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Abstract

Oceans covers 70% of the earth and are required to be explored for various scientific
studies like setting up underwater pipelines, knowing the ecological balance by taking pop-
ulation census of various aquatic species etc. To get such information, capturing images is
safe and effective solution, but underwater imagery suffers from poor contrast, bluish green
color cast, hazy appearance, blurring and noise due to inherent property of water.
Enhancement of underwater images is a challenging task as images are captured in different
media having varying salinity, turbidity, green matter etc. and captured at varying depth.
Thus, there is a need of an adaptive method which works for all type of underwater images.
This thesis provides an effective solution to pre-process the underwater images to make
them suitable for scientific studies. Under the umbrella of pre-processing, sub-problems
like color correction, contrast correction , haze removal have been addressed irrespective
of the underwater media and depth at which the images have been captured. The contribu-
tions presented in this thesis are outlined below:

• We propose an adaptive method for enhancement of underwater images by using
fuzzy rules to find the color cast. Since the color correction depends upon the media,
some parameters required for controlling the degree of color correction are found
using Multi-Objective optimization (MOPSO). Performance measures which are op-
timized using MOPSO act as proper guiding mechanisms so that the resultant images
have few or no artifacts. Various non-reference based performance measures like en-
tropy, histogram spread, UICM have been used to analyze the results.

• We propose a local enhancement solution which tackles the artifacts caused by artifi-
cial lighting. It performs color and contrast correction in a localized manner. The two
versions are then fused using wavelet based fusion with the help of effective weight
maps which chooses the required features from the two versions.



ii

• We proposed a complete solution which addresses the three major issues of underwa-
ter images i.e. color cast, poor contrast, haze. Using basic image enhancement and
restoration based methods, the proposed method handles the mentioned issues for the
images captured at different depths and in media with varying salinity, turbidity.
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Chapter 1

Introduction

1.1 Need for underwater studies and associated challenges

A major portion of the Earth is covered by water and life in these water bodies forms a sig-
nificant part of the ecosystem. Therefore, the study of the aquatic environment is gaining
a lot of attention as underwater imagery not only unravels the mystery beneath water but
also provides information required for underwater scientific studies by establishing ocean
observing systems (OOS) [9], such as understanding marine ecology [10], assisting aquatic
robots [11], understanding underwater geology [12] and fish species recognition [13] and
also for lots of offshore facilities like drinking water reservoirs [14], underwater cable
framework installations [15] etc. These underwater studies and facilities are usually in-
spected visually by divers manually. This strategy has disadvantages which are very evi-
dent: it is hazardous, expensive, time-consuming and yet often does not provide a complete
evaluation.
The solution to avoid these issues is (1) using sonar sensors or (2) using cameras to capture
the underwater imagery. Although sonar sensors have features advantageous for the under-
water medium but there was a major disadvantage: the enormous amount of data in shape
and reflectance of objects, the visual impression, as well as the chance of direct visual eval-
uation by the specialist is wasted as data is not obvious. On the other hand, camera-based
imaging modalities for underwater applications have many other prospective uses: seaweed

1



2 Chapter 1: Introduction

assessment, ocean floor surveying, shipwreck hunt, oil and natural gas discovery etc. De-
sign of camera systems has to be robust enough to deal with waves, turbulence of water and
also it has to be waterproof to avoid damage to its sensors. Such design issues have been
taken care of with modern technology. But using the camera for underwater apps includes
several technology-related difficulties such as camera system design, suitable lighting spec-
ifications and computer vision improvement methods. Flash light is used for compensating
for the light absorbed by water medium. But such measure leads to artifacts in the images
like uneven illumination, bubble effect etc [16]. Thus, The most suitable solution to this
is pre-processing the captured images with certain image processing algorithms to get a
clear picture of the underwater scenery. Next section discusses how underwater images are
formed and the issues associated with underwater images which need to be addressed while
processing them.

1.2 Underwater Camera based Imaging and associated is-

sues

Underwater images are of very poor quality with greenish blue appearance. The color qual-
ity of underwater images are distorted due to the inherent physical property of water [17] as
depicted in Fig. 1.1. The different constituent wavelengths of light are selectively absorbed
in the decreasing order of wavelengths [18] owing to the absorption property of water. It
means that colors like red, orange etc. which have higher wavelengths disappear with depth
as the light enters the water as compared to colors like blue, green etc. which have lower
wavelengths. Apart from the color constancy issue in underwater images, another major
issue is low visibility due to scattering property of water. Most of the light incident on sur-
face of water is reflected back and rest enters the water [19]. Thus, owing to poor visibility,
underwater images have bad contrast. Thus, the two main problems of underwater images
is color cast and bad contrast.
Color Cast: Depending upon the surrounding like presence of corals, plants etc., color cast
can be blue, green or greenish blue. Thus, there is need of finding the actual color cast of
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(a) Penetration of light inside water

(b) Absorption of wavelength inside water

Figure 1.1: Effect of water medium on light [1]
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an underwater image instead of assuming it so as to pre-process the image effectively.
Poor Contrast: Due to reflection of light rays from the water surface, very few light rays
penetrate into water. Moreover, the salinity and turbidity of the aquatic medium also affects
the propagation of light deep into the water, thereby leading to darkness in captured im-
ages. Fig. 1.1 shows the effect of water surface on light and wavelength absorption pattern
in water. The above-mentioned two factors altogether affect the information content of the
image.
Thus owing to these problems in underwater images, we need to apply image processing
techniques to acquire a clear underwater image.
Image processing techniques can be classified mainly into two categories: image enhance-
ment and image restoration. Image enhancement based techniques are relatively simple to
understand and apply. It works on pixel intensity values in order to achieve a pleasant and
enhanced picture. On the other hand, image restoration methods employ the knowledge of
the image formation model to restore the original scene from the captured scene.
Image formation process is different for an ideal transmission medium and underwater
medium due to various factors affecting underwater. As we know, the ideal transmission
medium has little or no effect on light and light is mainly affected by characteristics of the
objects in focus and capturing device like angle of shooting, lens aperture. On the other
hand, Underwater transmission medium affects the light by absorption and scattering of
wavelengths. Also, factors like depth of the scene to be captured, salinity level of water,
turbidity level of water and time of capturing the underwater image (during the onset of sun
or during sunset etc.) have a drastic impact on the formation of image. Basic theory for un-
derwater image formation was laid by McGlamery in 1980 [20] and Jaffe [21] extended the
theory for artificial lighting in underwater environment. According to Jaffe-McGlamery
theory, total irradiance at any point in image is composed of Ed, Ef and Eb. Ed is the
direct constituent of light that the object reflected, Ef is the forward scatter constituent of
light which the object reflected but scattered at small angles by water and manage to enter
the camera and Eb is backward scatter constituent of incident light which did not come in
contact with the object. Direct constituent of light at any coordinate (i,j) of image is given
by Eq. 1.1

Ed(i, j) = J(i, j)e−η.d(i,j) (1.1)
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where J(i,j) is the original radiance of the image scene, d(i,j) is the distance of image plane
from the camera and η is the attenuation coefficient.
Since forward scatter component is result of scattering of reflected light or direct com-
ponent, thus it can be computed by convolution of direct component with point spread
function. Back scatter component of light mainly leads to color and contrast loss. Thus,
avoiding the forward scatter, the total radiance at a point (i,j) in an image is given in Eq.
1.2.

I(i, j) = Ed(i, j) + Eb(i, j)

= J(i, j)e−η.d(i,j) +B(i, j).(1− e−η.d(i,j))
(1.2)

where, I(i,j) is perceived radiance at point (i,j), B(i,j) is back scatter color vector and
e−η.d(i,j) is transmission map
Since the underwater medium can be different e.g. saline, turbid, dense due to aquatic flora
and fauna etc., determining the attenuation coefficient is difficult. Thus, the aim of image
restoration techniques is to find J(i,j) from I(i,j). Thus, Eq. 1.2 of underwater image for-
mation is similar to the equation of light propagation with additional factors affecting the
attenuation coefficient (scattering and absorption).

1.3 Problem Definition

Lots of efforts are going in enhancing the underwater images to acquire information for
underwater scientific studies. The main objective of this thesis is enhancement of under-
water images for various scientific applications. Following are the problems addressed in
this thesis:

• Underwater images, as mentioned earlier, have color cast issue. But the method for
handling this color cast is very naive as it is assumed to be green or blue depending
upon the underwater region in which it is captured. For example, if the image is
captured in a medium where algae content of water is high, there will be greenish
color cast and if the image is captured in deeper water then there will be blue cast.
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Most of the techniques remove color distortion of underwater images assuming that
there is blue color cast in the images. But color cast depends upon the depth of the
water.

• Since artificial light is required for underwater images which lead to uneven illumi-
nation and artifacts in the image. This issue of the uneven light illumination is disre-
garded by the vast majority of the researchers. Since artificial lighting is a mandatory
requirement to capture images underwater as there is very less illumination beneath
the water specially at deeper levels. But with this aid comes a problem i.e. only the
objects in focus are clear but still the imagery is not that clear for study. So when we
process such an image, this lead to artifacts like false colors in image.

• Lastly, There are multiple problems associated with underwater images along with
color cast and poor contrast, like haze, noise etc. There is not much effort has been
made to integrate color correction and noise removal both of the underwater images.
Scattering effect of water has been removed to a great extent, but the absorption effect
of water is not being handled well by the researchers.

1.4 Scope and Objectives of the thesis

Underwater imagery is required in diverse fields of scientific and technological applications
specifically in civil and military related applications. Machine vision plays a key role for
multiple uses such as monitoring of pipelines and telephone wires, mine detection, coral
reefs, surveying of rare underwater species, fossils, etc. Some of them are listed below:

• Underwater Inspection Underwater inspections are often carried out for oil contam-
ination and servicing of underwater pipelines and structures. Ship’s hull inspection
is component of the maintenance activities. Ships entering ports serve as carriers for
radioactive materials such as nukes. Autonomous rover vehicles have replaced divers
for the maintenance activities. Navy requires seabed exploration for mine detection
and activities by enemies underwater in which computer vision plays an important
role.
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• Marine Oceanography: Underwater imaging applications include studying aquatic
species behavior and habitat mapping like monitoring shark activities [22], marine
geological activities like state of seabed and corals [23] etc.

• River Sediment Analyis: Geologists are nowadays paying attention towards a new
area using underwater imaging i.e. to analyze grain size in sediments found in
riverbed. It is a time and money intensive task required for sediment analysis. Quick
and easy way for the grain size change and its tracking over time is nowadays done
using image processing techniques which employ analysis of microscopic digital im-
ages.

Information about underwater scenario is required for various reasons and challenges asso-
ciated with getting the information at real time have been discussed in section 1.1. Follow-
ing are the objectives of the thesis:

• For every underwater image, we need to study the image first, or we should have the
prior information about the medium and the depth of water in which image is cap-
tured before processing it. Thus, we need an adaptive enhancement method which
requires no information about the underwater medium to process it and should re-
move the color cast which is there in the image.

• Artificial light is required to capture the underwater imagery but there are associated
issues like false colors etc. which are introduced on pre-processing of the images.
Thus, there is need to consider the uneven illumination during processing so that
artifacts are not there.

• All the problems associated with underwater images should be removed altogether
and also for different types of medium in terms of salinity, turbidity, green matter
concentration etc. Thus, there is need to handle all these problems altogether for
different underwater media so that the image is suitable for scientific studies.
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1.5 Contribution and Thesis Layout

The different problems and issues as mentioned in section 1.2 motivates us to provide
solution to them in this thesis. There are solutions provided to all the sub-problems referred
in section 1.3. This thesis provides an effective solution to solve the lighting, color, noise
issues of the underwater images captured in different media (different salinity, turbidity,
depth etc.) so as to make them suitable for various underwater scientific studies. Following
are the main contributions of the work done in this thesis:

• Fuzzy rules are developed to find the color cast in underwater images. Gray world
algorithm has been modified to remove the linearity in color correction to adapt with
the underwater medium.

• The color cast and contrast of underwater images vary according to the type of wa-
ter in which it is captured. Hence, adaptive algorithms are developed which work
for every type of underwater image irrespective of the depth, region in which it is
captured.

• Appropriate weight maps have been designed to extract information from the images
which further aid in enhancement of underwater images. Main aspect of underwater
images is the identification of various objects in the scene for which local entropy
and gradient information act as good measures.

• An algorithm is developed to remove three major problems (color cast, poor contrast
and haze) of underwater images. To utilize the information from underwater images,
it should be free from color cast, bad contrast and hazy appearance.

Finally, the thesis is organized in the following layout:

• Chapter 1: Introduction
Chapter 1 presents the underwater imaging model along with the different issues
associated with underwater images. Contributions and thesis layout is also discussed.
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• Chapter 2: Literature Review
Chapter 2 describes the existing image processing techniques. A brief study of im-
age enhancement and image restoration based techniques available for underwater
images has been done.

• Chapter 3: Optimal Underwater Image Enhancement
Chapter 3 presents an optimal fuzzy gray world based approach ’CIEUI’ for under-
water image enhancement. All the basic concepts employed in CIEUI have been
explained. Chapter is concluded with results and comparative analysis with the re-
lated work.

• Chapter 4: Fuzzified Color and Contrast Correction of Underwater Images
Chapter 4 presents a local enhancement based algorithm ’FCCC’ using the extension
of previous fuzzy gray world algorithm for handling the artifacts caused by artificial
lighting. FCCC is explained followed by results and comparison with the existing
methods in the literature.

• Chapter 5: Fusion of Underwater Image Enhancement and Restoration
This chapter explains FUIER, a technique based on fusion of image enhancement
and restoration to handle major issues like color, contrast and haze of the underwater
images. Finally, the analysis of results of FUIER is done with various state-of-the-art
techniques.

• Chapter 6: Conclusion and Future Works
Lastly in Chapter 6, results of the proposed work has been discussed and summa-
rized. Future scope of the work has also been discussed in the later section.



Chapter 2

Literature Review

Underwater images are inherent requirement for underwater applications dealing with stud-
ies like inspecting state of flora and fauna inside water, effect of climatic changes on the
their population sensus etc. Advanced expensive cameras help in getting underwater im-
ages but the quality of images still need to be improved. Researchers are working in these
field for last one decade using various image processing techniques. These underwater im-
age processing methods belong to one of the following classes: image restoration (model
based) or image enhancement (subjective criteria based). However, these broad classes
can be further categorized into different classes depending on their way of addressing the
problems of underwater images. Fig. 2.1 represents the classification of underwater image
processing methods.

2.1 Underwater Image Enhancement Methods

Underwater image enhancement can work either by modifying the pixel distribution so
as to change the overall contrast or color of the image. Thus, underwater images can be
enhanced by changing their contrast or color or both at the same time.

10
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Figure 2.1: Classification of Underwater Image Processing Methods

2.1.1 Contrast Correction based Algorithms

One class of underwater image enhancement methods is contrast correction based algo-
rithms which tackle the problem of poor contrast in underwater images. One of the popular
and traditional method for contrast enhancement is histogram equalization (HE) [24]. But
HE does not give the desired results as underwater images have non-uniform contrast and
color distortion which can not be rectified by HE. Adaptive HE [25] can address the prob-
lem of non-uniform contrast in underwater images but again color distortion problem is
unaddressed. Some researchers employed histogram stretching for underwater image en-
hancement e.g. Integrated Colour Model (ICM) [26] used contrast stretching of RGB and
HSI model to achieve enhanced image. [27] employed CLAHE (Contrast Limited Adaptive
HE) of RGB and HSI model and formed the enhanced image by taking the euclidean norm
of contrast stretched RGB and HSI images. Ghani et al. [28] applied contrast correction
on different color models and integrated their results to improve the overall quality of the
image. [29] proposed an adaptive fuzzy based contrast correction method for underwater
images captured in turbid media. [30] applied CLAHE on HSV and YIQ color space to
improve the contrast and fused their result to get the final image. This fusion improves the
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color quality but this method is slow and results are also not visually appealing. [31] also
employed histogram equalization of RGB channels to improve the contrast of underwater
images. Mathur et al. [32] fused the results of CLAHE and guided filters to get an enhanced
image but results still had poor contrast.
Since poor contrast is not the only issue of underwater images. Thus, only contrast cor-
rection does not yield desirable results. Color correction, on the other hand, sometimes
improve the contrast of the images also by changing the color distribution of the pixels
in the three color channels. Next subsection provides insight into color correction based
underwater image enhancement.

