
i | P a g e

A Dissertation

On

Reliability Analysis Using Soft Computing

Techniques

By

SANGEETA

Roll No. 2k14/PhD/CO/02

Under the Joint Supervision of

Dr. Kapil Sharma Dr. Manju Bala
Professor & Head, Assistant Professor,

Department of Information Technology Department of Computer Science

Delhi Technological University IP College of Women, Delhi University

Submitted in fulfillment of the requirements of the degree of

Doctor of Philosophy to the

Department of Computer Science and Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi 110042, 2019

ii | P a g e

DECLARATION

I, Sangeeta, Ph.D. student (Roll No. 2k14/PhD/CO/02), hereby declare that the thesis entitled

“Reliability Analysis using Soft Computing Techniques” which is being submitted for the award of

the degree of Doctor of Philosophy in Computer Science & Engineering, is a record of bonafide

research work carried out by me in the Department of Computer Science & Engineering, Delhi

Technological University. I further declare that this work is based on original research and has not

been submitted to any university or institution for any degree or diploma.

Date: ________________

Place: New Delhi

 Sangeeta

2k14/PhD/CO/02

 Department of Computer Science & Engineering

 Delhi Technological University (DTU)

New Delhi -110042

iii | P a g e

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI - 110042

Date: ___________________

This is to certify that the work embodied in the thesis titled “RELIABILITY ANALYSIS

USING SOFT COMPUTING TECHNIQUES” has been completed by Sangeeta under our

supervision and guidance towards fulfillment of the requirements for the degree of Doctor of

Philosophy of Delhi Technological University, Delhi. This work is based on original research and has

not been submitted in full or in part for any other diploma or degree of any university.

Dr. Kapil Sharma Dr. Manju Bala

Professor & Head, Assistant Professor,

Department of Information Technology Department of Computer Science

Delhi Technological University IP College of Women, Delhi University

Copyright ©2019

Delhi Technological University, Shahbad Daulatpur,Main Bawana Road, Delhi 110042, All rights reserved.

iv | P a g e

Acknowledgement

It gives me an immense pleasure while acknowledging the contribution of persons those helped me to

achieve my research goal. The journey was started with the motivational support of my supervisors,

Professor Kapil Sharma and Dr. Manju Bala.

First of all, I would like to thank Dr. Kapil Sharma, Head of Department, Information Technology,

DTU, Delhi, for providing me the healthy research environment and academic facilities at DTU

campus. Without his support and motivation it was never possible for me to pursue research goals.

He has always been an inspirational source for me due to his motivational and supportive nature. He

always guided me as a parent in every phase of my research work. I want to thank him again for

sparing his valuable time from the very busy schedule while he was working as an OSD at DTU. I

could never forget those early mornings and weekends during which i used to visit at his home for

discussion of research paper and thesis writing.

I am very thankful for encouragement and support that he gave to me throughout this work.

I also thanks to Dr. Manju Bala, Assistant Professor, IP College of Women, Delhi University, for her

moral support and providing me valuable guidance. Her academic and professional intelligence,

strong commitment and dedication always inspired me to complete my research goals. She always

provided me a healthy and helpful atmosphere for learning. She provided me the right directions to

pursue my research with confidence in all meetings with her. This research journey has been an

enriching experience of working under her guidance. She used to share her experiences about

various challenges that she had faced during her research work and how she came out with the

solutions in a successful manner, which motivated me. I am also thankful for the delicious breakfast

that she used to offer me while visiting at her home.

I am also thankful to Professor Rajni Jindal, Head of CSE department, DTU for providing me an

opportunity to pursue my research work at DTU. She had been a source of constant help and

inspiration throughout the tenure of my research.

Further, I thanks to Professor Yogesh Singh, Vice Chancellor, Delhi Technological University for

creating research environment and availability of various research facilities at DTU. He has been role

model for me right from the beginning of my research journey at DTU. I am also thankful to all DRC

Committee members for their time to time valuable suggestions and modifications.

v | P a g e

A very special thanks to my dearest husband Mr. Sitender for his constant help and support while

editing, proof reading my research work and suggesting valuable changes time to time. He has

always been with me in different roles as a friend, as a teacher and as a parent and motivated me

whenever I stuck during the research work. Without his cooperation it was never possible for me to

be in a position where I am today.

I also pay my sincere regards to my parents and parents in- laws for their unconditional love,

financial as well as moral support that helped me to concentrate on my research work without

worrying about family responsibilities. At last i am also thankful to my friends for making me happy

whenever I feel sad. I really enjoyed a lot with them during this research journey.

Sangeeta

2k14/PhD/CO/02

Department of Computer Science & Engineering

Delhi Technological University (DTU)

New Delhi -110042

vi | P a g e

List of Publications

 Sangeeta, Kapil Sharma and Manju Bala, "A Quantitative Testing Effort Estimate for

Reliability Assessment of Multi Release OSS Systems” Journal of Computational and

Theoretical Nano science, March 2019. (Accepted, Scopus Indexed)

 Sangeeta, Kapil Sharma and Manju Bala, “A New Optimization Algorithm for

Software Reliability Model Parameter Estimation” Journal of Advanced Research in

Dynamical and Control Systems, Dec 2018. (Published, Scopus Indexed)

 Sangeeta, Kapil Sharma and Manju Bala, "Reliability Analysis and Modeling of

Green Computing Based Software Systems” Recent Patents in Computer Science,

June 2019. (ISSN: 2213-2759) (Accepted, Scopus Indexed)

 Sangeeta, Kapil Sharma and Manju Bala, "An Ecological Space Based Hybrid

Swarm-Evolutionary Algorithm for Software Reliability Model Parameter Estimation"

International Journal of System Assurance Engineering and Management, Jan 2019.

(ISSN :975-6809) (Under Review, Scopus Indexed)

 Sangeeta, Kapil Sharma and Manju Bala, “Exhausting Meta heuristic Nature inspired

approaches for the parameter estimation analysis of software reliability growth

models” International Conference on Industrial Applications on Control, Automation

& Robotics 2018 (IACAR 2017, Jakarta Indonesia) available at Advanced Science

and Technology letter/144/2017-18. (Published)

 Sangeeta, Kapil Sharma and Manju Bala Published “Quality issues with big data

analytics” in IEEE sponsored conference entitled Computing for Sustainable Global

development (India-com- March 2016). (Published)

 Sangeeta, Kapil Sharma and Manju Bala Published “A statistical View of software

Reliability and modeling” in IEEE sponsored conference entitled Computing for

Sustainable Global development (India-com-March 2015). (Published)

vii | P a g e

Abstract

With the growing advances in the digital world, software development demand from

industries is growing at an exponential rate. Due to enormous demand and lack of time and budget,

software companies are not able to develop fault-free software. Latest tools and techniques have been

applied for the development of defect-free software, but still, it is impossible for the software

developers to develop defect-free software practically. Software must go through exhaustive testing

and debugging, which requires time and money to enhance the reliability. The occurrence of fault is

inevitable in the current demand of software. There should have some means to avoid software

failures so that devastating losses whether related to life or any other field could be evaded.

According to IEEE standard 729 [1] , reliability is the most significant quality aspect of the software.

If we could measure the reliability of software under development, better we can predict whether the

software would be operational in the future or not. Reliability estimation process must be precise to

provide information to the manager like what should be the release time of the software and amount

of man-hour consumption etc. while developing any software. Software reliability models are only

the ways in order to simulate software reliability estimation curve to predict the reliability of the

system under study. Numerous reliability estimation models for software have been developed, and

all are working on specific applications, specific environments, datasets and assumptions made by

them. Initially, a systematic survey of software reliability models is done that shows how a new

model is evolved from other models on the basis of their assumptions and attributes.

Among the available research in software reliability model development [2] [3], It is found that, all

developed models are basically made for reliability estimation of software‟s developed under

traditional waterfall software development life cycle process. As estimation of software reliability is

primarily reliant on the process of software development. Software‟s developed using latest software

development life cycle approach can capture and implement all the user requirements within time and

budget. This work focuses on development of new software reliability estimation model that

incorporates iterative software development life cycle process by replacing earlier waterfall based

development process. It assumes imperfect debugging during each of iteration. All the latest iterative

software development life cycle processes may be used to predict software reliability by applying

proposed software reliability estimation model. Existing failure rate models cannot be applied to the

current software development methodology. The proposed model takes care of complexity and

paradigm shift of iterative based software development process by introducing modulation factor.

viii | P a g e

Further, Keeping in mind multi-release policies of open source software, this thesis work also

proposed another model that introduces a new testing effort factor based fault content function. This

factor is showing the change in fault content function with the amount of testing effort in each version

of open source software development. Altogether it is reflecting complete testing effort functionality

added or upgraded in each version of the software. Effort factor changes its value according to the

effort coefficient which takes its value from zero to one by assuming that complexity value added in

each version increases from lower to higher. Effort factor has a change in its value, depending on

whether it is a minor or a major release.

For precise estimation of open source software system reliability, there is a need to have a

parameter estimation method that could provide optimum parameter values of models. Classical

methods [4] of parameter estimation are based on number of constraints. An alternative to these

classical mathematical optimization methods is nature-inspired optimization algorithms for

solution of the non-differential, non-linear and multi-modal problems [5]–[7]. The research work

move ahead and also focuses on the development of new hybrid swarm evolutionary algorithm for

software reliability model parameter estimation. A new algorithm based on the concept of ecological

space [8] , method of differential evolution and intelligent behaviour of artificial bee colony for

optimizing the parameter values [9][10]. The exploration capability in ABC algorithm has been

improved by introducing the concept of ecological space. Ecological space is one of the important

factors for evolution and reflects the expansion of individual bee in search space. DE technique

provides the diversity of bee's population and faster convergence. The proposed algorithm has been

tested with four standard failure datasets. Proficiency of proposed algorithm is compared with other

well-known algorithms. Proposed algorithm is very much effective in a field of software reliability

estimation and would be a competitive one among meta-heuristic optimization algorithms. Finally

the thesis is concluded with the perspective of future work.

ix | P a g e

Contents

ACKNOWLEDGEMENT .. IV

LIST OF PUBLICATIONS ... VI

ABSTRACT ... VII

LIST OF FIGURES .. XII

LIST OF TABLES ... XIII

CHAPTER 1 INTRODUCTION ... 17

1.1 OVERVIEW OF THE STUDY .. 17

1.2 IMPACT OF SOFTWARE RELIABILITY ANALYSIS ON HUMAN SOCIAL LIFE .. 19

1.3 IMPORTANCE OF SOFTWARE RELIABILITY MODELING AND ANALYSIS ... 20

1.4 RESEARCH OBJECTIVES .. 21

1.5 OVERVIEW OF THE WORK DONE.. 22

1.6 CONTRIBUTION OF THE RESEARCH WORK .. 23

1.7 ORGANIZATION OF THESIS WORK .. 25

CHAPTER 2 LITERATURE SURVEY ... 27

2.1 INTRODUCTION .. 27

2.2 SOFTWARE RELIABILITY MODELS ... 27

2.3 CLASSIFICATION OF SOFTWARE RELIABILITY MODELS ... 28

2.3.1 Early Prediction Models ... 28

2.3.2 Architecture Based Models .. 28

2.3.3 Hybrid Black Box Models .. 29

2.3.4 Hybrid White Box Models ... 29

2.3.5 Input Domain Based Models .. 30

2.3.6 Software Reliability Growth Models .. 30

2.3.7 Failure Rate Behaviour Based Models .. 31

2.3.8 NHPP Behaviour Based Models .. 33

2.4 MODEL EVOLUTION .. 38

2.4.1 Attributes used to Categorize Software Reliability Growth Models ... 39

2.5 PARAMETER ESTIMATION TECHNIQUE .. 42

2.5.1 Meta-heuristic Algorithms in Various Application Domains .. 43

2.5.2 Meta-heuristic Algorithms in Ground of Software Reliability .. 46

2.6 PERFORMANCE MEASUREMENT METHODS .. 48

2.7 INFERENCE ON THE BASIS OF LITERATURE SURVEY ... 49

x | P a g e

CHAPTER 3 ITERATIVE SOFTWARE FAILURE RATE MODEL .. 52

3.1 INTRODUCTION .. 52

3.2 ITERATIVE SOFTWARE DEVELOPMENT LIFE CYCLE PROCESS ... 54

3.2.1 Reliability in Iterative Software Development Environment .. 54

3.3 PROPOSED MODEL ... 55

3.3.1 Analytical Software Failure Rate Model for SDLC .. 55

3.3.2 Proposed Model Assumptions .. 55

3.3.3 Model Formulation .. 56

3.3.4 Parameter Estimation .. 57

3.4 APPLICATION DATASETS USED FOR EXPERIMENTATION ... 58

3.5 EXPERIMENTAL SETUP .. 58

3.6 RESULT ANALYSIS ... 61

3.6.1 CASE 1: Eclipse Software Dataset ... 61

3.6.2 CASE 2: JDT Dataset .. 63

3.7 CONCLUSION ... 70

CHAPTER 4 MODELING AND ANALYSIS OF OPEN SOURCE SOFTWARE SYSTEM RELIABILITY 71

4.1 INTRODUCTION .. 71

4.2 MODELING PROCEDURE FOR OSS SYSTEMS ... 74

4.3 PROPOSED NHPP MODEL ... 76

4.3.1 Non Homogenous Poisson Process based model for OSS System Development .. 76

4.3.2 Proposed Model Incorporating Effort Based Fault Content Function .. 76

4.3.3 Model Formulation .. 77

4.4 RESULTS AND DISCUSSION .. 79

4.4.1 Example 1: Firefox Dataset Analysis ... 79

4.4.2 Example 2: Result analysis for Genome failure data-sets .. 82

4.5 CONCLUSION ... 86

CHAPTER 5 PARAMETER ESTIMATION ALGORITHM ... 87

5.1 INTRODUCTION .. 87

5.2 GENERAL STUDY OF META-HEURISTIC ALGORITHMS .. 89

5.2.1 Artificial Bee Colony ... 89

5.2.2 Particle Swarm Optimization ... 90

5.2.3 Differential Evolution Algorithm .. 91

5.2.4 Hybrid Particle Swarm Optimization and Gravitational Search Algorithm .. 92

5.3 PROPOSED ALGORITHM ... 93

5.3.1 Mathematical Formulation for Artificial Bee Colony Algorithm... 94

xi | P a g e

5.3.2 Mathematical Differential Evolution Algorithm for Global Solution of a Problem 95

5.3.3 Hybridization of Proposed Swarm-Evolutionary Algorithm ... 96

5.3.4 Framework of the proposed algorithm .. 98

5.4 EXPERIMENTAL SETUP ... 101

5.5 RESULTS AND DISCUSSION .. 102

5.5.1 Result analysis .. 102

5.6 CONCLUSIONS .. 115

CHAPTER 6 FAILURE DATASETS .. 116

6.1 INTRODUCTION .. 116

6.2 DATASETS ... 117

CHAPTER 7 RESULTS AND SCOPE FOR FUTURE RESEARCH ... 152

7.1 INTRODUCTION .. 152

7.2 MAJOR FINDINGS ... 152

7.3 FUTURE SCOPE ... 156

xii | P a g e

List of Figures

FIG. 1.1 GENERAL PROCESS OF SOFTWARE RELIABILITY MODELING AND ANALYSIS .. 18

FIG. 2.1 CLASSIFICATION OF SOFTWARE RELIABILITY MODELS BASED ON ITERATIVE APPROACH 30

FIG. 2.2 HISTORY OF SOFTWARE RELIABILITY GROWTH MODELS .. 31

FIG. 2.3 CATEGORIZATION OF SRGMS BASED ON WELL-DEFINED CRITERIA ... 40

FIG. 2.4 EVOLUTION OF SOFTWARE RELIABILITY GROWTH MODELS ... 42

FIG. 3.1 PLOT OF MODULATION PARAMETER VERSUS ITERATION FOR DS1 .. 60

FIG. 3.2 PLOT OF MODULATION PARAMETER VERSUS ITERATIONS FOR DS2 ... 61

FIG. 3.3 PLOT OF RELIABILITY VERSUS NUMBER OF FAULTS ... 62

FIG. 3.4 PLOT OF FAULT INTENSITY IN VARIOUS ITERATIONS ... 62

FIG. 3.5 PLOT OF RELIABILITY VERSUS ITERATIONS ... 64

FIG. 3.6 PLOT OF FAILURE INTENSITY VERSUS ITERATIONS ... 64

FIG. 3.7 PLOT OF RELIABILITY VERSUS FAULTS IN VARIOUS ITERATIONS .. 69

FIG. 3.8 PLOT OF FAILURE INTENSITY IN SEVERAL ITERATIONS ... 69

FIG. 4.1 SOFTWARE RELIABILITY MODELING PROCESS FOR OSS SYSTEMS.. 75

FIG. 4.2 ESTIMATED NUMBER OF FAULTS USING FIREFOX 3.0 .. 81

FIG. 4.3 ESTIMATED NUMBER OF FAULTS USING FIREFOX 3.5 .. 82

FIG. 4.4 ESTIMATED NUMBER OF FAULTS USING FIREFOX 3.6 ... 82

FIG. 4.5ESTIMATED NUMBER OF FAULTS USING GENOME 2.0 ... 85

FIG. 4.6ESTIMATED NUMBER OF FAULTS USING GENOME 2.2 ... 85

FIG. 4.7 ESTIMATED NUMBER OF FAULTS USING GENOME 2.3 .. 86

FIG. 5.1 ARTIFICIAL BEE COLONY ALGORITHM .. 90

FIG. 5.2 PARTICLE SWARM OPTIMIZATION ALGORITHM ... 91

FIG. 5.3 DIFFERENTIAL EVOLUTION ALGORITHM .. 92

FIG. 5.4 HYBRID PSOGSA ALGORITHM .. 92

FIG. 5.5 2D VIEW OF HYBRID DE ASSISTED ABC ALGORITHM .. 99

FIG. 5.6 ECOLOGICAL SPACE BASED HYBRID SWARM-EVOLUTIONARY (DE ASSISTED ABC) ALGORITHM 100

FIG. 5.7 DE ASSISTED ABC ALGORITHM ... 101

FIG. 5.8 ESTIMATED NUMBER OF ERRORS AT TIME T USING GO MODEL AND DS5 .. 105

FIG. 5.9 ESTIMATED NUMBER OF ERRORS AT TIME T USING INFLECTION S SHAPED MODEL AND DS5 105

FIG. 5.10 ESTIMATED NUMBER OF ERRORS AT TIME T USING PTZ MODEL AND DS6 ... 106

FIG. 5.11 ESTIMATED NUMBER OF FAULTS USING GO MODEL AND DS7 .. 106

FIG. 5.12 ESTIMATED NUMBER OF ERRORS USING PTZ MODEL AND DS8 ... 107

file:///E:/thesis%2031-10-19/print%20Final%20to%20sign3-12-19%20thesis(2)%20.docx%23_Toc26130643
file:///E:/thesis%2031-10-19/print%20Final%20to%20sign3-12-19%20thesis(2)%20.docx%23_Toc26130648

xiii | P a g e

List of Tables

TABLE 2.1 FAILURE RATE BEHAVIOUR BASED MODELS ... 32

TABLE 2.2 NHPP BASED MODELS ... 33

TABLE 2.3 PERFORMANCE MEASUREMENT METRICS[13] ... 48

TABLE 3.1 SUMMARY OF FAILURE RATE BASED SOFTWARE RELIABILITY MODELS FOR COMPARISON 60

TABLE 3.2GOODNESS-OF-FIT ES/TIMATED USING DS1 (ECLIPSE SOFTWARE FAILURE DATASET) 65

TABLE 3.3GOODNESS-OF-FIT ESTIMATED USING DS2 (JDT SOFTWARE FAILURE DATASET) ... 67

TABLE 4.1 RESULT ANALYSIS USING FIREFOX 3.0.. 80

TABLE 4.2 RESULT ANALYSIS USING FIREFOX 3.5 .. 80

TABLE 4.3 RESULT ANALYSIS USING FIREFOX 3.6 .. 80

TABLE 4.4 RESULT ANALYSIS USING GENOME 2.0 ... 83

TABLE 4.5 RESULT ANALYSIS USING GENOME 2.2 ... 83

TABLE 4.6 RESULT ANALYSIS USING GENOME 2.3 ... 84

TABLE 5.1 STATISTICAL RESULTS OF PARAMETER ESTIMATION FOR GO MODEL ... 107

TABLE 5.2 STATISTICAL RESULTS OF MEAN SQUARED ERRORS FOR GO MODEL .. 107

TABLE 5.3 STATISTICAL RESULTS OF SUM OF SQUARED ERRORS FOR GO MODEL ... 108

TABLE 5.4 STATISTICAL RESULTS OF ELAPSED TIME IN SECONDS FOR GO MODEL ... 108

TABLE 5.5 STATISTICAL RESULT FOR PARAMETER ESTIMATION USING INFLECTION S SHAPED MODEL 108

TABLE 5.6 STATISTICAL RESULT FOR MEAN SQUARED ERRORS USING INFLECTION S SHAPED MODEL 109

TABLE 5.7 STATISTICAL RESULT FOR SSE USING INFLECTION S SHAPED MODEL .. 109

TABLE 5.8 STATISTICAL RESULT FOR ELAPSED TIME IN SECONDS USING INFLECTION S-SHAPED MODEL 109

TABLE 5.9 STATISTICAL RESULT FOR PARAMETER ESTIMATION USING PTZ MODEL... 110

TABLE 5.10 STATISTICAL RESULT FOR MSE USING PTZ MODEL ... 110

TABLE 5.11 STATISTICAL RESULT FOR SSE USING PTZ MODEL... 110

TABLE 5.12 STATISTICAL RESULT FOR ELAPSED TIME IN SECONDS USING PTZ MODEL .. 111

TABLE 5.13 STATISTICAL RESULT FOR PARAMETER ESTIMATION USING GO MODEL ... 111

TABLE 5.14 STATISTICAL RESULTS FOR MSE USING GO MODEL .. 111

TABLE 5.15 STATISTICAL RESULT FOR SSE USING GO MODEL ... 112

TABLE 5.16 STATISTICAL RESULT FOR ELAPSED TIME IN SECONDS BY VARIOUS ALGORITHMS USING GO MODEL 112

TABLE 5.17 STATISTICAL RESULT FOR PARAMETER ESTIMATION USING INFLECTION S SHAPED MODEL......................... 112

TABLE 5.18 STATISTICAL RESULT FOR MSE USING INFLECTION S SHAPED MODEL ... 113

TABLE 5.19 STATISTICAL RESULT FOR SSE USING INFLECTION S SHAPED MODEL .. 113

TABLE 5.20 STATISTICAL RESULT FOR ELAPSED TIME IN SECONDS USING INFLECTION S SHAPED MODEL 113

TABLE 5.21 STATISTICAL RESULT FOR PARAMETER ESTIMATION USING PTZ MODEL... 114

TABLE 5.22 STATISTICAL RESULT FOR MSE USING PTZ MODEL ... 114

file:///E:/thesis%2031-10-19/sangeeta%20thesis%203-12-19%20thesis(2)%20.docx%23_Toc26132058
file:///E:/thesis%2031-10-19/sangeeta%20thesis%203-12-19%20thesis(2)%20.docx%23_Toc26132059

xiv | P a g e

TABLE 5.23 STATISTICAL RESULT FOR SSE USING PTZ MODEL... 114

TABLE 5.24 STATISTICAL RESULT OF ELAPSED TIME USING VARIOUS ALGORITHMS FOR PTZ MODEL 115

TABLE 6.1 FAILURE DATASETS USED FOR IMPLEMENTATION ... 117

TABLE 6.2 ECLIPSE DATASET (DS1) ... 120

TABLE 6.3 JDT DATASET (DS2).. 134

TABLE 6.4 FIREFOX FAILURE DATASET (DS3) ... 136

TABLE 6.5 GENOME FAILURE DATASET(DS4) ... 141

TABLE 6.6 FAILURE DATASET(DS5) ... 143

TABLE 6.7 FAILURE DATASET (DS6) .. 144

TABLE 6.8 FAILURE DATASET (DS7) .. 146

TABLE 6.9 FAILURE DATASET (DS8) .. 147

xv | P a g e

Abbreviations

SRM Software Reliability Models

SRGM Software Reliability Growth Models

SDLC Software Development Life Cycle

JM Jelinski- Moranda

GO Goel-Okumotto

GOI Goel-Okumotto Imperfect Debugging

SW Shick-Wolverton

MSW Modified Shick-Wolverton

PTZ Pham-Teng-Zhang

MLE Maximum Likelihood Estimation

LSE Least Square Estimation

LLF Log Likelihood Function

FDR Fault Detection Rate

FIR Fault Introduction Rate

FRE Fault Removal Efficiency

MVF Mean Value Function

SSE Sum of Squared Errors

MSE Mean Square Error

MAE Mean Absolute Error

MEOP Mean Error of Prediction

AE Accuracy of Estimation

TS Theil‟s Statistics

PRR Predictive Ratio Risk

NHPP Non Homogenous Poisson Process

OSS Open Source Software

xvi | P a g e

DE Differential Evolution

GA Genetic Algorithm

GP Genetic Programming

PSO Particle Swarm Optimization

GSA Gravitational Search Algorithm

ABC Artificial Bee Colony

ACO Ant Colony Optimization

17 | P a g e

Chapter 1 INTRODUCTION

This chapter familiarizes implications of software reliability in today’s digital world.

Motivation in software reliability model development and their parameter estimation methods are

discussed. The aim of the research work is highlighted. Chapter wise organization of thesis work is

presented at the end of this chapter.

1.1 Overview of the Study

Today‟s cyber world is heavily reliant on software and software-controlled applications.

Software is considered as the most critical component in the growing digital world, it is playing a

key role in every aspect of life whether related to digital identity, digital currency, gadgets,

defense, medical, business enterprises, transportation, home security systems or daily money

transactions and so on. Software has not only improved the living standards and makes human life

more comfortable. But unpredictable software failures can severely affect proper functioning of the

whole system [11]. It is necessary to eliminate all the latent problems in software as early as

possible.

Reliability of software is considered as the most crucial quality attributes. Although at most

care has been taken while developing a software system using latest tools and techniques but, still

it is not feasible to develop defect free software practically. Organizations are trying to ensure

highest reliability of the software being developed but ensuring the same is very difficult due to the

increasing software size, budget constraints, time constraints and shortage of skilled man-power.

When the software is deployed, then only feedback of the customers, there complaints,

compliments and outages are the ways to reflect software reliability. But by then, reliability

estimation is too late. Perquisite of the software developers is to know whether developed software

is reliable before they are dispatched to customers. In the competitive arcade of software

development it is necessary for software industries to ensure reliability of their software to satisfy

their customers and to make an outlook in the global market.

How to enrich software reliability and reduce its cost to a satisfactory level is a major

concern of today‟s software development industries. There are four main methodologies to

increase the reliability of software[3]. These approaches are primarily related to the prevention of

faults, removal of faults, tolerance and forecasting of faults. Prevention of faults and their removal

approach is in hands of software developers and testing team members. To remove faults, one

should have skilled developers and tester‟s in-order to make software more reliable. Fault tolerance

approach makes the system robust by hiding faults in place of removing existing faults. It involves

the methods like recovery block, N-version software, self-checking software, rollback method and

18 | P a g e

design by diversity method, which involves functionally equivalent to independently developed

components to tolerate faults. Fault forecasting approach is considered as the major approach and

implemented using statistical modelling of software reliability methods. Flow chart in Fig. 1.1

depicts the way to develop a software reliability estimation model [12].

Fig. 1.1 General Process of Software Reliability Modeling and Analysis

For the software reliability models to be valuable, they must incorporate some values in

decision making process. These models must help in determining the amount of effort, the time,

the money invested, and must help in making decisions regarding when a piece of software can be

deployed with confidence in its reliability. As a matter of economy to produce reliable software, it

is essential to measure and control reliability of software while development. To do this, number of

software reliability models is being developed. But in modeling software reliability, we often

encounter number of problems that majorly includes the given below:

1. How to develop a model that would precisely estimate reliability of a specific software

system which has been developed under certain software development methodology?

2. What are the ways to better estimate parameter values of developed software reliability

models?

3. How to collect trustworthy software failure datasets to make precise measurement of

future software reliability?

From last four decades, reliability community has developed many of software reliability

estimation models in several domains but these models are specific to an application. One of the

Data review and analysis

Select appropriate model

Estimate model parameter, obtain fitting model

 Obtain estimates of performance measures

Achieve Reliability prediction according to fitting model and make
decisions for software release

19 | P a g e

models that have been developed for a specific application cannot be applied to precisely estimate

reliability of the software developed under different environment and conditions [13]. With the

growth of software industries in software development, this is always required to develop a

specific application based reliability estimation model for software‟s that have been developed

using latest tools, techniques and methodologies. Selection of software reliability model‟s

parameter estimation method is a major problem in predicting the exact software reliability. There

are number of existing methods for software reliability model parameter estimation, but these

methods are not giving satisfactory results when applied on non-linear problem solution. There is a

need to examine methods that can precisely estimate parameter values of the newly developed

software reliability estimation model. Theses model parameters employ a great deal of influence on

the accuracy of reliability estimation models.

Software reliability models are found to be the only methods that are in significant use in

industries and academia for future software reliability estimation[14][15][16]. There is an emergent

need in developing exact methods for software reliability estimation during development.

Prediction and optimization of models are primarily dependent on parameters of models. Nonlinear

nature of models makes it difficult to statistically analyse and estimate the parameters values. It is

very difficult and challenging job to optimize software reliability model parameters to prove their

proficiency.

Further, model development and parameter estimation procedures necessitate a sufficient

amount of failure data to catch precise and trustworthy estimate of software reliability. Companies

are unwilling to release their programs failure data due to competitive demand in the software

market and fear of declining their image. Matter of software reliability estimation becomes worse

due to lack of availability of software failure data from software companies. As a result, new

models are formulated and validated against the datasets which are either available in the literature

or which have previously appeared elsewhere.

Numerous software reliability estimation models have been developed by the researchers in

last years. It is found that the model which is overall a best choice is not always good for a

particular dataset. Reliability prediction made by the model may be less accurate than desired even

when appropriate model is used. For this reason a great deal of research is needed in making

precise reliability growth of the software developed under latest tools and techniques.

1.2 Impact of Software Reliability Analysis on Human Social Life

Booming software industries has a major impact on humanity. One may not have noticed

that analog parts of appliances like washing machines, TVs and watches are being replaced by

CPUs and software. Software controlled systems in various household appliances offers a

20 | P a g e

competitive cost, compact design, flexible handling with enriched features. Today‟s society is

making use of these embedded software based appliances by trusting that "software never breaks".

But there are number of misfortunes instigated by software that proves this myth to be a wrong.

There is a need to make an estimate of software reliability to ensure dependability of the used

software.

As more and more software is entering into embedded systems, there is a need to ensure

that they wouldn‟t embed any further tragedies. If this is not deliberated cautiously, reliability of

software may become reliability bottleneck of the complete system. To make precise estimate of

software reliability, in literature there are number of reliability estimation models. These models

have been developed up to a point that significant result could be attained just by the application of

appropriate model to a problem. Yet now, no single model has been developed that is universal to

all the situations. There is a need to make assumptions and perceptions to simplify the particular

set of problems.

1.3 Importance of Software Reliability Modeling and Analysis

Among the models available only few are useful others are found to be wrong. The research

papers are having no more than 31% experimental researches, where only about 13% are purely

experimental [17]. This low number is due to two reasons: (1) public experimental data sets in

reliability estimation are very limited; (2) producing software reliability data through experiments

typically require long time clusters. Also, the number of research works in “Reliability

Assessment” has clearly increased since 2002 and especially during the last five years. But still

there is a big requirement to precisely estimate the reliability of software through software

reliability growth models and various other techniques. As computer software's are used in recent

day today applications, it shows that major focus of researchers has moved to precise software

reliability growth estimation.

Further, there are number of examples of software failures by which authors get motivated

towards a research in software reliability growth estimation methods for the software that are being

developed. Some of the major software failures in history are:

1. Because of malfunctioning and early warning system of Soviet nuclear system, World War III

narrowly averted and it was reported that the United State had terrified an attack on his country.

But after some time soviet air defense officer named Stanislav Petrov detect this as a false alarm.

2. In June 1982, flaws in the software led to massive blast along part of a pipeline and it caused the

biggest non-nuclear explosion in a planet‟s history.

21 | P a g e

3. In March 1986, a Mexican Airline gets worn-out to a mountain due to the reason that its

software was not able to appropriately find out a mountain position.

4. Because of flaws in the computer software, patients of St. Mary‟s Mercy Medical Center gets

killed on paper in 2003 and it costs the lives of about 8500 patients.

5. In February 2014, routine software upgrade malfunctioning in Suncorp bank caused the

vanishing of money from customer‟s bank accounts.

6. The company Nissan because of a software malfunction, recalled vehicles for Airbag software

malfunction in 2015.

7. In 2015, About 30,000 Swiss HSBC Bank Accounts Leaked to Media in 2015.

8. In August 2019, more than 100 US flights get cancelled and more than 200 get delayed due to

major IT software failure.

All these circumstances and events have made it deceptive that one must regulate software

reliability before planting them into operation.

1.4 Research Objectives

SRGMs are found to be the most significant in industries and academia. No existing model is well

applicable in all domains to estimate software reliability. Each model has been developed with

specific assumptions and datasets[13]. These specific models are not found to provide exact

estimate of software reliability in other environmental conditions. Every model either needs

enhancements or modifications to provide better estimate of reliability for other specific

application environment. Further, traditional methods of parameter estimation do not provide

satisfactory results within reasonable amount of time. Thus, new methods for software reliability

model parameter estimation need to be adopted in the field of software reliability estimation.

Hence the research objectives are extracted as below:

Developing a software reliability estimation model using some meta-heuristic algorithms (soft-

computing technique) that will be applicable for measurement of reliability of software‟s that has

been developed using latest tools and techniques. Developed model will be capable in

implementing all the user requirements within time and budget for specific datasets. Therefore, the

research goal can be seen as consisting of following sub-goals:

1. To, study various software reliability models and various optimization techniques involving

meta-heuristic techniques. The first goal is to study existing software reliability estimation

models from various domains. Also to study various traditional as well as latest methods of

software reliability model parameter estimation.

