MID SEMESTER EXAMINATION

B.Tech. PSCT March 2019

PT208

Chemical Reaction Engineering

Time: 1:30 Hours

Max, Marks:30

Note: Attempt all question. Use of Graph Paper is permitted. Assume suitable missing data, if any.

1[a] (i). What is "rate of reaction"? What are the factors on which the rate of reaction depends?

(ii). Differentiate between: Molecularity and Order of a reaction

[5+2.5=7.5]

[b] (i). Make a comparison between 'Transition. State Theory' and 'Collision Theory' of temperature dependency of reaction rate. Using Arrhenius Law, find out, how much faster is the pyrolysis of ethane at 650°C then at 500°C, if the value of the activation energy is 75000 cal.

2[a] (i). Show that the decomposition of N₂O₅ at 67^oC is a 1st order reaction using the integral method of analysis. Calculate the value of rate constant. The given data is:

Time (t) in min	0	1	2	3	4
Concentration of	0.16	0.113	0.008	0.056	0.040
N ₂ O ₅ , in moles/L					

(ii) Using Differential method of rate analysis, find out the order of the reaction for the data given below. Also find out the value of 'rate constant'.

Data:

Time (t)		0.5	1	1.5	2	2.5	3	3.5
in min								
Concentration,	(C _A)	0.026	0.021	0.018	0.015	0.0131	0.0114	0.01
in moles/L								

P.T.O.

1

Time (t)	4	5	6	7	8
Concentration, (C _A) in moles/L	0.009	0.0072	0.0059	0.005	0.0041

(2.5+5)=[7.5]

[b]. Differentiate between Differential method of rate analysis vs Integral method of rate analysis. Derive the integral rate equation for an irreversible second order reaction of type: 2A----→ Product

(2.5+5))=	[7.5]
1	,	1 000

_END	