2.1.2 Color Correction based Algorithms

Another class of underwater image enhancement methods focuses on color correction of
underwater images to remove the problem of color cast. The fundamentals of color cor-
rection include gray world assumption [33], white balance [34] and retinex theory [35].
These theories form the basis for the methods for underwater image color correction. [36]
used gray world based assumption and white balance in lαβ space for color correction
of underwater images. [37] modified Automatic Color Equalization (ACE) [38], which is
based on white balance theory so that modified ACE can be applied on underwater videos.
Although stated automatic, the method requires tuning of parameters, thus making it less
usable for underwater images. [39] employed empirical mode decomposition (EMD) and
used genetic algorithm to adjust the weights for the layers of EMD to enhance the underwa-
ter images but contrast is not improved to a good extent. [40] used retinex theory along with
some optimization strategy for underwater image enhancement and this method can also
be applied on different types of color degraded images. [2] proposed RAHIM (Recursive
Adaptive Histogram Modification) which processed histograms column-wise to enhance
underwater images. This method produced enhanced images with good information con-
tent but contrast is poor. Hou et al. [41] applied filtering to saturation and intensity values
and not changing the hue component. Results are appealing but contrast is not good and
haze is present in the images. [42] restored the colors of the image by applying rayleigh
distribution based stretching on YCbCr color model.
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Both color and contrast related issues need to be eliminated from underwater images to
achieve desired results. Hence, most of the work in literature are hybrid of color and con-
trast correction algorithms.

2.1.3 Hybrid of Color and Contrast Correction

Another class is hybrid of contrast and color correction algorithms which solves the contrast
and color related problem in underwater images. Unsupervised Color correction Method
(UCM) [43] used gray world assumption theory for color correction, followed by con-
trast stretching for enhanced image. The above-mentioned method sometime generates
over-enhanced and under-enhanced regions in the output image. To overcome these draw-
backs, Ghani et al. [44] proposed a technique which combined the modified ICM [26] and
UCM [43] to produce better results. This technique produces visually appealing results but
create halos and artifacts for low-lit images. Ghani et al. [45] applied contrast correction
using modified von kries hypothesis [46] followed by color correction applied on HSV
model to enhance the underwater images. But the resultant images of this technique still
have drawbacks like poor contrast, blue green illumination and partial enhancement. [3]
performed underwater image enhancement by blending CLAHE and percentile methodolo-
gies but the color quality of the images is poor. Ancuti et al. [47] proposed a fusion of two
versions (color corrected and contrast corrected) of input image using four different weight
maps derived from those versions. In [48], Ancuti et al. extended [47] by modifying the
contrast correction method and reducing the number of weight maps. Both the techniques
employ multi-scale Laplacian pyramid decomposition based fusion and give good results
but a little haze is still present in the output. Zhang et al. [49] proposed an underwater
image enhancement method which first restores the image and then fuses the two versions
of the restored image using multi-scale fusion but the results are not better than those ob-
tained by Ancuti et al. [48]. Wong et al. [50] combined color and contrast correction using
adaptive gray world and histogram equalization to remove color cast and improve contrast
of underwater images. But the color quality of images were not good. [51] modified gray
world assumption and improved the color correction method and applied PSO on contrast
correction method so as to control the artifacts in the resultant image. Results have im-
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proved color but with hazy appearance which reduces the overall quality of image.
Hybrid of color and contrast correction based algorithms handle both color and contrast
related problems of underwater images, thereby producing better results than other under-
water image enhancement classes mentioned above. But there is lack of guidance mecha-
nism during contrast stretching and most of the techniques assume color cast as blue only
for every underwater image. Artificial lighting is also not been taken care by most of the
techniques which leads to over-enhanced and under-enhanced regions in the output image.
Being computationally less intensive and fast, underwater image enhancement methods
have an edge over restoration methods as they handle two major problems of underwater
images effectively and do not need for any other prior information about the image.

2.2 Underwater Image Restoration Methods

Underwater image restoration works on some image formation model or noise model to
restore the image. Nowadays, underwater image dehazing model is gaining popularity for
processing of underwater images.

2.2.1 Noise model or Image model based methods

One class under underwater image restoration techniques makes use of different filters to
remove problem of noise in underwater images. In [52], pre-processing step using various
filters has been proposed to enhance the image quality by removing noise. Lu et al. [53]
used trigonometric filter for enhancement of underwater images. Sheng et al. [54] em-
ployed multi-wavelet transform and median filter for underwater image enhancement. [55]
employed modified Multi-Scale Retinex (MSR) [56] which employs bilateral and trilat-
eral filters instead of gaussian for underwater image enhancement. Nnolim [57] proposed
partial differential equations for optimizing entropy and gradient based image processing
algorithms.
Researchers are also working to find the parameters of image formation model using dif-
ferent soft computing techniques to restore the image. A PSO based technique is proposed
for underwater images by Abunaser et al. [58] but it requires repeated execution of PSO
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to tune the parameters for image enhancement. Some researchers are also focusing on
training convolutional neural network (CNN) with image restoration techniques to dehaze
underwater images [59], [7]. Another deep neural network based study for underwater
image enhancement [60] has trained the CNN for finding the parameters of image forma-
tion model using synthetic underwater images. Trained neural networks give good results.
However, it requires a lot of time to exhaustively train the neural networks with every type
of underwater image to get effective results.
This class of underwater image restoration methods considers noise as the only problem in
underwater images and give satisfactory results for some images. Thus, to address all the
problems of underwater images, an extensive filter design is necessary which is a compu-
tationally expensive and difficult approach.

2.2.2 Dehazing Model Based Methods

One more category of algorithms for underwater image restoration considers blurriness and
color cast in underwater image analogous to haze in outdoor images and apply dehazing
based techniques [61] for underwater image enhancement. Another reason for applying
these techniques is the similarity between the equations of image formation in underwater
medium and atmospheric medium. These techniques require estimation of transmission
map and waterlight (airlight for atmospheric images) by making use of dark channel prior
(DCP) [62] or its variant to get an enhanced image. Chao et al. [63], Carlevaris-Bianco
et al. [64] used dark channel prior to clarify the blurred underwater images but failed to
color correct the images. [65] also employed dark channel prior for image deblurring and
then followed it with a color correction method. Chaing et al. [66] proposed a dark chan-
nel prior based algorithm which further removes artifacts caused by artificial light. [67]
developed a dark channel prior based algorithm in which estimation of dark channel is
done using image blurriness model. [68] modified the dark channel prior to bright channel
prior to enhance the underwater images. [69] formulated the problem around red channel
restoration as red color attenuates the most in underwater environment. [70] proposed an
algorithm which used minimum information loss principle for image dehazing and fol-
lowed it with a contrast enhancement algorithm for further enhancement of image. Peng
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et al [71] proposed a method for estimating the depth of the image formation model based
on image blurriness and light absorption pattern. [72] proposed new adaptive attenuation
prior for image restoration which delivered good results but still there is need for accu-
rate assumption of attenuation coefficients. [73] used an optimized version of DCP which
estimates the ambient color and helped in object detection in water medium but it does
not give accurate results in turbid medium. [74] dehazed the underwater image using a
approach which applies edge preserving smoothing at different level along with dehazing.
Results are convincing but some images have spurious color which indicates that parameter
tuning is required. In [75], a new method to estimate transmission map using inverse red
channel attenuation prior for dehazing model. Lu et al. [76] proposed a method based on
dark channel prior and Multi-Scale Cycle Generative Adversarial Network (MCycle GAN)
for underwater image restoration. But both methods can not handle non-uniform illumina-
tion due to artificial lighting. These dark channel prior based methods give good results but
require high computation. Results are highly dependent on correct estimation of transmis-
sion map so these methods works only for some underwater images.
To summarize, image restoration based techniques give good result for few images, for
which the parameters have been estimated correctly. These techniques are computation-
ally intensive and requires either parameter estimation for existing models or formation of
new model or priors for different types of underwater images. Moreover, efficacy of such
models is best only for the media for which their parameters have been tuned.



Chapter 3

Optimal Underwater image

enhancement

3.1 Introduction

An effective solution to the problems in underwater images, should correct the color dis-
tortion and improve the contrast of the images. The various image processing algorithms
pre-process an underwater image by using either enhancement or restoration based algo-
rithms. Image enhancement based methods have been the obvious choice owing to their
inexpensive and simple nature. As we know, image enhancement algorithms try to tweak
the histograms of the image to improve its color and contrast, it may lead to overstretch-
ing of the histogram since there is no way to guide to which extent the stretching should
be done. Moreover the underwater medium can also vary, i.e., salinity, turbidity, organic
matter of the medium can also affect the image quality [77]. As the extent of color and
contrast correction varies for different media, there is need of a method which can handle
both color and contrast problem in different underwater media.
In this chapter, a method called ’Contrast and Information Enhancement for Underwater
Images’ (CIEUI) has been formulated for this purpose. CIEUI employs Multi-objective
Particle Swarm Optimization (MOPSO) [78] to perform color, contrast correction and in-

17
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formation enhancement simultaneously. The parameters of CIEUI decide the degree of
color correction for different media which are tuned by MOPSO. Objective functions of
MOPSO are chosen to act as guiding mechanism to ensure color, contrast correction and
information enhancement respectively without introducing artifacts caused by overstretch-
ing of histogram.

3.2 Problem Formulation

Underwater images are distorted in terms of color and contrast quality due to the nature of
underwater media. Depending upon the media constituents (algae matter, coral population,
flora and fauna, depth etc.), color cast can be different and so is the contrast. Hence, one
can not presume the color cast to be just blue always. We need to have a solution which
identifies the color cast and then depending on the color cast and contrast, stretches the
histogram accordingly. Hence, CIEUI has been formulated which first identifies the color
cast using fuzzy rules and then the color correction is done in accordance with some factors
which are found using Multi-objective Particle Swarm Optimization (MOPSO).
CIEUI is a multi-objective adaptive color correction and information enhancement tech-
nique for underwater images which has been framed using the fuzzy gray world tech-
nique [8]. CIEUI employs MOPSO to ensure that desired results are produced without ar-
tifacts like false colors, light image, halos etc. Performance measures namely ’Histogram
Spread (HS)’ and ’Entropy’ are chosen as objective functions of MOPSO to produce an
output image with enhanced contrast and information content. Color cast detection and
correction is performed using fuzzy gray world algorithm which requires non-linearity fac-
tors dependent on the type of media. These factors act as guiding mechanism to control the
overstretching of the histogram. MOPSO identifies these factors with the help of appropri-
ate performance measures. CIEUI delivers results with enhanced information and contrast
as compared to other algorithms for underwater images. Basic concepts used in CIEUI are
explained in further sections in detail.
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3.3 Fuzzy Gray World Algorithm

Fuzzy Gray world Algorithm is the combination of fuzzy logic [79] and gray world as-
sumption [33] for removing the color cast of underwater images. Most of the research in
the field of underwater image enhancement assumes that there is blue color cast in under-
water images as lower wavelengths are absorbed as light enters deep in water. However,
use of artificial light while capturing photographs, can lead to a change in this pattern as ar-
tificial light compensates for the loss of energy of the red wavelength of light on penetrating
water. The problem of color cast identification can be addressed by fuzzy logic effectively
because the decision about color cast in the image is fuzzy in nature. Ambiguous concepts
like ‘reddish green color’ or ‘bluish appearance’, etc. can be effectively handled using
fuzzy sets [79]. Fig. 3.1 shows the image of a scuba diver (without artificial light) and a
fish (captured using artificial light) with their histograms. The fish image fails the above
assumption as the blue color histogram is not skewed towards higher intensities. The fuzzy
gray world algorithm does not consider the assumption that blue color is always concen-
trated towards higher intensities as the underwater images can be captured in different types
of media having varying salinity, turbidity, organic concentration etc. which can affect the
color cast pattern. Color cast in underwater images can not be clearly categorized as blue
or green, sometimes it is a combination of blue and green, sometimes there may not be any
color cast if artificial light is employed or sometimes due to the surroundings like corals,
algae etc., there can be greenish color cast. Thus, there is need to find the color cast for
a given image. Fuzzy gray world algorithm finds the actual color cast and performs color
correction instead of assuming color cast as blue like other conventional histogram based
techniques.
Consider the RGB image Iij where i and j represent the pixel coordinate Iij = (Rij, Gij, Bij)

with Rij, Gij, Bij ∈ [0, 255]. The first step is to calculate of the mean intensities of the red,
green and blue channels of the given Image I. Means are denoted by R̄, Ḡ and B̄ respec-
tively and are calculated by using Eq. 3.1.

R̄ =
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(a) (b)

(c) (d)

Figure 3.1: (a) Scuba Diver (b) Fish (c) Histogram of Scuba Diver image (d) Histogram of

Fish image
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(a) LOW Fuzzy Set (b) HIGH Fuzzy Set

Figure 3.2: Gaussian Membership function for fuzzy sets (a) Low (b) High

The second step is to fuzzify the individual color channels. There are two fuzzy sets named
’LOW’ and ’HIGH’ which indicate the extent to which an intensity value is low and high
respectively. These fuzzy sets use the gaussian membership function given by Eq. 3.2 and
curves for the fuzzy sets are shown in Fig. 3.2.

µ(x) = exp

(
−(x− c)2

2(σ2)

)
(3.2)

The parameter ‘c’ is the center of the gaussian curve at which membership function will
have value ’1’. The parameter σ is the standard deviation of the gaussian curve and defines
the width of the curve. The membership functions for the two fuzzy sets, namely LOW and
HIGH are stated in Eq. 3.3.

µLOW (x) = exp

(
−x2

2(352)

)
µHIGH(x) = exp

(
−(x− 255)2

2(352)

)
(3.3)

µLOW (x) and µHIGH(x) are membership values for intensity value x in the fuzzy sets LOW
and HIGH respectively. Thus, the center of the curve is chosen as ‘0’ for ‘LOW’ fuzzy set
because intensity 0 is the lowest possible intensity value and should have membership value
as 1 for LOW. Similarly, the center of the curve for the HIGH fuzzy set is chosen as 255
which is the highest possible intensity value. Value of σ for the fuzzy sets should be such
that the Gaussian curve follows the following conditions:-
(i) At 0, Membership value in the LOW fuzzy set should be 1 and start decreasing gradu-
ally with increasing intensity values. For intensities above 128, membership value should
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Table 3.1: Fuzzy Rules and Base Channel

If Then

Rule Number R(i,j) G(i,j) B(i,j) Cast Base

1 High Low Low Red R̄

2 Low High Low Green Ḡ

3 Low Low High Blue B̄

4 High High Low Red and Green (R̄ + Ḡ)/2

5 Low High High Green and Blue (B̄ + Ḡ)/2

6 High Low High Red and Blue (R̄ + B̄)/2

become ’0’ as these intensities are no longer low.
(ii) At 255, Membership value in the HIGH fuzzy set should be 1 and start decreasing grad-
ually with decreasing intensity values. For intensities below 128, membership value should
become ’0’ as these intensities are no longer high.
These conditions should be followed by every image. Value of σ is found experimentally
as ‘35’ as it is fulfilling the above-mentioned criteria. Membership of each pixel in the
individual channel is found by using Eq. 3.3 and the pixel will belong to the fuzzy set with
a high membership value.
Table 3.1 states six fuzzy rules and base for color correction. These rules are applied to
every pixel in the three channels and the rule which is followed by the maximum number
of pixels decides the color cast of the image. Color cast gives the base for subsequent color
correction. Base is a matrix of size same as that of the image. It helps in computing the
scale factors for each pixel in the three color channels. The next step is to find scale factors
by using base decided from Table 3.1 and means calculated from Eq. 3.1. Scale factors
αr, αg and αb are calculated using Eq. 3.4.

αr =
Base

R̄
αg =

Base

Ḡ
αb =

Base

B̄
(3.4)
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The final step is to perform color correction by using Eq. 3.5. Color correction gives
corrected values for red, green and blue color channels denoted by R̂, Ĝ and B̂ respectively.
λr, λg and λb are non-linearity factors for red, green and blue color channels respectively.
These factors control the degree of color correction of each color channel. Since underwater
images can be captured at different depth, in different salinity and turbidity levels of water,
etc., the degree of color correction cannot be same for every image. This degree is tuned
using Multi-objective Particle Swarm Optimization (MOPSO).

R̂ = (αr)
λrR Ĝ = (αg)

λgG B̂ = (αb)
λbB (3.5)

Values of these non-linearity factors λr, λg and λb are computed by using MOPSO
algorithm which optimizes performance measures namely histogram spread [80] and en-
tropy [81] explained in the next section.

