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ABSTRACT 

 

Human were considered as sterile for a long time period but, as the science advanced in 

Biology, a lot of techniques have been discovered that figured them out. Human body 

consisting of 100 trillion cells is inhabited by many bacteria and other microbes all over, for 

example, over skin, beneath the skin, gut, oral axis, and in lungs. All the microbial community 

is collectively called microbiome. They play role as the essential components of immunity, 

influence metabolism, and also modulate drug interactions. However, under disease conditions, 

as the normal physiology of body changes, dysbiosis of microbiota occurs and the 

advantageous normal microbes get replaced by the competent infectious ones. Human body 

thus acts as host to them. The present study aims at analysis of normal microbiota in human 

oral-gut axis and lungs, followed by the dysbiosis in lung microbiota in cystic fibrosis. This 

dysbiosis causes infection leading to a high mortality rate in cystic fibrosis patients. Most of 

these infectious agents in CF are drug resistant, so it has become difficult to treat them. Hence, 

a need has arisen to search for alternative strategies to treat cystic fibrosis. These infectious 

microbial community in lungs can be targeted on basis of their surface structures. This thesis 

aims to predict the B-cell epitope in three major microbes implicated in high mortality rate in 

CF. B-cell epitopes were predicted using major bioinformatics tool, IEDB, Uniprot, PDB, 

Bepipred, Discotope, Phyre^2 and Firstglance Jmol. Using data from the tools, antigen specific 

antibody can be synthesized. As, antibody binds the specific antigen, a higher chance is that 

the infection rate can be slowed or eliminated using other drugs along with the antibody 

cocktail.  
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CHAPTER 1 

INTRODUCTION 

 

Cystic fibrosis (CF) is a autosomal recessive disorder of mucus gland, it is genetically inherited, 

and only inherited by the offspring if both parents have defected genes. Mutation in the gene 

responsible for the disease is in protein CFTR gene, which is an ion pump. It pumps Cl ions 

out of cell in mucus glands and reabsorbs Cl ions in sweat glands. A number of mutations have 

been identified in CF, but the common one in most of the populations with CF is at the position 

number 508, in CFTR gene; the deletion of three nucleotides coding phenylalanine. Due to this 

deletion, CFTR protein is not able to take a complete and correct conformation, and loses its 

function. The protein is not correctly folded in ER and undergoes impaired post-translational 

processing (protein does not undergo glycosylation), and is retained in ER and degraded rather 

secretion towards the cell membrane. Normally, CFTR pumps Cl ions into the mucus, present 

around the mucus cells, these Cl ions attract water molecule, which makes it thin. In CF 

patients, as the CFTR is non-functional, the mucus is thick which causes difficulty in breathing, 

non-motility of cilia preventing the clearing of airways pathways, lung becomes home to 

infectious microbial community, and dysbiosis occurs. Microbes harbouring the lungs of CF 

patients are predominantly Stenotrophomonas maltophilia, Stenotrophomonas, Burkholderia 

cepacia complex, Haemophilus influenza, Staphylococcus aureus, Pseudomaonas aeruginosa, 

Methicillin-resistant Staphylococcus aureus (MRSA), Mycobacterium abscessus, 

Achromobacter spp., Streptococcus milleri, and Aspergillus fumigatus. The high mortality rate 

in CF is not due to disease, rather it is due to the infection caused by different classes of bacteria, 

viruses and fungi. Most of them have developed resistance due to the development of MDR 

transporters on the cell membrane or formation of biofilms. So, to increase the lifetime of a CF 

patient, it becomes necessary to target infectious agents individually.  By targeting the Epitopes 

for B-cell and T-cell on the surface, creating monoclonal antibody (Ab) (idiotype), the rate of 

infection can be slowed down, along with the other drugs, physiotherapy and exercise. 

B-cell epitope identification is important step in the development of vaccines based on epitope, 

therapeutic Abs, and diagnostic tools.  Epitope based Abs, are most promising class of 

biopharmaceuticals. Categorization and analysis (in silico) of identified epitopes, have 

important role in the production of epitope-based Abs. 
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For the prediction of B-cell epitope, a number of in silico tools are available which are based 

on sequence / structural data. Prediction of B-cell epitopes provides the ability for the 

identification of correct structure, and replace the Ag in the immunization process, 

serodiagnosis and Ab production. Computational prediction and epitope mapping added more 

insights into the process of recognition and development of Ag- Ab complexes, which is helpful 

to localize B-cell epitope more precisely. 

T-cell epitope prediction main aim is to identify peptides the shortest, within an ag that are able 

to rouse either CD4 or CD8 cells. Calculation of discrete peptides with Ags and T-cell epitopes 

aims in the identification of those peptides that are immunogenic. Most of the in silico methods 

to generate T-cell epitopes are similar to epitopes of B-cell, but T-cell epitope processing and 

its binding and formation of complex is still a problem. So, currently Abs are mostly generated 

for B-cell epitope. In the present work, experiments (in silico)  which is for the calculation of 

B and T cell epitopes, for the database which is already existing, with the help of tools available 

online and performed. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 

Cystic fibrosis is known as fatal, chronic and progressive genetic disorder of human body’s 

mucus and sweat gland, and it majorly affects respiratory and digestive systems [Steven et al., 

2000]. It is an autosomal recessive disease. The most common symptoms observed are 

excessive loss of salts upon sweating and the mucus accumulation majorly in lungs and 

intestine. Along by these major problems, the other medical problems consider are, following 

sinusitis, nasal polyps, pneumothorax, liver disease, inflammation in pancreas, diabetes, also 

occur with CF [Steven et al., 2000]. This disorder is more common in white people, Americans, 

Europeans, and Canadians; and less common in Africans and Asians.  