22 | P a g e

2. a). To propose software reliability estimation model that will predict the reliability of system

software. The objective of this goal is to enhance existing traditional approach based software

reliability models in to a new model that can capture the behaviour of latest software

development environment and can precisely estimate the reliability of open source software as

well as closed source software systems.

b). To implement the proposed model. Here, the goal is to validate the proposed model on

some real world software reliability analysis problems.

3. To analyze the optimization capability of existing evolutionary algorithms and selecting the

algorithm that will best suit in optimizing the reliability model parameters. There is a need to

find the best method among the existing methods of parameter estimation in reliability

estimation so that exact reliability could be estimated by the statistical models. A new variant

of existing meta-heuristic can be proposed which can perform efficient reliability analysis for

various software failure datasets.

1.5 Overview of the Work Done

Thesis work is dedicated to the development of some methods for reliability analysis of software‟s

that has been developed using latest tools and techniques. Proposed work makes analysis of

software reliability growth modeling and leverages the strength of meta-heuristic algorithms for

parameter estimation of SRGMs. Moreover proposed software reliability models are validated on

the real world failure datasets of open source software as well as close source software datasets.

Subsequent work is carried out in order to achieve each objective.

1.a) In order to achieve first objective various existing software reliability models were studied. A

tree structure is developed to show development history of models over a wide range from 1972 to

2019. These existing models are surveyed on the basis of assumptions used by these models. All

surveyed models are categorized on the basis of some attribute based criteria that each model uses

in its mathematical formulation. These categories facilitated authors in making evolution diagram

of models from previous models. Further, using specific assumption of a model and attribute

based criteria all models are evaluated on the basis of evolution of models from existing models.

This evolution shows how one model is enhancing the features of already existing models and

provides a way by which researchers can identify the need to propose a new model by seeing the

limitations in the previous models.

b) To achieve the objective of studying various optimization techniques mainly meta-heuristic

nature inspired algorithms are studied. We studied the methods of parameter estimation over a

wide range from 1985 to 2019 and found the limitations in these methods.

23 | P a g e

2.a) To achieve second objective we propose an iterative failure rate behaviour based software

reliability model that will predict the reliability of systems in each successive iterations of software

development. This proposed models removed the limitations of traditional models that has been

developed using traditional waterfall software development methodology. The proposed model

works significantly well in iterative software development environment to estimate software

reliability. Further, to extend the objective of software reliability model development, second

objective has been extended to propose a new NHPP behaviour based model for multiple releases

of OSS systems. These models are found to be in wide spread use in software industries for

reliability estimation. Proposed failure rate model is validated on 12 iterations of Eclipse project

failure datasets and 6 iterations if JDT project failure datasets. Similarly efficiency of proposed

NHPP model is tested using 3 versions of Firefox failure datasets and three versions of Genome

failure datasets. These models are well proving their efficiency in the used failure dataset

environments.

2.b) Implementation and analysis of the proposed models is done using real world failure dataset

of Eclipse, JDT, Firefox and Genome projects. Mat lab (R2015a) has been used to implement the

proposed software reliability growth models. Results shows that proposed models are

outperforming their counterparts in significantly estimating the system software reliability.

3. A new algorithm is proposed by using well-known artificial bee colony algorithm and

differential evolution algorithm. ABC algorithm is having deprived exploration and may fall into

local maxima due to lack of population diversity. DE algorithm is having unbalanced exploitation

and exploration. Thus, this will be a good effort if limitations of these algorithms could be

removed. Proposed algorithm is absorbing only the best features of these two algorithms.

Proposed algorithm is hybridized using swarm based features of ABC algorithm and evolutionary

features of DE algorithm. Proposed Swarm-Evolutionary hybrid algorithm is validated using well

known NHPP based models and four real world datasets.

1.6 Contribution of the Research Work

Summary of the major contribution of our work is as follows:

 Thesis work is focused on the two famous groups of software reliability modeling. These

are failure rate based models and NHPP group of models. In this work, two software

reliability estimation models are proposed. Out of these two, one is belonging to the group

of failure rate models and other is based on the assumptions of NHPP group of models.

 Earlier failure rate models are grounded on software systems that have been developed

using traditional waterfall software development lifecycle process. Due to stability in

implementing software using traditional approach, in this thesis work, a new Iterative

24 | P a g e

software reliability estimation model is proposed that considers behavior of recently used

iterative software development life cycle process.

 Proposed iterative failure rate model assumes that in each of the iteration of software

development, new functionality enhancement occurs due to addition and removal of bugs in

each of the iteration. Due to added functionality in each of iteration, design modifications

are made which causes change in requirements at each stage of software development.

These changing needs in each of the iteration in-terms of defects, testing effort and

functionality are reflected in the proposed model using modulation factor.

 In each of iteration new functionality is added or modified, existing bugs are fixed; some of

them may remain unresolved and moves to the up-coming iterations. System development

functionality gets improved in each of the iteration. This feature has been reflected using

modulation parameter, which takes its values from 0 to 1 because functionality and user

acceptance increases from lower to higher in each of the on-going iterations of software

development. Using modulation parameter, modulation factor is quantified.

 Proposed iterative model has been validated for the reliability assessment of open source

software.

 We found that failure rate decreases and reliability increases in each of the upcoming

iteration of software development.

 Proposed iterative model supports software developers and end users in estimating software

reliability at each iteration of software development and hence for each of the iterations in

the evolution of a software.

 Further to incorporate modern software development environments and technologies, new

NHPP model for reliability estimation of multiple versions of OSS systems has been

developed.

 Proposed NHPP model incorporates a new testing effort factor based fault content function

for integrating varying needs in each release of software development.

 Proposed model has been implemented and tested on various releases of Firefox and

Genome project failure data set.

 We find out the shortcomings in software reliability model parameter estimation methods

and proposed a new optimization algorithm based on the hybrid nature of swarm

evolutionary algorithms.

25 | P a g e

1.7 Organization of Thesis Work

Rest of work in this thesis is structured as below:

Chapter 2 presents the survey of existing literature work in software reliability modeling. Literature

work refers to various groups of software reliability models and parameter estimation techniques

used in software reliability analysis. Depending on the survey, models are classified into various

categories and an evolution diagram is presented to show the evolutionary history of software

reliability models. This work emphasis necessity for development of a new model for estimation of

software reliability in various software development environments. Further, for accurate reliability

estimation there is a need to have an optimization method that can estimate model parameter

values precisely. This further elevates the need of having a new parameter estimation method that

can better adapt to latest software development methods in reliability analysis. Finally an inference

from the literature is drawn to identify the requirement of the proposed work.

Chapter 3 presents a new failure rate model centered on iterative SDLC process. The proposed

model has been derived from the general class of failure rate behavior-based models and exploits

iterative behaviour of software development process. All latest iterative SDLC processes may be

used to estimate software reliability by applying proposed model. The proposed model takes care

of complexity and paradigm shift of iterative based software development process by introducing

modulation factor. The accuracy of proposed model is summarized using SSE and MSE criteria by

comparing with five existing well known failure rate behaviour based models. Proposed model is

validated using 21 iterations of Eclipse and JDT project failure datasets.

Chapter 4 presents a new NHPP model for reliability estimation of multiple versions of OSS

systems to incorporate modern software development environments and technologies. Proposed

model incorporates a new testing effort factor for integrating varying needs in each release of

software development. It comprises imperfect debugging with the possibility of fault introduction.

Efficiency of the proposed NHPP model is analyzed by comparison with existing NHPP based

models. Proposed model is validated on various releases of Firefox and Genome project failure

data set.

Chapter 5 presents the methods of parameter estimation and a novel meta-heuristic algorithm for

software reliability model parameter estimation. Proposed algorithm is a new hybrid algorithm that

combines features of ABC and DE algorithms along with a new ecological space based factor used

to reflect the ecological fitness of the individuals. The proposed algorithm is validated using well

known mathematical functions of NHPP based models and real world datasets of Real Time

Command and control Systems, US Navel Tactical Data Systems dataset and Tandem Computer

Software failure datasets.

26 | P a g e

Chapter 6 presents the failure datasets that is used to implement the proposed work in this thesis.

Chapter 7 summarizes the results in the previous chapters of the thesis. In this chapter thesis

conclusion is discussed along with future research possibilities.

References. This section details the used references in this thesis work.

27 | P a g e

Chapter 2 LITERATURE SURVEY

This chapter provides a systematic literature review in the field of software reliability

assessment along with parameter estimation techniques. The chapter starts with the discussion of

famous group of software reliability estimation models and their enhancements. It also presents the

proposed classification scheme in the field of software reliability modeling.

2.1 Introduction

Software reliability models are the most powerful tool for assessing and predicting software

reliability. In last four decades about 300 software reliability models has been developed

[18][19][20][21][22]. All the developed models have specific environments, assumptions and

applications [23][24][25]. To identify the concept of software reliability model development,

extensive literature has been collected from various aspects of software reliability. Comprehensive

literature in this section covers major books, review papers and research papers etc. to deal with all

aspects of software reliability measurement. The collected literature is majorly research oriented

and involves vital research papers that explains all perspectives to software reliability model

development and majorly covers following categories to involve entire essential research articles to

formulate a current research problem-

 Software Reliability Models

 Failure Rate Models

 NHPP Models

 Major attributes used to distinguish models

 Parameter estimation techniques

2.2 Software Reliability Models

In last few decades with the growing digital world, number of software reliability models

have been developed under various categories for measurement and enhancement of software

reliability[26]–[32]. An effort is made to reveal all the essential literature in an organized format.

All the surveyed articles are very much helpful in present research work of software reliability

model development. This thesis work majorly discusses all the influential articles in key categories

of software reliability modeling. Authors have surveyed number of classifications of software

reliability models [3], [11]. Survey of the key categories of software reliability modeling is done by

the authors in this thesis. Different Classification schemes are given by number of researchers for

software reliability modeling. For example, a classification given by Sharma [13] is based on the

SDLC phases and depicts various software reliability models during each phase of software

development. Major literature in this thesis work follows this SDLC based classification scheme

28 | P a g e

and focuses on the group of SRGMs that covers failure rate based models and NHPP based

models.

2.3 Classification of Software Reliability Models

This section classifies software reliability models based on iterative SDLC process by

extending the classification scheme given by Sharma et al. [13]. Iterative model is like a cyclic

process that mainly focuses on initial very simple implementation that progressively gains

complexity and wider set of features till final system is completed [33]. Most recently built

iteration and its feedback from evaluation are used in the next iteration and accordingly

refinements are made in future iterations. Each of iteration provides enhancements and at-least

found to be better than the last. Iterative development adapts rapidly to ever-changing needs of

projects and clients within lowest time and budget. Sharma et al. [13] has given classification of

models based on waterfall SDLC process. In this work, keeping iterative software development

practice in mind software reliability models is categorized.

 Here classification of models based on iterative approach is given in Fig. 2.1. Models are

grouped into five categories. Each model category is assigned to a specific phase in iterative

software development process for reliability estimation. Every phase in iterative software

development process is associated with specific requirements and future plans. It shows that each

of the iteration is associated with a parameter that shows added functionality and user acceptance

level in each of the iteration. Initially, system is assumed to be least reliable and as the number of

iterations proceeds, system moves towards refinement and gains reliability.

Software reliability models are classified as below[13] :

2.3.1 Early Prediction Models

These models make use of characteristics of the requirement phase of software development to

deduce information about the reliability prediction of software. These could predict the risk of

software development very early before the projects actually starts. These models are very few and

have a modest impact in software reliability measurement [34] [35].

2.3.2 Architecture Based Models

From the mid of 1990‟s architecture based models are getting an attention because of the

increasing size and complexity of software [36][37]. The main emphasis of these models is to

obtain an estimate of the component reliability on the basis of architecture of software. With the

help of whole application architecture and system component reliability, these models can estimate

sensitivity of application reliability. These models do not consider many aspects and features of

modern software development techniques like concurrent execution of components. Various

29 | P a g e

approaches on which reliability estimation by architecture based models depends includes

following steps.

Module Identification: Modules are considered as independent identity and can be designed,

implemented and tested independently.

Architecture of the Software: Software architecture defines the way by which different modules

interact to achieve specific application tasks. Information about the execution time of each module

is defined by the software architecture, further all interaction among modules only occurs by the

execution control transfer.

Failure Behaviour: Failure of the module is also associated to the software architecture. Failure of

modules may happen either at the execution time of the module or at the control transfer from one

module to the other module. Failure of the modules and interfaces between modules specifies the

reliability of software.

Combining the Architecture with Failure Behaviour: There are three approaches that are

mainly used to combine failure behaviour of software with the architecture of a system.

Architecture based models are further categorised into three ways: state based models; Path based

models and additive models. State based models epitomise the architecture of the software system

using the control flow graphs. Path based models considers enumeration of several execution paths

in an application. Additive models do not consider the architecture of the system to estimate

reliability of the system. By using component‟s failure data, additive models estimates overall

system reliability [38][39].

2.3.3 Hybrid Black Box Models

These SRGMs combines features of both the black box and input domain model. Group of

input domain models involves internal structure of software in reliability estimation and are

assumed as the group of white box models. Black box models only considers interaction of

software with the system within which they are operated [40].

2.3.4 Hybrid White Box Models

These models contemplate how internal structure of the software is organised for software

reliability estimation process. Hybrid white box models are combining the particular features of

SRGMs with features from the white box models. These models are modeling software reliability

prediction on the basis of architecture of the system [41].

30 | P a g e

2.3.5 Input Domain Based Models

This approach makes uses of the properties of the operational usage of the program that are

in the form of test cases that gets executed properly. Assumptions related to specific software

reliability models in this group are the outcomes from the input samples used in test cases that

provides some information about the failure behavior of the software and the behavior of the

program for other input values are also found to be close to the inputs used in test-cases[42].

2.3.6 Software Reliability Growth Models

Fig. 2.1 Classification of Software Reliability Models Based on Iterative Approach

SRGMs are providing the best way to measure software reliability[43]–[45] [19], [46]–[48],[3],

[49]–[51]. SRGMs are considered as the most successful class of software reliability models

among various categories specified in the Fig. 2.1. These models are existed in one or other form

through numerous publications and these publications in last decades are proving the success of

this class of models. SRGM catches failure behaviour of software while doing testing and using

this behaviour, they extrapolate the functioning of software during operation. These models depict

the reliability of the software using failure data information and various trends that are observed in

failure data. These models treat the software as monolithic entity that only interacts with the

external environment due to which these models are also called as black box models. These models

use the failure data to estimate model parameters.

31 | P a g e

The SRGMs are further classified into two most important categories of software reliability

models. These are Failure rate models and Non–Homogenous Poisson process behaviour based

models. History of software reliability growth models is shown in Fig. 2.2. A tree structure is made

with all variation in software reliability modeling over a wide range from 1972 to 2019.

Fig. 2.2 History of Software Reliability Growth Models

2.3.7 Failure Rate Behaviour Based Models

Failure rate behaviour based models are basically used to analyze the program failure rate per fault

and studies how the rate of failure changes at time of failure in an interval of time. JM model is the

first software reliability estimation model [44]. This is a perfect debugging behaviour based model

and assumes that initially there is fixed, constant and unknown number-of faults in the software.

These models assume that the time between failures is independent and distributed exponentially.

Specific work that includes subsequent work proposed by number of researchers in this group of

models is discussed in Table 2.1.

32 | P a g e

Table 2.1 Failure Rate Behaviour Based Models

Sr. no. Year Assumptions

JM1[44] 1972 It is an earliest Markov process based Model, this assumes that total no. of initial

faults in a software is always unknown and has a fixed value. This considers that

time between failures are always independent random quantities and are distributed

exponentially.

JM2[52] 1973 A Bayesian reliability growth model is presented here and assumes that program is

complete to work for a continuous time periods between the failures. It also

considers a repair rule for program developers at each failure. It does not consider

the internal structure of the program.

JM3[53] 1988 This Model is fitting well into a general framework of Bayes problem, and assumes

a Bayesian approach for inference by considering the conditions as an empirical

Bayes-problem.

JM4[54] 1978 This model is evolved from the JM model; Hazard function is considered as

proportional to the current number of total fault content and to the time elapsed

since a last failure.

 JM5[51] 1977 This model extends JM Model and SW Model; It allows possibility of more than

one fault at each of the time interval.

JM6 [43] 1979 It follows Markov process like the JM Model. This characterizes the transition

between the modules while execution as following the Markov property.

JM7[51] 1979 This is evolved using the JM and geometric model based and follows Poisson

distribution based failure rate. It assumes that the number of faults occurring at

intervals follows Poisson distribution with an intensity rate Dki-1.

JM8[55] 1998 It has extended the JM geometric model by describing the behaviour of software as

having safe and unsafe states.

JM9[14] 1979 This model considers phenomenon of imperfect debugging for software

development and testing.

JM 10[45] 1981 This model is developed by a variation of the JM model. And assumes that :

a) Time separations between error detections,

b) Number of errors per written instruction,

c) Failure rate of software is considered as proportional to current error content in

software.

JM11[56] 1981 This model is presented as a special case of JM and NHPP models.

JM 12[57] 1985 This is evolved by considering the Bayesian process in JM model and Mein-hold

and Singpurwalla model. It also assumes that it is easy to calculate the distribution

of undetected errors at the end of testing in-order to see the relative effects of

uncertainty in number of errors and in the efficiency of fault detection.

JM 13[58] 1985 In this model alternative formulation of JM and Little-wood models are presented.

Here a formulation in terms of failure rate rather than inter failure time is given.

JM14[59] 1991 It assumes that different faults may have different contributions to the failure rate. In

addition, the structure of software is also incorporated in this approach.

JM15[51] 2000 This model is extended from the JM Model. Effect of environmental factors has

been incorporated in the model development.

JM16[60] 2003 A Moranda de-eutrophication model is proposed by assuming time between failure

as statistically independent exponential random variable with given failure rate.

33 | P a g e

2.3.8 NHPP Behaviour Based Models

NHPP group of models offers a way for unfolding the software failure phenomenon analytically

during testing [66], [3], [51]. These models are also providing a promising tool to estimate the

software reliability. The main concern in these models is to estimate mean value function of

cumulative number of failures that gets experienced up to a specified point in time. The models

included in this group comprises number of research publications that has been extensively

surveyed by the authors.

Table 2.2 discusses major work in the field of NHPP based software reliability modeling.

Table 2.2 NHPP Based Models

JM17[61] 1991 It has been evolved from the assumptions of JM model and formulates the total

expected costs of software with two different release policies.

JM18[62] 2006 This model generalizes the JM model by introduction of a negative‐binomial prior

distribution to represent the number of faults remaining and a Gamma distribution to

represent the rate by which each fault is exposed.

JM19[63] 2011 This is the modification of the famous JM model and it is based on cloud theory.

JM20 [47] 2012 This model considers the imperfect debugging in fault removal. And considers that

when a failure occurs then the detected fault is assumed to be removed with

probability p and it is not removed perfectly with probability q. It also assumes that

new fault may be generated with probability r.

JM21[49] 2016 Discussed that the analysis of reliability of software can be done at various phases

during the development of engineering software. JM and SW SRGMs are two

special cases of this general SRGM.

JM22[64] 1985 This model considers that the reliability of computer software can be

comprehensively viewed by adopting a Bayesian point of view and provide an

alternative motivation for a commonly used model, the JM model.

JM23[65] 2017 The objective Bayesian inference was proposed to estimate parameters of JM

model. Gibbs sampling is utilized to obtain the Bayesian estimators, credible

intervals and coverage probabilities of the parameters.

Sr. no. Author Assumptions

M1[66] 1979 1. The failure process is analyzed to develop a suitable MVF of NHPP based

model.

2. Software system is subject to failures at random times with a previous analysis.

M2[30] 1983 This model assumes error detection phenomenon to be of S shaped type.

M3[67] 1983 1. It defines mean value function in terms of censoring and removing. Censoring

occurs when the test is stopped at detection of a specified number of errors or

specified time.

34 | P a g e

2. It classifies the typos of software error in to four types of the observed data.

M4[48] 1984 It extends GO Model and continuous version of Moranda Geometric Model.

 M5[51] 1984 Fault content is considered different than Yamada model 1 which is imperfect

debugging behaviour based.

M6[51]

1984 1. Extends GO Model but assumes fault content to be time dependent and

exponential function.

2. FDR is assumed to be a constant.

3. Assumes the possibility of fault introduction, when existing errors are removed

and considers the probability of finding error, proportional to remaining errors.

M7[51] 1984 Extends Ohba Model by using different fault detection rate function then

inflection s shaped model. FDR is assumed constant.

M8[18] 1984 Extends GO Model using an inflection factor.

M9[51] 1984 Extends GO Model but involves number of clusters of modules.

M10[68] 1985 The effects of factors related to uncertainty are analyzed to obtain uncertainty

bounds.

M11[69] 1985 Extends GO Model and Hyper exponential model.

M12[70] 1985 This model considers the effect of random coefficient autoregressive to analyze

the decay in reliability. Also incorporate reused and newly developed sub-

systems.

M13[71] 1985 This model used two types of errors, those which are easy and difficult to find.

M14[3] 1985 It has Similarities to GO model and considers that there is relationship between

Execution and Calender time.

M15[72] 1986 Introduces two type of performance measures to accurately model reliability of

distributed systems, these are related to reliability of program and whole

distributed system.

M16[73] 1986 NHPP model with testing effort using Weilbull distribution due to flexibility in

TE expenditure is proposed.

M17[74] 1989 It considered the complexity of errors for mathematical modeling.

M18[75] 1996 It turns out that examination of accuracy of past predictions can be used to

improve future predictions by a simple recalibration procedure.

M19[76] 1990 Time dependent behaviour of effort expenditure is described using Rayleigh and

exponential curve.

M20[77] 1990 NHPP model With two type of errors.

M21[31] 1992 This model is dependent on the domain of testing.

M22[78] 1992 This assumes that using assumptions based on Schneidewind model several

NHPP models can be derived.

M23[79]

1992 This illustrates usefulness of connectionist based models for prediction of

software reliability growth.

M24[32] 1992 Assumes that new faults get introduced sometimes when existing faults get

corrected and removed and assumes that FDR is dependent on remaining and

fault introduced in the system.

M25[80] 1992 Assumes that detected fault can cause detection of remaining faults in system.

M26[81] 1992 The probability density estimation of the number of software failures in the event

of clustering or clumping of failure is considered for development of discrete

compound Poisson (CP) prediction model.

M27[82] 1993 SRGM with imperfect debugging is discussed here, it defines a variable that

represents cumulative number of faults that gets corrected up-to a specific testing

time.

M28[51] 1994 This is based on GO Model but considered two type of modules.

M29[83] 1996 This is an Extension of GO Model.

 M30[84] 1994 Incorporates imperfect debugging phenomenon with multiple type of failure.

35 | P a g e

M31[85] 1996 Proposed an enhanced NHPP model. It involves time varying test coverage

function in its formation.

M32[51] 1997 Generalized form of the imperfect debugging fault detection model. 2.Assumes

that the FDR is different among faults, new error can be introduced when error is

removed.

M33[86] 1997 NHPP model is developed

M34[87] 1997 Incorporates a logistic testing-effort function in reliability assessment.

M35[88] 1997 1. Bayes inference for a NHPP with an S-shaped mean value function is

proposed.

2. Two Gibbs sampling approaches are used to compute the Bayes estimates of

faults remaining in the system.

M36[51] 1997 1. Fault content is assumed to be different function.

2. FDR is Inflection s-shaped curve and it is non-decreasing time dependent.

M37[89] 1998 Presents frameworks for development effort among software components to

provide cost-effective system reliability goal. It uses the operational profile of the

usage environment and considers the utilization matrix to link all the usage with

the structure of the system.

M38[90] 1998 Proposed log-logistic growth model and can capture nature of increasing or

decreasing failure occurrence rate/fault.

M39[22] 1999 It is a Generalized model based on NHPP that integrates imperfect debugging

with learning phenomenon. It assumes that fault repair is always associated with a

FIR due to imperfect debugging.

M40 [21] 1999 1) In this approaches for estimation of reliability are developed by indulging

information from a similar project.

2) GO model is used by assuming the same value of the fault detection rate.

 M41[2][51] 2000 Environmental factor effect has been added in the GO Model. Based on

proportional hazard function, fault intensity rate consist of effect of the

environmental factors.

 M42[51] [22] 2000 It incorporates inflection s shaped factor and exponential fault introduction rate as

in Yamada imperfect debugging model 1.

M43[91] 2001 This paper presents a technique by making use of time and code coverage

measurements for prediction of failures in software operation.

M44[92] 2001 The model is formulated by a NHPP process and makes use of three kinds of

testing-domain.

M45[93] 2002 Developed a Version programming based Model that considers FIR and FRE for

Version based Programming by application of a general NHPP model into

Version based system.

M46[19] 2003 1) Incorporates Fault removal probability.

2) Evolved from the GO exponential model. Fault removal efficiency model and

incorporates fault removal efficiency (p), and (t) i. e. the FIR.

M47 [51] 2003 1) Testing coverage has been used in order to define b (t) and it has been extended

from GO Model.

2) Involves time based testing coverage functions and uses percentage of code

coverage which has been examined during testing.

M48 [51] 2003 1) It is the specification of the generalized testing coverage and fault removal

models.

2) FIR is considered as a linear time based function and incorporates testing

coverage function in model development.

M49[94] 2004 New SRGM is developed by formulating the relationship between alternative

testing-coverage evaluation function and the amount of detected faults.

M50[95] 2004 It proposed that different SRM can be developed just by the application of time

dependent delay functions.

36 | P a g e

M51[96] Pham /2005 1) Imperfect fault detection rate has been incorporated in the testing coverage

model.

2) It Assumes imperfect FDR by combining the Fault introduction phenomenon.

3) Assumes constant rate of fault content function

M52[97] 2006 Random effect of field environment is captured .

 M53[51] 2006 Effect of random field environment has been added.

M54[98] 2006 1) General framework for modeling software FD and FC process is proposed.

2) This has changed the assumption that faults are always fixed immediately on

detection.

M55[99] 2007 Importance of multiple change point is incorporated into Weibull type of testing

effort function.

M56[100] 2007 1) It is a Generalized discrete SRGM where time of fault occurrence follows

discrete probability distribution.

2) It enables to assess reliability of software with effect of size of program.

M57[101] 2007 This incorporates, time dependencies between fault detection, fault correction and

focused on parameter estimations of combined model.

M58[102] 2007 1) It is a model for the software systems developed for safety critical application

under a specific testing environment.

2) Incorporates severity of errors.

M59[103] 2007 Extended NHPP model with different fault content function and FDR, A common

parameter has been used to show the inter-relationship between a(t) and b(t).

M60[104] 2008 1) It investigates the problems related to imperfect debugging, in which fixing of

one bug may create another.

2) Assumes that the debugging process can be described and modeled using finite

and infinite server queuing system.

M61[105] 2008 It makes use of logistic function in order to describe growth of testing coverage.

Fault detection is based on this test coverage function.

M62[106] 2008 Proposed model is a two-dimensional SRGM that consist of 2D time space to

represent testing time and testing coverage.

M63[107] 2008 1) Assumes that testing effort is used in-order to make decision about the failure

causes and to remove them. FRR is logistic function of time.

2) There are two type of faults-type 1 and type 2 depending severity levels.

M64[108] 2010 This model describes how one can incorporate Exponential-Weibull testing-effort

function into inflection S-shaped SRGM based on NHPP.

M65[109] 2008 A general NHPP SRM is developed that considered quasi-renewal time-delay FR

function and general mean value function is extracted using the method of steps.

M66[110] 2009 This model describes Software reliability process assuming two types of SRG

factors; these are Testing Time and Testing Effort factors.

M67[111] 2009 A framework for testing effort dependent SRGM is proposed that incorporated

imperfect debugging and phenomenon of error generation for different stages of

fault removal process.

M68[112] 2010 Proposed method is a simple and reliable method to forecast levels of defect

backlog in large software projects. This is a multivariate linear regression, expert

estimations based predictions.

M69[113] 2010 Three tier client server system based on NHPP is proposed by partitioning failures

and defects into three categories.

M70[114] 2010 This model is developed to capture the effect of faults generation in software due

to additions at various points in time. It uniquely identifies left over faults in

operational phase and during the testing phase of software development.

M71[115] 2010 To approximate reality much more closely, It incorporates concepts of testing

compression factor and ratio of faults to failures in modeling software reliability.

M72[116] 2010 Defined scope of important factors in modeling reliability and also describe a

37 | P a g e

novel approach in order to obtain a realistic estimate of system reliability.

M73[117] 2010 1) Dependent on time, behaviour of TE expenditure is described by a new

modified Weibull distribution function.

2) It assumes that EDR to the amount of TE spent during testing phase is

Proportional to current amount of fault content.

M74[118] 2011 Discussed how to incorporate variable fault removal function into modeling

reliability of software.

M75[29] 2012 1) Reliability assessment based on discrete NHPP model is proposed.

2) A bootstrap method is applied to the regression analysis for statistical inference

on software reliability assessment.

M76[25] 2012 1) Extended GO Model by considering b (t) as a time dependent function.

2) FDR is estimated by tester‟s ability of learning and by the number of remaining

faults in software.

M77[119] 2012 It considered the joined effect of scheduled pressure and limited resources using a

Cobb Douglas production function for software reliability growth.

M78[120] 2012 For model development it uses covariate information in a form of software

metrics with neural network regression for estimation of failure rate in model

development.

M79[121] 2012 Fuzzy time series approach is used to estimate TBF of software during phase of

testing.

M80[122] 2013 1) Extended GO model with un certainty of fault detection rate in random field

environment,

 2) Fault detection rate follows v tub shaped curve in random field environment.

M81[123] 2013 1) Proposed SRGM failure time follows normal distribution.

2) Developed algorithm is based on an Expectation and Maximization algorithm.

M82[124] 2014 1) By setting different values for FDR, probability of fault introduction and

removal can be extracted.

2) When p(t)=1 and r(t)=0, GO model is evolved, irrespective of TE.

M83[125] 2014 Represents FDP and FCP with the incorporation of TE function and method of

imperfect debugging in model development.

M84[126] 2014 1) Assumes FDR function that is based on a Log-Log distribution. TC is assumed

to be exposed to uncertainty of operating environment.

2) GO Model and testing coverage based model has been extended.

M85[127] 2017 To indicate defect density of software in early phases of SDLC, fuzzy logic and

software metrics of early artefacts are used.

M86[124] 2014 1) Incomplete fault debugging and introduction of new faults are described.

2) Imperfect phenomenon based testing effort is developed.

M87[128] 2014 In this a combinational model is proposed using weighted arithmetic, geometric

and harmonic combinations of models.

M88[129] 2014 Existing models are improved using historical project data.

M89[130] 2015 1) Assumes two types of effort functions to describe s shaped testing effort factor.

2) Delayed s shaped and inflection s shaped factors are used to implement testing

effort function.

M90[131] 2015 A multi-objective and multi-stage software reliability growth based planning

method in the early software development strategy is proposed.

M91[132] 2015 1) A method for estimating the reliability growth of complex continuous

operating system is developed.

2) A framework via posterior distribution on system failure intensity is developed.

M92[133] 2015 1) GO and delayed s shaped model has been extended for testing failures in multi-

release software.

2) Failure phenomenon of software is investigated by considering delay in failure

time of the software.

38 | P a g e

2.4 Model Evolution

 On the basis of literature survey given in previous section, it is analysed by authors that there is a

relationship between various groups of models. Keeping in view, the notion of how one model is

M93[134] 2015 A bivariate software reliability growth model considering effect of uncertainty of

change of failure-occurrence phenomenon at a change-point is developed by

making use of Testing time and testing effort.

M94[135] 2016 1) New S shaped and concave model extended earlier dependent parameter

model.

2) Model considers dependency of fault detection, imperfect fault removal and a

parameter called maximum amount of faults in software.

M95[136] 2016 Incorporates uncertainty of FDR per unit of time in an operating environment.

M96[137] 2016 1) A novel NHPP model is proposed to enumerate the uncertainties related with

perfect or imperfect debugging process is developed.

2) It represents the environment based uncertainties as a noise of arbitrary

correlation.

M97[138] 2016 Assumes a Dynamic weighted behaviour for the model development and

combines multiple models.

M98[139] 2017 1) Assumes that software debugging can be affected by many factors, such as

subjective and objective influences, the difficulty and complexity of fault

removal, the dependent relationships among faults, the changes in different

phases of software testing and the test schedules.

2) The rate of fault introduction is not assumed as a constant, but is an irregularly

fluctuating variable in software debugging.

M99[140] 2017 1) Model is based on environmental uncertainties and dynamics. These

uncertainties are like non-predictable changes in requirements and number of

team members.

2) It predicts several development situations that involve random factors like team

skills and development environment.

M100[141] 2017 This model is based on the multiple objectives and considers time, cost and

reliability of subsystems in each stage of software development.

M101[142] 2018 1) It incorporates effect of up-gradations on successive releases of software.

2) It also assumes that faults in software are of different type like soft and hard

faults on the basis of effort and time consumed in removal of faults.

M102[143] 2018 Assumed as a special case of famous inflection S-shaped model and generalized

GO model. A special attention is given to non-existence issues of MLE.

M103[144] 2018 A variable η is considered as a random variable to represent uncertainty of FDR

in the operating environment.

M104[145]

2019 Fault Removal process for multi-release OSS systems is assumed by considering

the concept of change point.

M105[146]

2018

Assumes that all of issues that are fixed in a current release of the software are

deciding the next release of software, uncertainty issues are quantified by the

entropy based measures.

M106[147] 2019

Complexity issues like knowledge of debugging process, coverage factor and

delay time function in distributed computing environment is concerned.

39 | P a g e

evolved from other group of models, authors make a tabular description of assumptions used by

various models for both group of failure rate models (Table 2.1) and NHPP based models (

Table 2.2). These are the majorly used categories of software reliability models that are extensively

used in industries and academia. On the basis of specific assumptions, models are examined to see

what are the specific attributes on which models are proposed and in which category of the

attributes they belongs.