3.4 Performance Measures

Since underwater images have diminished color, contrast and bad illumination, perfor-
mance measures chosen should ensure that color, contrast and information should improve.
Two metrics chosen as performance measures are namely Histogram Spread (HS) [80] and
Entropy [81]. HS [80] is a quantitative measure for assessing the overall contrast of an
image. It quantifies the uniformity of histogram over the entire intensity range and should
be close to 0.5 if the histogram is uniformly spread. Since for a good contrast image, the
histogram should be uniformly spread across the whole intensity range, HS gives an index
for measuring the uniformity of the histogram. Entropy ensures that the image has good
information content and it should not decrease after enhancement.

3.5 Multi-Objective Particle Swarm Optimization for Con-

trast and Information Enhancement

There are a lot of meta-heuristic techniques proposed in the literature for multi-objective
problems, e.g., non-dominated sorting genetic algorithm [82], Pareto-archived evolution
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strategy [83] etc. These techniques are nature-inspired and evolutionary in nature. Another
technique which is an advancement over these extensively used techniques is an optimiza-
tion algorithm called Particle Swarm Optimization (PSO) [84]. PSO is gaining popularity
due to its simplicity. The concept of population and a measure of performance used in
PSO is analogous to population and the fitness value used in evolutionary algorithms. All
the calculations performed in PSO are similar to crossover operator. However, there is an
added advantage of solutions being scattered over a hyperspace, which is not available in
traditional evolutionary algorithms. Another advantage of PSO over evolutionary algorithm
is that it learns from the past experience. Thus, PSO has been choice for multi-objective
problem which provides better convergence rate as well. Let us understand MOPSO in the
next subsection.

3.5.1 Multi-Objective Particle Swarm Optimization

Let us understand multi-objective optimization first.

Definition 3.5.1. Multi-objective Optimization: Given n objective functions f1 : χ →

R, ..., fn : χ → R which map a decision space χ into R, a multi-objective optimization

problem (MOP) is given by the following problem statement:

minimize f1(x), ..., fn(x), x ∈ χ

Remark. Usually, we say n > 1 when we talk about multi-objective optimization problems.

But, by convention, problems with large n are called many-objective optimization problems

[85], [86] and not multi-objective optimization problems.

Hence, MOPSO [87] is a multi-objective problem in which we use PSO for the opti-
mization of objective functions. Multi-Objective optimization for evolutionary algorithms
like PSO [88], handles multi-objective optimization problems using the following princi-
ple:

1. Find the non-dominated solutions (found using PSO) which form the Pareto-optimal
front.
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2. Choose the best solution from the Pareto front using some extra information.

MOPSO is very similar to PSO as information about global and personal best locations
is shared within flock in both the algorithms. However, PSO is slightly modified to handle
multiple objectives in such a way that it discovers a set of solutions called ’Pareto Front’
rather than a single global best solution. A pareto front (repository) is a set of all the non-
dominated solutions found at each iteration. PSO and Pareto Front are explained in the
next subsections.

3.5.1.1 Particle Swarm Optimization

PSO mimics the flocking behavior of animals who work in a group like birds, insects, bees
etc. These group of animals (swarm) start looking for a piece of food. None of them
know the exact location of the food. In PSO, each single solution is a particle in the search
space. A fitness function which is to be optimized is associated with each particle. These
particles have some position and move with a velocity in a random search space. The
particle maintains two best solutions (1) best value of itself at which it has the best value
of fitness function (pbest) and (2) the best value (particle) for the whole swarm (gbest).
Both these values guide all the particles in the swarm. The particle updates its velocity and
positions using pbest and gbest with following Eq. 3.6 and Eq. 3.7.

vi = ω ∗ vi + c1 ∗ (pbesti − presenti) + c2 ∗ (gbesti − presenti) (3.6)

presenti = presenti + vi (3.7)

where vi is velocity of particle i and presenti is the current position of particle and gbesti
is the global best particle. ω represents the interia weight. c1, c2 are personal and global
learning coefficients respectively.

3.5.1.2 Pareto Front

While working with multiple fitness functions, there can not be a single solution which
optimizes all the fitness function together. Thus, in multi-objective scenario, we deal with
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contradictory objectives and the final solution should make a settlement between them. We
can have a set of solutions in which any of the fitness function can have its best value.
Thus, we need to find a set of solutions in which all the objective functions are improving
and not even a single objective is worsening. Such a set of solutions is called pareto front.
All the solutions in a pareto front are equally good if we don’t have any other subjective
criteria to distinguish between them. Some extra information is required to find the single
best solution among these set of solutions.
In single objective optimization, best solution can be easily determined but for multi-
objective optimization, we use the principle of dominance. One solution is said to dominate
the other if at least one of the objective value is better than the other dominated solution
and rest of the solutions should be either same or better than the dominated solution. All
non-dominated solutions form Pareto front, which finally are the candidate solutions for
finding one best solution. The domination between two solutions is based on mathematical
concept called partial ordering and defined as follows:

Definition 3.5.2. A solution x is said to dominate other solution y, if it satisfies the follow-

ing two conditions.

1. solution x is better than y in terms of objective function values.

2. solution x is strictly better than y in terms of at least one objective function.

MOPSO is based on PSO by using its position and velocity updation equations and
generate a Pareto front to find the optimal solution as depicted in the flowchart in Fig.
3.3. From the flowchart, it is clear that MOPSO algorithm starts with the initialization of
particles in the swarm with random values and various other parameters whose values are
stated in Table 3.2. After initialization, the first step is to find the value of performance
measures for the initial population in order to find the global and personal best solutions.
Thus, HS and entropy is calculated for each particle of the swarm. Then, the non-dominated
solutions from the swarm are found using the Pareto-optimality definitions [78] and stored
in a repository. In each iteration, the global best solution is found out and velocities and
position of particles are updated for the swarm just like PSO. Particles are then evaluated
based on the performance measures and the personal best is found out. The repository
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Figure 3.3: Working of MOPSO
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is updated with global bests. After the end of iterations, the repository or Pareto-front is
generated with the global best solutions from which one solution is chosen and an enhanced
image is produced using the Algorithm 1.

Algorithm 1: Fuzzy Gray World Based Color Correction
Input: RGB Image I, λr, λg, λb
Output: HS, Entropy
Result: ColorCorrectedImage

1 Separate R,G,B channels of Image;
2 [m,n]← size of Each channel;
3 Compute Channel means using Eq. 3.1;
4 Initialize Rulecount[6] to zero for i← 1 to m do
5 for j ← 1 to n do
6 find µLOW (R(i, j)) and µHIGH(R(i, j)) using Eq. 3.3;
7 find µLOW (G(i, j)) and µHIGH(G(i, j)) using Eq. 3.3;
8 find µLOW (B(i, j)) and µHIGH(B(i, j)) using Eq. 3.3;
9 Find the Fuzzy Membership of pixel in each channel using Mamdani

Operator;

10 // Mamdani Operator assign the pixel to the fuzzy

set which has higher membership value

11 k ← fuzzy rule followed by the pixel in Table 3.1 .;

12 // value of k ∈ [1, 6]

13 Rulecount[k]← Rulecount[k] + 1;

14 end
15 end
16 [max,DominatingRuleNo] = Maximum(RuleCount);
17 Find the base from Table 3.1 corresponding to DominatingRuleNo ;
18 Compute R̂, Ĝ, B̂ using Eq. 3.5 ColorCorrectedImage = [R̂, Ĝ, B̂];
19 Compute HS and Entropy of ColorCorrectedImage.

To achieve accelerated convergence and to reduce computational complexity, The num-
ber of iterations and swarm size are kept in a moderate range. Inertia weight is the con-
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trol parameter for swarm velocity [89] and is given moderate value so that convergence
does not become too fast without the exploration of a good range of positions. Per-
sonal learning coefficient is given lesser weight as compared to global learning coeffi-
cient so that position should be dependent more on global best positions than local best
positions. Initial values of parameters have been taken by referring to state-of-the-art
techniques [90] [87] and then updated after repeated executions for faster convergence
and reduced time complexity. The detailed steps of MOPSO are shown in Algorithm 2.

Algorithm 2: CIEUI
Input: RGB Image
Output: Repository of Non-Dominated values of λr, λg, λb
Result: Enhanced Image

1 Initialize the MOPSO paramters ;
2 EVALUATE the value of HS and Entropy of each particle of the swarm using

Algorithm 1. ;
3 Repository = SELECT the non-dominated solutions from the Swarm. ;
4 for t← 1 to MaxIterations do
5 for i← 1 to size of swarm do
6 SELECT the gbest ;
7 UPDATE the velocity ;
8 UPDATE the Position ;
9 EVALUATE the Particle again by computing HS and Entropy using

Algorithm 1. ;
10 UPDATE the pbest;

11 end
12 UPDATE the repository with gbests;
13 Report Results in the repository;

14 end
15 Choose the particle from repository with best UICM Value;
16 Output the Enhanced Image using Algorithm 1 for the chosen particle ;
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Table 3.2: MOPSO Parameters

Parameter Value

Number of Iterations 30

Size of Swarm 75

Size of Repository 20

Interia Weight 0.5

Personal Learning Coefficient 1.5

Global Learning Coefficient 2.5

(a) Divers (b) Seal Fish

(c) PF of Divers (d) PF of Seal Fish

Figure 3.4: Images and Their Pareto Fronts (PFs)
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Thus, CIEUI aims to find the optimal value of the non-linearity factors λr, λg and λb
while optimizing the values of HS and entropy such that the HS value is close to 0.5 and the
entropy value of the enhanced image is greater than or equal to the original image. MOPSO
will provide a Pareto front which is a set of non-dominated solutions which are chosen as
optimal if entropy can be improved without sacrificing histogram spread and vice-versa.
Pareto fronts for a few images are shown in Fig. 3.4. Red dots in the plots are members of
the Pareto front.

As discussed earlier, to find one solution from Pareto front, we need an extra informa-
tion which is performance metric named ’UICM’ (Underwater Image Colorfulness mea-
sure) [91]. It has been considered to choose from the set of candidate solutions as it tries
to choose one solution which is having good information content (entropy), contrast (HS)
and color quality (UICM). The solution with the best UICM value will be chosen as the
optimal values of non-linearity factors required for computing the enhanced image.

3.6 Results and Comparative Analysis

Underwater images neither have any database with ground truth values nor any universally
accepted quantitative measure for evaluating the extent of image enhancement. Thus, as-
sessing the performance of underwater image enhancement methods is very challenging.
Only non-reference based performance measures can be employed to judge the quality of
image.
Recently, a few underwater image databases have been developed namely TURBID dataset
[92] and WHOI color correction dataset [93]. The pictures of TURBID dataset are gen-
erated by experimentation for simulation of images in the turbid water body and WHOI
(Woods Hole Oceanographic Institution) color correction dataset has original images along
with reference images generated by the color correction method developed by scientists of
WHOI. Thus, a comparison can be done with the results given on the WHOI website [93]
using reference based performance measures like PSNR (Peak Signal to Noise Ratio) and
MSE (Mean Squared Error) but these reference based performance measures cannot be
used for quantitative evaluation of other underwater images.
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Table 3.3: Average values of Entropy, HS and UICM for 200 Underwater Images

Technique Entropy Histogram Spread UICM

Original 6.05 0.2531 3.0431

Gray World 6.89 0.3238 5.8244

UCM 7.18 0.3771 6.9969

Kwok et al. Method 6.06 0.2327 3.8461

Sethi et al. Method 6.89 0.3615 6.2657

CIEUI 7.52 0.3589 7.1539

CIEUI has been tested for 200 real underwater images taken from different underwater
collections [94] and articles related to underwater image processing available on the inter-
net for exhaustive comparison. The following methods have been used in our experiments:
gray world technique [95], UCM [96], Kwok et al. [81] technique and Sethi et al. [8] tech-
nique. To demonstrate the efficacy of CIEUI, output and histograms of a few underwater
images using the above-mentioned techniques are shown in Fig. 3.5 - 3.14. These un-
derwater images are chosen as they are captured at different depths and in different water
bodies.
For quantitative analysis of the above-mentioned techniques, the values of performance
measures mentioned in section 3.5 which are ’Entropy’, ’Histogram Spread’ and ’UICM’
are shown in Table 3.3 and Table 3.4. Entropy measures the information content of the
image. Histogram Spread quantifies the contrast of the image. UICM measures the col-
orfulness of the image. The average of the above-mentioned performance metrics for 200
underwater images for the compared techniques are shown in Table 3.3. The values of these
performance measures for different images are listed in Table 3.4 to compare CIEUI with
the above-mentioned techniques. The bold values in each column of Table 3.4 represent
the best value of the respective performance measure for particular image. Comparison of
results shows that CIEUI is better than state-of-the-art algorithms in terms of entropy and
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Table 3.4: Comparison of Various Techniques

Image Technique
Qualitative Analysis

Entropy Histogram Spread UICM

Drum

Original 5.65 0.4005 2.9495

Gray World 7.10 0.2822 4.9339

UCM 7.45 0.5577 9.5244

Kwok et al. Method 6.34 0.3163 3.0975

Sethi et al. Method 6.85 0.5488 5.1326

CIEUI 7.78 0.4586 9.7180

Divers

Original 5.44 0.2817 4.7572

Gray World 6.97 0.4241 4.2785

UCM 6.59 0.5563 4.7077

Kwok et al. Method 5.74 0.2417 4.9282

Sethi et al. Method 6.77 0.5097 6.2125

CIEUI 7.37 0.4078 11.3503

Fish

Original 6.01 0.2553 1.3890

Gray World 5.91 0.2639 2.0289

UCM 7.41 0.4333 5.8051

Kwok et al. Method 7.02 0.2939 1.4890

Sethi et al. Method 7.41 0.4446 7.0389

CIEUI 7.32 0.4706 11.4956

Seal Fish

Original 6.46 0.3081 1.2937

Gray World 6.86 0.4148 5.1796

UCM 7.19 0.4003 4.6775

Kwok et al. Method 6.47 0.3120 1.7709

Sethi et al. Method 6.95 0.3962 4.8969

CIEUI 7.63 0.3506 2.7785

Scuba Diver

Original 6.25 0.1992 1.3890

Gray World 7.58 0.3154 2.0289

UCM 7.53 0.2550 5.8051

Kwok et al. Method 6.36 0.1804 1.4891

Sethi et al. Method 7.52 0.2901 7.0389

CIEUI 7.59 0.3351 11.4856
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UICM.
From the qualitative and quantitative analysis of results of the techniques to be compared,

the following points can be inferred. Original underwater images have a washed out appear-
ance with very less information content (low entropy values). Gray world technique [95]
and UCM [96] try to bring color information in the image by manipulating the histograms
of individual RGB channel but these techniques sometimes overstretch the histogram lead-
ing to false colors in image. From the Table 3.4, it can be concluded that the gray world
technique [95] and UCM [96] produce images with improved entropy (information), his-
togram spread (contrast) and UICM (color). But, it can be seen in the visual results of gray
world and UCM techniques that red color dominates the image.
Qualitative and quantitative analysis of Kwok et al. [81] method proves that it improves
entropy (information content) to some extent but the contrast of the images is very poor.
Histogram spread values of some of its output images are sometimes lower than the orig-
inal images. Thus, It does not work well for underwater images but it claims to work for
poor contrast images.

The Sethi et al. [8] technique improves entropy (information content), histogram spread
(contrast) and UICM (color), but introduces false colors in the image just like UCM and
gray world technique. Entropy of its output images is not increased as much as its his-
togram spread and UICM values. Reason for such results is that it concentrates only on
contrast and color improvement which leads to introduction of false colors in the image.
Results of CIEUI technique have improved contrast and information content as compared
to other techniques. In the fish image, it is introducing false colors which is due to presence
of artificial light. From Table 3.3, CIEUI shows better overall performance than others in
terms of improving entropy and UICM values. However, it lags behind UCM and Sethi
et al. technique in terms of improving histogram spread as it computes an optimal value of
histogram spread and entropy for producing an image with good contrast and information
content. It delivers good results for every type of underwater image. For example, drum
image is captured on the seabed which is very deep, divers image is at a moderate depth and
moreover images are taken in different water bodies having different salinity and turbidity.