In 1985, it was proved that CF locus was linked to DNA polymorphism, and the gene for CF 

is positioned on the longest arm of human chromosome 7 [Davies et al., 2007]. Later, 

progressive fragments of DNA associated with CF gene were found. From all the linkage-

disequilibrium data collected it is implied that the CF chromosome in a large proportion of 

cases arose from mutational events. Mutations in the gene encoding CFTR pump, it comprises 

of 27 exons and is situated on chromosome 7 [Davies et al., 2007]. The most common mutation 

observed in CF is the deletion of phenylalanine codon 508 (phe508del, until recently known as 

ΔF508). This occurs in about 70% of patients [Davies et al., 2007]. Although CFTR is 

expressed in many of the internal organ, but most effected organs are Intestine, lungs, and 

reproductive tract [Coffey et al., 2019]. Pulmonary CF is the most lethal. Air epithelia in 

defective cases have high rates of sodium adsorption which dehydrates the airways and impairs 

mucus transport. As the mucus gets more and more viscous the mucociliary clearance 

mechanism (MCC) becomes unable to clear the microbial infection. The second major organ 

impacted is the gastrointestinal tract [Coffey et al., 2019]. Dysfunction of the CFTR also results 

in an altered intestinal condition which is a reduced concentration of Bicarbonate and low ph 

in intestinal, delayed intestinal transit, and an impaired innate immunity and the problem 

continues from childhood to adulthood [Coffey et al., 2019].  
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2.1 Cystic fibrosis transmembrane conductance regulator (CFTR) 

Protein encoded by CFTR gene is Pump which is C-AMP regulated (Cyclic-AMP) which is 

situated in the exocrine epithelial cells of the apical membrane. This pump functions to regulate 

the ion flow along the trans-epithelial layer, which is important for maintaining the proper ionic 

composition.  [Rafeeq et al., 2017]. It is also involved in the other process involved in the 

regulation of the bicarbonate, sodium channels, and the pH of the intracellular organelles and 

the cell. In a normal human, the isotonic secretions travel from the acinus of the sweat gland to 

the skin surface, epithelial cell lining of the duct reabsorbs NaCl resulting in hypertonic 

solution [Rafeeq et al., 2017]. 

CFTR is basically phosphorylation regulated, ATP-dependent Cl-channel. It belongs to the 

family of ATP-binding cassette (ABC transporter) family. This pump has two NBD 

(Nucleotide binding domain), along with two membrane spanning domain [Cotton et al., 1996]. 

In the ABC family the cell uses ATP and pump out solutes uphill against the concentration 

gradients, as ATP bind transporter show conformational changes, that leads to hydrolysis of 

ATP, and rearrangements in the transmembrane domains, which allow substrate to move 

alternately exposed sides of the membrane. [Miller, 2010]. CFTR has two remarkable 

distinctions, one that it is only ion channel in ABC family and other is that it is the only ATP 

gated channel [Hwang and Kirk, 2013]. CFTR pumps out chloride and bicarbonate ion. As, 

transport domains have two NBD and MBD, the cycle began with the appropriate substrate 

binding to MBD [Vallières, 2014].  After, this ligation of ATP to NBD, there is subsequent 

dimerization, binding of ATP provides energy for the release of bound substrate. Later, ATP 

is hydrolyzed, NBD destabilised, ADP and Pi released and protein gets in original space 

[Vallières, 2014]. 

 

2.2 Mutations in CF 

Genes for CF are present on chromosome 7. Most of the common mutation found in CFTR is 

at position 508 for phenylalanine, present in NBD1(N-terminal cytoplasmic) [Thibodeau et al., 

2010]. A single Aa deletion leads to results in dramatic reduction of mature CFTR protein. The 

undeveloped state of a protein is recognized by the cell, it is arrested in the intermediate 

conformational and targeted for the degradation process by ubiquitination [Thibodeau et al., 

2010]. Five major classes of mutations have been reported in CFTR gene [Burney and Davies, 

2012]. These are summarized in Table 1. 
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Table 1. Mutations classes in CFTR gene in CF patients 

 

Class of 

mutation 

Effect due to mutation Problem caused due to 

mutation 

Class 1 Failure to reach the membrane due to 

incorrect folding 

Protein production mutations 

Class 2 Commonest Caucasian defect is 

Phe508Del 

Mutations lead to protein 

processing 

Class 3 Defects in gating Gating mutations 

Class 4 Conductance Transfer mutations 

Class 5 Abnormally low channel numbers Insufficient protein mutations 

 

Mutated CFTR becomes impermeable to chloride ions and alters the surface of airways in CF 

patients, making it a chronic infection [Steven et al., 2000]. The Patch clamp technique is used 

to observe single-channel activity that suggests the defect in the regulation of the chloride-

channels [Steven et al., 2000]. The associated other responses like neutrophilic inflammatory 

responses, pulmonary failure can be the cause of death in CF [LiPuma, 2010]. 

 

2.3 Microbes and human body 

The human body has 1013 cells and harbours 1014 numbers of microflora. This is normal 

microflora and is relatively stable in the specific individual in a complete life. The role of this 

microflora is far beyond the local environment [Belkaid and Hand, 2015]. The study of the 

oral-lung and gut-lung axes has shown it to be essential for disease etiology and treatment. 

Dysbiosis of these microbes is associated with the alteration of an individual's immune 

response. This review discusses the role of lung microbiota and cross-talk between oral-lung 

and gut-lung axis in the case of CF [Belkaid and Hand, 2015]. Trillions of microbes are 

associated with humans and act as a major factor in their healthiness and disease.  Human 

microbial community include Bacteria, virus, archaebacterial, and eukaryotic microbes. . The 
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vital part of human microbiota is explained via several mechanisms [Françoise and Héry-

Arnaud, 2020]. The most important role of microbiota has the potential to increase the arte 

extraction rate of energy from the food, also with this it increase nutrient harvest and alter 

appetite signalling. Along with this it provide a barrier that protects the host from foreign 

pathogens via the prohibiting as well as by producing antimicrobial substances [Françoise and 

Héry-Arnaud, 2020]. Several bacterial communities that inhabit various organs, and tissues of 

the human body, for example, gut, skin, lung, etc. are also important for their role in 

maintaining tissue, organ and immune homeostasis. Microbiota is also known as for promoting 

a state of immune tolerance to prevent inflammatory response caused by inhalation of harmful 

substances and maintain homeostasis [Françoise and Héry-Arnaud, 2020]. Microbes in the 

human body is in a symbiotic relationship that is coevolved and coexisted [Beck et al., 2012]. 

Commensal bacteria colonize just after birth and grow as a community with the growth of the 

host. To characterize importance of microbes in health and disease it is important to understand 

their functions in a healthy individual. Germ-free animals, mostly mice, have been used for 

decades to find the relationship between the host and microbiota. The health condition of the 

host is greatly impacted by the diversity of resident microbes [Beck et al., 2012]. Microbiomes 

of oral cavity and gastrointestinal tract have been implicated in maintaining homeostasis with 

the immune system. Cross-talk between oral-lung and gastrointestinal tract-lung has been 

suggested through studying the role of oral and gut microbes in respiratory disease such as 

asthma [Kilian et al., 2016]. 

