling methods like AHC, SMT, and SPD also has depicted good perfor-

mance in terms of ROC-AUC. In undersampling methods, only NCL results can be con-

sidered progressive. NCL was able to manage to secure the highest median value for only

one dataset, i.e., Synapse1.2. The highest ROC-AUC value of 1 is achieved by Jedit4.2 and

Tomcat6.0. The highest median values of Log4j1.1 and Synapse1.1 are depicted by another

oversampling technique–SPD. 13.9% of models have ROC-AUC greater than 90%, which

is a remarkable improvement.

Balance Analysis:

According to the value of Balance performance measures in Table 4.7. ROS per-

formance seems to outperform the other resampling methods. ADSYN could maximum

achieve 86.24 Balance value for Synapse1.0. There were only three resampling methods,

ROS, AHC, and SPD, that could achieve the highest Balance value greater than 90. ROS

was able to generate a Balance value of 95.58 for Ivy2.0. This remarkable performance

of ROS in predicting defects make them good contender of preferable resampling method

while developing SDP models.

Table 4.7: Balance Performance of SDP models for imbalanced data (With Resampling
methods)

NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Ant1.7

Max 69.46 77.18 79.98 75.23 90.68 90.89 86.66 75.3 74.99 81.51 71.41

Min 55.17 59.67 65.92 64.48 59.94 64.46 65.1 64.76 61.68 71.04 63.16

Mean 62.47 71.83 75.71 71.77 76.99 81.81 78.4 70.66 68.81 77.85 68.99

Median 63.27 73.44 75.95 72.91 81.29 85.75 79.42 70.5 69.11 78.39 69.87

Camel1.6

Max 52.48 75.81 75.28 64.47 88.87 89.11 85.41 61.7 67.37 80.29 66.68

Min 31.54 44.7 45.65 41.66 47.94 46.05 43.61 46.32 46.86 45.29 45.35

Mean 41.96 67.01 67.96 59.21 72.5 76.03 73.34 56.93 59.41 60.92 55.7

Median 38.65 69.19 70.1 61.41 81.02 83.32 78.4 56.47 60.42 63.87 56.39

Ivy2.0

Max 58.88 84.53 84.38 79.84 92.62 95.58 92.76 74.25 73.27 78.53 67.14

Min 32.82 67.68 67.04 68.46 56.19 62.58 67.1 58.76 54.29 57.52 48.79

Mean 44.83 79.95 79.6 77.51 79.01 87.16 84.92 65.86 60.95 66.9 55.43

Median 43.4 81.56 80.7 77.98 86.17 91.13 87.93 65.53 60.14 66.35 54.76

Jedit4.0

Max 67.65 77.16 80.05 75.95 90.77 91.27 87.72 72.98 69.06 80.21 72.45

Min 50.67 47.89 54.72 52.16 52.14 54.49 52.2 57.64 52.49 55.22 57.08
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NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Mean 59.33 70.07 72.25 68.75 80.14 81.69 78.31 67.11 59 72.67 63.84

Median 58.23 71.09 72.82 71.53 86.56 86.63 80.92 68.12 58.04 72.78 63.8

Jedit4.2

Max 57.05 81.63 84.33 76.1 93.90 95.10 90.66 70.79 72.41 78.7 66.19

Min 38.12 59.88 60.33 55.49 53.31 58.73 58.94 59.68 57.61 55.61 54.99

Mean 48.8 75.58 77.12 72.52 78.76 86.56 84.45 66.95 65.41 67.3 58.72

Median 48.4 76.27 77.73 73.85 87.6 91.34 87.45 67.46 66.42 67.37 57.37

Log4j1.0

Max 68.17 77.31 81.55 71.15 89.36 91.98 88.66 76.77 82.54 83.22 80.02

Min 47.63 63.46 70.26 60.86 67.2 74.08 72.48 61.39 63.2 70.13 61.21

Mean 60.43 72.69 77.11 65.39 80.87 84.70 79.99 68.59 72.93 79.1 72.68

Median 59.99 72.31 77.3 64.4 84.38 84.70 80.22 69.15 73.20 80.54 72.33

Log4j1.1

Max 76.55 75.82 80.86 78.40 88.9 87.84 85.68 75.42 79.79 84.87 78.01

Min 66.06 61.77 72.77 68.09 64.68 71.83 69.94 66.15 54.20 75.04 64.50

Mean 71.84 70.08 76.55 72.59 80.14 79.85 76.98 71.20 63.45 79.93 70.71

Median 72.11 69.94 77.07 72.72 83.14 81.21 76.7 71.41 61.79 80.86 68.66

Synapse1.0

Max 68.04 86.24 84.46 81.26 93.38 94.38 92.14 76.64 81.01 73.13 67.01

Min 29.2 76.89 77.54 73.17 60.44 81.12 84.05 55.39 62.12 29.29 29.06

Mean 44.99 82.06 81.8 77.69 83.45 89.84 88.01 68.92 71.3 59.99 53.95

Median 42.51 81.48 82.15 78.36 86.92 90.45 88.3 70.63 70.83 60.15 54.79

Synapse1.1

Max 65.25 76.12 78.65 69.01 88.66 87.90 84.33 77.36 67.50 85.28 69.91

Min 51.59 64.18 67.35 58.83 56.69 66.87 66.45 51.35 55.05 66.85 57.66

Mean 59.32 71.29 72.12 64.26 77.27 79.89 77.61 65.22 61.89 74.01 63.38

Median 61.39 71.65 71.46 64.47 82.80 81.82 77.10 66.19 61.85 72.59 63.57

Synapse1.2

Max 70.13 73.71 76.05 71.99 85.18 84.21 83.46 75.05 72.88 84.39 74.37

Min 59.83 60.63 64.09 61.85 69.23 66.41 63.68 63.90 43.22 75.50 61.81

Mean 66.23 68.64 70.90 68.31 79.82 77.72 75.42 69.33 61.69 80.89 68.71

Median 67.12 68.37 70.68 69.51 81.34 80.84 75.53 71.07 62.09 81.33 70.82

Tomcat6.0

Max 55.60 86.08 84.67 78.73 93.61 94.99 91.89 68.2 64.78 73.11 58.92

Min 32.05 58.27 57.18 56.29 51.03 56.58 56.78 60.47 53.95 54.08 45.33

Mean 41.09 78.17 76.99 74.15 75.70 86.07 83.59 64.82 60.93 62.14 51.22

Median 41.17 81.25 77.58 75.54 84.95 91.66 88.98 65.27 60.83 62.31 50.97

Xerces1.3

Max 63.66 85.50 86.00 72.60 88.30 92.79 92.52 72.60 77.79 74.91 72.53

Min 39.51 55.21 63.66 57.55 59.32 68.53 67.53 55.57 63.67 58.82 59.69

Mean 54.01 77.10 80.14 68.57 73.99 85.05 84.34 68.61 70.66 66.92 66.03

Median 54.80 79.55 82.53 69.17 74.49 89.94 88.48 69.15 71.63 67.03 64.99

Median values of Balance value for the best resampling method with NS scenario are

recorded in Figure 4.5.

Comparatively, in undersampling methods, RUS and OSS, had a maximum Balance
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Figure 4.5: Comparison of median Balance value for NS Models and Models with Resam-
pling Methods

value of only 77.36 and 80.02 respectively. The highest median and mean values for all

datasets except Synapse1.2 are attained by either SPD or ROS. Synapse 1.2 got the highest

mean value with NCL and undersampling method. 60.9% of cases have a Balance greater

than 70. Therefore, there is 357% of growth in median values of Balance when resampling

is done as compared to NS.

G-Mean Analysis:

Similar patterns are observed in G-Mean also. Bold values in Table 4.8 portrays the

better predictive capabilities of ML techniques with ROS. The highest mean and median

values are attained by ROS and SPD for all datasets except Synapse1.2. NCL gave the best

results for mean and median values of Synapse1.2. 80.7% of cases have G-Mean greater

than 0.65 for resampling methods. AHC, though not having any maximum values, have

consistent performance for all the datasets. With NS, only 3.9% of cases could achieve a G-

Mean value greater than 0.75. With resampling methods, the number of cases for G-Mean

values greater than or equal to 0.75 has elevated to 42.7% with 1182% of improvement.

Median values of Balance value for the best resampling method with NS scenario are

recorded in Figure 4.6.
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Figure 4.6: Comparison of median G-Mean value for NS Models and Models with Resam-
pling Methods

Table 4.8: G-Mean Performance of SDP models for imbalanced data (With Resampling
methods)

NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Ant1.7

Max 0.72 0.77 0.80 0.75 0.91 0.92 0.88 0.75 0.75 0.83 0.73

Min 0.59 0.62 0.69 0.67 0.64 0.68 0.68 0.65 0.62 0.74 0.64

Mean 0.66 0.72 0.76 0.72 0.79 0.83 0.79 0.71 0.69 0.80 0.69

Median 0.66 0.74 0.76 0.73 0.83 0.87 0.79 0.72 0.69 0.8 0.70

Camel1.6

Max 0.54 0.76 0.75 0.64 0.89 0.91 0.86 0.62 0.67 0.81 0.67

Min 0.18 0.45 0.47 0.41 0.50 0.47 0.44 0.48 0.48 0.46 0.47

Mean 0.40 0.67 0.68 0.59 0.74 0.77 0.74 0.57 0.60 0.63 0.57

Median 0.36 0.70 0.70 0.61 0.81 0.85 0.79 0.57 0.60 0.66 0.58

Ivy2.0

Max 0.62 0.85 0.85 0.80 0.93 0.96 0.94 0.75 0.73 0.82 0.67

Min 0.22 0.69 0.69 0.71 0.59 0.65 0.70 0.60 0.55 0.62 0.49

Mean 0.45 0.80 0.80 0.78 0.81 0.88 0.86 0.67 0.62 0.71 0.56

Median 0.44 0.82 0.81 0.79 0.86 0.93 0.89 0.67 0.61 0.71 0.56

Jedit4.0

Max 0.70 0.77 0.8 0.76 0.91 0.93 0.89 0.74 0.69 0.81 0.73

Min 0.53 0.49 0.58 0.55 0.55 0.57 0.55 0.60 0.54 0.58 0.57

Mean 0.63 0.71 0.73 0.69 0.81 0.83 0.79 0.68 0.60 0.74 0.64

Median 0.62 0.71 0.73 0.72 0.87 0.88 0.81 0.68 0.59 0.74 0.64

Jedit4.2

Max 0.61 0.82 0.85 0.76 0.94 0.96 0.92 0.72 0.75 0.81 0.67

Min 0.35 0.63 0.63 0.59 0.57 0.62 0.63 0.63 0.59 0.59 0.56

Mean 0.51 0.77 0.78 0.73 0.80 0.88 0.85 0.68 0.67 0.71 0.60

Median 0.51 0.78 0.78 0.74 0.88 0.93 0.88 0.68 0.68 0.72 0.58

Log4j1.0

Max 0.71 0.77 0.82 0.72 0.90 0.93 0.89 0.78 0.83 0.86 0.80
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NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Min 0.49 0.67 0.74 0.61 0.71 0.77 0.74 0.62 0.63 0.73 0.62

Mean 0.64 0.73 0.77 0.66 0.82 0.86 0.80 0.69 0.73 0.80 0.73

Median 0.63 0.73 0.77 0.66 0.84 0.85 0.80 0.69 0.74 0.82 0.74

Log4j1.1

Max 0.79 0.76 0.81 0.79 0.91 0.88 0.86 0.77 0.81 0.85 0.81

Min 0.67 0.66 0.73 0.68 0.65 0.72 0.70 0.66 0.59 0.75 0.65

Mean 0.74 0.70 0.77 0.73 0.81 0.81 0.77 0.72 0.66 0.8 0.71

Median 0.74 0.70 0.77 0.73 0.85 0.81 0.77 0.72 0.65 0.81 0.69

Synapse1.0

Max 0.71 0.86 0.85 0.83 0.93 0.95 0.92 0.78 0.81 0.77 0.69

Min 0 0.77 0.78 0.74 0.64 0.81 0.84 0.56 0.64 0.00 0.00

Mean 0.42 0.82 0.82 0.79 0.85 0.91 0.88 0.70 0.72 0.61 0.53

Median 0.43 0.83 0.83 0.80 0.88 0.93 0.89 0.72 0.71 0.65 0.56

Synapse1.1

Max 0.66 0.76 0.79 0.69 0.90 0.89 0.85 0.77 0.68 0.85 0.70

Min 0.54 0.65 0.68 0.59 0.59 0.68 0.68 0.51 0.57 0.67 0.58

Mean 0.62 0.72 0.73 0.65 0.78 0.80 0.78 0.65 0.63 0.75 0.64

Median 0.64 0.72 0.72 0.65 0.84 0.83 0.77 0.66 0.63 0.74 0.64

Synapse1.2

Max 0.71 0.74 0.76 0.72 0.86 0.85 0.84 0.75 0.73 0.84 0.75

Min 0.63 0.62 0.66 0.62 0.71 0.68 0.65 0.64 0.43 0.77 0.64

Mean 0.68 0.69 0.71 0.69 0.80 0.78 0.76 0.70 0.63 0.81 0.70

Median 0.68 0.69 0.71 0.70 0.82 0.81 0.76 0.71 0.64 0.82 0.71

Tomcat6.0

Max 0.59 0.87 0.85 0.79 0.94 0.96 0.93 0.70 0.66 0.77 0.60

Min 0.20 0.61 0.60 0.59 0.54 0.60 0.60 0.63 0.56 0.59 0.46

Mean 0.39 0.79 0.78 0.75 0.77 0.87 0.84 0.67 0.63 0.67 0.53

Median 0.40 0.82 0.78 0.76 0.85 0.94 0.89 0.67 0.63 0.68 0.52

Xerces1.3

Max 0.67 0.86 0.86 0.73 0.89 0.93 0.93 0.73 0.78 0.78 0.74

Min 0.38 0.58 0.67 0.61 0.64 0.72 0.71 0.59 0.66 0.63 0.62

Mean 0.57 0.78 0.81 0.69 0.77 0.86 0.85 0.69 0.71 0.71 0.68

Median 0.59 0.81 0.83 0.69 0.77 0.90 0.89 0.70 0.72 0.71 0.67

Comparing the oversampling and undersampling methods, oversampling methods thrived

in predicting defects efficiently.

Sensitivity Analysis: Sensitivity values are illustrated in Table 4.9. CNNTL worked

best for Log4j1.1 and Synapse1.2 with an average sensitivity value of 0.85 and 0.83 respec-

tively. For other datasets, ROS outperformed other resampling methods. Median values of

Balance value for the best resampling method with NS scenario are recorded in Figure ??.
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Figure 4.7: Comparison of median Sensitivity value for NS Models and Models with Re-
sampling Methods

Table 4.9: Sensitivity Performance of SDP models for imbalanced data (With Resampling
methods)

NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Ant1.7

Max 0.58 0.83 0.83 0.78 0.91 0.97 0.94 0.72 0.78 0.76 0.73

Min 0.37 0.44 0.53 0.51 0.44 0.51 0.52 0.56 0.49 0.60 0.49

Mean 0.48 0.72 0.74 0.70 0.71 0.83 0.78 0.65 0.72 0.70 0.65

Median 0.49 0.76 0.75 0.71 0.75 0.89 0.80 0.64 0.75 0.70 0.66

Camel1.6

Max 0.35 0.81 0.80 0.66 0.94 0.98 0.95 0.59 0.68 0.75 0.62

Min 0.03 0.22 0.23 0.18 0.27 0.24 0.20 0.24 0.26 0.23 0.23

Mean 0.18 0.70 0.68 0.56 0.69 0.79 0.75 0.48 0.55 0.46 0.42

Median 0.13 0.75 0.74 0.6 0.85 0.94 0.81 0.50 0.57 0.51 0.45

Ivy2.0

Max 0.43 0.94 0.88 0.89 0.91 0.99 0.98 0.68 0.73 0.70 0.65

Min 0.05 0.57 0.55 0.57 0.39 0.48 0.55 0.45 0.40 0.40 0.30

Mean 0.22 0.82 0.81 0.79 0.72 0.90 0.86 0.57 0.52 0.54 0.42

Median 0.20 0.84 0.86 0.83 0.83 0.99 0.92 0.58 0.48 0.53 0.40

Jedit4.0

Max 0.56 0.85 0.81 0.75 0.95 0.98 0.94 0.68 0.87 0.76 0.72

Min 0.31 0.27 0.37 0.33 0.33 0.36 0.33 0.41 0.37 0.37 0.43

Mean 0.43 0.73 0.70 0.65 0.77 0.84 0.79 0.61 0.74 0.65 0.66

Median 0.41 0.76 0.71 0.66 0.90 0.92 0.80 0.63 0.76 0.64 0.68

Jedit4.2

Max 0.40 0.90 0.88 0.86 0.95 0.99 0.98 0.67 0.65 0.71 0.58

Min 0.13 0.45 0.45 0.38 0.34 0.42 0.42 0.44 0.42 0.38 0.38

Mean 0.28 0.81 0.79 0.73 0.73 0.89 0.86 0.58 0.56 0.54 0.46

Median 0.27 0.85 0.83 0.76 0.86 0.99 0.91 0.58 0.56 0.54 0.44

Log4j1.0

Max 0.56 0.89 0.82 0.68 0.94 0.98 0.95 0.71 0.82 0.81 0.79
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NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

Min 0.26 0.49 0.59 0.46 0.54 0.64 0.62 0.50 0.59 0.59 0.50

Mean 0.45 0.73 0.75 0.62 0.80 0.86 0.79 0.64 0.77 0.73 0.69

Median 0.44 0.74 0.76 0.64 0.86 0.85 0.80 0.65 0.79 0.74 0.68

Log4j1.1

Max 0.70 0.78 0.81 0.77 0.99 0.91 0.90 0.76 0.97 0.84 0.76

Min 0.54 0.46 0.64 0.62 0.55 0.62 0.67 0.59 0.70 0.70 0.62

Mean 0.62 0.69 0.73 0.68 0.82 0.79 0.75 0.66 0.85 0.77 0.71

Median 0.62 0.70 0.72 0.68 0.86 0.78 0.74 0.65 0.84 0.76 0.70

Synapse1.0

Max 0.56 0.91 0.89 0.93 0.96 0.99 0.98 0.69 0.81 0.63 0.56

Min 0.00 0.75 0.74 0.70 0.44 0.81 0.85 0.44 0.50 0.00 0.00

Mean 0.23 0.86 0.85 0.83 0.79 0.95 0.91 0.60 0.66 0.44 0.38

Median 0.19 0.88 0.87 0.81 0.82 0.98 0.91 0.63 0.69 0.44 0.38

Synapse1.1

Max 0.55 0.83 0.84 0.65 0.95 0.94 0.89 0.75 0.87 0.85 0.75

Min 0.32 0.57 0.60 0.51 0.41 0.57 0.57 0.52 0.63 0.58 0.57

Mean 0.44 0.72 0.69 0.59 0.79 0.83 0.77 0.62 0.76 0.68 0.62

Median 0.47 0.74 0.67 0.60 0.92 0.88 0.77 0.62 0.75 0.67 0.62

Synapse1.2

Max 0.63 0.83 0.78 0.7 0.91 0.91 0.9 0.71 0.93 0.86 0.86

Min 0.44 0.47 0.52 0.54 0.59 0.56 0.52 0.53 0.69 0.67 0.66

Mean 0.55 0.69 0.69 0.64 0.79 0.79 0.76 0.64 0.83 0.80 0.79

Median 0.57 0.70 0.73 0.65 0.80 0.84 0.77 0.66 0.83 0.80 0.79

Tomcat6.0

Max 0.38 0.91 0.89 0.87 0.94 0.99 0.98 0.58 0.57 0.62 0.45

Min 0.04 0.42 0.40 0.39 0.31 0.39 0.40 0.45 0.36 0.35 0.23

Mean 0.17 0.79 0.77 0.74 0.68 0.88 0.84 0.53 0.48 0.47 0.33

Median 0.17 0.87 0.83 0.77 0.82 0.99 0.91 0.53 0.48 0.47 0.32

Xerces1.3

Max 0.49 0.91 0.86 0.79 0.86 0.94 0.95 0.71 0.77 0.65 0.67

Min 0.14 0.37 0.49 0.41 0.43 0.56 0.55 0.38 0.49 0.42 0.43

Mean 0.35 0.79 0.77 0.66 0.64 0.84 0.83 0.61 0.65 0.54 0.55

Median 0.36 0.86 0.81 0.69 0.65 0.92 0.90 0.62 0.65 0.54 0.54

After applying resampling methods, sensitivity increases above 0.9 for 11.9% of the

developed models. 53% of resampling-based models have sensitivity greater than 0.7 as

compared to only 0.6% of cases in the NS scenario. This accounts for a whopping 9440%

of improvement in ML models having a sensitivity value greater than 0.7. Therefore, it can

be concluded that the predictive capability of ML models has immensely improved after

treating imbalanced data properly using resampling methods.
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4.4.3.2 Comparison of Resampling-based ML Models with NoSampling (NS) Mod-

els

A comparison of the results of models developed without employing resampling methods

and models developed using resampling methods provides an answer to RQ3b. 1980 ML

models were constructed for 12 datasets to achieve objectives of this chapter. The results

are compared based on the maximum value attained and averaged median value achieved in

each dataset. These results are summarized in Table 4.10 and Table 4.11. The last column

‘All’ in both the tables epitomizes the maximum and median values attained with cumula-

tive datasets. ‘NS’ represents no sampling scenario and ‘RS’ signifies the ten resampling

methods that are used in this study. ‘GR’ indicates the percentage growth in maximum and

median values of RS as compared to NS. Analysis of Table 4.10 and Table 4.11 respectively

shows that there is a positive increment in all the values of maximum or median for the four

performance measures when resampling methods are employed to build SDP models. This

proves that there is a definite improvement in resampling-based ML models than the NS

models when evaluated based on ROC-AUC, Balance, G-Mean, and sensitivity.

For ROC-AUC, the overall percentage growth for the median value is 6.3%. The max-

imum ROC-AUC value achieved in the NS case is 0.86 for Log4j1.1 which increases to

0.97 when resampling methods are applied to it. Jedit4.2 and Tomcat6.0 were able to at-

tain a maximum ROC-AUC value of 1 showing 18.2% and 22.2% of the increase. For

Synapse1.0, on the application of resampling methods, the maximum value depicts the in-

cremental growth of 33.8% and the respective median growth corresponds to 24.3%. The

increase in median values of Balance and G-Mean for all the datasets is 29.1% and 21.2%

respectively with resampling methods. Synapse1.0, Tomcat6.0, Ivy2.0, and Camel1.6 has

illustrated more than 60% of improvement in Balance median values and more than 70%

improvement in G-Mean median values. The maximum Balance value gained by models

with resampling methods is 95.58 for Ivy2.0 which was earlier 58.88. Similarly, the sensi-
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tivity median values have shown a remarkable improvement of 84.6%. The median value

of NS was 0.39 when all datasets were considered together. This value was raised to 0.71

on the application of resampling methods.

Answer to RQ3b: The results verify that there is an improvement in the performance of

SDP models developed using ML techniques on the application of resampling methods.

Table 4.10: Comparison of Maximum of NoSampling (NS) and Resampling-based ML
models (RS) for ROC-AUC, Balance, G-Mean, and Sensitivity

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 All

ROC-

AUC Max

NS 0.83 0.73 0.83 0.79 0.84 0.85 0.86 0.74 0.78 0.82 0.81 0.83 0.86

RS 0.98 0.98 0.99 0.98 1 0.97 0.97 0.99 0.95 0.94 1 0.97 1

GR 18.5 34.3 19 23.8 18.2 14.3 12.6 33.8 22.8 15.1 22.2 17.3 16

Balance

Max

NS 69.46 52.48 58.88 67.65 57.05 68.17 76.55 68.04 65.25 70.13 55.6 63.66 76.55

RS 90.89 89.11 95.58 91.27 95.1 91.98 88.9 94.38 88.66 85.18 94.99 92.79 95.58

GR 30.9 69.8 62.3 34.9 66.7 34.9 16.1 38.7 35.9 21.5 70.8 45.8 24.9

G-Mean

Max

NS 0.72 0.54 0.62 0.7 0.61 0.71 0.79 0.71 0.66 0.71 0.59 0.67 0.79

RS 0.92 0.91 0.96 0.93 0.96 0.93 0.91 0.95 0.9 0.86 0.96 0.93 0.96

GR 27 69.7 54.4 32.4 57.9 30.2 14.8 34.9 34.9 20.4 62.7 38.1 21.2

Sensitivity

Max

NS 0.58 0.35 0.43 0.56 0.4 0.56 0.7 0.56 0.55 0.63 0.38 0.49 0.7

RS 0.97 0.98 0.99 0.98 0.99 0.98 0.99 0.99 0.95 0.93 0.99 0.95 0.99

GR 68.4 180.5 132.8 74.4 150.9 75.1 40.2 76.4 73.3 48.1 164 92 41.5

Table 4.11: Comparison of Averaged Median values of NoSampling (NS) and Resampling-
based ML models (RS) for ROC-AUC, Balance, G-Mean, and Sensitivity

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 All

ROC-

AUC

Median

NS 0.8 0.68 0.73 0.76 0.82 0.76 0.82 0.67 0.75 0.76 0.78 0.77 0.76

RS 0.81 0.71 0.83 0.77 0.83 0.83 0.82 0.83 0.75 0.79 0.81 0.81 0.8

GR 1.9 3.8 14.3 1.9 1.3 8.7 0.6 24.3 0.7 3.3 4.7 5.8 6.3

Balance

Median

NS 63.27 38.65 43.4 58.23 48.4 59.99 72.11 42.51 61.39 67.12 41.17 54.8 56.35

RS 73.66 62.34 75.8 71.98 72.37 75.56 73.7 79.4 69.41 71.93 73.15 72.29 72.73

GR 16.4 61.3 74.7 23.6 49.5 26 2.2 86.8 13.1 7.2 77.7 31.9 29.1

G-Mean

Median

NS 0.66 0.36 0.44 0.62 0.51 0.63 0.74 0.43 0.64 0.68 0.4 0.59 0.6

RS 0.74 0.62 0.77 0.73 0.74 0.76 0.75 0.8 0.7 0.72 0.74 0.73 0.73

GR 13.1 73.7 73.5 16.9 44.7 20.1 0.4 88.3 9 5.5 83.5 24.2 22

Sensitivity

Median

NS 0.49 0.13 0.2 0.41 0.27 0.44 0.62 0.19 0.47 0.57 0.17 0.36 0.39

RS 0.71 0.59 0.7 0.71 0.69 0.74 0.74 0.81 0.68 0.76 0.66 0.68 0.71

GR 45.7 341.9 250 72.2 154.8 66.7 18.9 330 46.5 32.8 293.3 88.8 84.6
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4.4.4 RQ4: Which resampling method outperforms the addressed un-

dersampling and oversampling methods for building an efficient

SDP model?

This RQ addresses the effectiveness of 10 resampling methods that are investigated in this

study for constructing good SDP models. For the experiments conducted, is there any par-

ticular resampling method that can be considered the best? In this direction, we conducted

Friedman tests on performance evaluators to provide rankings to models built using resam-

pling methods. The case when no resampling method was used (NS) is also included. The

Friedman test is used to find the difference between methods statistically. Four hypotheses

are formed for four different performance measures. The hypothesis formed to achieve this

objective is stated as:

• Hi0 (Null Hypothesis): There is no significant statistical difference between the per-

formance of any of the defect prediction models developed after using resampling

methods and models developed using original data, in terms of PMj .

• Hia (Alternate Hypothesis): There is a significant statistical difference between the

performance of any of the defect prediction models developed after using resampling

methods and model developed using original data, in terms of PMj .

where i = 1 to 4 denoting H1, H2, H3 and H4 hypothesis and j = 1 to 4. PM1 = ROC-

AUC, PM2 = Balance, PM3 = G-Mean, and PM4 = Sensitivity. Table 4.12 provides

the desired ranking of SDP models developed in this study for ROC-AUC, Balance, G-

Mean, and Sensitivity. The mean ranks of each resampling method and NS are shown

in parentheses. NS represents the scenario when no sampling technique is used, so, it

represents the performance with original data. We evaluated the hypothesis at the 0.05

level of significance, i.e., 95% of confidence level. Rank 1 is the best rank and rank 11
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is the worst rank. The p-values achieved for all performance measures is 0.000. As p-

values are less than 0.05, we reject the null hypothesis and declare that there is a significant

difference between methods applied to developed SDP models.

Table 4.12 shows that ROS and AHC have unanimously scored Rank 1 and Rank 2

respectively for all the performance measures. Out of four undersampling methods, only

one, i.e., NCL can make its space in the first seven positions for the reliable performance

measures–ROC-AUC, Balance, and G-Mean. OSS, CNNTL, and RUS have acquired posi-

tions in the last four ranks with ROC-AUC, Balance, and G-Mean. These rankings clearly

state the supremacy of oversampling methods over undersampling methods. For Balance,

G-Mean, and Sensitivity, NS (no sampling scenario) is ranked last. Therefore, results sta-

tistically approved the visualization in RQ3 that usage of resampling methods improved

the predictive power of SDP models.

Table 4.12: Friedman Rankings for NS and Resampling methods with ROC-AUC, Balance,
G-Mean, and Sensitivity

Rank ROC-AUC Balance G-Mean Sensitivity

Rank 1 ROS (10.11) ROS (10.08) ROS (10.15) ROS (9.89)

Rank 2 AHC (9.13) AHC (9.01) AHC (9.01) AHC (8.83)

Rank 3 SPD (8.58) SPD (7.93) SPD (7.91) SMT (7.06)

Rank 4 NCL (8.04) SMT (7.56) SMT (7.46) SPD (7.06)

Rank 5 SMT (7.06) NCL (6.60) NCL (6.95) ADSYN (7.01)

Rank 6 ADSYN (5.55) ADSYN (6.23) ADSYN (6.11) CNNTL (6.48)

Rank 7 NS (4.30) SLSMT (5.09) SLSMT (4.88) NCL (5.29)

Rank 8 SLSMT (4.05) RUS (4.42) RUS (4.36) SLSMT (5.20)

Rank 9 RUS (3.37) CNNTL (3.85) CNNTL (3.66) RUS (4.01)

Rank 10 CNNTL (3.08) OSS (3.41) OSS (3.30) OSS (3.90)

Rank 11 OSS (2.68) NS (1.77) NS (2.16) NS (1.22)

p-value 0.000 0.000 0.000 0.000

The Friedman test tells whether there is an overall difference or not in the model perfor-

mances. But if there is a difference, it fails to further identify the pairwise difference, i.e,

exactly which group is different from each other. For this, post-hoc analysis is conducted
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on overall datasets using Wilcoxon signed-rank test and comparative pairwise performance

of all the resampling methods was evaluated with ROS. The Wilcoxon signed-rank test was

carried out with bonferroni correction at the α = 0.05 level of significance. total number

of comparisons are 10. Therefore, BonC value becomes 0.005. Table 4.13 summarizes

the Wilcoxon signed-rank test results with Bonferroni Correction for ROC-AUC, G-Mean,

Balance, and Sensitivity. ‘S+’ represents ‘significantly better’ results and their p-values are

scribed in parenthesis. The p-value obtained for all the comparisons is 0.000. It is less than

0.005, there we reject the null hypothesis.

Table 4.13: Wilcoxon Signed-Rank Test Results for Resampling Methods based on ROS

Pair ROC-

AUC

Balance G-Mean Sensitivity

ROS - NS S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - ADSYN S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - SMT S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - SLSMT S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - SPD S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - AHC S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - RUS S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - CNNTL S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - NCL S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

ROS - OSS S+

(0.000)

S+

(0.000)

S+

(0.000)

S+

(0.000)

It can be inferred from Table 4.13 that ROS exhibits statistically better performance
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than all the compared scenarios based on ROC-AUC, Balance, G-Mean, and sensitivity.

Answer to RQ4: Oversampling methods resulted in better SDP models than undersam-

pling methods. Random OverSampling methods emerged as the best resampling method

in terms of ROC-AUC, Balance, G-Mean, and sensitivity.

4.4.5 RQ5: Which ML technique performs the best for SDP in imbal-

anced data?

To answer this RQ, we performed the Friedman test for 15 ML techniques by considering

ROS-based models. The Friedman rankings are recorded in Table 4.14 with Rank 1 as

the best rank. The Friedman test was held at the 0.05 significance level with a degree

of freedom of 14. The p-value for each performance measures was 0.000. Therefore,

the results are considered 95% significant. ‘Kendall C’ in Table 4.14 shows the value for

Kendall’s coefficient of concordance. Its value ranges from 0 to 1. It reflects the degree of

agreement and for all the four performance measures, Kendall’s coefficient is greater than

or equal to 0.835. This signifies that rankings for different datasets are approximate 83.5%

similar and hence, increases the reliability and credibility of the Friedman statistical results.

This can be observed from Table 4.14 that KStar, IBk, ABM1, RT, and RSS techniques

incited better prediction models than other ML techniques. KStar and IBk are the variants

of the nearest neighbor techniques. These ML techniques provide good results when there

is a large number of samples irrespective of the data distribution. Nearest neighbors are

instance-based fast learners. Mean ranks are inscribed in brackets. The mean rank of KStar

is 14.41 for ROC-AUC which is the highest in the pool. The rank of IBk is second when

the models are evaluated based on Balance, G-Mean, and sensitivity. The mean rank of IBk

is 12.66, 12.91, and 12.33 for Balance, G-Mean, and sensitivity respectively.

ABM1, RT, Bag, and RSS have also attained high mean ranks. ABM1 is the first ranker

in Balance and G-Mean with a mean rank of 13.41 and 13.5 respectively. ABM1 got 2nd
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rank with ROC-AUC and 4th rank with sensitivity. For the stable performance measures,

ABM1, Bag, RT, and RSS appeared in the first six ranks, proving their competency in

the ML world. These four techniques are ensembles that are considered robust in dealing

with imbalanced data. The crux of ensemble methods is to cover the weakness of the base

ML technique and combine them to reduce bias or variance and enhance its predictive

capability.

The last three ranks for all the performance measures are grabbed by the statistical

learners: Naı̈ve Bayes, Simple Logistic, and Logistic Regression. These ML techniques,

in contrast, were able to generate good prediction models when no resampling method was

involved in model construction. The balancing of both the classes boosted the performance

of other classifiers, especially ensembles and nearest neighbors, and resulted in their unac-

ceptable performance.

Table 4.14: Friedman Rankings for ML techniques with ROC-AUC, Balance, G-Mean, and
Sensitivity

Rank ROC-AUC Balance G-Mean Sensitivity

Rank 1 KStar (14.41) ABM1 (13.41) ABM1 (13.50) RT (12.62)

Rank 2 ABM1 (13.75) IBk (12.66) IBk (12.91) IBk (12.54)

Rank 3 Bag (13.37) RT (12.16) RT (12.58) KStar (12.33)

Rank 4 RSS (12.29) Bag (12.12) Bag (11.75) ABM1 (12.20)

Rank 5 IBk (9.83) KStar (11.08) KStar (11.25) LMT (10.95)

Rank 6 RT (9.20) RSS (10.33) RSS (9.58) PART (9.95)

Rank 7 LMT (8.58) PART (9.04) PART (9.04) J48 (9.83)

Rank 8 J48 (7.62) LMT (9.00) LMT (9.00) Bag (9.54)

Rank 9 PART (7.58) J48 (8.58) J48 (8.70) RSS (8.75)

Rank 10 LB (6.08) MLP (5.45) MLP (5.75) LB (5.25)

Rank 11 ICO (5.54) ICO (4.87) ICO (4.87) MLP (4.91)

Rank 12 MLP (4.75) LB (4.83) LB (4.7) ICO (4.83)

Rank 13 LR (2.79) SL (2.75) SL (2.66) SL (2.66)

Rank 14 SL (2.5) LR (2.41) LR (2.33) LR (2.41)

Rank 15 NB (1.66) NB (1.25) NB (1.33) NB (1.16)

p-value 0.000 0.000 0.000 0.000

Kendall C 0.876 0.835 0.844 0.838
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Answer to RQ5: Ensemble methods and nearest neighbors performed the best for SDP

in imbalanced data with Random OverSampling method.

4.5 Discussion

This study evaluates the effect of resampling methods on various ML models for defect

prediction using Apache software. In total 1980 models were built and the performances of

models were empirically compared using stable performance measures (G-Mean, Balance,

and ROC-AUC).

In this chapter, we first find the proportion selection of metrics related to IQAs and

established the coherence of CFS-selected OO metrics with defect proneness. Coupling

and cohesion metrics are concluded to be the most related to defect prediction. With CFS,

LCOM is selected in 91.67% of the datasets while Ca and RFC are selected in 75% of the

datasets. Software practitioners are, therefore, advised to design software classes such that

they exhibit high cohesion and low coupling.

The results of the chapter show that the performance of ML techniques significantly

improved after incorporating resampling methods. This study reinsures that SDP mod-

els developed with resampling methods enhance their predictive capability as compared

to models developed without resampling methods. The balancing of datasets resulted in

following observations:

• Median values of sensitivity have improved by 45.7%, 341.9%, 250%, 72.2%, 154.8%,

66.7%, 18.9%, 330%, 46.5%, 32.8%,293.3%, and 88.8% for Ant1.7, Camel1.6,

Ivy2.0, Jedit4.0, Jedit4.2, Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2,

Tomcat6.0, and Xerces1.3 respectively after applying resampling methods.

• Median values of Balance have improved by 16.4%, 61.3%, 74.7%, 23.6%, 49.5%,

26%, 2.2%, 86.8%, 13.1%, 7.2%,77.7%, and 31.9% for Ant1.7, Camel1.6, Ivy2.0,
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Jedit4.0, Jedit4.2, Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2, Tom-

cat6.0, and Xerces1.3 respectively after applying resampling methods.

• Median values of G-Mean have improved by 13.1%, 73.7%, 73.5%, 16.9%, 44.7%,

20.1%, 0.4%, 88.3%, 9%, 5.5%, 83.5%, and 24.2% for Ant1.7, Camel1.6, Ivy2.0,

Jedit4.0, Jedit4.2, Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2, Tom-

cat6.0, and Xerces1.3 respectively after applying resampling methods.

• Median values of ROC-AUC have improved by 1.9%, 3.8%, 14.3.7%, 1.9%, 1.3%,

8.7%, 0.6%, 24.3%, 0.7%, 3.3%, 4.7%, and 5.8% for Ant1.7, Camel1.6, Ivy2.0,

Jedit4.0, Jedit4.2, Log4j1.0, Log4j1.1, Synapse1.0, Synapse1.1, Synapse1.2, Tom-

cat6.0, and Xerces1.3 respectively after applying resampling methods.

The chapter ascertains that the ML models developed with ROS method exhibit the

better prediction capability than other resampling methods. The use of statistical tests

reinforces the correctness of results. The results of the Friedman test strongly advocate

the use of the ROS method for the improved predictive capability of SDP classifiers for

imbalanced data. Apart from ROS, AHC and SMT also demonstrated good predictive

capability for uncovering defects. Wilcoxon signed-rank test with Bonferroni correction

eradicates family-wise error and concluded ROS to be significantly and statistically better

than other resampling methods.

Models developed using oversampling methods illustrated better defect prediction ca-

pability than that of undersampling methods. Handling imbalanced data problem using

ROS will aid developers and software practitioners in detecting defects effectively in the

early stages of software development reducing testing cost and effort. The pair-wise com-

parison of the performance of ROS with other resampling methods used in this chapter

indicates that the performance of ROS was statistically better than all other resampling

methods.
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In ML techniques ABM1, Bag, RT, and RSS secured ranks in first six positions. The

rest of the ML techniques seem to have comparable performance. We conclude that the

nearest neighbors and ensemble methods improvise the predictive capability of SDP mod-

els.

Next, we would like to design the hybrid framework and investigate the impact of re-

sampling methods with ensemble techniques for predicting defects in OO software.
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Chapter 5

Tackling Class Imbalance Problem using

Ensemble Methods

5.1 Introduction

With the emergence of the information age and ever-growing software providing good qual-

ity, software is always a demanding task for software developers. As mentioned earlier,

early detection of the possibility of defective classes assists in proper resource allocation

ensuing in optimizing resource utilization and increasing user satisfaction and software re-

liability [1]. However, the nature of data in software projects gives rise to one of the crucial

problems in the SDP of imbalanced data [28]. When any machine learning-based model

will be built on such kind of data, the model will learn on the majority classes and tend to

predict the majority class more often, considering the minority classes as noise. Such defect

prediction models may be of less practical usage as defective classes cannot be predicted

correctly. The results of the previous chapter confirmed that the employment of resam-

pling methods proved to be useful in reducing the effect of imbalanced data and improved

the performance of the models developed using ML techniques significantly. The previous

137



Introduction

chapter also concluded with the better predictive capability of tree-based ensemble methods

for SDP.

Ensemble methods combine and consolidate the results of multiple base learners re-

sulting in optimal predictions [33]. If base learners are implemented in parallel, the output

predictions of various base learners are averaged. If base learners are implemented in se-

quence, learnings from one base classifier are used in training of next classifier. In parallel

implementation, the variance is improved whereas in sequential implementation bias is re-

duced. Ensemble methods are used by approximate 40% of related studies according to the

survey conducted in Chapter 2. Their predictions can be enhanced by involving resampling

methods in it. The solution to the imbalanced classification problem may lie in the merger

of resampling methods and ensemble methods.

Working in this direction, this study explored four classic ensemble methods, five

boosting-based ensemble methods, and nine bagging-based ensemble methods and tried

to find answers to the following research questions with the help of OO metrics of 15

open-source JAVA projects:

• RQ1a: Do resampling-based boosting ensemble methods perform better than clas-

sic boosting ensemble methods in case of imbalanced data for predicting software

defects?

• RQ1b: Which resampling-based boosting ensemble method is the best classifier for

predicting software defects using imbalanced data?

• RQ2a: Do resampling-based bagging ensemble methods perform better than classic

bagging ensemble methods in case of imbalanced data?

• RQ2b: Which resampling-based bagging ensemble method is the best classifier for

predicting software defects using imbalanced data?
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• RQ3: Which amongst addressed ensemble methods is the best for predicting software

defects in an imbalanced data domain?

We provided an extensive statistically validated evaluation of 17 ensemble methods

with fifteen real open-source JAVA projects. The datasets used in this study are derived

from the software industry. As researchers tend to design hybridization of resampling meth-

ods with ensemble methods, we extended the thought to present a single platform for per-

forming their empirical comparison with datasets other than NASA datasets so that results

can be generalized and be useful to the software industry. The SDP models are constructed

using ten-fold cross-validation with the C4.5 decision tree as a base classifier and their pre-

dictive capabilities are measured with stable performance metrics G-Mean, Balance, and

Area under Curve (ROC-AUC). Only a few studies use statistical tests for result validation

which is an important part of any empirical study [1]. The Friedman test with Wilcoxon

post-hoc analysis is carried out to statistically validate the developed models. The results

show that the application of bagging-based ensemble methods and boosting-based ensem-

ble methods with resampling methods do alleviate the imbalanced classification problem

in the SDP domain. Both the variations worked better than the classic ensemble models

because resampling methods increased the percentages of defective classes in a particular

software leading to better learning of the model. The resampling-based bagging ensemble

methods are the preferred ones for building SDP models.

The rest of the paper organization is as follows: The experimental research frame-

work is elaborated in Section 5.2. Section 5.3 highlights the research methodology. The

performances of designed models are presented and analyzed in Section 5.4. Section 5.5

discusses the key findings of this chapter.

The part of this work is published in [206] and results are communicated in [207].
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5.2 Experimental Research Framework

5.2.1 Dependent and Independent Variables of the Study

SDP models are developed based on datasets containing independent variables and depen-

dent variables. Independent variables represent the internal characteristics of the considered

software and based on these independent variables, conclusions are drawn for the depen-

dent variable. The research carried out in this chapter used 20 OO metrics as independent

variables and defect as the dependent variable. A detailed description of these research

variables is available in Section 3.5.

5.2.2 Dataset Collection and Preprocessing

Datasets belong to 15 open-source JAVA projects that are downloaded from the Promise

repository [145, 208]. 15 datasets include Apache projects- three versions of Synapse,

four versions of Jedit, two versions of Camel and Ivy each, one ant version, one Tomcat

version, one Log4j version, and one Xalan version. Dataset details are provided in Section

3.6. Instead of NASA datasets that are widely used, we preferred industrial projects so

that developers can utilize the findings of this empirical analysis with confidence while

making new software or versions of the software. Considering the importance of feature

selection for better prediction results, CFS was conducted on all datasets and CFS selected

features for used datasets can be referred to in subsection 3.7.2. CFS helps in recognizing

the relevant set of features to develop SDP models [146]. Out of 15 datasets, WMC and

RFC are selected in 10 datasets, and LOC by 8 datasets. 7 datasets found CBO, MOA,

and Ca as relevant features. The selection of pertinent metrics results in developing better

defect prediction models. Based on these results, it is reasonable to claim that developers

can plan and execute testing by focusing resources on the defect-prone parts of the design
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and code.

5.2.3 Experimental Design

This section describes the framework designed for achieving the objectives of this study.

The complete framework is illustrated in Figure 5.1.

Figure 5.1: Experimental Framework of the Study

Experiments are planned to be conducted in three stages:

• Stage 1: Datasets are collected and preprocessed as explained earlier.

• Stage 2: Models are validated using ten-fold cross-validation and developed using en-

semble methods and their hybrids. Ten-fold cross-validation method is explained in

subsection 3.10.2. The models are constructed in the KEEL environment [205] with

default parameter settings. Default parameter settings are used to assist researchers

to reproduce the study.

• Stage 3: Model effectiveness is investigating employing stable performance mea-

sures and statistical tests. Performance measures used are Sensitivity, G-Mean, Bal-
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ance, and ROC-AUC. Friedman test and Wilcoxon signed-rank test used for statisti-

cally validating the results.

External validity is supported by the use of open-source datasets and publicly available

tools. Default experimental settings are used and this enhances the external validity of the

study as the study can be replicated and can be applied in similar situations.

5.2.4 Performance Measures

In this study, by convention positives are the number of classes that have any defect(s) and

negatives are the number of classes that do not have any defect. Appropriate performance

measures should be opted to evaluate and assess the developed models. How can the model

result in a good performance when it is trained on data that has a disproportionate ratio of

outcome class values? Inefficient training is responsible for the inaccurate model resulting

in insignificant predictions. Therefore, we used Sensitivity, G-Mean, Balance, and ROC-

AUC. Section 3.11 explains the significance and derivations of these measures. Internal

validation threat is minimized by incorporating stable performance evaluators like G-Mean,

Balance, and ROC-AUC.

5.2.5 Statistical Validation

In this research work, Friedman test [197] is conducted followed by post-hoc analysis using

the Wilcoxon signed-rank test [209] to statistically validate the results. These tests are

summarized earlier in Section 3.12. Friedman test provides mean ranking of ensemble

methods and their hybrid versions used in this study and the Wilcoxon signed-rank test is

then used to calculate the pair-wise significant difference between the performance of the

best Friedman ranker and other ensemble methods based on the respective performance

measure. The results are discussed in the next section.
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5.3 Research Methodology

This study exploits 17 ensemble methods taking the C4.5 decision tree [162] as the base

classifier. Many researchers have used C4.5 as a machine learner for defect prediction.

C4.5 is chosen because it is identified as one of the top ten data mining algorithms [210]

and has been concluded as a good learner for imbalanced data [93]. Addressed ensemble

methods include four classic ensemble methods (AB, ABNC, ABM1, Bag), and 13 hybrid

ensemble methods. Hybrid methods comprise four resampling-based boosting methods

and nine resampling-based bagging methods. Subsection 3.8.3 briefly elucidates all these

ensemble methods.

5.4 Performance Analysis and Evaluation

This study focuses on finding the importance of ensemble methods for developing effec-

tive machine learning models with imbalanced data. Therefore, it is needed to inspect the

predictive capability of these models by using various performance measures that are de-

rived from the confusion matrix obtained for a particular classifier. As discussed, applying

a statistical test is an important step that every researcher should focus on while validating

the results.

5.4.1 Performance of Boosting-based Ensemble methods

This part of the chapter answers the RQ1 and explores the procured results.
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5.4.1.1 RQ1a: Do resampling-based boosting ensemble methods perform better than

classic boosting ensemble methods in case of imbalanced data for predicting

software defects?

Different SDP models based on classic boosting ensembles and resampling-based boosting

ensemble methods are evaluated based on Sensitivity, G-Mean, Balance, and ROC-AUC.

Tables 5.1, 5.2, 5.3, and 5.4 demonstrates the values of Sensitivity, G-Mean, Balance, and

ROC-AUC for three classic boosting ensemble methods- AB, ABNC, ABM1, and four

resampling-based boosting ensemble methods-DB, MSMTB, RUSB, SMTB. The values

are rounded up to two decimal places. The maximum value of particular performance

measures corresponding to each dataset is boldfaced typed for better readability.

Sensitivity Analysis:

On analyzing Table 5.1, we find that the mean Sensitivity of classic ensembles in-

creased by 50.5% when resampling methods were applied. The maximum Sensitivity

value achieved by the classic ensemble is 0.56 which is achieved by the ABM1 classifier

for Synapse1.2. In resampling-based boosting ensemble methods, the maximum Sensi-

tivity achieved is 0.75 by RUSB. Experimental analysis reveals that ABM1 and AB have

similar performance in terms of Sensitivity for Synapse1.1 (0.5), Log4j1.1 (0.5), Jedit4.0

(0.45), Xerces1.3 (0.38), Jedit4.2 (0.32), and Ivy2.0 (0.21). The values in brackets are the

maximum Sensitivity that is achieved by the classic ensembles for the particular datasets.

ABNC got maximum Sensitivity in classic ensemble category for four datasets- Log4j1.0

(0.52), Jedit4.1 (0.48), Ant1.7 (0.26), and Synapse1.0 (0.5). Striking increment in Sensitiv-

ity is observed when resampling methods are combined with boosting. In hybrid ensemble

methods that are based on boosting, RUSB showed exemplary performance irrespective

of the datasets involved. It has acquired the maximum Sensitivity value in Synapse1.2

(0.71), Jedit4.1 (0.67), Jedit4.0 (0.57), Camel1.6 (0.59), Camel1.4 (0.57), Xerces1.3 (0.61),

Xalan2.4 (0.7), Jedit4.2 (0.68), Ivy2.0 (0.74), Synapse1.0 (0.75), and Tomcat6.0 (0.71).
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ROSB was able to gain the maximum Sensitivity in two datasets, Log4j1.1 (0.65) and

Ant1.7 (0.58). MSB and SMT got maximum Sensitivity value for only one dataset each.

