
1 
 

INTEGRATING PART LEARNING WITH STRUCTURE LEARNING 

FOR HANDWRITTEN NUMERAL RECOGNITION 

A DISSERTATION 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

 FOR THE AWARD OF THE DEGREE 

OF 

MASTER OF TECHNOLOGY 

IN  

INFORMATION SYSTEMS 

Submitted By: 

JATIN MALHOTRA 

2K18/ISY/04 

Under the supervision of 

DR. SEBA SUSAN 

 

Department Of Information Technology 

Delhi Technological University 

(Formerly Delhi College of Engineering) 

Bawana Road, Delhi-110042 

JULY 2020 



II 

 

 

 

CANDIDATE’S DECLARATION 

 

 

I Jatin Malhotra (2K18/ISY/04), student of M.Tech. (Information Technology),  hereby declare that 

the project Dissertation titled  “Integrating Part Learning with Structure Learning for Handwritten 

Numeral Recognition”, which is submitted by me to the Department of Information Technology, 

Delhi Technological University, Delhi in partial fulfilment of the requirement for the award of the 

degree Master of Technology is original and not copied from any source without proper citation. This 

work has not previously formed the basis for the award of any Degree, Diploma Associateship, 

Fellowship or other similar title or recognition.  

 

 

 

 

Date :  July 13,  2020                                                              Jatin  Malhotra 

Place : New Delhi 

 

 

 

 



III 

 

 

 

CERTIFICATE 

 

 

 I hereby certify that  the Project Dissertation titled “Integrating Part Learning with Structure Learning 

for Handwritten Numeral Recognition”,    which is submitted by Jatin Malhotra, Roll Number 

2K18/ISY/04, Department of Information Technology, Delhi Technological University in partial 

fulfilment of the requirements for the award of the degree of Master of Technology, is a record of the 

project work carried out by the student under my supervision. To the best of my knowledge, this work 

has not been submitted in part or full for 

any Degree or Diploma to this University or elsewhere. 

 

 

 

 

        

Place: New Delhi        Dr. Seba Susan 

Date:                   SUPERVISOR 

               Associate Professor   

        Department of Information Technology 

           Delhi Technological University 

 

 

 



IV 

 

 

 

ACKNOWLEDGEMENT 

 

 

I express my gratitude to my major project guide Dr. Seba Susan, Associate Professor, Department of 

Information Technology, Delhi Technological University, for the valuable support and guidance she 

provided in making this major project. It is my pleasure to record my sincere thanks to my respected 

guide for her constructive criticism and insight without which the project would not have shaped as it 

has. 

I would also like to express my gratitude to the Delhi Technological University for providing me with 

the environment which allowed me to work without any obstructions. I humbly extend my words of 

gratitude to other faculty members, lab assistants, seniors and my classmates for providing their 

valuable help and time whenever it was required. 

 

 

JATIN MALHOTRA 

Roll No. 2k18/ISY/04 

M.Tech. (Information Systems) 

E-mail: jmalhotra009@gmail.com 

 

 

 

 

 



V 

 

 

 

ABSTRACT 

 

 

Handwritten Numeral Recognition is the task of correctly identifying handwritten digits. It has an 

important use-case in digitising old script, image restoration. The challenges while performing 

handwritten digits recognition arise due to the fact that every person's handwriting can differ. This 

difference in handwriting can be due to different fonts, slant in letters. Bad quality of text or image 

from which digits also creates difficulty in recognition. Handwritten Numeral Recognition has been 

an active area of research for decades but still using part-learning to solve this problem has hardly 

been explored. Part-learning is a technique in which the original image is divided into parts (called 

patches), and these patches are learned. Focusing on patches instead of whole images help identify 

patterns which are sometimes missed. It makes the identification process resistant to background 

noise. Structure learning paradigm in which we train neural networks by leveraging structured learned 

from the neural network itself. Structure learned in structure learning can be vectors, graphs or even 

finite state machines. In this work, we propose a novel approach of integrating part-learning with 

structure learning for handwritten numeral recognition. Convolutional Neural Network has been used 

extensively used in the vision-related tasks. We have tested our approach with a multilayer 

perceptron, convnets and autoencoders. Comparison of the performance of handwritten numeral 

recognition on MNIST dataset between state-of-the-art techniques and our proposed method indicate 

the efficacy of our approach. 

 

Keywords: Handwritten Numeral Recognition, Structure Learning, Part Learning, Convolutional 

Neural Network, Autoencoders  

 

 

 



VI 

 

 

 

CONTENTS 

 

1.  Candidate's Declaration ii 

2.  Certificate iii 

3.  Acknowledgement iv 

4.  Abstract v 

5.  Contents vi 

6.  List of Figures vii 

7.  List of Tables viii 

8.  Chapter 1: INTRODUCTION 1 

9.  Chapter 2: LITERATURE REVIEW 

2.1  Handwritten Numeral Recognition 

2.2  Artificial Neural Network 

2.3  Convolutional Neural Network  

2.4  Autoencoders 

2.4.1 Convolutional Autoencoders 

2.5  Weight Initialisation 

2.6  Learning from Image Parts 

2.7  Structure Learning 

3 

3 

3 

5 

7 

8 

9 

10 

10 

10.  Chapter 3: PROPOSED WORK 

3.1  CNN Pre-Initialisation by Part Learning 

                 3.1.1  CNN architecture 

                 3.1.2  Proposed Methodology 

          3.2  Integrating Part-Learning with Structure Learning MLP  

                 3.2.1 MLP architecture 

                 3.2.2 Proposed Methodology 

          3.3  Integrating Part-Learning with Structure Learning CAE 

                 3.3.1 Convolutional Auto-Encoders Architecture 

                 3.3.2 Proposed Methodology 

11 

11 

11 

12 

13 

13 

13 

14 

14 

15 



VII 

 

11.  