From the histograms of the test underwater images produced by the above-mentioned
techniques and CIEUI, the following points can be inferred.
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(a) Original (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.5: Results of Scuba Diver Image using different methods
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(a) Original Histogram (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.6: Histograms of Scuba Diver Image for results obtained using different methods
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(a) Original (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.7: Results of Fish Image using different methods
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(a) Original Histogram (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.8: Histograms of Fish Image for results obtained using different methods
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(a) Original (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.9: Results of Drum Image using different methods
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(a) Original Histogram (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.10: Histograms of Drum Image for results obtained using different methods
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(a) Original (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.11: Results of Divers Image using different methods
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(a) Original Histogram (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.12: Histograms of Divers Image for results obtained using the different methods
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(a) Original (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.13: Results of Seal fish Image using different methods
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(a) Original Histogram (b) [95]

(c) [96] (d) [81]

(e) [8] (f) CIEUI

Figure 3.14: Histograms of Seal Fish Image for results obtained using different methods
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Histograms of images produced by gray world based technique [95] are either shifted to-
wards lower intensities (low contrast) or towards higher intensities (high contrast). For the
scuba diver image, histograms of three color channels span the whole dynamic range but
the distribution of pixels is non-uniform.
Histograms of UCM [96] images span entire dynamic range but do not have uniform dis-
tribution and the histogram of blue channel usually shows a dip for higher intensity values
due to which images have more reddish appearance.
Histograms of Kwok et al. [81] technique images are skewed towards higher intensities
(high contrast) and have non-uniform distribution due to which resultant images are very
light.
Histograms of the Sethi et al. [8] technique cover the whole range of intensities similar to
UCM [96], but have more uniform distribution than UCM. the resultant images of the fish
image for the Sethi et al. technique [8] and UCM [96] techniques are almost similar and
give same entropy values but contrast of Sethi et al. [8] image is slightly better than UCM
image which is validated by HS and UICM values of the resultant images of fish.
Some of the images of the Sethi et al. [8] method appear similar to that of CIEUI, e.g. scuba
diver and fish image. But it can be seen from the highlighted red boxes in the resultant im-
ages of both the techniques, images of the Sethi et al. [8] method have a reddish tone.
Histograms of blue and green channel of the scuba diver and fish images in [8] method
show a dip for higher intensities as compared to corresponding histograms of CIEUI im-
ages, leading to the dominance of red channel in few regions of the image.

CIEUI produces images with histograms spanning the whole dynamic range. Distribu-
tion is not uniform but better than state-of-the-art techniques. Histograms of green and blue
channels do not have pixels with lower intensities due to which few artifacts are present in
the output images. The fish image has more artifacts due to presence of artificial light.
From Table 3.4, it can be seen that CIEUI improves the histogram spread value. However, it
does not always outperform other techniques. It gives the best entropy value for all images
except for the fish image. It gives the best UICM value for all the images except for the seal
fish image. From the above analysis, it can be concluded that CIEUI always enhances the
information content, color and contrast of the image and produces results that are visually
more appealing and closer to reality when contrasted with state-of-the-art algorithms.
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Original Image 1 [2] CIEUI

Original Image 2 [2] CIEUI

Original Image 3 [3] CIEUI

Figure 3.15: Images taken from articles [2] and [3]
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Table 3.5: Values of Entropy, HS and UICM for Images shown in Fig. 3.15

Image Technique Entropy Histogram Spread UICM

Image 1

Original 5.93 0.1567 0.3229

RAHIM [2] 7.65 0.3303 4.6511

CIEUI 7.76 0.3327 4.8951

Image 2

Original 5.86 0.1779 2.8182

RAHIM [2] 7.88 0.4566 4.859

CIEUI 7.67 0.4945 4.8761

Image 3

Original 5.1087 0.1827 .4651

Garg et al. Method [3] 6.78 0.1610 2.7318

CIEUI 7.27 0.2454 3.7905

For more exhaustive comparison, The results of CIEUI have been compared with RAHIM
[2] and the Garg et al. technique [3] which also try to tackle color and contrast issues to-
gether. A few images along with the results have been taken from the articles [2] and [3]
are shown along with the results of CIEUI in Fig. 3.15.
From the visual results in Fig. 3.15, it is clear that the images of CIEUI are visually more
pleasant than the images of RAHIM [2] and the Garg et al. technique [3]. The contrast
of the images obtained by RAHIM [2] is on the higher side and colors are not visually ap-
pealing as compared to CIEUI. On the other hand, The images obtained by the Garg et al.
technique still have bluish tone and color cast is still left. These facts are further proven by
the quantitative measures values shown in Table 3.5. In Table 3.5, the values of quantitative
measures prove that CIEUI has better information content, color and contrast as compared
to RAHIM [2] and the Garg et al. technique [3]. However, for image 2, RAHIM has
better information content but color (UICM) and contrast (HS) of CIEUI is better. How-
ever, images obtained using the Garg et al. technique does not possess better entropy, HS
and UICM values which has been proven from the visual results also. Overall, CIEUI is
better than RAHIM [2] and the Garg et al. technique [3] in terms of color, contrast and
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information content of the image.

3.7 Conclusions

In this chapter, an adaptive enhancement technique for underwater images has been ex-
plained which does not require any parameter estimation. The main concern of underwater
images is their poor quality due to bad contrast and color which results in poor information
content. The major drawbacks of state-of-the-art algorithms are (1) these methods work ei-
ther on improving contrast or color or both in underwater images (2) these methods do not
scale to every type of underwater image which are captured at different depth or in water
bodies with varying salinity and turbidity. The key contributions of CIEUI are: firstly, it
not only improves contrast and color performance but also the information content of the
underwater image and secondly, it works for all type of underwater images. It effectively
avoids the artifacts (i.e. False colors and halos) caused by overstretching of the histogram.
The major limitation of CIEUI is the slow execution time of MOPSO due to which it is
not applicable in real time. One solution to apply the method in real time is to first get the
optimized values of λ for a type of medium and then apply those values for other images
captured in the same media. In this way, it can be applied in real time, and knowing the
values of parameters in different type of underwater media, can be easily scaled to every
type of underwater image. This method produces visually enhanced images with better
color, contrast and object clarity, which is proven by quantitative measures as well. A few
artifacts are still left in output images in which artificial lighting has been employed. In the
next chapter, we will address the artifacts due to artificial lighting and also try to reduce the
time required to pre-process the underwater image.



Chapter 4

Fuzzified Color and Contrast Correction

of Underwater Images

4.1 Introduction

As discussed in previous chapter, underwater images suffer from poor contrast and color
distortion. Poor contrast is mainly due to less penetration of light rays inside the water
medium. Thus, artificial lighting is employed to compensate for the light. But, the solution
i.e. CIEUI explained in the previous chapter, introduces artifacts in the images which are
captured using artificial lighting. In this chapter, this drawback of CIEUI is removed by
providing a local enhancement solution namely ’Fuzzified Color and Contrast Correction
(FCCC)’.
A global enhancement technique considers the whole image equally affected by the un-
derwater anomalies and thus applying such a technique leads to artifacts in the underwater
image as the region in focus of artificial lighting will have better contrast and improved
colors than the other regions. It can be seen in Fig. 4.1 that the fish focused with artificial
lighting is clearer than other things in background.

49
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(a) fish orignal image (b) disc orignal image

(c) fish CIEUI image (d) disc CIEUI image

(e) fish FCCC image (f) disc FCCC image

Figure 4.1: Images with artificial lighting (a) Fish (b) disc
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Similarly, disc near to camera is clearer than other objects in the image. Thus, it can
be inferred that the objects in foreground i.e. near to camera are clearer than the objects in
the background. Result of CIEUI (global enhancement) for these images and FCCC (local
enhancement) are also shown in Fig. 4.1. From the results, it is clear that local enhancement
of underwater images is required for desired results. Here, local enhancement means color
and contrast correction of segments of images which have different color cast and contrast.
Thus, In this chapter, to address the problems of poor contrast, color cast and non-uniform
illumination of underwater images, we propose a novel local image enhancement technique
named Fuzzified Color and Contrast Correction (FCCC) which employs type-2 fuzzy logic
for color correction and Contrast Limited Adaptive Histogram Equalization (CLAHE) for
contrast correction of the underwater image. These two versions of the same underwater
image are then fused using wavelet decomposition based fusion to get the final enhanced
image with better contrast and color performance.

4.2 Problem formulation

In this chapter, we are formulating an enhancement technique ’FCCC’ which addresses
the color and contrast correction problem of underwater images which can have different
color cast and contrast in parts of image. FCCC corrects color and contrast of underwater
images using single image captured by digital camera. Local enhancement is applied on
blocks of images instead of whole image. Color correction is done to remove color cast
by working on non-overlapping patches of images using an algorithm based on gray world
assumption [33] and type-2 fuzzy logic [97]. Contrast correction is done by using Contrast
Limited Adaptive Histogram Equalization (CLAHE) [98] which is a localized version of
Histogram Equalization (HE). Finally, enhanced image is obtained by fusion of these two
inputs i.e. color corrected image and contrast corrected image. FCCC effectively resolves
the issues of underwater images by producing enhanced images with no or few artifacts.
Type-2 fuzzy world algorithm is an enhancement of the fuzzy gray world algorithm [8]
explained in previous chapter. We will understand this concept and the detailed steps of
FCCC in further sections of this chapter.
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4.3 Fuzzified Color and Contrast Correction

In this chapter, we have formulated a local hybrid image enhancement method named
’Fuzzified Color and Contrast Correction (FCCC)’ to tackle the artifacts caused by global
enhancement methods when applied on unevenly illuminated underwater images. It cor-
rects the color and contrast of underwater images locally to handle the major problems
(color cast, bad contrast and non-uniform illumination) in underwater images.

Figure 4.2: Processing Steps of FCCC
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FCCC includes two parallel steps of ’color correction’ and ’contrast correction’ fol-
lowed by finding the weight maps for each image and last step is to fuse these two images
using weighted average of wavelet coefficients. It removes the color cast using an algorithm
based on type-2 fuzzy logic and gray world based assumption and corrects contrast using
CLAHE. Fuzzy logic is employed to find the color cast in different non-overlapping blocks
of the image. Due to non-uniform lighting in underwater images, there can be different
degree of color cast in the image. Fuzzy sets can easily handle the ambiguity regarding
color cast as color cast is not always of blue color, sometimes it can be of green color or of
greenish blue color and even no color cast if artificial lighting is employed. CLAHE is a lo-
cal contrast correction method which performs histogram equalization on non-overlapping
blocks of image. Size of block should not be too small or too big. In small block, there
may be no change in color cast and contrast of the different adjacent blocks. In a single
image, there can be different color cast and contrast in the sub-blocks of that image. Size
of sub-block is taken as 16X16 for an image of size 256X256 after trying different values
for sub-block size experimentally. FCCC delivers good results for almost all the images
for this size of sub-block. The two versions of the original image are then fused using
wavelet decomposition based fusion [99] which introduces few or no artifacts in the image.
The key contributions of FCCC are (a) it is computationally inexpensive (b) It requires
no parameter estimation and works for every type of underwater image (captured in media
having different turbidity, salinity etc.) (c) It handles the major issues of underwater images
(poor contrast, color cast, uneven illumination) efficiently. The different steps of FCCC are
illustrated in Fig. 4.2 and are explained in the next subsections.

4.3.1 Type 2 Fuzzy Gray World Algorithm

There are lots of color correction algorithms available in literature, most of which are based
on certain assumption and try to find some reference or standard value based on that as-
sumption. That standard value is then used to find the correction factors which are then
multiplied with the original image to find the color corrected version. Shades of Gray [4],
Gray Edge [5] and Max-RGB [6] are examples of this class of algorithms which work on
some specific assumption. Output images of the above-mentioned techniques are shown in
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(a) (b)

(c) (d)

(e)

Figure 4.3: (a) Original Image (b) [4] (c) [5] (d) [6] (e) Proposed Type-2 fuzzy gray
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Fig. 4.3.
Type 2 Fuzzy gray world algorithm used in this chapter has two concepts:
(a) Gray World assumption: Gray world assumption states that the average of three color
channels should be achromatic and if the average is not achromatic, we need to adjust the
color channels by the ratio defined by the algorithm.
(b) Type-2 Fuzzy: Application of fuzzy logic [100] for finding the color cast, as suggested
by Sethi et al. [8], has been adopted in this chapter. But, in [8], there are two limitations
(a) the parameter ’µ’ has been fixed at 35, (b) there is no fuzzy rule to find the base if
the pixel has low membership or high membership in all three channels. Thus, to fix the
first limitation, Interval Type-2 Fuzzy Sets (IT2 FS) [97] has been employed to solve the
uncertainty in the fuzzy set itself. Type-2 fuzzy set is an advancement over type-1 fuzzy
set to handle more uncertainty. Interval Type-2 fuzzy sets minimizes the error due to mem-
bership function by using the concept of footprint of uncertainity (FOU). FOU gives the
bound in which the membership function can vary. More the area under FOU, more is the
uncertainty. To handle the second limitation, few fuzzy rules have been added.
The working of the algorithm is as follows:
First step of fuzzified color correction is to process image I = [R,G,B] in sub-blocks of
size 16x16 so that the problem of non-uniform illumination can be handled. Each pixel in
the sub-block is fuzzified using IT2 FS namely LOW and HIGH, which are defined in Eq.
4.1. Fig. 4.4 shows the membership functions (MFs) of fuzzy sets. thick blue line shows
the upper membership function of LOW and thin blue line shows the lower membership
function of LOW. Similarly, Thick red line shows the upper MF of HIGH and thin red line
shows the lower MF of HIGH. Blue shaded region denotes footprint of uncertainty (FOU)
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of LOW fuzzy set and Red shaded region denotes FOU of HIGH fuzzy set.

[H]

µ ˜LOW (x) = FOU( ˜LOW )

= gaussmf(x, [40, 0])

µ ˜LOW
(x) = FOU( ˜LOW )

= gaussmf(x, [25, 0])

µ ˜HIGH(x) = FOU( ˜HIGH)

= gaussmf(x, [40, 255])

µ ˜HIGH
(x) = FOU( ˜HIGH)

= gaussmf(x, [25, 255])

(4.1)

where, FOU is footprint of uncertainty.
Gaussian membership function has two parameters, ’center’ and ’standard deviation (σ)’.
The lower MF and upper MF for LOW are gaussian membership functions with center as
zero for both and σ value equal to 25 for lower MF and 40 for upper MF. Similarly, the
lower MF and upper MF for HIGH are gaussian membership functions with center as 255
for both and σ value equal to 25 for lower MF and 40 for upper MF. Center is zero for LOW
fuzzy set so that membership value is highest at zero as it is the lowest possible intensity
value. Similarly, center is 255 for HIGH fuzzy set as it is the highest possible intensity
value for an 8-bit RGB image. The stated value of σ for upper MFs of both the fuzzy sets
ensures that membership for LOW fuzzy set drops close to zero for intensity values greater
than 128 (mid-point of dynamic range) and inverse for HIGH fuzzy set. If we choose upper
MF with σ greater than 40, membership does not drop to zero for intensities greater than
128 for LOW fuzzy set and vice versa for HIGH fuzzy set. Value of σ for lower MF for
both the fuzzy sets is 25, which implies that the membership of pixels drop close to zero for
intensities greater than 75 for LOW fuzzy set and same pattern is followed for intensities
lesser than 175 for HIGH fuzzy set. As all images do not cover the whole dynamic range
so the lower MF ensures that for an image with poor contrast, the midpoint of the intensity
values can be as low as 75 (intensities are on the lower side) as high as 175 (intensities are
on the upper side) assuming artificial lighting has been employed for every image.
The inference mechanism of the fuzzy system computes the output ’Base’ for each pixel
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Table 4.1: Parameters of Type-2 Fuzzy System

Number of Inputs 3

Number of outputs 1

Number of Rules 8

Defuzzification Method Weighted Average

Type Reduction Method Karnik-Mendel

Output Type Crisp

Input1 = Red Channel, Input2 = Green Channel, Input3 = Blue Channel

Range [0,255]

Number of Membership Functions 2 for each input

MF1U (LOW ) ’gaussmf’,[40 0]

MF1L (LOW ) ’gaussmf’,[25 0]

MF2U (HIGH) ’gaussmf’,[40 255]

MF2L (HIGH) ’gaussmf’,[25 255]

Output = ’Base’

Range [-1 1]

Number of Membership functions 7

MF1 (RED) Linear, Base = input1

MF2 (GREEN) Linear, Base = input2

MF3 (BLUE) Linear, Base = input3

MF4 (RG) Linear, Base = (input1+input2)/2

MF5 (GB) Linear, Base = (input2+input3)/2

MF6 (RB) Linear, Base = (input1+input3)/2

MF7 (RGB) Constant, Base = 0.8
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Figure 4.4: LOW and HIGH Type-2 fuzzy sets

in the segment. Table 4.1 states the values of parameters of the Type-2 fuzzy model. The
designed type-2 fuzzy system is a Sugeno inference model [101] in which output is either
linear or constant. Output processing is done using KM (Karnik-Mendel) defuzzification
[102] which is one of the traditional defuzzification method. Table 4.2 states the eight fuzzy
rules. The above Type-2 system has been implemented using an open source interval type-
2 fuzzy toolbox [103]. After finding the value of ’Base’ from the type-2 fuzzy toolbox, the
correction factors for each pixel of three color channels are calculated using Eq. 4.2.