Table 5.1: Sensitivity Results of Boosting-based Ensemble Methods

Dataset AB ABNC ABM1 DBIM MSMTB RUSB SMTB ROSB

Synapse1.2 0.53 0.47 0.56 0.56 0.65 0.71 0.62 0.59

Synapse1.1 0.5 0.34 0.5 0.59 0.64 0.57 0.66 0.57

Log4j1.0 0.41 0.53 0.44 0.47 0.65 0.62 0.56 0.38

Jedit4.1 0.47 0.48 0.47 0.54 0.61 0.67 0.56 0.51

Log4j1.1 0.50 0.45 0.50 0.4 0.45 0.60 0.60 0.65

Jedit4.0 0.45 0.30 0.45 0.47 0.53 0.57 0.53 0.55

Ant1.7 0.24 0.26 0.24 0.48 0.58 0.58 0.53 0.58

Camel1.6 0.23 0.14 0.24 0.36 0.40 0.59 0.54 0.37

Camel1.4 0.15 0.09 0.14 0.18 0.38 0.57 0.38 0.29

Xerces1.3 0.38 0.38 0.38 0.48 0.54 0.61 0.54 0.37

Xalan2.4 0.21 0.07 0.19 0.00 0.40 0.70 0.46 0.45

Jedit4.2 0.32 0.16 0.32 0.28 0.40 0.68 0.40 0.46

Ivy2.0 0.21 0.11 0.21 0.05 0.37 0.74 0.47 0.28

Synapse1.0 0.33 0.50 0.33 0.42 0.50 0.75 0.42 0.13

Tomcat6.0 0.29 0.18 0.26 0.48 0.49 0.71 0.57 0.38

RUSB provided the best Sensitivity for 73% of datasets. There is not a single dataset

that can attain a Sensitivity of 0.56 or more with classic ensemble methods. This target was

achieved by 38.7% of datasets when resampling methods were involved. RUSB uniformly

performed better than others as classification performed with all the datasets yields Sensi-

tivity greater than or same as 0.56. the mean value of classic ensemble methods is either

0.3 for ABNC or 0.35 for AB and ABM1. The range of ensemble boosting methods with

the changed proportion of defective and non-defective classes ranges from 0.38 to 0.64.

Therefore, though classic ensemble methods perform better than other machine learning

techniques (proved in the previous chapter), we should incorporate resampling methods

with them to predict defects better with imbalanced data.

G-Mean Analysis:

Analysis of Table 5.2 points to the fact that there is no single dataset that has the maxi-
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mum value of G-Mean for three classical boosting ensembles. This is a clear indication that

the resampling-based boosting ensemble methods performed better than classical ensemble

methods for the imbalanced data problem in the SDP domain. The mean value of G-Mean

comes to be 0.53 for classic boosting ensembles whereas it is 0.63 for resampling-based

boosting ensemble methods. Therefore, employing resampling methods with boosting en-

semble methods certainly accounts for discovering more defects than the classic ensemble

methods. 40% of cases in classic boosting ensemble classification have G-Mean value

less than 50% as compared to only 6.7% cases of resampling-based boosting ensembles.

58.7% of resampling-based boosting ensemble models have G-Mean greater than 65%. On

the contrary, as expected, only 15.6% of classic ensembles of boosting have the G-Mean

value greater than 65%. In the case of classic ensemble models, the maximum value of

G-Mean is depicted by ABNC for the Log4j1.0 dataset which is 0.69. In contrast to this,

the maximum value reported by the boosting-based ensemble method is 0.77 by RUSB for

the Ivy2.0 dataset. RUSB exemplifies the best performance for 10 out of 15 datasets for

the G-Mean. SMTB also proved to be a good ensemble method giving the highest value of

G-Mean for 4 datasets. It can be deduced from Table 5.2 that hybrid ensemble methods are

exceptionally better performers than their classic versions.

Table 5.2: G-Mean Results of Boosting-based Ensemble Methods

Dataset AB ABNC ABM1 DBIM MSMTB RUSB SMTB ROSB

Synapse1.2 0.66 0.63 0.68 0.68 0.71 0.73 0.68 0.67

Synapse1.1 0.67 0.57 0.66 0.7 0.71 0.65 0.75 0.69

Log4j1.0 0.59 0.69 0.61 0.64 0.73 0.69 0.68 0.55

Jedit4.1 0.63 0.65 0.63 0.67 0.71 0.72 0.68 0.65

Log4j1.1 0.65 0.60 0.65 0.58 0.57 0.67 0.69 0.73

Jedit4.0 0.65 0.53 0.65 0.63 0.65 0.66 0.67 0.70

Ant1.7 0.47 0.49 0.47 0.64 0.68 0.68 0.66 0.70

Camel1.6 0.46 0.37 0.47 0.55 0.55 0.59 0.65 0.57

Camel1.4 0.37 0.29 0.36 0.40 0.56 0.63 0.56 0.50

Xerces1.3 0.6 0.6 0.60 0.66 0.70 0.70 0.69 0.58

Xalan2.4 0.44 0.27 0.43 0.00 0.59 0.72 0.62 0.63
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Dataset AB ABNC ABM1 DBIM MSMTB RUSB SMTB ROSB

Jedit4.2 0.55 0.40 0.55 0.52 0.6 0.74 0.59 0.64

Ivy2.0 0.45 0.32 0.45 0.23 0.58 0.77 0.65 0.49

Synapse1.0 0.55 0.68 0.55 0.62 0.68 0.73 0.59 0.34

Tomcat6.0 0.52 0.42 0.50 0.66 0.67 0.75 0.71 0.59

The minimum G-mean value is predicted on Xalan2.4 with the value of 0.27. This value

is extremely low and is increased to 0.72 when RUSB is applied to that dataset. G-Mean

value considers both the correctly classified defective classes and correctly classified non-

defective classes. This metric is, therefore, useful for the allocation of resources properly.

Balance Analysis:

The Balance value should be at least greater than 50% for good model predictions. The

reason supporting this fact is data considered in building models is highly imbalanced. In

42.2% of the classic boosting cases, Balance values are less than 50%. On analyzing Table

5.3, we found that Balance values for classic boosting ensembles ranged from 34.52% to

66.37%. The maximum value of Balance is achieved by classic ensemble methods on the

Synapse1.2 dataset by ABM1. The averaged Balance value in classic ensemble methods

and resampling-based boosting ensemble methods is 52.08% and 62.03% respectively. The

mean value of Balance has increased by approximately 20%.

The Balance values of the models developed using the RUSB are ranged from 59.16%

to 76.59%. MSB and SMTB also seem to provide an acceptable range of Balance value.

MSB gave a minimum Balance value of 54.14% on the Camel1.4 dataset and a maxi-

mum value of 72.05% on the Log4j1.0 dataset. SMT also depicted a similar range with

a minimum of 54.36% on Camel1.4 and the maximum of 73.57% on Synapse1.1. RUSB

gave the highest values for Balance on Synapse1.2 (72.71%), Jedit4.1 (71.88%), Camel1.4

(62.51%), Xerces1.3 (68.83%), Xalan2.4 (72.15%), Jedit4.2 (73.61%), Ivy2.0 (76.59%),

Synapse1.0 (73.24%), and Tomcat6.0 (75.04%). The only 9.3% of datasets have Balance

values less than 50% in resampling-based boosting methods as compared to classic 42.2%,
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showing an improvement of approximate 354% in this particular case.

Table 5.3: Balance Results of Boosting-based Ensemble Methods

Dataset AB ABNC ABM1 DBIM MSMTB RUSB SMTB ROSB

Synapse1.2 64.27 61.07 66.37 66.37 70.2 72.71 67.44 66.55

Synapse1.1 63.75 53.24 63.53 68.94 70.19 64.84 73.57 67.33

Log4j1.0 56.74 66 58.73 61.48 72.05 68.17 66.35 53.92

Jedit4.1 61.1 62.46 61.1 65.46 69.46 71.88 66.29 63.23

Log4j1.1 62.85 58.77 62.85 56.35 56.54 66.95 68.06 72.06

Jedit4.0 60.62 50.26 60.62 60.79 64.11 65.28 65.3 67.18

Ant1.7 45.9 47.48 45.9 61.91 67.09 67.09 64.7 68.39

Camel1.6 45.21 39.25 45.81 53.15 54.53 59.16 64.14 54.69

Camel1.4 39.62 35.31 38.9 41.65 54.14 62.51 54.36 48.98

Xerces1.3 55.76 55.79 55.76 62.64 66.47 68.83 66.22 55.03

Xalan2.4 43.94 34.52 42.9 29.29 56.9 72.15 60.43 60.2

Jedit4.2 51.8 40.59 51.83 49 57.05 73.61 56.79 61.04

Ivy2.0 44.05 36.72 44.12 33.01 54.9 76.59 62.06 48.12

Synapse1.0 52.27 64.36 52.27 58.33 64.15 73.24 57.27 37.84

Tomcat6.0 49.38 42.13 47.55 62.69 63.5 75.04 68.42 55.6

In classic boosting ensemble methods, only one model has a Balance value greater the

65%. This statistic changes to 45.3% with resampling methods. Where there is no single

dataset that has a Balance value greater than 0.67 for classic methods, the involvement of

resampling methods has improved the status and the concerned value is increased by 32%.

ROC-AUC Analysis: Similar behavior is emulated by the ROC-AUC performance

metric as can be concluded by Table 5.4. There is again no evidence of any classic boosting

ensemble method that provided the best results for any of the datasets. RUSB has the best

predictive capability to discover defects for 8 out of 15 datasets. MSMTB and ROSB

performed the best for three datasets each. The mean value of ROC-AUC increases to

0.70 for resampling-based boosting ensembles’ performance from 0.63 of classing boosting

ensembles. The only 4.4% of cases of classic boosting models have ROC-AUC greater than

70% which demonstrates their low predictive power for the detection of software defects. In

contrast, 29.3% of cases of resampling-based boosting ensemble models have ROC-AUC
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greater than 70%. RUSB based models have attained maximum ROC-AUC for Synapse1.2

(0.73), Jedit4.1(0.73), Camel1.4 (0.63), Xalan2.4 (0.72), Jedit4.2 (0.75), Ivy2.0 (0.77),

Synapse1.0 (0.73), and Tomcat6.0 (0.75). In classic boosting ensemble methods, only

35.6% models have ROC-AUC greater than 65%. In contradiction to this, approximate

75% of cases of resampling-based boosting methods have ROC-AUC greater than 65%.

Therefore, we can conclude that the hybrid boosting models performed better than classic

boosting ensembles in terms of ROC-AUC also.

Table 5.4: ROC-AUC Results of Boosting-based Ensemble Methods

Dataset AB ABNC ABM1 DBIM MSMTB RUSB SMTB ROSB

Synapse1.2 0.67 0.66 0.69 0.69 0.71 0.73 0.68 0.67

Synapse1.1 0.69 0.64 0.68 0.71 0.71 0.66 0.75 0.70

Log4j1.0 0.62 0.71 0.63 0.67 0.73 0.69 0.68 0.58

Jedit4.1 0.66 0.69 0.66 0.68 0.71 0.73 0.69 0.67

Log4j1.1 0.67 0.63 0.67 0.63 0.59 0.68 0.69 0.73

Jedit4.0 0.69 0.62 0.69 0.66 0.67 0.67 0.69 0.72

Ant1.7 0.58 0.60 0.58 0.67 0.69 0.69 0.68 0.72

Camel1.6 0.57 0.55 0.57 0.6 0.58 0.59 0.66 0.62

Camel1.4 0.53 0.52 0.53 0.54 0.60 0.63 0.60 0.58

Xerces1.3 0.66 0.64 0.66 0.70 0.72 0.70 0.71 0.67

Xalan2.4 0.58 0.52 0.57 0.5 0.64 0.72 0.65 0.66

Jedit4.2 0.64 0.58 0.65 0.62 0.66 0.75 0.66 0.68

Ivy2.0 0.60 0.54 0.61 0.50 0.66 0.77 0.70 0.58

Synapse1.0 0.62 0.72 0.62 0.68 0.73 0.73 0.65 0.53

Tomcat6.0 0.62 0.58 0.61 0.70 0.70 0.75 0.73 0.66

5.4.1.2 RQ1b: Which resampling-based boosting ensemble method is the best clas-

sifier for predicting software defects using imbalanced data?

It is evident from the above explanation that resampling-based boosting ensembles outper-

forms the classic boosting ensembles. Resampling-based ensembles are hybrid models that

incorporate the benefits of resampling as well as ensembles. Therefore, their performances

are better than classic ones. To determine the best resampling-based boosting ensemble
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method, the study employs the Friedman rank test at significance level α = 0.05 with a

degree of freedom of seven to ascertain whether there is a significant difference between

the predictive capability of the classic boosting ensemble methods and resampling-based

boosting methods or not.

The following hypotheses are evaluated to answer this RQ:

• Null Hypothesis (H0i): There is no difference between predictive capabilities of clas-

sic ensemble methods and resampling-based boosting ensemble methods for SDP

with imbalanced data in terms of PMi.

• Alternate Hypothesis (Hai): There is a difference between predictive capabilities of

classic ensemble methods and resampling-based boosting ensemble methods for SDP

with imbalanced data in terms of PMi.

where i = 1to4 and PM1 = Sensitivity, PM2 = G-Mean, PM3 = Balance, and PM4

= ROC-AUC.

The hypothesis was designed and tested against the four performance measures. Rank-

ings obtained are reported in Table 5.5 with their p-values.

Table 5.5: Friedman Rankings for SDP Models developed using Boosting based Ensemble
Methods

Rank Sensitivity G-Mean Balance ROC-AUC

Rank 1 RUSB (7.53) RUSB (7.03) RUSB (7.23) RUSB (6.56)

Rank 2 SMTB (6.26) SMTB (6.13) SMTB (6.4) SMTB (6.2)

Rank 3 MSB (6.1) MSB (5.9) MSB (5.96) MSB (5.83)

Rank 4 ROSB (4.73) ROSB (4.8) ROSB (4.93) ROSB (4.86)

Rank 5 DB (3.6) DB (3.7) DB (3.63) DB (3.83)

Rank 6 ABM1 (2.76) ABM1 (3.03) ABM1 (2.76) ABM1 (3.26)

Rank 7 AB (2.73) AB (2.8) AB (2.66) AB (3.06)

Rank 8 ABNC (2.26) ABNC (2.6) ABNC (2.4) ABNC (2.36)

p-value 0.000 0.000 0.000 0.000

Kendall C 0.651 0.489 0.598 0.423
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The mean ranks of ensemble methods are also recorded in Table 5.5. p-value comes to

be 0.000 for Sensitivity, G-Mean, Balance, and ROC-AUC which is less than 0.05. There-

fore, we refute the null hypotheses and conclude that there is a significant difference be-

tween the predictive capabilities of these methods based on all four measures. As depicted

in Table 5.5, classic ensemble methods have least ranks owing to their low predictive ca-

pability for SDP in imbalanced datasets. The unanimous top ranker is RUSB followed by

SMTB and MSB for Sensitivity, G-Mean, Balance, and ROC-AUC. RUSB has attained a

mean rank of 7.53, 7.03, 7.23, and 6.56 for Sensitivity, G-Mean, Balance, and ROC-AUC.

5.4.2 Performance of Bagging-based Ensemble methods

Performance of classic bagging ensembles is compared with resampling-based bagging

ensembles over 15 datasets that are imbalanced.

5.4.2.1 RQ2a: Do resampling-based bagging ensemble methods perform better than

classic bagging ensemble methods in case of imbalanced data for predicting

software defects?

Table 5.6, 5.7, 5.8, and 5.9 reports the Sensitivity, G-Mean, Balance, and ROC-AUC values

of developed bagging-based ensemble models for defect prediction respectively. Here per-

formances of one classic bagging ensemble and nine resampling-based bagging ensembles

are compared. The maximum value of all performance measures is boldfaced typed for

each dataset. As expected, the close examination of Table 5.6, 5.7, 5.8, and 5.9 reveals that

Bag has never achieved maximum value of any of performance measures.

Sensitivity Analysis:

In 15 datasets, the classic bagging ensemble models have attained the lowest Sensitivity

value for 11 datasets accounting for their low predictive capability as compared to other en-

semble models that are resampling-based. Table 5.6 shows the Sensitivity results obtained
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for SDP models developed using bagging and resampling-based bagging methods. The

range of Bag models is from 0.03 to 0.5. This range is too low and signifies the extent to

which wrong predictions are made for defective classes. UBAG2 and UBAG made better

prediction models for all the 15 datasets. Sensitivity values for UBAG2 ranges from 0.53

to 0.83 and UBAG Sensitivity value ranges from 0.62 to 0.78. The drastic improvement in

Sensitivity values can be monitored on the application of resampling methods.

Table 5.6: Sensitivity Results of Bagging-based Ensemble Methods

Dataset Bag MSBAG OBAG OBAG2 SMTBAG UBAG UBAG2 UOBAG IIVOT ROSBAG

Synapse1.2 0.49 0.76 0.63 0.71 0.72 0.78 0.74 0.68 0.65 0.64

Synapse1.1 0.39 0.68 0.50 0.55 0.61 0.66 0.64 0.61 0.57 0.62

Log4j1.0 0.50 0.71 0.47 0.59 0.68 0.71 0.74 0.68 0.65 0.56

Jedit4.1 0.46 0.68 0.43 0.57 0.63 0.72 0.67 0.68 0.66 0.58

Log4j1.1 0.40 0.60 0.35 0.50 0.60 0.65 0.65 0.60 0.50 0.59

Jedit4.0 0.40 0.62 0.49 0.53 0.55 0.62 0.62 0.51 0.36 0.57

Ant1.7 0.22 0.64 0.55 0.55 0.65 0.70 0.62 0.62 0.48 0.63

Camel1.6 0.09 0.5 0.33 0.38 0.62 0.78 0.61 0.56 0.32 0.41

Camel1.4 0.12 0.42 0.22 0.32 0.43 0.69 0.53 0.34 0.28 0.39

Xerces1.3 0.36 0.61 0.39 0.49 0.62 0.78 0.64 0.57 0.57 0.52

Xalan2.4 0.03 0.54 0.36 0.42 0.67 0.78 0.7 0.57 0.33 0.46

Jedit4.2 0.16 0.56 0.28 0.40 0.64 0.76 0.80 0.56 0.24 0.58

Ivy2.0 0.11 0.53 0.37 0.32 0.68 0.68 0.68 0.58 0.26 0.35

Synapse1.0 0.17 0.67 0.33 0.42 0.58 0.75 0.83 0.50 0.50 0.19

Tomcat6.0 0.16 0.64 0.43 0.45 0.78 0.78 0.70 0.65 0.31 0.38

Analysis of Table 5.6 tells that there is not a single dataset with Bag that can achieve

Sensitivity greater than 0.50 whereas 68% of datasets with resampling-based ensembles

have Sensitivity greater than 0.50. The mean value of Sensitivity obtained by Bag over

15 datasets is 0.27. The mean value for Bag ranges from 0.41 to 0.72. The highest mean

Sensitivity value of 0.72 is gained by UBAG and an approximate 167% increase is moni-

tored in this as compared to the Bag mean value. UBAG achieved highest Sensitivity val-

ues for Synapse1.2 (0.78), Jedit4.1 (0.74), Log4j1.1 (0.65), Jedit4.0 (0.62), Ant1.7 (0.70),

Camel1.6 (0.78), Camel1.4 (0.69), Xerces1.3 (0.78), Xalan2.4 (0.78), Ivy2.0 (0.68), and
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Tomcat6.0 (0.78). UBAG2 and MSBAG also were able to attain maximum Sensitivity

value for a few datasets.

G-Mean Analysis:

Similar to Sensitivity analysis, Bag did not perform better as compared to other resampling-

based models. The minimum G-Mean value achieved by BAG is 0.17 for Xalan2.4. The

minimum G-mean range for resampling-based bagging ensemble methods is from 0.55 to

0.73. UBAG2 depicted maximum G-Mean value in Log4j1.0, Jedit4.1, Log4j1.1, Jedit4.0,

and Jedit4.2 of 0.76, 0.74, 0.72, 0.72, and 0.79 respectively. UBAG and MSBAG predicted

the maximum G-Mean values for three datasets each. Percentage improvement in Xalan2.4

on applying resampling method is minimum 223% and maximum 339%. Similar patterns

were observed in other datasets. In the previous chapter, ROS turned to be a better sam-

pling technique with ML techniques. When hybrid ensembles were considered, though it

did not perform that well, but managed to grab the highest G-Mean value in Synapse1.1

and Ant1.7 with a maximum of 0.72 and 0.74 respectively.

Table 5.7: G-Mean Results of Bagging-based Ensemble Methods

Dataset Bag MSBAG OBAG OBAG2 SMTBAG UBAG UBAG2 UOBAG IIVOT ROSBAG

Synapse1.2 0.65 0.76 0.72 0.74 0.74 0.75 0.76 0.72 0.71 0.70

Synapse1.1 0.60 0.72 0.66 0.67 0.71 0.69 0.69 0.68 0.68 0.72

Log4j1.0 0.68 0.76 0.63 0.71 0.73 0.72 0.76 0.75 0.72 0.69

Jedit4.1 0.65 0.73 0.61 0.68 0.70 0.71 0.74 0.74 0.73 0.69

Log4j1.1 0.6 0.67 0.52 0.6 0.66 0.66 0.72 0.67 0.60 0.69

Jedit4.0 0.62 0.69 0.65 0.68 0.68 0.65 0.72 0.66 0.56 0.71

Ant1.7 0.46 0.73 0.68 0.68 0.71 0.73 0.70 0.71 0.64 0.74

Camel1.6 0.29 0.62 0.53 0.56 0.65 0.62 0.63 0.64 0.53 0.59

Camel1.4 0.34 0.57 0.43 0.52 0.57 0.63 0.60 0.53 0.50 0.57

Xerces1.3 0.59 0.73 0.59 0.66 0.71 0.74 0.71 0.69 0.72 0.68

Xalan2.4 0.17 0.67 0.57 0.60 0.70 0.73 0.72 0.68 0.55 0.62

Jedit4.2 0.40 0.70 0.51 0.61 0.72 0.74 0.79 0.69 0.47 0.72

Ivy2.0 0.32 0.69 0.58 0.52 0.72 0.71 0.71 0.7 0.50 0.56

Synapse1.0 0.40 0.76 0.54 0.60 0.65 0.69 0.74 0.60 0.66 0.41

Tomcat6.0 0.39 0.74 0.62 0.64 0.78 0.77 0.75 0.74 0.54 0.59
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SMTBAG and UBAG have the maximum G-Mean value for 3 datasets each. The results

could not succeed to get a clear picture of any one method. UBAG2, UBAG, SMTBAG,

and MSBAG may have comparable predictive capabilities that can be further analyzed by

performing post-hoc analysis. The observed averaged value of G-Mean for classic bag-

ging ensemble is 0.47 whereas it is 0.66 for resampling-based bagging ensemble models.

53.3% of cases of classic bagging ensemble have G-Mean less than 50% as compared to

meager 3% of cases of models generated by resampling-based bagging ensemble meth-

ods. Merely 6.7% of classic ensembles of bagging have the G-Mean value greater than

0.65 whereas 66.7% of resampling-based bagging ensemble models have G-Mean greater

than 0.65. There are approximately 40% of cases that have G-Mean value greater than

70% when resampling-based bagging ensembles are used. On the contrary, not a single

dataset got its G-Mean value greater than 70% when the classic bagging ensemble method

is used to train and test the data. Thus, these facts and observations confirmed that hybrid

ensembles (with resampling) are better defect predictors than the classic ensembles.

Balance Analysis:

Table 5.8 reports the Balance values for bagging ensemble methods. The maximum

value of Balance is 79.49 portrayed by UBAG2 for the Jedit4.2 dataset for resampling-

based bagging ensemble methods whereas the maximum value observed by the classic

bagging ensemble is only 64.31 for the Log4j1.0 dataset. The performance of bagging-

based ensemble methods in terms of Balance is similar to that of G-Mean for maximum

value achieved by datasets.

Table 5.8: Balance Results of Bagging-based Ensemble Methods

Dataset BAG MSBAG OBAG OBAG2 SMTBAG UBAG UBAG2 UOBAG IIVOT ROSBAG

Synapse1.2 62.32 76.39 70.93 73.59 73.49 74.63 75.79 71.65 70.94 70.01

Synapse1.1 56.36 71.82 63.53 65.61 69.66 68.81 68.39 67.58 66.74 70.78

Log4j1.0 64.31 75.68 61.12 69.05 72.42 71.9 76.2 74.53 71.04 67.08

Jedit4.1 61.04 72.61 58.5 67 69.46 71.03 73.47 73.46 72.39 67.83

Log4j1.1 56.83 66.34 51.34 59.68 65.71 65.56 71.15 66.34 59.68 67.77
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Dataset BAG MSBAG OBAG OBAG2 SMTBAG UBAG UBAG2 UOBAG IIVOT ROSBAG

Jedit4.0 57.79 68.57 62.7 65.6 66.03 64.99 70.6 63.66 53.76 68.72

Ant1.7 44.84 71.73 66.22 66.3 70.59 72.75 68.97 69.85 61.86 72.15

Camel1.6 35.58 60.91 51.53 54.6 64.65 60.53 63.4 63.5 51.01 57.02

Camel1.4 37.62 56.21 43.6 50.81 56.24 63.24 60.13 51.66 48.54 55.18

Xerces1.3 54.85 70.84 56.24 63.11 70.16 73.83 70.36 67.51 68.55 65.35

Xalan2.4 31.39 65.46 54 57.7 69.85 72.9 72.4 67.04 52.04 60.46

Jedit4.2 40.6 67.62 48.8 57.2 71.27 73.78 79.49 67.4 46.02 69.35

Ivy2.0 36.73 65.7 54.82 50.61 71.74 70.48 71.03 68.03 47.73 53.4

Synapse1.0 41.03 74.8 52.15 57.8 64.75 69.13 73.43 59.43 63.71 42.06

Tomcat6.0 40.3 72.19 59.04 60.8 78.45 77.1 74.89 73 51 55.47

UBAG2 was able to generate a maximum Balance value of 76.20, 73.47, 71.15, 70.60,

and 79.49 for Log4j1.0, Jedit4.1, Log4j1.1, Jedit4.0, and Jedit4.2 respectively. Camel1.4,

Xerces1.3, and Xalan2.4 experienced the best prediction based on Balance with UBAG.

Like with G-Mean, SMTBAG was also able to attain the highest Balance value for three

datasets- Camel1.6, Ivy2.0, and Tomcat6.0.

The averaged value of Balance over datasets for Bag comes to be 48.11. This value

increased to 65.17 when resampling methods are embedded in ensemble methods. 53.3% of

models have a Balance value less than 50% when Bag is used to identify defects. This state

is not acceptable as such models have very low predictive capabilities. Hybrid ensembles

that combine Bagging with resampling methods reduce the proportion of models to 4.4%

with the Balance value less than 50%. With classic bagging, no model can secure a Balance

value greater than 65% whereas 61.5% of models have attained a Balance value greater than

65%. This is a remarkable improvement in model prediction which is achieved by using

hybrid versions of bagging ensembles.

ROC-AUC Analysis:

Now, by analyzing Table 5.9, we ascertain analogous conduct of ROC-AUC perfor-

mance metric for SDP using bagging-based ensemble methods.
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Table 5.9: ROC-AUC Results of Bagging-based Ensemble Methods

Dataset Bag MSBAG OBAG OBAG2 SMTBAG UBAG UBAG2 UOBAG IIVOT ROSBAG

Synapse1.2 0.67 0.76 0.72 0.74 0.73 0.75 0.76 0.72 0.72 0.71

Synapse1.1 0.65 0.72 0.68 0.68 0.71 0.69 0.68 0.68 0.68 0.73

Log4j1.0 0.71 0.77 0.66 0.72 0.73 0.72 0.77 0.76 0.72 0.70

Jedit4.1 0.69 0.73 0.64 0.69 0.70 0.71 0.75 0.74 0.73 0.70

Log4j1.1 0.64 0.67 0.56 0.61 0.66 0.65 0.72 0.67 0.61 0.69

Jedit4.0 0.68 0.69 0.68 0.70 0.69 0.65 0.73 0.68 0.61 0.73

Ant1.7 0.59 0.73 0.70 0.70 0.71 0.73 0.70 0.72 0.67 0.74

Camel1.6 0.53 0.63 0.60 0.61 0.65 0.63 0.63 0.65 0.59 0.63

Camel1.4 0.54 0.60 0.54 0.58 0.59 0.64 0.61 0.57 0.59 0.60

Xerces1.3 0.67 0.74 0.64 0.69 0.72 0.74 0.71 0.71 0.74 0.71

Xalan2.4 0.51 0.69 0.63 0.64 0.7 0.73 0.72 0.7 0.61 0.65

Jedit4.2 0.57 0.73 0.60 0.67 0.75 0.74 0.80 0.71 0.58 0.73

Ivy2.0 0.55 0.72 0.65 0.60 0.73 0.71 0.72 0.72 0.62 0.62

Synapse1.0 0.58 0.79 0.62 0.64 0.66 0.70 0.73 0.61 0.69 0.55

Tomcat6.0 0.57 0.74 0.67 0.68 0.79 0.77 0.75 0.75 0.62 0.65

With no dataset having the maximum ROC-AUC value in the classic bagging-based

model, one can comment that the resampling-based bagging ensemble methods performed

much better than the classic bagging ensemble method. There is a mixed bag of resampling-

based bagging ensemble methods that scored the maximum ROC-AUC values for individ-

ual datasets. UBAG2 demonstrates the maximum ROC-AUC value for six datasets fol-

lowed by UBAG and SMTBAG which have the maximum ROC-AUC values for three

datasets each. UOBAG and ROSBAG also delivered maximum ROC-AUC value for two

datasets each. The mean value for resampling-based bagging ensembles increases to 0.68

from 0.61 of classing bagging ensemble. Approximate 53.3% of classic bagging models

have ROC-AUC less than 60% as compared to 8.1% cases of resampling-based bagging en-

sembles. 47.4% of built models achieved ROC-AUC greater than 70% when resampling-

based bagging ensembles were applied. Only one model based on the classic bagging

technique has ROC-AUC greater than 70%. Log4j1.0 achieved a 71.17 ROC-AUC value

with Bag. This statistic is increased to 76.72 for the same dataset with UBAG2.
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Therefore, the result analysis supports the fact that the resampling-based bagging en-

semble methods perform better than the classic bagging ensemble method in case of im-

balanced data for predicting software defects. We deduced that UBAG2, UBAG, MSBAG,

SMTBAG, and RUSB have comparable performances for both G-Mean and ROC-AUC and

performed better than other methods. All classic ensembles have significantly lower per-

formance than their performances. With ROC-AUC, SMTB also seems to be a promising

approach for predicting defects.

5.4.2.2 RQ2b: Which resampling-based bagging ensemble method is the best classi-

fier for predicting software defects using imbalanced data?

In this chapter, as mentioned earlier, we exploited the non-parametric Friedman test to

uncover the rankings of classic bagging and resampling-based bagging methods. The null

hypothesis and alternate hypothesis evaluated to get the answer of this RQ for Sensitivity

are stated as:

• Null Hypothesis (H01): There is no difference between predictive capabilities of clas-

sic ensemble methods and resampling-based boosting ensemble methods for SDP

with imbalanced data in terms of Sensitivity.

• Alternate Hypothesis (Ha1): There is a difference between predictive capabilities

of classic ensemble methods and resampling-based boosting ensemble methods for

SDP with imbalanced data in terms of Sensitivity.

Similar hypotheses were made for the G-Mean, Balance, and ROC-AUC metric. These

null hypotheses were tested using the Friedman test with a degree of freedom as nine at

confidence level α = 0.05 and results are noted for all performance measures in Table

5.10. It contains the mean ranks of Bag and resampling-based bagging ensemble methods

with p-values. The higher the mean rank, the better are the predictions of the corresponding
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model. Kendall C in Table 5.10 signifies Kendall’s coefficient of concordance. The higher

the Kendall C, the more the results are dependable.

Table 5.10: Friedman Rankings for SDP Models developed using Bagging based Ensem-
bles

Rank Sensitivity G-Mean Balance ROC-AUC

Rank 1 UBAG (9.5) UBAG2 (8.53) UBAG2 (8.66) UBAG2 (8.26)

Rank 2 UBAG2 (8.6) MSBAG (7.76) MSBAG (7.83) MSBAG (7.86)

Rank 3 SMTBAG (7.5) UBAG (7.6) UBAG (7.8) UBAG (7.33)

Rank 4 MSBAG (7.43) SMTBAG (7.4) SMTBAG (7.6) SMTBAG (7.33)

Rank 5 UOBAG (6.1) UOBAG (6.3) UOBAG (6.3) UOBAG (5.8)

Rank 6 ROSBAG (4.8) ROSBAG (5.53) ROSBAG (5.4) ROSBAG (5.6)

Rank 7 OBAG2 (3.93) OBAG2 (4.23) OBAG2 (4.1) OBAG2 (4.2)

Rank 8 IIVOT (3.3) IIVOT (3.63) IIVOT (3.43) IIVOT (3.83)

Rank 9 OBAG (2.56) OBAG (2.66) OBAG (2.6) OBAG (2.9)

Rank 10 Bag (1.26) Bag (1.33) Bag (1.26) Bag (1.86)

p-value 0.000 0.000 0.000 0.000

Kendall C 0.832 0.648 0.7082 0.539

To refute the set hypotheses, the p-value needs to be less than 0.05. On performing

the Friedman test for bagging-based ensembles, the detected p-value is again 0.000 for

Sensitivity, G-Mean, Balance, and ROC-AUC, similar to that of boosting-based ensemble

methods. Therefore, the stated null hypotheses are rejected and it is confirmed that there

is a significant difference between performances of these ensemble methods based on Sen-

sitivity, G-Mean, Balance, and ROC-AUC. Classic bagging- Bag has attained the last rank

for all measures supporting the answer to RQ2a. UBAG2 seems to be a very promising ap-

proach with the first position and mean ranks of 8.53, 8.66, and 8.26 in G-Mean, Balance,

and ROC-AUC respectively. UBAG has acquired the first position with a mean rank of 9.5

for Sensitivity. For Sensitivity, UBAG2 also performed better than others as it secured the

second rank with a mean rank of 8.6. The top four rankers for predicting software defects

are UBAG2, UBAG, MSBAG, and SMTBAG considering Sensitivity, G-Mean, Balance,

and ROC-AUC.
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5.4.2.3 Predicting best Software Defect Predictor by Statistical Analysis

This subsection provides an answer to the following RQ3:

RQ3: Which amongst addressed ensemble methods is the best for predicting soft-

ware defects in an imbalanced data domain?

For a fair comparison, we constructed the bar graphs representing the median values

of all the performance measures for the classic and hybrid ensemble methods. The median

values take the skewness of data in their consideration. Figure 5.2, 5.3, 5.4, and 5.5 inspects

the median-wise performances for different performance measures used in the chapter. This

can be deduced from these four figures that the classic ensembles- AB, ABNC, ABM1, and

Bag are the least performing.

Figure 5.2: Median Sensitivity Values of Classic and hybrid Ensemble Methods

The median sensitive value is maximum for UBAG (0.72). UBAG2 illustrates the maxi-

mum median value for G-Mean (0.72), Balance (71.15), and ROC-AUC (0.72). Now, when
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Figure 5.3: Median G-Mean Values of Classic and hybrid Ensemble Methods

we know the predictive capability of all the developed models, how to conclude which one

is the best? The Friedman rankings of ensemble methods in RQ1 demonstrated the compet-

itive prediction ability of RUSB in boosting-based ensemble methods and UBAG2, UBAG,

MSBAG, and SMTBAG in bagging-based ensemble methods. Any existence of family-

wise errors needs to be checked to confirm that the predictions are not by any chance.

For this, to find the cumulative impact first Friedman test is collectively applied on

predictive results of seventeen ensemble methods for all addressed datasets. Considering

the results for all datasets, we state the following hypotheses:

• Null Hypothesis (H01): There is no difference between predictive capabilities of clas-

sic ensembles, resampling-based bagging ensembles, and resampling-based boosting

ensembles for SDP with imbalanced data in terms of Sensitivity.

• Alternate Hypothesis (Ha1): There is a difference between predictive capabilities
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Figure 5.4: Median Balance Values of Classic and hybrid Ensemble Methods

of classic ensembles, resampling-based bagging ensembles, and resampling-based

boosting ensembles for SDP with imbalanced data in terms of Sensitivity.

• Null Hypothesis (H02): There is no difference between predictive capabilities of clas-

sic ensembles, resampling-based bagging ensembles, and resampling-based boosting

ensembles for SDP with imbalanced data in terms of G-Mean.

• Alternate Hypothesis (Ha2): There is a difference between predictive capabilities

of classic ensembles, resampling-based bagging ensembles, and resampling-based

boosting ensembles for SDP with imbalanced data in terms of G-Mean.

• Null Hypothesis (H03): There is no difference between predictive capabilities of clas-

sic ensembles, resampling-based bagging ensembles, and resampling-based boosting

ensembles for SDP with imbalanced data in terms of Balance.
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Figure 5.5: Median ROC-AUC Values of Classic and hybrid Ensemble Methods

• Alternate Hypothesis (Ha3): There is a difference between predictive capabilities

of classic ensembles, resampling-based bagging ensembles, and resampling-based

boosting ensembles for SDP with imbalanced data in terms of Balance.

• Null Hypothesis (H04): There is no difference between predictive capabilities of clas-

sic ensembles, resampling-based bagging ensembles, and resampling-based boosting

ensembles for SDP with imbalanced data in terms of ROC-AUC.

• Alternate Hypothesis (Ha4): There is a difference between predictive capabilities

of classic ensembles, resampling-based bagging ensembles, and resampling-based

boosting ensembles for SDP with imbalanced data in terms of ROC-AUC.

. Table 5.11 summarizes the Friedman rankings of all these 17 ensemble methods for

Sensitivity, G-Mean, Balance, and ROC-AUC. The mean ranks of these methods are also

noted in closed brackets. The p-value obtained against each test was 0.000. Therefore, for
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each considered performance measure null hypothesis is refuted. Kendall C represents the

agreement in the class classification as defective or non-defective in various datasets by the

number of ensemble methods involved. The high value of Kendall C represents the similar

behavior of predicting any class by different ensemble methods for a particular dataset. For

example, if ensemble methods do not agree on classifying a particular class as defective,

then we may not rely on the conclusions. Kendall C value achieved for Sensitivity, G-

Mean, and Balance is 0.798, 0.631, and 0.702 respectively. Therefore, related rankings are

reliable.

Table 5.11: Friedman Rankings for SDP Models developed using Bagging based Ensemble
Methods

PM Sensitivity G-Mean Balance ROC-AUC

Rank 1 UBAG (17.36) UBAG2 (15.93) UBAG2 (16.13) UBAG2 (15.33)

Rank 2 UBAG2 (16.23) MSBAG (15.03) MSBAG (15.16) MSBAG (15.06)

Rank 3 SMTBAG

(14.76)

UBAG (14.46) UBAG (14.86) SMTBAG

(13.66)

Rank 4 MSBAG (14.73) SMTBAG

(14.26)

SMTBAG

(14.76)

UBAG (13.6)

Rank 5 RUSB (14.36) RUSB (13.1) RUSB (13.56) RUSB (11.9)

Rank 6 UOBAG (12.76) UOBAG (12.63) UOBAG (12.76) UOBAG (11.53)

Rank 7 SMT (10.46) ROSBAG (11.26) ROSBAG (11.26) ROSBAG (11.46)

Rank 8 ROSBAG (10.46) SMT (10.8) SMT (11) SMT (11.26)

Rank 9 MSB (10.36) MSB (10.3) MSB (10.2) MSB (10.23)

Rank 10 OBAG2 (8.9) OBAG2 (9.53) OBAG2 (9.36) OBAG2 (9.13)

Rank 11 IIVOT (7.7) ROSB (8.33) ROSB (8.2) ROSB (8.4)

Rank 12 ROSB (7.56) IIVOT (8) IIVOT (7.7) IIVOT (8.13)

Rank 13 OBAG (5.8) DB (6.1) DB (5.9) DB (6.23)

Rank 14 DB (5.56) OBAG (5.63) OBAG (5.7) OBAG (6.13)

Rank 15 ABM1 (4.23) ABM1 (4.6) ABM1 (4.33) ABM1 (5.46)

Rank 16 AB (4.2) AB (4.4) AB (4.26) AB (5.33)

Rank 17 ABNC (3.4) ABNC (4) ABNC (3.53) Bag (4.13)

Rank 18 Bag (2.1) Bag (2.6) Bag (2.26) ABNC (3.96)

p-value 0.000 0.000 0.000 0.000

Kendall C 0.798 0.631 0.702 0.485
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Classic ensemble methods got the lowest ranks from rank 15 to rank 18 for all the per-

formance measures. Their performance is consistent and poor than any of the hybrid en-

semble methods. The first five Friedman rankings are grabbed by four resampling+bagging

models (UBAG2, UBAG, MSBAG, SMTBAG) and one resampling+boosting model (SMTB).

UBAG2 scored the first rank for G-Mean, Balance, and ROC-AUC with a mean rank of

15.93, 16.13, and 15.33 respectively. Rank 2 for G-Mean, Balance, and ROC-AUC is

grabbed by MSBAG with a mean rank of 15.03, 15.16, and 15.06 respectively. For Sensi-

tivity, the first ranker was UBAG with a mean rank of 17.36 followed by UBAG2 (16.23).

Only RUSB, SMT, and MSMTB are three boosting based ensemble methods that can make

their position in the first nine rankers. The overall ranking gives the view that resampling-

based bagging models are better predictors than boosting-based models. One of the reasons

for their better performance is that C4.5 tends to have high variance and bagging helps in

reducing this variance. Boosting-based ensemble methods can perform much better with

machine learners that face high bias issues.

Significant results are obtained by the Friedman test. Hence, post-hoc analysis is

conducted using the Wilcoxon signed-rank test. Wilcoxon signed-rank test is applied to

compare the best ranker with other ensemble methods using SPSS. For Sensitivity, the

Wilcoxon signed-rank test is performed with UBAG and for other measures, post-hoc anal-

ysis is carried out against UBAG2. We would evaluate the following hypotheses using the

Wilcoxon signed-rank test at α = 0.05.

• Null Hypothesis (H01): UBAG has similar defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of Sensitivity.

• Alternate Hypothesis (Ha1): UBAG has better defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of Sensitivity.
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• Null Hypothesis (H02): UBAG2 has similar defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of G-Mean.

• Alternate Hypothesis (Ha2): UBAG2 has better defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of G-Mean.

• Null Hypothesis (H03): UBAG2 has similar defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of Balance.

• Alternate Hypothesis (Ha3): UBAG2 has better defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of Balance.

• Null Hypothesis (H04): UBAG2 has similar defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of ROC-AUC.

• Alternate Hypothesis (Ha4): UBAG2 has better defect prediction capability than that

of classic ensembles, resampling-based boosting ensembles, and other resampling-

based bagging ensembles with imbalanced data in terms of ROC-AUC.

The Sensitivity results are shown in Table 5.12. Pairs of ensemble methods that are

significantly different from each other are typed in boldface. In pair (X, Y), technique X is

significantly better than technique Y if p-value>= 0.05.
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Table 5.12: Wilcoxon Signed-rank Test Results for Ensemble Methods using Sensitivity

Pair of Ensemble Methods Sensitivity

UBAG - AB 0.0007

UBAG - ABNC 0.0007

UBAG - ABM1 0.0007

UBAG - DB 0.0007

UBAG - MSB 0.0007

UBAG - RUSB 0.0023

UBAG - SMT 0.001

UBAG - ROSB 0.0007

UBAG - Bag 0.0007

UBAG - MSBAG 0.0024

UBAG - OBAG 0.0007

UBAG - OBAG2 0.0007

UBAG - SMTBAG 0.0015

UBAG - UOBAG 0.0007

UBAG - IIVOT 0.0007

UBAG - ROSBAG 0.0007

UBAG - UBAG2 0.0414

From Table 5.12 this is clear that UBAG has significantly performed better than all other

ensemble methods, whether classical, resampling-based boosting, or other resampling-

based bagging ensembles.

Table 5.13 records the p-values for Wilcoxon signed-rank test with G-Mean, Balance,

and ROC-AUC.

Table 5.13: Wilcoxon Signed-rank Test Results for Ensemble Methods using G-Mean,
Balance and ROC-AUC

Pair of Ensemble Methods G-Mean Balance ROC-AUC

UBAG2 - AB 0.0007 0.0007 0.0008

UBAG2 - ABNC 0.0007 0.0007 0.0007

UBAG2 - ABM1 0.0007 0.0007 0.0008

UBAG2 - DB 0.0008 0.0008 0.001

UBAG2 - MSB 0.0012 0.0008 0.0031

UBAG2 - RUSB 0.0231 0.0268 0.0231

UBAG2 - SMT 0.0045 0.0022 0.0106
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Pair of Ensemble Methods G-Mean Balance ROC-AUC

UBAG2 - ROSB 0.0022 0.001 0.0054

UBAG2 - Bag 0.0007 0.0007 0.0007

UBAG2 - MSBAG 0.1914 0.0691 0.5136

UBAG2 - OBAG 0.0007 0.0007 0.0008

UBAG2 - OBAG2 0.0007 0.0007 0.0007

UBAG2 - SMTBAG 0.0356 0.0309 0.0609

UBAG2 - UBAG 0.1556 0.1556 0.1728

UBAG2 - UOBAG 0.0031 0.0022 0.0106

UBAG2 - IIVOT 0.0008 0.0007 0.0018

UBAG2 - ROSBAG 0.0045 0.0018 0.0106

As depicted in Table 5.13 UBAG2 significantly outperforms classic ensembles, resampling-

based boosting ensembles, and all other resampling-based bagging ensembles for perfor-

mance measures G-Mean, Balance, and ROC-AUC over all the datasets except for MSBAG

and UBAG. We conclude that UBAG2, UBAG, and MSBAG have comparable performance

concerning G-Mean, Balance, and ROC-AUC as their p-value is greater than 0.05.

The results statistically authenticate the answers of RQ1 and RQ2 stating that resampling-

based boosting and bagging ensemble methods significantly outperform the classic boost-

ing and bagging ensemble models. Results also support the evidence of the supremacy of

resampling-based bagging ensembles than the F boosting ensembles. Now, observing the

post-hoc analysis outcome, it is clear that UBAG2, UBAG, and MSBAG helped to construct

more effective defect prediction models. We accept the alternate hypotheses for G-Mean,

Balance, and ROC-AUC for all ensemble methods except for MSBAG and UBAG. The

null hypothesis is accepted for SMTBAG also in ROC-AUC. Therefore, SMTBAG also

resulted in achieving good ROC-AUC scores for SDP models.
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5.5 Discussion

In this chapter, several boosting-based and bagging-based ensemble methods were applied

on highly imbalanced data and the results advocate incorporating resampling methods with

ensemble methods for better and improved performance of SDP models. This research ad-

vocates the use of hybrid ensemble methods over the classic ensemble methods for dealing

with imbalanced data problem in SDP.

The main contributions of this chapter are:

• Dimensionality reduction using CFS resulting in unbiased model building.

• Providing a hybrid framework for defect prediction in the imbalanced data domain.

• Statistically validating results using the Friedman and Wilcoxon signed-rank test.

• Use of stable performance measures –G-Mean, Balance, and ROC-AUC for better

prediction of imbalanced data.

• Identification of preferable resampling methods to be integrated with boosting or

bagging ensemble method.

Major observations in this experimental study are summarized below:

• Hybrid ensemble methods have statistically improved the results of defect prediction

in both bagging and boosting ensemble methods.

• Preferable hybrid ensemble methods are UBAG2, UBAG, SMTBAG, and MSBAG

concluding to effective and accurate SDP in imbalanced data.

• Bagging-based hybrid ensembles performed better than Boosting-based hybrid en-

sembles.
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• If researchers or software practitioners are interested in developing boosting models,

depending on their requirements, then they should incorporate the RUS resampling

method to deal with imbalanced data. RUSB proved its potential in boosting ensem-

ble methods.

UBAG2, UBAG, SMTBAG, and MSBAG seem promising hybrid ensemble methods.

With the C4.5 decision tree as the base classifier, these hybrid ensemble methods can be

used to uncover the unseen future defects. This knowledge can be exploited by researchers

and software practitioners to build effective SDP models in an imbalanced data domain.

Next, we would like to tackle class imbalance problem at algorithmic level using meta-

cost learners and analyze their efficacy in uncovering probable defects in software.
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Chapter 6

Tackling Class Imbalance Problem at

Algorithm Level: Cost-sensitive

Learning

6.1 Introduction

As we have seen that with the growing advent of software and technology, software qual-

ity assurance is a very critical activity in today’s world. An imbalanced data problem can

be tackled at the data level or algorithm level. At the data level, resampling methods are

employed to balance the data before model construction. Chapter 4 deals with alleviating

imbalanced classification problem at the data level and this chapter will try to address the

solution to this problem at the algorithm level by employing a cost-sensitive approach. In

a cost-sensitive approach, we can employ different meta cost learners in which False Posi-

tives are penalized at different cost factors in comparison to False Negatives. For the SDP

problem, as stated earlier, positives are defective classes and negatives are non-defective
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classes.

A detailed empirical investigation of oversampling methods and meta cost learners to

deal with imbalanced classification problem in the SDP domain is conducted by Malhotra

and Kamal [89] over well known 12 NASA datasets. They explored the cost ratio of 10,

30, and 50 in meta cost learners and evaluated performance based on ROC-AUC, Sensi-

tivity, and precision. The cost-sensitive learning has been primarily performed on NASA

datasets. We want to test the suitability of the cost-sensitive learning on software datasets

like Apache for SDP in imbalanced software data. Related work is performed primarily for

NASA datasets and they didn’t explore G-Mean and Balance metrics that are preferred for

imbalanced data. This motivates us to explore cost-sensitive learning for software engineer-

ing oriented datasets like Apache datasets with stable and reliable performance measures.

This chapter aims at proposing effective SDP for imbalanced OO software using differ-

ent meta cost learners. This research study addresses the following RQs to understand and

exploit cost-sensitive learning for effective defect prediction:

• RQ1: What is the performance of ML techniques without involving cost-sensitive

learning?

• RQ2: Do cost-sensitive learning improve the defect prediction capability of ML mod-

els built for imbalanced data?

• RQ3: Which ML technique outperforms in predicting KStarthe software defects?

This research exploits nine ML techniques-NB, MLP, IBk, KStar, ABM1, Bag, RSS,

RT, and J48 to predict defects in imbalanced data. Correlation feature selection is used

to remove irrelevant features and ten-fold cross-validation is used to train and construct

the model. Model prediction capability is analyzed at different cost ratios (MC10, MC15,

MC20, MC25, MC30) to find the appropriate cost settings. When data is imbalanced,

traditional metrics like accuracy gives biased results. Instead, metrics that emphasize both
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positive and negative classes must be considered. Therefore, the model performances are

evaluated based on stable performance measures like G-Mean, Balance, and ROC-AUC.