  

Chapter 4: RESULTS 

                   4.1  Experimental Setup 

                   4.2  CNN Pre-Initialisation Implementation Results 

                  4.3  Part-Learning and Structure Learning MLP implementation 

-------------------Results 

                  4.4  Part-Learning and Structure Learning CAE implementation 

-------------------Results 

                         4.4.1 Ablation Study 

                  4.5  Application            

16 

16 

17 

 

22 

 

33 

39 

44 

12.  Chapter 5: CONCLUSION  45 

13.  REFERENCES 47 

14.  LIST OF PUBLICATIONS 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VIII 

 

 

 

LIST OF FIGURES 

 

Figure No. Description Page No. 

Fig. 2.1 Different layers of a Neural Network 4 

Fig. 2.2 CNN Layers 5 

Fig. 2.3 Convolution operation 6 

Fig. 2.4 Max Pooling 7 

Fig. 2.5 The general structure of an autoencoder 7 

Fig. 2.6 Different layers of an Autoencoder 8 

Fig. 2.7 Convolutional Autoencoder 8 

Fig. 2.8 Training an RNN model, clustering the RNN‟s hidden 

states and outputting the final structured FSA. 

10 

Fig. 3.1 CNN architecture for our experiment 11 

Fig. 3.2 Proposed methodology block diagram 13 

Fig. 3.3 a) The layout of the five image patches each covering a 

quarter area of the image  

15 

Fig. 3.3 b) The five patches shown for the numeral „6‟ 15 

Fig. 4.1 Sample of MNIST dataset 16 

Fig. 4.2 Images prepared for initialising CNN 17 

Fig. 4.3 Hidden state cluster of MLP 22 

Fig. 4.4 The kmeans Elbow graphs for determining the 

interpretable hidden layer. Shown for the fifteen image 

patch layouts [(a)-(o)]  

25-29 

Fig. 4.5 Images of Left, Right, Top and Bottom patch of numeral '5' 35 

Fig. 4.6 Sample of Devanagari handwritten character dataset 44 

Fig. 4.7 Five patches created from character 'bha' 44 

Fig. 4.8 Character 'bha'  44 

 



IX 

 

 

 

LIST OF TABLES 

 

Table No. Description Page No. 

Table 1 Ordering of layers in proposed CNN Architecture 12 

Table 2 Ordering of layers in proposed CAE Architecture 15 

Table 3 Result of 5% cropped &resized image approach (average) 17 

Table 4 Result of 5% cropped &resized image approach (maximum) 18 

Table 5 Result of 5% masked image approach (average) 18 

Table 6 Result of 5% masked image approach (maximum) 19 

Table 7 Result of 10% cropped &resized image approach (average) 19 

Table 8 Result of 10% cropped &resized image approach (maximum) 20 

Table 9 Result of 10% masked image approach (average) 20 

Table 10 Result of 10% masked image approach (maximum) 21 

Table 11 Results summary 21 

Table 12 MLP Net1 result for MNIST dataset 22 

Table 13 SVM  result on MLP Net1 hidden states for MNIST dataset 23 

Table 14 KNN results on MLP Net1 hidden state for MNIST dataset 23 

Table 15 MLP Net2 result for MNIST dataset 24 

Table 16 Clustering Approach 30 

Table 17 Learned Structure to SVM 31 

Table 18 Learned Structure to KNN 31 

Table 19 The output performance scores for MNIST dataset 32 

Table 20 Features from original image to SVM Linear 33 

Table 21 Features from original image to SVM RBF 33 

Table 22 Fusing features from patch to SVM Linear 34 

Table 23 Fusing features from patch to SVM RBF 34 

Table 24 Concatenating predicted prob. from each patch to SVM Linear 35 



X 

 

Table 25 Average of  predicted prob. from each patch to SVM Linear 35 

Table 26 Maximum of predicted prob. from each patch to SVM Linear 36 

Table 27 Concatenating predicted prob. from each patch to SVM RBF 36 

Table 28 Concatenating predicted prob. from each patch to SVM RBF 

and from fused features to SVM RBF 

37 

Table 29 Concatenating predicted prob. from each patch to SVM RBF 

and from original image features to SVM RBF 

37 

Table 30 Concatenating predicted prob. from each patch to SVM RBF, 

from fused features and from original image features to SVM 

RBF 

38 

Table 31 Concatenating predicted prob. from each patch(excluding top 

patch) to SVM RBF and from fused features to SVM RBF 

39 

Table 32 Concatenating predicted prob. from each patch(excluding 

bottom patch) to SVM RBF and from fused features to SVM 

RBF 

39 

Table 33 Concatenating predicted prob. from each patch(excluding right 

patch) to SVM RBF and from fused features to SVM RBF 

40 

Table 34 Concatenating predicted prob. from each patch(excluding left 

patch) to SVM RBF and from fused features to SVM RBF 

40 

Table 35 Concatenating predicted prob. from left and right patch to SVM 

RBF and from fused features to SVM RBF 

41 

Table 36 Concatenating predicted prob. from top and bottom patch to 

SVM RBF and from fused features to SVM RBF 

41 

Table 37 Concatenating predicted prob. from top patch to SVM RBF and 

from fused features to SVM RBF 

42 

Table 38 Concatenating predicted prob. from bottom patch to SVM RBF 

and from fused features to SVM RBF 

42 

Table 39 Concatenating predicted prob. from right patch to SVM RBF 

and from fused features to SVM RBF 

43 

Table 40 Concatenating predicted prob. from left patch to SVM RBF and 

from fused features to SVM RBF 

43 

 