2.4.1 Attributes used to Categorize Software Reliability Growth Models

All models that have been surveyed by the authors are classified in terms of fifteen specific

criteria. All the developed models in some or other ways belongs to these major attribute based

criteria. These criteria are used by the authors to distinguish models in different categories. The

key attribute based criteria are specified as follows:

 Failure rate distribution of model (Exponential and s-shaped model)

 Parametric modification based model

 Debugging behaviour of a model

 Involvement of Modular structure in model development

 Incorporation of Testing Effort in modeling

 Incorporation of Testing Coverage in model development

 Involvement of uncertain software development environment

 Bayesian Process based model

 Involvement of multi release software development environment

 Generalized model formulation

 Model evolved on the basis of types of errors

 Consideration of error complexity in modeling

 Involvement of environment factors in model development

 Incorporation of some new technology in model development

 Models evolved by combination of some models.

40 | P a g e

Fig. 2.3 Categorization of SRGMS based on Well-Defined Criteria

On the basis of survey done in the Table 2.1 and

Table 2.2 for SRGMs, a new classification is defined by the authors in Fig. 2.3. This classification

on the basis of attribute based criteria involves either a new approach for model development or

41 | P a g e

models are enhanced using new parameters which have not been included in the development of

earlier models. Only on the basis of these criteria, researchers have developed models and further

these are providing a new way to the researchers to enhance field of modeling software reliability.

Further, this classification illustrates how one model is evolved from other model based on their

specific assumptions. Using in-depth systematic survey, an evolution diagram for the existing

models in history is made by the authors in this thesis work and is shown in Fig. 2.4. Each of the

models is evolved on the basis of their specific assumptions that underlies in a specific class of

attribute criterion.

From the survey of software reliability models done in this chapter it is found in practice

that SRGM encounters major challenges. First, a software developer rarely uses operational profile

for testing of the software, so what has been observed may not be applicable for operational usage.

Second, failure data published by the software companies to be used in reliability modeling is very

much limited; in such a case it is hard to make statistical meaning to software reliability prediction.

Third, all assumptions made in SRGM development are not realistic. Nevertheless, these

difficulties can be overcome with suitable measures by making more realistic assumptions in

specific software development environment.

In spite of all the difficulties in model development, there are numerous software reliability

models that performs significantly well in industries and academia. There is a need to uncover all

the major challenges in methods of software reliability model development so that accurate

estimation of software‟s reliability could be done in order to avoid any kind of harmful losses in

social or business environment.

42 | P a g e

Fig. 2.4 Evolution of Software Reliability Growth Models

2.5 Parameter Estimation Technique

Parameter estimation problems for a non-linear system are represented with a function

optimization problem. There is a requirement to find value of parameters which can be fitted to a

43 | P a g e

function that is to be optimized. In software reliability, MLE and LSE techniques [51] are used

heavily as general technique of parameter estimation. MLE states that anticipated probability

distribution is one that will make observed data “most likely” means that there is a need to have set

of parameter values that will maximize likelihood function value. LSE technique requires finding

parameter values that minimizes sum of squared errors. In both the techniques, it is impossible to

find analytic form solution, particularly when model involves several parameters and its

probability density function is in highly non-linear form. Both MLE and LSE methods require use

of nonlinear algorithms of optimization. An elementary idea for non-linear optimization is to

rapidly find optimal parameters that maximizes likelihood function or minimizes the sum of

squared errors.

 Traditional techniques have been found in use for estimation of parameters of software

reliability models [4]. Fatefully, all model parameters are normally having non-linear relationships

and because of this, traditional techniques for optimization of parameters suffer various problems

in finding optimum value of models to better predict software reliability.

2.5.1 Meta-heuristic Algorithms in Various Application Domains

In recent years meta-heuristic algorithms have become very much popular due to their simplicity,

flexibility, their derivative free nature and capability of avoiding the local optima problem [7].

These algorithms explore the feasible solution space using some specified rules. Number of nature

inspired algorithms has been developed in the literature which can be applied in various domains

for the solution of numerical optimization based problems [10], [148]–[151]. All nature inspired

algorithms are assembled into four groups and comprises the algorithms as below:

1. Natural Evolutionary Principal Based Algorithm

2. Swarm Intelligence Behaviour Based Algorithms

3. Physics Phenomenon Based Algorithms

4. Human Intelligence Behaviour Based Algorithm

1). Evolutionary principal based algorithms are inspired from the nature‟s evolution process. All

these are based on the principal of survival of fittest in order to form the next generation

individual. Algorithms in this group are like:

 Genetic Algorithm [149]

 Genetic Programming [152]

 Differential Evolution [10]

 Biogeography Based Optimization [153] etc.

44 | P a g e

2). Physics phenomenon based algorithms are grounded on the rule of physics. There are so-many

well-known optimizations algorithms like:

 Simulated Annealing [154]

 Galaxy Based Search Optimizations [155]

 Gravitational Search Algorithm [156]

 Black Hole [157]

 Charged System Search [158] etc.

3) Swarm Intelligence behaviour based algorithms follows the social activities of the flocks of

animals, birds and amphibians etc. This is the widest group of nature inspired algorithms and

includes algorithms as:

 Particle Swarm Optimization [148]

 Bat Algorithm [159]–[161]

 Artificial Bee Colony [162]

 Ant Colony Optimization [163]

 Dolphin Echolocation [164]

 Honey Bee Marriage [151], [165]

 Artificial Fish Swarm Optimization [166]

 Termite Algorithm [167]

 Wasp Swarm Algorithm [168]

 Monkey Search Algorithm [169]

 Wolf Pack Search Algorithm [165]

 Bee Collecting Pollen Based Algorithm [170]

 Cuckoo Search Algorithm [171]

 Dolphin Optimization [172]

 Firefly Algorithm [173]

 Fruit Fly Optimization [174]

 Whale Optimization Algorithm [175]

 Grey Wolf Optimization Algorithm [176], [177]

4) Human inspired meta-heuristic algorithms are stirred from the intelligent behaviour of human

beings and include algorithms like:

 Teaching Learning Algorithm For Optimization [178]

 Tabu Search Algorithm For Problem Optimizations [179] etc.

45 | P a g e

Numbers of algorithms among these groups of algorithms are applicable in various domains and

these have been found significant in their specific domains. For example, Dandy et al. [180] in

2015 proposed an improved GA for the optimization of water distribution problem. Ismail et al.

[181] in 2014 applied GA for the design of renewable energy system. Kumar [182] in 2014 applied

GA and MAUT in dynamic faults and release optimization based problems. Hsu et al. [183] in

2010 discussed the software reliability models parameter estimation with the applicability of

modified GA. As compared to GA where chances of selection to become a parent is dependent

only on fitness values of the solution, in Differential Evolution algorithm each solution is having

an equivalent opportunity of being nominated as parent and has been applied in areas like design of

filters with requirement of magnitude and group delays, in image segmentation etc. An improved

version of DE algorithm generating random number by disordered change has been applied for the

safety problem of power system described in Li and Chen [184]. DE algorithm after a few runs

may generate overlapping individuals and makes it an inefficient algorithm for global search.

Jin and Jin [185]in 2016 applied improved swarm intelligence approach for parameter

optimization. Mahdavi et al. [186] proposed a novel discrete PSO algorithm in 2010 and Astuty

and Haryono [187] in 2016 proposed binary PSO algorithm in power system transmission in an

optimized way. Malhotra and Negi [188] in 2013 applied PSO for reliability modeling. Sheta [189]

in 2007 applied PSO for parameter estimation of software reliability models. Algorithms like ABC

by Yang [6], [7], [190] have been well applied in various field. Basturk and karaboga [191]

published a research on ABC algorithm‟s performance in 2008. Ozturk and Karaboga [162]

proposed a new clustering approach in 2010 using ABC algorithm. Zhu [192] proposed a new

globally best directed ABC algorithm in 2010. Karaboga [193] proposed ABC algorithm to solve

problems based on constrained optimization in 2007. ABC algorithm and its variants for

constrained optimization have also been discussed by Akay and Karaboga [190] in 2017. The food

information in ABC is dispersed among the whole bees, this algorithm achieves well in global

search optimization i.e. the exploration is upright in finding the better solution. Dynamic frequency

based parallel K-bat algorithm [160] is developed to estimate its efficiency in big data

environment.

Hybrid algorithm have also been applied for the solution of optimization problem like

Mirjalili [194] developed a hybrid PSOGSA algorithm by hybridization of PSO and PSOGSA for

mathematical function optimization in 2010. Mirjalili [195] proposed a binary optimization

algorithm using hybrid PSOGSA algorithms in 2014. Liuand Zhoua [196] applied improved QPSO

(Quantum Particle Swarm Optimization) algorithm in high dimensional complex problems in 2014.

Abraham [197] proposed a hybrid differential and ABC algorithm in 2012. This algorithm applied

DE after normal process of ABC for better selection of candidate solution. Li et al. [198] proposed

46 | P a g e

ABC assisted DE for ORPF (Optimal Reactive Power Flow) in 2013. They have used ABC in the

DE algorithm in-order to recover DE shortcoming of large population requirement for avoiding

premature convergence. Tiwari et al. [199] proposed hybrid ABC algorithm with DE in 2017 and

applied it for optimization of welded beam design problems. This algorithm has provided

modification to position update equation in employee bee phase and they applied DE for onlooker

bee phase position update.

2.5.2 Meta-heuristic Algorithms in Ground of Software Reliability

In modeling reliability of software, parameter estimation process is having an important

role. In the last decade parameter optimization by meta-heuristic algorithm is a major attention in

the field of software reliability. Xiao-Li Meng in 1993 proposed MLE via ECM algorithm and also

provide a general framework for this [200].

Takashi Minohra, Yoshihiro Tohma [201] applied genetic algorithm for parameter

estimation of hyper geometric distribution based SRGMs and they discussed that genetic algorithm

is more significant in parameter estimation and it also removes constraints from software reliability

model parameters.

Hiroyuki Okamura [202] discussed an expectation and maximization principal (EM) based

iterative method for maximum likelihood estimation of software reliability model parameters and

then compare EM based method with traditional Newton and Fisher‟s Scoring methods. In Jae

Myung [203] proposed MLE for statistical estimation of parameters and discussed that the LSE is

mainly a descriptive tool, MLE is a favoured method of parameter estimation and is an crucial tool

for various statistical modeling techniques, Specifically in non-linear modeling having non normal

data.

Ohishi, Okamura, Dohi [204] proposed Gompertz model for software reliability estimation

and estimate model parameters using convergence property based EM algorithm and discussed

effectiveness of EM algorithm by comparing in terms of accuracy and security with Newton

method. M. Casertaa, A. Márquez Uribeb [205] applied Tabu-Search-based algorithm for

parameter estimation of software reliability models. It emphasized on the memory based

mechanism to balance intensification and diversification with the help of short and long-term

memory. Sultan and Mohammed E. El-Telbany [206] provide a method for software reliability

estimation using multi-objective genetic algorithm. Evidential reasoning algorithm is used by Hu,

Si and Yang [207] for software reliability prediction based model that is grounded on nonlinear

optimization and provide the effectiveness of it by comparing it with several existing methods in

https://www.sciencedirect.com/science/article/abs/pii/S0022249602000287#!
https://www.sciencedirect.com/science/article/abs/pii/S0022249602000287#!
https://www.sciencedirect.com/topics/mathematics/least-square-estimation
https://www.sciencedirect.com/topics/mathematics/nonlinear

47 | P a g e

terms of prediction accuracy or speed. Hsu et al. discussed the software reliability models

parameter estimation with the applicability of modified GA [208].

A parameter estimation method grounded on the ACO Algorithm is proposed by Zhenga,

Liua, Huanga and Yaoa [209] and they also discussed that in comparison to traditional methods

and PSO, ACO is about ten times more accurate.

Wason [210] proposed new method for parameter estimation using finite automata to model

software reliability that is indirectly significant over the traditional models by many factors, most

prominently due to a reason that a software system during execution is a finite state machine. Latha

Shanmugam and Dr. Lilly Florence [211] proposed an estimation method created on ACO

algorithm and compared the results with PSO algorithm with higher accuracy.

Dr. Najla Akram, AL-Saati and Marwa Abd-AlKareem [212] applied swarm intelligence

based cuckoo-search algorithm for parameter estimation of SRGMs and proved its efficiency and

effectiveness by comparing it with the PSO and ACO algorithms.

K.Mallikharjuna and Kodali [213] proposed a method for parameter estimation of SRGMs

using ABC algorithm. TaehyounKima, KwangkyuLeeb, JongmoonBaik [214] proposed an

effective approach for parameter estimation of software reliability using real valued genetic

algorithm and then compared the results of proposed approach with the existing GA and other

traditional methods. Wei Zhaoa, Tao Taoa, Enrico Zio [215] discussed prediction of reliability with

support vector machine using combination of diagnostic selection and GA algorithm. In

combination these methods allows utilization of prior knowledge for guiding GA process Inorder

to avoid divergence, local optima, and to accelerate convergence. Pratik Roy, Mahapatra and Dey

[216] proposed a Neuro-Genetic method and then applied it on logistic phenomenon based

software reliability prediction and provide clues for the effectiveness of the proposed approach

than other artificial neural network based methods.

Efficient method based on gravitational search algorithm is applied by Ankur Choudhary,

Anurag Singh Baghel, Om Prakash Sangwan [217] for parameter estimation of SRGM. They also

provide the efficacy of the method by comparing it with previous numerical estimation techniques,

genetic algorithm and cuckoo search methods.

Harmony search is used by Ankur Choudhary, Anurag Singh Baghel and Om Prakash

Sangwan [218] for parameter estimation of SRGMs. Authors tested their proposed approach

against Cuckoo search and traditional numerical methods considering MSE and TS as a measure of

quality. They also applied firefly optimization algorithm for parameter estimation of SRGMs

[219].

48 | P a g e

2.6 Performance Measurement Methods

Quantitative techniques are required to access how accurate are the SRGMs for measuring

predictions about reliability of a software. Ability of a model can be judged by the way how it

replicates the perceived behavior of software and how it make predictions about the future

behavior of the software by using observed failure data. In modeling software reliability, main

concerned is to predict future behavior of the software. To explore the efficiency of SRGMs, here

few of accuracy estimation criteria are discussed that may be used to compare model‟s accuracy

quantitatively. There are different criteria that are utilized by various researchers for software

reliability measurement and to check for accuracy estimation or comparison of software reliability

models. For example Teng et al. [220] proposed Mean Squared Error, Short Term Relative Error

and Mean Square Prediction Error measure etc. to represent a deviation between the predicted

values and actual values. These methods provide a good measure of difference between the actual

and estimated values. Li and Malaiya [221] proposed Mean Relative Error in order to access

accuracy of models. These measures show the quantitative comparisons for short term predictions.

Further various researchers employed some other methods of accuracy estimation as given in Table

2.3.

Table 2.3 Performance Measurement Metrics[13]

Accuracy

Estimation Method

Definition Measurement

“Mean Square

Error(MSE)”

“Measures the deviation between

the predicted values with the actual

observations”

^
2

1

(())
k

i i

i

m m t

MSE
k p

“Mean Absolute

Error(MAE)”

“It is similar to MSE but the way

of measurement is using the

absolute values”

^

1

| () |
k

i i

i

m m t

MAE
k p

“Sum of Squared

Error(SSE)”

“It is the sum of the squared

distances between the observed

value and the actual values”

^
2

1

| () |
k

i i

i

SSE m m t

“Bias” “It is the sum of the difference

between the estimated curve and

the actual data”

^

1

(())

Bias

k

i i

i

m m t

k

49 | P a g e

“Mean error of

Prediction(MEOP)”

“It sums the absolute value of the

deviation between the actual data

and estimated curve”

^

1

| () |

1

k

i i

i

m m t

MEOP
k p

“Accuracy of

Estimation(AE)”

“It reflects the difference between

the estimated number of all errors

with the actual number of all

detected errors”

AE | |a

a

m a

m

Ma and a is actual and estimated number of detected

errors respectively

“Predictive Ratio

Risk(PRR)”

“It observes the distance of model

estimates from the actual data

against the model estimate”

^

^
1

((t))
PRR

((t)

k
i i

i
i

m m

m

“Root Mean Square

prediction error

(RMSPE)”

“It is the measure of closeness with

which the model predicts the

observation”

^
2 2

1

1
RMSPE ((t))

1

k

i i

i

m m Bias Bias
k

“Theil Statistics

(TS)”

“It is the average deviation

percentage over all periods with

regards to the actual values. The

closer it is to zero better is the

prediction capability of a model”

^
2

1

2

1

((t))

TS *100%

()

k

i i

i

k

i

m m

m

2.7 Inference on the basis of Literature Survey

1. More than 300 models have been developed till today, but all these models cannot be

recommended to potential users, because of their sheer complexity in implementing them in

latest software development environment to gain benefit of improving software reliability.

2. Failure rate behaviour based models are the earliest group of models used to analyze failure

rate per fault of the program. These models provides a way to examine how the failure rate

changes at the time of failure in an interval of time and found to be utilized in academia and

industry efficiently.

3. NHPP based models are among the most promising group of models for assessing the

reliability of software. These models can observe the reliability growth of the software at

the time of testing in software development process and can observe software failure

phenomenon analytically during the testing phase.

4. Available research in software reliability model development is made for reliability

estimation of software‟s developed under traditional software development lifecycle

process.

50 | P a g e

5. Accurate parameter values of software reliability models are difficult to derive, because

most of the software reliability models lack experimental datasets. Research publications

are screening no more than 31% experimental researches and among these only 13% are

purely experimental. This low number is due to reasons because public experimental data

sets in software reliability estimation are very narrow and producing reliability data through

experimentation usually require long time cluster. Lack of the experimental datasets has

been considered as a major block in the success of software reliability model development.

6. The estimation of parameter values in model development is the primary difficulty in

software reliability model development. Future prediction of the software reliability

depends on the estimated parameter values. Optimum parameter valves for accurate

reliability predictions involve usage of traditional methods of parameter estimation like

least square estimation and maximum likelihood estimation methods.

7. Recommendations on how to use LSE and MLE to obtain accurate model parameter is

largely missing in the literature. This involves not only what algorithm should be used to

find accurate parameter values but also includes what parameter values should be used to

start the search process.

8. To estimate the unknown parameter values of specific software reliability models, there is a

need to optimize a function that may be for maximum likelihood function or for

minimization of least square estimation function. There is no difference in maximization or

minimization problems because values of parameter x which maximizes the function f(x)

and minimizes the function f(x).

9. Existing models are grounded on the traditional software development environments.

Software reliability model development must have concern about the software development

methodologies used. Development environmental of the software plays a major role in

reliability estimation of the software in field usage of the software.

10. In spite of the software development methodologies, there is a need to consider the effect of

early stages in the software development. These may include the requirement specification

for the software to be reliable or the planning of the resources that are required to fulfill the

software reliability requirements.

11. Testing resource allocation in every phase of software development in a scheduled way is

required to have accurate software reliability estimation. There is a need to properly plan

and schedule the testing resources so that they can more accurately estimate the system

quality in terms of the reliability. If the resources are having the proper allocation to the

software modules only then they can perform the task allocated to them properly and within

the specified time and conditions.

51 | P a g e

12. More effective factors are required to be considered for the estimation of reliability in open

source software development.

13. In the last decades it is found that more than hundreds of meta-heuristic algorithms have

been proposed across various domains, however there does not exists any meta-heuristic

algorithm that can handle all type of projects failure data for software reliability estimation.

14. These algorithms show promising results only on specific problem set and may not show

good performance on other sets of problems. No free lunch theorem is saying that there is

not any meta-heuristic algorithm that is best suited for the solution of all optimization

problems.

15. No free lunch theorem really has made this field a continuously growing field from the last

decade and has motivated authors to propose a new optimizer for parameter optimization of

software reliability models.

16. Literature perceived that hybrid algorithms are outperforming their parent algorithms.

Unfortunately, no hybrid algorithm of the meta-heuristic approach has been studied for

parameter estimation of software reliability models.

17. Finding optimum parameters is essentially a heuristic process in which the optimization

algorithm tries to improve. Depending upon the choice of the initial parameter values, the

algorithm could prematurely stop and return a sub-optimal set of parameter values.

Unfortunately there exists no general solution to the local maximum problem. Instead, a

variety of techniques have been developed in an attempt to avoid the problem of local

maxima, though there is no guarantee of their effectiveness.

52 | P a g e

Chapter 3 ITERATIVE SOFTWARE FAILURE RATE MODEL

Failure rate-based models are among the earliest software reliability estimation models used in

industries and academia. These models are grounded on Jelinski-Moranda software reliability

model [1]. They need further enhancement, so that more realistic assumptions like imperfect

debugging and factors for exact reliability growth estimation can be incorporated into the model.

Software reliability is primarily dependent on the process of software development. Existing failure

rate models cannot be applied to the current software development methodology. The software

developed using latest SDLC approach can capture and implement all the user requirements

within time and budget. Keeping new SDLC processes and technologies, a new failure rate model

centered on iterative SDLC process has been proposed. The proposed model has been derived

from the general class of failure rate behavior-based models and exploits iterative behaviour of

software development process. All latest iterative SDLC processes can be used to predict the

reliability by applying the proposed failure rate model. The proposed model takes care of

complexity and paradigm shift of iterative based software development process by introducing

modulation factor.

3.1 Introduction

With the growing advances in digital world, software development demand from industries

is growing at an exponential. Due to enormous demand and lack of time and budget, software

companies are not able to develop fault free software. Latest tools and techniques has been applied

for development of defect free software but still, it is not possible for software developers to

develop defect free software practically [222]. Software must go through exhaustive testing and

debugging, which requires time and money to enhance the reliability. Occurrence of fault is

inevitable in the current demand of software. There should have some means to avoid software

failures so that harmful losses whether related to life or any other field could be evaded.

If we could measure the reliability of software under development, better we can predict

whether the software would be operational in future or not. Early estimation of reliability provides

information to the managers like what should be the release time of the software and amount of

man-hour consumption etc. while developing any software [223]. Software reliability models are

one of the ways to simulate software reliability estimation curve to predict reliability of the system

under study. Numerous reliability estimation models for software have been developed and all are

working on specific applications, specific environments, datasets and assumptions made by them.

But still, there is a need to develop new software reliability models.

Need lies in the fact that, among the available research in software reliability model

development, all developed models are basically made for reliability estimation of software‟s

53 | P a g e

developed under traditional waterfall SDLC process [51]. Further research publications are

screening no more than 31% experimental researches and among them only 13% are purely

experimental [17]. This low number is due to reason that public experimental data sets in software

reliability estimation are very narrow and producing reliability data through experimentation

usually require long time cluster. Most generally developed models are only NHPP based and very

few are belonging to failure rate based models [20], [21], [109], [122], [144], [146], [224], [225].

Failure rate based models are among the earliest software reliability estimation models.

These models are grounded on Jelinski-Moranda software reliability model [44] and needs further

enhancement in order to incorporate more realistic assumptions like imperfect debugging and

factors for exact reliability growth estimation. Further, all software reliability models are

developed under waterfall SDLC process. Waterfall SDLC process for development of software

assumes that requirements from the end users are stable and it delivers whole software at one shot

in the end [226], [227]. This may generate risks for the users as they do not have information till

end what they will get. These limitations construct a need for the use of another methodology

while modeling software reliability. Yet now, no research in software reliability assessment has

been found which are based on latest SDLC process.

Software reliability is primarily dependent on the process of software development. The

software developed using latest SDLC approach can capture and implement all the user

requirements with in time and budget. Earlier waterfall SDLC process based reliability estimation

models are very much stable and found to be unsuitable for the software industries because there is

a high risk and uncertainty of change in requirements. An iterative SDLC process is latest

methodology of software development and is a practical method of step-wise top-down refinement

approach to the software development that replaces waterfall SDLC process [33], [228]. It gathers

user requirements in each of iteration of software development and implements software with less

uncertainty in risk and user satisfaction. Nowadays latest software development processes are

based on iterative software development process and these are like Rational Unified Process (RUP)

[229], Adaptive method [230], [231] [232] [231], XP [233], Spiral model [234] and AZ [235]

development processes. These SDLC processes are considered as an aid of producing reliable

software based on iterative model in development. Moreover, these are found to be used practically

in industries and academia for software development and promote iterative development process.

Proposed failure rate model in this chapter incorporates iterative SDLC process by

replacing earlier waterfall development software development life cycle process. It assumes

imperfect debugging during each of the iteration. There is always a possibility of fault introduction

with feature addition in each of the iteration of software development. All latest iterative SDLC

54 | P a g e

processes can be used to predict the reliability by applying proposed failure rate model. Existing

failure rate model cannot be applied on the latest software development methodologies. The

proposed model take cares of complexity and paradigm shift of iterative based software

development process by introducing modulation factor.

3.2 Iterative Software Development Life Cycle Process

In iterative process of software development, entire software is built and delivered to the

end user in iterations. The process starts with simple implementation of key samples of a problem

and iteratively enhances existing software releases until full system is implemented [228]. At each

of iteration release feedback from the iteration is available for next iteration [236]–[238]. Feedback

is mainly about the functionality and user aspect of the software. At each released stages of

software, not only extensions but design modifications may be made. Each of the iteration makes

step wise refinements in an effective way to converge to the full implementation of a problem.

Main focus of feedback analysis is to find the amount of defects in an iteration that gets injected in

the upcoming iteration [239]. Using feedback in each of iteration, analysis of changing needs in an

up-coming iteration can be made. These changing needs in each iteration are essential to know

because these tells information about how much more defects may occur and how much more

effort and functionality is needed in making extensions and design modifications to the released

iteration.

3.2.1 Reliability in Iterative Software Development Environment

It is well known that development methodology is one of the major factors that affect not

only the software reliability but also other software quality attributes [227]. It is impossible to

perfectly catch up all the functional requirements before development. Iterative method of software

development and its enhancements are becoming major development process in software industries

and these methods allow a better deal in making parallel software development and testing. This is

the only reason for the failure of waterfall development process in perfectly identifying quality of

complex software systems.

There is a need to be flexible in handling user‟s changing requirements in order to deliver

reliable software in the current digital market. This will provide a remarkable improvement in

handling reliability growth requirement at each of the iteration of software development process.

 There is a need to introduce a factor that will engulf all the changing needs depending on

the defect analysis in each of iteration. The varying needs in each of iteration of software

development include bug reports, additional functionalities, and testing effort required to find the

amount of defects that gets injected / removed in each of the upcoming iteration. These changing

55 | P a g e

needs are incorporated in proposed failure rate model so that precise reliability growth of the

system could be estimated.

3.3 Proposed Model

3.3.1 Analytical Software Failure Rate Model for SDLC

Keeping new SDLC processes and technologies, a new failure rate model centered on

iterative SDLC process has been proposed. The proposed model has been derived from the general

class of failure rate behavior-based models and exploits iterative behaviour of software

development process.

In iterative process of software development, entire software is built and delivered to the

end user in iterations [240]. The process starts with simple implementation of key samples of a

problem and iteratively enhances existing software releases until full system is implemented. At

each of iteration release feedback from the iteration is available for next iteration. Feedback is

mainly about the functionality and user aspect of the software. At each released stages of software,

not only extensions but design modifications may be made. Each of the iteration makes step wise

refinements in an effective way to converge to the full implementation of a problem. Main focus of

feedback analysis is to find the amount of defects in an iteration that gets injected in the upcoming

iteration. Using feedback in each iteration, analysis of changing needs in an up-coming iteration

can be made. These changing needs in each iteration are essential to know because these tells

information about how much more defects may occur and how much more effort and functionality

is needed in making extensions and design modifications to the released iteration.

In modeling software reliability, there is a need to introduce a factor that will engulf all the

changing needs depending on the defect analysis in each of iteration. The varying needs in each of

iteration of software development include bug reports, additional functionalities, and testing effort

required to find the amount of defects that gets injected / removed in each of upcoming iteration.

These changing needs are incorporated in proposed failure rate model using modulation factor

given in (1), so that precise reliability growth of the system could be estimated. The proposed

model assumes that fault removal process is imperfect. Due to imperfect debugging regenerated

faults are induced in successive iterations.

3.3.2 Proposed Model Assumptions

Proposed model is developed by extending assumptions of failure rate based models. Assumptions

on which proposed model has been grounded are given below-

i. Initial software fault is unknown and constant in iteration.

56 | P a g e

ii. Each fault in iteration is independent and it may be equally likely to cause a failure while

testing.

iii. The interval of time between fault occurrences in each of the iteration is independent and

follows an exponential distribution.

iv. Software failure rate remains constant over the intervals between fault occurrences.

v. The software failure rate is proportional to number of faults that remains in a software and

modulation factor .

vi. In each of the iteration the detected fault is removed with a probability p , not removed perfectly

with a probability q and new fault may be introduced with a probability r . Here 1p q r and

the probability p > r .

Faults are injected from previous iterations along with newly introduced faults in the

current iteration. Newly induced faults are caused by added and modified functionalities in a

respective iteration of software development. Depending on the number of initial iterative faults,

there is a need to modify the amount of resources allocated for debugging in each of iteration. The

modulation factor reflects the modified needs that integrate iterative development processes in

software failure rate models. This factor changes its value according to the Modulation parameter

as shown in Eq. (1). Moreover, changing needs in each of the iteration is different and vary

according to Eq. (1).

 1 / , 0 1.0) (1)(

Here, is the modulation parameter that represents newly added functionality and user

acceptance in the current iteration. Its value is almost 0 at the beginning and becomes 1.0 in the

final iteration of iterative software development process. Modulation parameter takes its value

from 0 to 1.0 by assuming that with growing number of iterations, level of user acceptance

increases from lower to higher. It shows abrupt changes in its value in initial iterations due to

preliminary design changes, testing effort, and user acceptance. When it‟s values reaches near to

one then software under development is assumed to be reliable enough and has achieved all the

required functionalities to fulfill the end user needs.

3.3.3 Model Formulation

Failure rate function (()it) with imperfect debugging is modeled in Eq. (2).

1()()
() [(-)], -1,2.... (2)

(1)

i

i

n
t p r i N

i

Where,

57 | P a g e

 Modulation factor for representing changing needs in each of the iteration of software

development

-1in Cumulative number of failures at (-1)
th

i failure interval

N Initial number of faults in software

 Proportionality constant

Cumulative Density Function iF(t) and Reliability Function
iR(t) is calculated in Eq. (3) and Eq. (4)

1

1

()
[[(-)]]

1() 1 (3)

()
[[(-)]]

1() (4)

i

i

i

i

i

i

n
p r t

iF t e

n
p r t

iR t e

When p = 1, r = 0 and

varies as in Eq. (5), proposed model behaves as JM model[44].

2 3 4 5
1, , , , (5)

1 4 8 13

i i i i

i i i i

Following a variation of in Eq. (5) and considering p being the probability of fault removal and

r as the fault introduction probability then model behaves as the GS Mahapatra et al. model[47] .

3.3.4 Parameter Estimation

In the proposed model, there are three unknown parameters ,N n , and these parameters are

estimated at different values of the . MLE has been used to estimate the values of the parameters.

Parameter estimation by MLE method requires solutions of complex equations by maximizing the

likelihood of model parameters. Probability density function if(t) for the proposed model is given

in Eq. (6).

1

1

i

()
[(-)]() 1f(t) [(-)] (6)

1

i

i
i

n
p r tn ip r e

i

The likelihood function L(N) is calculated in Eq. (7) using Eq. (6).

i

1

1

L(N) = f(t)

()
[[(-)]]

1() 1[[(-)] (7)
11

i

i

i

n n
p r t

n in ip r e
ii

Taking log of L(N) , LLF is calculated in Eq. (8).

58 | P a g e

1

1

()
ln () ln ln[()]

11

()
 [()] (8)

11

i

i
i

n n
LLF L N n N p r

ii

n n
N p r t

ii

Solution using log likelihood function for parameter estimation involves calculation of its

partial derivatives with respect to ,N n and respectively and then equating them to value zero.

MLE of parameters are calculated from Eq. (9), (10) and (11).

1()
[()] (9)

11

i
i

n nn
N p r t

ii

1()
[()] (10)

11

i
i

n n
n N p r t

ii

1

1
 (11)

() 1[()]
11

i

i

n
t

n n iN p r
ii

3.4 Application Datasets used for Experimentation

Suitability of the proposed model has been tested using Tera Promise repository bug report

files of Eclipse (DS1) and JDT (DS2) open source software at

https://zenodo.org/record/268486#.W-QsPpMzY2w. These data sets have been given by An Ngoc

Lam. The bug reports contains data like: bug_id, summary, description, report time, report time

status, commit, and commit time files. Datasets have been extracted from these bug reports and

reformatted in time domain format. Data given in DS1 includes eight minor releases and four

major releases starting from the year 2001 to the year 2013. DS2 includes 3 major releases and 6

minor releases starting from the year 2002 to the year 2014.

3.5 Experimental setup

Model is evaluated in light of analyzing its significance as compared to other failure rate

models. Model parameters include , , , , and N n p r . Fault removal probability p and fault

introduction probability r cannot be estimated directly from DS1 and DS2 and depends on the

project type and skill set of persons involved in development and testing. Based on these two

factors fault removed during testing is assumed 95 % and fault introduced is assumed 3%.

The goodness of fit for the proposed model is measured using SSE and MSE for each

application datasets DS1 and DS2. These statistics are used for comparison of the proposed model

with existing failure rate models given in Table 3.1. These software reliability models are used for

comparison of the proposed model and to find model parameters for each of iteration of DS1 and

DS2.

https://zenodo.org/record/268486#.W-QsPpMzY2w

59 | P a g e

To calculate the parameters of the models (, , and N n) hybrid PSO-GSA algorithm is

employed along with MLE technique to maximize the log-likelihood function value as given in Eq.

(9), (10) and (11) for 21 iterations datasets. Maximum likelihood estimation technique is used to

get the likelihood function value of failure rate models. Log of the likelihood function is the

objective function and is provided as the input to the PSOGSA algorithm. The optimum value of

the objective function is used to find the values of the parameters.

Initially system is assumed to be having minimum features. Later on with time,

requirements of the end users need to be fulfilled; more and more features in the system are added.

These additional changes in upcoming iterations may incorporate some new errors and may reduce

few of the errors from the earlier iterations. Depending on these new conditions, there is a need to

make changes in the iterative system development. Accordingly in the proposed work parameter

changes its shape. In the proposed model, estimated values of are representing altogether entire

feature changes incorporated in the current iteration with a value differing from the previous

iteration. For initial iteration releases of Eclipse and JDT open source software systems, value

should be estimated in such a way that key sample of requirements are implemented with least

features in the system. As time passes and more and more iterations are added with changing

functionality in each of iteration, value fluctuates from lower to higher with the user acceptance

and increase in functionality of the system with time. Depending on the values is estimated

for each iteration release and model is implemented.