This study also compares the results based on Sensitivity. The empirical evaluation of

results advocates the use of a cost-sensitive approach for better defect prediction.

The remainder chapter is organized as follows: Section 6.2 summarizes the experimen-

tal framework required in the execution of the study. Results and their analysis are detailed

in Section 6.3. Section 6.4 concludes the study with the discussion.

The part of this work is published in [211].

6.2 Research Methodology

This section comprises datasets, independent and dependent variables, feature selection

technique, ML techniques, cost-sensitive learning approach, performance measures, and

validation techniques used in this study.

6.2.1 Datasets and Variables

These open-source JAVA projects contributed by Jureczko and Madeyski [145] are down-

loaded by the Promise library [192]. Datasets used are Tomcat6.0, Synapse1.0, Ivy2.0,

Jedit4.2, Xerces1.3, Camel1.6, Ant1.7, Jedit4.0, Log4j1.0, Synapse1.1, Synapse1.2, and

Log4j1.1. These datasets are the same as those used in Chapter 4. Description of these

datasets can be referred from Section 3.6.

The independent variables of the study are 20 OO metrics identified by Jureczko and

Madeyski [145] and the binary dependent variable is a defect. These variables are explained

in Section 3.5.
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6.2.2 Model Development

This chapter uses CFS [146] as the feature selector. It is one of the widely used methods

for feature selection in ML applications as a feature selector. Features selected by CFS for

the considered datasets are mentioned in section 3.7.2.1. The models built with help of

these selected metrics will tend to classify defects appropriately and in less computation

time. Model validation is carried out by ten-fold cross-validation. The use of ten-fold

cross-validation reduces validation bias [212].

Now, cost-sensitive learning can be conducted in two ways; either by adding weights to

samples or by using a cost matrix to penalize type-I and type-II errors. Meta cost learners

were proposed by [157] in which penalization is done in cost matrix and training instance is

relabeled based on the majority voting. These errors are false positives and false negatives

in the model prediction. In this work, meta-cost classifiers are used and the cost penaliza-

tion of wrongly predicted defective classes is done at different levels- 10,15, 20, 25, and 30

times the cost of wrongly predicted non-defective classes.

Models are developed using nine ML techniques. These techniques are NB, MLP, IBk,

KStar, ABM1, Bag, RSS, RT, and J48. J48 is the base ML technique for ensembles used in

this study. NB, MLP, IBk, KStar, ABM1, Bag, RSS, RT are identified as the good defect

predictors inn their category in Chapter 4. Categories of ML techniques are discussed in

3.9. Details of these nine techniques and their parameter settings can be referred from

Section 3.9.

6.2.3 Performance Measures and Statistical Validation

In this chapter, we used Sensitivity, G-Mean [196], Balance [196], and ROC-AUC for

performance evaluation of models. These measures are explained in detail in Section 3.11.

Statistical tests are necessary to test whether there is a statistical difference in the perfor-
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mance of investigated ML techniques, with and without cost-sensitive learning. Ten-fold

cross-validation and nonparametric statistical tests are used in this study to alleviate the

conclusion validation threat. To achieve this purpose Wilcoxon signed-rank test [209] is

used for statistical analysis at a level of significance of α = 0.5. The pairwise comparison

is made between each pair of ML techniques for both cases.

We conducted Friedman test [213] to find out the answer to RQ3. In multiple com-

parison with the Friedman test, we determined if the performance of the different ML

techniques is the same or different. This assists in ranking ML techniques according to

their performances in various meta-cost learners.

These tests are explained in section 3.12.

6.3 Result and Analysis

This section summarizes the results and provides answers to the research questions raised

in the Introduction section.

6.3.1 RQ1: What is the performance of used ML techniques without

cost-sensitive learning?

To answer RQ1, ML models are built on 12 datasets, and performances of these models

are compared on basis of Sensitivity, G-mean, Balance, and ROC-AUC. NB is the statis-

tical technique while MLP is the only neural network that we have assessed in this thesis.

Nearest neighbors and ensemble methods used in this chapter are ranked in the top six ML

techniques in Chapter 4.

The performance of various ML techniques are recorded in Table 6.1, 6.2, 6.3, and 6.4.

The maximum value of a particular performance measure is highlighted in bold typeface

for each dataset.

175



Result and Analysis

Sensitivity Analysis:

Table 6.1 presents Sensitivity values attained by different ML techniques without us-

ing meta cost learners. On analysis of Table 6.1, the highest Sensitivity value of 0.70 is

achieved by Log4j1.1 dataset with IBk technique. There is no other dataset that could at-

tain a Sensitivity value greater than 0.70 with any ML technique. Only 24.07 % of models

got a Sensitivity value greater than 0.5. Only five ML techniques- NB, IBk, Bag, J48, and

RT were able to achieve a Sensitivity value greater than 0.5 in at least 25% of ML models.

Not a single dataset got a Sensitivity value greater than 0.65 for MLP, KStar, ABM1, Bag,

RSS, and J48. NB, MLP, and IBk attained a 0.65 value of Sensitivity only for the Log4j1.1

dataset.

Table 6.1: Sensitivity Results of ML Techniques without cost-sensitive learning

Datasets NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 0.56 0.63 0.55 0.55 0.58 0.58 0.49 0.6 0.55

Synapse1.1 0.5 0.47 0.55 0.48 0.48 0.47 0.32 0.43 0.55

Log4j1.0 0.53 0.38 0.44 0.32 0.44 0.56 0.35 0.44 0.41

Log4j1.1 0.68 0.65 0.70 0.54 0.62 0.54 0.57 0.59 0.57

Jedit4.0 0.31 0.41 0.56 0.43 0.45 0.48 0.41 0.48 0.48

Ant1.7 0.5 0.46 0.51 0.42 0.48 0.49 0.47 0.57 0.51

Camel1.6 0.21 0.13 0.34 0.23 0.32 0.22 0.03 0.19 0.35

Xerces1.3 0.39 0.35 0.49 0.43 0.42 0.39 0.26 0.36 0.43

Jedit4.2 0.40 0.31 0.38 0.29 0.38 0.31 0.13 0.23 0.29

Ivy2.0 0.43 0.18 0.4 0.28 0.3 0.25 0.05 0.13 0.38

Synapse1.0 0.56 0.31 0.31 0.25 0.19 0.19 0 0.06 0.25

Tomcat6.0 0.38 0.1 0.23 0.16 0.22 0.19 0.04 0.06 0.23

NB demonstrated the best classification based on Sensitivity for Jedit4.2, Ivy2.0, Synapse1.0,

and Tomcat6.0. NB got value of 0.40, 0.43, 0.56, and 0.38 for Jedit4.2, Ivy2.0, Synapse1.0,

and Tomcat6.0. Synapse1.1 achieved the highest Sensitivity value of 0.55 with IBk and RT.

IBk also gave the highest value of 0.70, 0.56, and 0.49 for Log4j1.1, Jedit4.0, and Xerces1.3
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respectively. Log4j1.0 got the highest value of 0.56 with Bag and Ant1.7 attained the high-

est Sensitivity value of 0.57 with J48. Camel1.6 dataset has a low range of Sensitivity from

0.03 to 0.35. A Sensitivity value of 0.35 is demonstrated by an ensemble technique (RT).

One of the primary reasons for low values of Sensitivity is the imbalanced classification

problem.

Range obtained for Synapse1.2, Synapse1.1, Log4j1.0, Log4j1.1, Jedit4.0, Ant1.7,

Camel1.6, Xerces1.3, Jedit4.2, Ivy2.0, Synapse1.0, and Tomcat6.0 is 0.49-0.63, 0.32-

0.55, 0.32-0.56, 0.54-0.70, 0.31-0.56, 0.42-0.57, 0.03-0.35, 0.26-0.49, 0.13-0.40, 0.05-

0.43, 0.00-0.56, and 0.04-0.38 respectively with various ML techniques.

G-Mean Analysis:

The performance of the developed model can be considered acceptable if G-Mean is

equal to greater than 50% owing to the skewness in the data. G-Mean values obtained

for the models are depicted in Table 6.2. The median G-Mean value achieved is 0.61 for

SDP models developed using ML techniques. The highest G-mean value achieved is 0.79.

This value is obtained by NB and MLP for the Log4j1.1 dataset. Seven datasets achieved

the highest G-Mean values on the application of the NB technique. With NB, Synapse1.1,

Log4j1.0, Log4j1.1, Jedit4.2, Ivy2.0, Synapse1.0, and Tomcat6.0 attained highest G-Mean

value of 0.66, 0.71, 0.79, 0.61, 0.62, 0.71, and 0.59 respectively. IBk got the highest G-

Mean value of 0.66, 0.70, 0.54, and 0.62 for Synapse1.1, Jedit4.0, Camel1.6, and Xerces1.3

respectively. MLP has also attained the highest G-Mean value for three datasets each.

MLP got G-Mean value of 0.71, 0.66, and 0.79 for Synapse1.2, Synapse1.1, and Log4j1.1

respectively.

Table 6.2: G-Mean Results of ML Techniques without cost-sensitive learning

Datasets NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 0.70 0.71 0.66 0.67 0.68 0.71 0.65 0.7 0.66

Synapse1.1 0.66 0.66 0.66 0.64 0.65 0.65 0.55 0.61 0.65

Log4j1.0 0.71 0.59 0.62 0.54 0.62 0.71 0.58 0.64 0.58
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Datasets NB MLP IBk KStar ABM1 Bag RSS J48 RT

Log4j1.1 0.79 0.79 0.75 0.68 0.71 0.69 0.74 0.73 0.67

Jedit4.0 0.53 0.62 0.70 0.61 0.64 0.67 0.63 0.65 0.64

Ant1.7 0.68 0.65 0.66 0.62 0.65 0.67 0.66 0.71 0.65

Camel1.6 0.44 0.35 0.54 0.45 0.53 0.46 0.18 0.42 0.54

Xerces1.3 0.6 0.57 0.61 0.65 0.63 0.61 0.51 0.59 0.64

Jedit4.2 0.61 0.55 0.59 0.52 0.59 0.55 0.35 0.47 0.51

Ivy2.0 0.62 0.41 0.61 0.5 0.53 0.49 0.22 0.35 0.57

Synapse1.0 0.71 0.55 0.53 0.48 0.42 0.43 0 0.24 0.47

Tomcat6.0 0.59 0.32 0.46 0.39 0.46 0.44 0.2 0.25 0.47

As evident from Table 6.2,considering the mean value achieved by ML techniques, NB,

MLP, IBk, Bag, RT may have better performance for the datasets used in model develop-

ment. In particular, RSS, and J48 depicted very low performance in terms of G-Mean. RSS

is not able to classify defects in the Camel1.6, Jedit4.2, Ivy2.0, Synapse1.0, and Tomcat6.0.

Balance Analysis:

Table 6.3 scribes the Balance values obtained for the ML models for different datasets

when FN and FP have an equal cost of 1.

Table 6.3: Balance Results of ML Techniques without cost-sensitive learning

Datasets NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 67.44 70.13 64.95 65.28 66.83 69.14 62.36 69.04 64.78

Synapse1.1 63.68 61.99 65.25 61.87 62.43 61.65 51.59 58.89 64.51

Log4j1.0 66.61 55.97 59.29 51.55 59.29 68.17 54.16 60.09 56.54

Log4j1.1 76.55 75.07 74.33 66.06 69.92 66.33 69.36 70.52 66.06

Jedit4.0 50.67 58.23 67.65 58.3 60.81 62.86 58.35 62.24 61.87

Ant1.7 64.16 61.32 63.66 58.52 62.07 63.32 62.13 68.55 63.27

Camel1.6 43.82 38.21 52.16 44.74 51.13 44.95 31.54 42.22 52.48

Xerces1.3 56.67 53.74 63.66 59.93 58.71 56.84 47.73 54.8 59.77

Jedit4.2 57.05 51.35 55.58 49.61 55.58 51.31 38.12 45.39 49.28

Ivy2.0 58.88 41.65 57.25 48.42 50.35 46.84 32.82 38.12 54.84
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Datasets NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.0 68.04 51.26 50.95 46.78 42.33 42.49 29.29 33.62 46.5

Tomcat6.0 55.60 36.63 45.53 40.24 44.78 43.04 32.05 33.88 45.57

Only 39.81% of models have a Balance value greater than 60. No ML technique can

secure a Balance value greater than 75 except for NB and MLP. In NB and MLP also, only

one dataset, Log4j1.1, attained the Balance value of 76.55 and 75.07 respectively.

NB outperformed the other ML techniques by giving the maximum Balance value of

76.55, 57.05, 58.88, 68.04, and 55.60 for Log4j1.1, Jedit4.2, Ivy2.0, Synapse1.0, and Tom-

cat6.0 respectively. IBk gave the maximum value for Synapse1.1, Jedit4.0, Xerces1.3 of

65.25, 67.65, and 63.66 respectively. Bag, J48, and RT also achieved the highest Balance

value for one dataset each.

The range obtained for Synapse1.2, Synapse1.1, Log4j1.0, Log4j1.1, Jedit4.0, Ant1.7,

Camel1.6, Xerces1.3, Jedit4.2, Ivy2.0, Synapse1.0, and Tomcat6.0 is 62.36-70.13, 51.59-

65.25, 51.55-68.17, 66.06-76.55, 50.67-67.65, 58.52-68.55, 31.54-52.48, 47.73-63.66, 38.12-

57.05, 32.82-58.88, 29.29-68.04, and 32.05-55.60 respectively with various ML techniques.

ROC-AUC Analysis:

From Table 6.4 this can be observed that ROC-AUC values lie in the range of 0.58-

0.86. The median ROC-AUC value attained for all the models is 0.74. It can be deduced

from Table 6.4 that NB, MLP, and RSS performed better than other ML techniques. The

minimum value of ROC-AUC is obtained by RT (by 0.58) for Synapse1.0, and Tomcat6.0

each.

Two-third of the models have ROC-AUC greater than 0.7. NB got the highest val-

ues of 0.83, 0.86, 0.74, and 0.78 for Log4j1.0, Log4j1.1, Synapse1.0, Tomcat6.0 respec-

tively. MLP achieved the highest value of 0.79, 0.81, 0.74, and 0.78 for Jedit4.0, Ant1.7,

Synapse1.0, and Tomcat6.0 respectively. Unlike threshold dependent metrics, ROC-AUC

performed better for the majority of datasets for the RSS technique. RSS achieved good
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value of ROC-AUC of 0.83, 0.83, 0.81, and 0.78 for Xerces1.3, Jedit4.2, Ivy2.0, and Tom-

cat6.0 respectively. Apart from these three ML techniques, classic ensemble methods-

ABM1 and Bag also got the highest value for few datasets.

Table 6.4: ROC-AUC Results of ML Techniques without cost-sensitive learning

Datasets NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 0.78 0.76 0.67 0.71 0.75 0.80 0.76 0.74 0.67

Synapse1.1 0.75 0.77 0.7 0.72 0.78 0.77 0.75 0.66 0.66

Log4j1.0 0.83 0.73 0.64 0.72 0.71 0.77 0.78 0.65 0.62

Log4j1.1 0.86 0.82 0.75 0.8 0.76 0.82 0.85 0.72 0.68

Jedit4.0 0.76 0.79 0.72 0.76 0.78 0.74 0.78 0.67 0.67

Ant1.7 0.8 0.81 0.69 0.77 0.78 0.8 0.8 0.74 0.67

Camel1.6 0.68 0.69 0.64 0.65 0.71 0.72 0.69 0.59 0.59

Xerces1.3 0.78 0.72 0.77 0.78 0.76 0.8 0.83 0.6 0.68

Jedit4.2 0.83 0.82 0.66 0.75 0.75 0.82 0.84 0.69 0.59

Ivy2.0 0.79 0.73 0.68 0.72 0.73 0.81 0.81 0.72 0.62

Synapse1.0 0.74 0.74 0.66 0.72 0.64 0.59 0.59 0.59 0.58

Tomcat6.0 0.78 0.78 0.64 0.72 0.73 0.77 0.78 0.67 0.58

The range of ROC-AUC observed for Synapse1.2, Synapse1.1, Log4j1.0, Log4j1.1,

Jedit4.0, Ant1.7, Camel1.6, Xerces1.3, Jedit4.2, Ivy2.0, Synapse1.0, and Tomcat6.0 is

0.67-0.80, 0.66-0.78, 0.62-0.83, 0.68-0.86, 0.67-0.79, 0.67-0.81, 0.59-0.72, 0.6-0.83, 0.59-

0.84, 0.62-0.81, 0.58-0.74, and 0.58-0.78 respectively.

6.3.2 RQ2: Do cost-sensitive learning improve the defect prediction

capability of ML models build for imbalanced data?

To answer this RQ, we first need to analyze the performance of ML techniques with cost-

sensitive learning. The cost matrix of each classifier is penalized. Different cost factors of

10, 15, 20, 25, and 30 are tried and the program was designed to select the cost factor that
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yields the best defect prediction. Table 6.5, 6.6, 6.7, 6.8 holds the performance statistics of

ML models corresponding to the best cost factor settings for Sensitivity, G-Mean, Balance,

and ROC-AUC. The results seem promising in the field of SDP for imbalanced data. Meta

cost learners have handled the class imbalance issue with cost penalization.

Sensitivity Analysis: By analyzing Table 6.5, we found that the mean Sensitivity

value becomes 0.66 and overall Sensitivity ranged between 0.19 and 0.97.

Table 6.5: Sensitivity Results of ML Techniques with cost-sensitive learning

Dataset NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 0.66 0.9 0.55 0.83 0.69 0.87 0.97 0.88 0.52

Synapse1.1 0.7 0.78 0.55 0.83 0.53 0.83 0.95 0.75 0.5

Log4j1.0 0.65 0.76 0.44 0.71 0.53 0.85 0.91 0.76 0.41

Log4j1.1 0.73 0.92 0.7 0.84 0.78 0.86 0.97 0.78 0.68

Jedit4.0 0.4 0.8 0.56 0.68 0.55 0.83 0.93 0.68 0.52

Ant1.7 0.6 0.89 0.51 0.73 0.54 0.77 0.87 0.83 0.5

Camel1.6 0.32 0.89 0.36 0.63 0.47 0.73 0.93 0.76 0.38

Xerces1.3 0.57 0.72 0.51 0.72 0.64 0.83 0.81 0.75 0.54

Jedit4.2 0.4 0.8 0.56 0.68 0.55 0.83 0.93 0.68 0.52

Ivy2.0 0.5 0.68 0.4 0.68 0.38 0.65 0.73 0.65 0.43

Synapse1.0 0.75 0.63 0.31 0.44 0.31 0.69 0.88 0.69 0.19

Tomcat6.0 0.69 0.75 0.23 0.49 0.29 0.65 0.75 0.61 0.3

After applying meta cost learners, performance of RSS improved the maximum for

all the datasets. RSS gave maximum Sensitivity value for 83% of datasets. Synapse1.2,

Synapse1.1, Log4j1.0, Log4j1.1, Jedit4.0, Camel1.6, Jedit4.2, Ivy2.0, Synapse1.0, and

Tomcat6.0 got 0.97, 0.95, 0.91, 0.97, 0.93, 0.93, 0.93, 0.73, 0.88, and 0.75 respectively

with RSS. Remaining two datasets- Ant1.7 and Tomcat6.0 got highest Sensitivity value of

0.89 and 0.75 with MLP.

Minimum Sensitivity increased from 0 to 0.19 and the maximum Sensitivity achieved

by any ML technique experienced a minimum of 38.47% of increase. The improvement
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in cost-sensitive models is marked by a huge increment of 71.22% in the mean Sensitivity

value.

G-Mean Analysis:

The value of minimum G-Mean predicted by models amplified from 0 to 0.30 whereas

the maximum G-Mean value raised by 5.43%. The range of G-Mean now becomes 0.30-

0.84. The mean values for G-Mean boosted by 14.3%.

Bag achieved highest G-Mean value of 0.70, 0.72, 0.74, 0.84, and 0.72 for Synapse1.1,

Jedit4.0, Ant11.7, Camel1.6, Jedit4.2 respectively. RSS performed the best for Xerces1.3,

Ivy2.0, Synapse1.0, and Tomcat6.0 and got G-Mean value of 0.75, 0.75, 0.81, and 0.77

respectively. Log4j versions performed best with NB. Synapse1.2 and Xerces1.3 gained

maximum G-Mean values of 0.74 and 0.75 respectively.

Comparison of these values with Table 6.2 gives a clear indication of improvement in

model predictions with cost-sensitive learning.

Table 6.6: G-Mean Results of ML Techniques with cost-sensitive learning

Dataset NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 0.73 0.57 0.66 0.61 0.74 0.68 0.3 0.66 0.64

Synapse1.1 0.69 0.66 0.66 0.64 0.65 0.70 0.33 0.63 0.65

Log4j1.0 0.77 0.71 0.62 0.61 0.65 0.7 0.59 0.69 0.6

Log4j1.1 0.81 0.58 0.75 0.65 0.76 0.58 0.33 0.53 0.75

Jedit4.0 0.6 0.67 0.7 0.68 0.68 0.72 0.48 0.66 0.66

Ant1.7 0.71 0.65 0.66 0.69 0.68 0.74 0.7 0.7 0.65

Camel1.6 0.54 0.52 0.55 0.6 0.63 0.84 0.54 0.63 0.57

Xerces1.3 0.71 0.74 0.66 0.75 0.72 0.73 0.75 0.73 0.67

Jedit4.2 0.6 0.67 0.7 0.68 0.68 0.72 0.48 0.66 0.66

Ivy2.0 0.67 0.73 0.61 0.7 0.59 0.72 0.75 0.71 0.62

Synapse1.0 0.78 0.66 0.53 0.57 0.53 0.73 0.81 0.72 0.42

Tomcat6.0 0.71 0.73 0.46 0.63 0.52 0.73 0.77 0.7 0.53

Balance Analysis: On analysis of Table 6.7, Balance results seem similar to G-Mean
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for the various ML techniques.

Table 6.7: Balance Results of ML Techniques with cost-sensitive learning

Dataset NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 72.06 54.47 64.95 59.4 73.90 65.11 35.9 62.89 62.77

Synapse1.1 68.93 65.04 65.07 62.32 63.82 68.87 37.48 62.41 63.13

Log4j1.0 74.26 70.38 59.29 60.48 63.62 68.15 55.45 68.03 57.27

Log4j1.1 79.34 54.46 74.33 62.83 75.88 55.75 37.12 52.31 74.22

Jedit4.0 57.04 65.44 67.47 68.2 66 70.69 46.84 65.98 64.32

Ant1.7 69.55 62.12 63.66 68.66 66.01 73.38 67.95 68.58 62.75

Camel1.6 51.43 49.93 53.6 60.27 60.99 80.92 51.48 62.47 55.05

Xerces1.3 68.38 74.31 63.91 75.36 71.24 72.26 74.82 73.28 65.51

Jedit4.2 57.04 65.44 67.47 68.2 66.00 70.69 46.84 65.98 64.32

Ivy2.0 63.72 72.95 57.25 69.87 55.6 71.54 75.19 70.85 58.7

Synapse1.0 78.03 65.5 50.95 55.9 51.02 72.69 79.9 71.78 42.33

Tomcat6.0 71.3 73.11 45.52 61.6 49.33 72.28 77.2 68.87 50.11

In particular, the predictive capability of Bag, NB, KStar, ABM1, and RSS for Balance

are the same as with G-Mean. Bag got the highest Balance value for Jedit4.0, Ant1.7,

Camel1.6, and Jedit4.2 of 70.69, 73.38, 80.92, and 70.69 respectively. Without cost-

sensitive application, these values were 62.86, 63.32, 44.95, and 51.31. The range of

Balance attained by cost-sensitive models is from 35.9 to 80.92. RSS and NB also se-

cured the highest Balance value for three datasets each. RSS got the highest Balance value

of 75.19, 79.9, and 77.2 for Ivy2.0, Synapse1.0, and Tomcat6.0 respectively. NB achieved

the highest value for Synapse1.1, Log4j1.0, and Log4j1.1 of 68.93, 74.26, and 79.34 re-

spectively. The mean value of Balance increased from 55.65 to 63.86 with a percentage

increment of approximately 15% considering all the 108 models. Comparison of Table 6.3

with Table 6.7 exhibits the improvement in values of Balance for different ML models.

ROC-AUC Analysis:

Table 6.8 scribes the ROC-AUC values obtained by cost-sensitive models with the high-
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est values in boldface.

Table 6.8: ROC-AUC Results of ML Techniques with cost-sensitive learning

Dataset NB MLP IBk KStar ABM1 Bag RSS J48 RT

Synapse1.2 0.78 0.76 0.71 0.74 0.78 0.79 0.74 0.74 0.63

Synapse1.1 0.75 0.76 0.7 0.75 0.77 0.80 0.75 0.69 0.71

Log4j1.0 0.83 0.81 0.66 0.7 0.72 0.78 0.78 0.73 0.69

Log4j1.1 0.86 0.82 0.73 0.79 0.79 0.78 0.8 0.67 0.75

Jedit4.0 0.76 0.75 0.72 0.75 0.78 0.81 0.76 0.69 0.68

Ant1.7 0.8 0.8 0.69 0.77 0.8 0.83 0.82 0.75 0.67

Camel1.6 0.68 0.7 0.64 0.65 0.71 0.71 0.73 0.66 0.61

Xerces1.3 0.78 0.78 0.77 0.84 0.81 0.83 0.83 0.78 0.71

Jedit4.2 0.76 0.75 0.72 0.75 0.78 0.81 0.76 0.69 0.68

Ivy2.0 0.79 0.8 0.68 0.75 0.79 0.8 0.82 0.73 0.7

Synapse1.0 0.74 0.67 0.56 0.69 0.63 0.75 0.78 0.69 0.62

Tomcat6.0 0.78 0.79 0.59 0.74 0.78 0.82 0.83 0.72 0.59

The mean ROC-AUC value attained is 0.74. Bag and RSS rule the statistics represented

in Table 6.8 but performances of ABM1, NB, and MLP are also noteworthy. It is evident

on comparison of Table 6.4 and Table 6.8 that, for all the datasets, their ROC-AUC were

quite similar. Though there is not much improvement in the performance of NB and MLP

using meta cost learner, their comparative performance seems significant.

Bag got highest value for Synapse1.2, Synapse1.1, Jedit4.0, Ant1.7, and Jedit4.2 of

0.79, 0.80, 0.81, 0.83, and 0.81. For the datasets with a much lower percentage of defec-

tive classes, the ensemble technique-RSS performed better. It gave the highest values for

Camel1.6 (0.73), Ivy2.0 (0.82), Synapse1.0 (0.78), and Tomcat6.0 (0.83). For Xerces1.3,

KStar gained the maximum ROC-AUC value of 0.84 which is comparable to the value

achieved by Bag and RSS. Bag and RSS both got 0.83 ROC-AUC value for Xerces1.3.

Statistical Validation of RQ2:

The above analysis exhibits the improvement in values of all the performance mea-
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sures. Still, these results are required to be statistically validated. We perform a statistical

test to compare the cumulative performance of ML techniques without cost-sensitive learn-

ing (NotCS) and the cumulative performance of ML techniques with cost-sensitive learn-

ing (CS). This requires comparing two scenarios, therefore we employed the Wilcoxon-

signed rank test and found considerable statistical improvement in SDP models using cost-

sensitive learning for all the performance measures.

Wilcoxon signed-ranks for the pairs are scribed in Table 6.9 with their p-values for dif-

ferent performance measures. Significant p-values are boldfaced. A p-value of less than

0.05 indicates that results are 95% statistically significant. S+ signifies the significant in-

crement in the value of a particular performance measure when the ML model incorporates

cost-sensitive learning.

Table 6.9: Wilcoxon signed-rank results for various performance measures

Dataset ROC-AUC G-Mean Balance Sensitivity

CS vs NoCS S+ S+ S+ S+

p-value 0.015 0.008 0.008 0.008

The p-value for ROC-AUC is 0.015. For G-Mean, Balance, and Sensitivity this value

is 0.008. As these values are less than 0.05, therefore we reject the null hypothesis that

there is no difference between the performance of ML models and their cost-sensitive ver-

sions. Therefore, it is concluded that cost-sensitive learning enhances the defect prediction

capability of the ML models built for imbalanced data.

6.3.3 RQ3: Which ML technique outperforms in predicting software

defects?

The nature of ML techniques is analyzed for both the cases - without and with cost-sensitive

learning. To observe whether there is a statistical change in performances of different
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classifiers, the Friedman test is performed at the α = 0.05 level of significance and their

ranks for various performance measures corresponding to cost-sensitive are recorded in

Table 6.10 and Table 6.11. The performance of ML techniques is ranked with help of

the Friedman test based on ROC-AUC, Balance, G-Mean, and Sensitivity. Mean ranks

are displayed in brackets for each ML technique. Higher the mean rank, the better the

performance of the ML technique. Kendall’s coefficient of concordance (Kendall C) is also

reported in Table 6.10 and Table 6.11 to gauge the effect.

ML Performance without cost-sensitive learning:

The performance of various ML techniques without exploiting cost-Sensitivity are recorded

in Table 6.1, 6.2, 6.3, and 6.4 and analyzed in subsection 6.3.1.

Different hypothesis for different performance measure is set. The hypotheses formed

to achieve the rankings of ML techniques are stated as:

• H10 (Null Hypothesis): There is no significant statistical difference between the per-

formance of any of the SDP models developed using ML techniques in terms of

Sensitivity.

• H1a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques in terms of Sensitivity.

• H20 (Null Hypothesis): There is no significant statistical difference between the per-

formance of any of the SDP models developed using ML techniques in terms of

G-Mean.

• H2a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques in terms of G-Mean.

• H30 (Null Hypothesis): There is no significant statistical difference between the per-

formance of any of the SDP models developed using ML techniques in terms of

Balance.
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• H3a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques in terms of Balance.

• H40 (Null Hypothesis): There is no significant statistical difference between the per-

formance of any of the SDP models developed using ML techniques in terms of

ROC-AUC.

• H4a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques in terms of ROC-AUC.

Friedman rankings in Table 6.10 for threshold-dependent performance measures have

demonstrated that Ibk and NB have the best predictive capability for software defects. This

is analogous to our observations in subsection 6.3.1. Their performances are not affected

by the imbalanced nature of data. IBk is the nearest neighbor ML technique and classifies

a class as defective or non-defective based on its nearest neighbor class. NB achieved the

first rank with ROC-AUC as well. NB is the robust ML technique and performs probability-

based classification.

Table 6.10: Friedman Results for ML Techniques without Cost-Sensitive Learning

Rank Sensitivity G-Mean Balance ROC-AUC

Rank 1 IBk (7.54) IBk (7.16) IBk (7.25) NB (7.37)

Rank 2 NB (6.62) NB (6.91) NB (6.91) RSS (7.00)

Rank 3 RT (6.12) Bag (5.75) Bag (5.5) MLP (6.87)

Rank 4 ABM1 (5.75) ABM1 (5.25) RT (5.45) Bag (6.75)

Rank 5 Bag (5.00) RT (4.91) ABM1 (5.41) ABM1 (5.66)

Rank 6 J48 (4.25) MLP (4.83) MLP (4.41) KStar (4.58)

Rank 7 MLP (4.16) J48 (4.25) J48 (4.33) IBk (2.83)

Rank 8 KStar (3.95) KStar (3.75) KStar (3.87) J48 (2.62)

Rank 9 RSS (1.58) RSS (2.16) RSS (1.83) RT (1.29)

p-value 0.000 0.000 0.000 0.000

Kendall C 0.424 0.320 0.358 0.683
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The ensemble methods Bag, ABM1, and RT grabbed the position in the first five rankers

for Sensitivity, G-Mean, and Balance. RSS secured a second position with ROC-AUC. It

performed the worst at a threshold of 0.5 in terms of Sensitivity, G-Mean, and Balance.

MLP, though achieved the highest performance value in few datasets for the considered

performance measures, failed to secure any good rank because its predictive capability

decreased with the drop in the percentage of defective classes in the software.

The p-value for Sensitivity, G-Mean, Balance, and ROC-AUC is 0.000. This signifies

that the rankings are highly significant at α = 0.05. Therefore, we refute the null hypothe-

ses and accept alternate hypotheses H1a, H2a, H3a, and H4a. Kendall C ranges from 0.32

to 0.683 and supports the dissimilarity amongst the ML techniques.

ML Performance with Cost-sensitive Learning:

Subsection 6.3.2 has proved statistically that ML models generated with cost-sensitive

learning gave better defect predictions that the original ones. Friedman test is executed

at α = 0.5 to find the rankings of ML techniques. Performance of ML models with the

best classification ratio is considered for each performance measure on 12 datasets for

Sensitivity, G-Mean, Balance, and ROC-AUC.

The performance of various ML techniques with cost-sensitive learning are presented in

recorded in Table 6.5, 6.6, 6.7, and 6.8. Detailed analysis is provided earlier in subsection

6.3.2.

The hypotheses set to find the competency of ML techniques for SDP are:

• H10 (Null Hypothesis): There is no significant statistical difference between the

performance of any of the SDP models developed using ML techniques with cost-

sensitive learning in terms of Sensitivity.

• H1a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques with cost-sensitive

learning in terms of Sensitivity.
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• H20 (Null Hypothesis): There is no significant statistical difference between the

performance of any of the SDP models developed using ML techniques with cost-

sensitive learning in terms of G-Mean.

• H2a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques with cost-sensitive

learning in terms of G-Mean.

• H30 (Null Hypothesis): There is no significant statistical difference between the

performance of any of the SDP models developed using ML techniques with cost-

sensitive learning in terms of Balance.

• H3a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques with cost-sensitive

learning in terms of Balance.

• H40 (Null Hypothesis): There is no significant statistical difference between the

performance of any of the SDP models developed using ML techniques with cost-

sensitive learning in terms of ROC-AUC.

• H4a (Alternate Hypothesis): There is a significant statistical difference between the

performance of SDP models developed using ML techniques with cost-sensitive

learning in terms of ROC-AUC.

Friedman rankings in Table 6.11 unanimously declare Bag as the best ML technique

with stable performance measures (G-Mean, Balance, and ROC-AUC). Bag secured the

third position with a mean rank of 6.95 with Sensitivity as the performance measure. Anal-

ysis of Table 6.11 enlightens the fact that after penalizing the wrongly predicted defective

classes, models based on Bag, NB, and ABM1 are consistently better than the others for

stable metrics.
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Table 6.11: Friedman Results for ML Techniques with cost-sensitive learning

Rank Sensitivity G-Mean Balance ROC-AUC

Rank 1 RSS (8.79) Bag (7.50) Bag (7.33) Bag (7.91)

Rank 2 MLP (7.16) NB (5.75) NB (5.83) RSS (7.16)

Rank 3 Bag (6.95) KStar (5.08) KStar (5.41) NB (6.41)

Rank 4 J48 (6.00) MLP (4.91) J48 (5.25) ABM1 (6.12)

Rank 5 KStar (5.45) ABM1 (4.91) ABM1 (5) MLP (5.87)

Rank 6 NB (3.58) J48 (4.83) MLP (4.75) KStar (4.83)

Rank 7 ABM1 (3.00) IBk (4.33) IBk (4.16) J48 (3.16)

Rank 8 IBk (2.29) RSS (4.25) RSS (4.08) IBk (1.83)

Rank 9 RT (1.75) RT (3.41) RT (3.16) RT (1.66)

p-value 0.000 0.035 0.020 0.000

Kendall C 0.807 0.173 0.190 0.697

Sensitivity values are affected more by penalization. According to Sensitivity, RSS has

the highest mean rank of 8.79. RSS secured the second position with a mean rank of 7.16

with ROC-AUC measure. The p-value obtained for Sensitivity and ROC-AUC is 0.000.

For G-Mean and Balance, the p-value corresponding to the Friedman test is 0.035 and 0.02

respectively. All the four p-values are less than 0.05, therefore, we reject the null hypothesis

and conclude that the performances of ML techniques are statistically different. Kendall C

for Sensitivity and ROC-AUC is 0.807 and 0.697 respectively. This high value of Kendall C

signifies the agreement in their performance with respect to datasets. The behavior of ML

techniques is different in different datasets for G-Mean and Balance. Kendall C is small

for these performance measures. This value is 0.173 and 0.19 for G-Mean and Balance

respectively.

As concluded earlier models employing cost-sensitive learning have improved the per-

formance of ML techniques for SDP, we further conducted the Wilcoxon signed-rank test

for ML techniques with cost-sensitive learning to explore whether the best ranker is statis-

tically better than all other ML techniques. According to Table 6.11, Bag is the first ranker
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with the stable metrics (G-Mean, Balance, and ROC-AUC). Therefore, we conducted a

Wilcoxon signed-rank test to perform the pair-wise comparison of ML techniques with

Bag. Table 6.12 shows the pair-wise comparison of Bag with other ML techniques.

Table 6.12: Wilcoxon Signed-Rank Results for ML Techniques with Cost-Sensitive Learn-
ing

Pair G-Mean Balance ROC-AUC

Bag-NB 0.480 0.480 0.117

Bag-MLP 0.034 0.041 0.033

Bag-IBk 0.019 0.019 0.002

Bag-KStar 0.023 0.034 0.005

Bag-ABM1 0.071 0.084 0.008

Bag-RSS 0.034 0.028 0.480

Bag-J48 0.003 0.006 0.002

Bag-RT 0.019 0.019 0.002

Performance of Bag, when measured in terms of G-Mean, Balance, and ROC-AUC, is

statistically better than MLP, IBk, KStar, J48, and RT. The corresponding p-values are less

than 0.05 and hence the difference in predictive capability is statistically significant. The

statistically significant p-values are bold-faced in Table 6.12.

The performance of the Bag is similar to NB for all three robust performance measures.

Bag also performed comparable to ABM1 for G-Mean and Balance. With threshold inde-

pendent ROC-AUC, RSS also performed similar to Bag as the p-value obtained is 0.480.

Therefore, Bag, NB, ABM1, and RSS are good ML techniques to build SDP models with

imbalanced data.
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6.4 Discussion

This chapter determines the usage of the penalized cost matrix for effective defect predic-

tion in imbalanced software data. MC10, MC15, MC20, MC25, and MC30 were employed

to solve the purpose. The study incorporates model construction with ten-fold validation on

nine ML methods and twelve datasets of the imbalanced nature. Important features were

retained by employing the CFS technique. The empirical evaluation was executed with the

help of ROC-AUC, G-Mean, Balance, and Sensitivity. The key results of this chapter are

as follows:

• It is proved statistically with the help of the Wilcoxon-signed rank test that cost-

sensitive models predict defects better than ML models without modifying cost ratios

of FN and FP.

• With cost-sensitive learning, Bag, and NB statistically provided better predictions

than other ML techniques in terms of G-Mean, Balance, and ROC-AUC. ABM1

results of ML models were statistically comparable with Bag and NB for G-Mean

and Balance. RSS results were comparable with Bag and NB results for threshold

independent ROC-AUC metric.

• The accuracy of cost-sensitive models in terms of Sensitivity are statistically better

than that of the base ML models. The Sensitivity values of Synapse1.2, Synapse1.1,

Log4j1.0, Log4j1.1, Jedit4.0, Ant1.7, Camel1.6, Xerces1.3, Jedit4.2, Ivy2.0, Synapse1.0,

and Tomcat6.0 with Bag has improved by 50%, 78.55%, 52.63%, 60.02%, 72.23%,

58.01%, 228.55%, 111.12%, 164.54%, 160%, 266.67%, and 233.37% respectively.

• The cost-sensitive based ML models were found statistical significant than ML mod-

els in terms of G-Mean. Synapse1.1, Jedit4.0, Ant1.7, Camel1.6, Xerces1.3, Jedit4.2,

Ivy2.0, Synapse1.0, and Tomcat6.0 with Bag experienced 8.4%, 7.7%, 9.9%, 82.24%,
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19.69%, 30.9%, 48.19%, 71.4%, and 67.65% increase with the involvement of meta

cost learners.

• Cost-sensitive learning statistically increased the Balance values of ML models. The

Balance values of Synapse1.1, Jedit4.0, Ant1.7, Camel1.6, Xerces1.3, Jedit4.2, Ivy2.0,

Synapse1.0, and Tomcat6.0 increased by 11.7%, 12.46%, 15.89%, 80.02%, 27.13%,

37.77%, 52.73%, 71.08%, and 67.93% with the Bag ensemble.

• ROC-AUC is stable and threshold independent measure. Therefore, it can capture

the imbalanced nature of the data. The performances of ML techniques were statis-

tically improvised with the incorporation of cost-Sensitivity in terms of ROC-AUC

also for the majority of datasets. Synapse1.1, Log4j1.0, Jedit4.0, Ant1.7, Xerces1.3,

Synapse1.0, and Tomcat6.0 shows 3.9%, 1.29%, 10.16%, 4.02%, 3.87%, 27.63%,

and 7.03% of improvement in ROC-AUC values.

The main contribution of this chapter is

• to develop a useful and efficient SDP model for imbalanced data using cost-sensitive

learning

• to use stable performance measures (G-Mean, Balance, and ROC-AUC) for model

evaluation

• to statistically validate the results using nonparametric tests

• To incorporate CFS in defect prediction models to provide better and unbiased re-

sults.

Therefore, this chapter aids in understanding the role of cost-sensitive learning and

building better SDP models with imbalanced software data.

Till now, various SDP models are empirically validated using ML techniques in the

current thesis work. Next, we would like to explore the defect prediction framework with
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different search-based techniques and assess their predictive capabilities in defect predic-

tion.
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Chapter 7

Software Defect Prediction Using

Search-based Techniques

7.1 Introduction

Efficient defect prediction helps in the timely identification of areas in software which can

lead to defects in software owing to better resource utilization [1]. More resources need

to be allocated to defect prone areas in software development resulting in better quality

software. Apart from ML techniques, now evolutionary computing is getting the attention

of researchers to solve many complex problems that require exploring a large search space.

With many advantages like easy adaptations and computational efficiency, Harman [59]

advocated analyzing the suitability and applicability of evolutionary techniques in the field

of SDP. With the growing interest of researchers in these SBTs, this study tends to explore

various SBTs and provide researchers and developers the set of SBTs that are effective

in predicting probable defects in OO software. The SBTs that have low defect prediction

capabilities are identified and their usage may not lead to desired results in software engi-

neering problems. Though in 2018, Malhotra [4] has extensively analyzed the SBTs and
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their hybrid versions for applicability in defect prediction domain, still very few studies

exist in literature where SBTs are used for model development. This motivates us to em-

ploy SBTs in constructing models and assess their effectiveness in the field of SDP in this

chapter.

The objective of this study is threefold;

1. to ensure the efficacy of SBTs in envisaging the defects in software

2. to explore the predictive potential of the addressed SBTs by employing stable perfor-

mance measures like G-Mean, Balance, and ROC-AUC, and

3. to contribute a strong empirical study by validating results statistically.

The evaluation measures that are used in this study assist in the unbiased classification

of imbalanced software data.

In this chapter, the performance of sixteen SBTs is examined and the following research

questions are formed to achieve the objective:

• RQ1: What is the relative performance of addressed SBTs for predicting software

defects using OO metrics when sensitivity, G-Mean, Balance, and ROC-AUC are

considered?

• RQ2: Which SBTs are statistically good or bad defect predictors for OO projects

when sensitivity, G-Mean, Balance, and ROC-AUC are considered?

Each SBT is run thirty times to incorporate its inherent stochastic nature. Ten-fold

with-in project cross-validation is done. Further, results are statistically validated by using

the nonparametric Friedman test. In addition to this, post-hoc analysis is carried out by

Wilcoxon signed-rank test to eradicate family-wise errors. Nonparametric tests do not

require to follow any assumptions for data distribution. Therefore, the Friedman test and
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Wilcoxon signed-rank test are used considering the nonnormal behavior of predictors of

the study.

There is a lack of studies in the literature that uses SBTs for defect classification. In

2014, Malhotra [214] found only eight SDP studies that used SBTs. Li et al. [63] had sum-

marized the progress on different strategies in SDP until 2017 and recorded a very fewer

number of studies addressing the use of SBTs. The nature of the SBTs makes them more

pertinent to problems in the software engineering domain. The focus of the study is to look

into SBTs with the perspective of model evaluation for defect prediction. With very few

related studies, the research community needs such studies to ensure their practical appli-

cability and usability for software practitioners in early defect detection. This motivates

us to conduct the empirical assessment of SBTs for SDP with more software engineering

datasets that are less explored in literature. Therefore, this study is important to be consid-

ered despite the existence of Malhotra’s work [4] which is the closest to this work. This

study is different from [4] because of the following reasons:

• Unlike [4] this study uses threshold independent metric: ROC-AUC [15]. ROC-AUC

is used to mitigate the problem of imbalanced data in this study [40, 41].

• We have used software engineering datasets that are less explored in the literature to

ascertain the usability of these SBTs. The datasets used in this study are not used in

[4].

Results support the usage of SBTs like UCS, XCS, SGA, MPLCS, BIOHEL, GA ADI,

GA INT, CHC, and PBIL for building good SDP models. SBTs can explore a larger search

space for potential solutions and require less domain-specific knowledge while building the

model. Most of the genetic-based SBTs performed better than PSO based SBTs. Genetic

algorithms (GA) are advantageous because they do parallel computations and converge to

the global optimal solution quickly. GA based SBTs performed comparatively better than

PSO variants because defect prediction is a binary problem. The prediction can be either
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defective or non-defective. GA performs better in discrete binary problems whereas PSO

is effective in continuous domain problems.

Further, we will also like to explore the consequences of resampling methods with

search-based techniques for the classification of software defects in next chapter.

The remainder of this chapter is divided into sections as follows: Section 7.2 expounds

research framework designed to accomplish objectives set in this chapter. Experimental

results are documented and analyzed in Section 7.3. Section 7.4 provides a discussion of

the overall findings of the chapter.

The results of the chapter are published in [215].

7.2 Reaseach Framework

The subject of this study is finding the worth of applying SBTs for developing machine

learning models. This section describes the components involved in this empirical study.

7.2.1 Research Variables and Datasets Details

OO metrics are selected as independent variables in this study owing to their wide accep-

tance in defect prediction literature that deftly captures the quality attributes of software

[2, 3]. Independent variable of the study is discrete binary variable named ’Defect’. These

research variables are explained in section 3.5.

17 datasets of JAVA projects are collected from promise repository [208]. Datasets used

are Tomcat6.0, Synapse1.0, Ivy2.0, Jedit4.2, Xalan2.4, Xerces1.3, Xerces1.2, Camel1.6,

Ant1.7, Jedit4.0, Log4j1.0, Jedit4.1, Synapse1.1, Synapse1.2, Log4j1.1, Xalan2.6,and Xalan2.4.

Description of these datasets is provided in section 3.6. All datasets have less than 34% of

defective classes except for Xalan2.6 and Xalan2.5. 85% of datasets are imbalanced with

the % age of #D ranging from 8.97 to 33.59. Different datasets of varied size and nature
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are used to train and validate the performance of 16 common SBTs.

7.2.2 Search-based Techniques

16 SBTs are selected for the performance evaluation so that fair comparison can be made

to assess the effectiveness of SBTs in the software engineering domain. Addressed SBTs

are introduced in section 3.9.2. Experiments are executed in the KEEL environment [205]

with default parameter settings of SBTs to support the repeatability of the study. The

default parameter settings are used in the chapter because according to Arcuri and Fraser

[216] parameter tuning in SBTs is an expensive process. Several SBTs are used in this

study; therefore, default parameter settings provide ease of reproducing it and strengthens

conclusion validity.

7.2.3 Performance Measures and Statistical Validation

Instead of traditional measures like accuracy, we have used sensitivity, G-Mean [196], Bal-

ance [196], and ROC-AUC for performance evaluation. These measures are explained in

detail in Section 3.11.

Ten-fold with-in the project cross-validation method elucidated in subsection 3.10.2 is

used to reduce the validation bias. Apart from this, owing to the stochastic nature of SBTs,

each technique is run 30 times as supported in the literature [201], and averaged results

are presented. For statistical analysis of observed results, the nonparametric Friedman test

[197] is used for sensitivity, G-Mean, Balance, and ROC-AUC. The post-hoc analysis is

carried out by the Wilcoxon signed-rank test [209]. Details of these tests can be referred to

from Section 3.12.
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Figure 7.1: Experimental Setup

7.2.4 Experimental Setup

Figure 7.1 explains the experimental setup designed for the study. Once RQs are formulated

keeping in mind the objective of the study, the datasets are collected and preprocessed to

form dependent and independent variables. The research variables, datasets, SBTs and

performance measures are summarized in Chapter 3.

16 SBTs are exploited to build models classifying the defects using ten-fold cross-

validation. The performances of models are assessed based on selected performance mea-

sures and results are validated with the Friedman Test and Wilcoxon signed-rank test. The

pseudocode for search-based classification is provided in Figure 7.2.

Loop 9-15 trains the models with ten-fold cross-validation and record the average of 10
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Figure 7.2: Pseudocode for SDP model development using SBTs

runs. Loop 8-19 deals with the stochastic behavior of SBTs by running them for 30 times.

Lines 25-27 performs statistical validation of averaged results by Friedman test and Line

28-29 conducts the post-hoc Wilcoxon signed-rank test to compare pairs of SBTs.
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7.3 Experimental Results and Analysis

This section describes the results of the chapter.

7.3.1 Answer to RQ1

RQ1: What is the relative performance of addressed SBTs for predicting software de-

fects using OO metrics when Sensitivity, G-Mean, Balance, and ROC-AUC are con-

sidered?

Sensitivity, G-Mean, Balance, and ROC-AUC values obtained for 16 SBTs for 17

datasets are recorded in Table 7.1, 7.2, 7.3 and 7.4 respectively and the maximum values

achieved for each dataset are highlighted in bold typeface.

7.3.1.1 Sensitivity Analysis

Dataset-wise performance of SBTs with their sensitivity values are presented in Table 7.1.