XI 

 

 

 

 

 

LIST OF ABBREVIATIONS 

 

1 MLP Multilayer Perceptron 

2 CNN Convolutional Numeral Network 

3 AE Autoencoder 

4 CAE Convolutional Autoencoder 

5 1-D One Dimensional 

6 SVM Support Vector Machine 

7 RBF Radial Basis Function 

 

 

 

 

 

 

 

 

 

 

 



1 
 

 

 

CHAPTER  1 

 

 INTRODUCTION 

 

Handwritten Numeral Recognition is the task of correctly identifying handwritten digits. It has an 

important use-case in the digitisation of old documents. The challenges while performing handwritten 

digits recognition arise due to the fact that every person's handwriting can differ. This difference in 

handwriting can be due to different fonts, slant in letters. Bad quality of text or image from which 

digits needs to be recognised also creates difficulty. 

In this work, we use structure learning and part learning to tackle the handwritten digits classification 

task. For part learning, we divide the image into various patches. Patch learning approach has not 

been extensively studied for handwritten digits recognition. Then structure learning is applied to 

individual patches. Patches are used to train the neural network, and then the structure is learned 

corresponding to each data sample in dataset. This structures learned from different patches of the 

same image are then combined to produce the vector that will represent the image instead of the 

image. 

In the first part of our work, we have proposed a method that uses part-learning along with a novel 

CNN weight pre-initialisation strategy. In this two parts of images are created: top and bottom half. 

Some portion of training data is taken out and used to initialise weights of the two CNNs. The 

proposed method gets accuracy as high as compared to state-of-the-art methods.  

In the second part, we proposed a method which used structure along with part-learning. In this five 

patch of the image was created: top, bottom, left, right and centre. These five patches were used to 

train five MLPs. Each MLP had the same architecture, which consists of three hidden layers. Having 

examined the data from each of the three hidden layers, it was found that the third hidden layer 

showed that it would be best suited to learn the structure from.  After training the MLP, a structure 

was learned. This structure was used instead of original data for the classification task.  



 

2 
 

In the third part, the theme of the previous method was carried forward. The integration of part-

learning with structure learning was explored with autoencoders. Learning structures from 

autoencoders were considered as autoencoders are naturally good at learning representation for a 

given data. Combining this with part-learning helped learn structure for different patches. Having 

different patches helped capture all regions of the image. Combining the structure learned from 

different patches and giving it to a classifier yielded accuracy comparable to state-of-the-art methods. 

The approach of integrating part learning with structure learning for handwritten numeral recognition 

was extended for the task of handwritten character recognition. The experiment was done on 

Devanagari dataset. Five patches were created from the original images; Instead of MLP, a CNN was 

used to learning structures. Later the structures learned were combined and given to the SVM. The 

accuracy achieved was comparable to the highest accuracy reported on the dataset. Thus indicating 

the extendability of our proposed approach to different classification tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 
 

 

 

CHAPTER  2 

 

 LITERATURE REVIEW 

 

2.1 Handwritten Numeral Recognition 

Handwritten Numeral Recognition is the task of correctly identifying handwritten digits. It has an 

important use-case in digitising old script, image restoration. The challenges while performing 

handwritten digits recognition arise due to the fact that every person's handwriting can differ. This 

variations in handwriting can be due to different fonts, slant in letters. Bad quality of text or image 

from which digits also creates difficulty in recognition. 

Over the years, different methods to build handwritten digit recognition classifier have researched. [1] 

uses multi-layer perceptron to build a classifier,[2] uses a multi-stage process in which results of three 

MLPs are that are used is combined, [3] uses an approach based on a k-Nearest Neighbour[4] graph 

obtained with an image deformation model and [5] uses a different technique which involves 

partitioning the image into boxes and extracting a feature from these to classify. 

 

2.2 Artificial Neural Networks 

Computers outperform human in the speed of doing a calculation. A computation involving finding 

nth power(or root) of a number or multiplication of matrices is performed very quickly by a computer 

in comparison to humans. But human brain completely outshines computer when it comes to complex 

tasks which involve imagination, common sense and intuition. Inspired by the human brain structure, 

artificial neural networks are the network structure which helps computer behave and reason in a 

human-like manner. Artificial neural networks are used from the different task such as Image 

recognition[6], Natural language processing[7], Face recognition[8], Motion detection[9] etc. 

 



 

4 
 

An artificial neural network is an endeavour to re-enact neurons interconnection that make up a 

human brain. Neuron interconnection of the human mind is unpredictable and not very surely knew. 

Artificial neural networks are a more straightforward interconnection of neurons made by 

programming machines to carry on and settle on choices in a way like people. Artificial neural 

networks less unrivalled than human cerebrum; however, they are equipped for taking care of issues 

which are exceptionally perplexing or difficult to code.  

Artificial neural networks are composed of processing layers which in turn are made of neurons. 

Neurons are the smallest unit of a neural network. The layout of the neuron is such that the output of 

one neuron is generally input to another neuron. A typical artificial neural network can have from few 

to several layers. Layers of an artificial neural network can be separated into three types. The input 

layer which gets different types of data. This layer goes about as the sensor artificial neural network. 