The values of with respect to iteration are different for different software projects and depend

on the type of project and user acceptance levels. Fig. 3.1 depicts variation in µ values with

respect to number of iterations for DS1. The value of decreases in successive iterations 1.0 to

2.0, 2.1 to 3.0 and 3.3 to 3.4 by difference of 0.064, 0.081 and 0.045 respectively. These little

deeps in values represent variation in compliance of functionality requirements and lower values

of user acceptance levels for eclipse software dataset. Overall values of shows increasing

trends with successive iterations and finally it reaches near to 1.0 in final iteration release.

60 | P a g e

Table 3.1 Summary of Failure Rate Based Software Reliability Models for Comparison

Fig. 3.2 is revealing the change in functionalities and its corresponding increase in user

acceptance for DS2 of JDT software product. At each of the iteration release there is increase in

user acceptance level and it is illustrated with the values of in all successive iterations. For major

iteration releases the value of are 0.0869, 0.1108 and 0.2144, for minor iteration these values

are 0.1381, 0.2684, 0.3677, 0.6787, 0.7241 and 0.9539. The user acceptance increases in all

iterations but a large variation of 0.31102 in user acceptance level is found in 3.4 to 3.5 iteration.

It represents enhanced functionality and accomplishment of all requirements at end-users. Overall

values of in successive iterations are reflecting variation in functionalities and user acceptance

level that increases by small amount in each iteration and finally reaches near to 1.0 in last

iteration release.

The implementation of the proposed algorithm is done on Intel(R) Core (TM) i5 (5
th

 gen)-62000

CPU 2.40 GHz with 4 GB RAM and 64-bit windows architecture, x64 based-processor. Mat-lab

(R2015a) has been used to model proposed software reliability model and to implement PSOGSA

algorithm.

Fig. 3.1 Plot of Modulation Parameter versus Iteration for DS1

0

0.2

0.4

0.6

0.8

1

1.2

1 2 2.1 3 3.1 3.2 3.3 3.4 3.5 3.6 4.1 4.2

 M
o

d
u

la
ti

o
n

 P
a

r
a

m
e
te

r
 (

µ
)

Iteration

Sr.

No.

Model Name Failure Intensity

1 Jelinski-Moranda Model (JM)[44] () [(1)]it i

2 Schick &Wolverton Model (SW)[54] () [(1i it i t

3 Goel Okumotto imperfect debugging Model[51] () [(1)]it p i

4 G.S.Mahapatra et al. Model [47] () [- (-1) (-1)]it N p i r i

5 Modified S-W Model(MSW)[51]
-1() [- ()]i i it n t

6 Proposed Model
1()()

() [(-)]
(1)

i
i

n
t p r

i

61 | P a g e

Fig. 3.2 Plot of Modulation Parameter versus Iterations for DS2

3.6 Result Analysis

3.6.1 CASE 1: Eclipse Software Dataset

 In this section, the goodness-of-fit of the proposed model is calculated and compared with

existing models given in Table 3.1for DS1. The value of for major iterative release 1.0, 2.0, 3.0

and 4.1 are 2.2666, 2.8763, 3.7891 and 1.1258 respectively. In minor iteration release, the value

of for iterative release 2.1, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 4.2 are 2.6343, 3.2217, 2.5788, 2.3121,

2.7295, 2.6434, 2.0435 and 1.00009 respectively.

The value of shows large changes in successive major iterations as compared to

successive minor iterations due to varying needs in major and minor iterations. From the analysis

of results, it is found that proposed model fits well in term of SSE in all iterations of DS1 except at

iteration number 3.1 where GOI model, GS Mahapatra model, and SW model outperforms

proposed model.

The proposed model has clear-cut outperform all models under comparison in 11 iterations

for DS1. It shows the lowest values of SSE in 91.6 % iterations. In term of MSE proposed model is

winner in nine iterations. In iteration 2.1 MSW model is performing well than the proposed model.

In iteration 3.3, GOI model, SW model, and GS Mahapatra model are performing well than the

proposed model. There is a tie among proposed model and GS Mahapatra model in iteration 2.0,

where both of them outperform all other models. The proposed model has clear-cut outperform

other models in 75 % iterations by achieving lowest value of MSE. Result in Fig. 3.3 and Fig. 3.4

shows the reliability and failure rate estimated using the proposed model respectively. All the

results from the proposed model has given a significantly better fit to iterative data by adapting

according to varying needs of different iterations.

The evaluation and comparison of goodness-of-fit of all models in Table 3.2 in terms of SSE

and MSE for all iterations shows that the proposed model has good technical merit in a sense that it

0

0.2

0.4

0.6

0.8

1

1.2

1.4 2 2.1 3.2 3.3 3.4 3.5 3.6 3.7

M
o

d
u

la
ti

o
n

P

a
r
a

m
e
te

r
 (

µ
)

Iteration

62 | P a g e

provides development terms with both iterative SDLC requirements and traditional reliability

measures.

Fig. 3.3 Plot of Reliability versus Number of Faults

 Fig. 3.4 Plot of Fault Intensity in Various Iterations

0

0.0005

0.001

0.0015

0.002

0.0025

1 11 21 31 41 51 61 71 81 91 101 111 121 131

F
a

il
u

r
e
 I

n
te

n
si

ty

Faults

iteration 1.0 iteration 2.0

iteration 2.1 iteration 3.0

iteration 3.1 iteration 3.2

iteration 3.3 iteration 3.4

iteration 3.5 iteration 3.6

iteration 4.1 iteration 4.2

63 | P a g e

3.6.2 CASE 2: JDT Dataset

To test the applicability of the proposed model in this section dataset DS2 is used. Table 3.3 is

showing the estimated values of model parameters and goodness of fit criteria. The value of for

major iterative release 1.4, 2.0 and 3.2 are 10.5954, 8.1358 and 3.8778 respectively. In minor

iteration releases the value of for iterative release 2.1, 3.3, 3.4, 3.5, 3.6 and 3.7 are 6.3815,

2.9946, 2.0872, 1.1521, 1.1052 and 1.0022, respectively. These values of

are showing large

deviations in successive major releases as compared to successive minor releases due to the

varying needs in each of the major and minor iterations. Table 3.3 is showing the goodness-of-fit

measures of all models depicted in Table 3.1for DS2. Out of total nine iterations in DS2, proposed

model outperform other models under comparison in eight iterations, in terms of SSE values. JM

model performs well than proposed model in iteration 3.4. Proposed model attains lower-most

value of SSE in 88.8 % of iterations. In terms of MSE values for nine iterations proposed model

out-performs other models in six iterations. In iteration 2.0, GS Mahapatra model and GOI model

are performing better than the proposed model. In iteration 3.7, proposed model outperforms JM,

GOI, SW and MSW models except GS Mahapatra model. The proposed model outperforms GOI ,

SW, GS Mahapatra and MSW model except JM model in iteration number 3.6. The proposed

model has performed better than all other models under comparison in 66.6% iterations by

attaining the minimum value of MSE. Results in terms of estimated reliability and failure rate

estimation by the proposed model are shown using Fig. 3.5 and Fig. 3.6 respectively.

64 | P a g e

Fig. 3.5 Plot of Reliability versus Iterations

Fig. 3.6 Plot of Failure Intensity versus Iterations

Result analysis in Table 3.3 shows that the proposed model has significantly better fit to iterative

data by fine-tuning to varying needs of different iterations.

0.73

0.83

0.93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
e

lia
b

ili
ty

Faults

iteration 3.2

iteartion 3.3

iteration 3.4

iteration 3.5

iteration 3.6

iteration 3.7

0.73

0.83

0.93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
e

lia
b

ili
ty

Faults

iteration 3.2

iteartion 3.3

iteration 3.4

iteration 3.5

iteration 3.6

iteration 3.7

65 | P a g e

Table 3.2GOODNESS-OF-FIT ES/TIMATED USING DS1 (ECLIPSE SOFTWARE FAILURE DATASET)

 Iteration1.0 Iteration2.0

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter

values

SSE MSE

1 JM Model Ф=5.74E-06, N=4 5.23 5 Ф=2.68E-05, N=8 375.51 17.05

2 GOI Model Ф=1.64E-05, N=3 1.51 1 Ф=2.89E-06, N=28 92.01 4.18

3 SW Model Ф=2.124E-06, N=3 17.31 17.00 Ф=4.70E-06, N=28 218.81 9.91

4 GS Mahapatra Model Ф=7.77E-07, N=3 1.26 1 Ф=2.53 E-05, N=23 55.46 2.5

5 MSW Model Ф= 2.23E-05, N=2, n=58 5.0 4.9 Ф=1.52E-06, N=9,

n=209

528.7 15.89

6 Proposed Model Ф= 2.86E-05, N=5, n=11,

ϒ=2.2666,

1.24 0.66 Ф=4.70E-06, N=27,

n=362, ϒ=2.8763

45.12 2.5

 Iteration2.1 Iteration 3.0

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter

values

SSE MSE

1 JM Model Ф=5.039E-06, N=27 452.2 16.74 Ф=2.40E-06, N=124 56948 605.82

2 GOI Model Ф=1.95E-06, N=26 133.34 4.93 Ф=1.37 E-06, N=100 45510.1 559.22

3 SW Model Ф=3.83E-06, N=29 126.6 4.66 Ф=2.92 E-05, N=121 39981 494.69

4 GS Mahapatra Model Ф=3.20E-06, N=28 131.31 4.85 Ф=1.25 E-06, N=125 55122.2 586.40

5 MSW Model Ф=1.36E-05, N=18, n=316 118.67 3.89 Ф=1.29E-06, N=123,

n=298

66890.4 679.32

6 Proposed Model Ф=1.67E-06, N=30,n=415,

ϒ=2.6343,

101.02 4.39 Ф=2.98E-05,

N=102,n=5690,

ϒ=3.7891

39705.2 484.14

 Iteration3.1 Iteration3.2

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter values SSE MSE

1 JM Model Ф=2.99 E-05, N=100 6091.1 45.45 Ф=2.21E-06, N=122 13940.73 119.14

2 GOI Model Ф=3.07E-07, N=126 1018.8 7.59 Ф=8.61E-06, N=106 7246.05 61.93

3 SW Model Ф=2.99E-05, N=125 1123 8.38 Ф=5.40E-06, N=90 12585 107.56

4 GS Mahapatra Model Ф=6.62E-06, N=130 1015 7.57 Ф=1.25E-06, N=115 7794.28 68.97

5 MSW Model Ф=1.36E-05, N=135, n=4979 2000.7 15.9 Ф=2.08E-06, N=132, n=4108 9685.12 89.67

6 Proposed Model Ф=2.96E-05,

N=136,n=6132,ϒ=3.2217

1589.82 12.22 Ф=2.98 E-05 ,

N=122,n=6910,ϒ=2.5788

952.2 8.14

66 | P a g e

Table 3.2 continued…

 Iteration3.3 Iteration 3.4

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter values SSE MSE

 1 JM Model Ф=2.95E-05, N=117 6810.14 58.24 Ф=8.28E-06, N=53 1153.32 23.53

2 GOI Model Ф=1.25E-06, N=115 9371.1 80.09 Ф=3.06E-06, N=50 1545.41 1320.9

3 SW Model Ф=2.95 E-05, N=123 7318.81 62.55 Ф=2.93 E-05, N=54 1153.73 23.53

4 GS Mahapatra Model Ф=3.06E-06, N=114 2217.4 18.99 Ф=1.63E-05, N=55 905.4 18.46

5 MSW Model Ф=5.31E-06, N=121,n=3129 2903.9 27.87 Ф=1.72E-05, N=52,

n=2094

3589.96 29.79

6 Proposed Model Ф=2.96E-05, N=123,n=7879,

ϒ=2.3121

2203.05 19.49 Ф=2.92 E-05, N=53,

n=1411, ϒ=2.7295

520.23 11.55

 Iteration3.5 Iteration3.6

Sr. No. Model Parameter estimated values SSE MSE Parameter estimated

values

SSE MSE

1 JM Model Ф=1.63E-06, N=30 373.3 15.54 Ф=6.24E-07, N=28 199.91 7.65

2 GOI Model Ф=3.81E-06, N=29 137.74 5.71 Ф=3.208E-06, N=28 160.01 6.15

3 SW Model Ф=1.70E-07, N=29 551.1 22.96 Ф=3.74E-06, N=27 154.54 5.92

4 GS Mahapatra Model Ф=3.81E-06, N=29 137.8 5.71 Ф=6.65E-07, N=28 152.23 5.86

5 MSW Model Ф=1.26E-05, N=17, n=2663 489.74 18.24 Ф=2.97E-05, N=17,

n=2624

315.00 14.92

6 Proposed Model Ф=2.82 E-05, N=25, n=416,

ϒ=2.6434

86.62 4.3 Ф=2.94E-05, N=30,

n=401, ϒ=2.0435

91.15 4.14

 Iteration4.1 Iteration4.2

Sr. No. Model Parameter estimated values SSE MSE Parameter estimated

values

SSE MSE

1 JM Model Ф= 2.20 E-05, N=19 286.65 22 Ф=1.92E-05, N=31 441.12 15.21

2 GOI Model Ф=1.58 E-05, N=17 111.21 8.54 Ф=3.20E-06, N=30 121.21 4.17

3 SW Model Ф=1.93E-05, N=19 284.86 22.1 Ф=6.50E-06, N=31 193.34 6.66

4 GS Mahapatra Model Ф=5.53E-06, N=17 129 9.92 Ф=7.29E-07, N=31 166.65 5.72

5 MSW Model Ф=2.68E-05, N=8, n=1529 178.22 7.34 Ф=2.97E-05, N=30,

n=3729

704.86 26.87

6 Proposed Model Ф=2.87E-05, N=16,n=136,

ϒ=1.1258

49.95 5.44 Ф=2.82E-05, N=32,

n=513, ϒ=1.00009

72.24 2.88

67 | P a g e

Table 3.3GOODNESS-OF-FIT ESTIMATED USING DS2 (JDT SOFTWARE FAILURE DATASET)

 Iteration 1.4 Iteration 2.0

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter

values

SSE MSE

1 JM Model Ф= 1.46E-05, N=22 1510 62.91 Ф= 5.63E-08, N=13 1792.56 66.37

2 GOI Model Ф= 4.11E-06, N=15 1517 75.85 Ф= 4.80E-08, N=18 1486.81 55.04

3 SW Model Ф= 8.18E-07 N=9 2165 90.21 Ф= 6.99E-06, N=17 2427.45 187.9

4 GS Mahapatra Model Ф= 9.00E-06 N=12 1871 77.96 Ф= 1.08E-06, N=16 1434.79 53.11

5 MSW Model Ф=7.43E-06 N=19,n=242.98 2909.88 121.09 Ф=1.62E-05,

N=15,n=282.93

1870.67 69.26

6 Proposed Model
Ф=2.99E-05, N=13, n=160,

ϒ=10.5954

1379 57.54
Ф=2.97E-05, N=17,

n=199, ϒ=8.1358

1292 56.34

 Iteration 2.1 Iteration 3.2

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter

values

SSE MSE

1 JM Model Ф= 2.81E-05, N=37 2638.12 203.02 Ф= 2.35E-06, N=50 179.79 11.19

2 GOI Model Ф= 5.53E-06, N=35 1650.04 127.90 Ф= 8.16E-07, N=56 317.67 5.56

3 SW Model Ф= 5.36E-06, N=38 3278.45 252.87 Ф= 2.17E-06, N=58 1056 15.68

4 GS Mahapatra Model Ф= 1.21E-06, N=57 3808.85 293.48 Ф= 1.21E-06, N=57 56500.09 991.23

5 MSW Model Ф=8.73E-06, N=29,n=2569.9 1741.90 164.48 Ф=2.91E-05,

N=52,n=1723

2989.06 29.69

6 Proposed Model Ф=2.82E-05, N=37, n=234,

ϒ=6.3815

683.70 75.88
 Ф=2.91E-05, N=60,

n=1788, ϒ=3.8778

171.89 3.226

 Iteration 3.3 Iteration 3.4

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter

values

SSE MSE

1 JM Model Ф= 2.78E-05, N=9 404 33.666 Ф=8.86E-06, N=18 37 12.33

2 GOI Model Ф=1.48E-05, N=16 989.9 61.825 Ф=2.35E-06, N=18 206.56 17.16

3 SW Model Ф=4.70E-06, N=8 589.1 40.78 Ф=3.83E-06, N=16 750.9 68.00

4 GS Mahapatra Model Ф=8.92E-06, N=26 604.01 37.75 Ф=1.03E-05, N=28 1241.01 103.41

5 MSW Model Ф=2.99E-05, N=9, n=1028 486.32 33.960 Ф=2.91E-05, N=13,

n=1124

1839.56 146.92

6 Proposed Model
 Ф=2.97E-05, N= 19,n=179,

ϒ=2.9946

31 2.583
Ф=2.92E-05, N=18,

n=119, ϒ= 2.0871

91 11.37

68 | P a g e

Table 3.3 Continued…

 Iteration 3.5 Iteration 3.6

Sr. No. Model Estimated Parameter values SSE MSE Estimated Parameter

values

SSE MSE

1 JM Model Ф=2.49E-05, N=8 57 4.384 Ф=2.93 E-05, N=4 76 7.6

2 GOI Model Ф=1.06E-06, N=13 76.53 25.33 Ф=2.01E-05, N=11 46721 359.39

3 SW Model Ф=2.92 E-05, N=10 3019.9 119.05 Ф=2.99E-05, N=29 12089 367.83

4 GS Mahapatra Model Ф=4.78 E-07, N=5 38225 318.54 Ф=1.26E-05, N=85 11534 384.48

5 MSW Model Ф=2.31E-05, N=3, n=137 20687 156.94 Ф=1.34E-05, N=15,

n=134

34834.09 329.21

6 Proposed Model Ф=2.96E-05, N=7, n=25,

ϒ=1.1521

18 -24.002
Ф=2.67E-05,N=18,

=171,ϒ=1.1051

192 21.33

Iteration 3.7

Sr. No. Model Estimated Parameter values SSE MSE

1 JM Model Ф=1.50E-06, N=16 280 45.02

2 GOI Model Ф=1.58E-06, N=13 90.011 9.01

3 SW Model Ф=5.40E-06, N=26 200.9 11.08

4 GS Mahapatra Model Ф=5.30E-06, N=12 952 8.14

5 MSW Model Ф=2.69E-05, N=14, n=1599 1109.23 57.34

6 Proposed Model Ф=2.74E-05,N=15, n=78,ϒ=1.0022 54 9.00

69 | P a g e

Fig. 3.7 Plot of Reliability versus Faults in various Iterations

Fig. 3.8 Plot of Failure Intensity in several Iterations

From the analysis it is found that the proposed model is suitable on time domain data sets.

Proposed model is more adaptive to observed time domain failure data sets than other failure rate

models. Adaptation has been made possible because of the modulation parameter used in the

model. As the software development moves towards completion, this parameter changes its values

according to added functionalities and user acceptance level in each of successive iteration of

software development. This parameter assumes that in each iterative development cycle there is

added functionality and user‟s acceptance. According to the functionality addition in each of the

iteration there is change in requirements of iterative software development. All the varying needs

from the users are reflected with modulation factor in the proposed model. Proposed model

provides good fit of the observed failure data. Values estimated in Table 3.2 and Table 3.3 shows

0.73

0.83

0.93

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
e

lia
b

ili
ty

Faults

iteration 3.2 iteartion 3.3

iteration 3.4 iteration 3.5

iteration 3.6 iteration 3.7

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

1 3 5 7 9 11 13 15 17

Fa
ilu

re
 In

te
n

si
ty

Faults

iteration 3.2 iteration 3.3

iteration 3.4 iteration 3.5

iteration 3.6 iteration 3.7

70 | P a g e

acceptable parameter values at all values of . With each iteration, functionality values and user

acceptance increases (shown by value of modulation parameter that increases from lower to

higher) and there is corresponding change in needs for iteration development (shown by

modulation factor). Values of modulation factor and modulation parameter change suitably with

each of upcoming iteration in both the failure datasets, showing well the iterative software

development behaviour. Depending on the estimated parameters values, number of remaining

faults in terms of expectation is calculated. The prediction deviates by small amount in some cases

due to introduction and removal of mutually dependent and independent faults in each of iteration

and this verifies imperfect debugging phenomenon associated with each iterative software

development. Goodness of fit for models is also shown in Table 3.2 and Table 3.3 in terms of SSE,

MSE, AE and TS values. Proposed model fits well in both the failure datasets used.

In data analysis of both the failure datasets, proposed model is having outstanding

performance than JM, GOI, SW, Mahapatra et al. and SWM models in terms of goodness values.

In all iterations of datasets, proposed model reliability increases as number of iterations proceeds.

Last iteration is assumed to be the reliable iteration. This change in reliability is showing value-

added software development process. All models have been implemented using hybrid PSO-GSA

algorithm for parameter estimation. Proposed model shows considerable performance with hybrid

algorithm even with more number of parameters then other models.

3.7 Conclusion

Failure rate models available in literature are centered on most traditional waterfall SDLC

process. However, new software development processes have been developed and found to be

more beneficial than waterfall SDLC process, like iterative life cycle processes. Keeping in view,

new software development environments and technologies, a new failure rate model by exploiting

iterative behaviour of software development process is proposed. The changing needs in each of

the iteration are reflected in the proposed model using a modulation factor. Calculated values of

parameter are significantly reflecting all changing requirements for each upcoming iterations

numerically. These values are meaningfully representing how much impact is of adding and

removing new features with the level of user acceptance in each of upcoming iteration. In order to

compare the performance of the proposed model, five well-known software failure rate models JM,

GOI, SW, GS Mahapatra and MSW have been applied for dataset DS1 and DS2. The proposed

model is a clear-cut winner in 11 iterations in SSE and 9 iterations in MSE out of 12 iterations and

8 iteration in SSE and 6 iterations in MSE out of 9 iterations for DS1 and DS2 respectively.

Overall, in 83.33 % of iterations for DS5 and 77.77 % of iterations for DS2, the proposed model

has shown better results in terms of goodness of fit by successfully incorporating varying needs in

71 | P a g e

each of iteration. The data collected from real applications and comparison of goodness of fit

shows that the proposed model successfully incorporated varying needs in each of iteration and

performed better than JM, GOI, SW, GS Mahapatra and MSW models.

Chapter 4 MODELING AND ANALYSIS OF OPEN SOURCE

SOFTWARE SYSTEM RELIABILITY

Growing software demand in the present virtual world introduces new competitive

dynamics for software developers. Recently, Open Source Software systems are providing a faster

way of software production. To survive in the competitive market, developed OSS system needs

enhancement in previous versions. Each enhanced versions are found to be more liable to risks of

failures. In recent process of software development, primary concern of researchers is always to

find new ways for assessing the reliability of developed OSS versions. To incorporate modern

software development environments and technologies, new model for reliability estimation of

multiple versions of OSS systems has been developed in this chapter. Proposed model incorporates

a new testing effort factor for integrating varying needs in each release of software development. It

comprises phenomenon of imperfect debugging with a possibility of fault introduction. Proposed

model is validated on various releases of Firefox and Genome project failure data set. Parameter

estimation for the proposed model has been done using proposed algorithm. Experimental results

have shown the enhanced capability of the proposed model in comparison to Goel-Okumotto

model, Inflection S-shaped model and PTZ model in simulating real OSS development

environment.

4.1 Introduction

In today‟s growing cyber world, due to a revolution in the digital world, software is in

significant use of commercial to ordinary people lifestyles. Everything is in the fingerprints of

smartphone user‟s, whether it is related to search for any information, communication, government

documents, workplace, news articles, media, transportation and so on. The software has been

strongly implanted into every facet of human lives. There is a tremendous demand for developing

72 | P a g e

new applications from the software industries. Since 1990‟s there is an increasing interest of

software companies and academicians in developing OSS systems. A major success of OSS

systems has led them towards development of OSS, leaving closed source software development

behind [241]. These are providing a new way of developing software systems worldwide.

Development of OSS systems is much faster than traditional software projects as there are no firm

plans, schedules, and system design processes. Before time software‟s are released, to fulfill huge

software demand in the market. OSS systems are more prone to failures as these are not undergoing

every phase of software development and may pose a critical danger to life and properties.

There are numbers of OSS systems like Eclipse, Gnome, Linux, Mozilla, Apache, and

Android found to be in wide-spread use. Due to increasing demand, lack of time and budget in

developing OSS systems, OSS developers are not able to create fault-free software. There is

always a significant probability of fault occurrence in the newly developed software releases. To

meet requirements and to remove faults from previous versions, new features are added in

upcoming software releases. The existence of a fault in forthcoming versions is inevitable.

There should have some means to avoid software failures so that bad losses could be

evaded. There should be a level of quality assurance from the software developers before any

software release [242], for this there is need to have an idea of the probability of failure in the field

environment. There is an immense need for estimation of reliability of hastily spread out OSS

systems. In engineering software reliability, software reliability growth models are providing a way

to depict software reliability based on fault content. Researchers have developed numerous

software reliability estimation models, but new software development environments, latest

technologies and different development modes for software development have led to create a need

for the development of new model for estimation of software reliability.

OSS development provides a potential for flexible and quicker innovative technology. In

each version release of OSS systems, new features are added and software moves towards

refinements in each developed versions. Reliability also varies in each future releases because new

functionality is added and new bugs are identified and fixed by the co-developers. Precise version

reliability estimation should be done via software reliability estimation models. Models developed

for OSS system reliability estimation are mainly based on NHPP. No model has yet been developed

for OSS systems that incorporate testing effort based fault content function; these models need

further modification for adaption to the realistic development environment of OSS systems.

 Identifying factors that will engulf varying needs in each version release of software

development is very much essential and need to be incorporated into OSS system reliability

estimation models. For example, in each version development process of OSS systems, there is a

73 | P a g e

need to know all crucial changes that should be incorporated into current version development

apart from the previous version releases. In new version development, there is need of adding new

features, removing bugs from the previous version or it may involve alterations in testing efforts

depending on the end user requirements. All the testing effort changes in each version should be

revealed with a new factor that could be incorporated in the OSS system reliability assessment

model development. There are no studies available in the literature that concentrates on

incorporating such factors in the ensemble for reliability estimation via software reliability models

for OSS systems. Keeping multi-release open source software policies in mind, work discussed in

this chapter proposed a new model that introduces a new testing effort factor. This factor is showing

the change in fault content function with the amount of testing effort in each version of OSS system

development. Altogether it is reflecting complete testing effort functionality added or upgraded in

each version of the software. Effort factor changes its value according to the effort coefficient

which takes its value from 0 to 1 by assuming that complexity value added in each version increases

from lower to higher. Effort factor has a change in its value, depending on whether it is a minor or

a major release.

For precise estimation of OSS system reliability, there is a need to have a parameter

estimation method that could provide optimum parameter values of models. The techniques for

optimizing the parameters of software reliability models are available through various classical

methods of parameter estimation [51][203]. However, these methods are based on a number of

constraints. An alternative to these classical mathematical optimization methods is nature-

inspired optimization algorithms for the solution of non-differential, non-linear and multi-modal

problems [6], [173], [243]. Proposed model parameters are estimated using proposed ABCDE

algorithm that incorporates simple and efficient features of ABC and DE algorithms and then

results have been compared with other models for validation. The goodness-of-fit measure of

proposed model is calculated using eight criterion and results are compared with other NHPP based

models. Estimated numbers of faults are calculated in each release using the estimated values of

parameters.

OSS development provides a potential for flexible and quicker innovative technology. In

each version release of OSS systems, new features are added and software moves towards

refinements in each developed versions. Reliability also varies in each future releases because new

functionality is added and new bugs are identified and fixed by the co-developers. Precise version

reliability is estimated using software reliability estimation models. Models developed for OSS

system reliability estimation are mainly based on Non-homogeneous Poison Process. Having multi-

release OSS policies in mind, a new NHPP model is proposed that introduces a new testing effort

factor. This factor is showing the change in fault content function with the amount of testing effort

74 | P a g e

in each version of OSS system development. Altogether it is reflecting complete testing effort

functionality added or upgraded in each version of the software. Effort factor has a change in its

value, depending on whether it is a minor or a major release. There are no studies available in the

literature that concentrates on incorporating such factors in the ensemble for reliability estimation

via software reliability models for OSS systems.

4.2 Modeling Procedure for OSS Systems

In this section step by step method to fit the proposed model to version based failure data

set has been described. The flowchart in Fig. 4.1 is illustrating how the proposed model could be

fitted to OSS system data sets. The proposed model is tested on different versions of OSS system

failure data. Performance measures of the model are calculated in terms of the estimated number of

errors in a system using multi-version failure data. The objective of the proposed model is to help in

decision making like what is the right time to release software is more testing required or is there

any need of developing a new version. Fitting of the proposed model on a multi-version data-set

with decision-making process based on performance measures is described below [12]:

Step1. Study of Open Source Failure Data

 The first step in model development includes a selection of data-set for which model is

being proposed. There is a need to carefully study particular data-set so that accurate insight could

be made about the nature of the process that is being modeled. In this chapter version based data-

set has been used. Keeping in mind multi-version based reliability modeling; interval domain data

has been collected and normalized.

Step2. Choose a Model for OSS System Reliability

 Next step is to choose a particular model from the assumptions and nature of data-sets. In

this chapter version based model has been proposed. Care has been taken to include all the

necessary variables required to reflect the OSS system development environment. A new testing

effort factor has been introduced in the proposed model that reflects altogether different effort

needs in terms of manpower for system development in each successive version of OSS

development life cycle.

Step3. Obtain Proposed Model Parameter Estimates

 This step includes the parameter estimation process used for exact estimates of parameters

of the model. Maximum likelihood estimation process has been used in this chapter for parameter

estimation. For optimization of the model parameters, hybrid ABCDE algorithm has been applied.

Step4. Find Fitted Model

75 | P a g e

 Using estimated parameters, fitted model estimates are acquired. At this time we could get

fitted model value based on data-sets and proposed model.

Step5. Perform test for Goodness-of-Fit of model

 Goodness-of-Fit of the model is calculated using various criteria.

Step6. Obtain Performance Measures of Proposed Model

The performance measures of fitted model are calculated using estimated number of errors

in the system. Other performance measure includes failure rate behaviour estimation and reliability

estimation.

Step7. Make Decision

The ultimate objective is to make decisions about the time of the release of versions of OSS

system. These decisions help in deciding whether it is to release a version or not depending on the

decisions made in the earlier steps.

Collect Open Source Software Failure Data

Propose a new model for Open Source Software

Systems

Using particular version‟s failure data, estimate

model parameters using nature inspired algorithm

Obtain fitted model values

Perform Goodness-of- Fit

measure (SSE and MSE)

Obtain estimates of performance measure

Predicted Number

of Errors

Failure Rate
Software

Reliability

Decision Making

1. System is ready to release
2. How much more testing is needed
3. Need to release more version

Update

version

Fig. 4.1 Software Reliability Modeling process for OSS systems

76 | P a g e

4.3 Proposed NHPP Model

4.3.1 Non Homogenous Poisson Process based model for OSS System Development

Maximum of existing reliability models emphasis only on single version process of

software development. In OSS development, co-developers develop software, test and releases

several versions of the software. There is a need to focus on changes that are incorporated into

multiple version releases of software. In OSS system development, there is need of adding new

features, removing bugs from the previous version or it may involve alterations in testing efforts

depending on the end user requirements. Change in the amount of effort in each OSS system

development is revealed with a new factor in proposed reliability assessment model.

4.3.2 Proposed Model Incorporating Effort Based Fault Content Function

The proposed model incorporates testing effort as the main factor in total fault content of

the system at a particular time and ensuring it, assumes fault content function as an exponential

function of time. The rate of fault detection is assumed to be constant. Further, at the beginning

phase of testing, testers are not having the knowledge of the testing environment and by the time

only testers gain knowledge about the software environment. Testing effort is having an effective

impact on increasing or decreasing the failure rate of the system. The number of errors may be

introduced while testing progresses. The fault introduction rate at the beginning phase is assumed to

be higher than later. Effect of testing effort on total fault content has been considered that affects

the whole system reliability.

Assuming realistic development environment, the model proposed is based on following

assumptions:

a. Fault detection and fault removal process are modeled as NHPP.

b. At the time of testing the rate of detection of the fault is a constant value.

c. The rate of failure for software is assumed to be proportional to remaining number-of faults in

software.

d. There is always a chance to introduce fault with some probability when detected faults are

removed.

e. Fault content is assumed to be an exponentially increasing function with an effective impact of

the testing effort.

With the increase in time, the amount of total fault content changes. Relation of testing

effort consumption and change in fault content is incorporated using factor ψ in each release of

OSS system development. Testing effort is assumed to be at a maximum when the system is

77 | P a g e

initially implemented and it varies till at the end. It becomes stable when most of the errors are

removed and the system gains full functionality and maximum reliability. Testing effort is the most

valuable resource in enhancing system reliability. Testing effort factor ψ reflects the fundamental

changes of volunteer testing effort by some quantified amount that changes in each release of open

source software failure rate models. Testing effort factor changes its value according to the effort

coefficient as shown in Equation (6). Moreover, testing effort needs in OSS development in each

release is different and varies according to Equation (6). „r‟ is the effort coefficient that represents

newly added functionality and system complexity in each release due to mutually dependent and

independent faults in the system at a particular time. Its value is almost 0 at the beginning and

becomes 1.0 as OSS development proceeds. Testing effort coefficient changes its value from 0 to 1

by assuming that with upcoming releases system complexity changes depending on a number of

faults present in the system and its functionality. It shows abrupt changes in its value initially due

to preliminary changes in system functionality. When its values reach near to one then software

under development is assumed to be reliable enough and now effort consumption is assumed to be

lowest because system has achieved all the required functionality to fulfill the end user needs.