αr =
Base

R
αg =

Base

G
αb =

Base

B
(4.2)

where R̄, Ḡ and B̄ are mean intensities of red, green and blue channels respectively of
image.
As we know underwater environment affect the three color channels in a non-linear manner.
Hence, a factor of non-linearity has been added to the correction factors as shown in Eq.
4.3.

γr =
SR

R
γg =

SG

G
γb =

SB

B

R̂ = (αr)
γrR Ĝ = (αg)

γgG B̂ = (αb)
γbB

(4.3)

SR, SG and SB denotes the mean intensities of red, green and blue channels of segment
respectively and R̂, Ĝ and B̂ are the intensity values of red, green and blue channels of
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Table 4.2: Fuzzy Rules

IF Then

Input1 Input2 Input3 Output

HIGH LOW LOW RED

LOW HIGH LOW GREEN

LOW LOW HIGH BLUE

HIGH HIGH LOW RG

LOW HIGH HIGH GB

HIGH LOW HIGH RB

LOW LOW LOW RGB

HIGH HIGH HIGH RGB

color corrected image respectively. Thus, color corrected image Î = [R̂, Ĝ, B̂] is obtained
using the fuzzified color correction.

4.3.2 Contrast Limited Adaptive Histogram Equalization

While applying local color correction, local contrast correction is applied on the original
image using Contrast Limited Adaptive Histogram Equalization (CLAHE) [98]. CLAHE
is localized version of HE [24]. HE generates an output image having a histogram closer
to uniform histogram by redistributing the probabilities of gray levels occurrences. HE
considers just gray level distribution and no attention is paid on content. If the pixel values
are distributed identically throughout the image, then the results are good. Since underwa-
ter images specifically with artificial lighting can have regions with significant darker or
lighter pixels in comparison to other pixels within other region in the image, enhancement
using HE does not give favorable results.
The Adaptive Histogram Equalization (AHE) algorithm proposed by Ketcham et al. [104]
addresses this challenge by using a neighborhood pixel-derived conversion feature to con-
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vert each pixel of the picture. HE is performed on blocks of size in the multiples of 2 e.g.
2x2, 4x4 and so on. Bi-linear interpolation is employed to merge the artificial boundaries
created by equalization. The only parameter to be determined in this method is the block
size. The major limitation of traditional AHE is that it amplifies noise which Contrast-
Limited Adaptive Histogram Equalization (CLAHE) [105] does not. CLAHE operates just
like AHE by applying HE to small blocks, but utilizes a contrast-limiting method to each
neighborhood grid point within a specific region. Reduction of noise amplification is done
by clipping the image histogram to a predefined value just before computing the Cumu-
lative Distribution Function (CDF) for each region. With CLAHE, the parameters to be
determined are block size, clip limit, type of distribution and its related parameter. Unlike
HE, CLAHE gives the liberty to convert the histogram distribution not only to uniform but
also rayleigh or normal distribution.
FCCC uses blocks of 16x16 for contrast correction to maintain uniformity with color cor-
rection. CLAHE is performed on three color channels using ’adapthisteq’ which is an
in-built function in Matlab. The values of various parameters of CLAHE are mentioned in
Table 4.3. Distribution for CLAHE is chosen as ’Rayleigh’ as it proved to be best distri-
bution for underwater images [27], [106]. Algorithm 3 explains the steps of the proposed
method FCCC.
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Table 4.3: Parameter values of Matlab function ’adapthisteq’ for CLAHE

Parameter Value

Size of tiles 16x16

Distribution Rayleigh

Clip Limit 0.01 (Default)

Distribution parameter 0.4 (Default)

Algorithm 3: Fuzzified Color and Contrast Correction
Input: RGB Image I
Result: EnhancedImage

1 Separate R,G,B channels of Image;
2 [m,n]← size of Each channel;
3 Compute Channel means using Eq. 3.1;
4 Finding the value of ’Base’ from the type-2 fuzzy toolbox [103] using parameters

defined in Table 4.2;
5 find the color corection factors using Eq.4.2;
6 for segmentsize← to 16X16 do
7 Compute for each segment Ccol = R̂, Ĝ, B̂ using Eq. 4.3;
8 end
9 find contrast corrected image Ccon using ’adapthisteq’ with CLAHE parameters

mentioned in Table 4.3;
10 Calculate the weight map for Ccol and Ccon using Eq. 4.5;
11 Apply Wavelet Based fusion on the two versions of weighted images to find

EnhancedImage;

4.3.3 Wavelet Based Fusion of Color and Contrast Corrected Images

Last step of FCCC is to fuse the color corrected and contrast corrected image to find the
final enhanced image. Image fusion has applications in many domains like remote sens-
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ing [107], medical image enhancement [108], night-time vision [109] etc. Image fusion
can be primitive or based on pyramid decomposition or wavelet decomposition. In recent
times, Fusion for underwater image enhancement is gaining popularity as it helps to in-
corporate required features from various different images into one without introducing any
artifacts.
[47], [110] employed multi-scale laplacian pyramid based fusion with different weight
maps for enhancement of underwater images and videos. [48] framed a white balance
algorithm specifically for underwater images and created two versions from it. Then, it
fused the two versions using multi-scale laplacian pyramid just like [47] did. [111] em-
ployed wavelet based fusion for enhancing the underwater images. Nowadays, wavelet
based fusion is taking place of pyramid decomposition based fusion due its more compact
theoretical base.
Color correction stage of FCCC results in images free from color cast but with few artifacts
and poor contrast. On the other hand, contrast correction stage of FCCC results in images
with good contrast but poor color quality. Fusion of essential features from color corrected
and contrast corrected images results in an enhanced image which is free from artifacts.
Wavelet Based fusion is a multi-scale fusion process which decomposes the image into dif-
ferent coefficients using discrete wavelet transform (DWT). This decomposition keeps the
information content of image intact. The different coefficients of the images to be fused, are
then merged in order to achieve new coefficients. These new coefficients have information
of the images used for fusion and the resultant fused image is obtained by applying inverse
wavelet transform (IWT). Thus, we can fuse multiple images with varied information into
one with enhanced information content. The proposed wavelet fusion is carried out using
steps mentioned below:

• Generation of weight maps for input images (Color corrected and Contrast corrected)

• Applying DWT on weight maps and input images to find the coefficients.

• Corresponding coefficients of weight maps are used for finding the weighted average
of coefficients of input images to find the new coefficients.

• Applying IWT on new coefficients to find the enhanced image.



Chapter 4: Fuzzified Color and Contrast Correction of Underwater Images 63

Each of these above-mentioned steps are explained in the further subsections.

4.3.3.1 Weight Map Generation

Unlike [48] only two weight maps have been defined for finding the relevant information
from the images. Final enhanced image should have good information content (improved
color) and contrast. So, we have used the following weight maps:
Local Entropy weight map Local entropy gives an estimate of variation of information in
the local regions of image which reduces the effect of noise. Local entropy serves as an
indicator in many applications like region extraction [112], saliency descriptor [113]. Local
entropy is calculated by first converting RGB image into HSV format and using MATLAB
function ’entropyfilt’ with default neighborhood values on the value (V) component of the
image. This weight map is estimating only one aspect, i.e., the information content of
image. Thus, we need another weight map for estimation of contrast of image for which
we have the another weight metric.
Gradient weight map Gradient weight map estimates the variance of color saturation level
of the image. Gradient weight map is calculated using directional gradients of saturation
(S) component of the HSV image. Gradient weight map (WG) is calculated using Eq. 4.4.

Gx(x, y) = S(x− 1, y)− S(x+ 1, y)

Gy(x, y) = S(x, y − 1)− S(x, y + 1)

WG(x, y) =
√
Gx(x, y)2 +Gy(x, y)2

(4.4)

Finally, for each input k, a single weight map (wk) is derived by summing up the two weight
maps. Final weight map (Wk) is derived by normalizing value of each pixel in the range of
[0,1] using Eq. 4.5

wk(x, y) = WV (x, y) +WG(x, y)

Wk(x, y) = wk(x, y)/(
2∑
j=1

wj(x, y) + 0.001)
(4.5)

where, wj refers to weight maps of the two input images and a constant ’0.001’ is added to
avoid divide by zero error.
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4.3.3.2 Wavelet transform for Image fusion

The wavelet functions is a family of functions which operate on the concept of functions
localized in both time and frequency. It decompose an image as a sum of wavelet functions
with different locations and scales. When an image is decomposed using wavelet trans-
form, it produces four sub images i.e. approximation details, horizontal details, vertical
details and diagonal details in which there are two coefficients namely small coefficients
and large coefficients. Small coefficients arises due to noise and can be thresholded with-
out affecting the significant features of the image. Whereas large coefficients are generated
due to essential signal features.The basis of the wavelet transform is the wavelet function
family like Haar, Morlet, Symlet, Daubechies, etc. Daubechies are the most popular and
has been used in the proposed method.
In this stage, DWT is applied on input images and their corresponding weight maps using
Mallat’s algorithm [99]. The corresponding wavelet coefficients of image and weight maps
are multiplied and added to find the fused coefficients given by Eq. 4.6. Image fusion can
be done using weighted addition of the two input images using Eq. 4.7 but such an addition
leads to artifacts in final image. Wavelet based fusion of images ensures that such artifacts
are not be present in the image.

Cfused =
K∑
k=1

Ck ∗ CWk
(4.6)

where, Ck represents coefficients of kth input image and CWk
represents corresponding co-

efficients of weight map of kth input image and K is the number of coefficients

Final(i, j) =
2∑

k=1

Wk(i, j)Ik(i, j) (4.7)

where Final is the resultant image after weighted addition
Finally, an enhanced image is obtained by applying IWT on the fused coefficients (Cfused).
Fig. 4.5 shows the original image which computes the two input images and corresponding
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(a) Original Image

(b) Color corrected (c) Contrast corrected

(d) Local Entropy map (e) Gradient Map (f) Local Entropy Map (g) Gradient Map

(h) Normalized Weight

Map 1

(i) Normalized Weight

Map 2

(j) Final Image (Weighted aver-

age)

(k) Final Image (Wavelet fusion)

Figure 4.5: (a) Original image (b) Contrast corrected version (c) Color corrected version

(d-g) Corresponding weight maps (h-i) normalized weight maps for weight maps and (j-k)

final result using weighted average and using wavelet based fusion.
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weight maps to obtain enhanced image using wavelet based fusion and weighted addi-
tion of images. Fused image obtained using weighted addition has good quality but have
few artifacts which can be seen in the red boxes highlighted in the image, on the other
hand, image obtained using wavelet based fusion has better quality. It can be seen from
the weight maps, color corrected image has more information (entropy) but lesser contrast
(gradient) as compared to contrast corrected image. Thus, the fused image has better in-
formation and contrast compared to original image and corresponding input images (color
corrected and contrast corrected versions) using the weight maps.

4.4 Experimental Results

FCCC has been implemented using Matlab R2015a version on intel processor (i5, 2.60
GHz). FCCC has been tested on different images taken from internet, images from Ancuti
et al. CVPR paper [47] and underwater images from SUN database [114]. It has been
tested on more than 200 images for performance evaluation. As mentioned in the previous
chapter, underwater images neither have any database with ground truth values nor any
universally accepted quantitative measure for evaluating the extent of image enhancement.
Thus, assessing the performance of underwater image enhancement methods is very chal-
lenging as reference based quantitative measures like PSNR (Peak Signal to Noise Ratio),
MSE (Mean Squared Error) do not work for quantitative evaluation of underwater images.
We have employed non-reference based qualitative measures namely Entropy [115], His-
togram Spread [80], UIQM (Underwater Image Quality Measure) [91] and UCIQE (Un-
derwater Color Image Quality Evaluation) Metric [116]. Entropy gives the estimate of
information content of the image and its value should increase with improvement in image
quality. Histogram Spread gives the estimate of spread of histogram over the entire range
and its value should be equal to 0.5 for an image with uniform histogram. UIQM and
UCIQE are specifically for underwater images. UIQM is combination of color, contrast
and sharpness measure which contribute to overall quality of underwater image. UCIQE
quantifies the extent to which contrast and blurriness of an image is reduced. Values of
both UIQM and UCIQE increase as image quality enhances. The proposed type-2 fuzzy
based color correction method is compared with different color correction methods based
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on gray world assumption in the next subsection.

4.4.1 Quantitative and Qualitative Analysis of Color Correction Algo-

rithm

Table 4.4 compares the different color correction techniques for various images on the basis
of performance metrics mentioned in the previous section. Bold values in the table shows
the best value of performance metric for each image. From the table values, it can be
seen that Gray Edge and Max-RGB are not suitable for underwater images as the values of
performance measures are not showing any significant improvement as compared to other
algorithms. Shades of Gray and Fuzzy Gray are showing good results but proposed Type-2
fuzzy gray color correction algorithm is performing better than all the algorithms in terms
of all performance metrics.
It is clear from the visual appearance as well as quantitative measures that proposed color
correction algorithm gives best results. Fig. 4.6-4.11 shows the results of these mentioned
color correction algorithms and proposed type-2 fuzzy gray algorithm for the images whose
quantitative evaluation is stated in Table 4.4. From the images, Gray Edge and Max-RGB
are not able to create any noticeable difference to the cast in image. Shades of Gray is
adding red artifacts in most of the images. Fuzzy Gray is over-enhancing few regions of
the image and introduces few red artifacts in images e.g. result of fuzzy gray in first row
and sixth row are over-enhanced and have red artifacts in image in second row. Proposed
type-2 fuzzy gray, on the other hand, produces fewer artifacts and has results with better
clarity and more information as compared to other color correction algorithms. There are
dimming or false color artifacts in images with prominent water regions by using proposed
type-2 fuzzy gray. Reason for these artifacts is that the method assumes the block to be
affected by blue color cast and processes it accordingly which is not required at all. This
shortcoming of the method needs to be addressed.
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Original [5]

[4] [6]

[8] Proposed

Figure 4.6: Results of Image Im1 for various color correction approaches based on Gray

World Assumption
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Original [5]

[4] [6]

[8] Proposed

Figure 4.7: Results of Image Im2 for various color correction approaches based on Gray

World Assumption
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Original [5]

[4] [6]

[8] Proposed

Figure 4.8: Results of Image Im3 for various color correction approaches based on Gray

World Assumption



Chapter 4: Fuzzified Color and Contrast Correction of Underwater Images 71

Original [5]

[4] [6]

[8] Proposed

Figure 4.9: Results of Image Im4 for various color correction approaches based on Gray

World Assumption
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Original [5]

[4] [6]

[8] Proposed

Figure 4.10: Results of Image Im5 for various color correction approaches based on Gray

World Assumption
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Original [5]

[4] [6]

[8] Proposed

Figure 4.11: Results of Image Im6 for various color correction approaches based on Gray

World Assumption
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Table 4.4: Performance metrics of different color correction algorithms (Gray Edge [5],

Shades of Gray [4], Max-RGB [6], Fuzzy Gray [8]) with proposed type-2 fuzzy gray algo-

rithm for images shown in Fig. 4.6-4.11

Image Original [4] [5] [6] [8] FCCC

E
nt

ro
py

Im1 5.635 7.334 6.041 6.629 6.971 6.367

Im2 4.867 6.797 5.044 5.543 7.636 7.864

Im3 6.587 7.152 6.435 6.584 7.6447 7.945

Im4 5.959 6.142 5.824 5.912 7.364 7.545

Im5 5.876 6.927 5.773 5.995 7.6807 7.870

Im6 6.523 7.191 6.473 6.746 6.704 7.097

H
S

Im1 0.4005 0.3298 0.3708 0.3377 0.3814 0.4742

Im2 0.1079 0.1388 0.1098 0.1011 0.1765 0.3596

Im3 0.170 0.193 0.191 0.172 0.4521 0.502

Im4 0.1702 0.1773 0.1789 0.1756 0.3946 0.3387

Im5 0.2669 0.2799 0.3073 0.2574 3.066 0.4837

Im6 0.2810 0.3007 0.2716 0.2671 0.7059 0.3730

U
IQ

M

Im1 4.103 4.170 4.094 4.130 3.083 4.716

Im2 4.283 4.419 4.298 4.322 4.597 4.724

Im3 4.373 4.375 4.353 4.369 4.995 41.735

Im4 3.979 4.035 3.992 3.998 4.5489 4.980

Im5 0.0103 1.7532 0.2171 0.3019 3.065 4.3391

Im6 3.673 3.776 3.696 3.706 3.2263 3.805

U
C

IQ
E

Im1 0.4918 0.6222 0.5385 0.5778 0.7689 6.7943

Im2 0.3596 0.4426 0.3848 0.4049 0.5159 3.2725

Im3 9.594 10.395 4.664 9.441 17.063 16.629

Im4 0.446 0.491 0.4370 0.453 0.5802 0.658

Im5 0.403 0.471 0.389 0.413 0.649 1.180

Im6 0.452 0.534 0.461 0.497 0.6746 0.836
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4.4.2 Quantitative and Qualitative Analysis of FCCC

FCCC has been compared with state-of-the-art approaches for underwater image enhance-
ment (UCM [43], Ancuti et al. CVPR [47], Ghani et al. [44], Ancuti et al. transaction [48]).
Performance measures for quantitative evaluation are same as used for evaluation of color
correction algorithms. Few underwater images along with their results using the above-
mentioned techniques and FCCC are shown in Fig. 4.12-4.19. Table 4.5 lists the value of
performance metrics of those images for the above-mentioned algorithms. Bold value in
each row highlights the best value of the mentioned performance metric for that image.