 

2.4 Microbiome of oral cavity and gastrointestinal tract 

Microbes are important for human physiology and health. The strategy adopted for studying 

human microbes involve clinical, technical, analytical and translational steps [Dumas et al., 

2018]. The details are presented in Table 2. 
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Table 2. Strategy adopted for studying human microbes 

Steps Details 

Clinical Procedural details, sample type obtained, sample processing 

Technical Characterization of bacterial, viral and fungal microbiota, Inter-

kingdom microbe and host interactions 

Analytical Functional properties of the microbiome 

Translational Use of relevant animals or other models to understand mechanism of 

human microbe observation 

 

Different microbial habitats such as teeth, cheeks, lips, hard palate are present in mouth/oral 

cavity [Dewhirst et al. 2010]. 13 phyla and 619 are reported in HOMD (Human oral 

microbiome Database) [Dewhirst et al. 2010]. Salivary components of the oral cavity, for 

example, secretory immunoglobin A (IgA are the primary nutritional source for the 

microorganisms. These, directly and indirectly, regulate the microbiome and are important for 

balanced microbiome growth [Dewhirst et al. 2010]. 

The role of salivary flow and microaspiration is the pathway to foster lung microbe. The 

composition of oral and lung microbe is almost similar, but some of the microbes are specific 

to the lungs, and they eliminate common bacterial such as Prevotella sp. [Gaeckle et al., 2020]. 

A healthy gut microbe shows a huge bacterial diversity and richness. The gastrointestinal tract 

shows the best host-associated microbiota that increases in diversity along with the 

gastrointestinal tract. Interpersonal variations in the gut microbiota arise due to genetics as well 

as prevailing environment including lifestyle, diet, pH, bile concentration, digestion retention 

time and host defense factors [Budden et al., 2016]. Considering all these disparities, the gut 

microbiota is dominated by four major bacterial phyla, with the lesser and, sporadic 

representation of other phyla, including Fusobacteria, verrumicrobia and spirochaetes [Cani, 

2018]. In total 14 bacterial genera and 150 bacterial species are known to inhabit the gut. In 

addition to the bacterial species, gut microbiota also consists of phages, yeast, and fungi [Kho 

and Lal, 2018]. Gut microbiota is essential to the host digestive system and generates nutrients 
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by using a substrate that cannot be digested by the host alone. For example, digestion of 

xyloglucan found in dietary vegetable lettuce and onions is facilitated by microbial gene 

products. Genes for xyloglucan digestion have been reported in Bacteroides in 92% of 

individuals [Shreiner et al., 2015].  

Variations in gut microbiota also have a profound influence on immune response and disease 

susceptibility. Microbiomes of the gastrointestinal tract always maintain homeostasis with the 

immune system. Microbial dysbiosis at the phylum level in the gastrointestinal tract causes 

metabolic disorders including IBD, asthma, obesity and, diabetes [Cani, 2018]. APC have a 

key feature, as their ability to protect the body against infection and maintaining immune 

tolerance. Example, Dendritic cell of Peyer’s patches and dendritic cell of spleen triggered by 

same ag DC of Peyer’s patches will produce interleukin-10 (IL-10) in higher amounts than the 

splenic DC [Wu and Wu, 2012]. In the case of B-cells, mostly IL-10 is found in Peyer’s patches 

and the most secreted form is IgA.  Major driving force for the production of secreted forms of 

IgA is gut microbiota. [Wu and Wu, 2012]. 

From the mucosal and systematic immune system revealed that the, systematic is independent 

and highly specialised, whereas mucosal immune system undergoes major changes after 

bacterial colonization [Lazar et al., 2018]. Immune receptors like toll-like receptors (TLRs) 

from lymphoid cells and membrane epithelial cells of small intestine are involved in the 

differential recognition and responsible for normal development [Lazar et al., 2018].  Receptors 

like NLRs nod like receptors, recognize various microbial specific mol and initiate the 

assembly of inflammasomes, it acts as a sensor damage- associated patterns [Lazar et al., 2018].  

Many of the metabolites produced include Folate, indoles, secondary bile acids, SCFAs. 

[Hufnagl et al., 2020]. 

SCFAs are most investigated, which are produced by the anaerobic bacteria. Besides of serving 

an important energy source, SCFAs are critical for maintaining and regulating Immune system 

and its response [Hufnagl et al., 2020]. 

 

2.5 Lung microbiota 

Lungs were considered sterile organs for a long time, but advanced technology enabled the 

detection of the microbial community of lung. Microbial sampling in the lungs is much more 

difficult as a consequence of low biomass and contamination from oral cavities [Dumas et al., 
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2018]. Lung microbiota analysis is mainly based on metagenomics using RNA sequencing. 

The composition of bacteria differs in upper and lower respiratory tract showing niche-specific 

microbial colonization [Dumas et al., 2018]. It is observed that some bacterial community is 

shared between the oral cavity and the lungs, as it is needed in the lungs. The human major gut 

and lung also share similar microbiota composition at the phylum level but differ in the species 

composition [Dewhirst et al., 2010]. Lung microbes composition is eepnd upon factor that are 

immigration, microbial elimination and regional growth conditions [Mathieu et al., 2018]. 

Physiological factors including nutrient, oxygen tension, blood flow, local pH and temperature 

also influence bacterial population [Mathieu et al., 2018]. Selective elimination is the major 

determinant of the lung microbiota and a balance is maintained between elimination and 

migration [Wang et al., 2017]. The processes involving microbial immigration and elimination 

are listed in Table 3. However, this balance is disturbed in case of lung diseases. In most healthy 

population, environment is not conductive for bacterial community development.As a 

consequence, lungs have a comparatively low microbial biomass, however, they are exposed 

to continuous entry of microorganisms [Wang et al., 2017]. 

 

Table 3. Balance between microbial immigration and elimination maintains lung 

microbiota 

Microbial immigration Microbial elimination 

Inhalation Cough 

Micro-aspiration Immunity (innate adaptive host defense) 

Mucosal dispersion  Mucociliary clearance 

 

Dysbiosis of microbiomes in lungs affects metabolic, inflammatory or immune pathways [Mao 

et al., 2018]. Healthy lung microbes belong to the phylum Bacteroidetes, Actinobacteria and 

Firmicutes. In case of respiratory infections microbes found in more abundance are 

Proteobacteria [Hufnagl et al., 2020]. This dysbiosis activates inflammatory pathways that 

contribute to hyperbronchial responsiveness and bronchoconstriction. Outer environment 

factor can affect Lung microbiota both positively and negatively [Hufnagl et al., 2020]. 

Antibiotics, antiulcer medications severely impaired gut and leads to a dysfunctional microbial 

community. Dysbiosis result in the lack of microbes which ultimately leads to dysregulation 

of the gut-lung cross talk, resulting in hypersensitivity and hyperactivity [Hufnagl et al., 2020].  
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In case of asthma, patients have lower microbial diversity but some of the species that increase 

in the number include phylum Proteobacteria and H. influenzae [Hufnagl et al., 2020]. Lack of 

microbial diversity clues to weakening of the immune system (pulmonary) resulting in the host 

vulnerable to lung disorder [Hufnagl et al., 2020]. 