4.3.3 Model Formulation

The general class of NHPP based software reliability models assumes that a rate of failure

in software is proportional to total fault content that is remaining in the software. Equation (1),

Equation (2) and Equation (3) are used for obtaining the general class of SRGMs. The intensity of

failure λ(t) in software is given using Equation (1)

dm(t)
 λ(t)= (1)

dt

dm(t)
 =b(t)[a(t)-m(t)] (2)

dt

Where a(t) and b(t) are the initial content of fault in software and rate of fault detection

respectively. The generalized solution for Equation (2) in terms of mean value function m(t) is

given in Equation (3) and Equation (4).

-B(t) B(t)t m(t)=e [m + a(t)b(t)e dt] (3)
t0
0

t
 where B(t)= b(t)dt m(t)=m (4)

0 0
t
0

The total content of fault a(t) in software is modeled using a new parameter r in Equation (5).

r
r i

-α t - t a (t)=a +a(1-e)=a(+(1-e)) , i=1,2...n (5) r r

Where,

78 | P a g e

a>0 , 0 α is fault introduction probability.

r is the effort factor that changes in each release (r =1,2…k) according to effort

coefficient given in Equation (6).

 = +((1-)/) 0< 1 (6)
r

Number of faults when testing starts in each release is given as

 a(0)= a (as is assumed to be 1)

 a()=a +a=a(+1)

a

Total number of faults generated because of imperfect debugging while testing progresses is given

in Equation (7)

 a()-a(0)=a (7)

This content of faults specifies the total number of faults that gets generated or introduced

throughout a testing phase. Thus total number of faults that may be introduced after a time t in each

release is given by Equation (8)

-αt - t a()-a(t)=a(+1)-(a +a(1-e))=ae (8)

The fault detection rate is assumed as a constant value as given in Equation (9).

 () (9)b t b

The expected number of faults i.e. mean value function in Equation (11) and failure intensity

function in Equation (12) can be obtained by putting the value of a(t) and b(t) in Equation (3).

-

0

()-

0 0 0

()
-

0 0 0

(-)
-

()

-1

-

 ((1))

 (

 [[] [] []

(1)(1)
 []

t
bt t bx

t t t
b xbt bx bx

b xbx bx
bt t t t

bt b t
bt

m t be

e e e
abe

b b b

e
abe

b b

a a e e dx

be a e dx ae dx ae dx

e

 (10)

- -
-

- -
-

-
-

()

-

()
()

() -()

()

-

-
 () (1)(1) (11)

-
(1)(1)

-
 (1)()

t bt
bt

t bt
bt

bt t
bt

ab e

b

ab e
d

dm t bt
dt dt

ab be

b

e
m t a e

e
a e

e
ab e

 (12)

79 | P a g e

For the multi-release OSS system, the mean value function and failure intensity at each release are

calculated using Equation (13) to Equation (18).

1 1

1

1 1

1

1 1

1 1 1

1 1

1 1 1 1

1 1

1 1

- -
-

-
-

1 1

Release 1

()

-

()
 ()

-

-
() (1)(1) (13)

-
(1)() (14)

i i

i

i i

i

i

t b t
b t

b t t
b t

i

a b e
t

b

a b b e
t

b

e
m a e

e
a b e

2 2

2

2 2

2

2 2 2

2 2

2 2 2

2 2 2

2 2

- -
- 2 2

-
- 2

2

 Release 2

(-)
 () (1)(1) (15)

-

(-)
() (1)() (16)

-

i i

i

i i

i

i

t b t
b t

b t t
b t

i

a b e e
m t a e

b

a b b e e
t a b e

b

- -
-

-
-

 Release k

()

-

()
()

-

-
 () (1)(1) (17)

-
(1)() (18)

k

k k k

k

i ik k

i

i ik k

ik

k k
kk

k k k k

k

t b t
b t k k

ik

b t t
b t

ik

a b e

b

a b b e
t

b

e
m t a e

e
a b e

4.4 Results and Discussion

In this section, the objective of result analysis is to test the validity of proposed model on

two well-known data sets DS3 and DS4. Two example sections are comparing the results in terms

of estimated number of parameter values and goodness of fit measures analyzed in terms of SSE,

MSE, MAE, MEOP, AE, AIC, TS and PRR [13] with other three most famous NHPP models named

GO model [244] , Inflection s-shaped model [18] and PTZ model [19] .

4.4.1 Example 1: Firefox Dataset Analysis

This section analyzes the proposed model on three releases of Firefox open-source software

failure data-sets. In each release, the amount of testing effort is varying with the change in the amount

of fault content and functional complexity of the released version.

Estimated parameter values and goodness-of-fit measurements of the proposed model are

shown in Table 4.1, Table 4.2 and Table 4.3. The goodness of fit of the proposed model is

calculated in terms of eight criteria SSE, MSE, MAE, MEOP, AE, AIC, TS and PRR. In Firefox

3.0 release, the proposed model is performing very well in seven criteria except in terms of AE

where Inflection S-shaped model and PTZ model behaves well. Among eight measures of fitness,

the proposed model has clear- cut outperforms by 87.25% than other used models. In Firefox 3.5

80 | P a g e

release, the proposed model is having lesser values of SSE, MSE, MAE, AIC, TS, and PRR. It has

major beating values in terms of goodness of fit measures except for values of MEOP where

Inflection s-shaped model performed well and AE values where inflection s-shaped model and

PTZ model performs well. Overall, the proposed model is having 75% major beating values. In

Firefox 3.6, the proposed model has major beating criterion except in term of AIC where Inflection

s-shaped model performed better than the proposed model. Fig. 4.2, Fig. 4.3 and Fig. 4.4 shows the

estimated number of faults using proposed model. Overall, the proposed model is performing

87.5% superior to other used models.

Table 4.1 Result Analysis using Firefox 3.0

Model Name Estimated parameter

values

SSE MSE MAE MEOP AE AIC TS PRR

GO model 110.067, 0.991, 0 335052.21 14567.487 3.156 3.025 0.979 5.481 1838.632 0.985

Inflection s-
shaped model

103.466, 0.992,
0.291

366508.08 15935.133 3.218 3.084 0.95 5.472 2162.14 0.9944

PTZ model 131.454, 0.987, 0.241,

0.09664, 0.000490

265036.58 11523.329 2.819 2.702 0.956 5.417 2067.275 0.9857

Proposed model 118.711, 0.936, 0.264,
3.786

63468.217 2759.487 1.458 1.397 0.977 5.459 899.77 0.9737

Table 4.2 Result Analysis using Firefox 3.5

Model Name
Estimated

parameter values
SSE MSE MAE MEOP AE AIC TS PRR

GO model 51.186, 0.997 1.65E+04 3.44E+02 0.74 0.725 0.993 5.446 242.413 9.947

Inflection s-

shaped model
43.803, 0.983, 0.295 6.85E+04 1.43E+03 34.009 0.199 0.974 5.415 493.99 0.953

PTZ model
21.938, 0.993, 0.277,

0.000389, 0.000548
1.83E+04 3.81E+02 0.647 0.633 0.983 5.408 255.23 0.957

Proposed model
69.345,0.973, 0.292,

2.894
1.25E+04 2.61E+02 0.529 0.519 0.986 5.404 211.167 0.939

Table 4.3 Result Analysis using Firefox 3.6

Model Name Estimated parameter

values

SSE MSE MAE MEOP AE AIC TS PRR

81 | P a g e

GO model 119.863, 0.999 4.53E+05 1.01E+04 1.995 2.392 0.982 5.452 1346.2 0.985

Inflection S-shaped
model

124.494, 0.966, 0.292 2.44E+05 5.42E+03 1.882 1.841 0.986 5.416 987.36 0.981

PTZ model 135.836 0.997,

1.414755,0.00058

3.17E+05 7.06E+03 2.098 2.052 0.984 5.451 1126.9 0.539

Proposed model 155.922, 0.997, 0.274,

1.746

2.31E+05 5.14E+03 1.84 1.8 0.986 5.419 962.24 0.981

Fig. 4.2 Estimated Number of Faults using Firefox 3.0

82 | P a g e

Fig. 4.3 Estimated Number of Faults using Firefox 3.5

Fig. 4.4 Estimated Number of Faults using Firefox 3.6

4.4.2 Example 2: Result analysis for Genome failure data-sets

In this example failure data of the Genome project is used to check the validity of the

proposed model. Three releases of Genome OSS system are used to test the proposed model

behaviour. Using Genome 2.0 release failure data-set, the proposed model is showing major

beating fitness values shown in Table 4.4 and found to be about 62.5% better than all other models

83 | P a g e

used. Proposed model behaves well in terms of SSE, MSE, MAE, MEOP and TS values except in

terms of AE, AIC and PRR values where other models suits well to the Genome 2.0 data-set. Using

Genome 2.2 data-set, the proposed model is behaving very well as shown in Table 4.5 in terms of

all comparison criterions except AE values where all other models are performing better. Overall,

proposed model is about 87.50 % more suitable on Genome 2.2 data-set. In Table 4.6, the proposed

model is analyzed using Genome 2.3 data-set. Results are proving that the proposed model fits

very reasonably on Genome 2.3 data-set except in terms of SSE and MLE where Inflection s-

shaped model and GO model fits well. Estimated errors using the proposed model using three

releases of Genome data-set is shown in Fig. 4.5, Fig. 4.6 and Fig. 4.7. In Genome data-set

estimated number of faults are found to be much closer to the actual number of faults in a given

failure data-sets and proves suitability of the proposed model.

Table 4.4 Result Analysis using Genome 2.0

Model Name Estimated parameter

values

SSE MSE MAE MEOP AE AIC TS PRR

GO model 58.034, 0.947 2.31E+04 1.28E+03 2.229 2.117 0.479 5.996 660.86 0.974

Inflection s-shaped

model

90.739, 0.934, 0.0014 1.67E+04 9.28E+02 1.874 1.775 0.513 5.985 561.79 0.968

PTZ model 71.965, 0.993,0.0001,
0.0076,

0.000348

2.28E+04 1.27E+03 2.227 2.11 0.484 5.997 656.79 0.475

Proposed model 88.366, 0.958, 0.002,
2.746

6.37E+03 3.54E+02 1.399 1.326 0.676 5.999 347.009 0.959

Table 4.5 Result Analysis using Genome 2.2

Model Name Estimated parameter

values

SSE MSE MAE MEOP AE AIC TS PRR

GO model 19.938, 0.995 9.20E+03 7.08E+02 2.194 2.037 0.334 5.983 399.722 0.9648

Inflection s-shaped

model

63.969, 0.935, 0.005 1.35E+04 1.04E+03 2.613 2.426 0.264 5.99 483.38 0.9702

PTZ model 55.048, 0.951,

0.0016,0.029,0.007576

8.81E+03 6.77E+02 2.26 2.099 0.395 5.996 391.782 0.9665

Proposed model 54.298,0.928, 0.0082,

2.549,

7.32E+02 56.27538 0.79 0.734 0.671 5.943 12.699 0.9077

84 | P a g e

Table 4.6 Result Analysis using Genome 2.3

Model Name Estimated parameter

values

SSE MSE MAE MEOP AE AIC TS PRR

GO model 44.895, 0.983 5.37E+03 2.98E+02 1.287 1.219 0.681 5.993 318.19 0.957

Inflection s-shaped

model

49.615, 0.916, 0.0002 3.63E+33 2.05E+02 1.123 1.084 0.731 5.991 264.43 0.953

PTZ model 66.211 , 0.946, 0.005,

0.00008,0.00035

9.50E+03 5.28E+02 1.62 1.54 0.631 6.000 374.24 0.966

Proposed model 54.265, 0.928, 0.003,

0.416,

3.70E+03 2.01E+02 1.149 1.069 0.713 5.99 261.82 0.952

85 | P a g e

Fig. 4.5Estimated Number of Faults using Genome 2.0

Fig. 4.6Estimated Number of Faults using Genome 2.2

86 | P a g e

Fig. 4.7 Estimated Number of Faults using Genome 2.3

4.5 Conclusion

The authors proposed a new NHPP software reliability model for open source software

based on new testing effort behaviour based fault content function. The fault content has been

modified and assumed to be an exponential function with the impact of fault introduction

probability and testing effort coefficient. Incorporated testing effort coefficient is depicting that

in each new released version due to added functionality and number of fault content, there is a

need of change in amount of incorporated testing effort, more is the effort devoted in software

testing and debugging, more reliable software will be released in future. Impact of testing effort

has been reasonably incorporated to fit well in the latest software development technologies and

environments. Results are showing the suitability of the proposed model on two well-known

Firefox and Genome open source software failure datasets. The proposed model is found to be

beating other models in most of the goodness of fit criterion and fits very well for software

reliability estimation.

87 | P a g e

Chapter 5 PARAMETER ESTIMATION ALGORITHM

The software reliability prediction by mathematical models is entirely centered on the

parameter values. From the survey in the field of parameter estimation it is found that meta-

heuristic algorithms are performing better than other traditional methods for the solution of

optimization problems. Authors in this chapter proposed a new algorithm based on ecological

space, Differential Evolution and Artificial Bee Colony for optimization of the parameter values.

The exploration capability in Artificial Bee Colony algorithm has been improved by introducing

the concept of ecological space. Onlooker bee ecological space is one of the important factors

for evolution and reflects the expansion of individual bee in search space. Differential Evolution

technique provides the diversity of bee’s population and faster convergence. Proposed algorithm

has been tested with four standard failure datasets. Proficiency of proposed algorithm is also

compared with other meta-heuristic algorithms namely Artificial Bee Colony, Genetic Algorithm

and Particle Swarm Optimization. Further validation of proposed algorithm is done through

comparing its efficiency with hybrid PSO and Gravitational Search Algorithm. Simulation

results verify that proposed hybrid algorithm is very much effective in field of software reliability

estimation and would be a competitive one among meta-heuristic optimization algorithms.

5.1 Introduction

Reliability is the major quality aspect of the software. Software reliability estimation

process must be precise in order to provide the information to the software developers like

release time of the software, extent of man-hour consumption etc. Accurate software reliability

estimation is mainly dependent on the selection of optimum parameter values of the models.

The techniques for optimizing parameter values of the software reliability models are

available through various classical methods of parameter estimation. These methods are based on

the number of constraints, may fall in local maxima and do not converge to global maxima in the

multimodal cases. Alternative to these classical mathematical optimization methods, are the

nature inspired optimization algorithms [6], [173], [245] to solve non-linear, non-differential and

multimodal problems.

Nature inspired meta-heuristic algorithms are assembled into four main groups that

includes algorithms based on evolutionary principals, Swarm Intelligence behaviour, physics

88 | P a g e

phenomenon‟s and Human Intelligence behaviour. For example, Holland [246], Price and

Storn[10] proposed algorithms related with the natural evolutionary principal. Khelif [247]et al,

Basturk and karaboga[191], Fahad and Mohamed[248], Ozturk and Karaboga[162], Kennedy

and Eberhart [249] proposed few Swarm Intelligence behaviour based algorithms. Gelatt et al.

[154] proposed a physics phenomenon based algorithm. Lim and Isa[178] proposed an algorithm

evolved from the human Intelligence behaviour. Among these groups most promising

optimization capability are from Swarm Intelligence and Evolutionary principal based

algorithms. Darwin‟s principal based evolutionary algorithms are like GA, GP and DE etc.

Swarm Intelligence behaviour based algorithms imitates the social activities of the creatures like

flocks of animals, birds and amphibians etc. and utilizes the social ability of learning and

adaptation. These algorithms are the most propitious area of research for numerical optimization

and can be successfully applied for parameter optimization of software reliability models. There

are numerous such algorithms available, how researchers should use them? To answer this,

crucial is to compare these algorithms.

For designing a new algorithm the foremost goal is to know how behaviour is pursuing

the evolutionary and swarm intelligence capabilities. To obtain optimum solution, there should

be equilibrium between exploration and exploitation geographies of an algorithm. The necessary

condition for swarm intelligence is self-organization (comprises feedback, variations and

multiple collaborations) and division of labour. For self-organization, fluctuations are vital to

provide a level of randomness and for finding the new better solutions effectively. It is important

to get rid of stagnation for enhancing the exploitation. There is a need to find the factors in the

algorithm which are playing a key role in calculating the fitness probabilities of the candidate

solutions. These factors need to be related to the ecological space fitness as the survival of fittest

is not only the driving factor of evolution as discussed in [8].

A new ecological space based hybrid Swarm Evolutionary algorithm is proposed in this

chapter. Proposed algorithm is centered on the social behaviour of artificial bee colonies given in

Yang [6] and evolutionary behaviour of DE algorithm given by Price and Storn [10]. The swarm

intelligence of employee bee is enhanced for providing exploitation to provide better local search

of the neighbour-hood positions using the evolutionary principle based DE algorithm. Onlooker

bee phase has been improved by incorporating a new factor, showing the fitness probability of

89 | P a g e

the ecological space. The implementation results on the reliability models are showing the

validity of the proposed algorithm for reliability estimation.

The chapter is organized into various sections: Section 1 describes introduction part.

Section 2 discusses meta-heuristic algorithms in different domains. Section 3 describes a new

proposed hybrid algorithm. Section 4 describes experimental setup. Section 5 discusses results

and comparison with other algorithms. Last section provides conclusion of the work done.

5.2 General Study of Meta-heuristic algorithms

Although, there are number of meta-heuristic algorithms available in the literature but in the field

of software reliability assessment, there are only few of the algorithms that has been

implemented for software reliability model parameter estimation. Authors analysed capability of

few of the well-known algorithms that has been successfully used for solution of optimization

problem in various domains for parameter estimation. This section discusses these meta-heuristic

algorithms.

5.2.1 Artificial Bee Colony

ABC algorithm was proposed by Karaboga in 2005 based on the foraging behaviour of

honeybee for numerical optimization problems [191]. The algorithm welfares includes its

Robustness, flexibility and simplicity, easy implementation with fewer number of parameters

required.

The ABC artificial agents are categorized into three parts. Each part is performing its task

for finding the nectar as the food source. These ABC agents include the employee bees,

Onlooker Bees and the Scout Bees. The process of finding the food source is as follows-

1. Exploitation process (Evaluating the nectar quality)-The exploitation is performed by the

employee bees and the onlooker bees. The process involves first sending the employee

bee to the initial location of food source and then sharing the information regarding the

food source as the probability proportion of the profitability of the source of food with

the bees in the hive. Employee bees then choose the neighbour-hood positions of the

memory for another food source. Onlooker bees after getting the information of the food

source in the hive employ itself at the most profitable source and calculates the nectar

quality. There is the positive feedback and negative feedback of the food sources

90 | P a g e

depending on the amount of nectar at the food source, if it increases then more number

of onlooker bees will move at that food source and if it decreases then exploitation of the

food source will be stopped by the bees.

2. Exploration process (Discovering new food source) - A random search process is carried

out by the scouts for searching the new food source.

Three control parameters i.e. the size of the swarm, limit, and the maximum number of

iterations are used in this work for the implementation of ABC algorithm. Fig. 5.1 illustrates the

flowchart of Artificial Bee Colony algorithm.

Fig. 5.1 Artificial Bee Colony Algorithm

5.2.2 Particle Swarm Optimization

Particle swarm optimization is a meta-heuristic method to optimize the problem solution

iteratively [249]. Only few of the assumptions are to be made for the solution that is to be

optimized. The problem is solved by having a candidate solution in terms of particles and then it

moves the particles in the search space by using mathematical formulas for the position and

91 | P a g e

velocity updates. Each movement of the particles is influenced by the particles local best

position and also moves toward the global best positions which are considered to be the better

positions found by other particles in swarm. By this process whole swarm is expected to be

moved towards the best solution. Fig. 5.2 illustrates the general process of PSO algorithm.

Fig. 5.2 Particle Swarm Optimization Algorithm

5.2.3 Differential Evolution Algorithm

Differential Evolution is developed by Ken Price and Storn in 1997 for global

optimization of the problems [10]. DE is very much similar to Genetic algorithm as it is also

using three operators mutation, cross over and selection, but with a difference that genetic

algorithm trusts on cross over operation while differential evolution relies on mutation operation.

Fig. 5.3 describes the general process of Differential algorithm.

92 | P a g e

Fig. 5.3 Differential Evolution Algorithm

5.2.4 Hybrid Particle Swarm Optimization and Gravitational Search Algorithm

Using gravitational affects, hybrid particle swarm optimization and gravitational search

algorithm helps in finding the best solution for guiding the heavy masses towards the global

optimum positions. Fig. 5.4 illustrates the process of PSOGSA algorithm. This process also

increases the speed and overall movement of particles and masses as well and will enhance the

exploitation capability of PSOGSA algorithm. Especially, some works [194], [195] applied the

idea of PSO on GSA (which is memory less, originally), and modified the GSA velocity term by

combining it with the PSO velocity term (which is memory based).

Fig. 5.4 Hybrid PSOGSA Algorithm

93 | P a g e

After studying literature of the evolutionary algorithm including the ABC, DE, Particle

Swarm optimization, Hybrid particle swarm optimization and gravitational search algorithms,

authors found number of advantages of artificial Bee colony optimization and decided to find out

the application of ABC for parameter optimization of software reliability growth models as the

reliability of the software is a key concern while developing any software product. It is found

that ABC algorithm being a simple algorithm has a premature convergence with unbalanced

exploration and exploitation process. There is an advantage of using DE in providing the

diversity of the population and in providing the improved local search capability to the ABC

algorithm. DE is also having faster convergence capability then ABC algorithm. The proposed

work in this section hybridizes Artificial be colony algorithm with the best features of DE

algorithm.

5.3 Proposed Algorithm

A new ecological space based hybrid Swarm-Evolutionary algorithm has been proposed

for software reliability models parameter estimation. ABC algorithm is simple and flexible

swarm intelligence based algorithm having fewer numbers of parameters, but needs further

modification to improve its efficiency in terms of exploitation and exploration. ABC algorithm

may be modified by enhancing the exploitation and exploration capability of employee bees and

the onlooker bees. Food source information shared by the employee bees must be accurate.

Employee bees must calculate and share the candidate ecological living space fitness

information. There is also a need to incorporate a candidate‟s ecological living space fitness

factor for fitness probability calculations by the onlooker bees so that fitness probabilities could

be calculated in precise. This ecological space factor will enhance the exploration capability in

ABC.

Proposed hybrid algorithm combines DE algorithm capabilities with ABC algorithm. DE

algorithm has the proficiency in improving the diversity of the population by providing an equal

probability of being selected as a parent solution from the candidate solutions in space and could

better improve local search capability of the employee bee phase in ABC algorithm. DE

algorithm also has a faster convergence capability then other evolutionary algorithms and could

better fit in ABC algorithm for enhancing its exploitation capability.

94 | P a g e

5.3.1 Mathematical Formulation for Artificial Bee Colony Algorithm

1. Initialization phase- This phase involves the initialization of the swarm and setting of the

appropriate values for the control parameters in the algorithm. Initialization is done using

equation (1).

l i i ix (i)=lb +rand(0,1) (ub -lb) (1)

2. Employee Bee Phase: Each employee bee searches for the new food source with the large

nectar amount. When the new food source is found its fitness value is calculated and new food

source is defined by the equation (2).

i

() () (() ()) (2)

where x is the value of the food source selected randomly and

 is a random number and b and c=(1...

l i b c

c

y i x i x i x i

c

 n(number of employee bee))

Greedy selection is done after obtaining the new value of the food source, if the value of the

difference between (x(i)-y(i)) is higher, then exploration will happen and if this difference is

small then exploitation process will happen. The fitness value f (xi) is given by equation (3)

i i i

maximum fitness value is calculated as

f(y) f(x) then x and

() () (3)

i

i i

y

f x f y

3. Onlooker Bee phase: The fitness value probabilities are calculated and these calculated

probabilities and information that has been shared by the employee bees are used by the

Onlooker bees for selecting their food sources .The food source whose fitness valve is highest is

selected by the onlooker bees.

4. Scout Bee phase: The scout bees are unemployed bees and replaces the abandoned food

sources that is the food source that has not been improved from certain number of cycles.

5. Food source memorization phase: In this phase best fitness value and the positions related with

that value are memorized.

6. Termination criteria phase: Termination will happen if the termination condition is met and

otherwise repeat from employee bee phase till the termination condition happens.

95 | P a g e

The implementation of ABC requires the balance between the exploitation and

exploration process. The exploitation process done by the employee bees and onlooker bees

during their execution requires the enhancement of the local search capability i.e. the

exploration. The fitness probability calculation by the onlooker bees requires additional attention

so that exact fitness of the food source can be calculated.

5.3.2 Mathematical Differential Evolution Algorithm for Global Solution of a Problem

Mutation phase-The new solution from the original solution for expanding the search space is

created using equation (4)

1 2

1 2 3

V ,

V () (4)

Where r1,r2,r3 are the random integer numbers different

i i i iD

i r r r

v v v

X C X X

2 3

from the i value

C is a real valued number ranging from {0...2}.and used in scaling the value of ().

r rX X

Cross over phase-This phase is used for enhancing the diversity of the population. Here the target

vector is diversified with the mutant vector and a different trial vector is generated having more

diversity then the mutant vector. The trial vector is given as in equation (5).

1 2

ij random

ij

,

 if r or j=j
 (5)

 otherwise

where r is random number between 0..1, is t

i i i iD

ij r

ij

ij

r

O o o o

v C
o

x

C

random i i

he probability of the crossover and

j ensures that the randomly chosen number in X is atleast from V

Selection phase - All the solutions in the solution space are having an equal probability of being

selected as the parent without considering their fitness value. So selection phase is to find which

one among vij or xij should be the member of the next generation using the equation (6).

i i i

i

i

i

 if f(V) f(X)
X ' (6)

 otherwise

where f() is the fitness function and X ' is the new

V

X

individual of the population

96 | P a g e

5.3.3 Hybridization of Proposed Swarm-Evolutionary Algorithm

5.3.3.1 Employee Bee phase

A level of randomness is essential for maintaining diversity throughout the search space.

The quality of the updated solution is influenced greatly by the selection of random solutions. In

basic ABC algorithm, solution is updated only using random solution of the current search space.

Rather than depending only on this random selection, to maintain population diversity employee

bees find updated positions of food source from the current positions using DE method, in this

each particle breeds locally new and enhanced information from the swarm for finding the

neighbour-hood positions. The position update in Employee bees is done as below:

First employee bees search for the updated positions is done using Eq. (7).

1

1 () () (() ()) (7)
t

l i l m
Y i P i P i P i

And then employee bees again searches for the neighbour-hood solution of the current position

for each employee bee using DE. New trial vector is generated first using mutation and then

cross over is done for new offspring generation. At last greedy selection is done from the current

and offspring solution for finding better candidate selection. Using Eq. (8), Eq. (9) and Eq. (10)

neighbour-hood solutions are selected.

 0

1 1 1
0

k =1-m

t
 V ()

Generation of m neighbors

For neighborhood size do

 Mutation

 (8)
, 1 2

k 3

t t t
Y C Y Y

i

1
0 0 0 0

1
0 0

 For do

 Cross over

1
Then V else

, ' , ' ,

(d'=1-D)

 if random or d'=j O O Y
' , '

 End for

 Selection

1
 If fitness

(9)
ij random k k k k

(Y) >fitness
k k

t t t t

d d d d

t
O

C

t

1
0 0 0

O O
1

Then Y el se

 (10)
k k k

End for

t t t

97 | P a g e

5.3.3.2 Onlooker Bee phase

In the original ABC algorithm [250], Onlooker bee selects the food sources depending on

the information about nectar amount shared by employee bee in the hive. But this is not only the

factor for calculating the fitness probabilities of the food source, ecological space fitness

information is also one of the driving factor showing the nectar quality and is being shared by

employee bees in hive in the proposed algorithm.

As per with the state of art algorithms and theories in the literature, ecological living

space is a factor that is necessary for the organism (food source) to flourish in the environment

and it will enhance the diversity by matching the available living space as described in Michael

et al.[8]. The candidate solution and ecological diversity are very much closely related. More

favourable is the ecological conditions more quality food will be available to the bees. The

diversity will appear to increase depending on the favourable ecological space. The diversity is

assessed from ecological, morphological or genetic perspective. Understanding correlation

among them can define better the history of life of candidate solutions on earth. This is the first

application exploring the link between ecological diversity and candidate solution. In the

proposed concept candidate food source fitness probability is calculated by onlooker bees using

Eq. (11).

 i

t+1

1

0.5 * fitness /max fitness +η (11)

Further onlooker bees make position update using ecological space factor as given in Eq. (1

Y

2).

i

g lml lP (P (i)-P (i))

Where a factor η is the candidat

(i)= (i)+ (P (i)-P (i)) + η

e's available living ecologic

al space fitness

 probability

Hig

her fitness pro

 (12)
j i

bability of the ecological living space will increase the chance of food source as being selected by the onlooker bees.

5.3.3.3 Scout Bee phase

Scout bee on random regenerate the exhausted food source solutions in the space using

ecological space fitness information and other information from the employee bee in the solution

space.

98 | P a g e

Fig. 5.5 is a two dimensional space created using the cellular grids. Each position in the

cellular grid is a possible candidate solution. Current positions of the food source 1 (i)Y
and

updated positions of food source 1(i+1)Y
 are represented by circle and the circle with plus indicate

the possible number of neighbours found using the cross over process. The 1 11 2 1 3Y, and Y Y cells

in the grid are selected as the possible random candidate solutions and are selected for mutation

to generate the iV vector. This whole process will terminate after fixed number of iterations and

are equal to the swarm size specified.

5.3.4 Framework of the proposed algorithm

Proposed hybrid algorithm as shown in Fig. 5.6 and Fig. 5.7 starts with the initialization

of the control parameters, swarm size(S), number of available food sources, limit, maximum

number of iterations, neighbour-hood size (m). Other parameters used in the algorithm are ϕ, C

and D. After initialization phase each employee bee searches for the food source using Eq. (7)

and then using DE (Eq. (8), Eq. (9) and Eq. (10)) neighbour-hood is defined for each employee

bee with three random states in the grid using mutation vector, cross over vector and selection

vector. Then onlooker bee phase takes place that calculates the fitness probability of each state

using Eq. (11) and then selects the food source with highest fitness probability. If fitness

probability of food source still is not satisfying the termination criterion then onlooker bee

updates positions using Eq. (12). At last scout bee regenerates the exhausted food source in the

solution space and finally outputs the best generated solution.

99 | P a g e

 Y1(i)t+1
B Oij(a2,b1)

X

Y1(i)=Xi(cell

state)

 State)

(Mutated

vector)

vector)

V i

 Oij(a1,b2)
 (Cross over vector)

yr1

 Y1µ1 Y1µ3

Y1µ2–

Y1µ3)

Yr3)

 Y1µ2

 A

Fig. 5.5 2D View of Hybrid DE assisted ABC Algorithm

100 | P a g e

Initialize the swarm and Set the value of the control parameters

While (termination condition) do

//Employee bee phase :

for (each particle i= 1…..S

 Searches the

swarm s

 new f

ize)

ood

0

source solution for each employee bee in the swarm using Eq. (7)

 Go for the neighbor-hood solution of the current position for each employee bee

k =1-m(neighbour-

 hood size for ()

0

0

t

i ,k

t

k , d'

V do apply mutation to generate trial vector as solution using Eq. (8)

 Ap O using ply crossover t (9)

o generate off

 do

spr

 gr

ing E

eed

q.

y selection for finding the better solution from the current and generated

 solutions using (10)

 end for

end

Eq.

 for

ased on fitness value probability calculated using Eq. (11),

//Onlooker bee phase:

for (each of onlooker bee's solution)

 Select the food source having highest fitness prob

abil

 B

ity

 Then generate neighbor-hood solution based on the probability calculation and

 position update using Eq. (12)

end for

//Scout bee phase:

 Scout bee on random regenerate the exhausted food source solutions in the

 space using ecological space fitness information and

 other information from the employee bee in the solution spa

end while loop

ce.

 output the best solution

Fig. 5.6 Ecological space based Hybrid Swarm-Evolutionary (DE assisted ABC) Algorithm

101 | P a g e

Fig. 5.7 DE Assisted ABC Algorithm

5.4 Experimental Setup

The implementation of the proposed algorithm is done on Intel(R) Core (TM) i5(5th

gen)-62000 CPU 2.40 GHz with 4 GB RAM and 64 bit windows architecture, x64 based-

processor. Proposed algorithm has been implemented on most generally used perfect debugging

Initialize the Swarm size and set the

value of control parameter

Identify the initial position of the

candidate solutions and calculate

the fitness

Employee Bee Phase

Generate the new food source solution

for each employee bee using Eq. (7) and

calculate its fitness in the swarm.

Go for best neighbor-hood solution of the

previous updated solution for each bee using

differential evolution below:

1) Apply mutation to generate a new trial

vector using Eq. (8).

2) Generate new solution using crossover in

Eq. (9).

3) Select new / previous solution based on the

fitness values of the candidate solutions using

Eq. (10).

4) Calculate ecological space fitness of the

selected candidate solution.

Onlooker Bee Phase

Select the food source with highest fitness
probability using Eq. (11).

Generate neighbor-hood solution based on
the probability calculation using Eq.(12).

 Scout Bee Phase

On random generate the exhausted food
source solution in the space using ecological
living space fitness.

Is the

termination

criterion met?

N

o

Ye

s

Final Best Solution

achieved

End

Begin

102 | P a g e

and imperfect debugging behaviour based models. The models used for experimentation work

are:

1. Perfect debugging behaviour based two parameter Goel and Okumotto model [244]

2. Imperfect debugging behaviour based three parameter Inflection s shaped model [18]

3. Imperfect debugging with fault introduction behaviour based five parameter PTZ model [19].

The performance of the proposed algorithm has been compared with other meta-heuristic

algorithms like PSO, DE, ABC and hybrid PSOGSA. Four bench-mark datasets [51] have been

used for experimental analysis.

5.5 Results and Discussion

The statistical results for estimated model parameter values, Sum of squared errors, Mean

square error and elapsed time taken by algorithms in seconds are shown using different cases.

The best results are shown in bold for each of the tables. Implementation of the algorithms has

been done with more than 1000 iterations.

5.5.1 Result analysis

5.5.1.1 Case1. Analysis of GO Model Using Real Time Command and Control System

This analyzes various meta-heuristic algorithms using GO model and DS5. Fig. 5.8 is

showing the results of estimated number of errors i.e. the mean value function, calculated in the

software at time t and proves that the results estimated by the hybrid algorithms (PSOGSA and

ABCDE) are much better and close to the actual number of detected errors at time t in the

software than the other used algorithms. The reliability estimation at each detected faults ranges

from 78-90%.