The median sensitivity value achieved by all SBTs for Tomcat6.0, Synapse1.0, Ivy2.0,

Jedit4.2, Xalan2.4, Xerces1.3, Xerces1.2, Camel1.6, Ant1.7, Jedit4.0, Log4j1.0, Jedit4.1,

Synapse1.1, Synapse1.2, Log4j1.1, Xalan2.6 and Xalan2.5 are 0.12, 0.19, 0.80, 0.44, 0.19,

0.31, 0.08, 0.10, 0.41, 0.43, 0.38, 0.44, 0.42, 0.48, 0.58, 0.63, and 0.57 respectively. The

sensitivity value ranges from 0.01 to 0.19 for Tomcat6.0. An analysis of Table 7.1 depicts

sensitivity values in the range 0.06-0.38 on Synapse1.0, 0.03-1.00 on Ivy2.0, 0.08-1 on

Jedit4.2, 0.02-0.32 on Xalan2.4, 0.03-0.36 Xerces1.3, 0.01-0.45 on Xerces1.2, 0.01-0.30

on Camel1.6, 0.02-0.52 on Ant1.7, 0.04-0.52 on Jedit4.0, 0.09-0.59 on Log4j1.0, 0.01-0.51

on Jedit4.1, 0.03-0.53 on Synapse1.1, 0.01-0.55 on Synapse1.2, 0.14-0.76 on Log4j1.1,

0.16-0.70 on Xalan2.6, and 0.02-0.65 on Xalan2.5.

The models developed by GA INT, BIOHEL, GA ADI, UCS, XCS, and MPLCS are

superior than other SBTs considering the highest sensitivity value achieved for datasets. An
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analysis of Table 7.1 depicts that BIOHEL obtained the best sensitivity values of 1.00, 1.00,

0.45, 0.30, 0.52, and 0.70 for Ivy2.0, Jedit4.2, Xerces1.2, Camel1.6, Jedit4.0, and Xalan2.6

respectively. LDWPSO has highest sensitivity value for Synapse1.0 (0.38), Xerces1.3

(0.36), Ant1.7 (0.52), Log4j1.0 (0.59), and Synapse1.2 (0.55). But, LDWPSO showed

poor performance for other datasets.

Therefore, instead of considering the highest value, we evaluated the cumulative perfor-

mance of SBTs based on the mean values attained by them. Fig. 7.3 presents the mean val-

ues of sensitivity measure for 30 runs on each dataset investigated in the chapter. BIOHEL

has shown considerable performance in approximately all datasets and thus has highest

mean sensitivity value of 0.48. XCS and UCS have given it close competition with mean

sensitivity value of 0.46 followed by MPLCS (0.45). GA ADI and GA INT also seem to

have comparable performance with mean sensitivity value of 0.44. REPSO and CORE ex-

hibited the worst performance with mean sensitivity value of 0.11. Low sensitivity signifies

low representation of correct predictions of defective classes.

Figure 7.3: Comparison of mean values of Sensitivity Performance of SBTs
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7.3.1.2 G-Mean Analysis

In Table 7.2, it can be seen from the results that the maximum value of G-Mean measure

for various datasets is scored by BIOHEL (in four datasets), MPLCS (in four datasets)

LDWPSO (in three datasets). Moreover, SGA predicted the maximum G-Mean value for

Tomcat6.0 and Jedit4.1. The maximum G-Mean value achieved for Ivy2.0 is 1.00 which

is depicted by BIOHEL and GA ADI followed by GA INT and MPLCS with a remark-

able value of 0.99. 76.5% of datasets have a G-Mean value greater than 0.5 for BIOHEL,

GA INT, and UCS. The range of BIOHEL lies from 0.34 to 1.00. CORE and REPSO per-

formed poorly on defect prediction as only 15.4% datasets exhibit G-Mean value greater

than 0.5. An analysis of Table 7.2 discloses that CORE, CPSO, LDWPSO, and SIA are

not able to achieve G-Mean greater than 0.7 for a single dataset. REPSO achieved G-Mean

value of 0.85 for Ivy2.0. For all other datasets, its G-Mean values were less than 65.0.

The overall effectiveness of these SBTs can be assessed by taking averaged G-Mean

values. The bar values in Figure 7.4 represents the values of G-Mean averaged over all the

datasets in increasing order. The bar in Figure 7.4 represents the value of performance mea-

sure for each specific SBT. BIOHEL and UCS have the maximum averaged G-Mean value

of 0.63 followed by MPLCS (0.62), GA INT (0.60), GA ADI (0.60), and XCS (0.61).

BIOHEL, GA ADI, GA INT, XCS, and MPLCS are able to predict defects with G-Mean

value greater than 0.9 for 11.8% of datasets.
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CORE and REPSO have an average G-Mean value of 0.29 and 0.28 respectively. Such

low values indicate their failure in the detection of software defects. G-Mean is the geomet-

ric mean of sensitivity and specificity. If any classifier is not capable of recognizing minor-

ity classes (defective classes), it results in low sensitivity. As seen in sensitivity analysis,

CORE and REPSO failed to give correct predictions. Their low sensitivity values decrease

the corresponding G-Mean values. Therefore, low G-Mean values of CORE and REPSO

demonstrate their vulnerability toward class imbalance. In CORE, 15 co-populations works

in parallel to coevolve rules with 0.1 probability of mutation and 0.5 probability of regen-

erations. The fitness function of CORE is defined by [27]. In the fitness function of CORE,

more weightage is given to non-defective classes (TN) and the penalty is imposed for the

non-defective classes that are wrongly predicted. Therefore, this technique did not perform

well for the SDP application where the classification of TP is more important. In REPSO

only one rule can be extracted in a single iteration. Furthermore, the fitness function of

REPSO is dependent on the accuracy. Accuracy is not considered a good metric for imbal-

anced data, therefore REPSO results in low predictive capability for defects.

Figure 7.4: Comparison of mean values of G-Mean Performance of SBTs
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7.3.1.3 Balance Analysis

Balance values for datasets ranged from 29.66 to the remarkable 100. The maximum value

of 100 is achieved by BIOHEL, GA ADI, GA INT, and MPLCS for at least one dataset.

These techniques performed fairly well in other datasets too. For BIOHEL, Balance value

varies from 37.93 to 100 and it predicted the maximum Balance for six datasets. LDW-

PSO predicted maximum Balance value for four datasets- Synapse1.0 (54.57), Xerces1.3

(54.52), Ant1.7 (63.88), and Log4j1.0 (67.99). MPLCS, UCS, and SGA achieved the high-

est Balance value in two datasets each. The range for GA ADI is from 38.46 to 100 and a

similar range is obtained for GA INT (35.23-100) and MPLCS (37.22-100). For BIOHEL,

58.8% of datasets gave a Balance value greater than 60. Models developed using SGA,

XCS, and MPLCS exhibited Balance value greater than 70. BIOHEL, GA ADI, GA INT,

MPLCS, and XCS have a value greater than 90 for at least 15.4% of datasets.
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This can be construed from Table 7.3 that CORE, REPSO, CPSO, LDWPSO, and

ILGA did not perform that well and exhibited comparatively lower Balance values than

other SBTs. CPSO and LDWPSO are continuous representations of PSO and lacks global

searchability. Both techniques were stuck in local minima. Though in LDWPSO the pa-

rameter ’inertia weight’ is used to balance local and global search, parameter tuning is re-

quired. Therefore these techniques didn’t perform well. The Balance values of all datasets

are averaged to assess the overall capability of SBTs. Mean values of Balance values in

ascending order are illustrated by the bar graph in Figure 7.5. Figure 7.5 also supports the

conclusions derived from Table 7.3 BIOHEL, GA ADI, GA INT, MPLCS, UCS, and XCS

have a mean Balance value greater than 60 showing their superior predictive capability for

defect prediction. The maximum value is gained by BIOHEL (61.83) followed by XCS

(60.67). CORE and REPSO underperformed in terms of Balance and exhibited the mini-

mum mean Balance value of 36.99 and 36.81 respectively. The underlying reason lies in

the inadequacy of these SBTs to classify defective classes resulting in low sensitivity. Low

sensitivity values are responsible for low Balance value.

Figure 7.5: Comparison of mean values of Balance performance of SBTs

210



Experimental Results and Analysis

7.3.1.4 ROC-AUC Analysis

The boldfaced values in Table 7.4 depict that BIOHEL and MPLCS got the highest ROC-

AUC values for four datasets each followed by UCS and SGA having the highest ROC-

AUC values for three datasets each. GA INT, GGA, CHC, GA ADI, and XCS, also ex-

hibited best predictive capability for defect prediction in atleast one dataset. Except for

CPSO, datasets have experienced ROC-AUC greater than 0.6 in some or other cases. BIO-

HEL, GA ADI, GA INT, GGA, MPLCS, UCS, and XCS have demonstrated the remark-

able ROC-AUC values ranging from 0.9 to 1.00 for a few datasets. The results support the

selection of performance measures in handling the imbalanced nature of software engineer-

ing data and aid the correct prediction of developed models. Figure 7.6 depicts the mean

value of ROC-AUC obtained for sixteen SBTs. The mean ROC-AUC value of UCS, XCS,

and MPLCS is 0.69. GA ADI, BIOHEL, and GA INT have comparable mean ROC-AUC

values with a value of 0.69. The lowest mean ROC-AUC values are obtained for CORE,

REPSO, LDWPSO, and CPSO which is in the range 0.55 to 0.58. They are not capable of

separating the defective and non-defective classes properly and therefore should be avoided

to build SDP models. No single dataset was able to attain ROC-AUC greater than 0.8 with

CORE, CPSO, LDWPSO, ILGA, and SIA.
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Figure 7.6: Comparison of mean values of ROC-AUC performance of SBTs

Collectively, this can be concluded with the help of Figure 7.3, 7.4, 7.5 and 7.6 that

BIOHEL, GA ADI, GA INT, MPLCS, UCS, and XCS performed well for the SDP in

terms of sensitivity, G-Mean, Balance, and ROC-AUC and depicted similar performances.

7.3.1.5 Comparison with the closest studies

Since very few studies are conducted in the SDP area with SBT trained classifiers, it may

be not possible to conduct a fair comparison between them and this study. Chatterjee et al.

[72] used MSE as a performance measure, they used four-fold cross-validation. Like many

other studies, [73] assessed the predictive power of the SDP model by traditional metrics

like accuracy, precision, sensitivity, specificity, and f-score. This study, on contrary, has

employed more stable and reliable performance measures as G-Mean, Balance, and ROC-

AUC. The studies conducted by Chatterjee et al. [72] as well as Manjula and Florence

[73] are weak studies because results are not statistically validated. Further, authors in [73]

have not considered the stochastic behavior of GA. The results change with each run of

any of SBTs. Moreover, in [72] experiments are repeated only 13 times. In this study,

each experiment is run 30 times with ten-fold cross–validation. The results based on stable

213



Experimental Results and Analysis

performance measures are further validated by the nonparametric Friedman test. Friedman

test is equivalent to a parametric two way ANOVA test. All these differences make this

work a strong research study that is useful to developers and software practitioners. In

[73], five C/C++ projects are used whereas this study explored JAVA projects. Except

for [4], no other study has extensively analyzed the impact of SBTs for defect prediction

like this study. This study focuses on analyzing predictive capabilities of a wide range of

SBTs with open source software datasets and to find their suitability to predict software

defects. This study is different from [4] as it considers ROC-AUC for comparing the SDP

models created using SBTs. ROC-AUC is a widely accepted evaluation metric because

it is threshold independent [194] and is not influenced by the class imbalance problem

[74, 195]. In [4] G-Mean and Balance are used to evaluate prediction models; prediction

results vary with threshold values in both cases. Additionally, we explored more software

engineering datasets that are less explored in literature. The datasets used in this study

are not used in [4]. Ozakinci and Tarhan [217] in their recent review have proved that

75%of empirical studies conducted for SDP are weak. Unlike these studies, this chapter

presents a strong empirical study by statistically validating the results using the Friedman

and Wilcoxon signed–rank test.

The closest existing study to this work is [4]. Though in [4] many SBTs are explored

with JAVA projects but performance measures of that study are dependent on the predictor’s

threshold. The results of [4] and this chapter are quantitatively compared based on the

averaged value of G-Mean and Balance. Table 7.5 presents the averaged G-Mean values

and Balance values for the sixteen SBTs. As per the authors’ knowledge, the most widely

accepted and threshold independent metric AUC is used only in this study for classifying

defects using SBTs. The study with a larger value of averaged G-Mean or Balance value

is boldfaced in Table 7.5 to provide an easy comparison. The performance of LDWPSO

decreased in terms of G-Mean and performance of REPSO reduced for Balance. CORE,

CPSO, GA INT, ILGA, SIA show similar mean values in terms of G-Mean and Balance
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performance in and this study.

Table 7.5: Result comparison with [4]

G-Mean Balance

[4] This study [4] This study

BIOHEL 0.47 0.63 47.45 61.83

CHC 0.44 0.54 43.15 54.38

CORE 0.34 0.30 41.52 36.99

CPSO 0.51 0.46 44.82 47.55

GA ADI 0.50 0.60 54.6 59.48

GA INT 0.54 0.60 55.73 59.20

GGA 0.45 0.55 47.34 55.12

ILGA 0.43 0.47 50.92 49.21

LDWPSO 0.55 0.46 48.96 48.74

MPLCS 0.54 0.62 55.48 60.36

PBIL 0.46 0.55 45.24 55.38

REPSO 0.29 0.26 48.36 36.81

SGA 0.45 0.58 47.13 56.12

SIA 0.51 0.53 52.9 51.91

UCS 0.53 0.63 53.95 60.43

XCS 0.49 0.61 48.74 60.67

Mean values of G-Mean and Balance values have quantitatively improved in this study

for nine SBTs namely BIOHEL, CHC, GA ADI, GGA, MPLCS, PBIL, SGA, UCS, and

XCS.

7.3.2 Answer to RQ2

RQ2: Which SBTs are statistically good or bad defect predictors for OO projects

when G-Mean, Balance, and ROC-AUC are considered?

To find the answer to this question, the nonparametric Friedman test is executed to find

the mean rankings of all the SBTs that were used to develop SDP models. Three null

hypotheses and three alternate hypotheses were formed for three performance measures.

Null hypotheses and alternate hypotheses are framed as:
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• H10 (Null Hypothesis): There is no significant statistical difference between the pre-

dictive performance of SBTs when G-Mean is considered.

• H1a (Alternate Hypothesis): There is a significant statistical difference between the

predictive performance of SBTs when G-Mean is considered.

• H20 (Null Hypothesis): There is no significant statistical difference between the pre-

dictive performance of SBTs when Balance is considered.

• H2a (Alternate Hypothesis): There is a significant statistical difference between the

predictive performance of SBTs when Balance is considered.

• H30 (Null Hypothesis): There is no significant statistical difference between the pre-

dictive performance of SBTs when ROC-AUC is considered.

• H3a (Alternate Hypothesis): There is a significant statistical difference between the

predictive performance of SBTs when ROC-AUC is considered.

The results of Friedman testing are scribed in Table 6. Technique receiving rank 1 is

considered to be the best SBT and is boldfaced in Table 7.6. The mean rank obtained by

each technique in the Friedman test is inscribed in brackets. It can be noted from Table

7.6 that p-value for G-Mean, Balance, and ROC-AUC for Friedman ranking evaluation

comes to be 0.000. The null hypothesis designed for each performance measure is rejected

because the p–value is less than 0.05. Therefore, the performances of addressed SBTs

are found to be significantly different from each other. The Friedman results for G-Mean

and ROC-AUC ascertain UCS, MPLCS, and SGA as top three rankers followed by XCS,

BIOHEL, GA ADI, and GA INT. The results announce UCS and MPLCS as the best SBTs

when G-Mean and ROC-AUC values are considered respectively. The G-Mean Friedman

results are analogous to that of Malhotra [4] except for SGA and SIA. Kendall C is noted

as 0.443, 0.439, and 0.482 for G-Mean, Balance, and ROC-AUC. These values suggest the
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effect size be moderately good. Kendall’s coefficient for G-Mean in [4] was 0.308 and for

Balance was 0.166 only.

Table 7.6: Friedman Rankings

G-Mean Balance ROC-

AUC

MPLCS 4 (11.27) 5 (11.08) 1 (12.08)

UCS 1 (12.15) 1 (12.15) 2 (11.69)

SGA 3 (11.31) 3 (11.54) 3 (11.62)

GA INT 7 (10.42) 7 (10.15) 4 (11.46)

XCS 2 (11.69) 2 (11.73) 4 (11.46)

GA ADI 6 (10.96) 6 (10.65) 6 (11.42)

BIOHEL 5 (11.04) 4 (11.38) 7 (10.12)

PBIL 8 (9.62) 8 (9.54) 8 (9.62)

CHC 9 (8.73) 10 (8.15) 9 (9.38)

GGA 10 (8.35) 9 (8.58) 10 (8.65)

SIA 11 (7.81) 11 (8) 11 (7.23)

LDWPSO 12 (6.12) 13 (6.35) 12 (5.58)

ILGA 14 (5.46) 14 (5) 13 (5.54)

CPSO 12 (6.12) 12 (6.69) 14 (4.69)

CORE 15 (2.77) 15 (2.81) 15 (3.23)

REPSO 16 (2.19) 16 (2.19) 16 (2.23)

Malhotra [4] considered ML techniques and hybrid versions of SBTs in addition to the

SBTs when performing Friedman ranking. In this study, experimentation is restricted to

SBTs only to reveal their true predictive capabilities for SDP in comparison to each other.

REPSO projected similar behavior as in [4] and is proclaimed as the worst performer for

all the three stable performance measures. Since the null hypotheses are rejected for all

the three performance measures, post-hoc analysis using the Wilcoxon signed-rank test is

conducted to find a pairwise statistical difference between top ranker and other SBTs. The

statistical significance is checked for the 95% level of confidence. UCS is ranked as the

best SBT for both the G-Mean and Balance with a mean rank of 12.15. Therefore, the

Wilcoxon signed–rank test is done for UCS for G-Mean and Balance. MPLCS is ranked as
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the number 1 SBT for ROC-AUC with a mean rank of 12.08 and therefore, pairwise com-

parison of MPLCS is performed with all other SBTs. Results of the Wilcoxon signed-rank

test for G-Mean, Balance, and ROC-AUC are recorded in Table 7.7 with their p–values.

Statistically significant pairs with their p–values are boldfaced. For G-Mean and Balance,

the performance of UCS is found to be statistically better than CORE, CPSO, ILGA, LD-

WPSO, SIA, and REPSO. UCS is statistically better than GGA in the case of G-Mean but

nearly missed for Balance. Similar observations can be drawn for ROC-AUC. These re-

sults indicate the superiority of GA based classifiers over the PSO variants. UCS, BIOHEL,

CHC, GA ADI, GA INT, MPLCS, PBIL, and SGA projected comparable performance in

the case of G-Mean, Balance as well as ROC-AUC.

Table 7.7: Wilcoxon signed-rank results of G-Mean, Balance and ROC-AUC values

G-Mean p-value Balance p-value ROC-AUC p-value

UCS - BIO-

HEL

0.972 UCS - BIO-

HEL

0.753 MPLCS-

BIOHEL

0.136

UCS - CHC 0.087 UCS - CHC 0.064 MPLCS-

CHC

0.064

UCS -

CORE

0.001 UCS -

CORE

0.001 MPLCS-

CORE

0.001

UCS -

CPSO

0.001 UCS -

CPSO

0.001 MPLCS-

CPSO

0.001

UCS -

GA ADI

0.279 UCS -

GA ADI

0.507 MPLCS-

GA ADI

0.753

UCS -

GA INT

0.382 UCS -

GA INT

0.552 MPLCS-

GA INT

0.638

UCS - GGA 0.046 UCS - GGA 0.055 MPLCS-

GGA

0.023

UCS - ILGA 0.002 UCS - ILGA 0.002 MPLCS-

ILGA

0.003

UCS - LD-

WPSO

0.011 UCS - LD-

WPSO

0.023 MPLCS-

LDWPSO

0.006

UCS -

MPLCS

0.249 UCS -

MPLCS

0.422 MPLCS-

UCS

0.861
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G-Mean p-value Balance p-value ROC-AUC p-value

UCS - PBIL 0.075 UCS - PBIL 0.173 MPLCS-

PBIL

0.133

UCS -

REPSO

0.001 UCS -

REPSO

0.001 MPLCS-

REPSO

0.001

UCS - SGA 0.133 UCS - SGA 0.108 MPLCS-

SGA

0.507

UCS - SIA 0.005 UCS - SIA 0.007 MPLCS-

SIA

0.013

UCS - XCS 0.402 UCS - XCS 0.917 MPLCS-

XCS

0.552

The results corroborated the findings of subsection 7.3.1 and statistically conclude that

UCS, BIOHEL, CHC, GA ADI, GA INT, MPLCS, PBIL, and SGA performed better for

defect prediction than the remaining techniques. This offers guidelines to software practi-

tioners to choose from a wide set of SBTs which they should opt for and which they should

avoid when considering similar software.

7.4 Discussion

Replication of existing studies is necessary to build an adequate body of knowledge in or-

der to draw more strong conclusions leading to widely accepted and well-formed theories.

Our primary goal is to provide empirical evidence that will help in strengthening the re-

sults from existing studies and also report differences across studies. It is the researchers’

responsibility to provide the software community the efficient and reliable SDP models so

that better quality software be developed and delivered in time. In this study, empirical

research is accomplished to validate the applicability of SBTs in SDP.

The main contribution of this chapter is to

• Authenticate the usage of SBTs being the efficient defect predictors with more soft-

ware engineering datasets since these are less explored set of techniques in the liter-

219



Discussion

ature

• Provide statistical validation for SBTs and

• Use stable performance evaluation metrics alleviating the imbalanced data problem

of datasets.

Except for SIA, performances of developed models are nearly similar to models trained

by Malhotra in [4] in terms of G-Mean and Balance.

SBTs that are good defect predictors (UCS, BIOHEL, GA ADI, GA INT, MPLCS,

XCS, CHC, PBIL) are identified with UCS and MPLCS as top rankers. Authors encourage

developers to exercise these techniques during software development. Additionally, SBTs

that underperformed are recognized (CORE, CPSO, GGA, ILGA, LDWPSO, and REPSO).

Developers should avoid using these techniques for predicting defect prone classes in un-

dergoing projects. The practical applicability of this research is to help developers building

better SDP models by detecting defect prone areas in the design phase and plan the resource

allocation effectively using SBTs. Software practitioners and developers are recommended

to incorporate SBTs for revealing defect prone areas in software while advancing for soft-

ware development. SBTs are practically usable since they can explore larger search space

for potential solutions.

Therefore, next, we would prefer to enhance their defect prediction capabilities by em-

ploying resampling methods to alleviate imbalanced data problem.
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Chapter 8

Predicting Software Defects using

Resampling Methods with Search-based

Techniques

8.1 Introduction

In recent years, though various ML techniques are used for predicting software defects [51],

many SBTs have now gained attention of researchers to attain this purpose. Harman [218]

and Harman and Jones [219] inspired us to instigate the application of SBTs in the soft-

ware engineering predictive modeling domain as these techniques are effective in handling

constraints and conflicts. Alos, in last chapter we have assessed the suitability of SBTs for

predicting defects. Imbalanced classification problem is one of the major apprehensions

in data mining. Software face imbalanced classification problem because only minority

percentage of software modules is responsible for majority of defects in complete software

[220]. It is imperative to address imbalanced classification problem for effective and correct
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training of any software quality prediction model. With existence of number of imbalanced

learning methods in literature to deal with this issue [28], this chapter focuses only on data

resampling methods that comprises of oversampling and undersampling methods to tackle

imbalanced classification problem in SBT. From the previous chapters, we may conclude

that the performance of ML techniques were best achieved when resampling methods were

applied. Therefore, different resampling methods are used to evaluate and enhance the ef-

fectiveness of SBTs for SDP in this chapter. We get motivated to perform this study with

the positive results obtained in previous Chapter 4 and Chapter 7.

Researchers in [69, 71] aimed at handling class imbalance issue but they did not address

resampling solutions and they also used NASA datasets. Details of SBT studies related to

defect prediction can be explored in systematic review done by Malhotra et al. [200].

Recently, Cai et al. [67] have proposed the hybrid undersampled approach for solving im-

balanced classification problem. They exploited multi-objective cuckoo search to optimize

support vector machine, but resampling methods are not explored with any of SBT alone

for defect prediction yet. To the best of our knowledge, no detailed study has been found

in existing literature with focus on effectiveness of resampling methods in developing SBT

based SDP prediction models.

The aim of the study is to apply resampling methods on open-source software projects

and perform comparative analysis of predictive capabilities of defect prediction models

built using SBT. This study seeks answers to following RQs:

• RQ1: What is comparative performance of SDP models built using SBTs?

• RQ2: Which SBT outperforms the other SBTs in terms of sensitivity, G-Mean, Bal-

ance and ROC-AUC for defect prediction?

• RQ3: Do the usage of resampling methods facilitate in building improved SDP model

with SBTs?
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• RQ4: Which resampling method adds the most toward the improvement of models

developed using SBTs for defect prediction?

In this research SDP models are developed using eight SBTs (GA INT, MPLCS, UCS,

BIOHEL, GA ADI, XCS, CPSO , and LDWPSO) adopting stable performance evaluators

for imbalanced data. Seven oversampling and four undersampling methods are applied on

five OO projects. Models are based on static quality attributes defined by recognized set

of OO metrics. Stochastic nature of SBTs is well handled by repeating execution of each

experiment 30 times. This aids in providing unbiased predictions. Validation of datasets

is carried out using ten-fold cross-validation and statistical validation of results is done by

Friedman test followed by Wilcoxon signed-rank test.

The chapter is organized as follows: Section 8.2 describes the pursued research method-

ology and experimental setup laid down for this research. Section 8.4 explicates the results

of this chapter and Section 8.5 is the closing section that acquaints interested researchers

and developers with discussion on results.

The part of this work is published in [221].

8.2 Elements of Experimental Design

This section briefly describes the datasets used, independent and dependent variables of

the study and performance evaluators used for comparing performance of various models

developed for defect prediction.

8.2.1 Dataset Collection

In this chapter, we used five datasets corresponding to JAVA projects. Five considered

projects are Ant1.7, Camel1.6, Xerces1.3, Synapse1.0, and Tomcat6.0. Selection is based

considering their varied ratio of defective classes to encompass different conditions of im-
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balanced classification and these datasets are already used in Chapter 4, Chapter 5, Chapter

7, and Chapter 7.

8.2.2 Independent and Dependent Variables

Object-oriented (OO) metrics are well established defect predictors in literature (Singh et

al. 2010). Independent variables are 20 OO metrics and dependent variable is discrete and

binary in nature predicting whether the class is defective or not. In this chapter independent

and dependent variables used are the same as that used in Chapter 4, Chapter 5, Chapter 7,

and Chapter 7.

8.2.3 Resampling Methods

imbalanced classification problem can be resolved effectually by using resampling methods

that comprise of oversampling methods and undersampling methods [222]. The resampling

methods investigated in Chapter 4 are considered in this chapter for balancing the datasets.

These methods are SMT, SLSMT, ADSYN, SPD, ROS, AHC, CNNTL, RUS, NCL, and

OSS. Details of these methods are provided in subsection 3.8.1.

8.2.4 Performance Evaluators and Statistical Validation

When data is imbalanced, it is wiser to use evaluation measures that considers FP along

with TP [150]. Therefore, we have used stable performance evaluation metrics- Balance,

G-Mean and ROC-AUC along with sensitivity. These metrics are explained in Section

3.11. We used ten-fold cross-validation for model development and nonparametric tests for

statistical validation of results. Friedman test followed by Wilcoxon post-hoc analysis is

executed. Section 3.12 summarizes these tests.
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8.3 Experimental Setup

Experimental setup is described in Figure 8.1.

Ten-fold cross-validation portrayed in subsection 3.10.2 is executed on datasets to pro-

vide unbiased evaluation of model. Then, resampling methods comprising of oversampling

and undersampling methods are used to tackle imbalanced nature of data. Models are de-

veloped using eight SBTs. Parameter tuning in SBT is very expensive and may not achieve

desired improvement [216]. Therefore, default parameter settings for SBTs and resampling

methods in KEEL environment have been used in the chapter. Default settings promote

replicability of the study. It is important to perform multiple iterations to effectively handle

the nondeterministic nature of SBTs [223]. Therefore, each experiment is run thirty times

to strengthen conclusion validity.

Figure 8.1: Experimental Design

We selected GA INT, MPLCS, UCS, BIOHEL, GA ADI, and XCS based on their good

prediction capabililites in previous chapter. Despite the incompetency in predicting defects

correctly, CPSO and LDWPSO are chosen to analyze their performance with resampling
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methods. The primary reason for their inclusion was to explore the efficacy of PSO-based

SBTs on the data that is rebalanced. Will they perform in similar fashion as in Chapter 7

or better? Stable evaluation metrics like Balance, G-Mean and ROC-AUC are used for per-

formance comparison of these developed models along with sensitivity. Lastly, to ascertain

the validity of results, as discussed, Friedman test is also applied at significant level of α =

0.05 followed by post-hoc analysis.

8.4 Results and Analysis

This section presents experimental results and attempts to find answers to addressed RQs.

Table 8.1- 8.15 presents the dataset-wize values of Balance, G-Mean and ROC-AUC. NS is

no sampling scenario, i.e., when no resampling method is used for balancing of defective

and nondefective classes. For a particular dataset, model that predicts the highest value of

performance evaluator is highlighted in bold typeface.

8.4.1 RQ1: What is comparative performance of SDP models built

using SBTs?

In this study eight SBTs are exploited to envisage the software defects and to answer this

research question we analyzed performance using G-Mean with help of Tables 8.1, 8.2, 8.3,

8.4, and 8.5. Balance analysis is scribed in Tables 8.6, 8.7, 8.8, 8.9, and 8.10. Tables 8.11,

8.12, 8.13, 8.14, and 8.15 presents the ROC-AUC values for developed models. Monitoring

the NS scenario of all datasets for Balance, G-Mean and ROC-AUC gives us an idea that

in the majority of cases LDWPSO gave better results followed by UCS and GA INT.
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8.4.1.1 G-Mean Analysis

All SBT models that are developed using resampling methods have shown improvement

as compared to NS scenario except for UCS and LDWPSO. It is worth noting that on

usage of resampling methods, GA INT and GA ADI best classified atleast 40% of datasets

each. Maximum value for Ant1.7 and Camel1.6 is 0.76 with GA ADI when resampling

methods are used. For NS scenario, maximum G-Mean value is for Ant1.7 is 0.66 with

MPLCS and for Camel1.6 maximum value is 0.5 with UCS. Similarly, for Synapse1.0

and Tomcat6.0 GA INT depicts maximum G-Mean value of 0.78 and 0.76 with SMT and

SLSMT. Considering all datasets and all scenarios, GA INT has maximum mean G-Mean

value of 0.65 closely followed by GA ADI and MPLCS with mean G-Mean value of 0.64

and 0.63 respectively.

Table 8.1: G-Mean Results of search-based models for No Sampling and Resampling
Methods on Ant1.7

ANT1.7 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.61 0.66 0.64 0.64 0.62 0.64 0.58 0.66

ADSYN 0.72 0.74 0.64 0.72 0.74 0.72 0.67 0.66

SMT 0.73 0.75 0.64 0.64 0.73 0.71 0.65 0.62

SLSMT 0.74 0.72 0.64 0.70 0.76 0.75 0.66 0.68

SPD 0.73 0.75 0.64 0.71 0.72 0.71 0.70 0.63

SPD2 0.71 0.74 0.64 0.72 0.73 0.73 0.69 0.64

ROS 0.74 0.73 0.64 0.62 0.75 0.68 0.70 0.66

AHC 0.74 0.72 0.64 0.67 0.73 0.74 0.71 0.67

CNNTL 0.65 0.63 0.64 0.61 0.63 0.62 0.57 0.60

RUS 0.73 0.7 0.64 0.68 0.72 0.69 0.67 0.67

NCL 0.73 0.74 0.64 0.70 0.74 0.76 0.45 0.67

OSS 0.74 0.73 0.64 0.67 0.74 0.70 0.62 0.67
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Table 8.2: G-Mean Results of search-based models for No Sampling and Resampling
Methods on Camel1.6

CAMEL1.6 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.27 0.34 0.50 0.49 0.36 0.42 0.29 0.25

ADSYN 0.62 0.64 0.44 0.61 0.64 0.65 0.5 0.52

SMT 0.60 0.58 0.44 0.59 0.61 0.59 0.54 0.49

SLSMT 0.57 0.57 0.44 0.59 0.76 0.63 0.55 0.53

SPD 0.56 0.58 0.50 0.58 0.57 0.58 0.53 0.45

SPD2 0.63 0.58 0.50 0.59 0.64 0.54 0.53 0.55

ROS 0.64 0.59 0.44 0.59 0.62 0.54 0.48 0.55

AHC 0.61 0.63 0.50 0.61 0.66 0.6 0.53 0.47

CNNTL 0.53 0.60 0.44 0.57 0.59 0.60 0.52 0.38

RUS 0.63 0.62 0.44 0.60 0.61 0.65 0.52 0.50

NCL 0.58 0.62 0.50 0.65 0.58 0.67 0.37 0.54

OSS 0.58 0.59 0.44 0.63 0.63 0.63 0.49 0.47

Table 8.3: G-Mean Results of search-based models for No Sampling and Resampling
Methods on Xerces1.3

XERCES1.3 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.56 0.53 0.55 0.53 0.53 0.54 0.52 0.58

ADSYN 0.73 0.65 0.60 0.69 0.69 0.73 0.6 0.64

SMT 0.76 0.72 0.60 0.67 0.71 0.67 0.61 0.65

SLSMT 0.77 0.74 0.60 0.74 0.75 0.70 0.62 0.70

SPD 0.66 0.62 0.55 0.63 0.64 0.62 0.50 0.66

SPD2 0.68 0.68 0.55 0.65 0.65 0.65 0.52 0.67

ROS 0.70 0.59 0.60 0.67 0.67 0.69 0.42 0.68

AHC 0.73 0.66 0.55 0.70 0.64 0.60 0.58 0.71

CNNTL 0.63 0.65 0.60 0.65 0.68 0.72 0.66 0.56

RUS 0.69 0.71 0.60 0.69 0.65 0.77 0.50 0.66

NCL 0.68 0.68 0.55 0.62 0.62 0.74 0.52 0.62

OSS 0.63 0.63 0.60 0.64 0.71 0.72 0.58 0.54

Table 8.4: G-Mean Results of search-based models for No Sampling and Resampling
Methods on Synapse1.0

SYNAPSE1.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.53 0.49 0.49 0.34 0.42 0.35 0.47 0.56

ADSYN 0.67 0.56 0.49 0.55 0.67 0.69 0.65 0.60
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SYNAPSE1.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

SMT 0.78 0.69 0.49 0.51 0.56 0.64 0.58 0.63

SLSMT 0.71 0.68 0.49 0.66 0.68 0.67 0.65 0.54

SPD 0.66 0.23 0.49 0.52 0.33 0.49 0.60 0.71

SPD2 0.57 0.52 0.49 0.52 0.47 0.48 0.47 0.62

ROS 0.63 0.46 0.49 0.62 0.42 0.50 0.67 0.65

AHC 0.64 0.52 0.49 0.52 0.56 0.53 0.54 0.56

CNNTL 0.58 0.57 0.49 0.59 0.55 0.53 0.61 0.54

RUS 0.72 0.71 0.49 0.62 0.71 0.67 0.42 0.60

NCL 0.67 0.72 0.49 0.68 0.65 0.65 0.41 0.68

OSS 0.59 0.51 0.49 0.58 0.52 0.62 0.6 0.63

Table 8.5: G-Mean Results of search-based models for No Sampling and Resampling
Methods on Tomcat6.0

TOMCAT6.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.34 0.41 0.42 0.41 0.36 0.32 0.34 0.23

ADSYN 0.70 0.70 0.45 0.67 0.73 0.68 0.65 0.65

SMT 0.74 0.75 0.45 0.67 0.74 0.72 0.62 0.69

SLSMT 0.76 0.76 0.45 0.69 0.74 0.70 0.62 0.63

SPD 0.62 0.55 0.42 0.53 0.63 0.43 0.61 0.62

SPD2 0.69 0.69 0.42 0.55 0.61 0.52 0.66 0.57

ROS 0.69 0.64 0.45 0.46 0.71 0.51 0.65 0.71

AHC 0.75 0.69 0.42 0.51 0.72 0.6 0.71 0.62

CNNTL 0.66 0.69 0.45 0.59 0.67 0.62 0.63 0.55

RUS 0.70 0.73 0.45 0.71 0.71 0.73 0.44 0.65

NCL 0.61 0.58 0.42 0.6 0.59 0.62 0.55 0.47

OSS 0.62 0.58 0.45 0.61 0.63 0.59 0.58 0.46

8.4.1.2 Balance Analysis

Similar trend is observed in mean value of Balance for SBTs when all datasets and scenar-

ios are considered together. Mean value of Balance is maximum for GA INT with value

64.67% followed by GA ADI (63.09%) and MPLCS (62.29%). To understand dataset

wise model prediction, let us take an example of Ant1.7 dataset. Though in NS situation

maximum value of Balance is shown by LDWPSO for Ant1.7 with challenging value of
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63.88% but when resampling methods were used along with SBTs then for the same dataset

SLSMT+GA ADI gave the best Balance value with approximately 20% increment.

Table 8.6: Balance Results of search-based models for No Sampling and Resampling Meth-
ods on Ant1.7

Resampling GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 57.57 62.06 60.34 62.6 57.94 61.02 56.92 63.88

ADSYN 71.94 73.58 60.34 71.56 73.84 71.36 66.32 65.48

SMT 73.43 75.16 60.34 62.6 72.53 69.7 64.88 60.36

SLSMT 74.35 71.91 60.34 69.87 76.08 74.88 65.26 67.78

SPD 71.79 73.96 60.34 70.31 70.30 70.11 69.43 61.76

SPD2 71.29 73.63 60.34 72.12 72.53 72.14 68.53 63.29

ROS 73.81 72.17 60.34 60.05 74.71 65.76 70.24 65.62

AHC 73.83 71.30 60.34 66.29 72.33 73.10 70.68 66.31

CNNTL 63.26 62.21 60.34 59.01 60.79 60.65 55.93 57.85

RUS 73.36 70.26 60.34 67.96 71.82 69.33 66.73 66.58

NCL 73.17 73.55 60.34 70.07 73.36 75.45 45.44 67.31

OSS 74.13 72.97 60.34 67.39 73.66 69.45 61.01 66.89

Table 8.7: Balance Results of search-based models for No Sampling and Resampling Meth-
ods on Camel1.6

Resampling GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 34.53 37.87 47.87 48.77 38.68 42.11 35.57 33.74

ADSYN 61.39 63.76 43.97 60.76 63.97 65.06 50.48 51.2

SMT 59.55 57.07 43.97 57.48 61.21 58.39 54.05 49.18

SLSMT 57.47 56.87 43.97 58.97 72.36 63.04 54.75 52.48

SPD 54.63 56.65 47.87 56.92 55.03 55.93 52.68 45.28

SPD2 62.77 56.72 47.87 58.67 63.67 53.11 52.62 54.32

ROS 63.47 58.41 43.97 57.59 62.12 52.34 48.48 54.52

AHC 60.51 62.56 47.87 59.67 65.60 58.69 53.02 47.47

CNNTL 50.86 59.61 43.97 56.81 56.92 59.09 52.07 40.01

RUS 62.62 61.67 43.97 59.78 60.51 64.7 51.92 49.55

NCL 55.66 61.53 47.87 65.15 56.76 67.16 39.74 53.56

OSS 57.38 58.91 43.97 62.54 62.66 62.89 48.8 47.27
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Table 8.8: Balance Results of search-based models for No Sampling and Resampling Meth-
ods on Xerces1.3

XERCES1.3 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 51.81 49.68 51.65 50.39 49.71 51.09 50.23 54.52

ADSYN 73.08 63.66 56.71 67.82 68.76 71.69 58.77 63.18

SMT 75.47 70.94 56.71 64.96 70.36 64.52 58.68 64.25

SLSMT 76.31 74.11 56.71 74.07 74.51 69.35 62.03 69.94

SPD 62.58 58.59 51.65 60.94 61.34 57.9 48.36 64.75

SPD2 67.07 66.48 51.65 62.53 63.21 62.25 50.85 67.07

ROS 68.99 56.36 56.71 63.42 66.30 64.90 43.21 67.61

AHC 72.93 63.81 51.65 67.63 62.58 57.87 57.48 70.34

CNNTL 62.60 65.28 56.71 64.22 67.70 71.29 66.14 55.88

RUS 68.60 71.07 56.71 68.94 64.45 77.15 48.78 64.66

NCL 66.36 65.57 51.65 59.95 59.90 73.80 50.02 61.41

OSS 61.04 61.87 56.71 63.77 70.72 71.34 57.58 54.15

Table 8.9: Balance Results of search-based models for No Sampling and Resampling Meth-
ods on Synapse1.0

SYNAPSE1.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 51.02 46.82 46.91 37.93 42.44 38.08 46.29 54.57

ADSYN 66.03 54.06 46.82 53.63 66.23 67.41 65.05 60.27

SMT 77.42 67.32 46.82 50.04 54.33 62.60 57.98 62.29

SLSMT 71.15 67.64 46.82 65.15 67.92 65.73 65.05 53.90

SPD 63.38 33.16 46.91 50.64 37.47 47.79 59.6 70.54

SPD2 54.89 50.55 46.91 50.55 46.44 46.56 47.41 61.71

ROS 59.52 45.83 46.82 59.32 42.28 47.85 66.39 64.18

AHC 62.49 50.36 46.91 50.55 54.57 51.00 53.77 56.36

CNNTL 57.67 56.85 46.82 59.14 55.16 52.85 61.37 54.22

RUS 72.11 70.54 46.82 61.14 69.85 67.03 43.30 59.9

NCL 65.82 70.67 46.91 66.81 63.11 62.89 42.12 67.64

OSS 58.59 50.60 46.82 57.79 51.47 61.75 59.84 62.57

Table 8.10: Balance Results of search-based models for No Sampling and Resampling
Methods on Tomcat6.0

TOMCAT6.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 37.56 41.22 42.10 41.9 38.46 36.70 37.54 32.94

ADSYN 70.25 69.89 43.91 65.76 72.26 65.59 65.25 65.25
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TOMCAT6.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

SMT 73.70 74.21 43.91 65.18 73.97 70.79 62.29 68.40

SLSMT 76.31 75.86 43.91 68.78 74.02 68.37 61.70 62.86

SPD 59.10 51.98 42.10 50.92 59.19 43.28 59.91 60.55

SPD2 67.23 66.08 42.10 53.21 58.00 49.55 66.16 54.19

ROS 68.1 61.92 43.91 45.41 69.19 49.12 64.85 70.53

AHC 74.94 67.89 42.10 49.72 71.73 56.67 70.79 61.85

CNNTL 66.17 69.37 43.91 58.79 66.46 62.10 63.41 54.16

RUS 70.11 72.76 43.91 70.85 70.87 73.21 44.21 64.29

NCL 57.31 54.56 42.10 58.14 55.60 58.87 53.66 45.65

OSS 59.53 55.16 43.91 59.59 61.10 57.11 55.56 45.73

8.4.1.3 ROC-AUC Analysis

ROC-AUC results for SBTs were also no different. GA INT has maximum mean value

of 68.42 for ROC-AUC considering all cases, having close competition with GA ADI,

MPLCS and XCS. Maximum ROC-AUC value is 0.80 noted for Synapse1.0 in SMT+GA INT

case. We can see little improvement in ROC-AUC values of LDWPSO models but UCS

remained unaffected of resampling methods. Many models built using GA INT, MPLCS,

GA ADI and XCS with resampling methods have ROC-AUC greater than 0.7, except for

NS cases. Thus, though mean values of stable performance measures are greatest for

GA INT, still MPLCS, GA ADI and XCS have also shown remarkable performance in

terms of SDP.

Table 8.11: ROC-AUC Results of search-based models for No Sampling and Resampling
Methods on Ant1.7

ANT1.7 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.67 0.69 0.68 0.66 0.67 0.68 0.62 0.68

ADSYN 0.72 0.74 0.68 0.72 0.74 0.72 0.67 0.66

SMT 0.73 0.75 0.68 0.65 0.73 0.71 0.66 0.63

SLSMT 0.74 0.72 0.68 0.70 0.76 0.76 0.66 0.68

SPD 0.73 0.75 0.68 0.72 0.73 0.72 0.70 0.64

SPD2 0.71 0.74 0.68 0.73 0.73 0.73 0.69 0.65

ROS 0.74 0.73 0.68 0.65 0.75 0.69 0.70 0.66
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ANT1.7 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

AHC 0.74 0.73 0.68 0.68 0.74 0.75 0.71 0.67

CNNTL 0.68 0.64 0.68 0.64 0.66 0.64 0.60 0.63

RUS 0.73 0.70 0.68 0.68 0.72 0.69 0.67 0.67

NCL 0.73 0.74 0.68 0.70 0.74 0.75 0.53 0.67

OSS 0.74 0.73 0.68 0.68 0.74 0.70 0.64 0.67

Table 8.12: ROC-AUC Results of search-based models for No Sampling and Resampling
Methods on Camel1.6

CAMEL1.6 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.53 0.54 0.60 0.56 0.56 0.57 0.52 0.51

ADSYN 0.62 0.64 0.56 0.62 0.64 0.66 0.51 0.55

SMT 0.61 0.61 0.56 0.61 0.62 0.61 0.55 0.52

SLSMT 0.58 0.58 0.56 0.59 0.60 0.63 0.55 0.56

SPD 0.60 0.62 0.60 0.61 0.62 0.63 0.56 0.54

SPD2 0.63 0.60 0.60 0.61 0.64 0.58 0.54 0.55

ROS 0.64 0.61 0.56 0.61 0.62 0.59 0.49 0.55

AHC 0.61 0.63 0.60 0.63 0.66 0.63 0.54 0.52

CNNTL 0.59 0.61 0.56 0.58 0.62 0.61 0.55 0.53

RUS 0.63 0.62 0.56 0.60 0.61 0.65 0.53 0.54

NCL 0.62 0.62 0.60 0.65 0.60 0.67 0.51 0.57

OSS 0.60 0.60 0.56 0.63 0.63 0.63 0.50 0.54

Table 8.13: ROC-AUC Results of search-based models for No Sampling and Resampling
Methods on Xerces1.3

XERCES1.3 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.65 0.62 0.63 0.61 0.63 0.62 0.6 0.64

ADSYN 0.74 0.66 0.66 0.70 0.69 0.73 0.62 0.64

SMT 0.76 0.73 0.66 0.68 0.71 0.69 0.65 0.66

SLSMT 0.78 0.74 0.66 0.74 0.75 0.7 0.62 0.7

SPD 0.70 0.67 0.63 0.67 0.68 0.67 0.59 0.67

SPD2 0.69 0.70 0.63 0.67 0.67 0.68 0.59 0.68

ROS 0.71 0.64 0.66 0.70 0.69 0.72 0.46 0.68

AHC 0.73 0.69 0.63 0.71 0.66 0.64 0.59 0.71

CNNTL 0.63 0.65 0.66 0.67 0.68 0.73 0.66 0.58

RUS 0.69 0.71 0.66 0.69 0.65 0.77 0.58 0.67

NCL 0.7 0.70 0.63 0.64 0.66 0.75 0.59 0.64
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XERCES1.3 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

OSS 0.65 0.65 0.66 0.64 0.72 0.72 0.59 0.55

Table 8.14: ROC-AUC Results of search-based models for No Sampling and Resampling
Methods on Synapse1.0

SYNAPSE1.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.66 0.62 0.63 0.54 0.55 0.56 0.54 0.65

ADSYN 0.73 0.64 0.62 0.6 0.71 0.75 0.66 0.64

SMT 0.80 0.75 0.62 0.59 0.64 0.71 0.59 0.62

SLSMT 0.74 0.72 0.62 0.71 0.72 0.72 0.66 0.51

SPD 0.71 0.49 0.63 0.59 0.51 0.61 0.61 0.73

SPD2 0.66 0.61 0.63 0.64 0.60 0.60 0.53 0.64

ROS 0.70 0.55 0.62 0.69 0.59 0.64 0.70 0.65

AHC 0.71 0.63 0.63 0.59 0.63 0.63 0.56 0.57

CNNTL 0.62 0.59 0.62 0.61 0.56 0.55 0.60 0.59

RUS 0.75 0.73 0.62 0.66 0.73 0.71 0.51 0.61

NCL 0.70 0.76 0.63 0.74 0.70 0.72 0.58 0.69

OSS 0.65 0.57 0.62 0.64 0.61 0.69 0.62 0.68

Table 8.15: ROC-AUC Results of search-based models for No Sampling and Resampling
Methods on Tomcat6.0

TOMCAT6.0 GA INT MPLCS UCS BIOHEL GA ADI XCS CPSO LDWPSO

NS 0.56 0.58 0.58 0.55 0.55 0.54 0.55 0.51

ADSYN 0.71 0.71 0.58 0.68 0.73 0.70 0.66 0.66

SMT 0.74 0.75 0.58 0.69 0.75 0.74 0.62 0.69

SLSMT 0.76 0.76 0.58 0.70 0.75 0.71 0.62 0.63

SPD 0.67 0.63 0.58 0.61 0.67 0.57 0.63 0.65

SPD2 0.71 0.71 0.58 0.61 0.66 0.61 0.66 0.62

ROS 0.71 0.67 0.58 0.57 0.72 0.61 0.66 0.72

AHC 0.76 0.70 0.58 0.59 0.73 0.65 0.71 0.62

CNNTL 0.67 0.70 0.58 0.59 0.67 0.62 0.63 0.56

RUS 0.70 0.73 0.58 0.71 0.72 0.73 0.55 0.67

NCL 0.66 0.64 0.58 0.64 0.65 0.66 0.60 0.59

OSS 0.66 0.63 0.58 0.62 0.67 0.62 0.62 0.55
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8.4.2 RQ2: Which SBT outperforms the other SBTs in terms of G-

Mean, Balance and ROC-AUC for defect prediction?

After careful investigation of behavior of eight SBTs, we concluded that GA INT, MPLCS,

GA ADI and XCS performs comparatively well than other SBTs and GA INT has highest

mean values for G-Mean, Balance and ROC-AUC. Now, we need to find that do there

really exist one such technique that outperforms other SBTs? Is GA INT statistically better

than other SBTs? To answer these questions, Friedman test at 0.05 significance level was

accomplished for G-Mean, Balance and ROC-AUC values.

Following hypotheses were formed and tested:

• Null Hypothesis (H01): There is no significant difference between the predictive ca-

pabilities of eight SBTs in terms of G-Mean for SDP.

• Alternate Hypothesis (Ha1): There is significant difference between the predictive

capabilities of eight SBTs in terms of G-Mean for SDP.

• Null Hypothesis (H02): There is no significant difference between the predictive ca-

pabilities of eight SBTs in terms of Balance for SDP.

• Alternate Hypothesis (Ha2): There is significant difference between the predictive

capabilities of eight SBTs in terms of Balance for SDP.

• Null Hypothesis (H03): There is no significant difference between the predictive ca-

pabilities of eight SBTs in terms of ROC-AUC for SDP.

• Alternate Hypothesis (Ha3): There is significant difference between the predictive

capabilities of eight SBTs in terms of ROC-AUC for SDP.