Entropy: From the table values, it can be seen that UCM [43], Ancuti et al. [47] and
Ghani et al. [44] are not able to make any significant change in entropy values and it is evi-
dent from the visual results also that information content of the images is not improving as
required. Ghani et al. [44], on the other hand, distorts the overall color and contrast of the
images. FCCC increases the information content of all the images and gives best entropy
values for 6 out of 8 images and for the 3 images, it gives the second best entropy value.
In fishes images, there are false color and dimming artifacts due to the shortcoming of the
type-2 fuzzy gray.
Histogram Spread (HS): UCM [43] mainly works on color adjustment, hence gives good
results in terms of HS as histograms of all the three channels are uniformly distributed over
the entire intensity range. Ghani et al. [44] also brings a negative change in HS values for
some images due to its over-enhanced and under-enhanced regions. Both the techniques of
Ancuti et al. are giving mixed results in terms of HS, i.e., these techniques may improve
or degrade the HS value. Previous version of Ancuti et al. [47] is producing results with
poor contrast as compared to new version [48] which is proven by the quantitative results.
FCCC is overall improving the histogram spread values for all the images as it works on
improvement of both color and contrast of the image. For some images, it is giving the best
values also.
UIQM: Ghani et al. [44] is degrading the overall contrast, color and sharpness of image
so it is lowering the UIQM values as compared to original image for most of the images.
UCM [43], both the Ancuti et al. techniques [47] [48] and FCCC are improving the UIQM
values. UIQM values are highest either for FCCC or Ancuti et al. [48] for all the images as
these techniques are acting on all the three aspects: color, contrast and sharpness.
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Original [43]

[47] [44]

[48] FCCC

Figure 4.12: Results of Ancuti1 Image
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Original [43]

[47] [44]

[48] FCCC

Figure 4.13: Results of Ship Image
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Original [43]

[47] [44]

[48] FCCC

Figure 4.14: Results of Crabs Image
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Original [43]

[47] [44]

[48] FCCC

Figure 4.15: Results of Fishes Image
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Original [43]

[47] [44]

[48] FCCC

Figure 4.16: Results of SUN1 Image
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Original [43]

[47] [44]

[48] FCCC

Figure 4.17: Results of SUN2 Image
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Original [43]

[47] [44]

[48] FCCC

Figure 4.18: Results of SUN3 Image
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Original [43]

[47] [44]

[48] FCCC

Figure 4.19: Results of Galdran1 Image
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Table 4.5: Performance metric values for few images for different state-of-the-art tech-

niques

Image Metric Original [43] [47] [44] [48] FCCC

A
nc

ut
i1

Entropy 6.5248 6.5908 6.7296 7.3485 7.8433 7.9503

HS 0.2816 0.3102 0.2254 0.2781 0.4196 0.5072

UIQM 3.6941 3.7859 3.6786 3.8000 4.2978 4.0742

UCIQE 0.4519 0.7646 0.7304 0.4910 0.8753 2.7662

Sh
ip

Entropy 6.9697 7.4550 7.3877 7.2871 7.6911 7.9705

HS 0.3882 0.5979 0.3197 0.3327 0.4575 0.5033

UIQM 4.2983 4.6413 4.7459 3.9960 4.9673 4.2478

UCIQE 0.5630 0.9827 0.9837 0.5487 1.3952 1.7495

C
ra

bs

Entropy 4.8078 5.4126 4.2204 5.3897 7.3128 7.6772

HS 0.0486 0.0490 0.0268 0.1569 0.1791 0.3268

UIQM 3.6492 5.2427 3.4689 4.6656 5.5536 5.7234

UCIQE 0.3728 0.6220 0.6889 0.4729 1.0552 1.5218

Fi
sh

es

Entropy 6.5324 6.7830 6.1696 6.9306 7.8136 7.7862

HS 0.2530 0.2530 0.1982 0.4694 0.3739 0.4484

UIQM 3.9228 5.2559 4.3864 4.3733 5.4301 5.2905

UCIQE 0.4128 1.5013 0.6670 0.5105 4.2828 0.6745

SU
N

1

Entropy 5.7844 6.8056 6.0115 6.4395 7.4580 7.6960

HS 0.1198 0.1851 0.1029 0.2406 0.2614 0.2850

UIQM 3.6823 4.8914 4.2669 4.2116 5.2129 5.2669

UCIQE 0.3512 0.8277 0.6687 0.4638 1.4519 0.5958

SU
N

2

Entropy 6.3700 7.5959 6.8058 7.1650 7.5948 7.8292

HS 0.2340 0.3080 0.3725 0.2611 0.1951 0.4641

UIQM 4.5231 4.7002 4.7405 4.3369 4.8297 4.8932

UCIQE 0.6051 0.8202 1.2929 0.5351 1.0954 1.4683

SU
N

3

Entropy 6.8154 7.2994 7.0231 6.1260 7.8287 7.8267

HS 0.2678 0.3844 0.2814 0.3003 0.4000 0.3922

UIQM 3.6095 4.2130 4.0858 2.7284 4.3350 4.8133

UCIQE 0.3634 0.5181 0.5413 0.4346 1.5654 2.0578

G
al

dr
an

1

Entropy 6.7518 7.2867 6.7915 7.2489 7.6676 7.7873

HS 0.2030 0.2396 0.1597 0.2404 0.3307 0.3882

UIQM 4.8825 5.1963 5.2247 4.3185 5.0983 5.2589

UCIQE 0.4576 0.6295 0.7936 0.4955 2.0209 1.7439
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UCIQE: Since UCIQE measures the extent to which blurriness and contrast of an image
is improved, Ghani et al. [44] technique lags in this factor also. UCM [43] on the other
hand, increases the UCIQE values as it removes blurriness but contrast is not improved to
a good extent. Ancuti et al. conference version [47] also performs better that UCM as it
produces better contrast images compared to UCM. FCCC and Ancuti et al. [48] are im-
proving contrast and blurriness of the images and hence are increasing UCIQE values for
all the images.

On an average, FCCC is performing better than other techniques for every performance
metric. From the visual results of different techniques, it can be seen that UCM either
produces images with poor contrast or with reddish tone as it overcompensates the red
channel. UCM results of shipwreck and fishes have reddish tone whereas only a little haze
is removed in UCM results of Ancuti1, SUN1, Galdran images. Ghani et al. technique
yields unsatisfactory results with under-enhanced and over-enhanced areas like in fishes
image. Ancuti et al. [47] and Ancuti et al. [48] produce visually appealing results but
has some haze left in the images which can be seen in sun1, sun2, Galdran images. Due
to better choice of weight maps, FCCC gives good results with good contrast and color
information along with better information content. In shipwreck, crabs, sun1 and Galdran
image, the images are clear than results of other techniques. Only drawback in the results
is that the regions with only water, sometime appear dark like in sun2 image, the corners
are dark. Overall the results of FCCC are better than state-of-the-art methods in terms of
qualitative and quantitative measures.

4.4.3 Applications of Enhanced Underwater Images

FCCC can be applied to many computer vision related fields like local feature matching,
edge detection etc. In this chapter, application of FCCC in local feature matching has been
depicted, which forms the basis for applications like classification, image registration etc.
Local features are indifferent to rotation, scaling and motion changes. We have employed
SURF [117] operator to compute and match feature blobs for a pair of underwater images
and repeated the same process for the enhanced versions of the corresponding pair of im-
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Figure 4.20: First row contains Original pair of images with only 2 SURF features are

matching, second row contains enhanced pair of images using Ancuti et al. technique

with 37 SURF features are matching and third row contains enhanced pair of images using

FCCC with 48 SURF features are matching.
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Figure 4.21: First row contains Original pair of images with only one SURF feature, sec-

ond row contains enhanced pair of images using Ancuti et al. technique with 2 SURF

features and third row contains enhanced pair of images using FCCC with 4 SURF features

matching.
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ages. We used the SURF feature matching provided by MATLAB. We enhanced the pair
of images using Ancuti et al. [48] results and FCCC. Results are very promising which
shows that the number of local feature points increase significantly by FCCC as compared
to Ancuti et al. [48] and are shown in Fig. 4.20 and Fig. 4.21.

4.5 Conclusions

In this chapter, A novel approach named FCCC, based on fusion of color corrected and
contrast corrected versions of a single underwater image, has been proposed. Novelty of
the technique lies in the use of type-2 fuzzy logic to handle the fuzzy nature of color cast
(greenish blue or blue or uneven cast) and the choice of weight maps to extract the relevant
features required for an enhanced underwater image. It does not require any information
other than the image itself and no parameter tuning is required for enhancing the image. It
removes the color cast and contrast related problems in underwater images. Limitations of
FCCC are: a little haze remains in case of deep dense haze, e.g. a little haze is left in case of
fishes image and dark region in water region in few images e.g. dark corners in water region
of SUN2 image and size of sub-blocks can be adaptive depending on the image which can
further improve the enhancement results. Since it produces good results for underwater
images captured in different environment and the darkness is usually observed in water
area and not in the objects in focus, this limitation can be ignored. Overall, the results
are better than state-of-the-art techniques as it is enhancing contrast, color information and
sharpness of the image. Since FCCC is not able to deliver good results for images with
dense haze, this issue has been taken in the next chapter.



Chapter 5

Fusion of Underwater Image

Enhancement and Restoration

5.1 Introduction

FCCC encounters the artifacts caused by artificial lighting well but introduces dark colors
in water region and fails to improve images with dense haze. In this chapter, we will address
the removal of issue of hazy appearance in underwater images along with color and contrast
issues. Since we have focused on the major problems i.e., color and contrast through simple
image enhancement based solutions like histogram stretching. Haze can be handled only
through image restoration based solutions. In this chapter, a novel technique named Fusion
of Underwater Image Enhancement and Restoration (FUIER) has been proposed which
enhances as well as restores underwater images with a target to act on all major issues
in underwater images, i.e., color cast removal, contrast enhancement and dehazing. It
generates two versions of the single input image and these two versions are fused using
Laplacian pyramid based fusion to get the enhanced image. The proposed method works
efficiently for all types of underwater images captured in different conditions (turbidity,
depth, salinity etc.). Results obtained using the proposed method are better than those for
state-of-the-art methods.

89
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5.2 Problem Formulation

There is a plethora of work present in the literature which either performs intensity ma-
nipulation using spatial domain filters or tries to restore the original image from captured
image using the image formation model. Some of them apply image restoration technique
followed by image enhancement. In this way, they try to remove all the problems in un-
derwater images, but the result has disadvantages of both, i.e., increased computational
complexity and artifacts in the output image. As we know both types of techniques have
their advantages and disadvantages, the motivation behind this work is to develop an algo-
rithm which tackles all the major problems in underwater images and is computationally
less intensive. FUIER combines the color and contrast correction ability of image en-
hancement based methods and haze removal property of image restoration based methods.
Furthermore, image restoration technique is chosen in a way that computation and time
complexity of the overall algorithm is low and artifacts of image enhancement methods
can be avoided. Multi-scale weighted Laplacian pyramid based fusion has been employed
which ensures that only desired features are taken in the final image.
In FUIER, two versions of the input image are created. the first version is a histogram
equalized version of the input image which leads to color correction. The second version
is contrast stretched version of the input image followed by dehazing using dark channel
prior based method. Two weight maps, namely local entropy weight map and gradient
weight map have been calculated for both the versions. Now, these two versions are fused
using multi-scale weighted Laplacian pyramid decomposition [118] based fusion. These
weights control the contribution of each version towards the final enhanced image without
introducing artifacts and halos. The main contributions of FUIER are as follows:
(a) It employs simple and computationally less intensive techniques which produce results
possessing the qualities required in underwater images.
(b) It is an adaptive method which works for every type of underwater image captured at
any depth, in any saline or turbid medium.
The next sections explain FUIER in detail.



Chapter 5: Fusion of Underwater Image Enhancement and Restoration 91

5.3 Working of FUIER

FUIER employs computationally simple image enhancement and image restoration meth-
ods to achieve the aim of removing the problem of color cast (by histogram equalization),
poor contrast (by contrast correction) and hazy appearance (by dark channel prior based
method).

Figure 5.1: Work Flow of FUIER

The basic workflow of FUIER is shown in Fig. 5.1. FUIER works at three levels:
deriving two versions of the input image, calculating weight maps and fusion of the two
versions with corresponding weight maps at multiple scales.

5.3.1 Generation of Two Versions for Fusion

The first version for fusion process is a color corrected version which is generated by a
traditional image enhancement method named Histogram Equalization (HE) [24]. HE is
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a simple method to enhance the contrast when applied on a grayscale image but when it
is applied on three color channels individually in case of underwater images, it uniformly
distributes the intensity value over the whole dynamic range thereby removing the color
cast.

(a) Drum Image (b) Drum Image after contrast stretching

(c) Drum Image after contrast stretching and de-

hazing

Figure 5.2: Drum image after applying contrast stretching and dehazing to obtain the sec-

ond version for fusion
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The reason behind this phenomenon is that it removes the domination of a single color
channel in the image by spreading the intensities of all color channels over the dynamic
range of intensities which can be seen in Fig. 5.3. Fig. 5.3 shows an underwater image and
its histogram before and after applying HE.
The second version for the fusion process is a contrast corrected dehazed image. Contrast
correction is done by simply stretching the histogram of all the color channels to span the
whole dynamic range using Eq. 5.1.

CIc(x, y) = (Ic(x, y)−minIc) ∗ (Max−Min)/(maxIc −minIc) (5.1)

where CIcc ∈ [r,g,b] is the contrast corrected image, maxIc and minIc is the maximum
and minimum intensity value respectively of each color channel and Max and Min denotes
the maximum and minimum possible intensity value respectively for an image e.g. 255 and
0 are the maximum and minimum possible value for an 8 bit RGB image.

After contrast stretching, dehazing of the image is done by dark channel prior [62]. As
mentioned earlier, a lot of work has been done in the field of underwater images using either
the original dark channel prior or its modified versions, but we have chosen the original dark
channel prior because it is a simple yet powerful method for dehazing to remove the haze
present in underwater images. For a hazy image, the image is modeled as in Eq. 5.2.

I(x) = J(x)t(x) + A(1− t(x)) (5.2)

where I(x) is the observed radiance, J(x) is the actual radiance, t(x) is the transmission map
and A is the atmospheric light
The above equation is same as Eq. 1.2, which is the image formation model for underwater
images. In this approach, we first find the dark channel using the assumption that the dark
channel of a haze-free image is zero which can be defined as shown in Eq. 5.3.

Jdark(x) = min
cεr,g,b

( min
yεΩ(x)

(J c(y)) (5.3)

where Jdark is the dark channel and Ω is 15X15 neighborhood is chosen for estimating the
dark channel.
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(a) Drum Image before HE (b) Drum Image after HE

(c) Histogram of Drum Image before HE (d) Histogram of Drum Image after HE

Figure 5.3: Drum image and its histogram before and after applying HE

Firstly, the atmospheric light is estimated by using this dark channel. The top 0.1 %
percent of the brightest pixels are chosen from the dark channel and then among these
pixels, the highest intensity pixel from the image I is chosen to represent ’A’ (atmospheric
light). We then compute the raw transmission map t̃(x) by using Eq. 5.4.

t̃(x) = 1−min
c

( min
yεΩ(x)

Ic(y)

A
) (5.4)
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minc( min
yεΩ(x)

Ic(y)
A

) denotes dark channel of the normalized haze image Ic(y)
A

which directly

provides the estimation of the transmission.
Then, the raw transmission map is refined by using guided filter [119] to speed up compu-
tation instead of soft matting used in [62]. Finally, haze-free image is recovered using Eq.
5.5 from the refined transmission map (t(x)) and estimated atmospheric light (A).

