No. of page:1 Mid Term Examination Paper Code: MC-432 Max Marks: 25

Roll No.:
B.Tech.(VIII Semester), March-2019
Fuzzy Sets and Fuzzy Logic
Max Time: 1.5 Hours

- NOTE: Answer all questions. Assume suitable missing data if any.
- Q 1. (a) State and prove the following properties of crisp set using characteristic function (5)
 - i. Axiom of excluded middle
 - ii. Axiom of the contradiction
 - iii. DeMorgan's Principles All the aforesaid properties are true in case of fuzzy set. Is this statement true? Justify your answer.
 - (b) Let $X = \{1, 2, 3, \dots, 11\}$. $\tilde{A}, \tilde{B}, \&\tilde{C}$ be fuzzy sets on X as given below $\tilde{A} = \{(1, 0.5), (2, 0.3), (3, 1), (4, 0.2), (5, 0.3), (6, 0.4), (7, 0.6), (8, 0.8), (10, 1), (11, 0.9)\}$ $\tilde{B} = \{(x, \mu_{\tilde{B}}(x) = (1 + (x 11)^2)^{-1})\}$ $\tilde{C} = \{(x, \mu_{\tilde{C}(x)}) | x \in R\}$

where
$$\mu_{\tilde{G}}(x) = \begin{cases} 0 & x > 11 \\ [1 + (x - 11)^{-4}]^{-1} & x \leq 11 \end{cases}$$

Determine (1) $\tilde{A} \cup \tilde{B} \cup \tilde{C}$, (2) $\tilde{A} \cap \tilde{B} \cap \tilde{C}$

- (c) Let \tilde{A} =(-4,-1,2) and \tilde{B} =(-2,2,6) be two triangular fuzzy numbers 0 and 4, respectively. Calculate $\tilde{A} \oplus \tilde{B}$, $\tilde{A} \ominus \tilde{B}$, $\tilde{A} \odot \tilde{B}$, $\tilde{A} \odot \tilde{B}$. The symbols \oplus , \ominus , \otimes , \oslash are addition, substraction, multiplication, and division respectively. Use α -cuts wherever necessary and give reason also.
- Q 2. (a) Define fuzzy relation. Compose the following two fuzzy relations \tilde{R}_1 on $X \times Y$ and \tilde{R}_2 on $Y \times Z$ by using the
 - i. Max-min composition
 - ii. Max-product composition

$$\tilde{R}_1 = \begin{bmatrix} 0.5 & 0.4 & 0.7 & 0.3 \\ 0.4 & 0.9 & 0.2 & 0.2 \\ 0.9 & 0.3 & 1 & 0.8 \end{bmatrix}, \quad \tilde{R}_2 = \begin{bmatrix} 1 & 0.7 & 0.1 \\ 0.6 & 0.5 & 0.4 \\ 0.7 & 0.9 & 0.6 \end{bmatrix}$$

Are both compositions are equal? If not, give reason.

(b) Given fuzzy tolerance relation \widetilde{R} , is reflexive and symmetric. Find the equivalence relation using max-min operation, \widetilde{R}_e , where \widetilde{R} is given as: (5)

$$\widetilde{R} = \left[\begin{array}{ccccc} 1 & 0.8 & 0.6 & 0.2 & 0.1 \\ 0.8 & 1 & 0.9 & 0.7 & 0.4 \\ 0.6 & 0.9 & 1 & 0.1 & 0.3 \\ 0.2 & 0.7 & 0.1 & 1 & 0.5 \\ 0.1 & 0.4 & 0.3 & 0.5 & 1 \end{array} \right]$$