Ranks achieved by eight SBTs are listed in Table 8.16 with their mean ranks in brackets.

P-values are also mentioned to prove their statistical significance.
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Table 8.16: Friedman Rankings of SBTs with respect to G-Mean, Balance and ROC-AUC

Rank G-Mean Balance ROC-AUC

Rank 1 GA INT

(6.27)

GA INT

(6.23)

GA INT

(6.37)

Rank 2 GA ADI

(5.81)

GA ADI

(5.7)

GA ADI

(5.82)

Rank 3 MPLCS

(5.55)

MPLCS

(5.44)

MPLCS

(5.55)

Rank 4 XCS (5.23) XCS (5.10) XCS (5.50)

Rank 5 BIOHEL

(4.44)

BIOHEL

(4.59)

BIOHEL

(4.18)

Rank 6 LDWPSO

(3.68)

LDWPSO

(3.88)

UCS (3.30)

Rank 7 CPSO (2.99) CPSO (3.21) LDWPSO

(2.93)

Rank 8 UCS (2.03) UCS (1.85) CPSO (2.35)

p-value 0.000 0.000 0.000

As expected, first four rankers are those SBTs which were identified as better software

defect predictors in Chapter 7 with GA INT as topper. G-Mean, Balance and ROC-AUC

demonstrates exactly same rankings for first five ranks. As p-value for all three measures is

0.000, therefore, we refute the null hypothesis that there is no difference between predictive

capabilities of all addressed SBTs. Even after balancing the datasets, PSO-based SBTs

were not able to prove their potential for reliable SDP.

Now to check whether GA INT, which has highest mean rank for all three performance

evaluators, is statistically different from all other SBTs, post-hoc analysis is required to do

pair-wise comparison to eradicate family-wize error. For this purpose, we used Wilcoxon

signed-rank test at significance level α = 0.05. It looks to the difference in predictive ca-

pability of SBTs that are considered in single pair. Therefore, to remove family-wise error,

GA INT is paired with remaining seven SBTs and their p-values calculated in Wilcoxon

results corresponding to Balance, G-Mean and ROC-AUC are presented in Table 8.17. Sig-

nificant p-values are in bold typeface.
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Table 8.17: Results of Wilcoxon Signed-rank test for SBTs with respect to G-Mean, Bal-
ance, and ROC-AUC

Balance G-Mean ROC-AUC

GA INT - CPSO 0.0000 0.0000 0.0000

GA INT - UCS 0.0000 0.0000 0.0000

GA INT - LDWPSO 0.0000 0.0000 0.0000

GA INT - BIOHEL 0.0010 0.0006 0.0000

GA INT - XCS 0.1172 0.2677 0.7477

GA INT - MPLCS 0.2086 0.3106 0.1347

GA INT - GA ADI 0.7546 1.278 0.6543

Table 8.17 depicts that GA INT is statistically better than CPSO, UCS, LDWPSO and

BIOHEL. Even though mean values of G-Mean, Balance and ROC-AUC of GA INT are

somewhat greater than XCS, MPLCS and GA ADI, but statistically there is no difference

in their performance. These four techniques have comparable performance considering any

of three performance evaluators. GA INT, GA ADI, MPLCS, and XCS are concluded as

best defect predictors.

8.4.3 RQ3: Do the usage of resampling methods facilitate in building

improved search-based SDP model?

8.4.3.1 G-Mean Analysis

When no resampling method is employed, value of G-Mean ranges from 0.23 to 0.66. Ap-

plication of different resampling methods increases G-Mean to maximum of 0.78 which is

shown by SMT over GA INT SBT for Synapse1.0 dataset. Comparisons based on perfor-

mance of GA INT are considered as it has been proved statistically better than other SBTs

in answer to RQ2. There is not a single model of NS scenario that has G-Mean greater than

66%. Only 18% models of NS scenario have G-Mean greater than 60% where as on appli-

cation of resampling methods this count increases to 64% from meager 18%. Mean value
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of G-Mean in NS when no resampling method is used is 0.46 where as mean value of SMT

+ GA INT is 0.72 which is maximum mean of all the resampling techniques employed in

the study. Mean values of G-Mean for GA INT are given in Figure 8.2. Approximately

33% increment is observed in mean value of G-Mean of each resampling method used as

compared to NS scenario.

Figure 8.2: Mean G-Mean values for GA INT

8.4.3.2 Balance Analysis

Value of Balance ranges from 32.94 to 63.88 in case of NS scenario for all datasets. Appli-

cation of different resampling methods changed this range to minimum of 33.16 and maxi-

mum of 77.42. Maximum value is again shown by SMT over GA INT SBT for Synapse1.0

dataset. 39% of models that are built using resampling methods have Balance greater than

64% where as not a single model of NS scenario has shown Balance greater than 64%.

88% of NS models have Balance less than 60% and this value got reduced to 44% models

with employment of resampling methods. Mean Balance value of NS is 47.08 and it is too

low as compared to mean of resampling +SBT models, which is 60.75. 60% of datasets

have depicted maximum Balance value when SLSMT is applied to them with SBTs. 84%

of resampling+GA INT models have Balance greater than 60%. Mean values of Balance
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are summarized in Figure 8.3 for GA-INT SBT. On analysis, we observed 42% increment

in mean value of Balance for resampling+GA INT as compared to that of NS.

Figure 8.3: Mean Balance values for GA INT

8.4.3.3 ROC-AUC Analysis

Range of ROC-AUC for models developed using SBTs under NS scenario is from 0.51 to

0.69. 50% of NS models have ROC-AUC values less than 60%. This statistic is decreased

to 21% when we consider all the models developed using resampling methods. Figure 8.4

demonstrates the mean ROC-AUC values for NS and applied resampling methods with the

GA INT technique. Mean ROC-AUC value for NS when GA INT is applied is 0.61which

increases to 0.69 for resampling methods. If we talk about GA INT alone, maximum value

of ROC-AUC is 0.8010 with SMT combination. GA INT+SMT and GA INT+SLSMT

has mean ROC-AUC value of 0.73 and 0.72 respectively. Therefore, we can surely say that

usage of resampling methods facilitate in building improved search-based SDP models in

term of G-Mean, Balance and ROC-AUC.
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Figure 8.4: Mean ROC-AUC values for GA INT

8.4.4 RQ4: Which resampling method adds the most toward the im-

provement of models developed using SBTs for defect predic-

tion?

To answer this question, we will conduct Friedman test to find rankings of resampling meth-

ods with respect to G-Mean, Balance and ROC-AUC. Following hypotheses is structured

to execute Friedman test:

• Null Hypothesis (H201): There is no significant difference between the predictive

capabilities of SDP models developed using eight SBTs when no resampling method

is used as compared to search-based SDP models when any of eleven resampling

methods are applied in terms of G-Mean.

• Alternate Hypothesis (H2a1): There is significant difference between the predictive

capabilities of SDP models developed using eight SBTs when no resampling method

is used as compared to search-based SDP models when any of eleven resampling

methods are applied in terms of G-Mean.
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• Null Hypothesis (H202): There is no significant difference between the predictive

capabilities of SDP models developed using eight SBTs when no resampling method

is used as compared to search-based SDP models when any of eleven resampling

methods are applied in terms of Balance.

• Alternate Hypothesis (H2a2): There is significant difference between the predictive

capabilities of SDP models developed using eight SBTs when no resampling method

is used as compared to search-based SDP models when any of eleven resampling

methods are applied in terms of Balance.

• Null Hypothesis (H203): There is no significant difference between the predictive

capabilities of SDP models developed using eight SBTs when no resampling method

is used as compared to search-based SDP models when any of eleven resampling

methods are applied in terms of ROC-AUC.

• Alternate Hypothesis (H2a3): There is significant difference between the predictive

capabilities of SDP models developed using eight SBTs when no resampling method

is used as compared to search-based SDP models when any of eleven resampling

methods are applied in terms of ROC-AUC.

Friedman test is carried out at α=0.05 confidence level with 11 as degree of freedom.

Table 8 illustrates the Friedman rankings of all addressed resampling methods for G-Mean,

Balance and ROC-AUC with their mean ranks. Higher the rank attained by resampling

methods, better is its predictive capability for uncovering unseen software defects. For

all three performance evaluators, as can be seen in Table 8.18, NS scenario has the worst

ranking, i.e., rank 12. Rank 1 is awarded to SLSMT followed by ADSYN, RUS and SMT.

Mean rank of NS is 2.33 for G-Mean and Balance where as mean rank of highest ranker

SLSMT is 9.08 in both cases. Similarly, huge variation can be seen in mean ranks of NS

(3.01) and SLSMT (8.61) for ROC-AUC metric.
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Table 8.18: Friedman Rankings of SBTs with respect to G-Mean, Balance and ROC-AUC

PM G-Mean Balance ROC-AUC

Rank 1 SLSMT

(9.08)

SLSMT

(9.08)

SLSMT

(8.61)

Rank 2 ADSYN

(8.38)

ADSYN

(8.38)

ADSYN

(8.14)

Rank 3 RUS (7.54) RUS (7.54) SMT (7.51)

Rank 4 SMT (7.53) SMT (7.53) NCL (7.24)

Rank 5 AHC (7.25) AHC (7.25) AHC (7.09)

Rank 6 NCL (6.81) NCL (6.81) RUS (6.94)

Rank 7 ROS (6.56) ROS (6.56) ROS (6.66)

Rank 8 SPD2 (6.21) SPD2 (6.21) SPD2 (6.46)

Rank 9 OSS (6.14) OSS (6.14) SPD (6.09)

Rank 10 CNNTL

(5.11)

CNNTL

(5.11)

OSS (5.71)

Rank 11 SPD (5.08) SPD (5.08) CNNTL

(4.54)

Rank 12 NS (2.33) NS (2.33) NS (3.01)

p-value 0.000 0.000 0.000

Also, p-value is 0.000 which indicate towards the significant difference among their

performance as it is less than 0.05. These values are bold-faced in Table 8.18. Therefore,

null hypothesis is rejected and we conclude that there is significant improvement in SDP

models when resampling methods are incorporated with SBTs.

Motivated by results analyzed in Table 8.18, we further conducted post-hoc analysis to

ascertain whether, in particular, SLSMT is statistically better than other resampling meth-

ods and NS scenario. This objective is achieved by carrying out Wilcoxon signed-rank

test at α = 0.05 for SLSMT with respect to Balance, G-Mean and ROC-AUC. Results are

summarized in Table 8.19.

Pair-wise comparison of SLSMT with all other resampling methods and NS is done and

corresponding p-values with bonferroni correction for all performance measures are noted

in Table 8.19. Significant p-values are highlighted in bold typeface. P-value of 0.0000
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for Balance, G-Mean, and p-value of 0.0001 for ROC-AUC in case of NS reconfirms the

suitability of resampling methods for enhancing the predictive capability of SDP model.

Table 8.19: Results of Wilcoxon Signed-rank test for SLSMT with respect to G-Mean,
Balance and ROC-AUC

Balance G-Mean ROC-AUC

SLSMT - NS 0.000 0.000 0.0001

SLSMT -

ADSYN

0.9564 2.1974 10.8144

SLSMT -

SMT

0.1528 0.7005 10.8144

SLSMT -

SPD

0.0004 0.0019 0.1412

SLSMT -

SPD2

0.0032 0.0058 0.148

SLSMT -

ROS

0.0235 0.0656 0.7693

SLSMT -

AHC

0.0178 0.0374 0.927

SLSMT -

CNNTL

0.0001 0.0001 0.0016

SLSMT -

RUS

2.7887 2.2842 3.5157

SLSMT -

NCL

0.0591 0.1623 2.7461

SLSMT -

OSS

0.0009 0.0012 0.0235

Table 8.19 also points to the fact that though applying resampling methods are superior

to the case when no such method is used, but SLSMT, ADSYN, RUS, SMT and NCL have

comparable performance in terms of G-Mean, Balance and ROC-AUC. This concludes in

identification of effective subset of resampling methods that can be used to build better

search-based SDP models.
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8.5 Discussion

Investigation of SBTs in light of resampling methods with more projects is required as

our literature lack such studies. Possible contribution of this chapter is twofold. This

study not only promotes developing efficient SDP models with the help of search-based

techniques but also provides solution for imbalanced classification problem which is very

common in real life datasets. Eight SBTs are explored with the help of five Apache datasets

to validate their significance in predicting software defects. Further, eleven resampling

methods, comprising of oversampling and undersampling methods, are applied to alleviate

the imbalanced issue in software. In total, 14,400 experiments were created. Study includes

statistical validation of results strengthening its findings.

On application of SLSMT with GA INT, G-Mean values of Ant1.7, Camel1.6, Xerces1.3,

Synapse1.0, and Tomcat6.0 datasets are improved by 21.1%, 113.17%, 38.27%, 33.18%,

and 123.48% respectively. Mean value of G-Mean with GA INT is increased by 53.81%.

Similarly, Balance values are also improved with 52.95% increase in mean value of Bal-

ance. Percentage increment of 29.15%, 66.43%, 47.29%, 39.46%, and 103.17% is ob-

served in Ant1.7, Camel1.6, Xerces1.3, Synapse1.0, and Tomcat6.0 respectively. ROC-

AUC values have also increased by 11.18%, 9.57%, 19.52%, 13.18%, and 36.9% in Ant1.7,

Camel1.6, Xerces1.3, Synapse1.0, and Tomcat6.0 respectively. Mean value of ROC-AUC

is alleviated by 17.79% on application of SLSMT when GA INT is used for model devel-

opment. Other resampling methods have also shown statistical increase in the values of

performance measures as compared to NS scenario.

On basis of the Friedman test, GA INT emerged as the best SBT and SLSMT is proved

to be the best resampling method for SDP when performances were evaluated using G-

Mean, Balance and ROC-AUC. Four SBTs viz. GA INT, MPLCS, GA ADI and XCS

were statistically proven better SBTs as compared to others during post-hoc analysis. Sta-
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tistically better subset of resampling methods using G-Mean, Balance and ROC-AUC for

defect prediction includes SLSMT, ADSYN, RUS, SMT and NCL.

Results of study advocate that proper selection of performance metrics and resampling

methods plays vital role in predictive capability of SDP models generated using SBTs.

Hence, the empirical experimentation conducted in this chapter favors the predictive model-

ing using resampling methods with SBTs for the effective identification of defective classes

in OO software.

The results show the good performance of SBTs, especially GA-based, in constructing

classification models. Hence, we are intrigued to analyze their efficacy in feature selection

as well. The next work addresses the GA-based evolutionary feature selection.
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Chapter 9

Empirical Validation of Evolutionary

Feature Selection Techniques for SDP

9.1 Introduction

SDP is an important research problem in the software engineering domain and we have

seen many solutions to deal with imbalanced data problem in previous chapters. Various

machine learning techniques, search-based techniques, and resampling methods were ex-

plored in the development of SDP models for the early detection of defects. Defect prone

areas uncovered in the design phase prevents defects to propagate and amplify in further

stages of the development of software [1, 54]. The software metrics capture quality at-

tributes like cohesion, encapsulation, coupling, complexity, inheritance, etc, and provides

useful insights into the software. We have exploited OO metrics in this thesis work because

they are widely used for building SDP models in literature [2, 3]. Many filter-based and

wrapper based FS techniques are assessed for the construction of effective SDP models

[42–45, 48]. The studies did not include the genetic algorithm or any other evolutionary

technique for FS. Many of the researchers agreed for CFS to be one of the effective fea-
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ture selectors. Therefore, we constructed ML models based on important features extracted

using CFS in the preceding chapters.

On the recommendation of Harman [59] we explored search-based techniques for model

development in the SDP field. Looking toward the positive outcome in this direction (based

on Ch 7 and Ch 8), we were intrigued to find their impact on feature selection. The number

of research studies in FS using search-based techniques is very less. Wahono and Herman

[117] combined the genetic algorithm (GA) and bagging for FS over nine NASA datasets

to develop the SDP model using 10 ML techniques with ROC-AUC as the performance

measure. Their study shows significant improvement in ROC-AUC of constructed mod-

els when GA was used for FS than when all features are used. Xiang et al. [63] tried

to reduce the curse of dimensionality by implementing the genetic algorithm and handled

the class imbalance problem by increasing the number of defective classes using SMT in

NASA datasets. They considered both forward and backward evolutionary search methods

and proved the effectiveness of methods in making models with decision tree followed by

NaÃ¯ve Bayes. Both of these studies used NASA datasets.

According to a survey on SEPM [200], more studies need to be conducted to explore

the effectiveness of evolutionary techniques. This motivates us to analyze the effect of

genetic-based FS for SDP. Genetic algorithms are preferred because it is a population-based

algorithm with parallel processing and global searching capabilities. Thus, this chapter

tends to explore the two variations of the genetic algorithm–generational genetic algorithm

(GGA) and steady-state genetic algorithm (SGA) along with the most commonly used CFS

technique to answer the following research questions:

1. RQ1: Which features are frequently selected by the FS techniques?

2. RQ2: What is the comparative performance of SDP models developed when features

are minimized using evolutionary FS techniques and CFS in terms of Sensitivity,

ROC-AUC, Balance, and G-Mean?
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3. RQ3: Which FS technique can be categorized as the best amongst all for SDP?

4. RQ4: Which ML technique performs the best with the best FS technique for the

classification of software defects?

The objectives set for this chapter are:

• to validate the evolutionary genetic-based FS techniques for SDP,

• to perform a comparative analysis of constructed models with different ML tech-

niques when features are selected using CFS and evolutionary FS techniques,

• to use stable performance measures like ROC-AUC, Balance, and G-Mean to per-

form a fair comparison, and

• to employ statistical tests to validate the result observations.

Experiments are executed with 15 different ML techniques on open-source JAVA projects.

We have considered 13 projects in this study and are categorized as large, mid-sized, and

small projects based on their number of classes. Empirical findings of the study are se-

cured by using the Friedman test and Wilcoxon signed-rank tests. Both of these tests are

nonparametric tests.

The rest of the chapter organization is as follows: Section 9.2 describes the research

methodology and experimental design followed in this chapter is explained in Section 9.3.

Section 9.4 emphasizes the obtained results and provides a detailed analysis of empirical

results. Last, but not least, the discussion is presented in Section 9.5.

The results of the chapter are published in [224].

9.2 Research Methodology

This section summarizes the datasets collected, FS techniques, ML techniques, and various

performance measures used in this study. It also addresses the statistical tests carried out
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for result validation. The selection of appropriate FS techniques, statistical tests, and cross-

validation techniques results in validating conclusions and hence mitigating conclusion

validity threat.

9.2.1 Dataset Collection

13 datasets of JAVA open-source projects are considered for validation of this chapter. Data

collection and project details can be referred to from Section 3.6. Table 9.1 describes the

addressed datasets with their statistics. #classes represents the total number of classes, #De-

fClasses corresponds to the number of defective classes in the particular dataset. #%ageDe-

fects symbolizes the percentage of defective classes in that project. We categorized these

datasets further in terms of size based on the number of classes in them. Projects having

(100-300) classes, (300-600) classes, and (600-900) classes are identified as small projects,

mid-sized projects, and large projects in this chapter. Out of 13 projects, five are small

projects, five are mid-sized and three are large projects. Revisiting #%ageDefects assist

in understanding the imbalanced data problem prominent in real-world software projects.

#ageDefects for 12 datasets range from 11.4% to 33.9% which is very less as compared to

the percentage of non-defective classes in the projects. These datasets are therefore consid-

ered as imbalanced datasets. Only one dataset, Xalan2.6, has 46.4% of defective classes.

As the number of both types of classes is approximately equal, therefore, it is considered a

balanced dataset.

Table 9.1: Dataset Description according to their Size

Size Dataset #Classes #DefClasses #%ageDefects

Large

Ant1.7 745 166 22.3

Xalan2.6 885 411 46.4

Xalan2.4 723 110 15.2

Mid-sized

Jedit4.1 312 79 25.3

Xerces1.3 453 69 15.2

Jedit4.0 306 75 24.5

Ivy2.0 352 40 11.4
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Size Dataset #Classes #DefClasses #%ageDefects

Jedit4.2 367 48 13.1

Small

Log4j1.0 135 34 25.2

Log4j1.1 109 37 33.9

Synapse1.1 222 60 27

Synapse1.2 256 86 33.6

Jedit3.2 272 90 33.1

OO metrics include Response For a Class (RFC), Lack of Cohesion in Methods (LCOM),

Coupling Between Objects (CBO), Number of Children (NOC), Depth of Inheritance Tree

(DIT), Weighted Methods of a Class (WMC), Method of Functional Abstraction (MFA),

Data Access Metric (DAM), Number of Public Methods (NPM), Cohesion among Meth-

ods of a class (CAM) and Measure of Aggression (MOA), Efferent Coupling (Ce), Afferent

Coupling (Ca), Inheritance Coupling (IC), Coupling Between Methods of a Class (CBM),

Average Method Complexity (AMC), a variant of LCOM (LCOM3), the maximum Cyclo-

matic complexity (Max CC), average cyclomatic complexity (Avg CC)) and Lines of Code

(LOC) [18, 36, 37, 142] . The details of metrics can be referred from Section 3.3.

9.2.2 FS Techniques

FS techniques can be organized into three categories- filter methods, wrapper methods, and

embedded methods. The focal point of this study is evolutionary-based wrapper methods

and results are compared with one of the filter methods - the CFS technique. Details of

these techniques with their parameter settings are discussed in Section 3.7.2.

9.2.3 Machine Learning Techniques

This study employs 15 ML techniques that can be categorized as statistical techniques, neu-

ral networks, nearest neighbor methods, ensemble methods, and decision trees. Parameter

settings and details of ML techniques used in this chapter are mentioned in Table 3.6 and
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Section 3.9.1.

9.2.4 Performance Measures

The results of defect prediction models developed by various ML techniques with different

FS methods are evaluated using Sensitivity, G-Mean, Balance, and ROC-AUC performance

measures. These measures are explained in Section 3.11.

9.2.5 Statistical Tests

Statistical validation empowers the findings of the study. Therefore, as done in all other

chapters, here also we used a nonparametric Friedman test [213] followed by Wilcoxon

signed-rank test [209] to perform the pairwise comparison. These tests are expounded in

Section 3.12.

9.3 Experimental Framework

This study tends to find the features of datasets that are frequently selected by GGA, SGA,

and CFS to answer RQ1. GGA and SGA are variants of GA which is one of the most pop-

ular evolutionary techniques. To answer RQ2 and RQ3, this study accomplishes ten-fold

cross-validation within project defect prediction illustrated in subsection 3.10.2. Figure 9.1

illustrates the experimental setup followed in the study to get the solutions for the set of

RQs.

In the SDP process, software repositories need to be mined to extract useful attributes

called software metrics or features. After data preprocessing FS techniques are applied to

datasets to extract useful features. GGA and SGA are wrapper methods; therefore, selecting

features involves training on the corresponding GA variant. Different features are selected

in each fold of cross-validation after applying the genetic algorithm. Then models are
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Figure 9.1: Experimental Setup

constructed using selected features for 15 ML techniques and tested with unseen data. To

empirically compare their performance, ROC-AUC, Balance, and G-Mean and Sensitivity

values are calculated and statistically compared using the Friedman test. If by Friedman

testing, results come to be significant, further post-hoc analysis is conducted to evaluate

pairwise comparison of techniques.

Features are selected using KEEL algorithms, models are build using Waikato Envi-

ronment for Knowledge Analysis (WEKA) version 3.9 (www.cs.waikato.ac.nz/ml/weka/)

for ML techniques, and statistical tests are carried out in SPSS. To reduce internal validity

threats, the parameter settings for evolutionary FS techniques, CFS, and ML techniques

incorporated in this chapter are mentioned.
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9.4 Results and Analysis

9.4.1 RQ1: Which features are frequently selected by evolutionary FS

techniques and CFS?

FS techniques are believed to reduce the curse of dimensionality resulting in improved

performance of ML techniques. This fact is well proven for CFS [42, 51].

This chapter extends this concept for GA-based feature selection. In the direction of

exploration of the impact of SBTs, this RQ addresses the identification of features of soft-

ware engineering related datasets that are important and play a crucial role in predicting

software defects using GA variants. The structure of the software can be evaluated using

its IQAs. This RQ also aims to find the relationship between these IQAs and FS techniques.

To serve the purpose, GGA, SGA, and CFS are applied on 12 datasets in this chapter.

Features selected by Evolutionary FS Techniques

As discussed, subsets of features are validated for ten folds of genetically generated

subsets. So, when GGA or SGA is applied, then different features are selected in each fold.

Table 9.2 and Table 9.3 scribe the features for each dataset that were selected in at least five

partitions during ten-fold validation for GGA and SGA.

Table 9.2: Frequently selected features by GGA

Dataset GGA-selected Features

Ant1.7 DIT, NOC, RFC, LCOM3, LOC, MFA, AMC, Max CC

Xalan2.6 WMC, CBO, RFC, LCOM, Ce, MFA, CBM, AMC

Xalan2.4 DIT, NOC, RFC, Ce, NPM, LOC, MOA, CAM, CBM

Jedit4.1 CBO, Ce, LCOM3, LOC, IC, CBM, Avg CC

Xerces1.3 NOC, CBO, Ce, NPM, MFA, CBM, Avg CC

Jedit4.0 WMC, DIT, CBO, Ca, Ce, NPM, DAM, MOA, MFA, CBM,

Max CC

Ivy2.0 WMC, DIT, CBO, RFC, LCOM3, MOA, CAM, AMC,

Max CC

254



Results and Analysis

Dataset Frequently selected features by GGA

Jedit4.2 CBO, NPM, LCOM3, LOC, CAM, CBM, Avg CC

Log4j1.0 WMC, NOC, Ce, NPM, CAM, Max CC

Log4j1.1 CBO, RFC, DAM, MOA, MFA, CAM, AMC

Synapse1.1 WMC, DIT, CBO, RFC, Ce, NPM, MOA, CBM, AMC,

Max CC

Synapse1.2 RFC, Ce, LCOM3, LOC, MFA, CAM, Max CC, Avg CC

Jedit3.2 DIT, RFC, Ce, MOA, MFA, CAM, CBM, AMC, Max CC,

Avg CC

Table 9.3: Frequently selected features by SGA

Dataset Frequently selected features by SGA

Ant1.7 WMC, DIT, RFC, LCOM, NPM, LOC, MOA, MFA, Max CC

Xalan2.6 CBO, RFC, LCOM, Ca, Ce, LOC, MFA, CAM, CBM, AMC

Xalan2.4 DIT, CBO, Ca, NPM, LOC, MOA, CAM, CBM, AMC,

Max CC

Jedit4.1 WMC, NOC, CBO, RFC, LCOM, Ca, Ce, NPM, LOC, MOA,

IC, CBM, Max CC

Xerces1.3 WMC, NOC, CBO, RFC, CA, NPM, MOA, MFA, IC

Jedit4.0 DIT, NOC, CBO, LCOM, Ce, NPM, DAM, MOA, MFA,

CBM, Max CC

Ivy2.0 DIT, LCOM, Ca, LCOM3, MFA, CAM, IC, AMC

Jedit4.2 WMC, LCOM, NPM, LCOM3, AMC

Log4j1.0 DIT, NOC, CBO, LCOM, Ca, Ce, NPM, LOC, CBM, Max CC

Log4j1.1 CBO, RFC, NPM, DAM, MOA, MFA, CBM, AMC, Max CC

Synapse1.1 DIT, CBO, RFC, LCOM, Ca, Ce, NPM, LCOM3, LOC,

Max CC

Synapse1.2 WMC, DIT, NOC, CBO, LCOM, Ca, NPM, LOC, DAM,

MFA, Max CC, Avg CC

Jedit3.2 DIT, CBO, Ce, NPM, LOC, MFA, CAM, IC, CBM, AMC,

Max CC, Avg CC

20 OO metrics can be categorized into different IQAs of the software like coupling, co-

hesion, etc. These metrics are grouped into coupling metrics, inheritance metrics, size

metrics, cohesion metrics, composition metrics, encapsulation metrics, and complexity

metrics. In Table 9.4, ‘IQA’ represents internal quality attributes and ‘OO Metrics’ rep-
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resents the features related to that IQA. When analyzing the frequently selected features by

GGA from Table 9.2, it was recognized that CBO, RFC, and CBM are selected in 61.5%

of datasets. These three metrics fit directly in the coupling category and this clearly illus-

trates the relevance of coupling metrics in building better defect prediction models with

GGA. 53.8% of datasets use Ce, MFA, CAM, and max CC. Considering SGA, NPM (size

metric) is selected by 84.6% of datasets and is pursued by CBO (coupling metric) with

76.9% coverage of datasets. The importance of OO metrics can be estimated in terms of

IQAs by determining the proportionate selection of these features. Table 9.4 summarizes

the proportion selection of IQAs for GGA, SGA, and CFS. As is evident from Table 9.4,

when GGA is exploited to decide on features, the proportion selection of composition and

complexity metrics is 0.462. Coupling metrics also have proven their potential in model

development with a proportion selection of 0.449. Similarly, relevant IQAs can be targeted

for SGA. Preferable IQAs when using SGA are size, inheritance, and coupling with the

proportion selection of 0.577, 0.538, and 0.526 respectively. The encapsulation metric that

is represented by the DAM was the least selected in both GGA and SGA with a proportion

selection of 0.154 and 0.231 respectively.

Table 9.4: Proportion Selection of IQAs in GGA, SGA, and CFS

IQA OO Metrics
Proportion selection

GGA SGA CFS
Coupling Ca, CBO, Ce, RFC,

CBM, IC

0.449 0.526 0.564

Inheritance NOC, DIT, MFCA 0.436 0.538 0.154
Size WMC, NPM, LOC,

AMC

0.423 0.577 0.635

Cohesion LCOM, CAM,

LCOM3

0.333 0.41 0.641

Composition MOA 0.462 0.462 0.692
Encapsulation DAM 0.154 0.231 0.462
Complexity Avg CC, Max CC 0.462 0.423 0.5

Features selected by CFS Technique

Selected features for datasets used in this chapter can be referred from Table 3.5. CFS is
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applied using the bestFirst search. LCOM, Ce, and RFC are selected by 84.6% of datasets

followed by LOC. The LOC is preferred by 76.9% of datasets. CBO and MOA emerged

as good predictors as they are selected by 69.2% of datasets. According to the IQAs’

analysis from Table 9.4, CFS features that favor the construction of effective models are

composition, cohesion, and size metrics. The proportion selection of these metrics is 0.692,

0.642, and 0.635 respectively. Inheritance and encapsulation metrics depict somewhat op-

posite proportion selection in evolutionary FS and CFS. While inheritance metrics are the

preferable metrics with GGA and SGA, these are the least selected features by CFS with a

proportion selection of 0.154. Similarly, encapsulation metrics that are the least preferred

in GGA and SGA are proved to be good predictors in CFS with the proportion selection of

0.462.

9.4.2 RQ2: What is the comparative performance of SDP models de-

veloped using evolutionary FS techniques and CFS in terms of

ROC-AUC, Balance, G-Mean, and Sensitivity?

To answer this research question, models are developed using features selected by GGA,

SGA, and CFS. The performances of these models are compared with those of BASE mod-

els. BASE models use the original feature set to predict defects. This means that no FS

technique is used in developing these models. Constructed models can be divided into four

cases based on the FS technique involved:

• Case 1: When the original feature set is used, that is, all the 20 metrics are used to

build a model. It is denoted by ‘BASE’. In this case, no FS technique is involved.

• Case 2: When GGA is exercised for selecting relevant features.

• Case 3: When SGA is exercised for selecting relevant features.
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• Case 4: When CFS is exercised for selecting relevant features.

13 projects that are analyzed in this study can also be categorized according to size as:

• Large projects: number of classes is in between 600 and 900 (Ant1.7, Xalan2.6,

Xalan2.4)

• Mid-sized projects: number of classes is in between 300 and 600 ( Jedit4.1, Xerces1.3,

Jedit4.0, Ivy2.0, Jedit4.2)

• Small projects: number of classes is in between 100 and 300 ( Log4j1.0, Log4j1.1,

Synapse1.1, Synapse1.2, Jedit3.2)

The four cases of FS are examined using ROC-AUC, Balance, and G-Mean cumulatively

for all ML techniques.

ROC-AUC Analysis:

The ROC-AUC values for developed models are depicted in Tables 9.5, 9.6 and 9.7

for large, mid-sized, and small projects with case-specific mean and median values. The

highest ROC-AUC values achieved in all four FS cases is boldface typed for each ML

technique in the Tables 9.5, 9.6 and 9.7.

The models constructed using GGA exhibits the highest ROC-AUC value for Ant1.7,

Xalan2.6, Xalan2.4, Jedit4.1, Jedit4.0, Jedit4.2, Ivy2.0, Log4j1.1, and Synapse1.2. Models

developed using GGA demonstrated the best ROC-AUC values of 0.87 in the Log4j1.1

dataset. Another evolutionary FS technique- SGA also yields the maximum ROC-AUC

value of 0.85 and 0.84 for two datasets- Jedit3.2 and Xerces1.3 respectively. In Xerces1.3,

BASE also got an ROC-AUC value of 0.84 with RSS, indicating their similar performances.

Detailed Ant1.7 exhibits the highest ROC-AUC values for remarkably 13 ML tech-

niques on the use of the evolutionary FS technique. The highest value attained for Ant1.7

is 0.83 gained by LR, SL, and LMT with GGA. The use of CFS gave the maximum ROC-

AUC value only for KStar in Ant1.7. GGA was able to get an ROC-AUC value of more
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than 0.8 for 9 datasets as compared to only 5 datasets when no FS was done for Ant1.7.

Similarly, ROC-AUC results for GGA and SGA seem better for the remaining two large

datasets. Xalan2.6 depicted 0.84 as the highest ROC-AUC value when RSS is applied

to train and build model and 10 ML techniques were able to determine ROC-AUC value

greater than 0.72 as compared to only four ML techniques in the BASE. Xalan2.4 achieved

a maximum of 0.80 ROC-AUC value for LB with GGA selection of features.
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It seems that GGA and CFS may have a comparable performance for mid-sized projects.

For Jedit4.1, the winner is GGA for the LR technique with an ROC-AUC value of 0.84. For

Xerces1.3 and Jedit4.1, there is negligible improvement in most of the ML techniques ex-

cept for IBk, KStar, and RT with feature selection techniques. In both these datasets, BASE

performance gave better ROC-AUC performance. But for the rest of the three datasets,

GGA or SGA have performed well.

Considering CFS, it gives the best performance with SL and LMT for Log4j1.0 gaining

an ROC-AUC value of 0.85. Synapse1.1 also scored ROC-AUC value as 0.80 for KStar

with CFS. Also, Ivy2.0 results reveal the ROC-AUC value as 0.80. Although ROC-AUC

values obtained by CFS are not the highest ones in any of the remaining three datasets,

they are competitive enough. Looking at individual ML technique performances, CFS

has remarkably performed well for the number of ML techniques in Jedit4.0, Jedit4.2, and

Ivy2.0. Jedit4.0, Ivy2.0, Jedit4.2 and Log4j1.1 have an approximately equivalent number of

ML techniques that have ROC-AUC values more than 0.75. In Jedit4.2, 13 ML techniques

have ROC-AUC more than 0.75 when features were selected using GGA as compared to

10 ML techniques in the original set of features represented by the BASE.

For small datasets, from Table 9.7, it can be noticed that different FS technique per-

formed better for different datasets. There is an improvement in ROC-AUC performances

of Log4j1.0, Log4j1.1, and Synapse1.1 when FS is done. Even though the highest value

of ROC-AUC (0.85) is achieved in Log4j1.0 with CFS by SL, analysis of the results as-

serts that the evolutionary techniques (GGA and SGA) performed comparatively better than

CFS. It is visible from Table 9.7 that GGA performed superior to other FS techniques and

the BASE case for Log4j1.1. Talking of Synapse1.1 and Synapse1.2, again the highest

ROC-AUC values are presented by evolutionary FS however ML technique-wise the max-

imum ROC-AUC values are achieved by CFS most of the time. CFS and GGA may likely

have comparable potential to predict defects for these two small projects.

The comparison of ROC-AUC median values of all the datasets in four cases is pre-
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sented as the bar graph in Figure 9.2. In terms of median values, only Xerces1.3 does not

show improvement in the application of FS techniques. Color code for bars representing

GGA, SGA, CFS, and BASE performances is shown in Figure 9.2. SDP models developed

by employing GGA display the highest values for Ant1.7, Xalan2.4, Jedit4.0, Log4j1.0,

Synapse1.1, Jedit4.1, Ivy2.0, and Jedit3.2. Figure 9.2 explicates the incompetency of FS

techniques to amplify model performances for Xerces 1.1 and Xalan2.6. The highest me-

dian value for SGA is accomplished by small datasets Synapse1.2 and Jedit3.2. The median

values of models developed using GGA range from 0.71 to 0.83. ROC-AUC value 0.83 is

the highest amongst all median values in all the cases which are depicted by GGA for

Log4j1.1.

Figure 9.2: Dataset wise Median ROC-AUC values of the BASE, GGA, SGA, and CFS for
13 datasets

Balance Analysis:

Tables 9.8, 9.9 and 9.10 records the Balance values attained SDP models on large, mid-

sized, and small projects respectively using original features and a reduced feature set with

GGA, SGA, and CFS.

264



Results and Analysis

Ta
bl

e
9.

8:
B

al
an

ce
Pe

rf
or

m
an

ce
of

M
L

M
od

el
s

fo
rL

ar
ge

Pr
oj

ec
ts

D
at

as
et

C
as

e
N

B
L

R
SL

L
B

M
L

P
IB

k
K

St
ar

A
B

M
1

B
ag

IC
O

L
M

T
R

T
R

SS
PA

R
T

J4
8

M
ea

n
M

ed
ia

n

A
nt

1.
7

B
A

SE
67

.0
5

56
.8

1
55

.5
8

67
.7

7
61

.7
6

59
.3

4
58

.2
5

64
.5

9
62

.9
2

68
.6

1
55

.5
8

61
.4

5
62

.2
4

58
.4

3
64

.7
5

61
.6

8
61

.7
6

G
G

A
69

.6
8

56
.8

3
56

.8
7

68
.3

5
62

.1
5

64
.0

1
56

.5
0

63
.7

1
63

.4
7

69
.6

1
56

.8
7

62
.0

2
62

.5
7

69
.8

0
63

.8
9

63
.0

9
63

.4
7

SG
A

60
.4

6
57

.6
9

57
.2

9
65

.5
2

61
.7

1
64

.5
1

57
.3

5
62

.1
0

60
.9

69
.1

5
57

.2
9

63
.9

8
59

.6
4

62
.5

7
66

.7
4

61
.7

9
61

.7
1

C
FS

64
.4

3
56

.8
1

55
.1

7
66

.6
3

59
.2

9
63

.7
6

58
.5

9
60

.1
6

63
.0

1
69

.0
7

55
.1

7
63

.0
5

60
.8

8
65

.3
8

68
.5

5
62

.0
0

63
.0

1

X
al

an
2.

6

B
A

SE
62

.0
4

70
.1

0
70

.1
0

68
.7

9
71

.5
3

70
.2

7
67

.4
3

72
.5

3
73

.4
9

69
.1

3
73

.8
3

66
.1

6
72

.4
9

70
.8

6
71

.8
3

70
.0

4
70

.2
7

G
G

A
60

.0
1

69
.0

6
69

.0
6

70
.4

7
69

.5
3

74
.5

5
71

.8
8

73
.7

2
74

.0
7

69
.7

8
69

.7
2

72
.1

9
72

.5
2

71
.5

3
71

.9
0

70
.6

7
71

.5
3

SG
A

60
.9

1
69

.2
8

68
.2

9
69

.6
5

71
.8

4
73

.6
3

71
.2

3
72

.9
7

74
.0

7
68

.0
4

71
.8

1
70

.5
4

72
.8

4
70

.0
0

72
.3

5
70

.5
0

71
.2

3

C
FS

59
.9

1
70

.0
7

69
.9

7
68

.9
1

70
.2

9
69

.5
5

68
.6

1
63

.7
8

70
.0

3
70

.7
1

69
.9

7
66

.9
0

69
.9

9
60

.5
1

62
.5

8
67

.4
5

69
.5

5

X
al

an
2.

4

B
A

SE
53

.8
2

42
.7

5
38

.2
8

38
.2

6
46

.4
0

52
.5

3
48

.2
5

50
.8

2
42

.6
8

33
.7

5
38

.9
1

52
.2

4
35

.0
7

36
.2

9
43

.8
3

43
.5

9
42

.7
5

G
G

A
54

.4
5

42
.7

5
42

.1
2

42
.1

0
51

.0
1

55
.2

2
54

.0
1

49
.5

4
47

.8
8

40
.8

4
42

.1
2

51
.7

7
31

.8
6

34
.4

0
43

.9
5

45
.6

0
43

.9
5

SG
A

53
.8

2
40

.2
0

42
.1

3
39

.5
3

43
.9

7
55

.1
2

52
.1

4
48

.2
9

41
.4

2
33

.7
6

42
.1

3
56

.1
4

30
.5

7
32

.4
8

40
.8

1
43

.5
0

42
.1

3

C
FS

52
.7

5
40

.8
3

35
.6

9
41

.4
5

45
.8

9
50

.5
9

43
.8

6
46

.8
8

44
.6

4
38

.2
6

36
.3

2
47

.6
9

31
.8

6
38

.8
8

38
.2

4
42

.2
6

41
.4

5

265



Results and Analysis

Ta
bl

e
9.

9:
B

al
an

ce
Pe

rf
or

m
an

ce
of

M
L

M
od

el
s

fo
rM

id
-s

iz
ed

Pr
oj

ec
ts

D
at

as
et

C
as

e
N

B
L

R
SL

L
B

M
L

P
IB

k
K

St
ar

A
B

M
1

B
ag

IC
O

L
M

T
R

T
R

SS
PA

R
T

J4
8

M
ea

n
M

ed
ia

n

Je
di

t4
.1

B
A

SE
59

.3
1

67
.2

1
65

.7
6

64
.1

4
59

.7
7

60
.5

2
62

.5
3

64
.2

8
63

.7
4

65
.0

8
65

.7
6

66
.5

1
57

.6
5

56
.6

1
56

.9
6

62
.3

9
63

.7
4

G
G

A
61

.8
2

64
.7

1
56

.7
3

63
.2

7
62

.0
1

64
.0

0
62

.7
0

63
.0

6
59

.8
9

62
.5

3
57

.6
2

58
.4

1
62

.1
4

54
.0

2
54

.5
60

.4
9

62
.0

1

SG
A

53
.0

6
63

.0
6

62
.2

3
62

.1
9

59
.3

5
67

.1
1

60
.8

3
61

.8
8

60
.0

5
66

.0
2

61
.2

1
66

.6
4

61
.0

8
60

.2
3

61
.7

7
61

.7
8

61
.7

7

C
FS

59
.4

7
68

.2
5

60
.4

2
60

.1
0

62
.1

4
59

.5
1

62
.5

3
61

.1
0

63
.4

0
65

.9
5

61
.3

1
63

.6
8

58
.6

6
59

.5
0

59
.4

3
61

.7
0

61
.1

0

X
er

ce
s1

.3

B
A

SE
53

.5
1

52
.7

5
51

.7
9

56
.8

7
59

.7
0

61
.6

3
62

.8
0

59
.7

9
50

.6
5

56
.8

9
52

.7
9

57
.4

0
48

.7
6

48
.6

4
59

.8
5

55
.5

9
56

.8
7

G
G

A
46

.4
6

37
.4

7
32

.3
6

47
.7

0
49

.7
2

68
.0

0
60

.8
7

57
.6

5
53

.8
1

45
.6

6
47

.6
7

57
.6

7
38

.5
1

45
.6

6
48

.6
8

49
.1

9
47

.7
0

SG
A

51
.5

0
47

.7
1

47
.7

2
59

.9
8

55
.8

8
67

.9
0

60
.8

5
59

.7
0

57
.9

0
59

.9
6

54
.8

5
61

.7
6

48
.7

5
49

.7
5

53
.8

0
55

.8
7

55
.8

8

C
FS

64
.8

3
43

.5
7

36
.4

4
57

.8
9

56
.8

0
65

.4
2

60
.9

6
59

.6
5

58
.9

2
54

.8
6

51
.7

5
63

.5
3

46
.6

9
54

.8
0

58
.8

3
55

.6
6

57
.8

9

Je
di

t4
.0

B
A

SE
52

.4
2

57
.2

6
56

.3
2

61
.8

4
62

.5
0

67
.4

7
56

.6
6

60
.7

6
65

.5
6

62
.7

2
57

.2
2

64
.6

9
59

.1
3

52
.6

3
59

.4
9

59
.7

8
59

.4
9

G
G

A
48

.8
2

57
.2

9
53

.6
3

60
.1

61
.0

7
70

.2
6

56
.0

2
63

.6
0

65
.6

6
63

.8
4

59
.1

3
61

.3
4

56
.3

2
48

.6
8

57
.9

2
58

.9
1

59
.1

3

SG
A

49
.6

5
52

.5
4

55
.5

3
58

.9
1

61
.1

7
69

.8
7

57
.2

2
61

.3
3

61
.0

7
54

.2
5

53
.5

1
60

.6
3

50
.8

8
55

.7
3

57
.7

6
57

.3
4

57
.2

2

C
FS

2.
57

60
.2

0
58

.3
5

63
.8

4
59

.3
63

.6
54

.5
5

63
.4

3
64

.5
8

63
.7

9
61

.1
4

56
.6

6
59

.1
7

54
.3

7
61

.6
4

59
.8

1
60

.2
0

Iv
y2

.0

B
A

SE
60

.4
0

45
.1

5
38

.1
2

41
.5

8
50

.2
5

53
.6

9
48

.4
5

45
.1

1
43

.3
0

39
.7

9
38

.1
2

51
.6

5
29

.2
9

45
.0

9
36

.3
6

44
.4

2
45

.0
9

G
G

A
60

.6
7

39
.8

7
39

.8
9

41
.6

2
43

.3
0

62
.7

6
52

.1
8

45
.1

3
41

.6
2

36
.3

0
39

.8
9

53
.5

31
.0

6
43

.4
2

46
.9

4
45

.2
1

43
.3

0

SG
A

39
.7

9
31

.0
6

29
.2

9
41

.6
3

39
.7

9
44

.9
7

43
.2

7
43

.2
8

38
.1

38
.1

2
31

.0
5

48
.3

4
29

.2
9

43
.3

7
36

.3
1

38
.5

1
39

.7
9

C
FS

58
.9

5
39

.8
8

39
.8

9
45

.0
9

43
.4

2
48

.3
4

52
.1

0
48

.5
9

41
.6

0
43

.2
8

39
.8

9
53

.7
4

31
.0

6
38

.1
2

38
.1

2
44

.1
4

43
.2

8

Je
di

t4
.2

B
A

SE
58

.4
4

48
.3

9
52

.8
1

51
.3

0
52

.6
3

55
.4

9
51

.2
4

52
.7

1
51

.3
5

48
.3

7
52

.8
1

52
.2

6
32

.2
3

49
.8

1
59

.9
3

51
.3

2
52

.2
6

G
G

A
56

.8
6

51
.3

6
48

.4
1

51
.3

5
51

.3
6

65
.8

3
55

.6
1

58
.6

2
57

.2
5

54
.3

1
48

.4
1

56
.8

9
38

.1
3

58
.6

7
58

.6
7

54
.1

2
55

.6
1

SG
A

45
.4

7
45

.4
7

42
.5

4
41

.0
4

45
.4

9
56

.6
9

54
.0

8
55

.5
4

48
.4

1
45

.4
4

42
.5

4
59

.4
3

30
.7

6
41

.0
7

38
.1

2
46

.1
4

45
.4

7

C
FS

57
.0

0
45

.4
4

46
.9

2
49

.8
3

55
.7

8
58

.2
2

56
.9

7
57

.0
7

51
.3

4
45

.4
4

46
.9

2
55

.3
7

35
.1

8
41

.0
5

46
.8

5
49

.9
6

49
.8

3

266



Results and Analysis

Ta
bl

e
9.

10
:B

al
an

ce
Pe

rf
or

m
an

ce
of

M
L

M
od

el
s

fo
rS

m
al

lP
ro

je
ct

s

D
at

as
et

C
as

e
N

B
L

R
SL

L
B

M
L

P
IB

k
K

St
ar

A
B

M
1

B
ag

IC
O

L
M

T
R

T
R

SS
PA

R
T

J4
8

M
ea

n
M

ed
ia

n

L
og

4j
1.

0

B
A

SE
64

.4
7

63
.8

2
68

.3
0

61
.1

2
61

.2
9

62
.9

1
53

.4
8

67
.5

0
69

.4
9

53
.6

68
.3

0
52

.3
5

54
.1

6
57

.4
2

65
.3

1
61

.5
7

62
.9

1

G
G

A
70

.2
1

64
.2

64
.4

7
65

.1
1

55
.7

7
69

.6
9

57
.9

3
61

.3
0

66
.0

0
68

.3
0

64
.4

7
67

.3
0

54
.1

9
57

.5
7

59
.6

0
63

.0
7

64
.4

7

SG
A

60
.3

3
66

.2
6

64
.4

7
64

.4
7

68
.3

0
61

.7
8

55
.5

3
60

.9
3

63
.9

6
62

.3
3

64
.4

7
59

.4
5

62
.4

0
63

.8
2

60
.2

6
62

.5
8

62
.4

0

C
FS

66
.6

1
66

.1
3

64
.4

0
65

.6
8

55
.9

7
59

.2
9

47
.6

3
59

.2
9

68
.1

7
59

.9
9

64
.4

0
56

.5
4

54
.1

6
58

.1
2

60
.0

9
60

.4
3

59
.9

9

L
og

4j
1.