It gets information which this system means to process. Information layer passes the information to 

hidden layers through connections. These associations have some significance/weights joined to them, 

which assume a significant job in choosing what to search for and what to overlook in the 

information. Further handling prompts the output at the output layer. The quantities of neurons at the 

output layer are straightforwardly identified with the task for which the neural system is being 

utilised. 

Three different layers in a neural network are as followed:- 

1. Input Layer  

2. Hidden Layers  

3. Output Layer 

Following is the manner in which these layers are laid 

 

 

Figure 2.1 Different layers of a Neural Network[10] 



 

5 
 

 

2.3 Convolutional Neural Network 

In deep learning, a Convolutional neural network (CNN, or ConvNet) is a class of deep neural 

networks, most commonly applied to analysing visual imagery. CNN is not restricted to the visual 

application; they are also used in the field of speech and time-series data[41]. Convolutional networks 

were inspired by biological processes
 
in that the connectivity pattern between neurons resembles the 

organisation of the animal visual cortex. 

 

 

Fig. 2.2 CNN Layers[11] 

CNN's have two components: 

 Feature extraction 

In this part, the network will perform a series of convolutions and pooling operations during which 

the features are detected. If you had a picture of a zebra, this is the part where the network 

would recognise its stripes, two ears, and four legs. 

 The Classification part 

Here, the fully connected layers will serve as a classifier on top of these extracted features. They will 

assign a probability for the object on the image being what the algorithm predicts it is. 

Types of layers 

1. Convolution layer where the convolution process happens. 

2. Pooling layer is where the pooling operation is applied. 

3. Normalisation layer where the activation (ReLU) process happens. 

4. Fully Connected layer (Dense) 



 

6 
 

 

The Convolution layers forms the basis of CNN. The CNN preserves the spatial information of two 

dimensional image by taking it complete as input without transforming image into a 1-D array. The 

convolution layer takes image as input, apply convolution operation on it and gives a two dimensional 

output. Convolution operation involves dot product of various kernels with the input data. Initial the 

filters are random with they are learned by training the CNN. These filter learn very specific features 

and patterns. When a filter, let say, trained to detect edges detect an edge  in image, the corresponding 

value in output of convolution layer becomes high in comparison to other parts. Convolutional layer 

activations constitute a powerful image representation[12] 

 

 

Fig 2.3 Convolution operation[13] 

Different types of pooling methods exist as shown in[14], but generally, max pooling is found to be 

most effective[15]. In max-pooling, the maximum value lying in the filter region is chosen to 

represent that region. Pooling help reduces the computation by reducing the size of the image but at 

the same time retaining the essential features of the image. Pooling sometime can also lead to 

highlighting the features instead of just retaining them. 



 

7 
 

 

Fig. 2.4 Max Pooling[16] 

2.4 Autoencoders 

An autoencoder is a neural network that is used to learn representation from data. It works in an 

unsupervised way by trying to recreate its input as its output. In the process of trying to recreate its 

input, the features are learned. This learning generally takes place by forcing the input through a 

smaller hidden layer. The autoencoder can be viewed as having two components: encoder component 

and decoder component.  

 

Fig. 2.5 The general structure of an Autoencoder[17] 

 

Encoding function:     h =  f(x) 

Decoding function:     𝑟 =  𝑔(ℎ) 

hidden layer h describes a code used to represent the input. The encoder part encodes the input to that 

compact representation, and the decoder part reconstructs the original input from the compact 

representation. 



 

8 
 

 

Fig. 2.6 Different layers of an Autoencoder[18] 

2.4.1 Convolutional Autoencoders 

Convolutional Autoencoders (CAE) are autoencoders which are mostly used to learn 

representation for image data. Like the Convolution Neural Network they take image as input. 

Thus the spatial information is  preserved. Unlike CNN, CAE don't attempt to learn features 

for the purpose of classification, CAE don't have densely connected layers. Instead the CAE 

learns filter for the purpose of being able to reproduce the input image at output. CAE work in 

an unsupervised way. CAE can be thought of as composed of two parts: encoder and decoder. 

Encoders part tries to learn filters and generally along the way reduces the image size. 

Reducing the size leads to focusing on just important features and also help reduce 

computation. This is accomplished by pooling layer. While the decoder part tries to reconstruct 

the input and it increases it's input size back to input size of CAE. This is accomplished by up-

sampling layer. 

 

Fig. 2.7 Convolutional Autoencoder[19] 



 

9 
 

CAE offer a great improvement over the general AE when dealing with image data. The 

original dimension of image ensures no information is lost while trying to unroll image into 1-

D vector. The latent representation learned by a CAE is smaller in size as compared to the  

original image input but still it can be used to reproduce the original image. Hence CAE are 

extremely useful in data compression. The advantage CAE offer over other compression 

method is it is not generic compression. Compression logic using CAE is data specific like 

other method which are pre-defined.  

2.5  Weight Initialization 

Initial weight plays a crucial role in determining the speed of convergence, generalisation and 

probability of convergence[44]. A derivative-based optimisation algorithm like gradient descent is 

heavily reliant on the initial state. Proper initialisation of the weights in a neural network is critical to 

its convergence. An optimum weight initialisation which strongly improves the performance of the 

backpropagation (BP) algorithm. Random initialisation is generally used as it often yields a 

favourable starting point for optimisation [20]. Various other weight initialization strategies([21] ,[22] 

, [23]).Part of the difficulty in training these models lies in determining the proper initialisation 

strategy for the parameters in the model. It is well known [24] that arbitrary initialisations can slow 

down or even completely stall the convergence process. The slowdown arises because arbitrary 

initialisations can result in the deeper layers receiving inputs with small variances, which in turn 

slows down backpropagation, and retards the overall convergence process. Weight initialisation is an 

area of active research, and numerous methods ([24], [25], [26] to state a few) have been proposed to 

deal with the problem of the shrinking variance in the deeper layers. 