 

2.6 Cross talk between gut-lung axis  

Microbes play a very important role in maintaining and regulating immune response in addition 

to maintaining host immune homeostasis. Lung microorganisms are important for the 

homoeostasis of lung immune response and its dysbiosis could invoke host immune response. 

The healthy hallmark gut and lung axis is the rich microbe diversity. An adjacent connection 

is observed in between the lung and gut microbe and the two affect each other’s composition 

[Enaud et al., 2020]. Although the site-specific microbiota provides local immunization, a long-

reaching impact of gut microbe is observed on pulmonary immune system [Enaud et al., 2020]. 

The intact bacteria, their metabolites and their fragments can translocate crossways of the 

intestinal barrier via the mesenteric lymphatic system, and are associated with Respiratory 

disease [Enaud et al., 2020]. Thus, bidirectional cross-talking amongst gut and lung, creates a 

relation that dysbiosis in one organ affects the other [Enaud et al., 2020].  A mechanism is 

followed by gut microbe to influence the immune response and inflammation in the lungs 

includes T-cells subsets, TLRs, inflammatory cytokines and surfactants [Enaud et al., 2020]. 

In a pre-clinical model, infection due to influenza has been shown to trigger an increased 

proportion of Enterobacteriaceae and decreased abundance of Lactococci and Lactobacilli 

[Enaud et al., 2020]. Lymphoid cells of innate adaptive system shows tissue repair have been 

shown to recruit from gut to lung in response the interleukin 25 (IL-25) [Enaud et al., 2020]. 

The glucopyranosyl lipid adjuvant (GLA) immunization results from the complex interaction 

between the gut-lung axis microbe with a local and long leaving effect of the immune system 

[Enaud et al., 2020]. The  immunization of gut  depends on the lung APCs (dendritic, 

macrophages and B-cells) and influenza infections that modulates the microbiota of gut[Zhang 

et al.,2020]. The nasal inoculation by  salmonella provides a specific immunization that 

depends on lung dendritic cells [Zhang et al.,2020]. In people suffering from chronic 

obstructive pulmonary disorder (COPD), change in gut microbiota is observed that is 

associated with change in the modulation of innate immunity and for the systematic 

immunization [Zhang et al., 2020]. SCFAs, one of the most widely recognised metabolites 
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produced by gut microbiota, are produced through fermentation and involved in lung-gut axis 

[Cait et al., 2017]. SCFAs generated by gut microbes control immune system and participate 

in the increase in allergic reactions, as example, in modulating the immune system in case of 

asthma [Cait et al., 2017]. SCFAs also act as the lung’s signalling molecules APCs to increase 

the rate of inflammatory and allergic reactions [Cait et al., 2017]. SCFAs act as a potent anti-

inflammation molecule and release of cytokines molecule induce apoptosis [Vaughan et al., 

2019]. In asthma patients, a shift is observed in the metabolite production from SCFAs toward 

the production of carbohydrates, amino acids and lipids. Asthma is majorly due to Th2 cell 

respone. (Vaughan et al., 2019). SCFAs are also produced during cystic fibrosis, as the hypoxic 

environment airways allow the growth of the facultative anaerobic bacteria which produce 

SCFA through fermentation [Vaughan et al., 2019]. A progressive correlation between SCFA 

and sputum neutrophil count has been suggested. The amount of SCFA present in the airways 

affects granulocyte colony-stimulating factor, granulocyte-macrophage colony stimulating 

factor and IL-6. [LiPuma et al., 2010].  

Segmented factor bacteria (SFB) are long-reaching immune effectors components, also 

commensal bacteria that colonize ileum of most animals, and involve in modulation of immune 

system [Enaud et al., 2020]. SFBs also regulate polarization ofCD4+ T-cell pathway, which 

work in response to fungal infections and lung autoimmune manifestations [Enaud et al., 2020]. 

 

2.7 Major microbiota in CF 

High rate of mortality and morbidity in CF is due to the infection in the airways. [Zemanick 

and Hoffman, 2016]. Traditional CF respiratory pathogens show three major feature are a) 

Diverse in nature b) Polymicrobial in nature c) Continuous evolution. [Zemanick and Hoffman, 

2016].  

When Cf was recognized in 1938, it was linked with S. aureus. It was thought that S. aureus 

play a critical role in mortality rate [Hauser et al., 2011]. In 1950s, Pseudomonas aeruginosa 

is also added in Cf pathogen list, by 1970s, Burkholderia cepacia complex (BCC) is added and   

were recognized as a major pathogen, as they are associated with rapid declines in pulmonary 

function, bacteremia, and increased mortality [Hauser et al., 2011]. A pattern of contagion is 

observed in most of the patients, initially infection began with S. aureus and H. influenzae in 

new-born and ends with P. aeruginosa in adolescence.  Bacteria colonising Lung in CF 

moderately controlled by antibiotics, with the exception of Pseudomonas and Burkholderia 
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species which leads to the contagion infection and high mortality [Hutchison and Govan, 1999]. 

As, the treatment become more effective and improved for most of the conventional pathogens, 

this leads to discovery of new pathogens [Surette, 2014]. It has been recognized that lower 

airways in pateints are colonized by more poly microbila community.  [Surette, 2014]. A list 

of conventional and evolving pathogens in CF lung infections is given in Table 4. 

 

Table 4. Pathogens in CF lung infections (Fungal pathogen)* 

Conventional Emerging 

Pseudomonas aeruginosa Stenotrophomonas maltophilia 

Staphylococcus aureus Staphylococcus 

aureus 

Methicillin-resistant Staphylococcus 

aureus (MRSA) 

H. influenzae Achromobacter spp 

BCC 

(Burkholdera cepacia complex) 

Mycobacterium abscessus 

Stenotrophomonas Streptococcus milleri / anginosus group 

 Aspergillus fumigatus*  

 

Pseudomonas aeruginosa, Staphylococcus aureus and BCC are major bacterial classes 

[LiPuma et al., 2010], have an important in the life expectancy of the patient. B. cepacia known 

as versatile organism and a plant phytogen [Woodhead et al., 2001]. From past few decades it 

emerged as pathogen with devastating effects in the CF community. Its pulmonary colonisation 

accelerates the decline in the lung function. B. cepacia cause a rapid pneumonic illness “cepacia 

syndrome”, also the B. cepacia is highly transmissible and resistant to most of the antibiotics 

[Woodhead et al., 2001].  

