Total No. of Pages: 2

Roll No.....

SIXTH SEMESTER

B.TochWic

MID SEMESTER EXAMINATION

March-2019

MC304 THEORY OF COMPUTATION

Time: 1:30 Hours

Max. Marks: 25

Note: Answer all questions. Assume suitable missing data, if any.

Q.1 [a]Choose the correct answer. Justify

(3)

- i. Which of the following is a regular expression for binary strings with no consecutive 1's?
 - a) $(01 + 10)^*$
 - b) $(1 + 1)(01 + 0)^*$
 - c) $(0+1)^*(0+1)$
 - d) $(10 + 0)^*(1 + 1)^*$
- ii. Which of the following is the language of the grammar:
 - $S \rightarrow bS|aA|b$; $A \rightarrow bA|aB$; $B \rightarrow bB|aS|a$
 - a) Number of a's is more than three times the number of b's.
 - b) Number of b's is more than three times the number of a's.
 - c) Number of a's is multiple of 3.
 - d) Number of b's is multiple of 3.
- iii. The smallest finite automata that accepts all non-negative binary numbers divisible by 3 has:
 - a) 2 states
 - b) 3 states
 - c) 4 states
 - d) 5 states
- [b] What is the length of output string if the length of input string isn, in case of Mealy and Moore machine. Explain. (2)

P.T.O.

3

Q.2 [a] Construct a minimum state automata equivalent to the transition diagram below: (5)

[b] Construct a Finite Automata that accept the set of all inputs that are binary numbers divisible by 4 or by 6. (5)

Q.3 [a] Show that all the language under Chomsky classification are closed under concatenation. (4)

[b] If R is a regular expression over \sum representing $L \subset \Sigma^*$, construct an NDFA M with Λ -moves such that L=T(M), where last operator in R is concatenation. (3)

[c] Find the regular expression corresponding to the automata given below:

(3)