J(x) =
(I(x)− A)

max(t(x), t0)
+ A (5.5)

t0 is chosen 0.1 as mentioned in [62]. Fig. 5.2 shows the contrast stretched and dehazed
image version of the drum image.

5.3.2 Weight Maps for fusion

Local entropy weight map and gradient weight maps are computed in the same manner
as mentioned in section 4.3.3.1 in order to incorporate the desired features in the final
image. We want the final image to have good contrast along with better information content.
Depending on the weight values, a pixel with higher weight is given priority over other to
appear in the final enhanced image. Final normalized weight map (Wk) for each input
image k is derived using Eq. 4.5 as explained in previous chapter.

5.3.3 Multi-scale Pyramid decomposition based fusion

As mentioned earlier weighted addition leads to artifacts, we opt for multi-scale Laplacian

pyramid decomposition based fusion [118]. Fig. 5.4 shows the result of drum image using

simple weighted addition, multi-scale Laplacian pyramid decomposition based fusion and

result using FCCC. Red boxes in the weighed fusion image show the artifacts and halos

in the resultant image. It is also clear from the results of FCCC and FUIER, FCCC result

is hazy and blurred as compared to FUIER although same weight maps have been used in

both the techniques.

Multi-scale Laplacian pyramid decomposition of each version of the input image is per-
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(a) (b)

(c)

Figure 5.4: Enhanced drum image using (a) weighted addition (b) Multi-scale Laplacian

pyramid decomposition based fusion (c) Image using FCCC
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formed at 5 levels. This means if the image size is 256X256, Laplacian operator is applied

on it to obtain the first level of pyramid and then the image is scaled down by 2 for next level and

Laplacian operator is applied again to find that level. Image is scaled down and same process is

followed till image reaches the size of 16X16. Similarly, Gaussian pyramid of normalized weight

map is found out by convolving with Gaussian kernel at the same number of levels as Laplacian

pyramid. Now, the corresponding levels of each version are fused to form the fused pyramid using

Eq. 5.6.

pyramidl(i, j) =

2∑
k=1

Gl(Wk(i, j))L
l(Ik(i, j)) (5.6)

where, pyramidl is the fused pyramid at level l, Gl indicates Gaussian pyramid level l, Ll indicates

Laplacian pyramid level l.

The different levels of the fused pyramid are then composed starting from the highest level, i.e., the

pyramid layer at level 5 is upscaled by 2 and then added to level 4, then the resultant is upscaled by

2 and added to level 3 and this process continues till level 1 is reached to find the final fused image.

This multi-scale Laplacian fusion process is relatively simple and fast. Algorithm ?? explains all

the steps of FUIER. The results tend to be free from artifacts as fusing at multiple scales suppress

sharp transitions.

5.4 Results and Discussion

For establishing the technique, we have compared FUIER with state-of-the-art techniques, i.e., de-

hazing by dark channel prior [62], WCID [66], automatic red channel (ARC) underwater restora-

tion [69] and the Ancuti et al. [48] technique. FUIER is implemented in MATLAB version 2015a

on an Intel i5 2.60 GHz processor.



98 Chapter 5: Fusion of Underwater Image Enhancement and Restoration

5.4.1 Datasets and Performance Metrics

FUIER has been tested on different images taken from the internet, images from the Ancuti et al.

CVPR paper [47] and underwater images from SUN database [114]. It has been tested on more

than 200 images for performance evaluation. Recently, a few underwater image databases have

been developed namely TURBID dataset [92] and WHOI color correction dataset [93]. The pic-

tures of TURBID dataset are generated by experimentation for simulation of images in the turbid

water body and WHOI (Woods Hole Oceanographic Institution) color correction dataset have orig-

inal images along with reference images generated by the color correction method developed by

scientists of WHOI. Thus, a comparison can be done with the results given on WHOI website [93]

using reference based performance measures like PSNR (Peak Signal to Noise Ratio) and MSE

(Mean Squared Error) but these reference based performance measures cannot be used for quanti-

tative evaluation of other underwater images. Other than these datasets, underwater images neither

have any database with ground truth values nor any universally accepted quantitative measure for

evaluating the extent of image enhancement. Thus, assessing the performance of underwater image

enhancement methods is very challenging.

There are few non-reference based quantitative performance measures which have been used to

evaluate the quality of the results namely, Entropy [24], ∆ (difference) [81], HS (Histogram Spread)

[80], UIQM (Underwater Image Quality measure) [91] and UCIQE (Underwater Color Image Qual-

ity Measure) [116]. Entropy is general performance metric which indicates the information content

of the image. The entropy of an image should increase with improvement in image quality. ∆ in-

dicates how closely the image follows gray world assumption [120]. Gray world assumption states

that the average of the three color channels should be a gray value. Value of ∆ should be zero for

an image following the gray world assumption. Histogram spread measures the contrast of an im-

age. If the value of histogram spread is 0.5, then the image is considered to have uniform contrast.

UIQM and UCIQE are the two performance measures specifically for underwater images. UIQM

is combination of color, contrast and sharpness measure which contribute to overall quality of an
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underwater image. UCIQE quantifies the extent to which contrast and blurriness of an image is

reduced. Values of both UIQM and UCIQE increase as image quality enhances.

5.4.2 Qualitative and Quantitative evaluation of FUIER

For qualitative evaluation of FUIER, few underwater images are shown along with their results ob-

tained using the techniques stated earlier for comparison in Fig. 5.5-5.10. Table 5.1 lists the values

of these performance measures for the images shown in Fig. 5.5-5.10, for comparison of all the

mentioned techniques. For quantitative evaluation, Table 5.2 lists the average value of mentioned

non-reference based performance metrics and average execution time for 200 images tested for

evaluation of FUIER and other state-of-the-art-techniques. Bold values in each column of both the

tables indicate the best value of that particular metric for an image and underlined value indicates

the second best value for that image.

From the visual appearance of images shown in Fig. 5.5 - 5.10, it can be seen that DCP [62] does not

bring any noticeable change in the image as it tries to remove the haze only. WCID [66] is removing

haze as well as trying to improve the contrast and color of the image but is degrading the overall

quality by introducing artifacts in some images, e.g. red color artifact in diver image, green color

artifact in diver with rocks image and creation of uneven darker and lighter regions in sea walker

image. ARC [69], the Ancuti et al. [48] technique and FUIER gives visually good results but on the

comparison of the images, it can be seen that details are much better in case of latter than both the

former techniques for almost all images, for example, in fishes image, corals in the background are

clearly visible as compared to any other results. The Ancuti et al. technique is giving better image

quality for diver image as this technique is specifically designed for Malaysian water in which diver

image is captured.

Following conclusions can be drawn from value of Table 5.2 and Table 5.1 for different performance

metrics:

Entropy [24]: FUIER is performing best in terms of entropy for all the images which means it is
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Original DCP [62]

WCID [66] ARC [69]

Ancuti et al. [48] FUIER

Figure 5.5: Results of fish image using state-of-the-art techniques and FUIER. Images are

in this order: first row: original image, results using DCP, second row: results using WCID,

results using ARC, third row: results using the Ancuti et al. technique and FUIER
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Original DCP [62]

WCID [66] ARC [69]

Ancuti et al. [48] FUIER

Figure 5.6: Results of corals image using state-of-the-art techniques and FUIER. Images

are in this order: first row: original image, results using DCP, second row: results using

WCID, results using ARC, third row: results using the Ancuti et al. technique and FUIER
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Original DCP [62]

WCID [66] ARC [69]

Ancuti et al. [48] FUIER

Figure 5.7: Results of diver with rocks image using the state-of-the-art techniques and

FUIER. Images are in this order: first row: original image, results using DCP, second row:

results using WCID, results using ARC, third row: results using the Ancuti et al. technique

and FUIER
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Original DCP [62]

WCID [66] ARC [69]

Ancuti et al. [48] FUIER

Figure 5.8: Results of diver image using the state-of-the-art techniques and FUIER. Images

are in this order: first row: original image, results using DCP, second row: results using

WCID, results using ARC, third row: results using the Ancuti et al. technique and FUIER
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Original DCP [62]

WCID [66] ARC [69]

Ancuti et al. [48] FUIER

Figure 5.9: Results of sea walker image using state-of-the-art techniques and FUIER. Im-

ages are in this order: first row: original image, results using DCP, second row: results

using WCID, results using ARC, third row: results using the Ancuti et al. technique and

FUIER
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Original DCP [62]

WCID [66] ARC [69]

Ancuti et al. [48] FUIER

Figure 5.10: Results of fishes image using state-of-the-art techniques and FUIER. Images

are in this order: first row: original image, results using DCP, second row: results using

WCID, results using ARC, third row: results using the Ancuti et al. technique and FUIER
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enhancing information content of the image better than other techniques which can be seen in the

results, For example, In Fig. 5.5, details of fish and terrain below it are clearer in the FUIER fish

image than in the results of other techniques and in Fig. 5.6 image, details of the corals in result of

the FUIER are better than in other results. DCP and WCID, on the other hand, sometimes reducing

the entropy values of a few images, For example, Diver with rocks (Fig, 5.7) and sea walker image

(Fig. 5.9). ARC is enhancing the information content but not as much as Ancuti et al. technique

and FUIER. The Ancuti et al. technique is giving the second best entropy values for most of the

images.

Difference (∆) [81]: FUIER has the best values for this performance metric for almost all the im-

ages which mean there is a balance of colors, i.e., three color channels are averaging to a same gray

value. The Ancuti et al. technique and ARC are also performing well in terms of this performance

measure. DCP and WCID, however, are creating a imbalance in colors by increasing the value of

this performance metric for some images. For instance, in Fig. 5.7, WCID has introduced false

colors and in Fig. 5.6, DCP and WCID image has increased the blue color in the background.

Histogram Spread (HS) [80]: Histogram spread indicates the contrast performance of an image,

i.e., if histogram spreads over the whole dynamic range uniformly. FUIER gives the best results

for almost all images for this performance measure also. It can be proven from the visual results

also that FUIER gives results with improved contrast. The Ancuti et al. technique performs well

in terms of contrast but not better than FUIER, e.g., the result of Fig. 5.5 using the Ancuti et al.

technique has poor contrast as compared to the result of FUIER. However, DCP, WCID and ARC

lag in terms of contrast for most of the images which can be seen from the results also as the contrast

of the images are not improving to a great extent.

UIQM [91]: FUIER always gives results with increased UIQM value. For some images, it gives

the best values. From the results, it can be seen that FUIER increases the overall quality of the

image by improving the color, contrast and sharpness of the image. DCP is able to improve only

the sharpness of the image. WCID, on the other hand, improves the color, contrast and sharpness

for few images for example, images shown in Fig. 5.5, 5.6 and 5.10, but it distorts the colors of few
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Table 5.1: Value of non-reference based performance metric for the images shown in Fig.

5.5 - 5.9

Metric Technique Fish Corals Diver
Diver with

rocks
Sea Walker Fishes

E
nt

ro
py

[2
4]

Original 7.303 7.347 6.711 6.634 7.184 7.481

DCP [62] 7.475 7.660 6.636 6.625 6.897 7.344

WCID [66] 7.483 7.368 7.050 6.488 7.522 7.569

ARC [69] 7.304 7.521 7.696 7.265 7.249 7.549

Ancuti [48] 7.687 7.786 7.679 7.267 7.717 7.621

FUIER 7.730 7.920 7.745 7.584 7.783 7.848

∆
[8

1]

Original 41.99 14.78 97.80 103.34 45.84 80.86

DCP [62] 51.47 31.56 108.05 103.36 25.23 87.89

WCID [66] 33.51 26.22 31.93 148.44 35.05 44.04

ARC [69] 31.01 18.65 40.67 68.73 22.88 11.45

Ancuti [48] 19.95 19.32 9.06 84.19 14.42 20.95

FUIER 19.06 10.31 31.18 44.01 14.02 20.72

H
S∗

[8
0]

Original 0.1680 0.2500 0.1554 0.1180 0.2333 0.3106

DCP [62] 0.1908 0.2286 0.1558 0.1317 0.2780 0.3232

WCID [66] 0.2118 0.2461 0.2434 0.0777 0.2731 0.2921

ARC [69] 0.1725 0.2431 0.1880 0.1664 0.2397 0.3500

Ancuti [48] 0.2967 0.3072 0.3725 0.2726 0.3673 0.3356

FUIER 0.3464 0.4052 0.3548 0.3020 0.3373 0.4747

U
IQ

M
[9

1]

Original 3.362 4.538 3.559 1.512 3.491 1.455

DCP [62] 3.462 5.268 3.559 1.342 4.059 0.646

WCID [66] 4.312 4.485 3.575 1.716 4.025 3.084

ARC [69] 3.512 4.693 4.205 2.385 3.537 5.034

Ancuti [48] 3.812 5.029 4.833 3.287 4.712 4.129

FUIER 3.901 4.717 4.820 4.566 4.887 3.761

U
C

IQ
E

[1
16

]

Original 5.189 7.367 1.466 2.929 3.257 7.380

DCP [62] 7.595 11.298 1.264 2.766 5.388 6.958

WCID [66] 12.306 10.471 5.647 6.007 5.845 8.408

ARC [69] 5.635 7.142 3.660 5.020 3.597 10.765

Ancuti [48] 7.486 9.732 10.237 5.716 5.195 3.290

FUIER 9.482 11.310 9.421 4.623 3.938 13.621

*HS stands for Histogram Spread
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images like those shown in Fig. 5.7, 5.8 and 5.9. Contrast and sharpness of ARC images, except

for the image shown in Fig. 5.5 are not better than the results of the Ancuti et al. technique and

FUIER, resulting in lower UIQM values than the latter two. In terms of average UIQM values, the

Ancuti et al. technique is giving the best and FUIER is giving the second best results, but from

visual results, it can be seen that sharpness and brightness of results of FUIER are better than the

results of the Ancuti et al. technique.

UCIQE [116]: From Table 5.2, it can be seen that FUIER again performs better than all the other

techniques. WCID is performing well in terms of this performance metric as it removes the blur

effectively but lags in terms of other performance measures leading to poor visual results. ARC and

the Ancuti et al. technique also perform well, but it can be seen from the visual results as well as the

overall values of quantitative measures that FUIER delivers visually appealing results as compared

to other techniques.

Execution Time: From Table 5.2, it is clear that average execution time is in the following increas-

ing order, DCP, ARC, FUIER, Ancuti et al. technique, WCID. Thus, DCP takes the least time but

it is not suitable for underwater images. WCID does not produce good results and has the highest

average execution time. Out of ARC, FUIER and Ancuti et al. technique, ARC is the best in terms

of execution time but does not produce very good quality images as discussed earlier. There is very

little difference in the average execution time of ARC and FUIER. Thus, we can say that FUIER

gives good quality results with lesser time complexity as compared to all other state-of-the-art tech-

niques.

As mentioned earlier, there are two datasets for underwater images i.e. WHOI dataset [93] and

TURBID dataset [92], so for further comparison of FUIER with state-of-the-art methods, we have

shown a few images from these databases in Fig. 5.11 and Fig. 5.12. Table 5.3 gives the value of

reference based PSNR(Peak Signal to Noise Ratio) and MSE(Mean Squared Error) along with the

non-reference based performance metric values for these images. PSNR should be higher and MSE

should be lower for a better image.

From the table values, it can be seen that FUIER has the best PSNR and MSE values among all
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Table 5.2: Average Value of performance metrics and execution time for 200 underwater

images for comparison of FUIER and state-of-the-art techniques

Technique Entropy [24] ∆ [81] HS [80] UIQM [91] UCIQE [116] Time (in sec)

Original 6.970 47.04 0.1867 3.750 4.059 -

DCP [62] 6.928 50.46 0.1844 3.750 4.954 0.078

WCID [66] 6.965 43.05 0.2183 3.760 7.199 4.19

ARC [69] 6.994 24.63 0.1996 4.3228 5.885 0.94

Ancuti [48] 7.671 19.34 0.3240 4.690 7.441 1.89

FUIER 7.774 16.90 0.3552 4.648 7.923 1.07

techniques. Visual results of FUIER and the Ancuti et al. technique have better information content

and are more appealing as compared to other techniques which is also proven by the performance

measure values. However, the Ancuti et al. technique is not performing consistently for every type

of image. It is not improving contrast of few images (e.g., fishes image., (Fig.5.10)) and not able

to remove haze properly for few other images (e.g., corals image (Fig.5.6)). From quantitative and

qualitative analysis, we can say that FUIER performs well for underwater images captured in dif-

ferent conditions (turbidity, depth, salinity etc.) using computationally less intensive approach, as

proven by the average execution time.