B. cepacia show transcriptional reprogramming when the host immune system response, in 

case of antimicrobial therapy, in response to the nutrient availability and limitation of oxygen 

[Scoffone et al., 2017]. B. cepacia is due to the overexpression of the efflux pumps, up to 5 

family of transporters are involved which include major facilitator superfamily (MFC), ATP-

binding cassette family, small multidrug resistance family (SMR), the resistance nodulation 

family (RND) [Zlosnik et al., 2015].  Virulence factor expressed by B. cepacia those intercat 

with host, that leads to greater mortality and morbidity associated with pathogens. [Woodhead 
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et al., 2001].  Endotoxin act as virulence factor, in B. cepacia infection. Isolated 

lipopolysaccharides (ILPs) of B. cepacia are nine times more virulent than P. aeruginosa 

[Woodhead et al., 2001]. 

Staphylococcus aureus, gram positive nonmotile, non-spore-forming, unencapsulated most 

common and the first recovered pathogen of Cf patient. The overall increase in rate of infection 

in S. aureus is because of the Methicillin-resistant S. aureus (MRSA) in the people a variant of 

original S. aureus [LiPuma et al., 2010]. Increase in frequency of infection with the MRSA, is 

for person of every age but highest frequency is for the teen-agers, aged between 11 to 17 years 

[Razvi et al., 2009]. MRSA is unique from other strains as they have either beta-lactams or 

carry mec A gene, which encode for the resistance [Zemanick and Hoffman, 2016]. Another 

variant of S. aureus, is SCVs (small colony variants), which are slow growing, antibiotic 

resistant. Patients with infection of SCVs are found to have a, lower lung infection, and show 

a faster rate in decline of lung functions [Hoffman et al., 2006]. SCVs are known for resistance 

to aminoglycoside and persistence in infections, as in CF [Hoffman et al., 2006]. Pseudomonas 

aeruginosa, is proven to be the responsible for chronic infection of lung, leads to ultimate high 

mortality rate [Lyczak et al., 2002]. Infection with the P. aeruginosa cause damage to epithelia 

surface, airway plugging, impairing way [Lyczak et al., 2002]. Chronic contagion with P. 

aeruginosa is major factor responsible for morbidity and mortality [Hutchison and Govan, 

1999]. 

 

2.8  B-cell and T-cell epitope recognition 

Development of pathogen specific memory that provides immunological function is a key 

characteristic of B-cell and T-cell epitopes. Their ability to recognize specific Ag, in pathogens 

via the specific receptors is effective and important function. Humoral immune response, 

respond to invading pathogen by Ag-Ab interactions. For every ag, there is an Ab, for the 

discrete regions known as ag determinants. Ability of B-cell to access the cluster of Aa, which 

are recognized by secreted form of Ab, and able to elicit the immune response. 

B-cell receptors (membrane-bound immunoglobulins), recognize solvent-exposed Ags. 

Activation of B-cells leads a process known as differentiation of B-cells in effector cell (Ab 

secreting cells), secrete Ab, and memory cells. Function of Ab is to neutralize and destruct 

pathogens. Ag portion that bind to ab is B-cell epitope. It may consist of exposed solvent region 

in Ag. 
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Receptors of T-cell are specific that enables them to recognize when they are bound to MHC 

and displayed on APCs. Epitopes for T-cell are presented by Class 1 MHC and class 2 MHC 

that are further recognized by different class of T-cells, CD8 and CD4. CD8 are Cytotoxic T-

cells and CD4 become Th (helper cells). Th cell amplify the immune response, differentiate in 

to 3 major classes: Th1, Th2 and Th3. 
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CHAPTER 3 

MATERIALS AND METHODS 

 

So far, we have discussed how the infection by microbes in cystic fibrosis cause the major 

problem increasing the mortality rate. Major bacteria of the lung implicated in CF were 

analysed for B-cell and T-cell epitopes by using various Bioinformatics tools. Three bacteria 

were selected on the basis of associated high mortality in CF. These include Pseudomonas 

aeruginosa, Staphylococcus aureus and Burkholderia cepacian. 

 

3.1 Tools used in B-cell epitope, T-cell epitope and Ab prediction                                    

Bioinformatics tools used in epitope and Ab prediction included Immune Epitope Database 

and Analysis Resource (IEDB), UniProt, Protein Data Bank (PDB), Bepipred, DiscoTope, 

Phyre^2, FirstGlance in Jmol. 

 

3.1.1 Immune Epitope Database and Analysis Resource (IEDB)  

IEDB is tool that assist in biomedical research, therapeutics, and vaccine design. It is freely 

available, and provide access to variety of epitope analysis and prediction tools. Tools in IEDB 

also validate methods of prediction to bind with class I and 2 MHC. It can be combined with 

other tools, for the better result. In addition to this secondary analysis tools are associated with 

IEDB to calculate relevant analytic variables, epitope conservation, and coverage of 

population. Data in IEDB is vast and experimentally derived. It is also linked to other pathogen- 

specific and immunological database. An extensive data of experimentally measured epitopes, 

and tools for their prediction is present along within IEDB.  

 

3.1.2 UniProt 

It is known as a resource for protein, their sequence and data annotation. It also consists of 

UniprotKB, UniprotRef, Uniparc. It is freely accessible and provide information of protein data 

sequence.  Data in Uniprot is managed by consortium, it combines European Bioinformatics 
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institute (EBI), Swiss institute of Bioinformatics (SIB) and Protein Information Resource 

(PIR). 

 

3.1.3 Protein Data Bank (PDB) 

It is a data base for large molecules, consist of Primary structural database. It includes X-ray 

crystallography, NMR and Cryo-electron microscopy. Structured files can be viewed in free at 

open source computer programs, such as Jmol, VMD. Data stored in PDB is a reflection of 

ongoing research. PDB have structural information for proteins and nucleic acid. It also shows 

data for ribosome, for whole virus, oncogenes and drug targets. 

 

3.1.4 Bepipred 

It is a server for the prediction of B-cell epitopes from ag sequence. Its prediction method is 

based on Markov model and a propensity scale method for B-cell linear epitope. 

 

3.1.5 DiscoTope 

It is a tool for the prediction of discontinuous epitopes in 3D structure of protein in the PDB 

format. It combines spatial properties of proteins and surface localization with a propensity 

scale. It is based on Aa stat, and accessibility to surface epitopes determined by X-ray 

crystallography of antibody/antigen protein complexes. It is 1st method for discontinuous 

epitope prediction. 