2.6  Learning from image parts 

An improvement in learning is seen when subset or part of the image are learnt rather than the whole 

image itself[27][28]. Application of patch-based learning is not very well explored in the field of 

handwritten numeral recognition. Generally, in learning from image parts approach, patches are 

selected. These patches are individually operated upon, and the result of the individual patches is 

combined to produce the output. Patch from the image is cropped, processed and then learned by a 

suitable classifier. This approach, to an extent, is immune to background clutter. The major issue in 

the application of learning from parts approach is to be able to find a patch in the image which 

contains the desired information. Another difficulty with this approach is the lack of proper 

predefined area in the image. Along with that number of parts to be learnt is another important issue. 

As learning with fewer parts can miss important information and learn with too many parts can cause 

over-fitting and also a huge increase in complexity cost. 

 



 

10 
 

2.7  Structure Learning 

Structure learning refers to the machine learning strategy where a structured object is learnt from the 

labelled training samples, instead of the class labels themselves [29]. Instances of „structure‟ include 

vectors [30], trees [31], graphs [32], sequences [33] and finite state automata[34].  

 

Fig 2.8 Training an RNN model, clustering the RNN‟s hidden states and outputting the final 

structured FSA. [34] 

A structured perceptron is learnt in [35] for the tagging problem in natural language processing. A 

variant of the perceptron algorithm is suggested in [35] that learns the mapping between the input xϵX 

and output labels yϵY. The task is to learn the representation that maps the vector (x,y) to a d-

dimensional feature vector. The derived feature serves as an indicator function that determines the tag. 

In the preceding literature, this task was termed- rule extraction from Artificial Neural Networks 

(ANNs) [36]. Rules were added and updated in ANNs, simultaneously increasing the symbolic 

knowledge derived from the network structure. A dynamically growing hidden layer is incorporated 

in the ANN in [37] that increments the size of the hidden layer on observing a higher entropy of the 

input distribution. 

 

 

 

 

 

 



 

11 
 

 

 

CHAPTER  3 

 

 PROPOSED WORK 

 

3.1 CNN Pre-Initialisation by Part Learning 

3.1.1  CNN architecture 

The CNN used in the proposed method is shown in Fig. 3. Successive Convolution layer 

followed by the pooling layer forms the composition of CNN architecture. Filters of the size 

of size 3x3 are used for every convolution layer. 2x2 filters are used for all pooling layer, and 

max-pooling strategy is used for pooling. Rectified Linear Unit(ReLU) activation function is 

used in convolution layers, and Softmax activation function is used at the output layer to get 

the activations as probabilistic scores. Table 1 shows each layer in the proposed CNN. It also 

shows what the output shape of each layer is. 

 

 

Fig. 3.1 CNN architecture for our experiment 



 

12 
 

 

 

Table 1. Ordering of layers proposed CNN Architecture 

 

 

3.1.2 Proposed Methodology 

Inspired from how humans learn a complex task in phases, by starting with easy concept and 

then increasing the difficulty of the content after each phase of learning, a multi-phase 

learning approach is devised[46]. This proposed method comprises of two phases. In the first 

phase, simpler images of handwritten numerals are given to CNNs to learn from. These 

simpler images are created by masking either top or bottom half of normal images. An only 

small portion of images(5% or 10%) from the training set are used of phase 1 learning. After 

phase 1 learning the CNNs are pre-initialised with these less complex images. One CNN is 

trained with just images part of just the top portion, and another CNN is trained with just 

images part of just the bottom portion. In phase 2, both the CNNs are made to learn from the 

remaining images from the training set. After the training has completion, the testing is 

performed by combining the predictions of both CNNs to predict the output. The output layer 

softmax predicted probabilities are combined by either using the average or maximum, to get 

the class label. 

  



 

13 
 

 

Figure 3.2 Proposed Methodology block diagram 

3.2  Integrating Part-Learning with Structure Learning for ANN  

3.2.1 MLP architecture 

A 784-35-10 Multilayer Perceptron (MLP) network (Net 1) is the framework for the first 

phase of our experiments on the benchmark MNIST dataset of handwritten English numerals.  

The input images of 28*28 dimension are converted to a one-dimensional array of size 784*1. 

This 1-D array of 784*1 is then given as input to the neural network's input layer. Only one 

hidden layer of size 35 was used. The output layer contains ten neurons. Each representing the 

10 different classes in the dataset namely 0,1,2,3,4,5,6,7,8,9.   

In the second phase of our experiments, a larger (deeper) network of size 196-35-35-35-10 

(Net 2), with three hidden layers containing 35 neurons each, is used for training patches 

extracted from the MNIST images. 

3.2.2 Proposed Method 

Inspired by the [34] in which the author shows that hidden states of RNN tend to form 

clusters and by the idea of learning structures from hidden states of RNN, this proposed 

work[47] aims to learn the structure from hidden states in an MLP. 

In phase 1,  the Net 1 is trained on the MNIST dataset. After the training is completed, the 

hidden state activation vector is extracted for both training and testing samples. This extracted 

feature vector (1x35) is further used for the purpose of classification rather than the original 

image. So these feature vector are given to KNN (k=1) for classification. 