For a more exhaustive comparison, comparative analysis has been done with a CNN based

technique [7]. A few images along with the results have been taken from the article [7] and are

shown along with the results of FUIER in Fig. 5.13. The values of various performance metrics of

the images are depicted in table 5.4.

It is clear from the images shown in Fig. 5.13 that the CNN based technique [7] produces good

results but the contrast is poor whereas FUIER produces better images with more clarity.

In terms of quantitative measures, Entropy, HS and UCIQE values of FUIER are always better

than for the CNN based technique [7]. This means information content, contrast and blurriness of
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(a) Image1 From WHOI [93]

Figure 5.11: Results of image 1 using the state-of-the-art techniques and FUIER. For each

type of image, images are in this order : first row: original image, results using DCP, results

using WCID, , second row: results using ARC and Ancuti et al. technique and third row:

results using FUIER.
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(a) Image2 From TURBID dataset [92]

Figure 5.12: Results of image 2 using the state-of-the-art techniques and FUIER. For each

type of image, images are in this order : first row: original image, results using DCP, results

using WCID, , second row: results using ARC and Ancuti et al. technique and third row:

results using FUIER.
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Table 5.3: Value of reference based performance metrics for images shown in Fig. 5.11

and Fig. 5.12

Image Technique PSNR MSE Entropy ∆ HS UIQM UCIQE

Image1

Original - - 5.911 26.68 0.1244 3.383 0.352

Reference - - 6.798 8.943 0.1404 4.971 1.009

DCP [62] 14.42 2349.6 7.295 30.69 0.1493 4.4018 1.179

WCID [66] 10.62 6129.1 6.852 27.89 0.1242 2.176 3.438

ARC [69] 13.85 2676.4 7.034 20.93 0.1423 4.388 0.831

Ancuti [48] 13.92 2635.3 7.780 5.57 0.3124 5.372 2.516

FUIER 16.48 1461.6 7.809 14.59 0.3360 4.655 1.211

Image2

Original - - 5.157 52.12 0.1832 2.786 0.6711

Reference - - 6.807 3.29 0.2066 4.430 4.056

DCP [62] 12.89 3339.3 6.678 55.60 0.1775 4.270 3.207

WCID [66] 10.52 5772 6.762 42.09 0.1528 4.171 7.216

ARC [69] 13.24 3080.8 6.610 12.52 0.1632 4.984 3.522

Ancuti [48] 15.53 1820 7.670 6.36 0.3320 5.143 7.480

FUIER 15.76 1724.3 7.689 4.51 0.3216 5.020 9.803
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Table 5.4: Value of performance metrics for images shown in Fig. 5.13

Image Technique Entropy ∆ HS UIQM UCIQE

Rocks

Original 3.73 10.35 0.0365 4.56 1.49

CNN based [7] 6.14 4.23 0.1232 5.08 0.79

FUIER 7.12 5.72 0.2615 5.04 4.43

Medium

Original 4.93 15.00 0.093 4.95 0.27

CNN based [7] 6.37 1.50 0.1475 5.28 0.33

FUIER 7.44 4.05 0.3211 5.86 1.78

Shallow

Original 4.30 10.13 0.1455 2.70 1.01

CNN based [7] 5.56 1.24 0.1589 3.39 0.48

FUIER 7.73 2.19 0.3699 4.66 5.71

the image are improved better in images obtained using FUIER. UIQM values of the CNN based

technique [7] are better for a few images but again FUIER outperforms it for most of the images.

Both the CNN based technique [7] and FUIER lower the ∆ values close to zero but gray world

assumption is being followed more closely by the results of the former. CNN based technique [7]

has tested various types of underwater images (sands, rocks, kelp [7] ) taken at different depths

(shallow, medium and deep corals [7]). FUIER gives good results for all of them. CNN requires

training for adjusting the parameters of image restoration techniques whereas FUIER requires no

parameter adjustment or training. Therefore, FUIER is suitable for all types of underwater images.

5.4.3 Applications

FUIER finds its applicability in the following computer vision related fields:

Local Feature Matching:One of the basic tasks of computer vision algorithms is local feature

points matching, which forms the basis for underwater studies like classification of marine animals,
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Original UWCNN [7] FUIER

Figure 5.13: Results of images first row: Rocks, second row: Medium and third row:

Shallow; taken from [7] and results using FUIER.
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fish species recognition etc. Local features are indifferent to rotation, scaling and motion changes.

We have employed SURF [117] operator to compute and match feature blobs for a pair of under-

water images and repeated the same process for the enhanced versions of the corresponding pair

of images. We used the SURF feature matching provided by MATLAB. We enhanced the pair of

images using the Ancuti et al. [48] technique results and FUIER. The results are very promising

which shows that the number of local feature points increase significantly by FUIER as compared

to Ancuti et al. [48] and are shown in Fig. 5.14 and Fig. 5.15.

Edge Detection: Edge detection is an important processing task in image processing which further

assists in various fields of computer vision related to underwater studies like segmentation in order

to localize coral reefs. We have employed Laplacian of Gaussian (LoG) [121] to find the edges in

the images. Edge detection results of the original image and enhanced images using Ancuti et al.

technique and FUIER are shown in Fig. 5.16. It is clear from these results that both FUIER and

the Ancuti et al. technique generate enhanced images with more edges as compared to the original

image. However, images of FUIER have more edge pixel count than the Ancuti et al. technique [48]

for most of the images.
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Figure 5.14: First row contains the original pair of images with only 2 SURF features

are matching, second row contains the enhanced pair of images using the Ancuti et al..

technique with 37 SURF features are matching and third row contains the enhanced pair of

images using FUIER with 104 SURF features are matching.
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Figure 5.15: First row contains the original pair of images with no SURF features are

matching, second row contains the enhanced pair of images using the Ancuti et al.. tech-

nique with 7 SURF features and third row contains the enhanced pair of images using

FUIER with 13 SURF features are matching.
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Original Ancuti et al. [48] FUIER

No. of Edge Pixels - 1013 No. of Edge Pixels - 10923 No. of Edge Pixels - 9329

No. of Edge Pixels - 53620 No. of Edge Pixels - 138288 No. of Edge Pixels - 192012

No. of Edge Pixels - 3518 No. of Edge Pixels - 11481 No. of Edge Pixels - 13355

No. of Edge Pixels - 82 No. of Edge Pixels - 1589 No. of Edge Pixels - 1990

Figure 5.16: Different images blended with their edge detection results and the number of

edge pixels found using Ancuti et al. technique and FUIER.
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5.5 Conclusions

In this chapter, a fusion of underwater image enhancement and restoration has been presented.

FUIER is a simple yet powerful method for improving the visual quality of every type of underwa-

ter image. Simple and basic techniques like HE, contrast stretching and DCP have been employed

but with effective and meaningful weight maps so that the required features are taken and fused to

derive resultant image. The resultant image has improved color, contrast and visibility. The ad-

vantage of FUIER is that it incorporates color correction, contrast correction and dehazing into two

versions and takes essential features based on weights so as to generate an enhanced output image.

All the major issues in underwater images have been handled using simple and computationally

less intensive techniques employed in FUIER. The results of FUIER are visually appealing and

better as compared to state-of-the-art techniques and are easily applicable in many computer vision

algorithms. However, FUIER lags, in terms of color reproduction when there is deep haze in the

underwater images. The future scope may include an attempt to tackle this problem.
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Conclusions and Future work

In this thesis, we formulated algorithms for enhancement and restoration of the underwater images

so as to make them suitable for the purpose of various scientific studies like coral life monitoring,

aquatic species survey etc.

These algorithms have been compared with state-of-the-art techniques and have given significant re-

sults for different non-reference based performance metrics (entropy, histogram spread, difference,

UCIQE, UICM, UIQM) for all the techniques being compared. We performed enhancement of un-

derwater images using these algorithms and then compared the values of performance measures.

Proposed methods have given enhanced images not only in terms of the visual appearance but also

in terms of the quantitative measures.

6.1 Summary of the work done in the thesis

To address the problem of color cast and information loss while capturing underwater images,

we devised an algorithm called ’Contrast and Information Enhancement of Underwater Images’

(CIEUI) which finds the color cast in underwater images captured in different water bodies using

fuzzy rules and removes that color cast using a non-linear gray world based algorithm. Factors

120
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which add non-linearity have been found using MOPSO. The algorithm gives good results for most

of the images but has slow execution time due to MOPSO. Moreover, it produces artifacts for im-

ages with artificial lighting.

Thus, to address the artifacts caused by artificial lighting in CIEUI, we proposed an algorithm

named ’Fuzzified Color and Contrast Correction (FCCC)’ in which we refined the fuzzy gray world

algorithm to type-II fuzzy algorithm and instead of using global enhancement, applied color cor-

rection on local level by applying it on segments and similarly applied contrast correction on local

level by using CLAHE. Finally the features are color and contrast corrected images are fused using

wavelet based fusion using appropriate weight maps which capture the required features in the re-

sultant image. Now, the problem of artifacts in artificial lit underwater images was resolved but the

hazy appearance in the underwater images is still present in results of FCCC.

Lastly, we developed a simple fusion based algorithm named ’Fusion of Underwater Image En-

hancement and Restoration (FUIER)’ which fuses the histogram equalized version (color corrected)

and contrast stretched dehazed version which uses the simple dark channel prior so as to reduce the

computational complexity of the algorithm. All the three major problems of underwater images

i.e. color cast, poor contrast and haze are addressed and furthermore, FUIER gives good results for

every type of underwater image whether captured at shallow, medium or deep depths.

6.2 Contributions

Underwater images are instrumental in understanding the world beneath water. The work in the

thesis helps in pre-processing the images for the scientific studies. Following are the contributions

of the thesis:

• We formulated fuzzy gray world based algorithm for finding the color cast in the underwater

images. The proposed method enhances the images captured in different types of underwater
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media.

• We developed a method which removes all the major issues i.e. color cast, poor contrast and

hazy appearance of underwater images.

• We created appropriate weight maps for extracting required information from the underwater

images.

• We developed a local enhancement method which handles the non-uniform illumination in

underwater images.

6.2.1 Future Scope

1. Creating a database for underwater images which covers all types of underwater images cap-

tured in different turbidity, depth, salinity.

2. Handling the images with deep haze more effectively.

3. Enhancing the underwater images in real time.
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[15] A. Ortiz, M. Simó, and G. Oliver, “Image sequence analysis for real-time underwater cable

tracking,” in Proceedings Fifth IEEE Workshop on Applications of Computer Vision. IEEE,

2000, pp. 230–236.

[16] R. Garcia, T. Nicosevici, and X. Cufı́, “On the way to solve lighting problems in underwater

imaging,” in OCEANS’02 MTS/IEEE, vol. 2. IEEE, 2002, pp. 1018–1024.

[17] C. Funk, S. Bryant, and P. Heckman Jr, “Handbook of underwater imaging system design,”

NAVAL UNDERSEA CENTER SAN DIEGO CA, Tech. Rep., 1972.

[18] R. Schettini and S. Corchs, “Underwater image processing: state of the art of restoration and

image enhancement methods,” EURASIP Journal on Advances in Signal Processing, vol.

2010, p. 14, 2010.

[19] L. A. Torres-Méndez and G. Dudek, “Color correction of underwater images for aquatic

robot inspection,” in International Workshop on Energy Minimization Methods in Computer

Vision and Pattern Recognition. Springer, 2005, pp. 60–73.

[20] B. McGlamery, “A computer model for underwater camera systems,” in Ocean Optics VI,

vol. 208. International Society for Optics and Photonics, 1980, pp. 221–232.

[21] J. S. Jaffe, “Computer modeling and the design of optimal underwater imaging systems,”

Oceanic Engineering, IEEE Journal of, 1990.

[22] J. Ott, “Concepts of underwater experimentation,” Helgoländer wissenschaftliche Meeresun-

tersuchungen, vol. 24, no. 1, p. 54, 1973.

[23] R. B. Wynn, V. A. Huvenne, T. P. L. Bas, B. J. Murton, D. P. Connelly, B. J. Bett,

H. A. Ruhl, K. J. Morris, J. Peakall, D. R. Parsons, E. J. Sumner, S. E. Darby, R. M.



128

Dorrell, and J. E. Hunt, “Autonomous underwater vehicles (auvs): Their past, present

and future contributions to the advancement of marine geoscience,” Marine Geology,

vol. 352, pp. 451 – 468, 2014, 50th Anniversary Special Issue. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0025322714000747

[24] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Upper Saddle

River, NJ, USA: Prentice-Hall, Inc., 2006.

[25] R. Dale-Jones and T. Tjahjadi, “A study and modification of the local histogram equalization

algorithm,” Pattern Recognition, vol. 26, no. 9, pp. 1373 – 1381, 1993. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/003132039390143K

[26] K. Iqbal, R. A. Salam, A. Osman, and A. Z. Talib, “Underwater Image Enhancement Using

an Integrated Colour Model,” International Journal of Computer Science, vol. 34, no. 2, pp.

239–244, 2007.

[27] M. S. Hitam, E. A. Awalludin, W. N. Jawahir Hj Wan Yussof, and Z. Bachok, “Mixture

contrast limited adaptive histogram equalization for underwater image enhancement,” Inter-

national Conference on Computer Applications Technology, ICCAT 2013, 2013.

[28] A. S. A. Ghani and N. A. M. Isa, “Underwater image quality enhancement through rayleigh-

stretching and averaging image planes,” International Journal of Naval Architecture

and Ocean Engineering, vol. 6, no. 4, pp. 840 – 866, 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S2092678216302588

[29] K. Srividhya and M. Ramya, “Fuzzy based adaptive contrast enhancement of underwater

images,” Res J Inf Technol, vol. 8, pp. 29–38, 2016.

[30] J. Ma, X. Fan, S. X. Yang, X. Zhang, and X. Zhu, “Contrast limited adaptive histogram

equalization-based fusion in yiq and hsi color spaces for underwater image enhancement,”

http://www.sciencedirect.com/science/article/pii/S0025322714000747
http://www.sciencedirect.com/science/article/pii/003132039390143K
http://www.sciencedirect.com/science/article/pii/S2092678216302588


129

International Journal of Pattern Recognition and Artificial Intelligence, vol. 32, no. 07, p.

1854018, 2018.

[31] Y. Fan, S. Wang, T. Yu, and B. L. Hu, “Underwater image enhancement algorithm based

on rgb channels histogram equalization,” in Optical Sensing and Imaging Technologies and

Applications, vol. 10846. International Society for Optics and Photonics, 2018, p. 108460G.

[32] P. Mathur, K. Monica, and B. Soni, “Improved fusion-based technique for underwater im-

age enhancement,” in 2018 4th International Conference on Computing Communication and

Automation (ICCCA), Dec 2018, pp. 1–6.

[33] G. Buchsbaum, “A spatial processor model for object colour perception,” Journal

of the Franklin Institute, vol. 310, no. 1, pp. 1–26, jul 1980. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/0016003280900587

[34] V. C. Cardei and B. Funt, “Committee-based color constancy,” in Color and Imaging Con-

ference, vol. 1999, no. 1. Society for Imaging Science and Technology, 1999, pp. 311–313.

[35] E. H. Land, “The retinex theory of color vision,” Scientific American, vol. 237, no. 6, pp.

108–129, 1977.

[36] G. Bianco, M. Muzzupappa, F. Bruno, R. Garcia, and L. Neumann, “A new color correction

method for underwater imaging,” The International Archives of Photogrammetry, Remote

Sensing and Spatial Information Sciences, vol. 40, no. 5, p. 25, 2015.

[37] M. Chambah, D. Semani, A. Renouf, P. Courtellemont, and A. Rizzi, “Underwater color

constancy: enhancement of automatic live fish recognition,” in Electronic Imaging 2004.

International Society for Optics and Photonics, 2003, pp. 157–168.

[38] A. Rizzi, C. Gatta, and D. Marini, “From retinex to automatic color equalization: issues

in developing a new algorithm for unsupervised color equalization,” Journal of Electronic

Imaging, vol. 13, no. 1, pp. 75–84, 2004.

https://www.sciencedirect.com/science/article/pii/0016003280900587


130
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