1

B
A

SE
76

.0
6

69
.3

7
71

.0
7

68
.4

3
63

.3
1

72
.0

6
67

.5
7

69
.9

2
71

.8
2

71
.0

7
71

.0
7

69
.4

6
69

.1
7

72
.5

0
71

.5
0

70
.2

9
71

.0
7

G
G

A
76

.0
6

74
.4

6
72

.1
1

71
.5

0
76

.5
5

83
.4

0
73

.2
6

70
.3

5
68

.8
6

70
.0

0
72

.1
1

71
.6

0
66

.7
9

64
.9

2
64

.7
1

71
.7

8
71

.6
0

SG
A

75
.7

6
73

.6
3

74
.4

6
74

.2
2

74
.2

2
74

.8
8

70
.0

0
63

.9
4

70
.5

2
69

74
.4

6
70

.7
6

65
.2

5
67

.2
7

65
.1

0
70

.9
0

70
.7

6

C
FS

76
.5

5
74

.4
6

74
.8

4
73

.6
3

75
.0

7
74

.3
3

69
.0

3
69

.9
2

66
.3

3
72

.1
1

74
.6

7
66

.0
6

69
.3

6
70

.7
3

70
.5

2
71

.8
4

72
.1

1

Sy
na

ps
e1

.1

B
A

SE
67

.5
8

65
.2

0
57

.3
5

57
.0

0
60

.1
4

64
.9

6
62

.8
7

60
.8

6
64

.1
9

53
.4

4
57

.1
4

59
.9

3
50

.3
5

60
.6

2
63

.1
3

60
.3

2
60

.6
2

G
G

A
56

.0
8

57
.3

5
50

.3
8

55
.6

1
53

.9
1

69
.3

9
62

.9
6

63
.3

6
65

.0
3

54
.7

4
51

.4
5

64
.8

1
45

.7
0

59
.0

8
55

.8
4

57
.7

1
56

.0
8

SG
A

64
.5

0
56

.1
8

55
.1

1
50

.9
8

60
.4

1
68

.8
7

63
.4

8
64

.8
1

61
.6

5
50

.2
7

55
.1

1
63

.0
8

46
.8

2
58

.3
5

59
.4

9
58

.6
1

59
.4

9

C
FS

63
.6

8
59

.5
9

55
.1

1
53

.3
0

63
.0

9
64

.1
7

64
.5

0
59

.9
4

64
.1

2
54

.5
4

55
.1

1
61

.6
1

51
.5

9
56

.6
8

58
.9

9
59

.0
7

59
.5

9

Sy
na

ps
e1

.2

B
A

SE
65

.6
3

61
.9

8
55

.6
3

69
.1

1
63

.8
6

69
.7

2
69

.5
6

68
.2

9
70

.3
2

70
.0

3
61

.3
6

66
.6

4
60

.3
8

68
.2

3
66

.8
65

.8
4

66
.8

0

G
G

A
64

.4
8

57
.7

2
55

.2
7

75
.4

8
65

.7
5

70
.1

4
71

.3
9

73
.2

3
70

.0
4

70
.5

9
59

.4
9

67
.3

7
66

.4
1

70
.7

0
70

.4
6

67
.2

3
70

.0
4

SG
A

54
.1

6
58

.9
4

60
.0

5
69

.1
1

69
.5

6
69

.4
0

72
.3

1
70

.5
1

67
.5

6
71

.0
5

64
.4

8
63

.8
6

61
.4

4
60

.6
6

66
.9

6
65

.3
4

66
.9

6

C
FS

67
.4

4
62

.4
0

59
.8

3
67

.1
2

70
.1

3
64

.9
5

68
.7

6
66

.8
3

69
.1

4
68

.4
9

64
.5

7
64

.7
8

62
.3

6
67

.5
6

69
.0

4
66

.2
3

67
.1

2

Je
di

t3
.2

B
A

SE
61

.5
73

.3
1

73
.5

6
67

.4
3

67
.3

5
69

.2
6

68
.2

3
68

.0
7

69
.8

1
68

.2
3

73
.5

6
67

.2
0

67
.3

3
64

.8
5

64
.7

4
68

.3
0

68
.0

7

G
G

A
69

.4
2

67
.8

9
65

.5
7

70
.0

9
69

.4
7

70
.8

3
60

.2
68

.9
7

70
.5

7
66

.7
5

67
.7

4
66

.7
9

67
.6

3
63

.7
2

68
.3

6
67

.6
0

67
.8

9

SG
A

61
.5

67
.6

3
64

.5
7

68
.4

8
66

.4
6

70
.5

4
66

.6
7

69
.8

2
73

.0
4

69
.5

9
64

.5
7

66
.7

9
61

.5
7

67
.0

8
65

.7
1

66
.9

3
66

.7
9

C
FS

60
.1

0
71

.2
0

69
.1

5
71

.3
0

66
.9

9
70

.2
62

.8
5

67
.2

0
70

.2
2

64
.8

7
68

.7
2

63
.7

2
68

.3
9

64
.5

1
65

66
.9

6
67

.2
0

267



Results and Analysis

The maximum Balance value is portrayed by GGA for the Log4j1.1 dataset when clas-

sified with the IBk technique. Models built up by application of GGA experienced the

maximum Balance values for all the datasets except for one of the mid-sized projects-

Jedit4.1. Overall the best Balance value is 83.4 revealed by Log4j1.1 for IBk. It is interest-

ing to note that models developed using the IBk technique gave the highest Balance value

for seven datasets. Statistical ML techniques were also able to give the best predictions

in terms of Balance for five datasets out of which three were mid-sized projects. For large

projects, the results of Ant1.7 are improved for all ML techniques but ABM1. CFS gave the

highest Balance value in Ant1.7 for only on ML technique, i.e., KStar. For remaining ML

techniques, evolutionary FS projected outstanding Balance values. Three ML techniques

achieved a Balance greater than 69% in Ant1.7 with GGA as compared to one in CFS and

none in the BASE. Balance values of GGA and SGA based models are the highest for

at least 10 ML techniques for Xalan2.6 and Xalan2.4. For Xalan2.4, two ML techniques

gained 74% Balance value as compared to none in CFS and BASE.

Therefore, the analysis of Table 9.8 reveals the supremacy of evolutionary FS tech-

niques in developing effective SDP models. Basis the insights from Table 9.8, it can be

realized that except for Ant1.7, SGA and BASE have comparable Balance values for large

datasets, if averaged performance of ML techniques is considered. The maximum Balance

value achieved is 74.55 by the IBk technique for Xalan2.6 with GGA.

Though BASE was not able to get the maximum cumulative Balance value in any of the

mid-sized datasets when seen ML technique-wise BASE has the greatest Balance values for

Jedit4.1 and Xerces1.3 in many ML techniques. Jedit4.0 and Ivy2.0 showed the maximum

values of Balance for seven ML techniques in the CFS case. Jedit4.2 and Ivy2.0 also

depicted the maximum values of Balance for eight ML techniques in the GGA case. For

Ivy2.0, GGA and CFS values are similar for eight ML techniques. Except for Jedit4.2,

mid-sized projects (Jedit4.1, Xerces1.3, Jedit4.0, and Ivy2.0) have comparable Balance

performances in the context of ML techniques. Seven techniques were able to attain a
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Balance greater than 56% whereas only two ML techniques were capable of achieving this

value for the BASE and SGA cases. This indicates that GGA and CFS may have not so

significant difference between their defect prediction capabilities in terms of the Balance

performance measure for Ivy2.0. The performance of Jedit4.2 seems to be improved by the

GGA application according to Table 9.9.

From Table 9.10, GGA again emerged as the FS technique that provides the maximum

Balance value for all five datasets in the small projects category. Effective ML techniques

to achieve the maximum Balance value are NB, SL, LB, and IBk. The maximum value

achieved by Log4j1.0, Synapse1.1, Synapse1.2, and Jedit3.2 is 70.21, 69.39, 75.48, and

73.56 respectively. The average Balance value achieved is the highest for Log4j1.0 and

Synapse1.2 for the GGA case. Log4j1.1 has the maximum average Balance value for the

CFS case. In Synapse1.2, eight ML techniques achieved a Balance value greater than 70%

for the GGA case. The remaining two datasets have depicted the largest mean Balance

values for the BASE case only. Therefore, it may be difficult to find any major increment

in model performances with the application of FS techniques in small projects based on

Balance measure.

Figure 9.3 reflects the median Balance values of models developed under the four cases.

The color scheme of bars is the same as that of ROC-AUC and is represented in Figure 9.3.

Ant1.7, Xalan2.6, Xalan2.4, Jedit4.2, Ivy2.0, Jedit4.2 Log4j1.0, and Synapse1.2 have

the tallest bar for GGA representing the highest median values achieved by these datasets

through GGA. Jedit4.0 and Log4j1.1 have the highest median values of 60.2 and 72.11

respectively gained through CFS. For Synapse1.1, Jedit4.1, and Xerces1.3 we found no

improvement in median values of Balance for ML models developed using FS techniques.

G-Mean Analysis:

G-Mean values are noted in Tables 9.11, 9.12 and 9.13 for small, mid-sized, and large

projects respectively. The highest value achieved by a particular ML technique is boldfaced

for each dataset. Tables 9.11, 9.12 and 9.13 are analyzed to understand the impact of FS
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Results and Analysis

Figure 9.3: Median Balance values of the BASE, GGA, SGA, and CFS for 13 datasets

techniques in determining software defects.

GGA performed well for large and small projects. GGA and SGA depict the maximum

ROC-AUC value for a particular ML technique for seven and two datasets respectively.

Three datasets show the maximum G-Mean value for the BASE when models were con-

structed using statistical ML techniques and decision-based J48 classifier. The maximum

G-Mean value of 0.84 is observed in the Log4j1.1 dataset for the GGA+IBk technique.

Analysis of results according to projects is presented next.

270



Results and Analysis

Ta
bl

e
9.

11
:G

-M
ea

n
Pe

rf
or

m
an

ce
of

M
L

M
od

el
s

fo
rL

ar
ge

Pr
oj

ec
ts

D
at

as
et

C
as

e
N

B
L

R
SL

L
B

M
L

P
IB

k
K

St
ar

A
B

M
1

B
ag

IC
O

L
M

T
R

T
R

SS
PA

R
T

J4
8

M
ea

n
M

ed
ia

n

A
nt

1.
7

B
A

SE
0.

67
0.

61
0.

60
0.

71
0.

65
0.

62
0.

61
0.

67
0.

67
0.

72
0.

60
0.

64
0.

66
0.

61
0.

67
0.

65
0.

65

G
G

A
0.

72
0.

61
0.

61
0.

72
0.

66
0.

67
0.

60
0.

66
0.

67
0.

73
0.

61
0.

64
0.

66
0.

72
0.

67
0.

66
0.

66

SG
A

0.
64

0.
62

0.
62

0.
69

0.
65

0.
67

0.
61

0.
65

0.
65

0.
72

0.
62

0.
67

0.
63

0.
66

0.
70

0.
65

0.
65

C
FS

0.
68

0.
61

0.
59

0.
70

0.
63

0.
66

0.
61

0.
63

0.
67

0.
72

0.
59

0.
65

0.
65

0.
69

0.
71

0.
65

0.
65

X
al

an
2.

6

B
A

SE
0.

66
0.

71
0.

71
0.

70
0.

72
0.

70
0.

68
0.

73
0.

74
0.

70
0.

74
0.

66
0.

73
0.

71
0.

72
0.

71
0.

71

G
G

A
0.

64
0.

71
0.

71
0.

72
0.

72
0.

75
0.

73
0.

74
0.

75
0.

72
0.

71
0.

72
0.

74
0.

72
0.

72
0.

72
0.

72

SG
A

0.
65

0.
71

0.
70

0.
70

0.
74

0.
74

0.
72

0.
73

0.
75

0.
69

0.
73

0.
71

0.
74

0.
71

0.
73

0.
72

0.
72

C
FS

0.
64

0.
72

0.
72

0.
70

0.
72

0.
70

0.
69

0.
66

0.
70

0.
71

0.
72

0.
67

0.
71

0.
65

0.
66

0.
69

0.
70

X
al

an
2.

4

B
A

SE
0.

57
0.

43
0.

35
0.

35
0.

48
0.

55
0.

50
0.

53
0.

43
0.

25
0.

36
0.

54
0.

28
0.

31
0.

44
0.

43
0.

43

G
G

A
0.

57
0.

43
0.

42
0.

42
0.

54
0.

58
0.

57
0.

52
0.

51
0.

40
0.

42
0.

54
0.

19
0.

27
0.

45
0.

45
0.

45

SG
A

0.
57

0.
39

0.
42

0.
37

0.
45

0.
58

0.
55

0.
50

0.
41

0.
25

0.
42

0.
59

0.
13

0.
21

0.
4

0.
42

0.
42

C
FS

0.
56

0.
40

0.
30

0.
41

0.
47

0.
53

0.
44

0.
48

0.
46

0.
35

0.
31

0.
49

0.
19

0.
36

0.
35

0.
41

0.
41

271



Results and Analysis

Ta
bl

e
9.

12
:G

-M
ea

n
Pe

rf
or

m
an

ce
of

M
L

M
od

el
s

fo
rM

id
-s

iz
ed

Pr
oj

ec
ts

D
at

as
et

C
as

e
N

B
L

R
SL

L
B

M
L

P
IB

k
K

St
ar

A
B

M
1

B
ag

IC
O

L
M

T
R

T
R

SS
PA

R
T

J4
8

M
ea

n
M

ed
ia

n

Je
di

t4
.1

B
A

SE
0.

63
0.

71
0.

70
0.

67
0.

63
0.

63
0.

66
0.

67
0.

67
0.

68
0.

70
0.

67
0.

61
0.

6
0.

59
0.

65
0.

67

G
G

A
0.

65
0.

69
0.

60
0.

66
0.

66
0.

67
0.

66
0.

66
0.

63
0.

66
0.

61
0.

60
0.

66
0.

57
0.

57
0.

64
0.

66

SG
A

0.
56

0.
67

0.
67

0.
65

0.
63

0.
69

0.
64

0.
64

0.
63

0.
69

0.
65

0.
68

0.
65

0.
63

0.
65

0.
65

0.
65

C
FS

0.
63

0.
72

0.
65

0.
63

0.
66

0.
62

0.
66

0.
63

0.
66

0.
69

0.
66

0.
65

0.
63

0.
64

0.
63

0.
65

0.
65

X
er

ce
s1

.3

B
A

SE
0.

56
0.

56
0.

56
0.

61
0.

63
0.

65
0.

67
0.

64
0.

54
0.

61
0.

57
0.

60
0.

52
0.

51
0.

64
0.

59
0.

60

G
G

A
0.

48
0.

34
0.

21
0.

50
0.

53
0.

72
0.

65
0.

61
0.

58
0.

48
0.

5
0.

61
0.

36
0.

48
0.

51
0.

5
0.

5

SG
A

0.
54

0.
50

0.
51

0.
65

0.
60

0.
72

0.
65

0.
63

0.
63

0.
65

0.
59

0.
66

0.
52

0.
53

0.
58

0.
60

0.
60

C
FS

0.
69

0.
44

0.
31

0.
62

0.
61

0.
68

0.
66

0.
63

0.
64

0.
59

0.
55

0.
67

0.
49

0.
59

0.
63

0.
59

0.
62

Je
di

t4
.0

B
A

SE
0.

55
0.

61
0.

60
0.

65
0.

66
0.

70
0.

59
0.

64
0.

69
0.

66
0.

61
0.

66
0.

63
0.

56
0.

62
0.

63
0.

63

G
G

A
0.

51
0.

61
0.

57
0.

64
0.

65
0.

72
0.

59
0.

67
0.

69
0.

68
0.

63
0.

63
0.

60
0.

50
0.

61
0.

62
0.

63

SG
A

0.
52

0.
55

0.
59

0.
62

0.
66

0.
73

0.
61

0.
64

0.
65

0.
57

0.
57

0.
63

0.
54

0.
58

0.
61

0.
60

0.
61

C
FS

0.
56

0.
64

0.
63

0.
68

0.
64

0.
66

0.
57

0.
66

0.
68

0.
68

0.
65

0.
58

0.
63

0.
57

0.
65

0.
63

0.
64

Iv
y2

.0

B
A

SE
0.

63
0.

47
0.

35
0.

41
0.

53
0.

57
0.

50
0.

46
0.

43
0.

38
0.

35
0.

54
0.

00
0.

46
0.

32
0.

43
0.

46

G
G

A
0.

64
0.

38
0.

39
0.

41
0.

43
0.

67
0.

56
0.

47
0.

41
0.

31
0.

39
0.

56
0.

16
0.

44
0.

49
0.

45
0.

43

SG
A

0.
38

0.
16

0.
00

0.
41

0.
38

0.
46

0.
43

0.
43

0.
35

0.
35

0.
16

0.
50

0.
00

0.
44

0.
31

0.
32

0.
38

C
FS

0.
63

0.
38

0.
38

0.
46

0.
44

0.
50

0.
55

0.
51

0.
41

0.
43

0.
38

0.
57

0.
16

0.
35

0.
35

0.
43

0.
43

Je
di

t4
.2

B
A

SE
0.

62
0.

51
0.

57
0.

55
0.

56
0.

59
0.

54
0.

56
0.

55
0.

51
0.

57
0.

55
0.

20
0.

53
0.

64
0.

54
0.

55

G
G

A
0.

60
0.

55
0.

51
0.

55
0.

55
0.

70
0.

59
0.

63
0.

62
0.

59
0.

51
0.

60
0.

35
0.

63
0.

63
0.

58
0.

59

SG
A

0.
47

0.
47

0.
43

0.
40

0.
48

0.
60

0.
57

0.
59

0.
51

0.
47

0.
43

0.
62

0.
14

0.
41

0.
35

0.
46

0.
47

C
FS

0.
61

0.
47

0.
49

0.
53

0.
61

0.
61

0.
61

0.
61

0.
55

0.
47

0.
49

0.
58

0.
29

0.
40

0.
49

0.
52

0.
53

272



Results and Analysis

Ta
bl

e
9.

13
:G

-M
ea

n
Pe

rf
or

m
an

ce
of

M
L

M
od

el
s

fo
rS

m
al

lP
ro

je
ct

s

D
at

as
et

C
as

e
N

B
L

R
SL

L
B

M
L

P
IB

k
K

St
ar

A
B

M
1

B
ag

IC
O

L
M

T
R

T
R

SS
PA

R
T

J4
8

M
ea

n
M

ed
ia

n

L
og

4j
1.

0

B
A

SE
0.

69
0.

67
0.

72
0.

63
0.

63
0.

65
0.

56
0.

70
0.

72
0.

56
0.

72
0.

54
0.

58
0.

60
0.

68
0.

64
0.

65

G
G

A
0.

73
0.

68
0.

69
0.

67
0.

59
0.

72
0.

61
0.

64
0.

69
0.

72
0.

69
0.

69
0.

59
0.

60
0.

62
0.

66
0.

68

SG
A

0.
65

0.
70

0.
69

0.
69

0.
72

0.
65

0.
58

0.
63

0.
67

0.
67

0.
69

0.
62

0.
67

0.
67

0.
64

0.
66

0.
67

C
FS

0.
71

0.
69

0.
69

0.
68

0.
59

0.
62

0.
49

0.
62

0.
71

0.
63

0.
69

0.
58

0.
58

0.
62

0.
64

0.
64

0.
63

L
og

4j
1.

1

B
A

SE
0.

78
0.

71
0.

75
0.

71
0.

65
0.

73
0.

69
0.

71
0.

74
0.

75
0.

75
0.

7
0.

73
0.

74
0.

73
0.

72
0.

73

G
G

A
0.

78
0.

77
0.

74
0.

73
0.

79
0.

84
0.

74
0.

71
0.

72
0.

72
0.

74
0.

72
0.

70
0.

68
0.

68
0.

74
0.

73

SG
A

0.
78

0.
75

0.
77

0.
75

0.
77

0.
75

0.
72

0.
66

0.
73

0.
70

0.
77

0.
72

0.
69

0.
71

0.
69

0.
73

0.
73

C
FS

0.
79

0.
77

0.
78

0.
75

0.
79

0.
75

0.
73

0.
71

0.
69

0.
74

0.
78

0.
67

0.
74

0.
74

0.
73

0.
74

0.
74

Sy
na

ps
e1

.1

B
A

SE
0.

69
0.

68
0.

61
0.

60
0.

63
0.

67
0.

65
0.

63
0.

68
0.

56
0.

60
0.

61
0.

53
0.

63
0.

65
0.

63
0.

63

G
G

A
0.

60
0.

61
0.

53
0.

58
0.

58
0.

72
0.

66
0.

66
0.

68
0.

58
0.

54
0.

66
0.

47
0.

62
0.

59
0.

61
0.

60

SG
A

0.
67

0.
60

0.
59

0.
53

0.
63

0.
71

0.
66

0.
66

0.
65

0.
53

0.
59

0.
64

0.
49

0.
60

0.
61

0.
61

0.
61

C
FS

0.
66

0.
63

0.
59

0.
56

0.
67

0.
65

0.
67

0.
62

0.
68

0.
57

0.
59

0.
63

0.
55

0.
59

0.
62

0.
62

0.
62

Sy
na

ps
e1

.2

B
A

SE
0.

68
0.

65
0.

58
0.

71
0.

65
0.

7
0.

71
0.

69
0.

72
0.

72
0.

64
0.

67
0.

63
0.

7
0.

69
0.

68
0.

69

G
G

A
0.

67
0.

61
0.

59
0.

76
0.

68
0.

71
0.

73
0.

75
0.

72
0.

73
0.

62
0.

68
0.

69
0.

72
0.

72
0.

69
0.

71

SG
A

0.
57

0.
62

0.
63

0.
71

0.
71

0.
71

0.
74

0.
71

0.
7

0.
72

0.
67

0.
65

0.
64

0.
63

0.
68

0.
67

0.
68

C
FS

0.
70

0.
66

0.
63

0.
69

0.
71

0.
66

0.
71

0.
68

0.
71

0.
70

0.
67

0.
66

0.
65

0.
68

0.
70

0.
68

0.
68

Je
di

t3
.2

B
A

SE
0.

64
0.

75
0.

76
0.

70
0.

69
0.

71
0.

69
0.

69
0.

72
0.

70
0.

76
0.

68
0.

70
0.

67
0.

66
0.

70
0.

70

G
G

A
0.

72
0.

71
0.

69
0.

72
0.

72
0.

73
0.

62
0.

70
0.

72
0.

69
0.

70
0.

68
0.

70
0.

67
0.

70
0.

70
0.

70

SG
A

0.
64

0.
70

0.
67

0.
71

0.
69

0.
71

0.
69

0.
71

0.
75

0.
72

0.
67

0.
68

0.
65

0.
69

0.
68

0.
69

0.
69

C
FS

0.
63

0.
73

0.
72

0.
73

0.
69

0.
71

0.
64

0.
68

0.
72

0.
67

0.
71

0.
65

0.
71

0.
66

0.
67

0.
69

0.
69

273



Results and Analysis

When evolutionary FS were applied on three large datasets, as deduced from Table

9.11, the highest G-Mean value was achieved for at least 11 ML techniques in each dataset.

In Ant1.7 and Xalan2.4, only one ML technique was able to score the maximum G-Mean

value whereas, in Xalan2.6 there are two such instances. Also, the mean and median G-

Mean value of CFS is the least for CFS. Hence, this points to the low predictive capability

of CFS in large projects for the G-Mean measure. The overall performance of GGA seems

promising followed by GGA and BASE. Xalan2.6 got the maximum G-Mean value of 0.75

for IBk with GGA. Ensemble learners ICO and RT classification with evolutionary FS

gave the best G-Mean values for Ant1.7 and Xalan2.4. In mid-sized projects, Xerces1.3,

Jedit4.0, and Ivy2.0 gave the highest G-Mean values of 0.72, 0.73, and 0.67 respectively

with the IBk technique. Though Xerces1.1 exhibits the maximum value with GGA, it

has the best predictions with seven ML techniques in the BASE case suggesting the non-

effectiveness of FS techniques in this dataset. Jedit4.1 was classified the best by LR having

a G-Mean value of 0.72 with filter method CFS, but again, the highest mean and median

values are illustrated by the BASE. Table 9.12 shows comparatively better values of evolu-

tionary FS for Jedit4.0 and Ivy2.0. CFS based models illustrate somewhat better G-Mean

values than GGA based models for mid-sized projects.

For small projects, G-Mean performed well as a performance indicator. The G-Mean

range for small projects is from 0.47 to 0.84 whereas for large projects range is from 0.13

to 0.75. Mid-sized projects achieved 0.73 as the maximum G-Mean value. Log4j1.0,

Log4j1.1, and Synapse1.2 exemplified the highest G-Mean values for individual ML tech-

niques for the evolutionary FS case. Synapse1.1 and Jedit3.2 have greater G-Mean values

for BASE than other cases indicating less improvement in FS based models. Median G-

Mean values of models are represented in Figure 9.4 for each dataset.

CFS has the highest median value for Xerces1.3, Jedit4.0, and Log4j1.1. The highest

median value of G-Mean (0.74) is achieved by Log4j1.1 with CFS. GGA looks like a

more capable FS technique as it produces the highest G-Mean median values for all large
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Results and Analysis

Figure 9.4: Median G-Mean values of the BASE, GGA, SGA, and CFS for 13 datasets

projects, one mid-sized project (Jedit4.2), and three small projects ( Log4j1.0, Synapse1.2,

and Jedit3.2). Jedit4.1, Ivy2.0, and Synapse1.1 did not show any improvement in median

values of G-Mean on performing FS. Therefore, except for large projects, it is hard to

conclude for one case that outperformed. In large datasets, GGA has a positive impact on

the performance of models assessed using G-Mean.

Sensitivity Analysis:

Tables 9.14, 9.15 and 9.16 tells the Balance values attained by large, mid-sized, and

small projects when models are developed for all ML techniques using original features

and a reduced feature set with GGA, SGA, and CFS.
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Analyzing the performance of large projects in terms of Sensitivity, four statistical clas-

sifiers, two instance-based ML techniques, LMT, RT, and PART exhibited no visual impact

of feature selection in SDP. Considering the mean and median values from Table 9.14, 9.15,

and 9.16 no remarkable difference is observed in the performance of BASE and evolution-

ary feature selection cases. An increase in GGA values is too small to make any remarkable

impact. Compared with CFS, GGA or SGA has performed better for a majority of datasets.

For Ant1.7, almost all ML techniques except RSS have similar performance for the

BASE, GGA, SGA, and CFS. The mean value is either 0.81 or 0.82 for all four cases. For

Xalan2.6, models based on statistical ML techniques have similar performance for the four

cases. The Sensitivity observed in the MLP model is 0.76 as compared to 0.70 with CFS.

Instance-based classifiers also exhibited better performance in terms of Sensitivity when

features were selected using GGA. Models based on ABM1, LMT, RT, and RSS showed

similar performance with evolutionary feature selection and BASE whereas, for the same

ML techniques, the performance of models built on CFS-selected features decreased in

terms of Sensitivity. For ICO and Bag, GGA depicted a maximum Sensitivity value of 0.74

and 0.75 respectively. Xalan2.4 depicted a maximum Sensitivity value of 0.86 in GGA case

with ensembles (ABM1 and Bag) and SGA case with LR and LB. But as the Sensitivity

value with BASE case, when no feature is ignored, is 0.85 with both LR and LB, therefore

we did not consider feature selection as the better option.

Similar observations can be deduced by the investigation of model performances of

mid-sized and small projects.

The median Sensitivity values of the developed defect prediction models on the inves-

tigated datasets in the chapter for the BASE, GGA, SGA, and CFS scenario are presented

in Figure 9.5.

In Figure 9.5, on x-axis we have datasets and y-axis represents Sensitivity value starting

at 0.65. The minimum median value for Sensitivity is observed in Xalan2.6 (0.71) when

CFS was used to select relevant features. Except for Jedit4.1, Jedit4.0, Synapse1.1, and
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Figure 9.5: Median Sensitivity values of the BASE, GGA, SGA, and CFS for 13 datasets

Log4j1.1, evolutionary feature selection has resulted in better SDP models than CFS.

9.4.3 RQ3: Which FS technique can be categorized as the best amongst

all for SDP?

Models developed for SDP are judged against the Friedman test and Wilcoxon signed-rank

test statistically to get the response to RQ3. We opted for stable and robust performance

measures for answering this RQ as they are more reliable than Sensitivity.

Tables 9.17, 9.18 and 9.19 presents the Friedman rankings of FS cases for all the

datasets (Overall), size-wise categories of projects, and individual projects. AUC O, Bal O,

and GM O represents the ROC-AUC, Balance and G-Mean performance measure for all

the projects. AUC L, Bal L, and GM L represents the ROC-AUC, Balance and G-Mean

performance measure for large projects. AUC M, Bal M, and GM M represents the ROC-

AUC, Balance and G-Mean performance measure for mid-sized projects. AUC S, Bal S,

and GM S represents the ROC-AUC, Balance and G-Mean performance measure for small

projects. Mean ranks of GGA, SGA, CFS, and BASE are written in brackets. P-values

and Kendall C are also recorded in tables for their easy interpretations. GGA is boldfaced
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in Tables 9.17, 9.18 and 9.19. SGA is boldfaced and italicized only in the cases where

SGA performed better than GGA. The null hypothesis for the Friedman test states that the

performances of ML models in which FS techniques are involved are not statistically dif-

ferent from the performances of ML models that use all features to perform SDP in terms

of ROC-AUC, Balance, and G-Mean.

Table 9.17: Friedman Rankings of Feature Selection Techniques with respect to ROC-AUC

ROC-AUC Rank 1 Rank 2 Rank 3 Rank 4 p-value Kendall C

AUC O GGA(2.84) CFS (2.5) SGA(2.37) BASE(2.27) 0.000 0.038

AUC L GGA(3.12) SGA

(2.53)

CFS

(2.17)

BASE(2.16) 0.001 0.122

AUC M CFS

(2.74)

GGA

(2.66)

BASE(2.36) SGA(2.22) 0.044 0.036

AUC S GGA(2.86) CFS

(2.46)

SGA(2.42) BASE(2.25) 0.027 0.041

Large

Projects

Ant1.7 GGA

(3.26)

SGA

(2.96)

CFS

(2.16)

BASE

(1.60)

0.001 0.352

Xalan2.6 BASE

(3.03)

GGA

(2.70)

SGA

(2.20)

CFS

(2.06)

0.141 0.141

Xalan2.4 GGA

(3.40)

SGA

(2.43)

CFS

(2.30)

BASE

(1.86)

0.010 0.255

Mid-sized

Projects

Jedit4.1 BASE

(2.9)

GGA

(2.86)

CFS (2.7) SGA

(1.53)

0.009 0.255

Xerces1.3 BASE

(3.06)

CFS

(2.66)

SGA

(2.33)

GGA

(1.93)

0.099 0.14

Jedit4.0 GGA

(3.13)

CFS

(2.66)

BASE

(2.26)

SGA

(1.93)

0.062 0.163

Ivy2.0 SGA

(3.13)

CFS

(2.86)

GGA

(2.4)

BASE

(1.6)

0.007 0.271

Jedit4.2 GGA

(2.96)

CFS

(2.83)

SGA (2.2) BASE (2) 0.107 0.136

Small

Projects

Log4j1.0 SGA

(3.46)

GGA

(2.83)

CFS

(2.06)

BASE

(1.63)

0.001 0.225

Log4j1.1 GGA

(3.26)

SGA

(2.40)

CFS (2.4) BASE

(1.93)

0.039 0.186

Synapse1.1 CFS

(3.06)

SGA

(2.66)

GGA

(2.13)

BASE

(2.13)

0.001 0.21
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ROC-AUC Rank 1 Rank 2 Rank 3 Rank 4 p-value Kendall C

Synapse1.2 GGA

(3.13)

BASE

(2.73)

CFS

(2.43)

SGA (1.7) 0.019 0.221

Jedit3.2 GGA

(2.96)

BASE

(2.83)

CFS

(2.33)

SGA

(1.86)

0.076 0.153

Table 9.18: Friedman Rankings of Feature Selection Techniques with respect to Balance

Balance Rank 1 Rank 2 Rank 3 Rank 4 p-value Kendall C

Bal O GGA

(2.68)

BASE

(2.53)

SGA

(2.38)

CFS

(2.38)

0.051 0.013

Bal L GGA

(3.30)

BASE

(2.58)

SGA

(2.05)

CFS

(2.05)

0.000 0.152

Bal M SGA

(2.56)

CFS

(2.56)

BASE

(2.52)

GGA

(2.34)

0.644 0.007

Bal S GGA

(2.64)

BASE

(2.52)

SGA

(2.41)

CFS

(2.41)

0.596 0.008

Large

Projects

Ant1.7 GGA

(3.40)

SGA

(2.20)

CFS

(2.20)

BASE

(2.20)

0.011 0.245

Xalan2.6 GGA

(3.00)

BASE

(2.80)

SGA

(2.10)

CFS

(2.10)

0.086 0.147

Xalan2.4 GGA

(3.50)

BASE

(2.76)

SGA

(1.86)

CFS

(1.86)

0.000 0.429

Mid-sized

Projects

Jedit4.1 BASE

(2.66)

SGA (2.6) CFS (2.6) GGA

(2.13)

0.601 0.041

Xerces1.3 BASE

(3.00)

SGA

(2.83)

CFS

(2.83)

GGA

(1.33)

0.000 0.407

Jedit4.0 SGA

(2.70)

CFS

(2.70)

GGA

(2.33)

BASE

(2.26)

0.654 0.036

Ivy2.0 GGA

(2.66)

SGA

(2.60)

CFS

(2.60)

BASE

(2.13)

0.582 0.043

Jedit4.2 GGA

(3.26)

BASE

(2.53)

SGA

(2.10)

CFS

(2.10)

0.028 0.202

Small

Projects

Log4j1.0 GGA

(2.80)

BASE

(2.53)

SGA

(2.33)

CFS

(2.33)

0.682 0.033

Log4j1.1 SGA

(2.76)

CFS

(2.76)

GGA

(2.50)

BASE

(1.96)

0.212 0.1

Synapse1.1 BASE

(2.93)

SGA

(2.36)

CFS

(2.36)

GGA

(2.33)

0.473 0.056
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Balance Rank 1 Rank 2 Rank 3 Rank 4 p-value Kendall C

Synapse1.2 GGA

(3.00)

BASE

(2.40)

SGA

(2.30)

CFS

(2.30)

0.334 0.076

Jedit3.2 BASE

(2.80)

GGA

(2.60)

SGA

(2.30)

CFS

(2.30)

0.615 0.04

Table 9.19: Friedman Rankings of Feature Selection Techniques with respect to G-Mean

G-Mean Rank 1 Rank 2 Rank 3 Rank 4 p-value Kendall C

GM O GGA

(2.68)

BASE

(2.52)

SGA

(2.39)

CFS

(2.39)

0.053 0.013

GM L GGA

(3.33)

BASE

(2.53)

SGA

(2.06)

CFS

(2.06)

0.000 0.24

GM M SGA

(2.54)

CFS

(2.54)

BASE

(2.52)

GGA

(2.38)

0.829 0.004

GM S GGA

(2.60)

BASE

(2.51)

SGA

(2.44)

CFS

(2.44)

0.813 0.004

Large

Projects

Ant1.7 GGA

(3.40)

BASE

(2.20)

SGA

(2.20)

CFS

(2.20)

0.011 0.245

Xalan2.6 GGA

(3.20)

BASE

(2.60)

SGA

(2.10)

CFS

(2.10)

0.042 0.182

Xalan2.4 GGA

(3.40)

BASE

(2.80)

SGA

(1.90)

CFS

(1.90)

0.000 0.542

Mid-sized

Projects

Jedit4.1 SGA

(2.60)

BASE

(2.60)

CFS

(2.60)

GGA

(2.13)

0.601 0.041

Xerces1.3 BASE

(3.00)

SGA

(2.83)

CFS

(2.83)

GGA

(1.33)

0.000 0.407

Jedit4.0 SGA

(2.70)

CFS

(2.70)

GGA

(2.33)

BASE

(2.26)

0.654 0.036

Ivy2.0 GGA

(2.86)

SGA

(2.50)

CFS

(2.50)

BASE

(2.13)

0.442 0.06

Jedit4.2 GGA

(3.26)

BASE

(2.53)

SGA

(2.10)

CFS

(2.10)

0.028 0.202

Small

Projects

Log4j1.0 GGA

(2.80)

BASE

(2.53)

SGA

(2.33)

CFS

(2.33)

0.682 0.033

Log4j1.1 SGA

(2.90)

CFS

(2.90)

GGA

(2.23)

BASE

(1.96)

0.068 0.158

Synapse1.1 BASE

(2.93)

SGA

(2.36)

CFS

(2.36)

GGA

(2.33)

0.473 0.056
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G-Mean Rank 1 Rank 2 Rank 3 Rank 4 p-value Kendall C

Synapse1.2 GGA

(3.13)

SGA

(2.30)

CFS

(2.30)

BASE

(2.26)

0.148 0.119

Jedit3.2 BASE

(15.00)

GGA

(5.35)

SGA

(3.00)

CFS

(0.14)

0.148 0.119

ROC-AUC Analysis for Friedman Rankings:

For ROC-AUC, when large and small projects are considered, as evident from Table

9.17, GGA emerged as the best case for model development with the BASE as the lowest

ranker but in mid-sized projects, CFS outperformed the other techniques. However, when

all projects are considered together, then GGA performance was statistically better than

other techniques. FS has improved the defect prediction capability of the models as the

BASE case has the lowest Friedman rank. Even when size categories are looked upon,

GGA and BASE are statistically better in all three categories. Though CFS results were

better than GGA in mid-sized projects, still overall GGA scored the highest rank. The

reason behind this is the minor difference between their mean ranks.

For mid-sized projects, ROC-AUC mean ranks for CFS and GGA are 2.74 and 2.66 re-

spectively. P–values are also less than 0.05, thus we refute the null hypothesis and ascertain

that results are statistically significant at α = 0.05. Models built using the evolutionary FS

technique GGA are statistically proven to be the best predictors. There exists a statistical

difference but low Kendall C indicates that although there is a significant difference, it is

only a small difference. The range of Kendall C is from 0 to 1.

Now, considering individual datasets, approximately 70% of datasets were classified

as the best using evolutionary techniques, either GGA or SGA. Except for Xalan2.6 and

Jedit4.2, all the rankings are statistically significant. The significant p-values are less

than 0.05 and are in bold typeface. GGA attained the first rank in seven datasets, out of

which one dataset illustrates comparable performance amongst all the cases as its p-value

is greater than 0.05. GGA also achieved the second rank for three more datasets. SGA was
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also able to secure the first position for two datasets. Though in Xalan2.6, the BASE comes

first, but as the p-value is 0.141, there is no statistical difference between its performance

and the performance of GGA/SGA/CFS. Analysis of Friedman rankings of FS techniques

and BASE ensure the positive impact of evolutionary techniques in constructing effectual

ML models for defect prediction when ROC–AUC measure is used to assess the models’

performances.

Balance and G-Mean Analysis for Friedman Rankings:

The mapping of Table 9.18 and Table 9.17 results in the discovery of a similar pattern

in the Friedman rankings of FS techniques and their significance. Rankings ensure that

GGA has remarkable performance when all projects are taken together and also for large

and small projects. For mid-sized projects, another evolutionary technique SGA is ranked

the best. So, overall we can conclude their fitness to be the best if the p-value is less than

0.05. The p-value is remarkably lower than 0.05 for large projects, so statistically; Balance

and G-Mean values depicting ML performances are greatest with the application of GGA.

There is an increase in predictive capabilities of ML models evaluated with G-Mean and

Balance when evolutionary FS techniques are applied for small, mid-sized, large projects,

and even for overall projects. But as the p-value is less than 0.05, their performances

are not statistically better. All the FS techniques are comparable with the BASE case,

except for large projects. Their overall p-value is 0.051 and 0.053 for Balance and G-Mean

respectively. Therefore, the results are 94.9% and 94.7% significant for Balance and G-

Mean respectively. Based on this, performance variations can be considered approximately

valid.

Discussing the individual datasets’ performances, defects of all datasets from large

projects are best classified using GGA. Performances of models constructed with GGA

for large projects are statistically better than the BASE and other FS techniques. Moreover,

for mid-sized and small projects, models that incorporated evolutionary FS have performed

non significantly better than those BASE and CFS-based models.
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Wilcoxon Signed-rank Test Results:

To verify the results acquired by the Friedman test, this study executed post-hoc analy-

sis. Wilcoxon signed-rank test tends to uncover whether a particular FS technique X that is

ranked the best in Friedman testing is statistically better than others by performing pairwise

comparisons. The null hypothesis is set as that there is no statistical difference between the

performance of X and other FS techniques including the BASE case and is tested for 95%

significance. Only the performance of X and another FS technique or BASE is compared

at a time. The test was evaluated on the results of all the 15 ML techniques. For over-

all projects, large projects, and small projects, the best prediction models were based on

GGA, therefore Wilcoxon signed-rank test is conducted concerning GGA for performance

measures- ROC-AUC, Balance, and G-Mean. For mid-sized projects, the Wilcoxon test is

conducted for CFS regarding ROC-AUC and SGA on Balance and G-Mean both. Table

9.20 states the Wilcoxon signed-rank results for ROC-AUC, G-Mean, and Balance.

• ROC-AUC Analysis: For mid-sized projects, CFS was ranked no. 1 but there was a

minor difference in their mean ranks. So Wilcoxon signed-rank test will help us to

determine the effectiveness of resultant models and will assist in establishing whether

there is an actual difference between the two techniques or not. According to results

shown in Table 9.20, ROC-AUC results are very encouraging as GGA is better than

the BASE for overall considered datasets. GGA is significantly better than CFS

and SGA for all projects and large projects. For small projects, ROC-AUC values

have significantly increased than BASE performance values but have a similar impact

as CFS. About mid-sized projects, though CFS performed significantly well when

Friedman ranks were calculated but it failed to distinguish amongst CFS, GGA, and

BASE when Wilcoxon signed-rank test is performed to confirm its usefulness. Even

though ROC-AUC values for mid-sized projects illustrated comparable performances

in all four cases, we reject the null hypothesis based on the overall performance of
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projects for ROC-AUC and advocate researchers to employ GGA, an evolutionary

FS technique, for selecting the important features before building the ML model.

• Balance and G-Mean Analysis: Balance and G-Mean values project the related be-

havior in all pairs for overall, large and small projects. As can be seen from Table

9.20, p-values are significant only for large projects. In large projects, therefore,

GGA has boosted the model performances with a significant increase in Balance and

G-Mean values. However, when comprehending the results of mid-sized projects,

their behaviors differ and another evolutionary technique SGA gave better results.

Considering Balance, when models of mid-sized projects were compared on basis of

SGA (first ranker in Friedman test) values with others, SGA appeared to be highly

significant than CFS and BASE with a p-value of 0.000 for both cases. Balance and

G-Mean performances of models for small projects are comparable with each other

and have illustrated a non-significant increase in model prepared using GGA.

Table 9.20: Wilcoxon signed-rank results for projects in terms of ROC-AUC, Balance, and
G-Mean

Case GGA BASE GGA SGA GGA CFS

AUC O 0.000 0.001 0.024

AUC L 0.000 0.037 0.001

AUC S 0.000 0.058 0.068

Bal O 0.822 0.003 0.170

Bal L 0.008 0.007 0.000

Bal S 0.85 0.255 0.457

GM O 0.361 0.160 0.160

GM L 0.001 0.000 0.000

GM S 0.172 0.056 0.056

- CFS - BASE CFS - GGA CFS - SGA

AUC M 0.545 0.562 0.045

- SGA-BASE SGA-GGA SGA-CFS

Bal M 0.000 0.066 0.000

GM M 0.325 0.172 0.172
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9.4.4 RQ4: Which ML technique performs the best with the best FS

technique for the classification of software defects?

This study evaluates SDP models developed using 15 ML techniques of five different cate-

gories. It is important to investigate the predictive capabilities of various ML techniques to

ascertain the model efficacy. Tables 9.5, 9.6, and 9.7 states the ROC-AUC values for small,

mid-sized, and large project. Balance values obtained for all ML techniques to BASE,

GGA, SGA, and CFS are depicted in Tables 9.8, 9.9, and 9.10 . Tables 9.11, 9.12, and 9.13

portrays the G-Mean values for all ML techniques. These tables were discussed in detail in

subsection 9.4.2 considering the feature selection techniques. Results were analyzed based

on four scenarios: BASE, GGA, SGA, and CFS. The cumulative analysis was performed

for size-based datasets. As ROC-AUC proved to be a more promising measure when com-

pared to FS techniques, so to find the best performer in ML techniques, we will restrict our

analysis to ROC-AUC only. Balance and G-Mean values for ML techniques can be easily

evaluated by given tabular statistics in Tables 9.8 - 9.13.

ROC-AUC Analysis:

The maximum ROC-AUC value is gained by small projects in all four cases. In the

BASE, the maximum ROC-AUC value of 0.85 is attained by LR for the Jedit3.2 project.

, On comparing GGA performance also, LR gave the best ROC-AUC value of 0.872 for

Log4j1.1. In SGA, Synapse1.2 has the maximum ROC-AUC value of 0.848 when classified

with LB. Naı̈ve Bayes shows its capability to predict defects in Log4j1.1 with an ROC-AUC

value of 0.86. When all the datasets are considered cumulatively, we use median values to

assess the machine learner’s performance. The median value is almost the same in all the

four cases of the BASE, GGA, SGA, and CFS and is approximately 0.80. In the BASE, the

median ROC-AUC value is the best for LMT (0.808). RSS, MLP, and Logistic illustrate

the maximum median values for GGA, SGA, and CFS respectively.

This section compares the performance of different ML techniques that are used for
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developing SDP models amongst themselves with aid of statistical techniques. We exploit

only ROC-AUC to find the Friedman rankings of 15 ML techniques as it is a threshold

independent stable performance measure used in this study. The comparative performance

was evaluated dataset-wise. Furthermore, the Wilcoxon signed–rank test was performed

with α = 0.05 to statistically evaluate the compared results. Friedman rankings with the

p-value for ML techniques and their mean ranks (in brackets) are tabulated in Table 9.21.

Ranks are calculated for the BASE, GGA, SGA, and CFS to explore which techniques

perform better with the FS technique selected or when no FS is done, Base.

Table 9.21: Friedman Rankings for ML Techniques with p-values in terms of ROC-AUC

BASE GGA SGA CFS Overall Large Mid-

sized

Small

Rank 1 RSS

(12.38)

LR

(11.00)

KStar

(12.65)

LR

(12.15)

RSS

(11.18)

RSS

(12.29)

RSS

(11.55)

SL

(10.47)

Rank 2 SL

(11.57)

RSS

(10.80)

LB

(10.88)

RSS

(11.80)

LB

(10.51)

Bag

(12.00)

LB

(10.82)

KStar

(10.22)

Rank 3 LMT

(11.34)

LB

(10.34)

ICO

(9.92)

NB

(10.92)

LR

(10.26)

LB

(10.83)

LR

(10.45)

RSS

(10.15)

Rank 4 Bag

(11.15)

SL

(9.96)

RSS

(9.73)

LMT

(10.88)

Bag

(10.23)

LR

(10.29)

LMT

(10.4)

LR

(10.07)

Rank 5 LB

(10.5)

Bag

(9.84)

Bag

(9.34)

SL

(10.84)

LMT

(10.06)

LMT

(9.62)

NB

(9.87)

Bag

(10.05)

Rank 6 LR

(10.42)

KStar

(9.69)

ABM1

(9.23)

Bag

(10.57)

SL

(9.80)

SL

(9.41)

SL

(9.37)

LB

(10.02)

Rank 7 ABM1

(9.69)

ICO

(9.07)

LMT

(8.96)

LB

(10.34)

KStar

(9.45)

ICO

(9.20)

Bag

(9.35)

LMT

(10.00)

Rank 8 NB

(9.19)

LMT

(9.07)

MLP

(8.26)

MLP

(9.15)

NB

(9.01)

ABM1

(8.83)

KStar

(9.25)

NB

(9.02)

Rank 9 ICO

(8.00)

NB

(8.76)

LR (7.5) ICO

(8.00)

ICO

(8.75)

KStar

(8.50)

ICO

(9.10)

ABM1

(8.47)

Rank 10 KStar

(8.00)

MLP

(8.69)

NB

(7.19)

KStar

(7.46)

ABM1

(8.36)

MLP

(7.83)

MLP

(9.05)

ICO

(8.12)

Rank 11 MLP

(6.46)

ABM1

(8.30)

IBk

(7.07)

ABM1

(6.23)

MLP

(8.14)

NB

(7.58)

ABM1

(7.97)

MLP

(7.42)
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BASE GGA SGA CFS Overall Large Mid-

sized

Small

Rank 12 PART

(4.46)

IBk

(5.65)

SL

(6.84)

PART

(4.76)

PART

(4.73)

PART

(5.66)

IBk

(4.05)

IBk

(5.92)

Rank 13 IBk

(2.69)

PART

(4.76)

PART

(4.92)

J48

(2.80)

IBk

(4.50)

J48

(3.58)

PART

(4.02)

PART

(4.87)

Rank 14 J48

(2.42)

J48

(2.23)

RT

(3.76)

IBk

(2.61)

J48

(2.78)

IBk

(2.91)

J48

(2.57)

RT

(2.62)

Rank 15 RT

(1.69)

RT

(1.76)

J48

(3.69)

RT

(1.42)

RT

(2.16)

RT

(1.41)

RT

(2.15)

J48

(2.52)

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LR is statistically found better ML technique to construct models when GGA or CFS

is to be used by researchers. Results are true with a confidence level of 95% as for every

column in Table 9.21, the p-value is 0.000. Focusing on the size of projects, RSS is con-

sidered the first ranker ML for the large, mid-sized, and overall situation. SL scored the

highest rank for small-sized projects. However, the worst ranks are achieved by RT, J48,

IBk, and PART. Now, as Friedman test results are found significant, we need to perform

the Wilcoxon signed-rank test to do a pairwise comparison. The null hypothesis is set as

that there is no difference in RSS and other ML techniques for overall, large, and mid-sized

projects. For small projects, the null hypothesis states that there is no difference between

the performance of SL and other ML techniques.

Wilcoxon signed-rank test results are exemplified in Table 9.22 with p-values and sig-

nificant pairs are boldfaced. The null hypothesis is rejected for the pairs that are in bold as

their p-value is less than 0.05.

Table 9.22: Wilcoxon signed-rank results for RSS (Overall, Large, Mid-sized) and for SL
(Small projects)

RSS

with

NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT

Overall 0.003 0.467 0.27 0.004 0.000 0.000 0.001 0.000 0.316 0.000 0.15 0.000

Large 0.002 0.109 0.050 0.028 0.002 0.002 0.002 0.003 0.724 0.002 0.050 0.002

290



Discussion

RSS

with

NB LR SL LB MLP IBk KStar ABM1 Bag ICO LMT RT

Mid-

sized

0.004 0.271 0.076 0.035 0.015 0.000 0.042 0.001 0.086 0.001 0.073 0.000

SL

with

NB LR LB MLP IBk

KStar ABM1

Bag ICO LMT RT RSS

Small 0.038 0.247 0.094 0.005 0.000 0.108 0.025 0.351 0.004 0.213 0.000 0.145

When all the projects are considered together, then RSS is statistically better than eight

ML techniques. For large and midsized projects, RSS is statistically better than ten and

eight ML techniques respectively. When SL is checked for small projects, SL is observed

to have comparable performance with four more ML techniques. RSS technique generates

random subtrees with a different subset of features and projects the subset that gives the

best ROC-AUC value as an optimal solution. This is one of the possible reasons why RSS

outperformed the other ML techniques. LR and Bag are as good as RSS for all scenarios.