 

3.1.6 Phyre^2 

It is web tool to predict and analyse the structure of protein, mutations and functions. Main 

focus of the tool is to provide simple and informative result. It use advanced homology based 

detection based method, and build 3D model, than predict ligand binding sites, and give 

analysed result. It can be used to check both 3D and 2d models. The server is available on 

at http://www.sbg.bio.ic.ac.uk/phyre2. It take 30 minutes to 2hours for one prediction. 
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3.1.7 FirstGlance in Jmol 

It is web tool, free and open source for molecule visualization. It use Jmol, also a free open 

source for final result. It works in all windows and IOS. It provide tooltips extensively, and 

explanatory which appear automatically. The major macromolecules can be turned in to 3D 

structure are Protein, DNA, RNA, ligand and solvent. It reveals secondary structure, Aa and 

carboxy termini, salt bridges and cation-pi interactions. This is the most advanced tool available 

for students. 

 

3.2 Steps involved in epitopes and Ab prediction             

Step 1.  Open the IEDB (IEDB.org) in browser 

Step 2.  Type the organism’s name in the search bar of epitope source 

Step 3.  Select epitope type as linear 

Step 4.  In assay select T-cell, B-cell and MHC ligand 

Step 5.  In MHC restriction select any 

Step 6.  In host select Human (For this case) 

Step 7.  In disease section, add cystic fibrosis 

Step 8.  Press the search button 

Step 9.  If epitope data is present inside the software, it will appear in result 

Step 10.  Copy antigen and organism name on the UniProt search bar 

Step 11.  Select the FASTA sequence for the same organism and antigen 

Step 12.  Copy FASTA sequence in to the word, find the similar epitope in FASTA as 

mentioned for the antigen on IEDB 

Step 13.  If the epitope of the organism is present in the FASTA, then proceed for next step 

Step 14.  Go back to the IEDB home page 

Step 15.  Select B-cell epitope prediction tools 

Step 16.  Select prediction of linear epitopes from protein sequence  
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Step 17.  Copy the epitope sequence selected earlier, on the tool and submit 

Step 18.  Select the longest peptide from the result 

Step 19.  The longest one is the B-cell epitope 

Step 20.  Next step is to predict the T-cell epitope for both class MHC1 and MHC2 

Step 21.  For T-cell prediction, go back to IEDB home page and select the T-cell epitope 

prediction tools 

Step 22.  Select the Tepi tool on the page 

Step 23.  Copy the longest peptide of B-cell on the page and press next 

Step 24.  Select human in host species and class 1 in allele 

Step 25.  Press the next button 

Step 26.  On next page select the specific alleles and press next 

Step 27.  Select apply default settings for low number of peptides, for the selected peptides to 

be included and press next 

Step 28.  For the selection of peptide and prediction, select IEDB recommended, for 

prediction method to use and select peptides based on predicted percentile rank for 

selection of predicted peptides 

Step 29.  Press submit 

Step 30.  Result will be in tabular form  

Step 31. For class, MHC2, go on the T-cell epitope prediction and click on the tepi tool 

Step 32.  Select human for host, and class2 for allele class 

Step 33.  For specific alleles, select Predict for pre-selected panel of alleles 

Step 34.  Select apply default setting for low number of peptides, for peptides to be included 

in prediction 

Step 35.  For the selection of peptide and prediction, select IEDB recommended, for 

prediction method to use and select peptides based on predicted percentile rank for 

selection of predicted peptides 
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Step 36.  Press next, and submit 

Step 37.  Result will be in tabular form 

By using the same tools and steps, B-cell and T-cell epitopes are predicted for all the infectious 

microbiota in case of disease cystic fibrosis 

Step 38.  Add Ag name in PDB 

Step 39.  Find the PDB Id 

Step 40.  Copy this PDB Id in DiscoTope 

Step 41.  Result from DiscoTope predicts the discontinuous epitope 

Step 42.  Enter the PDB id in Bepipred, it will predict the linear epitope 

Step 43.  For the 3D structure of the ag, use tool Phyre^2 

Step 44.  Download this 3D structure, using First glance mol (Using jmol) 

 This tool uses sequence alignment method, for generation of a 3D generation 
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[E] 

 

Figure 1 [A to E]. Windows observed for B-cell and T-cell epitope prediction (Image 

reference: IEDB.org) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

The epitope prediction results obtained for the selected microbes, namely, Pseudomonas 

aeruginosa, Staphylococcus aureus and Burkholderia cepacia are presented here. Using, IEDB 

tool antigen and its epitope were predicted in interested bacteria. FASTA sequence for the same 

Ag was extracted from Uniprot. Longest peptide was selected using B-cell linear epitope 

predictor on IEDB home page. Using Bepipred, graph for the linear epitope was predicted. In 

Bepipred, yellow part indicated the probability to be a part of epitope during binding to Ab 

(Parameters such as hydrophilicity, flexibility, accessibility, turns, exposed surface, polarity 

and antigenic propensity are considered). Using DiscoTope, the region of Ab binding site on 

actual Ag on surface of Ag was predicted (only represented for chain A). In DiscoTope, green 

predictions were the positive one; peach were negative ones. 3D structure of Ag was created 

using Phyre^2 and animated version was created by using Firstglance in Jmol. 

 

4.1 Epitopes and Ab prediction in Pseudomonas aeruginosa 

Organism name: Pseudomonas aeruginosa 

Epitope: EQAISALPDYASQPGKPPREDLK 

Antigen: Exotoxin A  

FASTA result:  

MHLTPHWIPLVASLGLLAGGSFASAAEEAFDLWNECAKACVLDLKDGVRSSRMSVDPAIA 

DTNGQGVLHYSMVLEGGNDALKLAIDNALSITSDGLTIRLEGGVEPNKPVRYSYTRQARG 

SWSLNWLVPIGHEKPSNIKVFIHELNAGNQLSHMSPIYTIEMGDELLAKLARDATFFVRA 

HESNEMQPTLAISHAGVSVVMAQAQPRREKRWSEWASGKVLCLLDPLDGVYNYLAQQRCN 

LDDTWEGKIYRVLAGNPAKHDLDIKPTVISHRLHFPEGGSLAALTAHQACHLPLETFTRH 

RQPRGWEQLEQCGYPVQRLVALYLAARLSWNQVDQVIRNALASPGSGGDLGEAIREQPEQ 

ARLALTLAAAESERFVRQGTGNDEAGAASADVVSLTCPVAAGECAGPADSGDALLERNYP 

TGAEFLGDGGDISFSTRGTQNWTVERLLQAHRQLEERGYVFVGYHGTFLEAAQSIVFGGV 

RARSQDLDAIWRGFYIAGDPALAYGYAQDQEPDARGRIRNGALLRVYVPRSSLPGFYRTG 

LTLAAPEAAGEVERLIGHPLPLRLDAITGPEEEGGRLETILGWPLAERTVVIPSAIPTDP 

RNVGGDLDPSSIPDKEQAISALPDYASQPGKPPREDLK 
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B-cell epitope 