 

14 
 

In the second phase, the patches created from the original image. Each patch is 14x14, and 

five such patches are used. Fig. 3 shows these patches for numeral '6'.  All five patches are 

then trained on five different MLP (Net 2). After training the Net 2 , hidden state activation of 

all three hidden states is extracted for both training and testing data. To study which hidden 

layer is suitable for structure learning, K-elbow method is applied to data of all three hidden 

states. K-elbow method tells the clusterability of given data by trying to cluster data for 

various values of K and returns the optimal value of K. The hidden state thus selected is 

further used for classification. The hidden state activation vector of selected hidden state are 

given to classifier (KNN and SVM). 

 

(a) 

 

(b) 

Fig. 3.3  (a) The layout of the five image patches each covering a quarter area of the image (b) 

The five patches shown for the numeral „6‟ 

3.3  Integrating Part-Learning with Structure Learning for Convolutional Auto-Encoders  

3.3.1 Convolutional Auto-Encoders Architecture 

The Chronological layers of the proposed Convolution Auto-Encoders are shown in Table X 

below. Filters of the size  3x3 are used for every convolution layer. 2x2 filters are used for all 

pooling layer, and max-pooling strategy is used for pooling. Rectified Linear Unit(ReLU) 

activation function is used in convolution layers, and Softmax activation function is used at 

the output layer to get the activations as probabilistic scores. Table 1 shows each layer in the 

proposed CAE. It also shows what the output shape of each layer is. 



 

15 
 

 

Table 2. Ordering of layers proposed CAE Architecture 

 

3.3.2 Proposed Methodology 

Autoencoders are good at learning compact representation for a given data. With the aim of 

using this representation along with part-learning for handwritten numeral recognition, four 

patches are selected: top, bottom, right and left. Patches are created by masking a certain 

portion of images. Four CAEs with architecture, as shown in Table 2 are trained. Each CAE is 

trained with just one particular patch - CAE1 is trained with just top patch images, CAE2  is 

trained with just bottom patch images, CAE3 is trained with just right patch images, and 

CAE4 is trained with just left patch images. After training the CAEs, the output of the 

encoder part of autoencoder were extracted. These hidden layer activations are extracted for 

both training and testing data by just performing forward pass. These 1x128 dimensional 

features learned from CAE are further used in the experiment. Features learned from CAEs 

are given to SVM classifier. The predicted probabilities for each sample are used to represent 

the sample. These predicted probabilities are combined with predicted probabilities obtained 

by giving concatenated features learned from CAE to SVM. This works as newly learned 

features using both part and structure learning.   

 

 



 

16 
 

 

 

CHAPTER 4 

 

 RESULTS 

 

4.1 Experimental Setup 

The experiments are performed on handwritten numeral images from the MNIST dataset [42] for 

English handwritten numerals. There are 10 different classes of images, each corresponding to a digit 

in 0 to 9. Each image is of 28X28 dimension. Dataset consists of 70K images in total. Out of the 70K 

images, 60K images are for training and 10K are for testing purpose. The train and test segregation is 

done at the source itself. Example of the ten handwritten digits in the MNIST training set is shown in 

Fig. 4.1 below. 

 

 

Fig. 4.1 Sample of MNIST dataset 

 

 



 

17 
 

Device Specifications 

Processor: Intel(R) Core (TM) i5-5200U CPU @ 2.20GHz, Memory: RAM 8.00GB DDR3L-1600 

SDRAM, Graphics card: NVIDIA GeForce 940M (2 GB DDR3L dedicated).  

4.2 CNN Pre-Initialisation Implementation Results 

The Fig.4.2 shows the images used for training the CNNs. The first row depicts 0-9 digits from 

MNIST dataset. Row2 is the bottom half masked images of the corresponding row1 images. 

Similarly, row3 shows the top half masked images of the corresponding row1 images.  

 

Fig. 4.2 Images prepared for initialising CNN   

CNN without pre-initialisation and without part learning reported accuracy of  99.44% on 

Architecture (a)  for MNIST dataset. This method was taken as the base method and the accuracy of 

99.44% as the baseline accuracy. All further attempts were made to improve on this accuracy. 

Table 3 - Result of 5% cropped &resized image approach (average) 

 

 



 

18 
 

 

Table 4 - Result of 5% cropped &resized image approach (maximum) 

 

 

Table 3 and Table 4  to represent the implementation result of using 5% resized images for pre-

initialisation and combining the probabilistic scores of softmax output layer using averaging and 

choosing maximum criteria respectively. Accuracy of 99.52 and 99.51 was reported for the same. The 

results of both were higher in comparison to a straight forward baseline approach. 

 

Table 5 - Result of 5% masked image approach (average) 

 

 



 

19 
 

 

Table 6 - Result of 5% masked image approach (maximum) 

 

Table 5 and Table 6   represent the implementation result of using 5% masked images for pre-

initialisation and combining the probabilistic scores of softmax output layer using averaging and 

choosing maximum criteria respectively. Accuracy of 99.53 and 99.56 was reported for the same. The 

results of both were higher in comparison to straight forward baseline approach and also a little better 

than that achieved by using a resized image of the top half and bottom half. 

 

Table 7 - Result of 10% cropped &resized image approach (average) 

 

 



 

20 
 

Table 8 - Result of 10% cropped &resized image approach (maximum) 

 

 

Table 7 and Table 8   represent the implementation result of using 10% resized images for pre-

initialisation and combining the probabilistic scores of softmax output layer using averaging and 

choosing maximum criteria, respectively. Accuracy of 99.5 and 99.49 was reported for the same. The 

results of both were higher in comparison to straight forward baseline approach but the results 

dropped a little in comparison to using just 5% of pre-initialisation. 

