Total No. of Pages: 1 8th SEMESTER MID SEMESTER EXAMINATION

[5]

[5]

MC 404: Matrix Computation

Time: 1:30 Hours Max. Marks: 25

Note: All questions are compulsory.

- 1. Consider the following floating point number system. Base $\beta = 2$, length of mantissa m = 3 and range of exponent $\{-1,0,1,2\}$. Find all the decimal numbers which can be represented by this system. [5]
- 2. Explain ill conditioning of a matrix. Let $A = \begin{bmatrix} 0.1a & 0.1a \\ 1 & 1.5 \end{bmatrix}$. Determine a suc

3. Consider the following system of equations.

that cond(A) is minimized. Use the maximum norm.

$$0.0030x_1 + 59.14x_2 = 59.17$$

 $5.291x_1 - 6.130x_2 = 46.78$

Solve the system using Gaussian elimination and use four digit arithmetic with rounding. Is it a good approaximation to the exact solution? If no, then why it so and demonstrate how can you get a good approaximation? [5]

- 4. Find the Cholesky decomposition of the matrix $A = \begin{bmatrix} 2 & -1 & 2 \\ -1 & 1 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. Hence, fir
 - A^{-1} . Write two limitations of Cholesky decomposition.
- 5. Find the QR factorization of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and use the

factorization to solve the least squares problem $Ax = \begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}^T$. [5] ~All the Best~

Page 1 of 1