SSLPGFYRTGLTLAAPEAAGEVERLIGHPLPLRLDAITGPEEEGGRLET (49) (Longest 

peptide selected) 

 

 

Bepipred result 

 

 

 

 

 

Figure 2. Bepipred, linear epitope graph representation for antigen Exotoxin A 

(Pseudomonas aeruginosa) [X-axis represents residue positions in the 

sequence; Y-axis represents correspondent score]  
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DiscoTope result 

 

 

 

Figure 3. DiscoTope structure based Ab prediction rule (Pseudomonas aeruginosa) 

(B-cell epitope from the discontinuous epitopes from 3D structures of 

proteins in PDB format) Green predictions are the positive one; Peach are 

negative ones 
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Table 5. T cell epitope: MHC class 1 (Pseudomonas aeruginosa) 

 

 

Seq # Peptide start Peptide end Peptide Percentile rank Allele 

1 24 32 RLIGHPLPL 0.05 HLA-A*32:01 

1 24 32 RLIGHPLPL 0.05 HLA-A*02:03 

1 24 32 RLIGHPLPL 0.06 HLA-A*02:01 

1 3 11 LPGFYRTGL 0.07 HLA-B*07:02 

1 17 25 EAAGEVERL 0.08 HLA-A*68:02 

1 24 32 RLIGHPLPL 0.11 HLA-A*02:06 

1 22 30 VERLIGHPL 0.14 HLA-B*40:01 

1 5 13 GFYRTGLTL 0.35 HLA-A*23:01 

1 28 36 HPLPLRLDA 0.35 HLA-B*07:02 

1 17 25 EAAGEVERL 0.4 HLA-A*26:01 

1 24 32 RLIGHPLPL 0.41 HLA-B*15:01 

1 24 32 RLIGHPLPL 0.47 HLA-B*08:01 

1 25 33 LIGHPLPLR 0.49 HLA-A*31:01 

1 5 13 GFYRTGLTL 0.54 HLA-A*24:02 

1 24 32 RLIGHPLPL 0.55 HLA-A*30:01 

1 26 34 IGHPLPLRL 0.57 HLA-B*51:01 

1 39 47 GPEEEGGRL 0.6 HLA-B*07:02 

1 22 30 VERLIGHPL 0.66 HLA-B*44:02 

1 22 30 VERLIGHPL 0.67 HLA-B*44:03 

1 28 36 HPLPLRLDA 0.67 HLA-B*35:01 

1 17 25 EAAGEVERL 0.68 HLA-B*53:01 

1 24 32 RLIGHPLPL 0.7 HLA-B*07:02 

1 3 11 LPGFYRTGL 0.74 HLA-B*08:01 

1 20 28 GEVERLIGH 0.82 HLA-B*44:03 

1 17 25 EAAGEVERL 0.82 HLA-B*35:01 

1 26 34 IGHPLPLRL 0.82 HLA-B*08:01 

1 25 33 LIGHPLPLR 0.88 HLA-A*33:01 

1 25 33 LIGHPLPLR 0.89 HLA-A*03:01 

1 20 28 GEVERLIGH 0.93 HLA-B*44:02 

1 17 25 EAAGEVERL 0.95 HLA-B*51:01 

1 25 33 LIGHPLPLR 0.96 HLA-A*68:01 

1 25 33 LIGHPLPLR 0.98 HLA-A*11:01 
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Table 6. T-cell epitope: MHC class 2 (Pseudomonas aeruginosa) 

 

Seq # Peptide 

start 

Peptide 

end 

Peptide sequence Consensus 

percentile rank 

Allele 

1 3 17 LPGFYRTGLTLAAPE 8.1 HLA-DPA1*03:01/DPB1*04:02 

1 3 17 LPGFYRTGLTLAAPE 9.1 HLA-DQA1*01:02/DQB1*06:02 

1 30 44 LPLRLDAITGPEEEG 0.46 HLA-DQA1*03:01/DQB1*03:02 

1 3 17 LPGFYRTGLTLAAPE 4.4 HLA-DQA1*03:01/DQB1*03:02 

1 11 25 LTLAAPEAAGEVERL 7.3 HLA-DQA1*03:01/DQB1*03:02 

1 30 44 LPLRLDAITGPEEEG 3.1 HLA-DQA1*04:01/DQB1*04:02 

1 3 17 LPGFYRTGLTLAAPE 6.6 HLA-DQA1*04:01/DQB1*04:02 

1 11 25 LTLAAPEAAGEVERL 6.6 HLA-DQA1*04:01/DQB1*04:02 

1 11 25 LTLAAPEAAGEVERL 6.6 HLA-DQA1*05:01/DQB1*03:01 

1 3 17 LPGFYRTGLTLAAPE 8.1 HLA-DQA1*05:01/DQB1*03:01 

1 20 34 GEVERLIGHPLPLRL 2.8 HLA-DRB1*01:01 

1 3 17 LPGFYRTGLTLAAPE 8.2 HLA-DRB1*01:01 

1 30 44 LPLRLDAITGPEEEG 4.5 HLA-DRB1*03:01 

1 3 17 LPGFYRTGLTLAAPE 0.9 HLA-DRB1*04:01 

1 3 17 LPGFYRTGLTLAAPE 7 HLA-DRB1*09:01 

1 3 17 LPGFYRTGLTLAAPE 9.8 HLA-DRB1*11:01 

1 20 34 GEVERLIGHPLPLRL 8.4 HLA-DRB1*12:01 

1 20 34 GEVERLIGHPLPLRL 9.5 HLA-DRB1*13:02 

1 30 44 LPLRLDAITGPEEEG 4.6 HLA-DRB3*01:01 

1 3 17 LPGFYRTGLTLAAPE 8 HLA-DRB3*02:02 
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4.2 Epitope and Ab prediction in Staphylococcus aureus 

Organism: Staphylococcus aureus 

Antigen: ABC transporter, ATP-binding protein, putative (UniProt: Q2FYP2) 

Epitope: DRHFLNNVC 

FASTA result: 