 

Table 9 - Result of 10% masked image approach (average) 

 

 

 



 

21 
 

Table 10 - Result of 10% masked image approach (maximum) 

 

Table 9 and Table 10   represent the implementation result of using 10% masked images for pre-

initialisation and combining the probabilistic scores of softmax output layer using averaging and 

choosing maximum criteria, respectively. Accuracy of 99.55 and 99.53 was reported for the same. 

The results of both were higher in comparison to straight forward baseline. 

Table 11. Summary 

 



 

22 
 

4.3 Part-Learning and Structure Learning MLP implementation Results  

 

Table 12 - MLP Net1 result for MNIST dataset 

 

 

 

Fig. 4.3 Hidden state cluster of MLP 

 

 



 

23 
 

Table 13 - SVM  result on MLP Net1 hidden states for MNIST dataset 

 

Table 14 - KNN  result on MLP Net1 hidden states for MNIST dataset 

 

 

 



 

24 
 

 

The table 13 and table 14 show results for classification when Net1 hidden state is directly given to 

SVM and KNN classifier respectively. Train accuracy decreased in case of SVM (84.82), but there 

was a slight improvement (95.96)  in case of train accuracy of KNN (K=5) classifier as compared to 

the baseline accuracy.  

 

Table 15 - MLP Net2 result for MNIST dataset 

 

Above table 15 represent the MNIST dataset results for deep MLP ( Net 2). Increasing the hidden 

layers helped model learn more features, and the accuracy increased to 96.46%. Further work on 

structure learning aimed to improve this accuracy. 

 

 

 

 



 

25 
 

 

(a) 

 

(b) 

 

(c) 

 



 

26 
 

 

(d) 

 

(e) 

 

(f) 



 

27 
 

 

(g) 

 

(h) 

 

(i) 

 



 

28 
 

 

(j) 

 

(k) 

 

(l) 



 

29 
 

 

(m) 

 

 

(n) 

 

 

(o) 

Fig. 4.4 The kmeans Elbow graphs for determining the interpretable hidden layer. Shown for the 

fifteen image patch layouts [(a)-(o)]  



 

30 
 

 

Analysis of figure 4.4 makes it clear that K-elbow graph of the first hidden layer and second hidden 

layer doesn't show any clusters. But the K-elbow graph of the third hidden layer showed that hidden 

state 3 had meaningful clustering possible. Further investigation was carried out on finding structure 

from 3rd hidden layer of all the patches.    

 

Table 16 - Clustering Approach 

 

 

Above table. 16 shows the result of the clustering approach. All third hidden states vectors where 

clusters using K means. Value of K for each patch was found using K-elbow method. Cluster centre 

of all patches was stored. Later each training and testing data was assigned 5 cluster centre based on 

the cluster centre. The fused cluster centre was then used instead of the training and testing feature. 

The SVM classifier was used for further classification. There was an improved from Net2 result. 

 

 

 

 



 

31 
 

 

Table 17 - Learned Structure to SVM 

 

 

Table 18 - Learned Structure to KNN 

 



 

32 
 

Table 17 and Table 18 represent accuracy when fused 3rd hidden state vectors are given to SVM and 

KNN classifier(K=7). Both improve the overall accuracy of Net 2 MLP (97.11&96.76).  SVM gives 

the maximum accuracy of 97.11 found using the structure learning approach.  

   

TABLE 19. THE OUTPUT PERFORMANCE SCORES FOR MNIST DATASET (PROPOSED STRUCTURE 

LEARNING METHOD- HIGHLIGHTED IN GREY) 

Dataset   Method F1-score 

MNIST   Deep Structured Energy Based Models (Zhai et al., 

2016) [38] 

0.9689 

MNIST   Positive-Generative Adversarial Network (Chiaroni et 

al., 2018) [39]  

0.97 

MNIST   Rank Pruning (Northcutt et al., 2017) [40] 0.97 

MNIST   Direct MLP classifier (Net 1) 0.9477 

MNIST   Direct Naïve Bayes classifier 0.5658 

MNIST   Hidden state clustering (Net 1) + distance from 10 

centroids + SVM 

0.95 

MNIST   Hidden state vector (Net 1) + kNN (k=1) 0.96 

MNIST   Patch-based Hidden state vector (Net 2) + kNN (k=7) 0.9676 

MNIST   Patch-based Hidden state vector (Net 2) + SVM 0.9711 

 

 

Table 19 shows a comparison of the proposed structure learning method to that of already available 

results on MNIST dataset. There is an improvement in the accuracy of the classification of 

Handwritten Numeral Recognition. 

 

 

 

 

 

 

 



 

33 
 

4.4  Part-Learning and Structure Learning CAE implementation Results  

For all Convolutional Autoencoder experiments, configuration mentioned in Table 2 was used.  

Table 20 - Features from original image to SVM Linear 

 

Table 21 - Features from original image to SVM RBF 

 

CAE was trained on MNIST dataset. After training the feature vector (Encoder output) were extracted 

for both training and test data. These feature vector of size 1x128 were them given to SVM for the 

numeral classification. An accuracy of 97.59 was achieved with linear kernel, and accuracy of 98.39 

was achieved with RBF kernel, as shown in Table 20 and Table 21 respectively. 