5.5.1.2 Case2. Analysis of Inflection-S Shaped Model using Real Time Command and Control

System

The behaviour of all the algorithms for mean value function analysis using inflection s-

shaped model and DS5 is shown in Fig. 5.9 and the best results are found using the PSO, Hybrid

PSO-GSA and Hybrid ABC-DE (HABCDE) algorithms. The reliability behaviour of the

software after estimating the errors in the system are found to be increasing from 79 to 93% in

proposed HABCDE algorithm.

103 | P a g e

The implementation results for parameter estimation using evolutionary approaches for

the GO and inflection s-shaped model are given in bold in Table 5.1 and Table 5.5 respectively

and are found to be very much satisfactory. The MSE and the Sum of squared errors calculated

are shown in Table 5.2, Table 5.3 and in Table 5.6 and Table 5.7 respectively for both the

models and are showing that the hybrid algorithms are having less error as compared to the other

approaches used. Hybrid ABCDE is having better MSE values in average case and satisfactory

in other cases, SSE values in the worst case are found to be good using the hybrid algorithms.

For inflection s-shaped model best values for MSE and SSE are estimated using the Hybrid

ABCDE algorithm. Elapsed time showing the convergence behaviour of the algorithm is

displayed in the Table 5.16 and

Table 5.20. The results are showing that the hybrid ABC-DE algorithm better converges and do

not trap in to a local optimum condition, the elapsed time is better than DE and little more than

others due to the large number of steps taken by the hybrid approach.

5.5.1.3 Case3. Analysis of PTZ Model using US Navel Tactical Data Systems

In this case analysis of the meta-heuristic nature inspired algorithms has been done on a

more complex model i.e. PTZ model having five parameters and DS6. Estimation of expected

number of errors is shown in Fig. 5.10; HABCDE results are very much close to actual number

of errors in the system than other used approaches. Reliability estimated is found to be less at the

starting phase and gradually increases when the resources are enough and learning proceeds.

Table 5.9 specifies the results estimated using five parameter PTZ model and these are

very much satisfactory. The MSE and SSE values calculated are showing the best behaviour of

HABCDE algorithm in all the best, worst and average cases as shown in Table 5.10 and Table

5.11. Even number of parameters to be estimated by the algorithms is large, convergence of

HABCDE is satisfactorily good and do not trap in to a local minima or maxima as shown in

Table 5.12.

104 | P a g e

5.5.1.4 Case4. Analysis of GO Model using Tandem Computers Software Projects

This case analyzes algorithm‟s behaviour using GO model on time domain dataset DS6.

Fig. 5.11 is showing the number of errors estimated at time t in the software for the GO model

and satisfactory results are obtained by all the approaches including HABCDE algorithm. The

highest reliability is analysed with HABCDE algorithm as compared to the other algorithms

using DS7 and GO model.

5.5.1.5 Case5. Analysis of Inflection S-shaped Model using Tandem Computers Software

Projects

This case uses three parameter inflection s shaped model and DS7 for analysis. Results

analyzed for parameter estimation of GO model and Inflection s-shaped model using hybrid

ABCDE algorithm are best among all the other algorithms and are close to the actual number of

errors detected given in DS7 as shown in

Table 5.13 and

Table 5.17.The MSE and SSE results in

Table 5.14, Table 5.15 and Table 5.18, Table 5.19 respectively for both the models are

showing the satisfactory results of all the approaches used but among them for the best and

average case behaviour of MSE and SSE values Hybrid ABCDE algorithm outperforms. The

convergence properties are shown in the Table 5.16 and

Table 5.20 respectively for both the models.

5.5.1.6 Case6. Analysis of PTZ Model using Real Time Control System

This case analyzes expected number of errors and reliability using PTZ model and DS8

using hybrid algorithms and results are shown in Fig. 5.12. From the statistical results in

Table 5.21 calculated for the PTZ model it is found that the hybrid algorithms are

performing better. The MSE and SSE and convergence rate calculated in

105 | P a g e

Table 5.22 , Table 5.23 and Table 5.24 are showing the better performance using DE and

hybrid ABCDE algorithms than the other used approaches.

Fig. 5.8 Estimated Number of Errors at Time t Using GO Model and DS5

Fig. 5.9 Estimated Number of Errors at Time t using Inflection S Shaped Model and DS5

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25

Es
ti

m
at

e
d

 N
o

 o
f

Fa
u

lt
s

Time

GO model /DS5

ABC

DE

PSO

HPSOGSA

HABCDE

Actual

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25

Es
ti

m
at

e
d

 N
o

 o
f

Fa
u

lt
s

Time

Inflection s-shaped Model/DS5

PSO

DE

ABC

HPSOGSA

HABCDE

Actual

106 | P a g e

Fig. 5.10 Estimated Number of Errors at Time t using PTZ Model and DS6

Fig. 5.11 Estimated Number of Faults using GO Model and DS7

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Es
ti

m
at

e
d

 N
o

 o
f

Fa
u

lt
s

Time

PTZ model/DS6

PSO

DE

ABC

HPSOGSA

HABCDE

Actual

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Es
ti

m
at

e
d

 N
o

 O
f

Fa
u

lt
s

Time

GO Model/DS7

PSO

DE

ABC

HPSOGSA

HABCDE

Actual

107 | P a g e

Fig. 5.12 Estimated Number of Errors using PTZ Model and DS8

Table 5.1 Statistical Results of Parameter Estimation for GO Model

Sr. no Algorithm a b

1 ABC 139.4072 0.18173

2 DE 138.9734 0.16789

3 PSO 139.4080 0.18173

4 HPSOGSA 138.0168 0.19733

5 HABCDE 139.4070 0.18526

Table 5.2 Statistical Results of Mean Squared Errors for GO model

MSE ABC DE PSO HPSOGSA HABCDE

Best 7.16E+02 8.10E+03 1.27E+04 1.03E+02 183.5E+00

Worst 8.62E+03 1.12E+04 1.53E+04 8.37E+02 8.05E+02

Average 2.34E+03 9.99E+03

1.44E+04

4.236E+03

4.24E+02

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Es
ti

m
at

e
d

 N
o

 o
f

Fa
u

lt
s

Time

PTZModel/DS8

ABC

DE

PSO

HPSOGSA

HABCDE

Acutal

108 | P a g e

Table 5.3 Statistical Results of Sum of Squared Errors for GO model

SSE ABC DE PSO HPSOGSA HABCDE

Best 1790.469 2.03E+05 3.17E+05 2.58E+02 4.59E+02

Worst 215576.4 2.80E+05 3.82E+05 2.09E+05 2.05E+05

Average 58458.92 2.50E+05 3.59E+05 6.41E+03 1.26E+03

Table 5.4 Statistical Results of Elapsed Time in seconds for GO Model

Elapsed time ABC PSO DE HPSOGSA HABCDE

Best 27.430

4.25219 28.563 14.28191

25.45811

 Worst 28.00795

5.503333 29.782 14.64772

30.18599

 Average 27.60951

4.433742 25.890 14.48766

28.25369

Table 5.5 Statistical Result for Parameter Estimation using Inflection S Shaped Model

Sr.

no

Parameter Estimation

Method

A b beta

1 ABC 143.5475 0.199477 0.494249

2 DE 139.4072 0.1817297 0.4938127

3 PSO 135.2333 0.197125 0.478044

4 HPSOGSA 134.0954 0.148224 0.370924

5 HABCDE 138.1621 0.159543 0.367240

109 | P a g e

Table 5.6 Statistical Result for Mean Squared Errors using Inflection S Shaped Model

MSE ABC DE PSO HPSOGSA HABCDE

Best 8.57E+01 5.17E+03 1.00E+04 4.62E+03 9.73E+00

Worst 8.57E+03 1.06E+04 1.06E+04 8.25E+03 4.56E+03

Average 2.443E+03 8.941E+03 1.025E+04

6.35E+03 8.18E+02

Table 5.7 Statistical Result for SSE using Inflection S Shaped Model

SSE ABC DE PSO HPSOGSA HABCDE

Best 2.14E+03 1.291E+05 2.450E+05 1.16E+05 2.43E+02

Worst 2.14E+05 2.65E+05 2.66E+05

2.06E+05 1.14E+05

Average 6.10E+04 2.241E+05 2.56E+05 1.591E+05 2.04E+04

Table 5.8 Statistical Result for Elapsed Time in seconds using Inflection S-Shaped Model

Elapsed time ABC DE PSO HPSOGSA HABCDE

Best 28.13206

75.68854 4.012182 14.89633 25.25601

Worst 29.00085 78.809 4.290052 15.29576 28.70718

Average 28.55347 77.07568

4.164199 15.01432 26.74783

110 | P a g e

Table 5.9 Statistical Result for Parameter Estimation using PTZ Model

Sr.

no

Parameter Estimation

Method

 a b c alpha beta

1 ABC 108.789 0.06790 0.09664 1.414755 0.000490

2 DE 104.7803 0.09026 1.485479 0.000361 0.000573

3 PSO 109.9867 0.09852 1.692284 0.004389 0.000548

4 HPSOGSA 104.4378 0.069748 0.52414 0.000386 0.000581

5 HABCDE 107.7895

0.067909

0.095645

0.0000141

0.000491

Table 5.10 Statistical Result for MSE using PTZ Model

MSE ABC DE PSO HPSOGSA HABCDE

Best 5.11E+03 1.97E+04 1.78E+04 2.241E+03 1.59E+03

Worst 1.84E+04

2.44E+04 2.151E+04 1.142E+04 1.67E+04

Average 9.36E+03

2.287E+04

1.95E+04

6.212E+03

6.17E+03

Table 5.11 Statistical Result for SSE using PTZ Model

SSE ABC DE PSO HPSOGSA HABCDE

Best 1.02E+03 3.931E+05

3.57E+05

4.48E+04

3.178E+04

Worst 3.67E+05

4.872E+05 4.29E+05

2.29E+05

3.33E+05

Average 1.87E+05

4.55E+05

3.90E+05

1.291E+05

1.330E+05

111 | P a g e

Table 5.12 Statistical Result for Elapsed Time in seconds using PTZ Model

Elapsed time ABC DE PSO HPSOGSA HABCDE

Best 25.48469

23.29652

2.534641

14.79884

24.00024

 Worst 29.67125

26.44875

2.909702

14.8681

26.55558

 Average 26.8195

24.37326

2.650514

14.85586

26.2141

Table 5.13 Statistical Result for Parameter Estimation using GO Model

Sr. no Optimization method used a b

1 ABC 31.7865 0.0039

2 DE 34.3050 0.0068

3 PSO 35.9554 0.0068

4 Hybrid PSOGSA 30.0675 0.0051

5 HABCDE 27.09773 0.0066

Table 5.14 Statistical Results for MSE using GO Model

MSE ABC DE PSO HPSOGSA HABCDE

Best 13.70259

4.582402

4.945849

4.571759

4.64046

 Worst 234.853 19.5016 18.22528 10.16137 37.9492

 Average 132.7339

13.02272

11.99917

5.725057

21.8947

112 | P a g e

Table 5.15 Statistical Result for SSE using GO Model

SSE ABC DE PSO HPSOGSA HABCDE

Best 3.556E+02

1.19E+02

1.291E+02

1.193E+02

1.21E+02

 Worst 6.11E+03

5.07E+02

4.74E+02

2.64E+02

6.19E+02

 Average 3.45E+03

3.349E+02

3.12E+02

1.49E+02

2.91E+02

Table 5.16 Statistical Result for Elapsed Time in seconds by Various Algorithms using GO

Model

Elapsed time ABC DE PSO HPSOGSA HABCDE

Best 25.15042

50.8989

1.548572

16.96231

26.72567

 Worst 38.96231

63.50719

18.13354

21.03597

27.69542

 Average 25.82883

53.37236

2.073709

18.77478

26.9957

Table 5.17 Statistical Result for Parameter Estimation using Inflection S Shaped Model

Sr.no. Optimization method a b beta

1 ABC 31.77672 7.24E-05 8.80E-05

2 DE 35.77057 0.006895 0.000333

3 PSO 31.08892 0.006895 0.000333

4 HPSOGSA 31.95481 9.54E-05 0.000106

5 HABCDE 27.28924 0.002422 7.81E-05

113 | P a g e

Table 5.18 Statistical Result for MSE using Inflection S Shaped Model

MSE ABC DE PSO HPSOGSA HABCDE

Best 1.42E+02 8.25691 4.750727 2.25E+02 15.71997

Worst 2.31E+02 19.46594 15.11254 2.33E+02 229.2785

Average 2.08E+02

14.30301

9.784142

2.30E+02

83.36798

Table 5.19 Statistical Result for SSE using Inflection S Shaped Model

SSE ABC DE PSO HPSOGSA HABCDE

Best 3.678E+03 2.15E+02 1.24E+02 5.85E+03 4.09E+02

Worst 6.00E+03 5.056E+02 3.93E+02 6.056E+03 5.96E+03

Average 5.41E+03 3.72E+02 2.54E+02 5.99E+03 2.15E+02

Table 5.20 Statistical Result For Elapsed Time in seconds using Inflection S Shaped Model

Elapsed time ABC DE PSO HPSOGSA HABCDE

Best 27.58383

79.07232

1.279148

14.52722

27.54145

 Worst 40.85063

87.04153

1.502138

15.24965

30.54829

 Average 29.92456

81.44662

1.401541

14.72697

28.13046

114 | P a g e

Table 5.21 Statistical Result for Parameter Estimation using PTZ Model

Sr.

no

Approach used a b c alpha beta

1 ABC 139.9816

0.000602

3.99E-05

8.05E-05

9.69E-05

 2 DE 138.3598

0.000988

3.98E-05

0.009964

0.000348

 3 PSO 139.7796

0.000998

3.99E-05 0.009884

0.007576

 4 HPSOGSA 136.9941

0.000933

3.30E-05

0.008679

9.53E-05

 5 HABCDE 138.4123

0.000106

3.80E-05

0.006291

0.000352

Table 5.22 Statistical Result for MSE using PTZ Model

MSE ABC DE PSO HPSOGSA HABCDE

Best 64.29368 49.98509 57.25215 58.49756 56.32027

Worst 1148.084 53.31243 58.89849

94.35258 1558.339

 Average 339.4261

51.4039

58.11268 77.54565 382.322

Table 5.23 Statistical Result for SSE using PTZ Model

SSE ABC DE PSO HPSOGSA HABCDE

Best 8.74E+03 6.80E+03 7.79E+03 7.96E+03 6.66E+03

Worst 1.56E+05 7.25E+03 8.01E+03 1.28E+04 2.12E+03

Average 4.62E+04 6.99E+03 7.90E+03 1.05E+04 5.20E+03

115 | P a g e

Table 5.24 Statistical Result of Elapsed Time using various Algorithms for PTZ Model

Elapsed time ABC DE PSO HPSOGSA HABCDE

Best 45.51209

156.644

51.426

31.22995

50.9900

 Worst 46.58381

161.9628

53.83177

31.78577

62.18178

 Average 45.91114

159.0327

52.61924

31.472

56.80561

5.6 Conclusions

A new algorithm based on swarm and evolutionary behaviour along with the impact of

ecological space factor is proposed in this chapter. The hybridization has been done in different

phases of ABC algorithm. In employee bee phase for finding the better neighbour-hood

positions, DE has been used, as DE algorithm outperforms in local search capability. This

hybridization will enhance the exploitation capability of original ABC algorithm. In onlooker

bee phase for calculating the fitness probabilities of the candidate solutions a new ecological

space factor has been used showing the fitness of the available living space of the candidate

solution. This factor is having its importance as survival of fittest is not only the factor for

evolution; there is the need of having better living ecological space conditions. This factor has

been used further in position update calculation of onlooker bees. Using ecological space factor

exploration capability has been improved as this factor enhances the diversity of the candidate

solution. In scout bee phase exhausted food source solutions has been regenerated on random

using ecological space fitness information along with other information shared by employee bee

in the solution space.

Further comparative analysis of the proposed work with various other nature inspired

algorithms has been done in this chapter. The implementation results are showing the enhanced

capability of the proposed algorithm over the ABC, GA, PSO and HPSOGSA in various means.

The proposed algorithm may have higher complexity in some cases, yet outperforms in other

cases. The algorithm shows its convergence in less number of iterations as compared to the other

used approaches. For the future work, proposed algorithm may be used as a generalized

algorithm for parameter estimation of other SRGMs. Further proposed algorithm may be applied

in other domains for solution of the optimization problems.

116 | P a g e

Chapter 6 FAILURE DATASETS

6.1 Introduction

All the developed models are based on two types of software failure datasets [51]. One

type of the data deals with the time of software failure occurrence and the second one are about

the time between the failure occurrences in the software. These two groups are equivalent and

are considered as the basis of software reliability model development. Finding suitable data for

model verification and improvement are difficult to find. Software companies are not providing

their projects failure datasets in fear of their competitors in growing digital world. This difficulty

in finding latest real software failure datasets also makes it difficult to develop a reliable

software model for estimation of software failure behaviour. New models are developed,

validated and verified only using already existing failure datasets available in the literature or

using the datasets which are published somewhere. Early works on software reliability model

development have used calendar time software failure data [251]. But Musa affirms that the time

of execution provides a better measure of the software behaviour as it can vary according to CPU

load, man hours etc. as compared to available calendar time data [252], [253]. Despite various

difficulties, datasets was collected from the published literature and from the available dataset

repositories. The ongoing section lists various datasets to be used in this work along with

available auxiliary information about them in the literature.

117 | P a g e

6.2 Datasets

Variants of software failure datasets are available in the literature but all of them cannot

be used in their actual form for software reliability model development. Some of the

available data are used in their actual form while others are utilized after extracting useful

information from the available failure datasets. The available datasets in the literature is

both from the failure history of closed source software and open source software. The work

utilizes both kinds of failure datasets to illustrate the accuracy estimation of the proposed

research work. Table 6.1 illustrates DS1, DS2, DS3, DS4, DS5, DS6, DS7 and DS8 datasets

that are from the Eclipse project failure datasets, JDT project failure datasets, Firefox and

Genome project failure datasets and datasets from closed software [51] . Table 6.2,

Table 6.3, Table 6.4 and Table 6.5 describes in detail failure datasets from various versions

of Eclipse projects, JDT project, Firefox and Genome projects. Table 6.6,

Table 6.8, Table 6.7 and Table 6.9 represents the failure datasets of Real time Command

and Control System, US Naval Tactical Data system software failure data, Tandem Computer

Software Project Datasets and failure data of Real Time Control System respectively.

Table 6.1 Failure Datasets used for Implementation

DS1-Eclipse Project Failure Datasets (In different Iterations)

1 Iteration1.0 3 65 days Time domain data

2 Iteration 2.0 24 272 days Time domain data

3 Iteration 2.1 29 331 days Time domain data

4 Iteration 3.0 96 569 days Time domain data

5 Iteration 3.1 136 718 days Time domain data

118 | P a g e

6 Iteration 3.2 119 605 days Time domain data

7 Iteration 3.3 119 588 days Time domain data

8 Iteration 3.4 51 469 days Time domain data

9 Iteration 3.5 26 283 days Time domain data

10 Iteration 3.6 28 283 days Time domain data

11 Iteration 4.1 15 407 days Time domain data

12 Iteration 4.2 31 407 days Time domain data

DS2-JDT Project Failure Dataset

1 Version 1.4 9 291 days Time Domain Dataset

2 Version 2.0 15 351 days Time Domain Dataset

3 Version 2.1 35 503 days Time Domain Dataset

4 Version 3.2 59 707 days Time Domain Dataset

5 Version 3.3 18 1285 days Time Domain Dataset

6 Version 3.4 14 568 days Time Domain Dataset

7 Version 3.5 5 311 days Time Domain Dataset

8 Version 3.6 15 641 days Time Domain Dataset

9 Version 3.7 12 944 days Time Domain Dataset

119 | P a g e

DS3-Firefox Failure Dataset

1 Version 3.0 2435 53 days Interval Domain Dataset

2 Version 3.5 2771 28 days Interval Domain Dataset

3 Version 3.6 50 6840 days Interval Domain Dataset

DS4-Genome Failure Datasets

1 Version 2.0 85 24 days Interval Domain Dataset

2 Version 2.3 54 46 days Interval Domain Dataset

3 Version 2.4 54 24 days Interval Domain Dataset

Dataset Number of

faults

Time(sec/hours/days) Type of application Type of the data

DS5 136 25 hours Real time command

and control system

Interval domain data

DS6 34 849 days US Navel Tactical

data systems

Time domain data

DS7 100 10000 hours Tandem computers

software projects.

Interval domain data

DS8 136 88682 sec Real time control

system

Time domain data

120 | P a g e

Table 6.2 Eclipse dataset (DS1)

Version 1 Version 2.1 Version 3.0

Fault TBF Cum.

TBF

Fault TBF Cum. TBF Fault TBF Cum. TBF

1 10 10 1 20 20 1 14 14

2 1 11 2 9 29 2 60 74

3 54 65 3 50 79 3 5 79

Version 2.0 4 27 106 4 18 97

Fault TBF Cum.

TBF

5 27 133 5 20 117

1 9 9 6 37 170 6 7 124

2 14 23 7 1 171 7 1 125

3 21 44 8 19 190 8 34 159

4 8 52 9 1 191 9 44 203

5 45 97 10 9 200 10 6 209

6 29 126 11 13 213 11 1 210

7 15 141 12 14 227 12 7 217

8 1 142 13 6 233 13 8 225

9 1 143 14 1 234 14 5 230

121 | P a g e

10 4 147 15 6 240 15 6 236

11 2 149 16 8 248 16 14 250

12 7 156 17 5 253 17 6 256

13 19 175 18 1 254 18 12 268

14 8 183 19 1 255 19 5 273

15 1 184 20 1 256 20 14 287

16 5 189 21 21 277 21 1 288

17 9 198 22 14 291 22 5 293

18 3 201 23 1 292 23 1 294

19 2 203 24 21 313 24 1 295

20 1 204 25 1 314 25 21 316

21 21 225 26 1 315 26 1 317

22 18 243 27 3 318 27 2 319

23 28 271 28 6 324 28 6 325

24 1 272 29 7 331 29 6 331

30 1 332 66 7 444 4 2 53

31 1 333 67 2 446 5 9 62

122 | P a g e

32 1 334 68 6 452 6 29 91

33 18 352 69 5 457 7 3 94

34 6 358 70 1 458 8 6 100

35 1 359 71 6 464 9 7 107

36 3 362 72 4 468 10 4 111

37 10 372 73 4 472 11 13 124

38 1 373 74 8 480 12 1 125

39 17 390 75 6 486 13 6 131

40 3 393 76 7 493 14 1 132

41 2 395 77 1 494 15 4 136

42 4 399 78 1 495 16 1 137

43 1 400 79 6 501 17 1 138

44 1 401 80 8 509 18 1 139

45 1 402 81 1 510 19 5 144

46 2 404 82 3 513 20 1 145

47 3 407 83 1 514 21 2 147

48 2 409 84 3 517 22 14 161

123 | P a g e

49 3 412 85 5 522 23 5 166

50 2 414 86 1 523 24 5 171

51 1 415 87 3 526 25 2 173

52 1 416 88 1 527 26 1 174

53 1 417 89 1 528 27 14 188

54 1 418 90 22 550 28 2 190

55 1 419 91 4 554 29 1 191

56 1 420 92 2 556 30 8 199

57 1 421 93 1 557 31 4 203

58 4 425 94 4 561 32 1 204

59 1 426 95 3 564 33 6 210

60 1 427 96 5 569 34 3 213

61 1 428 Version 3.1 35 1 214

62 4 432 Fault TBF Cum. TBF 36 1 215

63 3 435 1 25 25 37 4 219

64 1 436 2 2 27 38 2 221

65 1 437 3 24 51 39 1 222

124 | P a g e

40 1 223 71 2 304 102 8 408

41 5 228 72 1 305 103 13 421

42 1 229 73 1 306 104 5 426

43 1 230 74 4 310 105 3 429

44 3 233 75 4 314 106 19 448

45 4 237 76 1 315 107 6 454

46 5 242 77 1 316 108 1 455

47 5 247 78 1 317 109 1 456

48 2 249 79 1 318 110 17 473

49 5 254 80 1 319 111 13 486

50 2 256 81 1 320 112 6 492

51 1 257 82 1 321 113 26 518

52 6 263 83 1 322 114 1 519

53 5 268 84 1 323 115 1 520

54 2 270 85 1 324 116 21 541

55 4 274 86 1 325 117 9 550

56 1 275 87 3 328 118 9 559

125 | P a g e

57 1 276 88 1 329 119 4 563

58 1 277 89 4 333 120 5 568

59 1 278 90 1 334 121 1 569

60 1 279 91 2 336 122 21 590

61 1 280 92 5 341 123 12 602

62 1 281 93 1 342 124 14 616

63 2 283 94 1 343 125 3 619

64 8 291 95 9 352 126 7 626

65 1 292 96 11 363 127 11 637

66 1 293 97 11 374 128 1 638

67 1 294 98 12 386 129 9 647

68 6 300 99 5 391 130 7 654

69 1 301 100 1 392 131 7 661

70 1 302 101 8 400 132 1 662

133 4 666 31 3 248 67 1 341

134 1 667 32 1 249 68 2 343

135 1 668 33 1 250 69 7 350

126 | P a g e

136 50 718 34 1 251 70 1 351

Version 3.2 35 2 253 71 1 352

Fault TBF Cum.

TBF

36 3 256 72 3 355

1 10 10 37 3 259 73 1 356

2 23 33 38 6 265 74 1 357

3 28 61 39 2 267 75 2 359

4 33 94 40 2 269 76 3 362

5 7 101 41 5 274 77 4 366

6 16 117 42 3 277 78 1 367

7 15 132 43 1 278 79 1 368

8 13 145 44 3 281 80 3 371

9 1 146 45 4 285 81 1 372

10 4 150 46 4 289 82 1 373

11 28 178 47 3 292 83 6 379

 178 48 1 293 84 3 382

13 2 180 49 1 294 85 7 389

14 2 182 50 2 296 86 1 390

127 | P a g e

15 2 184 51 1 297 87 3 393

16 5 189 52 5 302 88 2 395

17 1 190 53 1 303 89 5 400

18 4 194 54 1 304 90 3 403

19 7 201 55 1 305 91 7 410

20 6 207 56 6 311 92 12 422

21 8 215 57 1 312 93 6 428

22 4 219 58 1 313 94 2 430

23 1 220 59 1 314 95 8 438

24 6 226 60 18 332 96 6 444

25 1 227 61 3 335 97 14 458

26 1 228 62 2 337 98 1 459

27 13 241 63 1 338 99 15 474

28 2 243 64 1 339 100 3 477

29 1 244 65 1 340 101 1 478

30 1 245 66 0 340 102 2 480

103 7 487 13 13 175 44 1 278

128 | P a g e

104 6 493 14 2 177 45 1 279

105 22 515 15 4 181 46 1 280

106 4 519 16 2 183 47 11 291

107 1 520 17 12 195 48 4 295

108 23 543 18 1 196 49 1 296

109 2 545 19 2 198 50 5 301

110 3 548 20 6 204 51 1 302

111 15 563 21 1 205 52 1 303

112 6 569 22 1 206 53 5 308

113 1 570 23 5 211 54 1 309

114 1 571 24 4 215 55 1 310

115 5 576 25 12 227 56 1 311

116 3 579 26 1 228 57 1 312

117 21 600 27 1 229 58 4 316

118 3 603 28 3 232 59 2 318

119 2 605 29 7 239 60 1 319

Version 3.3 30 5 244 61 1 320

129 | P a g e

Fault TBF Cum.

TBF

31 5 249 62 1 321

1 20 20 32 4 253 63 1 322

2 8 28 33 1 254 64 1 323

3 44 72 34 1 255 65 1 324

4 3 75 35 2 257 66 1 325

5 48 123 36 5 262 67 6 331

6 1 124 37 3 265 68 1 332

7 1 125 38 3 268 69 1 333

8 2 127 39 3 271 70 2 335

9 19 146 40 2 273 71 1 336

10 1 147 41 2 275 72 5 341

11 9 156 42 1 276 73 3 344

12 6 162 43 1 277 74 2 346

75 9 355 111 4 515 26 2 276

76 2 357 112 1 516 27 2 278

77 1 358 113 7 523 28 4 282

78 3 361 114 6 529 29 1 283

130 | P a g e

79 2 363 115 14 543 30 4 287

80 2 365 116 4 547 31 4 291

81 2 367 117 11 558 32 3 294

82 5 372 118 16 574 33 14 308

83 1 373 119 14 588 34 21 329

84 1 374 Version 3.4 35 17 346

85 1 375 Fault TBF Cum.

TBF

36 7 353

86 1 376 1 28 28 37 6 359

87 4 380 2 36 64 38 0 359

88 1 381 3 48 112 39 1 360

89 1 382 4 10 122 40 12 372

90 1 383 5 12 134 41 3 375

91 1 384 6 1 135 42 5 380

92 1 385 7 3 138 43 42 422

93 4 389 8 1 139 44 5 427

94 1 390 9 1 140 45 1 428

95 1 391 10 23 163 46 14 442

131 | P a g e

96 1 392 11 22 185 47 4 446

97 1 393 12 7 192 48 2 448

98 5 398 13 5 197 49 8 456

99 3 401 14 15 212 50 8 464

100 6 407 15 7 219 51 5 469

101 1 408 16 5 224 Version 3.5

102 5 413 17 15 239 Fault TBF Cum. TBF

103 1 414 18 4 243 1 16 16

104 4 418 19 1 244 2 1 17

105 37 455 20 1 245 3 15 32

106 16 471 21 4 249 4 1 33

107 7 478 22 5 254 5 15 48

108 11 489 23 2 256 6 1 49

109 4 493 24 7 263 7 18 67

110 18 511 25 11 274 8 2 69

9 1 70 12 8 103 11 12 138

10 4 74 13 7 110 12 6 144

132 | P a g e

11 2 76 14 10 120 13 5 149

12 25 101 15 5 125 14 22 171

13 9 110 16 7 132 15 2 173

14 20 130 17 5 137 Version 4.2

15 15 145 18 8 145 Fault TBF Cum. TBF

16 44 189 19 2 147 1 2 2

17 4 193 20 28 175 2 15 17

18 22 215 21 1 176 3 30 47

19 14 229 22 20 196 4 18 65

20 2 231 23 7 203 5 1 66

21 11 242 24 6 209 6 28 94

22 7 249 25 54 263 7 34 128

23 19 268 26 7 270 8 1 129

24 8 276 27 2 272 9 1 130

25 2 278 28 11 283 10 2 132

26 5 283 Version 4.1 11 14 146

Version 3.6 Fault TBF Cum. TBF 12 38 184

133 | P a g e

Fault TBF Cum. TBF 1 4 4 13 3 187

1 5 5 2 16 20 14 47 234

2 1 6 3 7 27 15 11 245

3 7 13 4 18 45 16 2 247

4 15 28 5 5 50 17 6 253

5 7 35 6 11 61 18 24 277

6 4 39 7 13 74 19 5 282

7 2 41 6 11 85 20 2 284

8 12 53 7 13 98 21 4 288

9 8 61 8 6 104 22 2 290

10 17 78 9 6 110 23 1 291

11 17 95 10 16 126 24 8 299

25 24 323

26 14 337

27 16 353

28 5 358

29 1 359

134 | P a g e

30 14 373

31 34 407

Table 6.3 JDT Dataset (DS2)

Version 1.4 12 6 90 16 6 54 57 119 615 Version 3.5

Fault TBF Cum. TBF 13 3 93 17 6 60 58 1 616 Fault TBF Cum. TBF

1 1 1 14 1 94 18 1 61 59 91 707 1 1 1

2 82 83 15 3 97 19 1 62 Version 3.3 2 138 139

3 1 84 16 5 102 20 1 63 Fault TBF Cum. TBF 3 9 148

4 46 130 17 11 113 21 1 64 1 1 1 4 81 229

5 1 131 18 1 114 22 11 75 2 221 222 5 82 311

6 6 137 19 19 133 23 1 76 3 12 234 Version 3.6

7 15 152 20 15 148 24 1 77 4 23 257 Fault TBF Cum. TBF

8 77 229 21 3 151 25 1 78 5 149 406 1 1 1

9 62 291 22 3 154 26 2 80 6 7 413 2 49 50

Version 2.0 23 8 162 27 4 84 7 24 437 3 41 91

Fault TBF Cum. TBF 24 3 165 28 13 97 8 23 460 4 18 109

135 | P a g e

1 1 1 25 15 180 29 2 99 9 4 464 5 42 151

2 1 2 26 8 188 30 7 106 10 16 480 6 1 152

3 29 31 27 4 192 31 2 108 11 24 504 7 1 153

4 86 117 28 0 192 32 0 108 12 3 507 8 16 169

5 43 160 29 99 291 33 6 114 13 6 513 9 13 182

6 33 193 30 6 297 34 9 123 14 8 521 10 34 216

7 1 194 31 34 331 35 12 135 15 22 543 11 160 376

8 37 231 32 1 332 36 9 144 16 1 544 12 129 505

9 25 256 33 5 337 37 16 160 17 17 561 13 55 560

10 6 262 34 77 414 38 13 173 18 724 1285 14 24 584

11 14 276 35 89 503 39 2 175 Version 3.4 15 57 641

12 6 282 Version 3.2 40 6 181 Fault TBF Cum. TBF Version 3.7

13 3 285 Fault TBF Cum. TBF 41 3 184 1 1 1 Fault TBF Cum. TBF

14 24 309 1 0 0 42 6 190 2 30 31 1 1 1

15 42 351 2 16 16 43 34 224 3 94 125 2 257 258

Version 2.1 3 1 17 44 24 248 4 103 228 3 22 280

136 | P a g e

Fault TBF Cum. TBF 4 1 18 45 33 281 5 18 246 4 16 296

1 1 1 5 9 27 46 14 295 6 10 256 5 131 427

2 4 5 6 3 30 47 1 296 7 56 312 6 16 443

3 19 24 7 1 31 48 1 297 8 2 314 7 23 466

4 9 33 8 1 32 49 7 304 9 12 326 8 1 467

5 8 41 9 1 33 50 5 309 10 19 345 9 48 515

6 3 44 10 1 34 51 42 351 11 107 452 10 55 570

7 16 60 11 5 39 52 20 371 12 18 470 11 34 604

8 19 79 12 5 44 53 35 406 13 1 471 12 340 944

9 2 81 13 2 46 54 31 437 14 97 568

10 1 82 14 1 47 55 1 438

11 2 84 15 1 48 56 58 496

Table 6.4 Firefox Failure Dataset (DS3)