>tr|Q2FYP2|Q2FYP2_STAA8 ABC transporter, ATP-binding protein, putative 

OS=Staphylococcus aureus (strain NCTC 8325 / PS 47) OX=93061 GN=SAOUHSC_01392 

PE=4 SV=1 

MLQVTDVSLRFGDRKLFEDVNIKFTEGNCYGLIGANGAGKSTFLKILSGELDSQTGHVSL 

GKNERLAVLKQDHYAYEDERVLDVVIKGHERLYEVMKEKDEIYMKPDFSDEDGIRAAELE 

GEFAEMNGWNAEADAANLLSGLGIDPTLHDKKMAELENNQKIKVLLAQSLFGEPDVLLLD 

EPTNGLDIPAISWLEDFLINFDNTVIVVSHDRHFLNNVCTHIADLDFGKIKVYVGNYDFW 

YQSSQLAQKMAQEQNKKKEEKMKELQDFIARFSANASKSKQATSRKKQLEKIELDDIQPS 

SRRYPFVKFTPEREIGNDLLIVQNLSKTIDGEKVLDNISFTMNPNDKAILIGDSEIAKTT 

LLKILAGEMEPDEGSYKWGVTTSLSYFPKDNSEFFEGVNMNLVDWLRQYAPEDEQTETFL 

RGFLGRMLFSGEEVKKKASVLSGGEKVRCMLSKMMLSSANVLLLDEPTNHLDLESITAVN 

DGLKSFKGSIIFTSYDFEFINTIANRVIDLNKQGGVSKEIPYEEYLQEIGVLK 

 

B-cell epitope  

ANASKSKQATSRKKQLEKIELDDIQPSSRRYPFVKFTPEREIGN 
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Bepipred result 

 

 

 

Figure 4. Bepipred, linear epitope graph representation for antigen exotoxin A 

(Staphylococcus aureus) [X-axis represents residue positions in the 

sequence; Y-axis represents correspondent score] Yellow part indicates the 

probability to be a part of epitope during binding to Ab (Parameters such as 

hydrophilicity, flexibility, accessibility, turns, exposed surface, polarity and 

antigenic propensity are considered). 
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DiscoTope result 

 

 

 

Figure 5. DiscoTope structure based Ab prediction rule (Staphylococcus aureus) (B-

cell epitope from the discontinuous epitopes from 3D structures of proteins 

in PDB format) Green predictions are the positive one; Peach are negative ones 
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4.3 Epitope and Ab prediction in Burkholderia cepacia 

Organism: Burkholderia cepacia 

Ag: Peptidoglycan-associated protein 

Epitope: SYSVKDEYQPLMQQHAQYLK  

FASTA result: 

>tr|B4EDC1|B4EDC1_BURCJ Peptidoglycan-associated protein OS=Burkholderia cepacia 

(strain ATCC BAA-245 / DSM 16553 / LMG 16656 / NCTC 13227 / J2315 / CF5610) 

OX=216591 GN=pal PE=1 SV=1 

MMSNKARLALAVMMISALAACKSGVKLDDKANNAGAVSTQPSADNVAQVNVDPLNDPNS

PLAKRSIYFDFDSYSVKDEYQPLMQQHAQYLKSHPQRHVLIQGNTDERGTSEYNLALGQKR 

AEAVRRAMALLGVNDSQMEAVSLGKEKPQATGHDEASWAQNRRADLVYQQ 

 

B-cell epitope: KDEYQPLMQQ 
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Bepipred result 

 

 

 

Figure 6. Bepipred, linear epitope graph representation for antigen exotoxin A 

(Burkholderia cepacia) [X-axis represents residue positions in the sequence; 

Y-axis represents correspondent score]. Yellow part indicates the probability 

to be a part of epitope during binding to Ab (Parameters such as hydrophilicity, 

flexibility, accessibility, turns, exposed surface, polarity and antigenic 

propensity are considered) 
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DiscoTope result 

 

 

 

Figure 7. DiscoTope structure based Ab prediction rule (Burkholderia cepacia) (B-

cell epitope from the discontinuous epitopes from 3D structures of proteins 

in PDB format)  

 

  



34 
 

4.4 Discussion and Conclusion 

Human body harbours tremendous amounts of microorganisms ranging from the bacteria, 

archaea to virus and fungi. Increase in the evidence of the complex cross-talk between the gut 

and lung, and also between the gut and the host immunity proves the importance of the 

microbiota for the human body. Neither lungs nor the gut is sterile in nature and change in the 

diversity of the microbes lead to several disorders. Dysbiosis of the microbiota is associated 

with the development of the common respiratory diseases, such as asthma, respiratory 

infection, chronic obstructive pulmonary disorder, cystic fibrosis and lung cancer. The 

microbiota associated with cystic fibrosis patients might somehow be important for the 

pathophysiology and development of the disease. Owing to high mortality rate (deaths in 90% 

cases), it has become imperative to come up with new therapeutic techniques to treat the deadly 

disease, and microbial therapy can be a ray of hope. Modification and the improvement of the 

gut microbiota through diet, probiotics, will not only improve our understanding about the role 

of the gut microbiota in respiratory disorders but also provide effective and new therapeutic 

strategies to combat cystic fibrosis.  

Most of the drugs used during the treatment of CF are anti-inflammatory, CFTR modulators, 

Mucolytics, Bronchodilators. Mortality rate in CF patients is higher due to bacterial infections. 

Most of the bacteria which cause severe infection in CF have evolved and become antibiotic 

resistant. P. aeruginosa shows resistance to variety of antibiotics [Pang et al., 2019]. B. cepacia 

modifies their LPs layer and provide resistance to drug penetration [Rhodes and Schweizer, 

2016]. In addition, adaptive antibiotic resistance of P. aeruginosa is a recently characterized 

mechanism, which includes biofilm-mediated resistance and formation of multidrug-tolerant 

persister cells, and is responsible for recalcitrance and relapse of infections. As most of the 

bacteria that are fatal to CF patients, have become drug resistant, the main objective of epitope 

identification is to replace an antigen in the immunization, antibody production, and 

serodiagnosis. Epitope-based antibodies are currently the most promising class of 

biopharmaceuticals. Identification of B-cell epitopes is a fundamental step for the development 

of epitope-based vaccines, therapeutic antibodies, and diagnostic tools. Prediction of B-cell 

epitope gives information that these bacterial sp. can be targeted by generating specific Ab. 

Thus, by using 3D Ag structure, F(ab) region of antibodies can be generated for specifically 

targeting bacterial pathogens and hence reducing the mortality rate in CF patients. The analysis 

done in the current study, is restricted to only single B-cell epitope for three bacterial sp. 

Pseudomonas aeruginosa, Staphylococcus aureus and B. cepacia, which needs to be extended. 



35 
 

Moreover, though the 3D structure of Ag gives information about F(ab), this is not all needed 

for generation of Ab. Accurate identification of B-cell epitopes and data integration on large-

scale, is still a major challenge for immunologist. Using the predicted epitopes on surface of 

infectious microbes, monoclonal Abs can be produced in vitro using tissue-culture based 

hybridoma technique. By, targeting the B-cell and T-cell epitopes on the surface, creating 

monoclonal antibody (Ab) (idiotype), the rate of infection can be slowed down, along with the 

other drugs, physiotherapy and exercise.  
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