Total No. of Page: 1

FOURTH SEMESTER

Roll No.

B.Tech. (EP)

(March-2019)

MID SEMESTER EXAMINATION

EP-208 COMPUTATIONAL METHODS

Time: 1.5 Hours

Max. Marks: 25

Note: Attempt all questions.

Assume suitable missing data, if any.

- 1. Derive the general formula to find out the maximum permissible error. If $F = \frac{xy^3}{z^2}$, find the maximum possible error in F at x = 1, y = 2, z = 4, given that dx = 0.1, dy = 0.01 and dz = 0.1. [5]
- 2. Graphically explain the process of finding the root by Regula-Falsi and Secant method. Use Newton-Raphson method to find out the real root of $x \log_{10} x = 1.2$ using three iterations. Use $x_0 = 2$ as initial condition for solving the equation. [5]
- 3. Show that

[5]

(i)
$$\mu\delta = \frac{\Delta E^{-1}}{2} + \frac{\Delta}{2}$$

(ii)
$$\Delta^3 y_2 = \nabla^3 y_5$$

4. Using Newton's Finite Divided Difference Method, calculate the value of the function at x = 2.75. [5]

								ı
1	x	2.5	3.0	4.5	4.75	6.0	7.0	ĺ
	f(x)	8.85	11.45	20.66	22.85	38.6	55.6	

5. Write down the difference table and mark the elements used in the Bessel's formula of interpolation. Use these elements with their respective coefficient to deduce the Bessel's formula. [5]

****** END *******