Firefox 3.0

Time No. 0f faults Cumm Fault Time No. 0f faults Cumm Fault

1 9 9 28 49 1010

137 | P a g e

2 12 21 29 50 1060

3 16 37 30 50 1110

4 25 62 31 50 1160

5 27 89 32 50 1210

6 29 118 33 51 1261

7 29 147 34 52 1313

8 32 179 35 53 1366

9 34 213 36 54 1420

10 35 248 37 55 1475

11 36 284 38 55 1530

12 36 320 39 55 1585

13 39 359 40 55 1640

14 39 398 41 56 1696

15 40 438 42 59 1755

16 40 478 43 60 1815

17 40 518 44 60 1875

18 41 559 45 60 1935

138 | P a g e

19 42 601 46 61 1996

20 43 644 47 62 2058

21 43 687 48 62 2120

22 44 731 49 62 2182

23 45 776 50 62 2244

24 45 821 51 62 2306

25 46 867 52 64 2370

26 47 914 53 65 2435

27 47 961

Firefox 3.5

Time No. 0f faults Cumm Fault Time No. 0f faults Cumm Fault

1 66 66 15 105 1338

2 73 139 16 105 1443

3 76 215 17 106 1549

4 81 296 18 106 1655

5 83 379 19 107 1762

6 87 466 20 108 1870

139 | P a g e

7 88 554 21 108 1978

8 92 646 22 109 2087

9 94 740 23 112 2199

10 94 834 24 113 2312

11 94 928 25 113 2425

12 99 1027 26 115 2540

13 102 1129 27 115 2655

14 104 1233 28 116 2771

Firefox 3.6

Time No of faults Cumm Faults Time No of faults Cumm Faults

1 117 117 15 135 1868

2 119 236 16 135 2003

3 119 355 17 135 2138

4 120 475 18 138 2276

5 122 597 19 138 2414

6 122 719 20 138 2552

7 122 841 21 138 2690

140 | P a g e

8 124 965 22 138 2828

9 125 1090 23 138 2966

10 125 1215 24 138 3104

11 125 1340 25 138 3242

12 127 1467 26 138 3380

13 131 1598 27 138 3518

14 135 1733 28 138 3656

Time No of faults Cumm Faults Time No of faults Cumm Faults

29 138 3794 43 148 5803

30 140 3934 44 148 5951

31 140 4074 45 148 6099

32 140 4214 46 148 6247

33 141 4355 47 148 6395

34 143 4498 48 148 6543

35 143 4641 49 148 6691

36 143 4784 50 149 6840

37 143 4927

141 | P a g e

38 144 5071

39 146 5217

40 146 5363

41 146 5509

42 146 5655

 Table 6.5 Genome Failure Dataset(DS4)

Genome 2.0

Time No of faults Cumm Faults Time No of faults Cumm Faults

1 6 6 13 6 58

2 5 11 14 8 66

3 3 14 15 6 72

4 2 16 16 2 74

5 5 21 17 2 76

6 5 26 18 1 77

7 8 34 19 1 78

142 | P a g e

8 4 38 20 1 79

9 8 46 21 1 80

10 3 49 22 2 82

11 2 51 24 3 85

12 1 52

Genome 2.2

Time No of faults Cumm Faults Time No of faults Cumm Faults

1 5 5 10 3 41

2 4 9 11 2 43

3 5 14 13 1 44

4 5 19 15 4 48

5 9 28 16 1 49

6 5 33 17 1 50

7 2 35 18 1 51

8 1 36 22 1 52

9 2 38 24 2 54

Genome 2.3

143 | P a g e

Time No of faults Cumm Faults Time No of faults Cumm Faults

1 4 4 11 1 38

2 5 9 12 3 41

3 2 11 15 2 43

4 7 18 18 1 44

5 3 21 19 1 45

6 1 22 20 5 50

7 3 25 21 2 52

8 4 29 23 1 53

9 3 32 46 1 54

10 5 37

Table 6.6 Failure Dataset(DS5)

Real Time Command and Control Data

Time (in Hrs) No. of faults Cumm. Faults Time(in Hrs) No. of faults Cumm. Faults

1 27 27 14 5 111

2 16 43 15 5 116

144 | P a g e

3 11 54 16 6 122

4 10 64 17 0 122

5 11 75 18 5 127

6 7 83 19 1 128

7 2 84 20 1 129

8 5 89 21 2 131

9 3 92 22 1 132

10 1 93 23 2 134

11 4 97 24 1 135

12 7 104 25 1 136

13 2 106

Table 6.7 Failure Dataset (DS6)

US Naval Tactical Data System Software Failure Data (NTDS)

Fault Time Between Cumulative Fault Time Between Cumulative

145 | P a g e

number faults Time number faults Time

1 9 9 18 3 98

2 12 21 19 6 104

3 11 32 20 1 105

4 4 36 21 11 116

5 7 43 22 33 149

6 2 45 23 7 156

7 5 50 24 91 247

8 8 58 25 2 249

9 5 63 26 1 250

10 7 70 27 87 337

11 1 71 28 47 384

12 6 77 29 12 396

13 1 78 30 9 405

14 9 87 31 135 540

15 4 91 32 258 798

16 1 92 33 16 814

146 | P a g e

17 3 95 34 35 849

Table 6.8 Failure Dataset (DS7)

Tandem Computer Software Project Data

Time(in

Week)

CPU

hours

Number of

Faults

Cum.

Faults

Time(in

Week)

CPU

hours

Number

of Faults
Cum.Faults

1 519 16 16 11 6539 81 527

2 968 24 40 12 7083 86 613

3 1430 27 67 13 7487 90 703

4 1893 33 100 14 7846 93 796

5 2490 41 141 15 8205 96 892

6 3058 49 190 16 8564 98 990

7 3625 54 244 17 8923 99 1089

8 4422 58 302 18 9282 100 1189

9 5218 69 371 19 9641 100 1289

10 5823 75 446 20 10000 100 1389

147 | P a g e

Table 6.9 Failure Dataset (DS8)

Real Time Control System Data

Fault

No. Time Between Faults

Cum.

Time

Fault

No. Time Between Faults

Cum.

Time

1 3 3 41 97 6477

2 30 33 42 263 6740

3 113 146 43 452 7192

4 81 227 44 255 7447

5 115 342 45 197 7644

6 9 351 46 193 7837

7 2 353 47 6 7843

8 91 444 48 79 7922

9 112 556 49 816 8738

10 15 571 50 1351 10089

11 138 709 51 148 10237

12 50 759 52 21 10258

13 77 836 53 233 10491

148 | P a g e

14 24 860 54 134 10625

15 108 968 55 357 10982

16 88 1056 56 193 11175

17 670 1726 57 236 11411

18 120 1846 58 31 11442

19 26 1872 59 369 11811

20 114 1986 60 748 12559

21 325 2311 61 0 12559

22 55 2366 62 232 12791

23 242 2608 63 330 13121

24 68 2676 64 365 13486

25 422 3098 65 1222 14708

26 180 3278 66 543 15251

27 10 3288 67 10 15261

28 1146 4434 68 16 15277

29 600 5034 69 529 15806

30 15 5049 70 379 16185

149 | P a g e

31 36 5085 71 44 16229

32 4 5089 72 129 16358

33 0 5089 73 810 17168

34 8 5097 74 290 17458

35 227 5324 75 300 17758

36 65 5389 76 529 18287

37 176 5565 77 281 18568

38 58 5623 78 160 18728

39 457 6080 79 828 19556

40 300 6380 80 1011 20567

81 445 21012 109 875 49171

82 296 21308 110 245 49416

83 1755 23063 111 729 50145

84 1064 24127 112 1897 52042

85 1783 25910 113 447 52489

86 860 26770 114 386 52875

87 983 27753 115 446 53321

150 | P a g e

88 707 28460 116 122 53443

89 33 28493 117 990 54433

90 868 29361 118 948 55381

91 724 30085 119 1082 56463

92 2323 32408 120 22 56485

93 2930 35338 121 75 56560

94 1461 36799 122 482 57042

95 843 37642 123 5509 62551

96 12 37654 124 100 62651

97 261 37915 125 10 62661

98 1800 39715 126 1071 63732

99 865 40580 127 371 64103

100 1435 42015 128 790 64893

101 30 42045 129 6150 71043

102 143 42188 130 3321 74364

103 108 42296 131 1045 75409

104 0 42296 132 648 76057

151 | P a g e

105 3110 45406 133 5485 81542

106 1247 46653 134 1160 82702

107 943 47596 135 1864 84566

108 700 48296 136 4116 88682

152 | P a g e

Chapter 7 RESULTS AND SCOPE FOR FUTURE RESEARCH

In this chapter major conclusion of the research work done by the authors in this thesis

work are discussed. It also explores the possibilities of future scope of research in the field of

software reliability assessment and parameter estimation algorithms.

7.1 Introduction

The major consideration in software development process is to develop reliable software at the

very end of testing phase. Based on the comprehensive survey in software reliability model

development, authors carefully analyzed how various models are evolved from existing models

using assumptions made by the models. Each model has used specific attributes for model

development and has specific assumptions. Using these assumptions models are categorized in

twelve classes depending on various attributes. These classes are further analysed to see how

various models are belonging to these categories and how they have been evolved. The major

issues in software reliability model development are considered in depth by analysing previous

work done by the researchers. After finding major issues in software reliability model

development, two models are proposed that are based on conduct of failure rate models and

NHPP models. Proposed models are validated by using various performance measurement

methods and by their comparisons with well-established models in the field of software

reliability estimation. In literature software reliability model parameter estimation methods are

also discussed. Evolutionary algorithm based methods are found to be better than traditional

methods of parameter estimation. However in the field of software reliability estimation these

algorithms are not found to be exploited in number of publications. Only few of the publications

are there where these methods are employed. A new hybrid algorithm has been proposed to

adopt evolutionary algorithms in the field of software reliability model parameter estimation.

7.2 Major findings

1. Fault forecasting is the major area for software reliability estimation. Forecasting

methods estimates software reliability through the use of statistical models development.

These models can estimate future reliability of the software significantly by making use

of available software failure data and helps in decision making for the software

153 | P a g e

developers about the number of resources required to enhance future reliability of the

software.

2. Existing models are explored on the basis of their assumptions and behaviour. Analysis

of twenty three failure rate models and one hundred and six NHPP behaviour based

models is done in chapter1. Detailed analysis examined how one model is extending the

features of other existing model. To represent evolution of models from other existing

models an evolution diagram is made that shows how a new model development is

enhancing existing model features to make better reliability estimation.

3. Fifteen attributes are identified and defined; these attributes are making primary help in

model classification.

4. Among the large group of software reliability models, a group of failure rate behaviour

based models are found to be the earliest software reliability estimation models. These

models can predict program failure rate depending on the amount of faults present in

software at a particular interval of time and assumes that with a change in amount of

remaining faults, program failure rate changes accordingly. These models are only

applicable in traditional software development environments. Further improvements in

these models are made so that they can be adopted in the latest software development

environment. A new failure rate model is proposed in chapter 3, which will work in

iterative software development environment to estimate reliability of software developed

under iterative SDLC process.

5. A new modulation factor is used to reflect all the changing requirement of the software

during each phase of iterative software development environment. Modulation factor

values are calculated using a modulation parameter. This modulation parameter is

specifying the level of acceptance of the end users and helps in making decision to

identify the requirements that need to be changed in the upcoming iteration. Modulation

factor is well defining the varying needs of the software development during each of the

iteration.

6. An existing classification scheme is protracted to make it applicable in latest software

development environment. Depending on the iterative software development

154 | P a g e

environment, software reliability estimation models are categorized according to various

stages of software development. Proposed classification is easy and can be used in

industries and academia.

7. There is a limited availability of the software failure datasets as the software companies

are not interested in revealing their software‟s faults. Keeping this factor in mind, in this

thesis work new data set is collected and reformatted to validate proposed software

reliability model in real world environment of software development. Collected raw

dataset is of Eclipse and JDT projects failure dataset over a wide range from 2003-2013.

Twelve versions of Eclipse project failure datasets and six versions of JDT project

datasets are used to validate an applicability of proposed iterative software reliability

model.

8. NHPP group of models are among most popular group of models and these are also

found to be significantly good in software industries for accurate software reliability

estimation. There are hundreds of models published in this NHPP group of models. But

no model is well applicable in heterogeneous environment and their failure datasets.

Keeping in mind that every specific system needs enhancements, a new NHPP model is

developed that can significantly estimate reliability of open source software systems.

9. NHPP based software reliability model for OSS systems has been proposed in this work.

This model incorporates a new testing effort behaviour based fault content function.

Incorporation of testing effort coefficient is depicting that in each new released version

due to added functionality and number of fault content there is need of change in testing

effort, more is the effort incorporated in the software testing and debugging, more

reliable software will be released in future. Impact of testing effort has been reasonably

incorporated to fit well in the latest software development technologies and

environments. Model has been validated using three versions of Firefox project failure

data and three versions of Genome project failure data.

10. Nature inspired algorithms are found to be extensively used for solution of non-linear

optimization problems in various application domains. However these algorithms have

not been adopted well for reliability analysis of software developed under latest

development environment. Chapter 5 has proposed a new hybrid algorithm for parameter

155 | P a g e

estimation of proposed models which will work efficiently in software reliability

analysis.

11. Five well-known algorithms are analysed in this work. Famous artificial bee colony

algorithm has been selected for enhancement. ABC algorithm is having number of

advantages and found to have good performance for reliability estimation on the existing

software reliability but somewhere there are limitations in which it traps to a local

optima. Proposed algorithm has overcome the limitations of existing artificial bee colony

algorithm by making a new hybrid Swarm Evolutionary algorithm.

12. Differential Evolution algorithm has been utilized to overcome the above limitation of

ABC algorithm. ABC algorithm is having premature convergence with unbalanced

exploration and exploitation process. The advantage of using DE is mainly in providing

diversity of population that helps in providing the improved local search to ABC

algorithm. DE is also having faster convergence capability then ABC algorithm.

13. ABC and DE algorithms are hybridized by making a use of ecological living space factor.

Ecological living space is a factor that is necessary for the organism to flourish in the

environment and it will enhance the diversity by matching the available living space. The

candidate solution and ecological diversity are very much closely related. More

favourable is the ecological conditions more quality food will be available to the bees.

14. Proposed algorithm is tested on existing software reliability models and proposed failure

rate behaviour based software reliability model. Proposed model is outperforming than

other failure rate based models on all the used datasets. However for few datasets

HPSOGSA is also performing well. From the results it is concluded that hybrid

algorithms will adapt finely in parameter estimation of proposed software reliability

model.

15. In this work MLE technique is used for parameter estimation. The accuracy of proposed

failure rate model has been compared with other five well-known JM, SW, SWM, GOI

and Mahapatra software reliability models. The proposed model has clear-cut outperform

all models under comparison in 11 iterations for DS1. It shows the lowest values of SSE

in 91.6 % iterations. In term of MSE proposed model is winner in nine iterations. The

156 | P a g e

proposed model has clear-cut outperform other models in 75 % iterations by achieving

lowest value of MSE. Result shows that proposed model has given a significantly better

fit to iterative data by adapting according to varying needs of different iterations.

16. To check the strength of the proposed NHPP model it has been compared with three well

known GO, Inflection s-shaped and PTZ NHPP models. The goodness-of-fit of proposed

model is calculated in terms of eight criteria SSE, MSE, MAE, MEOP, AE, AIC, TS and

PRR. In Firefox 3.0 release, among eight measures of fitness, the proposed model has

clear- cut outperforms by 87.25% than other used models. In Firefox 3.5 release, overall

proposed model is having 75% major beating values. In Firefox 3.6, the proposed model

has major beating criterion except in term of AIC where Inflection s-shaped model

performed better than the proposed model. Overall, the proposed model is performing

87.5% better than other used models.

Thus, the goal of software reliability analysis using software reliability model development and

parameter estimation using nature inspired meta-heuristic algorithm has been successfully

attempted in this thesis.

7.3 Future Scope

The development of Iterative SDLC process based software reliability growth models and

hybrid Swarm-Evolutionary algorithm with their application for Open source software system‟s

reliability estimation are viewed as the initial point in this area. Thus, there is a widespread scope

of research in this area. Following are some of the major area for future extension of the

proposed work:

1. Proposed model can be further extended and validated using more techniques of software

development. More real world software failure datasets can be used to validate the efficiency

of proposed software reliability models.

2. Proposed hybrid nature inspired algorithm can be applied on other group of software

reliability model parameter estimation in order to make better estimation of software

reliability.

157 | P a g e

References

[1] IEEE, “IEEE standard Glossary of Software Engineering Terminology, IEEE std. 729-

19833, IEEE CS order no. 729.” 1983.

[2] H. Pham, “Software Reliability Modeling,” in Springer Series in Reliability Engineering,

Springer London, 2006, pp. 153–177.

[3] M. Xie, Software reliability modelling. World Scientific Pub Co Pte Lt, 1991.

[4] K. G. Santosh, Numerical Methods for Engineer, 3rd ed. Age New International, 2015.

[5] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[6] X.-S. Yang, “Nature-inspired mateheuristic algorithms: Success and new challenges,” J

Comput. Eng. Inf. Technol, vol. 1, no. 1, pp. 1–3, 2012.

[7] X.-S. Yang, “Analysis of Algorithms,” in Nature-Inspired Optimization Algorithms,

Elsevier, 2014, pp. 23–44.

[8] S. Sahney, M. J. Benton, and P. A. Ferry, “Links between global taxonomic diversity,

ecological diversity and the expansion of vertebrates on land,” Biol. Lett., vol. 6, no. 4, pp.

544–547, 2010.

[9] D. Karabo\uga and B. Ba\cstürk, “Artificial bee colony (ABC) optimization algorithm for

solving constrained optimization problems,” LNCS Adv. Soft Comput. Found. Fuzzy Log.

Soft Comput., vol. 4529, pp. 789–798, 2007.

[10] R. Storn and K. Price, “Differential evolution--a simple and efficient heuristic for global

optimization over continuous spaces,” J. Glob. Optim., vol. 11, no. 4, pp. 341–359, 1997.

158 | P a g e

[11] H. Pham, System software reliability. Springer Science & Business Media, 2007.

[12] A. L. Goel, “Software reliability models: Assumptions, limitations, and applicability,”

IEEE Trans. Softw. Eng., vol. 12, pp. 1411–1423, 1985.

[13] K. Sharma, R. Garg, C. K. Nagpal, and R. K. Garg, “Selection of Optimal Software

Reliability Growth Models Using a Distance Based Approach,” {IEEE} Trans. Reliab.,

vol. 59, no. 2, pp. 266–276, Jun. 2010.

[14] A. L. Goel and K. Okumoto, “A Markovian model for reliability and other performance

measures of software systems,” in National Computer Conference, 1979, pp. 769–774.

[15] K. Sahu and R. K. Srivastava, “Revisiting Software Reliability,” in Data Management,

Analytics and Innovation, Springer Singapore, 2018, pp. 221–235.

[16] M. Xie and M. Zhao, “The Schneidewind software reliability model revisited,” Proc. - Int.

Symp. Softw. Reliab. Eng. ISSRE, pp. 184–192, 1992.

[17] J. Xavier, A. Macêdo, R. Matias, and L. Borges, “A survey on research in software

reliability engineering in the last decade,” in Proceedings of the 29th Annual {ACM}

Symposium on Applied Computing - {SAC} {\textquotesingle}14, 2014.

[18] M. Ohba, “Inflection S-shaped software reliability growth model,” in Stochastic models in

reliability theory, Springer, 1984, pp. 144–162.

[19] X. Zhang, X. Teng, H. Pham, and S. Member, “Considering Fault Removal Efficiency in

Software Reliability Assessment,” vol. 33, no. 1, pp. 114–120, 2003.

[20] X. Li, Y. F. Li, M. Xie, and S. H. Ng, “Reliability analysis and optimal version-updating

for open source software,” Inf. Softw. Technol., vol. 53, no. 9, pp. 929–936, Sep. 2011.

159 | P a g e

[21] M. Xie, G. Y. Hong, and C. Wohlin, “Software reliability prediction incorporating

information from a similar project,” J. Syst. Softw., vol. 49, no. 1, pp. 43–48, 1999.

[22] H. Pham, L. Nordmann, and Z. Zhang, “A general imperfect-software-debugging model

with S-shaped fault-detection rate,” IEEE Trans. Reliab., vol. 48, no. 2, pp. 169–175,

1999.

[23] C. Huang, M. R. Lyu, S. Member, and S. Kuo, “A Unified Scheme of Some

Nonhomogenous Poisson Process Models for Software Reliability Estimation,” vol. 29,

no. 3, pp. 261–269, 2003.

[24] C. Hsu and C. Huang, “Optimal Weighted Combinational Models for Software Reliability

Estimation and Analysis,” vol. 63, no. 3, pp. 731–749.

[25] T. Li and K. Wu, “A NHPP software reliability growth model considering learning

process and number of residual faults,” J. Converg. Inf. Technol., vol. 7, no. 13, pp. 127–

134, 2012.

[26] S. Yamada, “Software Reliability Growth Modeling:,” no. 12, pp. 1431–1437, 1985.

[27] S. Yamada, “S-Shaped Reliability Growth Modeling for Software Error Detection V) 3-

Fte,” no. 5, pp. 475–479, 1983.

[28] S. Inoue and S. Yamada, “Two-Dimensional Software Reliability Measurement

Technologies,” pp. 223–227, 2009.

[29] S. Inoue, S. Yamada, and A. T. Model, “A Bootstrap Method for Software Reliability

Assessment Based on a Discretized NHPP Model,” no. 2, pp. 23–27.

[30] S. Yamada, M. Ohba, and S. Osaki, “S-shaped reliability growth modeling for software

160 | P a g e

error detection,” IEEE Trans. Reliab., vol. 32, no. 5, pp. 475–484, 1983.

[31] S. Yamada, H. Ohtera, and M. Ohba, “Testing-domain dependent software reliability

models,” Comput. Math. with Appl., vol. 24, no. 1–2, pp. 79–86, 1992.

[32] S. Yamada, K. Tokuno, and S. Osaki, “Imperfect debugging models with fault

introduction rate for software reliability assessment,” Int. J. Syst. Sci., vol. 23, no. 12, pp.

2241–2252, 1992.

[33] V. R. Basil and A. J. Turner, “Iterative enhancement: A practical technique for software

development,” {IEEE} Trans. Softw. Eng., vol. {SE}-1, no. 4, pp. 390–396, Dec. 1975.

[34] RADC-TR-87-171, “Rome Laboratory, Methodology for software reliability prediction

and assessment Technical Report,” 1987.

[35] C. Smidts, M. Stutzke, and R. W. Stoddard, “Software reliability modeling: an approach

to early reliability prediction,” IEEE Trans. Reliab., vol. 47, no. 3, pp. 268–278, 1998.

[36] K. Goševa-Popstojanova and K. S. Trivedi, “Architecture-based approach to reliability

assessment of software systems,” Perform. Eval., vol. 45, no. 2–3, pp. 179–204, Jul. 2001.

[37] S. S. Gokhale, W. E. Wong, K. S. Trivedi, and J. R. Horgan, “An analytical approach to

architecture-based software reliability prediction,” in Proceedings. {IEEE} International

Computer Performance and Dependability Symposium. {IPDS}{\textquotesingle}98 (Cat.

No.98TB100248).

[38] S. S. Gokhale, M. R. Lyu, and K. S. Trivedi, “Analysis of Software Fault Removal

Policies Using a Non-Homogeneous Continuous Time Markov Chain,” Softw. Qual. J.,

vol. 12, no. 3, pp. 211–230, Sep. 2004.

161 | P a g e

[39] W.-L. Wang, Y. Wu, and M.-H. Chen, “An architecture-based software reliability

model,” in Proceedings 1999 Pacific Rim International Symposium on Dependable

Computing.

[40] SS Gokhale and K. Trivedi, “A Time Structure Based Model of Software Reliability,”

Ann. Softw. Eng., vol. 8, pp. 85–121, 1999.

[41] K. S. M. Swapna S Gokhale Peter N and Trivedi, “Important milestones in software

reliability modeling,” in Software Engineering and Knowledge Engineering (SEKE’96),

Lake Tahoe, NV, 1996, pp. 345–352.

[42] S. N. Weiss and E. J. Weyuker, “An extended domain-based model of software

reliability,” {IEEE} Trans. Softw. Eng., vol. 14, no. 10, pp. 1512–1524, Oct. 1988.

[43] B. Littlewood, “Software reliability model for modular program structure,” IEEE Trans.

Reliab., vol. 28, no. 3, pp. 241–246, 1979.

[44] Z. Jelinski and P. Moranda, Software Reliability Research. Academic Press New York and

London, 1972.

[45] P. B. Moranda, “An error detection model for application during software development,”

IEEE Trans. Reliab., vol. 30, no. 4, pp. 309–312, 1981.

[46] A. N. Sukert, “An investigation of software reliability models,” in Annual Reliability and

Maintainability Symposium, Philadelphia, Pa, 1977, pp. 478–484.

[47] G. S. Mahapatra, P. Roy, G. S.Mahapatra, and P. Roy, “Modified Jelinski-Moranda

Software Reliability Model with Imperfect Debugging Phenomenon,” Int. J. Comput.

Appl., vol. 48, no. 18, pp. 38–46, Jun. 2012.

162 | P a g e

[48] J. D. Musa and K. Okumoto, “A logarithmic Poisson execution time model for software

reliability measurement,” in Proceedings of the 7th international conference on Software

engineering, 1984, pp. 230–238.

[49] L. I. Al Turk and E. G. Alsolami, “Jelinski-Moranda Software Reliablity Growth Model :

A Brief Literature and Modification,” Int. J. Softw. Eng. Appl., vol. 7, no. 2, pp. 33–44,

Mar. 2016.

[50] Y.-C. Chang and C.-T. Liu, “A generalized {JM} model with applications to imperfect

debugging in software reliability,” Appl. Math. Model., vol. 33, no. 9, pp. 3578–3588,

Sep. 2009.

[51] H. Pham, Springer handbook of engineering statistics. Springer Science & Business

Media, 2006.

[52] B. Littlewood and J. L. Verrall, “A Bayesian reliability growth model for computer

software,” J. R. Stat. Soc. Ser. C (Applied Stat., vol. 22, no. 3, pp. 332–346, 1973.

[53] T. A. Mazzuchi and R. Soyer, “A Bayes empirical-Bayes model for software reliability,”

IEEE Trans. Reliab., vol. 37, no. 2, pp. 248–254, 1988.

[54] G. J. Schick and R. W. Wolverton, “An analysis of competing software reliability

models,” IEEE Trans. Softw. Eng., vol. SE-4, no. 2, pp. 104–120, 1978.

[55] S. Yamada, K. Tokuno, and Y. Kasano, “Quantitative assessment models for software

safety/reliability,” Electron. Commun. Japan, Part II Electron. (English Transl. Denshi

Tsushin Gakkai Ronbunshi), vol. 81, no. 5, pp. 33–43, 1998.

[56] J. G. Shanthikumar, “A general software reliability model for performance prediction,”

163 | P a g e

Microelectron. Reliab., vol. 21, no. 5, pp. 671–682, 1981.

[57] W. S. Jewell, “Bayesian extensions to a basic model of software reliability,” IEEE Trans.

Softw. Eng., no. 12, pp. 1465–1471, 1985.

[58] H. Joe and N. Reid, “On the Software Reliability Models of Jelinski-Moranda and

Littlewood,” no. 3, pp. 216–218, 1985.

[59] T. F. Ho, W. C. Chan, and C. G. Chung, “A quantum modification to the Jelinski-

Moranda software reliability model,” Midwest Symp. Circuits Syst., vol. 1, pp. 339–342,

1991.

[60] P. J. Boland and H. Singh, “A birth-process approach to Moranda‟s geometric software-

reliability model,” IEEE Trans. Reliab., vol. 52, no. 2, pp. 168–174, 2003.

[61] K. Rinsaka and T. Dohi, “Who solved the optimal software release problems based on

Markovian software reliability model?,” in The 2004 47th Midwest Symposium on Circuits

and Systems, 2004. MWSCAS’04., 2004, vol. 3, pp. iii--475.

[62] A. Washburn, “A sequential Bayesian generalization of the Jelinski--Moranda software

reliability model,” Nav. Res. Logist., vol. 53, no. 4, pp. 354–362, 2006.

[63] Z. Luo, P. Cao, G. Tang, and L. Wu, “A modification to the Jelinski-Moranda software

reliability growth model based on cloud model theory,” in 2011 Seventh International

Conference on Computational Intelligence and Security, 2011, pp. 195–198.

[64] N. D. Singpurwalla, “A UNIFICATION OF SOME SOFTWARE RELIABILITY

MODELS*,” vol. 6, no. 3, pp. 781–790, 1985.

[65] Y. Lian, Y. Tang, and Y. Wang, “Objective Bayesian analysis of JM model in software

164 | P a g e

reliability,” Comput. Stat. Data Anal., vol. 109, pp. 199–214, 2017.

[66] A. L. Goel, M. Ieee, and K. Okumoto, “Time-dependent error-detection rate model for

software reliability and other performance measures,” IEEE Trans. Reliab., vol. 28, no. 3,

pp. 206–211, 1979.

[67] S. YAMADA and S. OSAKI, “S-shaped software reliability growth models with four

types of software error data,” Int. J. Syst. Sci., vol. 14, no. 6, pp. 683–692, 1983.

[68] R. K. Iyer and P. Velardi, “Hardware-Related Software Errors: Measurement and

Analysis.,” IEEE Trans. Softw. Eng., vol. SE-11, no. 2, pp. 223–231, 1985.

[69] S. Yamada and S. Osaki, “Software reliability growth modeling: Models and

applications,” IEEE Trans. Softw. Eng., no. 12, pp. 1431–1437, 1985.

[70] N. D. Singpurwalla and R. Soyer, “Assessing (Software) Reliability Growth Using a

Random Coefficient Autoregressive Process and Its Ramifications,” IEEE Trans. Softw.

Eng., vol. SE-11, no. 12, pp. 1456–1464, 1985.

[71] H. Yamada, Shigeru and Osaki, Shunji and Narihisa, “A software reliability growth model

with two types of errors,” RAIRO-Operations Res., vol. 19, no. 1, pp. 87–104, 1985.

[72] V. K. P. Kumar, S. Hariri, and C. S. Raghavendra, “Distributed Program Reliability

Analysis,” IEEE Trans. Softw. Eng., vol. SE-12, no. 1, pp. 42–50, 1986.

[73] S. Yamada, H. Ohtera, and H. Narihisa, “Software reliability growth models with testing-

effort,” IEEE Trans. Reliab., vol. 35, no. 1, pp. 19–23, 1986.

[74] S. Nakagawa, Yutaka and Hanata, “An error complexity model for software reliability

measurement,” in 11th International Conference on Software Engineering,IEEE, 1989,

165 | P a g e

pp. 230–236.

[75] Allenwood, “Predicting software reliability,” 1996.

[76] H. Yamada, Shigeru and Ohtera, “Software reliability growth models for testing-effort

control,” Eur. J. Oper. Res., vol. 46, no. 3, pp. 343–349, 1990.

[77] P. Kareer, Nishi and Kapur, PK and Grover, “An S-shaped software reliability growth

model with two types of errors,” Microelectron. Reliab., vol. 30, no. 6, pp. 1085–1090,

1990.

[78] M. Xie and M. Zhao, “The Schneidewind software reliability model revisited,” in [1992]

Proceedings Third International Symposium on Software Reliability Engineering, 1992,

pp. 184–192.

[79] N. Karunanithi, D. Whitley, and Y. K. Malaiya, “Prediction of software reliability using

connectionist models,” IEEE Trans. Softw. Eng., no. 7, pp. 563–574, 1992.

[80] P. K. Kapur and R. B. Garg, “A software reliability growth model for an error-removal

phenomenon,” Softw. Eng. J., vol. 7, no. 4, pp. 291–294, 1992.

[81] M. Sahinoglu, “Compound-Poisson software reliability model,” IEEE Trans. Softw. Eng.,

no. 7, pp. 624–630, 1992.

[82] S. Yamada, K. Tokuno, and S. Osaki, “Software reliability measurement in imperfect

debugging environment and its application,” Reliab. Eng. Syst. Saf., vol. 40, no. 2, pp.

139–147, 1993.

[83] P. K. Kapur and S. Younes, “Modelling an imperfect debugging phenomenon in software

reliability,” Microelectron. Reliab., vol. 36, no. 5, pp. 645–650, 1996.

166 | P a g e

[84] W. Lynch, Tom and Pham, Hoang and Kuo, “Modeling software-reliability with multiple

failure-types and imperfect debugging,” in Proceedings of Annual Reliability and

Maintainability Symposium (RAMS),IEEE, 1994, pp. 235–240.

[85] S. Gokhale, T. Philip, P. N. Marinos, and K. S. Trivedi, “Unification of Finite Failure

NHPP Models through Test Coverage,” in Proc. of Intl. Symposium on Software

Reliability Engineering (ISSRE’96), pp. 289–299.

[86] H. Pham and X. Zhang, “An NHPP software reliability model and its comparison,” Int. J.

Reliab. Qual. Saf. Eng., vol. 4, no. 03, pp. 269–282, 1997.

[87] Y. Huang, Chin-Yu and Kuo, Sy-Yen and Chen, “Analysis of a software reliability growth

model with logistic testing-effort function,” in Proceedings The Eighth International

Symposium on Software Reliability Engineering,IEEE, 1997, pp. 378--388.

[88] L. Kuo, J. C. Lee, K. Choi, and T. Y. Yang, “Bayes inference for S-shaped software-

reliability growth models,” IEEE Trans. Reliab., vol. 46, no. 1, pp. 76–80, 1997.