RSS and Bag are ensemble techniques whereas LR is a statistical technique.

For small datasets, SL, LR, LB, KStar, Bag, LMT, and RSS are the best performers.

Out of these, the first three are statistical ML techniques, KStar is the nearest neighbor

based algorithm, and the remaining three are ensemble-based learners.

9.5 Discussion

To the best of our knowledge, no one has explored GGA and SGA as the candidate for

feature selection for the software engineering datasets in the literature to date. Therefore,

in this chapter GA based FS techniques are used to assess their impact on defect predic-

tion. The most acceptable CFS is included in this study to provide a fair comparison. The

objective of the study was to ascertain the impact of evolutionary FS techniques on the

predictive capability of ML techniques. Datasets were categorized as small, mid-sized, and

large datasets based on the number of classes. We provide an in-depth analysis of results
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emphasizing the usage of GGA for FS to remove unnecessary features. It is empirically

validated that GGA performs better than CFS and does improve the performance by elimi-

nating unnecessary and uncorrelated features from the original datasets.

A large number of ML techniques are evaluated and results based on ROC-AUC, Bal-

ance, and G-Mean indicate that ensemble techniques-RSS, Bag, and statistical technique-

LR statistically outperformed other ML techniques in all the size categories of datasets.

Results validate the superiority of GGA over CFS when classifying large projects in terms

of ROC-AUC, Balance, and G-Mean. Furthermore, the overall performance of GGA also

emerged as statistically better than CFS with ROC-AUC assessment. This study encourages

researchers and software practitioners to explore evolutionary FS for SDP and provides

them an insight to select the ML technique wisely. Despite the comparable performance of

G-Mean and Balance, we advocate the use of ROC-AUC for performance assessment as it

is versatile and threshold independent. It gave better prediction results for software defects

than G-Mean and Balance.

Besides, this study provides developers and software practitioners the guideline for se-

lecting the appropriate FS technique for their application. They can decide the FS technique

based on the importance of IQAs in their software. Preferred ML techniques for effective

SDP are RSS, NB, LB, MLP, IBk, ICO, and RT. For small projects, SL also outperformed

LR, LB, KStar, Bag, LMT, and RT.

Future direction includes replication of the study with inter-project or cross-project

validation. Resampling methods can be incorporated to further reduce the imbalanced

classification problem before performing evolutionary feature selection. Research studies

lack benchmarking for evolutionary feature selection. Therefore, more studies are required

to be contributed by researchers that include datasets belonging to projects of different

programming languages.
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Chapter 10

Conclusion

10.1 Summary of the Work

Software Quality Assurance is an important activity that need to be carried out with limited

resources. Changes in software are inevitable and they led to increase in the complexity

of the software. The modifications give rise to the possibilities of defects which may lead

to failure of software systems. Software Defect Prediction aims at identifying the software

parts that are vulnerable to be defective. Exposing of such defect-prone areas in early stages

of software development tends to save time and resources. Software metrics are exploited

in OO software for predictive modelling. The impact of internal quality attributes like co-

hesion, coupling etc on the defect proneness is established and this assists in unveiling the

complex part of software in design phase which may have some defects. Cost involved in

rectifying these defects increases exponentially if they remained untreated and gets propa-

gated in coding or implementation phase. Additionally, imbalanced ratio of defective and

non-defective classes in software makes it difficult for model to train and learn properly.

The primary aim of the work conducted in this thesis is to construct the SDP models which

aids in timely delivery of software with reliable quality by efficiently allocating limited
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software resources.

A wide array of ML techniques and SBTs have been investigated in this work for effec-

tive identification of defective classes. Software data is mostly imbalanced in the real world

and the accurate results are desirable for the predictive modelling in software engineering.

Imbalanced data, if not treated, can lead to wrong predictions and incorrect model gener-

ation and it will adversely affect the company profile. This thesis work analyzes various

imbalance learning methods like resampling methods, cost-sensitive learning, and hybrid

ensemble methods in this direction. Moreover, predictive modelling with large number of

software metrics may hamper the model evaluation process. Therefore, in this work feature

selection techniques are used to recognize the most relevant and important features that are

not redundant and are highly correlated with defect. CFS as well as evolutionary feature

selection techniques are assessed for constructing the SDP models. Important features are

identified and impact of OO metrics on defect prediction is established. This enlightens the

researchers and developers to concentrate on those features while designing the software.

The work is manifested as organized empirical evaluations with easy interpretations and

take-aways for researchers and software practitioners.

Software defect prediction is one of the dominant research field. Number of systematic

literature reviews exist in literature that covers the classification techniques involved and

various issues in SDP. Catal [95] found only two studies related to imbalanced data prob-

lem in the time period of 1990-2009. Since imbalanced data problem has recently gained

the attention of researchers, this area requires benchmark studies and the guidelines. With

no supporting survey in literature pertaining to the imbalanced data problem, we performed

a literature review in which we systematically reviewed 48 primary studies in the period

from January 2000 to September 2020 that address the imbalanced classification issue. The

selected studies are limited to binary defect classification only. The data is extracted from

these studies and analyzed with respect to various RQs framed to cater to the need for the

systematic review. These studies were analyzed to answer various RQs with respect to the
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type of variables used for developing the models, categories of various data analysis tech-

niques used for developing models, datasets used, the predictive performance of various

techniques (most popular category of data analysis techniques found), validation methods

used for validation of the models, the statistical tests used for results verification and the

threats encountered and addressed model development.

We next presented the research methodology followed in the consequent chapters in

the thesis. We summarized the research questions addressed in this work along with the

brief description of datasets.Descriptive statistics are included for all the datasets. A de-

scription of the various variables involved in the studies along with a specification of all

the classification techniques used in the thesis is presented. Data need to be preprocessed

for better model development. Details of feature selection techniques that are used in this

work are included. Imbalanced nature of datasets may lead to wrong predictions, there-

fore, number of imbalance learning methods are involved in the formulation of this work.

We provided details of all these methods with their parameter settings. Models are build

using ten-fold cross-validation and the results are evaluated based on stable performance

measures: ROC-AUC, BAlance and G-Mean. We provided the description of the valida-

tion methods and performance measures that are used to assess the efficacy of the models.

Conduction of statistical tests is an important part of any research validation and we also

employed non-parametric tests in each chapter to validate the results statistically. Details

of these statistical tests are also included for the understanding.

While developing effective ML models we first established the relationship of OO met-

rics and dependent variable of the study. Coupling and cohesion metrics were found to be

the highly related to the dependent variable ’Defect’. LCOM, Ca and RFC metrics were

evaluated as the most significant predictors of defect. We built ML models for imbalanced

data with 15 ML techniques. Results were improved with engagement of resampling meth-

ods. Oversampling methods as well as undersampling methods were explored and results

were analyzed using ROC-AUC, G-Mean, Balance, and Sensitivity. The results evalu-
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ated using these stable measures indicate the effectiveness of resampling methods to deal

with imbalanced classification problem. Experimental results confirmed that oversampling

methods performed better than undersampling methods for detecting defects. ROS method

exhibited the best prediction capability and the results were further statistically validated.

From the varied set of ML techniques, ensemble methods- ABM1, Bag, RT and RSS out-

performs the other ML techniques. Their performances were comparable with the nearest

neighbor classifiers- KStar and IBk.

As the results of models developed using ML techniques and ensemble methods were

found suitable for imbalanced classification, we explored more of ensemble methods based

on AdaBoost and Bagging with 15 datasets. Boosting-based and bagging-based ensemble

methods were used to develop SDP models for imbalanced data and the results advocate

the effectiveness of hybrid ensemble methods. Bagging-based hybrid ensembles performed

better than boosting-based hybrid ensembles. Amongst bagging-based ensembles, Under-

bagging2 performed best with median G-Mean of 0.72, median Balance of 71.15, and me-

dian ROC-AUC value of 0.72. Underbagging secured maximum median Sensitivity value

of 0.72. UBAG2, UBAG, SMTBAG, and MSBAG showcased better defect prediction ca-

pability than all others and have comparable performances with each other. In the category

of Boosting based ensembles, RUSBoost outperformed with median Sensitivity value of

61.76, median G-Mean of 0.70, median Balance of 68.83, and median ROC-AUC value of

0.70.

Imbalanced classification is effectively handled by the resampling methods in previ-

ous studies. We further tried to solve the imbalanced classification issue at algorithm level

by addressing cost-sensitivity. All ML techniques assigns equal costs to False Negatives

and False Positives. Performance of ML techniques is enhanced in terms of robust perfor-

mance measures by penalizing the misclassification cost of defective classes. Five meta

cost learners- MC, 10, MC15, MC20, MC25, and MC30 were employed for tackling im-

balanced data. 56.48% of cost-sensitive models have a Balance value greater than 0.65
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as compared to 1.85% of cost-insensitive models. 60.19% of cost-sensitive models have a

Balance value greater than 0.65 as compared to 32.41% of cost-insensitive models. 52.78%

of cost-sensitive models have a Balance value greater than 65 as compared to 19.44% of

cost-insensitive models. 51.85% of cost-sensitive models have a Balance value greater

than 0.75 as compared to 43.52% of cost-insensitive models. The performance of cost-

insensitive models and cost-sensitive models was compared with help of Wilcoxon signed-

rank test and results show significant difference in terms of Sensitivity, G-Mean, Balance

and ROC-AUC. Friedman test was incorporated to find the best ML performer with cost-

sensitive learning. Bag, an ensemble method, again emerged as the best ML technique for

defect prediction in imbalanced data.

Through systematic literature review we found very few defect prediction studies that

used search-based techniques. We explored sixteen SBTs to find their competency to gen-

erate effective defect prediction models. BIOHEL achieved the mean G-Mean value of

0.63, mean Balance value of 61.83, and mean ROC-AUC value of 0.63. The performance

of SBTs are comparable with ML techniques. Friedman test and Wilcoxon signed-rank

test were applied to find out the effective subset of SBTs that can be used for predictive

modelling in SDP. UCS, BIOHEL, CHC, GA ADI, GA INT, MPLCS, PBIL, and SGA

emerged as better SBTs statistically and these techniques projected comparable perfor-

mance in terms of G-Mean, Balance, and ROC-AUC. GA variants performed statistically

better than PSO variants. Next, imbalanced classification can be addressed using this iden-

tified subset of SBTs.

As performance of SBTs was found comparable with ML techniques, we provided the

resampling solution for the imbalanced classification with SBTs. To bridge the research

gaps found in literature review, we tried to incorporate resampling methods with SBTs that

performed well in previous work and increased the predictive capabilities of SBT models.

We performed the empirical study with effective experimental setup that involves mul-

tiple runs of SBTs to handle their stochastic behavior, involvement of stable performance

297



Summary of the Work

measures, parameter settings of techniques and rigorous statistical tests. The pairwise com-

parisons of the models developed using the GA INT technique and the other investigated

techniques was evaluated using the Wilcoxon test. It was found that the models developed

using the GA INT technique were statistically better than XCS, MPLCS, and GA ADI.

Performances of UCS, BIOHEL, LDWPSO, and CPSO were found to be comparable with

GA INT for G-Mean, Balance and ROC-AUC. With resampling methods, performance of

PSO variants also improved for classifying defects in imbalanced data. With GA INT, SMT

achieved mean G-Mean value of 0.72, mean Balance value of 71.91, and mean ROC-AUC

value of 0.73. When all SBTS are considered, SLSMT method was concluded the best

resampling methods based on the Friedman ranks when overall performance is considered.

On pair-wize comparison of SLSMT with other resampling methods, we concluded that

the performances of SLSMT, ADSYN, RUS, SMT and NCL are statistically comparable.

As SBTs were found to be effective for model development, we also explored SBTs

for feature selection. Genetic algorithm variants constructed reliable SDP models, hence

we employed variant of this evolutionary technique for feature selection and compared the

results with the well established and acceptable CFS technique. In this work, we grouped

the datasets into three categories (small, mid-sized, and large) denoting the size based on

the number of classes in it. Models were developed using features generated by GGA,

SGA, and CFS and their performances are compared for 15 ML techniques using Sensitiv-

ity, G-Mean, Balance, and ROC-AUC. Friedman Test followed by Wilcoxon signed-rank

test was conducted to rank the models according to their performances and to perform pair-

wize comparison with the best ranker. GGA-based models performed statistically better

than others for large projects in terms of ROC-AUC, Balance, and G-Mean. Consider-

ing all the datasets together, GGA-based models were significantly better than others in

terms of ROC-AUC. GGA was better than CFS for small projects but not significantly

in terms of stable performance measures. For mid-sized projects,CFS performed well in

terms of ROC-AUC and SGA performed better in terms of Balance and G-Mean. SGA was
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significantly better than CFS with Balance values for mid-sized projects. This empirical

investigation ascertains the impact of evolutionary FS on ML-based SDP models. SBTs

are comparatively less explored classification techniques and we utilized them for selecting

useful features that help in better predictions of software defects.

10.2 Application of the Work

The empirical investigation conducted in the thesis would aid the software practitioners and

researchers in the following ways:

• The work provides a well-defined and systematic approach for the development of

effective software defect prediction models. Software practitioners and researchers

can follow it for further experiments or replication of existing experiments.

• Identification of subset of object-oriented metrics useful for defect prediction will

assist design engineers to focus on important aspects of the software. They can de-

sign the software better once they understand the intricate relationship between the

internal quality attributes and defect proneness.

• Considering that the multiple classification techniques are evaluated in the research

work, it provides guidelines to researchers for selecting an appropriate modelling

technique for defect prediction task.

• This work corroborates the employment of resampling methods, metacost learners

and hybrid ensemble methods for tackling the imbalanced classification problem.

The extensive model development and validation in this direction provides the em-

pirical framework to software developers to wisely select the solution they desire for

delivering mature and reliable software systems.
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• This work enables project managers to strategically plan effective resource allocation

for assessment and improvement of existing products and practices.

• Recognition of defect-prone areas in early stages of software development lifecycle

helps software testers to utilize their assets efficiently. The early planning and execu-

tion of their course of action will expedite the development process. Testing efforts

in the weak spots lead to in-time defect removal.

• Identification of design and coding defects in early stages can lead software practi-

tioners to efficacious allocation of limited resources, timely release of better software

and higher customer satisfaction.

10.3 Future Directions

The work carried out in this thesis makes a conclusive contribution in providing strong

background for selection of SDP models. However, it opens several research possibilities

for the future.

• We have used search-based techniques for the model development and feature selec-

tion. More studies need to be conducted in both areas, specially feature selection,

with the techniques and datasets other than those used in this study.

• In this thesis, we explored resampling methods with search-based methods for effec-

tive defect prediction modelling. The future research should leverage other imbal-

ance learning methods combined with search-based techniques.

• In addition to machine learning techniques and search-based techniques, hybridized

techniques can be investigated in order to improve the performance of defect predic-

tion models.
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• This work focused on binary defect classification problem. Future research should

be conducted to extend defect classification as multiclass problem by exploring the

impact of defect severity.

• We built SDP models based on different resampling methods. In literature the ef-

fect of these parameters on the overall performance measure are little known and

explored. We intend to perform a detailed study of such dependencies analyzing the

defect prediction capabilities of resampling-based models with different parameter

values of resampling methods. Parameter optimization shall result in development of

better SDP models.

• Replication is important in order to examine the set of the same hypothesis in differ-

ent contexts or with the aim to improve the experiment and validate the findings of

previous experiments. Data collected through replications can be used to refute or

accept well-formed theories and increase the evidence on which software practition-

ers and researchers can base their decisions. Therefore, future studies may replicate

our experiments to yield generalized conclusions.
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Appendix A

Datasetwize Values of Performance

Measures achieved with NS and

Resampling Methods

Table A.1: Tomcat6.0 ROC-AUC Values

Tomcat6.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.78 0.78 0.79 0.77 0.77 0.8 0.79 0.78 0.73 0.86 0.68

LR 0.8 0.8 0.81 0.8 0.8 0.82 0.82 0.8 0.75 0.86 0.69

SL 0.81 0.8 0.81 0.8 0.8 0.82 0.82 0.8 0.77 0.85 0.68

LB 0.79 0.83 0.84 0.81 0.86 0.88 0.88 0.75 0.68 0.88 0.62

MLP 0.78 0.83 0.81 0.79 0.82 0.88 0.87 0.75 0.71 0.86 0.59

IBk 0.64 0.83 0.79 0.78 0.93 0.95 0.95 0.68 0.67 0.8 0.63

Kstar 0.72 0.88 0.86 0.78 0.96 0.99 0.98 0.72 0.64 0.85 0.64

ABM1 0.73 0.91 0.9 0.83 0.97 0.99 0.96 0.71 0.7 0.86 0.61

BAG 0.77 0.93 0.91 0.84 0.97 0.99 0.97 0.76 0.74 0.88 0.68

ICO 0.81 0.83 0.84 0.82 0.85 0.88 0.88 0.74 0.71 0.86 0.61

LMT 0.81 0.85 0.84 0.79 0.93 0.96 0.91 0.78 0.75 0.83 0.69

RT 0.58 0.84 0.8 0.77 0.92 0.96 0.9 0.64 0.63 0.76 0.57

RSS 0.78 0.91 0.9 0.85 0.96 1 0.97 0.79 0.74 0.87 0.71

PART 0.75 0.86 0.85 0.8 0.91 0.96 0.92 0.71 0.67 0.8 0.6
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Tomcat6.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.67 0.86 0.81 0.81 0.92 0.95 0.9 0.66 0.68 0.71 0.6

Table A.2: Tomcat6.0 Balance Values

Tomcat6.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 55.6 58.27 57.18 56.29 51.87 56.58 56.78 60.47 53.95 64.96 50.34

LR 42.13 73.79 73.61 72.67 51.7 75.74 73.78 66.26 60.81 58.64 48.7

SL 38.47 73.26 73.04 72.32 51.03 76.58 73.74 65.36 63.9 54.97 45.33

LB 43.06 73.12 75.31 74.46 60.5 80.24 79.38 67.67 60.44 59.56 52.32

MLP 36.63 77.83 75.79 74.6 61.02 81.99 81.23 65.7 60.33 62.32 48.45

IBk 45.53 81.63 77.34 75.54 93.06 94 91.89 64.16 64.78 73.11 58.92

Kstar 41.17 81.25 79.39 77.13 91.38 90.48 90.43 61.35 60.83 57.71 55.2

ABM1 44.78 83.85 82.88 77.39 93.61 94.99 91.41 65.99 61.02 62.28 53.74

Bag 43.04 86.08 84.67 78.73 86.48 94.35 90.88 68.2 62.35 64.14 52.14

ICO 40.3 73.19 75.31 74.63 60.49 80.31 79.38 65.14 62.39 62.32 51.08

LMT 38.47 81.52 80.05 75.6 90.76 92.73 88.98 65.27 62.72 65.95 47.15

RT 45.57 84.01 79.62 75.77 91.62 94.09 90.11 61.66 60.64 70.3 54.03

RSS 32.05 83.7 83.39 76.7 79.29 94.56 90.07 64.16 61.88 54.08 50.1

PART 35.72 78.32 77.58 73.67 84.95 91.66 86.79 66.18 58.29 59.49 50.97

J48 33.88 82.66 79.64 76.69 87.7 92.82 89.03 64.77 59.57 62.31 49.87

Table A.3: Tomcat6.0 G-Mean Values

Tomcat6.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.59 0.61 0.6 0.59 0.55 0.6 0.6 0.63 0.56 0.7 0.52

LR 0.42 0.75 0.75 0.73 0.55 0.77 0.75 0.69 0.63 0.64 0.5

SL 0.36 0.74 0.74 0.73 0.54 0.77 0.75 0.69 0.66 0.6 0.46

LB 0.44 0.73 0.76 0.75 0.64 0.8 0.79 0.69 0.62 0.65 0.54

MLP 0.32 0.78 0.76 0.75 0.65 0.82 0.81 0.68 0.63 0.68 0.49

IBk 0.46 0.82 0.78 0.76 0.93 0.95 0.93 0.65 0.65 0.77 0.6

Kstar 0.4 0.82 0.8 0.78 0.92 0.93 0.92 0.63 0.62 0.63 0.57

ABM1 0.46 0.84 0.83 0.78 0.94 0.96 0.92 0.67 0.63 0.67 0.56

Bag 0.44 0.87 0.85 0.79 0.88 0.96 0.92 0.7 0.64 0.69 0.54

ICO 0.39 0.73 0.76 0.75 0.64 0.8 0.79 0.66 0.63 0.68 0.52

LMT 0.36 0.82 0.8 0.76 0.91 0.94 0.89 0.68 0.65 0.71 0.48

RT 0.47 0.84 0.8 0.76 0.92 0.95 0.9 0.63 0.62 0.74 0.55

RSS 0.2 0.84 0.83 0.77 0.83 0.96 0.91 0.67 0.63 0.59 0.52

PART 0.3 0.78 0.78 0.74 0.85 0.94 0.87 0.68 0.6 0.64 0.52
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Tomcat6.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.25 0.83 0.8 0.77 0.88 0.94 0.9 0.66 0.62 0.68 0.51

Table A.4: Tomcat6.0 Sensitivity Values

Tomcat6.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.38 0.42 0.4 0.39 0.32 0.39 0.4 0.45 0.36 0.51 0.31

LR 0.18 0.67 0.67 0.66 0.32 0.69 0.67 0.53 0.47 0.42 0.29

SL 0.13 0.66 0.66 0.65 0.31 0.7 0.67 0.52 0.51 0.36 0.23

LB 0.19 0.71 0.72 0.69 0.45 0.81 0.78 0.58 0.48 0.43 0.35

MLP 0.1 0.78 0.74 0.75 0.45 0.85 0.8 0.53 0.45 0.47 0.29

IBk 0.23 0.87 0.83 0.82 0.94 0.99 0.98 0.55 0.57 0.62 0.45

Kstar 0.17 0.89 0.85 0.87 0.9 0.99 0.98 0.48 0.48 0.4 0.39

ABM1 0.22 0.87 0.85 0.85 0.92 0.99 0.94 0.56 0.48 0.47 0.36

Bag 0.19 0.91 0.89 0.85 0.82 0.99 0.95 0.57 0.51 0.49 0.34

ICO 0.16 0.72 0.72 0.69 0.45 0.81 0.78 0.58 0.53 0.47 0.34

LMT 0.13 0.87 0.85 0.8 0.91 0.99 0.93 0.52 0.49 0.52 0.26

RT 0.23 0.87 0.82 0.83 0.92 0.99 0.88 0.51 0.49 0.58 0.42

RSS 0.04 0.87 0.85 0.77 0.71 0.99 0.94 0.51 0.49 0.35 0.3

PART 0.09 0.81 0.85 0.69 0.86 0.99 0.91 0.56 0.43 0.43 0.32

J48 0.06 0.88 0.84 0.84 0.85 0.99 0.93 0.55 0.44 0.47 0.31

Table A.5: Synapse1.0 ROC-AUC Values

Synapse1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.74 0.83 0.85 0.83 0.86 0.88 0.91 0.76 0.73 0.77 0.72

LR 0.72 0.86 0.85 0.83 0.84 0.89 0.91 0.59 0.59 0.75 0.59

SL 0.67 0.82 0.85 0.83 0.83 0.88 0.9 0.75 0.78 0.79 0.69

LB 0.73 0.88 0.89 0.84 0.93 0.94 0.93 0.75 0.76 0.79 0.58

MLP 0.74 0.88 0.88 0.8 0.87 0.94 0.92 0.6 0.74 0.88 0.68

IBk 0.66 0.81 0.81 0.79 0.89 0.94 0.93 0.72 0.73 0.76 0.63

KStar 0.67 0.85 0.88 0.8 0.96 0.98 0.97 0.73 0.76 0.82 0.7

ABM1 0.64 0.91 0.91 0.82 0.95 0.99 0.94 0.79 0.73 0.8 0.56

Bag 0.59 0.9 0.92 0.85 0.96 0.99 0.95 0.79 0.78 0.77 0.63

ICO 0.73 0.88 0.88 0.83 0.93 0.94 0.93 0.74 0.71 0.77 0.59

LMT 0.68 0.88 0.87 0.84 0.92 0.94 0.92 0.75 0.71 0.79 0.61

RT 0.58 0.83 0.85 0.76 0.89 0.95 0.87 0.72 0.68 0.77 0.57

RSS 0.59 0.92 0.9 0.84 0.94 0.99 0.95 0.73 0.79 0.83 0.63

PART 0.52 0.85 0.87 0.82 0.94 0.94 0.9 0.65 0.64 0.61 0.48
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Synapse1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.59 0.84 0.83 0.82 0.9 0.95 0.89 0.65 0.68 0.72 0.52

Table A.6: Synapse1.0 Balance Values

Synapse1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 68.04 80.75 82.01 80.38 67.37 83.87 84.44 74.55 68.01 68.67 67.01

LR 60.17 76.89 77.54 77.39 60.44 81.12 84.05 62.46 63.68 68.91 57.39

SL 42.51 77.79 78.08 76.39 63.73 81.5 84.8 67.46 63.01 60.15 59.09

LB 42.49 81.48 82.15 79.87 84.95 89.92 88.42 76.64 77.7 46.88 53.24

MLP 51.26 81.98 82.15 75.39 82.92 89.25 86.72 55.39 74.05 72.77 62.83

IBk 50.95 80.02 79.48 73.17 91.17 92.96 89.92 68.13 68.86 73.13 58.04

KStar 50.95 79.65 80.38 75.81 89.7 87.92 85.86 71.7 75.37 68.76 66.3

ABM1 42.33 85.42 82.92 75.17 90.6 94.38 91.09 74.55 70.2 68.76 54.79

Bag 42.49 86.24 82.97 80.12 93.38 93.76 89.96 70.63 74.02 55.7 50.05

ICO 42.53 81.48 82.15 81.26 84.76 89.72 88.3 70.63 81.01 55.7 46.25

LMT 42.51 85.4 83.44 79.65 91.64 92.4 92.14 67.46 62.12 60.15 54.34

RT 46.5 82.73 84.16 73.6 88.72 93.76 86.44 70.63 67.36 72.9 55.01

RSS 29.29 85.4 82.3 79.46 83.29 90.45 89.96 72.42 79.24 29.29 29.06

PART 29.2 80.97 82.84 78.36 92.21 93.76 87.43 65.55 70.83 46.84 51.06

J48 33.62 84.7 84.46 79.34 86.92 92.79 90.69 65.55 74.02 51.19 44.81

Table A.7: Synapse1.0 G-Mean Values

Synapse1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.71 0.81 0.82 0.8 0.7 0.84 0.85 0.75 0.71 0.72 0.69

LR 0.65 0.77 0.78 0.78 0.64 0.81 0.84 0.64 0.64 0.73 0.59

SL 0.43 0.78 0.79 0.77 0.68 0.82 0.85 0.69 0.65 0.65 0.62

LB 0.43 0.81 0.83 0.8 0.86 0.91 0.89 0.78 0.78 0.49 0.54

MLP 0.55 0.83 0.83 0.76 0.84 0.91 0.88 0.56 0.75 0.76 0.65

IBk 0.53 0.8 0.8 0.74 0.91 0.95 0.91 0.68 0.69 0.77 0.6

Kstar 0.53 0.81 0.81 0.77 0.91 0.9 0.88 0.72 0.76 0.73 0.68

ABM1 0.42 0.86 0.83 0.76 0.91 0.95 0.91 0.75 0.71 0.73 0.57

Bag 0.43 0.86 0.83 0.81 0.93 0.95 0.9 0.72 0.74 0.6 0.51

ICO 0.43 0.81 0.83 0.83 0.86 0.9 0.89 0.72 0.81 0.6 0.46

LMT 0.43 0.86 0.84 0.8 0.92 0.94 0.92 0.69 0.64 0.65 0.56

RT 0.47 0.83 0.85 0.74 0.89 0.95 0.87 0.72 0.68 0.76 0.55

RSS 0 0.86 0.83 0.81 0.85 0.93 0.9 0.75 0.8 0 0

PART 0 0.83 0.83 0.81 0.92 0.95 0.88 0.66 0.71 0.49 0.51
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Synapse1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.24 0.85 0.84 0.82 0.88 0.94 0.91 0.66 0.74 0.54 0.44

Table A.8: Synapse1.0 Sensitivity Values

Synapse1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.56 0.82 0.86 0.81 0.56 0.88 0.89 0.69 0.56 0.56 0.56

LR 0.44 0.75 0.74 0.72 0.44 0.81 0.86 0.5 0.56 0.56 0.44

SL 0.19 0.78 0.74 0.7 0.49 0.82 0.85 0.56 0.5 0.44 0.44

LB 0.19 0.81 0.88 0.86 0.8 0.95 0.91 0.69 0.75 0.25 0.38

MLP 0.31 0.9 0.88 0.8 0.78 0.97 0.94 0.44 0.69 0.63 0.5

IBk 0.31 0.85 0.88 0.81 0.91 0.99 0.95 0.63 0.63 0.63 0.44

KStar 0.31 0.9 0.89 0.85 0.96 0.98 0.98 0.69 0.69 0.56 0.56

ABM1 0.19 0.88 0.85 0.81 0.89 0.98 0.91 0.69 0.63 0.56 0.38

Bag 0.19 0.88 0.85 0.9 0.93 0.98 0.91 0.63 0.75 0.38 0.31

ICO 0.19 0.81 0.88 0.91 0.8 0.95 0.91 0.63 0.81 0.38 0.31

LMT 0.19 0.91 0.88 0.81 0.96 0.98 0.94 0.56 0.5 0.44 0.38

RT 0.25 0.87 0.88 0.81 0.87 0.98 0.9 0.63 0.63 0.63 0.44

RSS 0 0.91 0.87 0.89 0.78 0.99 0.94 0.63 0.75 0 0

PART 0 0.91 0.86 0.93 0.93 0.98 0.91 0.56 0.69 0.25 0.38

J48 0.06 0.88 0.85 0.93 0.82 0.98 0.92 0.56 0.75 0.31 0.25

Table A.9: Ivy2.0 ROC-AUC Values

Ivy2.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.79 0.8 0.83 0.83 0.8 0.84 0.86 0.8 0.76 0.85 0.74

LR 0.79 0.8 0.84 0.84 0.79 0.84 0.85 0.76 0.73 0.82 0.68

SL 0.76 0.79 0.84 0.84 0.8 0.84 0.84 0.78 0.74 0.84 0.69

LB 0.77 0.88 0.87 0.83 0.88 0.9 0.89 0.76 0.72 0.84 0.6

MLP 0.73 0.87 0.86 0.84 0.85 0.92 0.91 0.78 0.67 0.79 0.6

IBk 0.68 0.82 0.82 0.78 0.93 0.95 0.95 0.72 0.67 0.83 0.64

KStar 0.73 0.86 0.87 0.78 0.97 0.99 0.98 0.74 0.77 0.81 0.71

ABM1 0.73 0.92 0.92 0.84 0.96 0.99 0.98 0.71 0.66 0.77 0.61

Bag 0.81 0.93 0.92 0.85 0.95 0.99 0.97 0.81 0.69 0.86 0.63

ICO 0.72 0.87 0.87 0.82 0.88 0.9 0.89 0.73 0.71 0.8 0.59

LMT 0.73 0.85 0.87 0.82 0.89 0.93 0.89 0.78 0.74 0.81 0.67

RT 0.61 0.82 0.82 0.77 0.9 0.95 0.9 0.69 0.64 0.73 0.55

RSS 0.83 0.9 0.93 0.86 0.93 0.98 0.96 0.79 0.73 0.85 0.7

PART 0.72 0.83 0.86 0.83 0.9 0.93 0.91 0.74 0.74 0.78 0.58
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Ivy2.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.72 0.85 0.84 0.83 0.9 0.95 0.88 0.61 0.58 0.61 0.6

Table A.10: Ivy2.0 Balance Values

Ivy2.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 58.88 67.68 67.04 68.46 56.19 62.58 67.1 60.2 61.76 65.98 59.89

LR 45.18 73.64 75.19 75.07 58.22 76.49 76.27 67.39 59.69 61.05 56.45

SL 38.12 73.25 75.4 75.78 57.47 77.9 75.84 63.39 57.55 57.54 58.17

LB 43.4 79.22 79.92 79.32 70.31 83.16 81.04 65.53 57.37 66.25 49.75

MLP 41.65 82.59 80.06 77.68 77.88 86.9 84.6 71.17 60.41 73.15 51.23

IBk 57.25 81.67 80.7 76.88 90.1 93.76 92.76 70.04 67.08 78.53 67.14

KStar 48.55 81.03 81.59 77.98 90.89 91.78 90.77 65.35 73.27 71.52 67

ABM1 50.35 83.93 84.07 79.06 92.62 95.36 92 66.06 60.14 66.35 54.76

Bag 46.84 84.53 82.83 79.25 86.97 95.58 90.38 74.25 59.16 64.56 54.76

ICO 43.33 79.39 79.75 79.84 70.97 83.15 81.04 58.76 62.35 71.45 48.79

LMT 38.1 83.3 81.74 77.87 88.41 91.13 87.93 63.39 57.55 57.52 58.17

RT 51.69 81.56 81.34 77.43 90.38 93.39 89.27 67.59 64.01 67.44 51.64

RSS 32.82 83.27 84.38 79.61 80.59 94.03 88.76 65.35 60.63 62.83 49.88

PART 38.12 80.09 79.13 79.56 86.17 91.33 88.97 66.03 59.01 71.31 51.47

J48 38.12 84.03 80.9 78.93 87.98 90.88 87.11 63.4 54.29 67.98 52.3

Table A.11: Ivy2.0 G-Mean Values

Ivy2.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.62 0.69 0.69 0.71 0.59 0.65 0.7 0.63 0.64 0.7 0.62

LR 0.47 0.74 0.76 0.76 0.63 0.77 0.77 0.69 0.61 0.66 0.59

SL 0.35 0.74 0.76 0.76 0.62 0.78 0.77 0.66 0.58 0.62 0.61

LB 0.44 0.79 0.8 0.79 0.73 0.84 0.81 0.66 0.58 0.71 0.5

MLP 0.41 0.83 0.8 0.78 0.8 0.87 0.85 0.72 0.61 0.77 0.52

IBk 0.61 0.82 0.81 0.78 0.9 0.95 0.94 0.7 0.67 0.82 0.67

KStar 0.51 0.81 0.82 0.79 0.92 0.93 0.92 0.67 0.73 0.76 0.67

ABM1 0.53 0.84 0.84 0.79 0.93 0.96 0.92 0.66 0.6 0.71 0.56

Bag 0.49 0.85 0.83 0.79 0.88 0.96 0.91 0.75 0.6 0.7 0.56

ICO 0.44 0.79 0.8 0.8 0.74 0.84 0.81 0.6 0.63 0.75 0.49

LMT 0.35 0.85 0.82 0.78 0.88 0.93 0.89 0.66 0.58 0.62 0.61

RT 0.54 0.82 0.82 0.79 0.9 0.95 0.9 0.68 0.64 0.7 0.52

RSS 0.22 0.84 0.85 0.8 0.83 0.95 0.89 0.67 0.62 0.68 0.52

PART 0.35 0.8 0.8 0.8 0.86 0.93 0.9 0.67 0.63 0.75 0.52
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Ivy2.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.35 0.85 0.81 0.8 0.89 0.93 0.88 0.63 0.55 0.72 0.54

Table A.12: Ivy2.0 Sensitivity Values

Ivy2.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.43 0.57 0.55 0.57 0.39 0.48 0.55 0.45 0.48 0.53 0.45

LR 0.23 0.68 0.69 0.69 0.41 0.71 0.7 0.58 0.48 0.45 0.4

SL 0.13 0.68 0.69 0.71 0.4 0.73 0.7 0.5 0.45 0.4 0.43

LB 0.2 0.81 0.8 0.78 0.59 0.87 0.84 0.58 0.48 0.53 0.33

MLP 0.18 0.84 0.78 0.73 0.7 0.9 0.85 0.65 0.53 0.63 0.38

IBk 0.4 0.86 0.86 0.88 0.88 0.98 0.98 0.65 0.68 0.7 0.65

KStar 0.28 0.86 0.87 0.85 0.88 0.99 0.98 0.55 0.73 0.6 0.63

ABM1 0.3 0.88 0.84 0.83 0.91 0.99 0.94 0.65 0.58 0.53 0.4

Bag 0.25 0.92 0.86 0.83 0.83 0.99 0.95 0.68 0.48 0.5 0.4

ICO 0.2 0.81 0.8 0.79 0.6 0.88 0.84 0.45 0.53 0.6 0.35

LMT 0.13 0.94 0.87 0.84 0.88 0.99 0.93 0.5 0.45 0.4 0.43

RT 0.33 0.81 0.86 0.89 0.9 0.99 0.93 0.6 0.6 0.55 0.38

RSS 0.05 0.89 0.88 0.83 0.73 0.99 0.9 0.55 0.48 0.48 0.3

PART 0.13 0.81 0.86 0.81 0.83 0.99 0.93 0.58 0.43 0.6 0.4

J48 0.13 0.91 0.86 0.86 0.84 0.99 0.92 0.6 0.4 0.55 0.35

Table A.13: Jedit4.2 ROC-AUC Values

Jedit4.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.83 0.78 0.82 0.79 0.81 0.85 0.85 0.8 0.74 0.89 0.72

LR 0.8 0.81 0.85 0.81 0.83 0.87 0.87 0.78 0.71 0.89 0.7

SL 0.84 0.78 0.83 0.81 0.83 0.85 0.87 0.83 0.78 0.89 0.68

LB 0.82 0.83 0.86 0.82 0.87 0.91 0.92 0.8 0.75 0.85 0.71

MLP 0.82 0.84 0.83 0.79 0.84 0.9 0.92 0.74 0.69 0.87 0.62

IBk 0.66 0.78 0.81 0.77 0.9 0.95 0.93 0.61 0.68 0.82 0.67

KStar 0.74 0.84 0.87 0.76 0.97 0.99 0.99 0.7 0.59 0.83 0.64

ABM1 0.75 0.89 0.9 0.8 0.98 1 0.97 0.72 0.71 0.85 0.63

Bag 0.82 0.9 0.9 0.83 0.96 0.99 0.96 0.77 0.74 0.87 0.68

ICO 0.83 0.83 0.86 0.82 0.87 0.91 0.91 0.77 0.78 0.83 0.6

LMT 0.84 0.82 0.81 0.81 0.92 0.93 0.92 0.83 0.76 0.89 0.68

RT 0.59 0.8 0.8 0.75 0.88 0.96 0.88 0.67 0.61 0.73 0.61

RSS 0.84 0.89 0.9 0.84 0.94 0.99 0.95 0.82 0.77 0.88 0.71

PART 0.84 0.84 0.83 0.8 0.88 0.94 0.89 0.69 0.73 0.77 0.62
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Jedit4.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.69 0.81 0.79 0.78 0.91 0.94 0.89 0.7 0.62 0.71 0.61

Table A.14: Jedit4.2 Balance Values

Jedit4.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 57.05 59.88 60.33 55.49 53.31 58.73 58.94 59.68 57.61 61.37 54.99

LR 48.4 71.61 74.7 73.91 58.25 77.47 78.78 70.79 66.42 68.89 66.19

SL 45.47 71.62 73.5 73.3 58.3 76.32 76.67 68.71 72.41 66.01 56.56

LB 48.37 74.95 77.73 72.33 71.96 84.85 85.55 67.71 66.32 67.33 61.79

MLP 51.35 74.3 74.98 72.05 65.43 81.14 83.05 63.41 60.89 67.4 55.04

IBk 55.58 77.88 79.91 71.63 91.45 94.16 90.66 63.27 68.21 78.7 64.13

KStar 49.72 76.8 78.33 73.85 91.62 92.18 89.92 69.06 58.29 67.37 57.82

ABM1 55.58 81.63 84.33 75.56 93.9 94.19 90.63 67.46 65.02 70.2 61.28

Bag 51.31 81.25 83.16 75.83 88.15 94.41 87.91 66.46 66.83 65.96 62.81

ICO 46.92 74.33 77.73 72.01 71.9 85.04 85.72 67.27 66.71 70.11 57.37

LMT 45.47 76.27 76.34 74.53 89.89 88.88 87.68 68.71 70.69 66.01 56.56

RT 49.28 79.46 79.48 72.74 87.6 95.1 87.45 66.67 60.31 67 58.08

RSS 38.12 80.57 81.48 76.1 82.16 92 87.13 66.36 67.55 67.46 55.86

PART 44 76.11 77.73 74.6 88.16 92.65 88.16 69.06 69.28 55.61 56

J48 45.39 77.03 77.14 73.89 89.27 91.34 88.44 69.58 64.64 70.11 56.29

Table A.15: Jedit4.2 G-Mean Values

Jedit4.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.61 0.63 0.63 0.59 0.57 0.62 0.63 0.63 0.6 0.65 0.57

LR 0.51 0.72 0.75 0.74 0.62 0.78 0.79 0.72 0.68 0.73 0.67

SL 0.47 0.72 0.74 0.74 0.62 0.77 0.77 0.72 0.75 0.71 0.58

LB 0.51 0.75 0.78 0.73 0.74 0.85 0.86 0.69 0.67 0.71 0.63

MLP 0.55 0.75 0.75 0.72 0.68 0.81 0.84 0.66 0.61 0.72 0.56

IBk 0.59 0.78 0.81 0.72 0.91 0.95 0.92 0.64 0.68 0.81 0.64

KStar 0.52 0.78 0.79 0.75 0.92 0.94 0.92 0.7 0.59 0.72 0.58

ABM1 0.59 0.82 0.85 0.76 0.94 0.95 0.91 0.68 0.66 0.74 0.62

Bag 0.55 0.82 0.84 0.76 0.88 0.96 0.89 0.67 0.68 0.7 0.64

ICO 0.49 0.75 0.78 0.72 0.74 0.86 0.86 0.68 0.7 0.74 0.59

LMT 0.47 0.78 0.77 0.75 0.9 0.91 0.88 0.72 0.73 0.71 0.58

RT 0.51 0.8 0.8 0.73 0.88 0.96 0.88 0.67 0.61 0.7 0.59

RSS 0.35 0.81 0.82 0.76 0.84 0.93 0.87 0.68 0.7 0.72 0.58

PART 0.45 0.78 0.79 0.76 0.89 0.94 0.88 0.7 0.72 0.59 0.57
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Jedit4.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.47 0.79 0.77 0.75 0.89 0.93 0.89 0.72 0.66 0.74 0.58

Table A.16: Jedit4.2 Sensitivity Values

Jedit4.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.4 0.45 0.45 0.38 0.34 0.42 0.42 0.44 0.42 0.46 0.38

LR 0.27 0.65 0.69 0.69 0.41 0.72 0.75 0.63 0.56 0.56 0.56

SL 0.23 0.75 0.69 0.68 0.41 0.73 0.72 0.56 0.63 0.52 0.42

LB 0.27 0.81 0.77 0.68 0.62 0.90 0.88 0.58 0.58 0.54 0.5

MLP 0.31 0.85 0.76 0.69 0.53 0.84 0.91 0.5 0.56 0.54 0.42

IBk 0.38 0.82 0.87 0.76 0.92 0.99 0.97 0.56 0.65 0.71 0.58

KStar 0.29 0.85 0.87 0.83 0.92 0.99 0.98 0.6 0.48 0.54 0.5

ABM1 0.38 0.86 0.87 0.8 0.95 0.99 0.94 0.63 0.56 0.58 0.52

Bag 0.31 0.9 0.88 0.83 0.86 0.99 0.93 0.58 0.56 0.52 0.52

ICO 0.25 0.81 0.77 0.68 0.62 0.9 0.88 0.6 0.54 0.58 0.44

LMT 0.23 0.88 0.83 0.72 0.89 0.99 0.92 0.56 0.6 0.52 0.42

RT 0.29 0.83 0.86 0.77 0.9 0.99 0.91 0.67 0.52 0.54 0.46

RSS 0.13 0.86 0.84 0.8 0.76 0.96 0.91 0.56 0.56 0.54 0.4

PART 0.21 0.9 0.87 0.86 0.92 0.99 0.9 0.6 0.58 0.38 0.42

J48 0.23 0.9 0.81 0.85 0.89 0.99 0.91 0.58 0.54 0.58 0.42

Table A.17: Xerces1.3 ROC-AUC Values

Xerces1.3 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.78 0.73 0.78 0.75 0.75 0.79 0.81 0.78 0.8 0.83 0.78

LR 0.76 0.73 0.78 0.75 0.73 0.79 0.8 0.74 0.74 0.79 0.73

SL 0.73 0.73 0.78 0.75 0.74 0.8 0.81 0.74 0.74 0.81 0.73

LB 0.81 0.81 0.89 0.8 0.84 0.87 0.9 0.79 0.79 0.86 0.77

MLP 0.72 0.79 0.85 0.75 0.8 0.87 0.88 0.77 0.79 0.82 0.72

IBk 0.77 0.86 0.87 0.78 0.92 0.95 0.95 0.74 0.81 0.83 0.81

KStar 0.82 0.88 0.9 0.78 0.95 0.97 0.97 0.79 0.84 0.87 0.84

ABM1 0.76 0.9 0.92 0.78 0.94 0.97 0.96 0.76 0.8 0.87 0.75

Bag 0.8 0.92 0.91 0.81 0.92 0.96 0.96 0.78 0.81 0.86 0.82

ICO 0.79 0.81 0.89 0.79 0.79 0.87 0.9 0.76 0.77 0.85 0.78

LMT 0.76 0.89 0.87 0.74 0.86 0.94 0.92 0.7 0.68 0.78 0.72

RT 0.68 0.86 0.83 0.74 0.92 0.95 0.88 0.66 0.72 0.78 0.66

RSS 0.83 0.89 0.92 0.81 0.89 0.96 0.94 0.82 0.82 0.87 0.81

PART 0.77 0.86 0.87 0.77 0.87 0.93 0.91 0.77 0.76 0.82 0.73
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Xerces1.3 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.6 0.85 0.87 0.73 0.82 0.94 0.89 0.7 0.72 0.74 0.65

Table A.18: Xerces1.3 Balance Values

Xerces1.3 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 56.67 55.21 63.66 57.55 63.11 68.53 67.53 55.57 63.67 69.98 62.52

LR 44.62 71.01 72.02 66.2 62.08 76.13 77.39 68.01 65.43 61.88 65.11

SL 39.51 70.47 72.53 65.77 60.12 77.63 77.73 68.6 66.4 62.98 65.54

LB 56.87 74.49 82.84 72.6 64.53 78.49 79.48 69.15 71.63 63.92 69.52

MLP 53.74 71.77 79.84 66.12 68.09 76.97 79.03 65.74 68.9 58.82 63.92

IBk 63.66 83.24 83.4 69.17 86.4 92.25 92.52 70.16 77.79 74.91 71.57

KStar 60.95 82.52 82.44 71.66 84.8 91.05 90.45 71.7 72.79 72.21 72.53

ABM1 58.71 83.5 86 68.04 88.3 91.67 89.83 65.86 74.25 72.84 72.31

Bag 56.84 84.44 83.55 72.35 80.11 91.3 89.95 70.91 71.63 67.03 72.03

ICO 53.84 74.22 82.47 72.2 59.32 78.49 79.48 71.99 73.52 59.87 62.82

LMT 51.79 80.92 82.82 67.78 80.86 89.94 88.55 68.6 65.97 67.92 63.44

RT 59.77 85.5 82.53 69.9 87.77 92.79 88.48 65.42 72.28 74.67 64.99

RSS 47.73 80.56 83.19 70.97 70.25 90.36 86.99 72.31 73.84 61 64.57

PART 50.72 79.55 81.02 68.91 74.49 89.9 88.87 72.6 69.45 69.16 59.82

J48 54.8 79.16 83.78 69.36 79.67 90.21 88.84 72.6 72.28 66.65 59.69

Table A.19: Xerces1.3 G-Mean Values

Xerces1.3 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.6 0.58 0.67 0.61 0.67 0.72 0.71 0.59 0.67 0.74 0.66

LR 0.46 0.71 0.73 0.67 0.66 0.77 0.78 0.69 0.66 0.66 0.67

SL 0.38 0.71 0.73 0.66 0.64 0.78 0.78 0.69 0.67 0.68 0.68

LB 0.61 0.75 0.83 0.73 0.68 0.79 0.8 0.7 0.72 0.68 0.7

MLP 0.57 0.72 0.81 0.67 0.72 0.79 0.81 0.68 0.71 0.63 0.66

IBk 0.67 0.83 0.83 0.69 0.87 0.92 0.93 0.71 0.78 0.78 0.73

KStar 0.66 0.83 0.82 0.72 0.87 0.91 0.91 0.73 0.74 0.77 0.74

ABM1 0.63 0.84 0.86 0.68 0.89 0.92 0.9 0.67 0.75 0.76 0.73

Bag 0.61 0.85 0.84 0.72 0.82 0.91 0.9 0.71 0.72 0.71 0.73

ICO 0.58 0.74 0.83 0.72 0.64 0.79 0.8 0.72 0.74 0.64 0.67

LMT 0.56 0.82 0.83 0.68 0.82 0.9 0.89 0.69 0.66 0.72 0.65

RT 0.64 0.86 0.83 0.7 0.88 0.93 0.89 0.66 0.72 0.77 0.65

RSS 0.51 0.81 0.83 0.71 0.75 0.9 0.87 0.73 0.74 0.66 0.67

PART 0.54 0.8 0.81 0.7 0.77 0.9 0.89 0.73 0.7 0.74 0.62
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Xerces1.3 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.59 0.81 0.84 0.69 0.81 0.9 0.89 0.73 0.72 0.7 0.63

Table A.20: Xerces1.3 Sensitivity Values

Xerces1.3 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.39 0.37 0.49 0.41 0.48 0.56 0.55 0.38 0.49 0.58 0.48

LR 0.22 0.66 0.65 0.56 0.47 0.71 0.73 0.59 0.57 0.46 0.54

SL 0.14 0.65 0.67 0.58 0.44 0.73 0.75 0.61 0.59 0.48 0.54

LB 0.39 0.77 0.79 0.75 0.5 0.82 0.75 0.62 0.65 0.49 0.64

MLP 0.35 0.68 0.75 0.56 0.55 0.69 0.72 0.54 0.58 0.42 0.52

IBk 0.49 0.86 0.83 0.69 0.83 0.94 0.95 0.62 0.77 0.65 0.62

KStar 0.45 0.86 0.82 0.73 0.79 0.92 0.92 0.64 0.65 0.61 0.64

ABM1 0.42 0.86 0.86 0.67 0.86 0.94 0.9 0.57 0.7 0.62 0.67

Bag 0.39 0.91 0.83 0.71 0.73 0.92 0.91 0.68 0.65 0.54 0.64

ICO 0.35 0.76 0.79 0.71 0.43 0.82 0.75 0.71 0.77 0.43 0.48

LMT 0.32 0.91 0.79 0.63 0.75 0.93 0.9 0.61 0.59 0.55 0.52

RT 0.43 0.86 0.81 0.71 0.85 0.94 0.91 0.58 0.7 0.65 0.58

RSS 0.26 0.84 0.81 0.66 0.58 0.9 0.88 0.65 0.72 0.45 0.52

PART 0.3 0.86 0.82 0.79 0.65 0.93 0.93 0.7 0.64 0.57 0.45

J48 0.36 0.91 0.81 0.71 0.73 0.93 0.9 0.7 0.7 0.54 0.43

Table A.21: Camel1.6 ROC-AUC Values

Camel1.6 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.68 0.67 0.68 0.63 0.69 0.68 0.68 0.65 0.63 0.74 0.62