[89] M. E. Helander, M. Zhao, and N. Ohlsson, “Planning models for software reliability and

cost,” IEEE Trans. Softw. Eng., vol. 24, no. 6, pp. 420–434, 1998.

[90] S. S. Gokhale, K. S. Trivedi, and B. College, “Log-Logistic Software Reliability Growth

Model University of California s ds dm t dt.”

[91] M.-H. Chen, M. R. Lyu, and W. E. Wong, “Effect of code coverage on software reliability

measurement,” IEEE Trans. Reliab., vol. 50, no. 2, pp. 165–170, 2001.

[92] S. Yamada and T. FUJIWARA, “Testing-domain dependent software reliability growth

models and their comparisons of goodness-of-fit,” Int. J. Reliab. Qual. Saf. Eng., vol. 8,

167 | P a g e

no. 03, pp. 205–218, 2001.

[93] X. Teng and H. Pham, “A software-reliability growth model for N-version programming

systems,” IEEE Trans. Reliab., vol. 51, no. 3, pp. 311–321, 2002.

[94] S. INOUE and S. YAMADA, “Testing-coverage dependent software reliability growth

modeling,” Int. J. Reliab. Qual. Saf. Eng., vol. 11, no. 04, pp. 303–312, 2004.

[95] C.-Y. Huang, C.-T. Lin, S.-Y. Kuo, M. R. Lyu, and C.-C. Sue, “Software reliability

growth models incorporating fault dependency with various debugging time lags,” in

Proceedings of the 28th Annual International Computer Software and Applications

Conference, 2004. COMPSAC 2004., 2004, pp. 186–191.

[96] H. Pham, “A generalized logistic software reliability growth model,” Opsearch, vol. 42,

no. 4, pp. 322–331, 2005.

[97] X. Teng and H. Pham, “A new methodology for predicting software reliability in the

random field environments,” IEEE Trans. Reliab., vol. 55, no. 3, pp. 458–468, 2006.

[98] J. H. Lo and C. Y. Huang, “An integration of fault detection and correction processes in

software reliability analysis,” J. Syst. Softw., vol. 79, no. 9, pp. 1312–1323, 2006.

[99] C.-T. Lin and C.-Y. Huang, “Enhancing and measuring the predictive capabilities of

testing-effort dependent software reliability models,” J. Syst. Softw., vol. 81, no. 6, pp.

1025–1038, 2008.

[100] S. Inoue and S. Yamada, “Generalized discrete software reliability modeling with effect of

program size,” IEEE Trans. Syst. Man, Cybern. A Syst. Humans, vol. 37, no. 2, pp. 170–

179, 2007.

168 | P a g e

[101] Y. P. Wu, Q. P. Hu, M. Xie, and S. H. Ng, “Modeling and analysis of software fault

detection and correction process by considering time dependency,” IEEE Trans. Reliab.,

vol. 56, no. 4, pp. 629–642, 2007.

[102] P. K. Kapur, A. Kumar, K. Yadav, and S. K. KHATRI, “Software reliability growth

modelling for errors of different severity using change point,” Int. J. Reliab. Qual. Saf.

Eng., vol. 14, no. 04, pp. 311–326, 2007.

[103] H. Pham, “An imperfect-debugging fault-detection dependent-parameter software,” Int. J.

Autom. Comput., vol. 4, no. 4, pp. 325–327, 2007.

[104] C. Y. Huang and W. C. Huang, “Software reliability analysis and measurement using

finite and infinite server queueing models,” IEEE Trans. Reliab., vol. 57, no. 1, pp. 192–

203, 2008.

[105] H. Li, Q. Li, and M. Lu, “Software reliability modeling with logistic test coverage

function,” in 2008 19th International Symposium on Software Reliability Engineering

(ISSRE), 2008, pp. 319–320.

[106] S. Inoue and S. Yamada, “Two-dimensional software reliability assessment with testing-

coverage,” Proc. - 2nd IEEE Int. Conf. Secur. Syst. Integr. Reliab. Improv. SSIRI 2008,

pp. 150–157, 2008.

[107] P. K. Kapur, D. N. Goswami, A. Bardhan, and O. Singh, “Flexible software reliability

growth model with testing effort dependent learning process,” Appl. Math. Model., vol.

32, no. 7, pp. 1298–1307, 2008.

[108] N. Ahmad, M. G. M. Khan, and L. S. Rafi, “A study of testing-effort dependent inflection

S-shaped software reliability growth models with imperfect debugging,” Int. J. Qual.

169 | P a g e

Reliab. Manag., vol. 27, no. 1, pp. 89–110, 2010.

[109] S. Hwang and H. Pham, “Quasi-renewal time-delay fault-removal consideration in

software reliability modeling,” IEEE Trans. Syst. Man, Cybern. A Syst. Humans, vol. 39,

no. 1, pp. 200–209, 2008.

[110] S. Inoue and S. Yamada, “Two-dimensional software reliability measurement

technologies,” in 2009 IEEE International Conference on Industrial Engineering and

Engineering Management, 2009, pp. 223–227.

[111] P. K. Kapur, O. Shatnawi, A. G. Aggarwal, and R. Kumar, “Unified framework for

developing testing effort dependent software reliability growth models,” WSEAS Trans.

Syst., vol. 8, no. 4, pp. 521–531, 2009.

[112] M. Staron, W. Meding, and B. Söderqvist, “A method for forecasting defect backlog in

large streamline software development projects and its industrial evaluation,” Inf. Softw.

Technol., vol. 52, no. 10, pp. 1069–1079, 2010.

[113] P. Kumar and Y. Singh, “A software reliability growth model for three-tier client server

system,” Int. J. Comput. Appl., vol. 975, p. 8887, 2010.

[114] P. K. Kapur, A. Tandon, and G. Kaur, “Multi up-gradation software reliability model,”

2010 2nd Int. Conf. Reliab. Saf. Hazard, ICRESH-2010 Risk-Based Technol. Physics-of-

Failure Methods, pp. 468–474, 2010.

[115] C.-Y. Huang and C.-T. Lin, “Analysis of software reliability modeling considering testing

compression factor and failure-to-fault relationship,” IEEE Trans. Comput., vol. 59, no. 2,

pp. 283–288, 2009.

170 | P a g e

[116] S. K. Chandran, A. Dimov, and S. Punnekkat, “Modeling uncertainties in the estimation

of software reliability--a pragmatic approach,” in 2010 Fourth International Conference

on Secure Software Integration and Reliability Improvement, 2010, pp. 227–236.

[117] N. Quadri, SMK and Ahmad, “Software Reliability Growth Modeling with New Modified

Weibull Testing–effort and Optimal Release Policy,” Int. J. Comput. Appl., vol. 6, no. 12,

pp. 1–10, 2010.

[118] J.-R. Hsu, Chao-Jung and Huang, Chin-Yu and Chang, “Enhancing software reliability

modeling and prediction through the introduction of time-variable fault reduction factor,”

Appl. Math. Model., vol. 35, no. 1, pp. 506–511, 2011.

[119] P. K. Kapur, H. Pham, A. G. Aggarwal, and G. Kaur, “Two dimensional multi-release

software reliability modeling and optimal release planning,” IEEE Trans. Reliab., vol. 61,

no. 3, pp. 758–768, 2012.

[120] M. P. Wiper, A. P. Palacios, and J. M. Marin, “Bayesian software reliability prediction

using software metrics information,” Qual. Technol. Quant. Manag., vol. 9, no. 1, pp. 35–

44, 2012.

[121] D. K. Yadav, S. K. Chaturvedi, and R. B. Misra, “Forecasting time-between-failures of

software using fuzzy time series approach,” in 2012 Annual Meeting of the North

American Fuzzy Information Processing Society (NAFIPS), 2012, pp. 1–8.

[122] H. Pham, “A new software reliability model with Vtub-shaped fault-detection rate and the

uncertainty of operating environments,” Optimization, vol. 63, no. 10, pp. 1481–1490,

2014.

[123] H. Okamura, T. Dohi, and S. Osaki, “Software reliability growth models with normal

171 | P a g e

failure time distributions,” Reliab. Eng. Syst. Saf., vol. 116, pp. 135–141, 2013.

[124] S. Zhang, Ce and Cui, Gang and Liu, Hongwei and Meng, Fanchao and Wu, “A Unified

and Flexible Framework of Imperfect Debugging Dependent SRGMs with Testing-

Effort,” J. Multimed., vol. 9, no. 2, 2014.

[125] R. Peng, Y. F. Li, W. J. Zhang, and Q. P. Hu, “Testing effort dependent software

reliability model for imperfect debugging process considering both detection and

correction,” Reliab. Eng. Syst. Saf., vol. 126, pp. 37–43, 2014.

[126] H. Pham, “Loglog fault-detection rate and testing coverage software reliability models

subject to random environments,” Vietnam J. Comput. Sci., vol. 1, no. 1, pp. 39–45, Nov.

2013.

[127] H. B. Yadav and D. K. Yadav, “Early software reliability analysis using reliability

relevant software metrics,” Int. J. Syst. Assur. Eng. Manag., vol. 8, no. 4, pp. 2097–2108,

2017.

[128] C.-J. Hsu and C.-Y. Huang, “Optimal weighted combinational models for software

reliability estimation and analysis,” IEEE Trans. Reliab., vol. 63, no. 3, pp. 731–749,

2014.

[129] R. Rana et al., “Selecting software reliability growth models and improving their

predictive accuracy using historical projects data,” J. Syst. Softw., vol. 98, pp. 59–78,

2014.

[130] Q. Li, H. Li, and M. Lu, “Incorporating S-shaped testing-effort functions into NHPP

software reliability model with imperfect debugging,” J. Syst. Eng. Electron., vol. 26, no.

1, pp. 190–207, 2015.

172 | P a g e

[131] Z. Li, M. Mobin, and T. Keyser, “Multi-objective and multi-stage reliability growth

planning in early product-development stage,” IEEE Trans. Reliab., vol. 65, no. 2, pp.

769–781, 2015.

[132] M. Wayne and M. Modarres, “A Bayesian model for complex system reliability growth

under arbitrary corrective actions,” IEEE Trans. Reliab., vol. 64, no. 1, pp. 206–220,

2015.

[133] J. Yang, Y. Liu, M. Xie, and M. Zhao, “Modeling and analysis of reliability of multi-

release open source software incorporating both fault detection and correction processes,”

J. Syst. Softw., vol. 115, pp. 102–110, May 2016.

[134] S. Inoue, Shinji and Ikeda, Jun and Yamada, “Bivariate change-point modeling for

software reliability assessment with uncertainty of testing-environment factor,” Ann.

Oper. Res., vol. 244, no. 1, pp. 209–220, 2016.

[135] M. Zhu and H. Pham, “A software reliability model with time-dependent fault detection

and fault removal,” Vietnam J. Comput. Sci., vol. 3, no. 2, pp. 71–79, 2016.

[136] H. Pham, “A generalized fault-detection software reliability model subject to random

operating environments,” Vietnam J. Comput. Sci., vol. 3, no. 3, pp. 145–150, 2016.

[137] J. Xu and S. Yao, “Software Reliability Growth Model with Partial Differential Equation

for Various Debugging Processes,” Math. Probl. Eng., vol. 2016, 2016.

[138] S. Ramasamy and A. M. J. Muthu Kumaran, “Dynamically weighted combination of fault

- Based Software Reliability Growth Models,” Indian J. Sci. Technol., vol. 9, no. 22, pp.

10–13, 2016.

173 | P a g e

[139] J. Wang, “An imperfect software debugging model considering irregular fluctuation of

fault introduction rate,” Qual. Eng., vol. 29, no. 3, pp. 377–394, 2017.

[140] K. Honda, H. Washizaki, and Y. Fukazawa, “Generalized Software Reliability Model

Considering Uncertainty and Dynamics: Model and Applications,” Int. J. Softw. Eng.

Knowl. Eng., vol. 27, no. 6, pp. 967–993, 2017.

[141] Z. Li, M. Mobin, and T. Keyser, “Multi-Objective and Multi-Stage Reliability Growth

Planning in Early Product-Development Stage,” IEEE Trans. Reliab., vol. 65, no. 2, pp.

769–781, 2016.

[142] A. G. Aggarwal, P. K. Kapur, and N. Nijhawan, “A discrete SRGM for multi-release

software system with faults of different severity,” Int. J. Oper. Res., vol. 32, no. 2, pp.

156–168, 2018.

[143] P. Erto, M. Giorgio, and A. Lepore, “The Generalized Inflection S-Shaped Software

Reliability Growth Model,” IEEE Trans. Reliab., 2018.

[144] K. Lee, Da and Chang, In and Pham, Hoang and Song, “A software reliability model

considering the syntax error in uncertainty environment, optimal release time, and

sensitivity analysis,” Appl. Sci., vol. 8, no. 9, p. 1483, 2018.

[145] A. Aggarwal, Anu G and Dhaka, Vikas and Nijhawan, Nidhi and Tandon, Reliability

growth analysis for multi-release open source software systems with change point. 2019.

[146] V. B. Singh, M. Sharma, and H. Pham, “Entropy Based Software Reliability Analysis of

Multi-Version Open Source Software,” {IEEE} Trans. Softw. Eng., vol. 44, no. 12, pp.

1207–1223, Dec. 2018.

174 | P a g e

[147] A. Gupta, Ritu and Jain, Madhu and Jain, Software Reliability Growth Model in

Distributed Environment Subject to Debugging Time Lag. 2019.

[148] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of

{ICNN}{\textquotesingle}95 - International Conference on Neural Networks.

[149] J. H. Holland, “Genetic Algorithm,” Nat. Sci. Am., vol. 267, no. 1, pp. 66–72, 1992.

[150] A. Alrajeh, “Machine Translation Systems,” 2011.

[151] H. A. Abbass, “{MBO}: marriage in honey bees optimization-a Haplometrosis

polygynous swarming approach,” in Proceedings of the 2001 Congress on Evolutionary

Computation ({IEEE} Cat. No.01TH8546).

[152] J. R. Koza, “Survey of genetic algorithms and genetic programming,” in Proceedings of

{WESCON}{\textquotesingle}95.

[153] D. Simon, “Biogeography-Based Optimization,” {IEEE} Trans. Evol. Comput., vol. 12,

no. 6, pp. 702–713, Dec. 2008.

[154] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated Annealing,”

Science (80-.)., vol. 220, no. 4598, pp. 671–680, May 1983.

[155] H. Shah-Hosseini and H. S. Hosseini, “Principal components analysis by the galaxy-based

search algorithm: a novel metaheuristic for continuous optimisation,” Int. J. Comput. Sci.

Eng., vol. 6, no. 1–2, pp. 132–140, 2011.

[156] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “{GSA}: A Gravitational Search

Algorithm,” Inf. Sci. (Ny)., vol. 179, no. 13, pp. 2232–2248, Jun. 2009.

[157] A. Hatamlou, “Black hole: A new heuristic optimization approach for data clustering,” Inf.

175 | P a g e

Sci. (Ny)., vol. 222, pp. 175–184, Feb. 2013.

[158] A. Kaveh and S. Talatahari, “A novel heuristic optimization method: charged system

search,” Acta Mech., vol. 213, no. 3–4, pp. 267–289, Jan. 2010.

[159] X.-S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” in Nature Inspired

Cooperative Strategies for Optimization ({NICSO} 2010), Springer Berlin Heidelberg,

2010, pp. 65–74.

[160] A. K. Tripathi, K. Sharma, and M. Bala, “Dynamic frequency based parallel k-bat

algorithm for massive data clustering (DFBPKBA),” Int. J. Syst. Assur. Eng. Manag., vol.

9, no. 4, pp. 866–874, Sep. 2018.

[161] T. Ashish, S. Kapil, and B. Manju, “Parallel bat algorithm-based clustering using

mapreduce,” in Networking Communication and Data Knowledge Engineering, Springer,

2018, pp. 73–82.

[162] D. Karaboga and C. Ozturk, “A novel clustering approach: Artificial Bee Colony (ABC)

algorithm,” Appl. Soft Comput., vol. 11, no. 1, pp. 652–657, 2011.

[163] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” {IEEE} Comput.

Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[164] A. Kaveh and N. Farhoudi, “A new optimization method: Dolphin echolocation,” Adv.

Eng. Softw., vol. 59, pp. 53–70, May 2013.

[165] C. Yang, X. Tu, and J. Chen, “Algorithm of Marriage in Honey Bees Optimization Based

on the Wolf Pack Search,” in The 2007 International Conference on Intelligent Pervasive

Computing ({IPC} 2007), 2007.

176 | P a g e

[166] Li.X, “A new intelligent optimization-artificial fish swarm algorithm [Doctor thesis,”

2003.

[167] R. Martin and W. Stephen, “Termite: A swarm intelligent routing algorithm for

mobilewireless Ad-Hoc networks,” in Studies in Computational Intelligence, Springer

Berlin Heidelberg, 2006, pp. 155–184.

[168] P. C. Pinto, T. A. Runkler, and J. M. C. Sousa, “Wasp Swarm Algorithm for Dynamic

{MAX}-{SAT} Problems,” in Adaptive and Natural Computing Algorithms, Springer

Berlin Heidelberg, pp. 350–357.

[169] A. Mucherino, O. Seref, O. Seref, O. E. Kundakcioglu, and P. Pardalos, “Monkey search:

a novel metaheuristic search for global optimization,” in {AIP} Conference Proceedings,

2007.

[170] X. Lu and Y. Zhou, “A Novel Global Convergence Algorithm: Bee Collecting Pollen

Algorithm,” in Advanced Intelligent Computing Theories and Applications. With Aspects

of Artificial Intelligence, Springer Berlin Heidelberg, pp. 518–525.

[171] X.-S. Yang and S. Deb, “Cuckoo Search via Lé\mathsemicolonvy flights,” in

2009 World Congress on Nature & Biologically Inspired Computing ({NaBIC}), 2009.

[172] Y. Shiqin, J. Jianjun, and Y. Guangxing, “A Dolphin Partner Optimization,” in 2009

{WRI} Global Congress on Intelligent Systems, 2009.

[173] X. S. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” Int. J.

Bio-Inspired Comput., vol. 2, no. 2, p. 78, 2010.

[174] W.-T. Pan, “A new Fruit Fly Optimization Algorithm: Taking the financial distress model

177 | P a g e

as an example,” Knowledge-Based Syst., vol. 26, pp. 69–74, Feb. 2012.

[175] S. Mirjalili and A. Lewis, “The Whale Optimization Algorithm,” Adv. Eng. Softw., vol.

95, pp. 51–67, May 2016.

[176] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Adv. Eng. Softw., vol.

69, pp. 46–61, Mar. 2014.

[177] A. K. Tripathi, K. Sharma, and M. Bala, “A novel clustering method using enhanced grey

wolf optimizer and mapreduce,” Big data Res., vol. 14, pp. 93–100, 2018.

[178] W. H. Lim and N. A. M. Isa, “Teaching and peer-learning particle swarm optimization,”

Appl. Soft Comput., vol. 18, pp. 39–58, May 2014.

[179] G. Barbarosoglu and D. Ozgur, “A tabu search algorithm for the vehicle routing problem,”

Comput. Oper. Res., vol. 26, no. 3, pp. 255–270, Mar. 1999.

[180] W. Bi, G. C. Dandy, and H. R. Maier, “Improved genetic algorithm optimization of water

distribution system design by incorporating domain knowledge,” Environ. Model. Softw.,

vol. 69, pp. 370–381, 2015.

[181] M. S. Ismail, M. Moghavvemi, and T. M. I. Mahlia, “Genetic algorithm based

optimization on modeling and design of hybrid renewable energy systems,” Energy

Convers. Manag., vol. 85, pp. 120–130, 2014.

[182] B. Pachauri, A. Kumar, and J. Dhar, “Software reliability growth modeling with dynamic

faults and release time optimization using GA and MAUT,” Appl. Math. Comput., vol.

242, pp. 500–509, 2014.

[183] C.-J. Hsu and C.-Y. Huang, “A study on the applicability of modified genetic algorithms

178 | P a g e

for the parameter estimation of software reliability modeling,” in Computer Software and

Applications Conference (COMPSAC), 2010 IEEE 34th Annual, 2010, pp. 531–540.

[184] L. C. and Y. P. Chen, “Application of improved differential evolution calculation method

based on contious power flow to analyasis of marginal static voltage stability,” Power

Eng., vol. 26, pp. 756–760, 2006.

[185] C. Jin and S.-W. Jin, “Parameter optimization of software reliability growth model with S-

shaped testing-effort function using improved swarm intelligent optimization,” Appl. Soft

Comput., vol. 40, pp. 283–291, 2016.

[186] H. Shayeghi, M. Mahdavi, and A. Bagheri, “Discrete PSO algorithm based optimization

of transmission lines loading in TNEP problem,” Energy Convers. Manag., vol. 51, no. 1,

pp. 112–121, 2010.

[187] T. Haryono and others, “Novel binary PSO algorithm based optimization of transmission

expansion planning considering power losses,” in IOP Conference Series: Materials

Science and Engineering, 2016, vol. 128, no. 1, p. 12023.

[188] R. Malhotra and A. Negi, “Reliability modeling using particle swarm optimization,” Int. J.

Syst. Assur. Eng. Manag., vol. 4, no. 3, pp. 275–283, 2013.

[189] A. Sheta and J. Al-Salt, “Parameter estimation of software reliability growth models by

particle swarm optimization,” management, vol. 7, p. 14, 2007.

[190] B. Akay and D. Karaboga, “Artificial bee colony algorithm variants on constrained

optimization,” An Int. J. Optim. Control, vol. 7, no. 1, p. 98, 2017.

[191] D. Karaboga and B. Basturk, “On the performance of artificial bee colony (ABC)

179 | P a g e

algorithm,” Appl. Soft Comput., vol. 8, no. 1, pp. 687–697, 2008.

[192] G. Zhu and S. Kwong, “Gbest-guided artificial bee colony algorithm for numerical

function optimization,” Appl. Math. Comput., vol. 217, no. 7, pp. 3166–3173, 2010.

[193] D. Karaboga and B. Basturk, “A powerful and efficient algorithm for numerical function

optimization: artificial bee colony ({ABC}) algorithm,” J. Glob. Optim., vol. 39, no. 3, pp.

459–471, Apr. 2007.

[194] S. Mirjalili and S. Z. M. Hashim, “A new hybrid PSOGSA algorithm for function

optimization,” in Computer and information application (ICCIA), 2010 international

conference on, 2010, pp. 374–377.

[195] S. Mirjalili, G.-G. Wang, and L. dos S. Coelho, “Binary optimization using hybrid particle

swarm optimization and gravitational search algorithm,” Neural Comput. Appl., vol. 25,

no. 6, pp. 1423–1435, 2014.

[196] F. Liu and Z. Zhou, “An improved QPSO algorithm and its application in the high-

dimensional complex problems,” Chemom. Intell. Lab. Syst., vol. 132, pp. 82–90, 2014.

[197] A. Abraham, R. K. Jatoth, and A. Rajasekhar, “Hybrid differential artificial bee colony

algorithm,” J. Comput. Theor. Nanosci., vol. 9, no. 2, pp. 249–257, 2012.

[198] Y. Li, Y. Wang, and B. Li, “A hybrid artificial bee colony assisted differential evolution

algorithm for optimal reactive power flow,” Int. J. Electr. Power Energy Syst., vol. 52, pp.

25–33, 2013.

[199] S. S. Jadon, R. Tiwari, H. Sharma, and J. C. Bansal, “Hybrid artificial bee colony

algorithm with differential evolution,” Appl. Soft Comput., vol. 58, pp. 11–24, 2017.

180 | P a g e

[200] D. B. R. XIAO-LI MENG, “Maximum likelihood estimation via the ECM algorithm: A

general framework,” Biometrika, vol. 80, no. 2, pp. 267–278, 1993.

[201] Y. Minohara, Takashi and Tohma, “Parameter estimation of hyper-geometric distribution

software reliability growth model by genetic algorithms,” in Proceedings of Sixth

International Symposium on Software Reliability Engineering. ISSRE’95, 1995, pp. 324–

329.

[202] T. Okamura, Hiroyuki and Watanabe, Yasuhiro and Dohi, “An iterative scheme for

maximum likelihood estimation in software reliability modeling,” in 14th International

Symposium on Software Reliability Engineering, 2003. ISSRE, 2003, pp. 246–256.

[203] I. J. Myung, “Tutorial on maximum likelihood estimation,” vol. 47, pp. 90–100, 2003.

[204] T. Ohishi, Koji and Okamura, Hiroyuki and Dohi, “Gompertz software reliability model:

Estimation algorithm and empirical validation,” J. Syst. Softw., vol. 82, no. 3, pp. 535–

543, 2009.

[205] A. M. Caserta, Marco and Uribe, “Tabu search-based metaheuristic algorithm for software

system reliability problems,” Comput. \& Oper. Res., vol. 36, no. 3, pp. 811–822, 2009.

[206] M. E. Aljahdali, Sultan H and El-Telbany, “Software reliability prediction using multi-

objective genetic algorithm,” in 009 IEEE/ACS International Conference on Computer

Systems and Applications,IEEE, 2009, pp. 293–300.

[207] J.-B. Hu, Chang-Hua and Si, Xiao-Sheng and Yang, “System reliability prediction model

based on evidential reasoning algorithm with nonlinear optimization,” Expert Syst. Appl.,

vol. 37, no. 3, pp. 2550–2562, 2010.

181 | P a g e

[208] C.-Y. Hsu, Chao-Jung and Huang, “A study on the applicability of modified genetic

algorithms for the parameter estimation of software reliability modeling,” in 2010 IEEE

34th Annual Computer Software and Applications Conference, 2010, pp. 531–540.

[209] Y. Zheng, Changyou and Liu, Xiaoming and Huang, Song and Yao, “A parameter

estimation method for software reliability models,” Procedia Eng., vol. 15, pp. 3477–

3481, 2011.

[210] M. Q. Wason, Ritika and Ahmed, P and Rafiq, “New Paradigm for Software Reliability

Estimation,” Int. J. Comput. Appl., vol. 44, no. 14, pp. 39–44, 2012.

[211] L. Shanmugam, Latha and Florence, “A comparison of parameter best estimation method

for software reliability models,” Int. J. Softw. Eng. \& Appl., vol. 3, no. 5, p. 91, 2012.

[212] M. AL-Saati, Dr and Akram, Najla and Abd-AlKareem, “The use of cuckoo search in

estimating the parameters of software reliability growth models,” arXiv Prepr.

arXiv1307.6023, 2013.

[213] A. Mallikharjuna, Rao K and Kodali, An efficient method for parameter estimation of

software reliability growth model using artificial bee colony optimization. 2014.

[214] J. Kim, Taehyoun and Lee, Kwangkyu and Baik, “An effective approach to estimating the

parameters of software reliability growth models using a real-valued genetic algorithm,” J.

Syst. Softw., vol. 102, pp. 134–144, 2015.

[215] E. Zhao, Wei and Tao, Tao and Zio, “System reliability prediction by support vector

regression with analytic selection and genetic algorithm parameters selection,” Appl. Soft

Comput., vol. 30, pp. 792–802, 2015.

182 | P a g e

[216] K. Roy, Pratik and Mahapatra, GS and Dey, “Neuro-genetic approach on logistic model

based software reliability prediction,” Expert Syst. Appl., vol. 42, no. 10, pp. 4709–4718,

2015.

[217] O. P. Choudhary, Ankur and Baghel, Anurag Singh and Sangwan, “An efficient parameter

estimation of software reliability growth models using gravitational search algorithm,” Int.

J. Syst. Assur. Eng. Manag., vol. 8, no. 1, pp. 79–88, 2017.

[218] O. P. Choudhary, Ankur and Baghel, Anurag Singh and Sangwan, “Efficient parameter

estimation of software reliability growth models using harmony search,” IET Softw., vol.

11, no. 6, pp. 286–291, 2017.

[219] O. P. Choudhary, Ankur and Baghel, Anurag Singh and Sangwan, “Parameter Estimation

of Software Reliability Model Using Firefly Optimization,” in Data Engineering and

Intelligent Computing, 2018, pp. 407–415.

[220] X. Teng and H. Pham, “A New Methodology for Predicting Software Reliability in the

Random Field Environments,” vol. 55, no. 3, pp. 458–468, 2006.

[221] Y. K. Li, Naixin and Malaiya, “Enhancing accuracy of software reliability prediction,” in

Proceedings of 1993 IEEE International Symposium on Software Reliability Engineering,

1993, pp. 71–79.

[222] S. Kumar and P. Ranjan, “A phase wise approach for fault identification,” J. Inf. Optim.

Sci., vol. 39, no. 1, pp. 223–237, Nov. 2017.

[223] R. K. R. K. Garg et al., “Ranking of software engineering metrics by fuzzy-based matrix

methodology,” Softw. Testing, Verif. Reliab., vol. 23, no. 2, pp. 149–168, May 2011.

183 | P a g e

[224] R. Rana et al., “Selecting software reliability growth models and improving their

predictive accuracy using historical projects data,” J. Syst. Softw., vol. 98, pp. 59–78,

2014.

[225] H. Pham and X. Zhang, “NHPP software reliability and cost models with testing

coverage,” Eur. J. Oper. Res., vol. 145, no. 2, pp. 443–454, 2003.

[226] B. W. Boehm, “Software engineering economics,” IEEE Trans. Softw. Eng., vol. 1, pp. 4–

21, 1984.

[227] W. W. Royce, “Managing the development of large software systems: concepts and

techniques,” in Proceedings of the 9th international conference on Software Engineering,

1987, pp. 328–338.

[228] C. Larman and V. R. Basili, “Iterative and incremental developments. a brief history,”

Computer (Long. Beach. Calif)., vol. 36, no. 6, pp. 47–56, Jun. 2003.

[229] P. Kruchten, “The rational unified process: an introduction,” in Addison-Wesley

Professional, 2004.

[230] L. Tal, “Getting Started with Agile Manager,” in Agile Software Development with {HP}

Agile Manager, Apress, 2015, pp. 15–28.

[231] H. M. Olague, L. H. Etzkorn, S. Gholston, and S. Quattlebaum, “Empirical Validation of

Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes

Developed Using Highly Iterative or Agile Software Development Processes,” {IEEE}

Trans. Softw. Eng., vol. 33, no. 6, pp. 402–419, Jun. 2007.

[232] C. Larman, Agile and iterative development: a manager’s guide,Addison-Wesley

184 | P a g e

Professional. 2004.

[233] Abrahamsson, “Extreme programming: first results from a controlled case study,” in

Proceedings of the 20th {IEEE} Instrumentation Technology Conference (Cat No

03CH37412) {EURMIC}-03, 2003.

[234] B. Boehm, “A spiral model of software development and enhancement,” {ACM}

{SIGSOFT} Softw. Eng. Notes, vol. 11, no. 4, pp. 22–42, Aug. 1986.

[235] M. A. Akbar et al., “Improving the Quality of Software Development Process by

Introducing a New Methodology{\textendash}{AZ}-Model,” {IEEE} Access, vol. 6, pp.

4811–4823, 2018.

[236] P. K. KAPUR and R. B. GARG, “Optimal release policies for software systems with

testing effort,” Int. J. Syst. Sci., vol. 22, no. 9, pp. 1563–1571, Sep. 1991.

[237] C.-Y. Huang and M. R. Lyu, “Optimal Release Time for Software Systems Considering

Cost, Testing-Effort, and Test Efficiency,” {IEEE} Trans. Reliab., vol. 54, no. 4, pp. 583–

591, Dec. 2005.

[238] D. Greer and G. Ruhe, “Software release planning: an evolutionary and iterative

approach,” Inf. Softw. Technol., vol. 46, no. 4, pp. 243–253, Mar. 2004.

[239] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on Software Fault

Localization,” {IEEE} Trans. Softw. Eng., vol. 42, no. 8, pp. 707–740, Aug. 2016.

[240] V. R. Larman, Craig and Basili, “Iterative and incremental developments. a brief history,”

Computer (Long. Beach. Calif)., vol. 36, no. 6, pp. 47–56, 2003.

[241] C. Gacek and B. Arief, “The many meanings of open source,” {IEEE} Softw., vol. 21, no.

185 | P a g e

1, pp. 34–40, Jan. 2004.

[242] S. P. Craig, Rick David and Jaskiel, “Systematic software testing,” in Artech house, 2002.

[243] X.-S. Yang, “Flower pollination algorithm for global optimization,” in International

conference on unconventional computing and natural computation, 2012, pp. 240–249.

[244] A. L. Goel and K. Okumoto, “Time-dependent error-detection rate model for software

reliability and other performance measures,” IEEE Trans. Reliab., vol. 28, no. 3, pp. 206–

211, 1979.

[245] M. N. A. Wahab, S. Nefti-Meziani, and A. Atyabi, “A Comprehensive Review of Swarm

Optimization Algorithms,” {PLOS} {ONE}, vol. 10, no. 5, p. e0122827, May 2015.

[246] J. H. Holland, “Genetic Algorithms,” Sci. Am., vol. 267, no. 1, pp. 66–72, Jul. 1992.

[247] A. Chakri, R. Khelif, M. Benouaret, and X.-S. Yang, “New directional bat algorithm for

continuous optimization problems,” Expert Syst. Appl., vol. 69, pp. 159–175, 2017.

[248] F. S. Abu-Mouti and M. E. El-Hawary, “Overview of Artificial Bee Colony (ABC)

algorithm and its applications,” in Systems Conference (SysCon), 2012 IEEE

International, 2012, pp. 1–6.

[249] R. C. Eberhart and J. Kennedy, “Particle swarm optimization, proceeding of IEEE

International Conference on Neural Network,” Perth, Aust., pp. 1942–1948, 1995.

[250] X.-S. Yang, Nature-Inspired Metaheuristic. Beckington, UK: Luniver press, 2008.

[251] J. D. Musa, “A theory of software reliability and its application,” IEEE Trans. Softw. Eng.,

vol. 3, pp. 312–327, 1975.

[252] K. Musa, John D and Okumoto, “A logarithmic Poisson execution time model for

186 | P a g e

software reliability measurement,” in Proceedings of the 7th international conference on

Software engineering, 1984, pp. 230–238.

[253] K. Musa, John D and Okumoto, “Validity of execution-time theory of software

reliability,” IEEE Trans. Reliab., vol. 28, no. 3, p. 1979, 1979.