LR 0.69 0.69 0.69 0.63 0.72 0.7 0.7 0.68 0.65 0.76 0.63

SL 0.68 0.67 0.68 0.63 0.71 0.69 0.7 0.68 0.64 0.75 0.6

LB 0.73 0.71 0.74 0.69 0.74 0.73 0.76 0.66 0.72 0.78 0.69

MLP 0.69 0.73 0.69 0.66 0.75 0.76 0.76 0.67 0.64 0.78 0.65

IBk 0.64 0.77 0.74 0.62 0.89 0.91 0.88 0.61 0.68 0.83 0.68

KStar 0.67 0.78 0.79 0.57 0.95 0.98 0.94 0.59 0.67 0.82 0.69

ABM1 0.71 0.83 0.83 0.65 0.94 0.97 0.91 0.64 0.65 0.84 0.69

Bag 0.72 0.82 0.82 0.68 0.92 0.96 0.92 0.67 0.69 0.83 0.67

ICO 0.73 0.71 0.74 0.68 0.74 0.73 0.76 0.62 0.71 0.78 0.67

LMT 0.68 0.75 0.76 0.66 0.86 0.89 0.81 0.64 0.63 0.75 0.57

RT 0.59 0.72 0.73 0.58 0.85 0.9 0.78 0.57 0.57 0.69 0.59

RSS 0.69 0.81 0.83 0.68 0.91 0.96 0.88 0.66 0.69 0.81 0.72

PART 0.68 0.74 0.77 0.66 0.85 0.89 0.82 0.62 0.61 0.77 0.65
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Camel1.6 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.59 0.73 0.73 0.63 0.85 0.88 0.81 0.6 0.57 0.69 0.61

Table A.22: Camel1.6 Balance Values

Camel1.6 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 43.82 44.7 45.65 41.66 47.94 46.05 43.61 46.32 46.86 46.46 45.35

LR 36.42 61.6 61.91 57.26 53.15 61.68 61.72 55.5 58.28 51.11 51.31

SL 36.04 60.95 61.34 57.41 51.87 60.43 61 56.21 55.06 45.29 47.11

LB 37.9 64.68 68.91 64.47 56.68 65.59 70.24 56.47 64.85 59.34 60.84

MLP 38.21 65.96 63.65 59.28 66.28 65.59 68.81 60.19 61.1 64.5 52.83

IBk 52.16 74.42 71.69 58.31 88.87 89.11 85.41 59.59 67.37 80.29 66.68

KStar 47.66 69.46 70.27 58.75 84.47 84.4 81.33 55.97 60.42 68.32 60.71

ABM1 51.13 75.81 75.28 61.41 87.78 88.56 83.53 61.3 62.11 71.26 61.91

Bag 44.95 73.74 74.51 62.28 85.01 88.08 81.94 61.7 62.41 66.86 59.8

ICO 38.65 65.57 68.59 62.69 56.68 65.5 69.59 53.87 63.74 56.86 53.37

LMT 37.54 69.72 70.1 62.81 83.84 84.82 78.4 55.55 58.33 58.02 47.17

RT 52.48 71.18 72.91 56.24 83.93 87.15 78.4 56.45 56.61 66.28 58.55

RSS 31.54 72.98 74.85 62.23 81.59 87.56 81.02 56.71 63.94 50.94 55.95

PART 38.64 65.19 68.84 61.54 78.38 83.32 76.73 60.54 56.48 63.87 57.58

J48 42.22 69.19 70.9 61.81 81.02 82.63 78.44 57.61 53.66 64.46 56.39

Table A.23: Camel1.6 G-Mean Values

Camel1.6 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.44 0.45 0.47 0.41 0.5 0.47 0.44 0.48 0.48 0.48 0.47

LR 0.31 0.62 0.62 0.58 0.55 0.62 0.62 0.57 0.59 0.54 0.53

SL 0.31 0.61 0.62 0.58 0.54 0.61 0.61 0.57 0.56 0.46 0.48

LB 0.34 0.65 0.69 0.64 0.59 0.66 0.7 0.57 0.65 0.62 0.62

MLP 0.35 0.66 0.64 0.6 0.66 0.67 0.69 0.61 0.61 0.67 0.54

IBk 0.54 0.75 0.72 0.58 0.89 0.91 0.86 0.6 0.67 0.81 0.67

KStar 0.49 0.7 0.71 0.59 0.86 0.88 0.84 0.56 0.6 0.7 0.61

ABM1 0.53 0.76 0.75 0.61 0.88 0.9 0.84 0.61 0.62 0.73 0.62

Bag 0.46 0.74 0.75 0.62 0.85 0.89 0.82 0.62 0.62 0.7 0.6

ICO 0.36 0.66 0.69 0.63 0.59 0.66 0.7 0.54 0.64 0.6 0.55

LMT 0.34 0.7 0.7 0.63 0.85 0.87 0.79 0.57 0.59 0.61 0.48

RT 0.54 0.71 0.73 0.56 0.85 0.89 0.79 0.57 0.57 0.67 0.59

RSS 0.18 0.73 0.75 0.62 0.82 0.88 0.81 0.57 0.64 0.54 0.58

PART 0.36 0.66 0.69 0.62 0.79 0.85 0.77 0.61 0.57 0.66 0.58
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Camel1.6 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.42 0.7 0.71 0.62 0.81 0.85 0.79 0.58 0.54 0.66 0.57

Table A.24: Camel1.6 Sensitivity Values

Camel1.6 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.21 0.22 0.23 0.18 0.27 0.24 0.2 0.24 0.26 0.24 0.23

LR 0.1 0.58 0.56 0.49 0.35 0.54 0.56 0.41 0.5 0.31 0.33

SL 0.1 0.57 0.56 0.49 0.33 0.52 0.55 0.42 0.43 0.23 0.26

LB 0.12 0.73 0.74 0.63 0.4 0.64 0.75 0.45 0.62 0.44 0.49

MLP 0.13 0.62 0.56 0.49 0.69 0.55 0.73 0.51 0.56 0.52 0.37

IBk 0.34 0.81 0.77 0.57 0.93 0.98 0.92 0.56 0.68 0.75 0.62

KStar 0.27 0.81 0.8 0.64 0.94 0.98 0.95 0.5 0.57 0.57 0.52

ABM1 0.32 0.79 0.79 0.63 0.91 0.97 0.86 0.59 0.61 0.62 0.55

Bag 0.22 0.79 0.76 0.64 0.86 0.95 0.86 0.55 0.62 0.54 0.5

ICO 0.13 0.75 0.75 0.57 0.4 0.63 0.75 0.4 0.65 0.4 0.36

LMT 0.12 0.78 0.74 0.62 0.91 0.97 0.83 0.41 0.51 0.42 0.27

RT 0.35 0.75 0.74 0.55 0.91 0.98 0.81 0.51 0.52 0.57 0.52

RSS 0.03 0.75 0.76 0.6 0.77 0.93 0.82 0.45 0.63 0.31 0.39

PART 0.13 0.76 0.65 0.62 0.85 0.94 0.81 0.59 0.59 0.51 0.45

J48 0.19 0.8 0.73 0.66 0.85 0.95 0.81 0.56 0.48 0.52 0.46

Table A.25: Ant1.7 ROC-AUC Values

Ant1.7 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.8 0.74 0.81 0.81 0.77 0.81 0.8 0.8 0.76 0.87 0.77

LR 0.82 0.77 0.83 0.83 0.79 0.83 0.83 0.82 0.78 0.89 0.78

SL 0.83 0.77 0.83 0.82 0.8 0.83 0.83 0.83 0.79 0.89 0.79

LB 0.8 0.78 0.83 0.81 0.83 0.86 0.84 0.8 0.77 0.86 0.78

MLP 0.81 0.77 0.83 0.82 0.79 0.85 0.83 0.8 0.74 0.89 0.77

IBk 0.69 0.78 0.74 0.7 0.87 0.91 0.89 0.68 0.65 0.83 0.68

KStar 0.78 0.81 0.86 0.7 0.94 0.98 0.96 0.71 0.75 0.89 0.73

ABM1 0.78 0.84 0.87 0.79 0.96 0.97 0.92 0.77 0.75 0.89 0.75

Bag 0.8 0.85 0.88 0.81 0.95 0.96 0.92 0.81 0.77 0.9 0.77

ICO 0.79 0.78 0.83 0.81 0.83 0.86 0.84 0.79 0.74 0.86 0.79

LMT 0.83 0.8 0.83 0.81 0.88 0.91 0.82 0.82 0.76 0.89 0.77

RT 0.67 0.74 0.77 0.69 0.88 0.90 0.79 0.66 0.62 0.78 0.66

RSS 0.8 0.82 0.87 0.83 0.93 0.93 0.88 0.81 0.78 0.88 0.78

PART 0.76 0.79 0.83 0.8 0.87 0.88 0.85 0.79 0.64 0.87 0.77
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Ant1.7 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.74 0.79 0.79 0.77 0.88 0.88 0.83 0.7 0.68 0.79 0.72

Table A.26: Ant1.7 Balance Values

Ant1.7 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 64.16 59.67 65.92 64.48 59.94 64.46 65.1 67.84 62.86 71.04 63.16

LR 56.81 67.47 73.4 73.28 63.01 73.84 73.59 70.5 72.71 76.6 70.92

SL 55.17 67.01 73.74 72.7 62.5 72.67 73.12 69.39 74.99 76.06 71.15

LB 67.82 70.12 75.94 73.07 65.94 76.33 75.31 75.3 69.11 81.51 70.69

MLP 61.32 69.53 75.95 75.23 68.22 76.6 74.72 71.95 70.92 76.89 70.69

IBk 63.66 75.77 74.63 66.69 87.47 88.99 86.66 67.35 67.28 81.34 67.38

KStar 58.32 73.44 77.53 69.5 87.17 87.47 85.03 66.17 66.28 78.39 64.43

ABM1 62.07 77.18 79.21 72.77 90.68 90.89 83.96 69.57 64.9 79.02 69.73

Bag 63.32 76.95 79.89 74.19 90.64 89.45 83.79 75.02 66.87 80.4 69.87

ICO 69.46 70.12 75.94 72.91 65.12 76.29 75.2 74.67 72.7 81.35 71.41

LMT 55.17 74.77 76.02 72.99 86.7 86.56 80.61 68.92 72.94 76.06 69.64

RT 63.27 73.66 76.23 68.39 87.63 88.31 79.42 64.76 61.68 76.79 65.27

RSS 62.13 74.67 79.98 74.8 81.29 87.11 80.34 74.42 74.28 78.59 70.69

PART 65.82 72.27 73.51 72.09 73.67 82.5 77.36 72.02 65.11 78.55 71.03

J48 68.55 74.79 77.7 73.4 84.92 85.75 81.75 72.03 69.56 75.15 68.8

Table A.27: Ant1.7 G-Mean Values

Ant1.7 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.68 0.62 0.69 0.68 0.64 0.68 0.68 0.7 0.66 0.74 0.66

LR 0.61 0.68 0.74 0.74 0.67 0.75 0.75 0.72 0.73 0.8 0.71

SL 0.59 0.68 0.75 0.73 0.66 0.74 0.74 0.72 0.75 0.79 0.72

LB 0.71 0.7 0.76 0.73 0.7 0.78 0.76 0.75 0.69 0.83 0.71

MLP 0.65 0.7 0.76 0.75 0.7 0.77 0.75 0.72 0.71 0.8 0.71

IBk 0.66 0.76 0.75 0.67 0.87 0.91 0.88 0.67 0.68 0.83 0.67

KStar 0.61 0.74 0.78 0.7 0.87 0.89 0.86 0.67 0.67 0.8 0.64

ABM1 0.65 0.77 0.79 0.73 0.91 0.92 0.84 0.7 0.65 0.8 0.7

Bag 0.67 0.77 0.8 0.74 0.91 0.9 0.84 0.75 0.67 0.82 0.7

ICO 0.72 0.7 0.76 0.73 0.69 0.78 0.76 0.75 0.73 0.82 0.73

LMT 0.59 0.75 0.76 0.73 0.87 0.89 0.81 0.7 0.73 0.79 0.7

RT 0.65 0.74 0.76 0.68 0.88 0.9 0.79 0.65 0.62 0.78 0.66

RSS 0.66 0.75 0.8 0.75 0.83 0.87 0.8 0.75 0.74 0.8 0.71

PART 0.69 0.72 0.75 0.72 0.76 0.83 0.78 0.73 0.65 0.81 0.71
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Ant1.7 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.71 0.75 0.78 0.74 0.85 0.87 0.82 0.72 0.7 0.77 0.69

Table A.28: Ant1.7 Sensitivity Values

Ant1.7 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.5 0.44 0.53 0.51 0.44 0.51 0.52 0.56 0.49 0.6 0.49

LR 0.39 0.6 0.67 0.67 0.48 0.67 0.67 0.61 0.77 0.67 0.65

SL 0.37 0.59 0.67 0.66 0.48 0.64 0.66 0.58 0.78 0.67 0.65

LB 0.55 0.71 0.73 0.71 0.52 0.68 0.71 0.72 0.75 0.76 0.65

MLP 0.46 0.68 0.74 0.74 0.58 0.72 0.71 0.67 0.76 0.68 0.66

IBk 0.51 0.82 0.78 0.68 0.88 0.97 0.94 0.64 0.75 0.75 0.7

KStar 0.42 0.81 0.83 0.73 0.88 0.97 0.94 0.58 0.73 0.71 0.63

ABM1 0.48 0.8 0.81 0.74 0.91 0.97 0.87 0.65 0.74 0.73 0.67

Bag 0.49 0.83 0.82 0.74 0.89 0.93 0.85 0.71 0.77 0.74 0.69

ICO 0.58 0.71 0.73 0.71 0.51 0.68 0.71 0.72 0.67 0.76 0.63

LMT 0.37 0.79 0.75 0.71 0.89 0.97 0.84 0.59 0.78 0.67 0.64

RT 0.51 0.76 0.8 0.69 0.89 0.97 0.8 0.58 0.7 0.7 0.73

RSS 0.47 0.75 0.78 0.74 0.75 0.89 0.8 0.71 0.75 0.71 0.66

PART 0.52 0.76 0.66 0.68 0.65 0.85 0.83 0.64 0.64 0.7 0.67

J48 0.57 0.8 0.79 0.78 0.85 0.95 0.84 0.69 0.72 0.66 0.66

Table A.29: Jedit4.0 ROC-AUC Values

Jedit4.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.76 0.69 0.77 0.74 0.74 0.78 0.77 0.75 0.65 0.79 0.71

LR 0.78 0.74 0.79 0.73 0.79 0.82 0.81 0.75 0.62 0.83 0.7

SL 0.76 0.72 0.78 0.73 0.78 0.81 0.8 0.75 0.68 0.82 0.74

LB 0.78 0.75 0.83 0.79 0.84 0.84 0.84 0.76 0.64 0.87 0.72

MLP 0.79 0.75 0.78 0.72 0.84 0.84 0.84 0.69 0.67 0.83 0.69

IBk 0.72 0.76 0.78 0.66 0.91 0.92 0.89 0.68 0.71 0.79 0.65

KStar 0.75 0.83 0.81 0.65 0.96 0.98 0.95 0.72 0.73 0.85 0.68

ABM1 0.78 0.85 0.85 0.75 0.95 0.97 0.94 0.76 0.7 0.86 0.68

Bag 0.74 0.86 0.87 0.76 0.95 0.97 0.93 0.78 0.71 0.86 0.7

ICO 0.76 0.74 0.82 0.78 0.84 0.84 0.84 0.72 0.59 0.87 0.65

LMT 0.77 0.79 0.78 0.74 0.9 0.9 0.87 0.75 0.68 0.84 0.73

RT 0.66 0.71 0.73 0.66 0.87 0.91 0.82 0.69 0.61 0.74 0.64

RSS 0.77 0.82 0.86 0.79 0.94 0.96 0.88 0.76 0.7 0.85 0.73

PART 0.71 0.77 0.77 0.77 0.88 0.88 0.84 0.66 0.61 0.72 0.64
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Jedit4.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.67 0.76 0.75 0.75 0.9 0.87 0.87 0.7 0.61 0.76 0.6

Table A.30: Jedit4.0 Balance Values

Jedit4.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 50.67 47.89 54.72 52.16 52.14 54.49 52.2 57.64 54.49 55.22 57.94

LR 57.26 66.14 69.43 65.39 65.84 74.06 72.02 64.5 55.61 70.43 63.8

SL 56.48 64.93 68.79 66.64 65.96 73.16 71.82 66.46 56.83 71.95 66.88

LB 60.06 68.47 74.13 75.4 73.07 75.98 75.28 70.88 59.6 74.33 66

MLP 58.23 68.43 69.84 66.85 73.48 77.14 77.81 63.31 62.19 77.7 63.08

IBk 67.65 75.4 78.04 62.64 90.11 91.27 87.72 68.12 69.06 80.21 68.22

KStar 57.81 74.6 75.93 65.47 90.32 89.76 85.65 62.42 66.84 73.14 62.74

ABM1 60.81 76.32 76.44 72.76 90.77 89.56 87.17 70.11 61.45 77.98 61.9

Bag 62.86 77.16 80.05 72.66 89.82 88 83.39 71.17 62.35 76.41 60.89

ICO 65.56 69.3 72.27 74.15 72.91 75.5 75.02 71.78 53.26 72.78 72.45

LMT 57.33 72.85 72.83 71.53 88.29 86.84 82.62 66.95 56.83 72.78 66.88

RT 62.14 71.09 72.34 63.78 86.56 90.13 81.84 69.14 58.04 72.8 64.4

RSS 57.26 73.67 76.25 72.52 89.54 90.27 78.93 72.98 52.49 70.45 65.87

PART 53.61 69.74 69.85 73.41 84.89 86.63 80.92 63.1 57.29 71.77 59.49

J48 62.24 75 72.82 75.95 88.36 82.51 82.3 68.12 58.72 72.17 57.08

Table A.31: Jedit4.0 G-Mean Values

Jedit4.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.53 0.49 0.58 0.55 0.55 0.57 0.55 0.6 0.56 0.58 0.6

LR 0.61 0.66 0.7 0.66 0.67 0.74 0.72 0.65 0.57 0.72 0.64

SL 0.61 0.66 0.69 0.67 0.68 0.73 0.72 0.67 0.59 0.73 0.67

LB 0.64 0.69 0.74 0.76 0.74 0.76 0.75 0.71 0.6 0.76 0.66

MLP 0.62 0.69 0.7 0.67 0.74 0.77 0.78 0.63 0.63 0.78 0.63

IBk 0.7 0.76 0.78 0.63 0.9 0.93 0.89 0.68 0.69 0.81 0.68

KStar 0.61 0.76 0.76 0.65 0.9 0.91 0.87 0.64 0.67 0.75 0.63

ABM1 0.64 0.77 0.77 0.73 0.91 0.91 0.88 0.7 0.63 0.79 0.62

Bag 0.67 0.77 0.8 0.73 0.9 0.89 0.83 0.71 0.63 0.77 0.61

ICO 0.69 0.69 0.72 0.74 0.74 0.76 0.75 0.72 0.55 0.74 0.73

LMT 0.61 0.73 0.73 0.72 0.89 0.88 0.83 0.67 0.59 0.74 0.67

RT 0.64 0.71 0.73 0.64 0.87 0.91 0.82 0.69 0.59 0.74 0.64

RSS 0.61 0.74 0.76 0.73 0.9 0.9 0.79 0.74 0.54 0.73 0.66

PART 0.57 0.71 0.7 0.73 0.85 0.88 0.81 0.63 0.58 0.72 0.59
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Jedit4.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.65 0.75 0.73 0.76 0.88 0.83 0.83 0.68 0.59 0.73 0.57

Table A.32: Jedit4.0 Sensitivity Values

Jedit4.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.31 0.27 0.37 0.33 0.33 0.36 0.33 0.41 0.37 0.37 0.43

LR 0.4 0.66 0.65 0.59 0.55 0.72 0.7 0.56 0.77 0.61 0.72

SL 0.39 0.76 0.68 0.63 0.55 0.71 0.78 0.61 0.83 0.64 0.71

LB 0.44 0.67 0.71 0.72 0.66 0.75 0.73 0.67 0.75 0.67 0.71

MLP 0.41 0.73 0.67 0.62 0.67 0.75 0.79 0.64 0.73 0.76 0.63

IBk 0.56 0.84 0.79 0.6 0.91 0.98 0.94 0.63 0.76 0.76 0.67

KStar 0.41 0.85 0.79 0.66 0.91 0.98 0.93 0.51 0.71 0.64 0.65

ABM1 0.45 0.83 0.79 0.71 0.95 0.96 0.91 0.65 0.81 0.72 0.72

Bag 0.48 0.81 0.81 0.73 0.91 0.94 0.85 0.68 0.79 0.71 0.69

ICO 0.52 0.7 0.69 0.7 0.65 0.74 0.72 0.65 0.81 0.64 0.68

LMT 0.4 0.75 0.72 0.66 0.92 0.94 0.86 0.6 0.83 0.64 0.71

RT 0.49 0.72 0.8 0.62 0.91 0.95 0.83 0.68 0.75 0.65 0.65

RSS 0.4 0.77 0.74 0.67 0.91 0.92 0.8 0.67 0.87 0.6 0.67

PART 0.35 0.83 0.63 0.72 0.88 0.93 0.8 0.59 0.68 0.67 0.59

J48 0.48 0.79 0.69 0.75 0.90 0.89 0.86 0.63 0.72 0.64 0.69

Table A.33: Log4j1.0 ROC-AUC Values

Log4j1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.83 0.8 0.83 0.79 0.83 0.86 0.85 0.82 0.89 0.9 0.85

LR 0.82 0.8 0.81 0.75 0.82 0.86 0.86 0.77 0.85 0.88 0.83

SL 0.85 0.81 0.82 0.76 0.83 0.88 0.87 0.81 0.89 0.9 0.87

LB 0.78 0.79 0.86 0.72 0.86 0.88 0.88 0.73 0.86 0.86 0.85

MLP 0.73 0.82 0.82 0.72 0.82 0.85 0.87 0.76 0.79 0.89 0.75

IBk 0.64 0.78 0.81 0.66 0.87 0.92 0.9 0.72 0.75 0.84 0.7

KStar 0.73 0.82 0.86 0.66 0.96 0.97 0.96 0.7 0.75 0.89 0.74

ABM1 0.71 0.81 0.84 0.69 0.93 0.95 0.87 0.71 0.77 0.86 0.76

Bag 0.77 0.82 0.86 0.69 0.91 0.94 0.87 0.76 0.8 0.92 0.85

ICO 0.76 0.79 0.85 0.71 0.85 0.88 0.87 0.7 0.81 0.85 0.83

LMT 0.85 0.81 0.79 0.76 0.87 0.91 0.82 0.81 0.89 0.91 0.87

RT 0.62 0.77 0.8 0.62 0.86 0.9 0.8 0.66 0.69 0.86 0.71

RSS 0.78 0.83 0.85 0.74 0.91 0.91 0.88 0.75 0.78 0.9 0.85

PART 0.73 0.78 0.77 0.63 0.87 0.91 0.84 0.65 0.77 0.81 0.75
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Log4j1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.65 0.7 0.75 0.61 0.93 0.86 0.83 0.72 0.7 0.82 0.74

Table A.34: Log4j1.0 Balance Values

Log4j1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 66.61 63.46 70.26 61.4 67.2 74.08 72.48 70.42 73.25 74.48 72.11

LR 66.13 71.04 75.95 71.15 72.72 80.22 76.1 72.98 79.65 78.46 72.33

SL 64.4 70.51 75.72 70.5 71.36 82.04 76.14 76.77 82.54 80.86 74.44

LB 65.68 72.31 77.3 67.2 78.15 79.98 78.99 67.58 75.84 81.54 78.08

MLP 55.97 73.75 76.96 63.18 73.99 84.7 79.9 69.15 74.27 79.08 68.6

IBk 59.29 77.31 79.98 63.6 86.63 90.62 87.52 65.95 70.45 83.22 72.1

KStar 47.63 76.42 81.55 63.02 89.36 91.98 88.66 62.64 63.2 70.13 61.21

ABM1 59.29 73.75 77.44 64.4 88.91 89.26 80.95 70.28 72.02 72.82 73.86

Bag 68.17 74.89 77.94 66.17 85.6 84.63 80.51 70.28 70.45 78.46 80.02

ICO 59.99 70.68 77.94 68.62 75.25 83.45 80.37 62.58 69.38 82.08 76.82

LMT 64.4 71.87 74.71 70.5 84.38 86.99 73.69 76.77 82.54 80.54 74.44

RT 56.54 76.94 79.99 61.04 84.47 86.61 80.22 65.46 68.2 83.15 70.78

RSS 54.16 75.41 78.38 67.37 80.82 84.91 79.2 67 73.2 82.53 78.39

PART 58.12 71.7 76.42 61.89 84.84 84.63 80.52 61.39 74.27 77.2 67.69

J48 60.09 70.33 76.13 60.86 89.36 86.34 84.63 69.67 64.72 81.95 69.27

Table A.35: Log4j1.0 G-Mean Values

Log4j1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.71 0.67 0.74 0.66 0.71 0.77 0.76 0.74 0.75 0.77 0.75

LR 0.69 0.71 0.76 0.72 0.74 0.8 0.77 0.73 0.8 0.79 0.72

SL 0.69 0.71 0.76 0.71 0.73 0.82 0.77 0.78 0.83 0.83 0.75

LB 0.68 0.72 0.77 0.67 0.78 0.8 0.79 0.68 0.76 0.82 0.79

MLP 0.59 0.74 0.77 0.64 0.74 0.85 0.8 0.69 0.75 0.8 0.69

IBk 0.62 0.77 0.8 0.64 0.87 0.92 0.89 0.66 0.71 0.83 0.72

KStar 0.49 0.76 0.82 0.63 0.9 0.93 0.89 0.64 0.63 0.73 0.62

ABM1 0.62 0.74 0.77 0.64 0.9 0.91 0.81 0.7 0.72 0.73 0.74

Bag 0.71 0.75 0.78 0.66 0.86 0.85 0.81 0.7 0.71 0.79 0.8

ICO 0.63 0.71 0.78 0.69 0.75 0.84 0.8 0.63 0.7 0.83 0.77

LMT 0.69 0.72 0.75 0.71 0.84 0.88 0.74 0.78 0.83 0.82 0.75

RT 0.58 0.77 0.8 0.61 0.85 0.89 0.8 0.66 0.68 0.86 0.71

RSS 0.58 0.76 0.79 0.68 0.81 0.85 0.79 0.68 0.74 0.84 0.78

PART 0.62 0.72 0.76 0.62 0.86 0.85 0.81 0.62 0.75 0.78 0.68
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Log4j1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.64 0.73 0.76 0.61 0.9 0.87 0.85 0.7 0.66 0.82 0.69

Table A.36: Log4j1.0 Sensitivity Values

Log4j1.0 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.53 0.49 0.59 0.46 0.54 0.64 0.62 0.59 0.65 0.65 0.62

LR 0.53 0.66 0.72 0.65 0.64 0.78 0.71 0.71 0.82 0.74 0.71

SL 0.5 0.63 0.71 0.64 0.61 0.79 0.7 0.71 0.79 0.74 0.68

LB 0.53 0.74 0.76 0.68 0.76 0.82 0.8 0.65 0.79 0.76 0.74

MLP 0.38 0.72 0.73 0.55 0.69 0.82 0.83 0.68 0.82 0.74 0.62

IBk 0.44 0.81 0.82 0.64 0.91 0.97 0.95 0.62 0.79 0.81 0.68

KStar 0.26 0.78 0.82 0.67 0.91 0.97 0.9 0.5 0.59 0.59 0.5

ABM1 0.44 0.72 0.78 0.62 0.94 0.97 0.8 0.68 0.76 0.68 0.74

Bag 0.56 0.76 0.78 0.68 0.89 0.85 0.82 0.68 0.79 0.74 0.79

ICO 0.44 0.74 0.78 0.67 0.71 0.82 0.79 0.62 0.76 0.76 0.74

LMT 0.5 0.68 0.7 0.64 0.86 0.93 0.69 0.71 0.79 0.74 0.68

RT 0.41 0.78 0.8 0.62 0.91 0.98 0.78 0.68 0.74 0.76 0.71

RSS 0.35 0.82 0.74 0.62 0.77 0.83 0.77 0.59 0.79 0.76 0.79

PART 0.41 0.7 0.78 0.6 0.93 0.85 0.81 0.5 0.82 0.71 0.65

J48 0.44 0.89 0.73 0.59 0.91 0.93 0.85 0.65 0.79 0.79 0.68

Table A.37: Synapse1.1 ROC-AUC Values

Synapse1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.75 0.69 0.73 0.71 0.7 0.77 0.75 0.7 0.7 0.78 0.67

LR 0.74 0.69 0.73 0.7 0.71 0.78 0.76 0.73 0.67 0.78 0.67

SL 0.77 0.71 0.73 0.72 0.7 0.79 0.78 0.74 0.72 0.82 0.7

LB 0.69 0.75 0.76 0.67 0.75 0.79 0.8 0.71 0.67 0.8 0.68

MLP 0.77 0.79 0.77 0.68 0.82 0.84 0.84 0.79 0.65 0.82 0.65

IBk 0.7 0.77 0.75 0.63 0.87 0.87 0.86 0.67 0.64 0.86 0.68

KStar 0.76 0.79 0.84 0.62 0.95 0.95 0.92 0.73 0.67 0.84 0.79

ABM1 0.78 0.82 0.83 0.69 0.95 0.93 0.9 0.76 0.64 0.81 0.65

Bag 0.77 0.83 0.84 0.69 0.94 0.93 0.9 0.75 0.72 0.82 0.76

ICO 0.7 0.75 0.75 0.66 0.75 0.78 0.8 0.57 0.67 0.78 0.63

LMT 0.77 0.78 0.75 0.72 0.87 0.85 0.84 0.74 0.72 0.81 0.71

RT 0.66 0.73 0.75 0.6 0.86 0.84 0.81 0.63 0.6 0.72 0.59

RSS 0.75 0.82 0.8 0.7 0.93 0.9 0.84 0.72 0.68 0.79 0.68

PART 0.67 0.8 0.75 0.64 0.87 0.87 0.83 0.68 0.66 0.8 0.64
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Synapse1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.66 0.73 0.75 0.63 0.87 0.87 0.82 0.6 0.62 0.69 0.66

Table A.38: Synapse1.1 Balance Values

Synapse1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 63.68 64.18 67.35 63.87 56.69 66.87 66.45 64.31 62.74 71.88 63.89

LR 61.93 66.5 69.53 66.25 65.21 73.1 72.06 69.29 61.32 77.09 65.07

SL 56.22 67.47 68.78 66.85 64.01 75.73 73.43 67.74 61.03 77.64 63.21

LB 53.22 67.37 71.47 64.87 65.53 73.88 73.74 61.55 61.85 72.59 62.77

MLP 61.99 71.35 71.46 63.46 76.99 78.68 78.65 77.36 62.43 74.32 60.33

IBk 65.25 75.81 73.4 59.87 85.36 85.28 83.01 66.19 61.03 85.28 69.91

KStar 61.39 73.48 76.42 63.93 86.01 85.77 84.33 67.74 63.45 72.51 67.16

ABM1 62.43 76.12 78.65 64.47 88.66 87.9 84.08 68.05 63.45 73.92 60.27

Bag 61.65 74.48 76 64.85 87.11 84.09 83.44 65.82 65.8 76.1 66.87

ICO 52.13 67.37 70.65 65.59 65.53 74.22 73.8 51.35 67.5 71.88 57.66

LMT 56.22 74.82 68.99 66.85 82.8 81.82 77.1 67.74 61.03 78.48 63.89

RT 64.51 72.62 74.51 58.83 83.2 83.6 81.19 62.48 58.53 71.5 58.46

RSS 51.59 71.65 73.82 69.01 86.02 81.16 79.1 68.44 55.05 68.82 67.43

PART 58.69 75.45 70.18 62.85 83.09 84.19 77.08 61.29 63.45 72.59 60.27

J48 58.89 70.69 70.6 62.34 82.8 82.02 76.75 58.98 59.62 66.85 63.57

Table A.39: Synapse1.1 G-Mean Values

Synapse1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.66 0.65 0.68 0.65 0.59 0.68 0.68 0.65 0.63 0.73 0.64

LR 0.66 0.67 0.7 0.66 0.66 0.73 0.72 0.69 0.62 0.78 0.65

SL 0.6 0.68 0.69 0.67 0.65 0.76 0.74 0.68 0.62 0.79 0.63

LB 0.55 0.68 0.72 0.65 0.66 0.74 0.74 0.62 0.63 0.74 0.63

MLP 0.66 0.72 0.72 0.64 0.77 0.79 0.79 0.77 0.63 0.75 0.6

IBk 0.66 0.76 0.74 0.6 0.86 0.87 0.84 0.66 0.62 0.85 0.7

KStar 0.64 0.74 0.77 0.64 0.87 0.87 0.85 0.68 0.64 0.73 0.67

ABM1 0.65 0.76 0.79 0.65 0.9 0.89 0.84 0.68 0.64 0.74 0.6

Bag 0.65 0.75 0.76 0.65 0.88 0.84 0.83 0.66 0.67 0.77 0.67

ICO 0.54 0.68 0.71 0.66 0.66 0.74 0.74 0.51 0.68 0.73 0.58

LMT 0.6 0.75 0.69 0.67 0.84 0.83 0.77 0.68 0.62 0.8 0.64

RT 0.65 0.73 0.75 0.59 0.86 0.84 0.81 0.63 0.59 0.72 0.59

RSS 0.55 0.72 0.74 0.69 0.87 0.81 0.79 0.69 0.57 0.71 0.68

PART 0.61 0.76 0.72 0.64 0.84 0.85 0.77 0.62 0.64 0.74 0.6
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Synapse1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.61 0.71 0.71 0.63 0.84 0.83 0.77 0.59 0.6 0.67 0.64

Table A.40: Synapse1.1 Sensitivity Values

Synapse1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.5 0.57 0.6 0.53 0.41 0.57 0.57 0.55 0.63 0.65 0.58

LR 0.47 0.61 0.65 0.61 0.57 0.71 0.68 0.65 0.75 0.7 0.62

SL 0.38 0.61 0.64 0.61 0.55 0.72 0.68 0.63 0.8 0.7 0.58

LB 0.35 0.63 0.69 0.63 0.6 0.76 0.72 0.57 0.77 0.65 0.65

MLP 0.47 0.77 0.64 0.54 0.8 0.8 0.8 0.75 0.73 0.68 0.6

IBk 0.55 0.83 0.78 0.6 0.92 0.93 0.89 0.67 0.8 0.85 0.75

KStar 0.47 0.8 0.84 0.6 0.93 0.92 0.89 0.63 0.72 0.67 0.62

ABM1 0.48 0.76 0.8 0.59 0.95 0.94 0.84 0.65 0.72 0.68 0.58

Bag 0.47 0.77 0.74 0.59 0.94 0.88 0.84 0.6 0.78 0.7 0.65

ICO 0.33 0.63 0.67 0.65 0.6 0.75 0.72 0.62 0.78 0.65 0.68

LMT 0.38 0.8 0.67 0.61 0.93 0.89 0.74 0.63 0.8 0.72 0.58

RT 0.55 0.74 0.74 0.57 0.95 0.9 0.83 0.58 0.72 0.65 0.63

RSS 0.32 0.72 0.69 0.65 0.91 0.8 0.77 0.62 0.87 0.58 0.63

PART 0.43 0.81 0.6 0.51 0.92 0.91 0.78 0.52 0.72 0.65 0.58

J48 0.43 0.73 0.64 0.51 0.93 0.89 0.77 0.57 0.75 0.6 0.57

Table A.41: Synapse1.2 ROC-AUC Values

Synapse1.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.78 0.73 0.75 0.75 0.83 0.76 0.77 0.76 0.78 0.86 0.8

LR 0.8 0.75 0.78 0.77 0.85 0.79 0.79 0.75 0.79 0.87 0.8

SL 0.79 0.75 0.76 0.77 0.85 0.78 0.78 0.76 0.77 0.88 0.8

LB 0.78 0.75 0.77 0.79 0.83 0.83 0.83 0.77 0.8 0.9 0.8

MLP 0.76 0.74 0.74 0.74 0.84 0.79 0.8 0.75 0.76 0.84 0.82

IBk 0.67 0.76 0.73 0.65 0.85 0.85 0.84 0.65 0.72 0.79 0.74

KStar 0.77 0.79 0.81 0.67 0.93 0.94 0.93 0.76 0.79 0.9 0.79

ABM1 0.75 0.76 0.81 0.72 0.93 0.93 0.88 0.78 0.79 0.91 0.83

Bag 0.8 0.8 0.83 0.75 0.91 0.9 0.88 0.79 0.78 0.91 0.82

ICO 0.76 0.74 0.77 0.77 0.84 0.82 0.82 0.75 0.76 0.89 0.78

LMT 0.82 0.71 0.74 0.76 0.82 0.88 0.82 0.77 0.7 0.88 0.8

RT 0.67 0.7 0.74 0.63 0.83 0.82 0.76 0.64 0.64 0.77 0.68

RSS 0.76 0.78 0.82 0.78 0.9 0.87 0.84 0.76 0.77 0.86 0.8

PART 0.73 0.7 0.73 0.71 0.83 0.84 0.8 0.76 0.69 0.85 0.68
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Synapse1.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.74 0.68 0.79 0.67 0.85 0.84 0.76 0.67 0.74 0.82 0.71

Table A.42: Synapse1.2 Balance Values

Synapse1.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 67.44 60.63 64.09 65.33 69.23 66.41 63.68 65.92 71.3 75.5 73.74

LR 62.4 66.77 68.54 68.72 75.24 69.7 71.07 66.29 67.28 81.33 74.37

SL 59.83 66.95 67.35 69.51 75.64 69.89 69.11 64.76 62.09 83.21 71.99

LB 67.12 68.22 70.08 71.75 76.97 73.72 72.8 71.49 60.56 80.82 62.07

MLP 70.13 69.72 71.48 71.73 81.34 75.53 74.53 75.05 70.25 81.54 73.01

IBk 64.95 73.29 70.68 61.93 84.02 83.27 82.7 65.49 66.27 79.43 73.02

KStar 68.76 73.38 73.42 66.41 84.32 84.21 83.46 71.07 64.03 83.36 72.03

ABM1 66.83 69.89 71.91 67.3 85.18 82.77 80.9 71.16 56.44 84.39 70.82

Bag 69.14 73.71 74.53 69.72 83.6 82.28 80.94 72.27 56.04 83.85 62.39

ICO 68.49 66.58 70.1 70.99 76.85 74.01 72.34 71.96 45.23 78.34 61.81

LMT 64.57 67.58 67.71 70.66 77.87 84.19 75.53 68.33 57.76 83.21 71.99

RT 64.78 69.8 74.32 61.85 81.71 81.19 75.54 63.9 59.68 76.45 67.28

RSS 62.36 71.81 73.95 71.99 83.6 81.26 78.56 71.75 43.22 79.66 62.54

PART 67.56 62.97 69.28 70.09 79.78 76.48 76.11 73.68 72.35 83.96 65.92

J48 69.04 68.37 76.05 66.72 81.96 80.84 74.01 66.83 72.88 78.37 67.74

Table A.43: Synapse1.2 G-Mean Values

Synapse1.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.7 0.62 0.66 0.67 0.71 0.68 0.65 0.68 0.71 0.77 0.75

LR 0.66 0.68 0.69 0.7 0.76 0.7 0.72 0.68 0.69 0.82 0.75

SL 0.63 0.68 0.68 0.7 0.77 0.71 0.7 0.66 0.64 0.83 0.73

LB 0.69 0.68 0.7 0.72 0.77 0.74 0.73 0.72 0.63 0.81 0.64

MLP 0.71 0.7 0.72 0.72 0.82 0.76 0.75 0.75 0.71 0.82 0.74

IBk 0.66 0.74 0.71 0.62 0.84 0.84 0.84 0.66 0.67 0.79 0.73

KStar 0.71 0.74 0.73 0.66 0.85 0.85 0.84 0.71 0.66 0.83 0.72

ABM1 0.68 0.7 0.72 0.67 0.86 0.83 0.81 0.71 0.59 0.84 0.71

Bag 0.71 0.74 0.75 0.7 0.84 0.83 0.81 0.72 0.58 0.84 0.64

ICO 0.7 0.67 0.7 0.71 0.77 0.74 0.73 0.72 0.46 0.78 0.64

LMT 0.67 0.68 0.68 0.71 0.78 0.85 0.76 0.69 0.59 0.83 0.73

RT 0.66 0.7 0.74 0.62 0.83 0.82 0.76 0.64 0.61 0.77 0.68

RSS 0.65 0.72 0.74 0.72 0.84 0.81 0.79 0.72 0.43 0.8 0.65

PART 0.68 0.64 0.7 0.7 0.8 0.77 0.77 0.74 0.73 0.84 0.67
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Synapse1.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.7 0.69 0.76 0.67 0.82 0.81 0.74 0.67 0.73 0.79 0.68

Table A.44: Synapse1.2 Sensitivity Values

Synapse1.2 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.56 0.47 0.52 0.54 0.59 0.56 0.52 0.53 0.69 0.67 0.66

LR 0.48 0.58 0.6 0.6 0.69 0.62 0.64 0.56 0.83 0.78 0.81

SL 0.44 0.58 0.58 0.61 0.68 0.63 0.61 0.53 0.85 0.8 0.83

LB 0.57 0.67 0.7 0.7 0.74 0.75 0.73 0.66 0.87 0.81 0.84

MLP 0.63 0.68 0.7 0.66 0.79 0.76 0.78 0.71 0.8 0.77 0.81

IBk 0.55 0.83 0.73 0.57 0.87 0.89 0.9 0.63 0.79 0.81 0.78

KStar 0.58 0.81 0.75 0.65 0.87 0.9 0.9 0.66 0.85 0.83 0.76

ABM1 0.58 0.75 0.73 0.66 0.91 0.87 0.83 0.7 0.86 0.86 0.79

Bag 0.58 0.79 0.78 0.68 0.87 0.86 0.83 0.71 0.84 0.85 0.79

ICO 0.58 0.64 0.71 0.68 0.73 0.74 0.68 0.69 0.93 0.79 0.83

LMT 0.51 0.66 0.61 0.64 0.76 0.91 0.77 0.6 0.83 0.8 0.83

RT 0.55 0.7 0.76 0.6 0.89 0.88 0.76 0.62 0.83 0.81 0.77

RSS 0.49 0.75 0.73 0.68 0.87 0.83 0.79 0.67 0.93 0.78 0.86

PART 0.59 0.77 0.76 0.7 0.8 0.84 0.84 0.69 0.77 0.84 0.77

J48 0.6 0.73 0.73 0.61 0.83 0.84 0.76 0.6 0.74 0.76 0.74

Table A.45: Log4j1.1 ROC-AUC Values

Log4j1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.86 0.78 0.85 0.84 0.81 0.86 0.85 0.84 0.85 0.89 0.86

LR 0.84 0.76 0.83 0.82 0.79 0.84 0.84 0.81 0.77 0.88 0.8

SL 0.83 0.73 0.81 0.79 0.76 0.8 0.84 0.81 0.75 0.87 0.79

LB 0.83 0.84 0.89 0.83 0.92 0.89 0.84 0.8 0.86 0.86 0.8

MLP 0.82 0.77 0.86 0.8 0.8 0.87 0.88 0.8 0.78 0.87 0.78

IBk 0.75 0.73 0.78 0.7 0.87 0.86 0.85 0.71 0.7 0.87 0.71

KStar 0.82 0.8 0.89 0.77 0.96 0.95 0.93 0.76 0.77 0.95 0.85

ABM1 0.76 0.78 0.84 0.79 0.97 0.93 0.86 0.71 0.71 0.88 0.75

Bag 0.82 0.82 0.87 0.84 0.93 0.91 0.89 0.79 0.77 0.9 0.77

ICO 0.81 0.83 0.87 0.82 0.91 0.87 0.82 0.81 0.83 0.87 0.76

LMT 0.81 0.78 0.79 0.77 0.92 0.84 0.83 0.81 0.76 0.85 0.79

RT 0.68 0.73 0.75 0.71 0.92 0.88 0.79 0.69 0.8 0.79 0.69

RSS 0.85 0.8 0.87 0.83 0.92 0.9 0.87 0.83 0.85 0.92 0.8

PART 0.8 0.78 0.84 0.74 0.92 0.85 0.82 0.73 0.82 0.82 0.72
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Log4j1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.72 0.76 0.81 0.75 0.91 0.84 0.82 0.7 0.84 0.82 0.73

Table A.46: Log4j1.1 Balance Values

Log4j1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 76.55 61.77 76.7 72.91 67.92 72.91 76.7 75.42 78.57 82.11 76.91

LR 74.46 68.81 72.77 72.72 64.68 73.36 76.39 71.41 61.79 81.81 64.5

SL 74.84 69.56 73.65 74.09 68.37 71.83 78.11 73.94 56.86 83.38 76.29

LB 73.63 73.76 80.46 77.24 79.59 79.38 73.92 71.05 65.86 78.35 67.73

MLP 75.07 69.94 77.41 71.38 72.4 76.93 80.89 72.24 56.86 78.35 67.73

IBk 74.33 69.09 77.07 68.82 83.14 82.21 80.92 72.69 68.7 84.87 72.27

KStar 69.03 67.7 80.86 72.15 85.79 87.84 85.68 68.87 59.56 82.49 78.01

ABM1 69.92 67.72 78.96 73.36 88.9 82.73 75.16 66.15 58.8 80.86 65.49

Bag 66.33 75.82 76.54 73.07 84.93 83.69 80.86 72.09 64.13 76.03 67.73

ICO 72.11 72.93 77.23 78.4 79.7 78.71 69.94 72.53 62.13 79.31 67.73

LMT 74.67 70.74 73.19 72.21 85.34 76.99 77.56 73.94 60.85 81.81 76.29

RT 66.06 70.54 73.76 68.09 88.76 84.04 76.83 68.45 79.79 75.04 67.82

RSS 69.36 71.12 73.48 72.72 81.74 81.21 75.58 70.47 54.2 82.64 71.85

PART 70.73 72.24 78.38 71.67 86.39 83.63 73.36 70 61.79 75.83 68.66

J48 70.52 69.5 77.73 70.02 84.41 82.22 72.77 68.78 61.79 76.03 71.67

Table A.47: Log4j1.1 G-Mean Values

Log4j1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.79 0.66 0.79 0.76 0.72 0.76 0.79 0.77 0.81 0.84 0.81

LR 0.77 0.69 0.73 0.73 0.65 0.74 0.76 0.72 0.65 0.82 0.65

SL 0.78 0.7 0.75 0.75 0.68 0.72 0.78 0.75 0.59 0.84 0.76

LB 0.75 0.74 0.81 0.78 0.8 0.79 0.74 0.71 0.69 0.78 0.68

MLP 0.79 0.7 0.79 0.72 0.73 0.8 0.81 0.73 0.59 0.78 0.68

IBk 0.75 0.69 0.77 0.69 0.86 0.84 0.82 0.73 0.7 0.85 0.72

KStar 0.73 0.68 0.81 0.72 0.87 0.88 0.86 0.69 0.61 0.85 0.79

ABM1 0.71 0.68 0.79 0.74 0.91 0.84 0.75 0.66 0.6 0.81 0.66

Bag 0.69 0.76 0.77 0.73 0.85 0.84 0.81 0.72 0.66 0.77 0.68

ICO 0.74 0.73 0.77 0.79 0.8 0.79 0.7 0.73 0.66 0.8 0.68

LMT 0.78 0.71 0.74 0.73 0.86 0.77 0.78 0.75 0.63 0.82 0.76

RT 0.67 0.71 0.74 0.68 0.91 0.85 0.77 0.69 0.8 0.75 0.68

RSS 0.74 0.71 0.76 0.73 0.82 0.81 0.76 0.73 0.59 0.83 0.72

PART 0.74 0.72 0.8 0.72 0.88 0.84 0.74 0.72 0.65 0.76 0.69
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Log4j1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

J48 0.73 0.7 0.78 0.71 0.85 0.82 0.73 0.7 0.65 0.77 0.72

Table A.48: Log4j1.1 Sensitivity Values

Log4j1.1 NS ADSYN SMT SLSMT SPD ROS AHC RUS CNNTL NCL OSS

NB 0.68 0.46 0.68 0.62 0.55 0.62 0.68 0.68 0.7 0.76 0.68

LR 0.65 0.7 0.7 0.67 0.64 0.7 0.74 0.65 0.89 0.78 0.73

SL 0.65 0.62 0.67 0.68 0.65 0.65 0.74 0.68 0.84 0.81 0.76

LB 0.65 0.74 0.75 0.72 0.77 0.78 0.7 0.68 0.89 0.76 0.7

MLP 0.65 0.67 0.7 0.64 0.67 0.68 0.77 0.65 0.84 0.76 0.7

IBk 0.7 0.75 0.81 0.77 0.96 0.91 0.9 0.76 0.84 0.84 0.76

KStar 0.57 0.74 0.81 0.7 0.93 0.9 0.84 0.62 0.78 0.76 0.73

ABM1 0.62 0.64 0.75 0.7 0.99 0.9 0.77 0.65 0.76 0.78 0.76

Bag 0.54 0.78 0.75 0.68 0.86 0.84 0.81 0.68 0.81 0.7 0.7

ICO 0.62 0.71 0.8 0.75 0.78 0.78 0.67 0.7 0.92 0.76 0.7

LMT 0.65 0.68 0.67 0.67 0.88 0.74 0.74 0.68 0.84 0.78 0.76

RT 0.57 0.67 0.74 0.7 0.97 0.91 0.83 0.65 0.84 0.78 0.76

RSS 0.57 0.67 0.64 0.67 0.84 0.78 0.72 0.59 0.97 0.78 0.68

PART 0.59 0.75 0.71 0.67 0.96 0.86 0.7 0.59 0.89 0.73 0.62

J48 0.59 0.7 0.72 0.62 0.88 0.84 0.7 0.59 0.89 0.7 0.65
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