 

 

 

 

 



 

34 
 

Table 22 - Fusing features from patches to SVM Linear 

 

 

Table 23 - Fusing features from patches to SVM RBF 

 

Part learning was introduced, and four images representing top, bottom, left, and right were created 

from original dataset by masking certain half of the image. CAEs were trained with just particular 

parts of images. Feature vectors were extracted all for CAEs and fused together. These fused features 

of 1x512 dimension were given to SVM classifier with linear and RBF kernel. Accuracy of 98.35 and 

98.94% were reported as shown in above Table 22 and 23. 

 

 

 



 

35 
 

 

Fig. 4.5 Images of Left, Right, Top and Bottom patch of numeral '5' 

 

Table 24 - Concatenating predicted prob. from each patch to SVM Linear 

 

 

Table 25 - Average of  predicted prob. from each patch to SVM Linear 

 

 

 



 

36 
 

Table 26 - Maximum of predicted prob. from each patch to SVM Linear 

 

 

The four CAEs which are trained on different parts of images were all given to SVM and the 

predicted probabilities of each sample was saved. These predicted probabilities were combined to 

create feature which was used to classify handwritten numeral.  Probabilities were combined by 

concatenating, average and maximum value and given to SVM with linear kernel. Accuracies of 

98.07, 97.71 and 96.99 was reported. Using SVM with RBF kernel for concatenated probabilities 

gave an accuracy of 98.65 which is shown in below table. 

 

Table 27 - Concatenating predicted prob. from each patch to SVM RBF 

 
 

 



 

37 
 

Table 28 - Concatenating predicted prob. from each patch to SVM RBF and from fused features to 

SVM RBF 

 
 

The predicted probabilities four CAEs concatenated with predicted probabilities of fused features of 

all patches to SVM to SVM with RBF Kernel gave an accuracy of 99%.  Same feature vector was 

given to MLP (architecture 50*512*512*10) and it gave an accuracy of 99%. 

 

Table 29 - Concatenating predicted prob. from each patch to SVM RBF and from original image 

features to SVM RBF 

 
 

The predicted probabilities four CAEs concatenated with predicted probabilities of  features extracted 

from original image to SVM to SVM with RBF Kernel gave an accuracy of 98.88%. 

 

 



 

38 
 

 

 

 

Table 30 - Concatenating predicted prob. from each patch to SVM RBF, from fused features and from 

original image features to SVM RBF 

 

The predicted probabilities of four CAEs concatenated with predicted probabilities of fused features 

of all patches and predicted probabilities of  features extracted from original image to SVM with RBF 

Kernel gave an accuracy of 99%.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

39 
 

 

4.4.1 Ablation Study 

 

Feature vector created by concatenating predicted probabilities of each from patch and  predicted 

probabilities of fused features from each patch gave the maximum accuracy of 99%. Further study 

was carried out to find out what affect does diff. components in this feature vector have. This was 

done by systematically removing certain components from the feature vector and then checking its 

performance.  

Table 31 - Concatenating predicted prob. from each patch(excluding top patch) to SVM RBF and 

from fused features to SVM RBF 

 

Table 32 - Concatenating predicted prob. from each patch(excluding bottom patch) to SVM RBF and 

from fused features to SVM RBF 

 

 



 

40 
 

 

Table 33 - Concatenating predicted prob. from each patch(excluding right patch) to SVM RBF and 

from fused features to SVM RBF 

 

Table 34 - Concatenating predicted prob. from each patch(excluding left patch) to SVM RBF and 

from fused features to SVM RBF 

 
 

Above four tables show the result of  removing just one patch features from the feature vector. 

Removing just top patch features, removing just bottom patch features, removing right top patch 

features and removing just  left patch features are shown in Tables 31-34. In each case, the accuracy 

report was 98.97. 

 

 

 

 



 

41 
 

 

Table 35 - Concatenating predicted prob. from left and right patch to SVM RBF and from fused 

features to SVM RBF 

 

 

Table 36 - Concatenating predicted prob. from top and bottom patch to SVM RBF and from fused 

features to SVM RBF 

 
 

Removing  top and bottom patch features resulted in an accuracy of 98.96 as shown in Table 35, and 

removing left and  right patch features in an accuracy of 98.97, as shown in Table 36. 

 

 

 



 

42 
 

 

Table 37 - Concatenating predicted prob. from top patch to SVM RBF and from fused features to 

SVM RBF 

 

 

Table 38 - Concatenating predicted prob. from bottom patch to SVM RBF and from fused features to 

SVM RBF 

 

 

 

 

 



 

43 
 

Table 39 - Concatenating predicted prob. from right patch to SVM RBF and from fused features to 

SVM RBF 

 

 

Table 40 - Concatenating predicted prob. from left patch to SVM RBF and from fused features to 

SVM RBF 

 
 

Having just predicted probabilities from one patch and  predicted probabilities of fused features 

resulted in an accuracy of 98.96 as shown in Table 37-40(top, bottom, left ,right). And on testing 

classification accuracy on using just top half patch is 91.96, only bottom half patch acc is  89.54, only 

right half patch acc is 92.84, only left half patch acc is 0.9316, using the predicted probabilities of 

fused features the accuracy was 98.96. This indicated that predicted probabilities of fused features is 

the single most import component of the feature vector. 

 



 

44 
 

4.5  Application  

Extending work to character recognition, the proposed method where applied to 'Devanagari 

handwritten character dataset (DHCD)[45]. The dataset contains 46 Devanagari characters: 36 letters 

and 10 digits. Figure 4.6  shows all 46 different characters present in dataset. The dataset contains in 

total of 92 thousand images. Each 46 of the class have 2 thousand images. 2000 images are divided 

into train and test set at the source itself. 1700 images of each class is used for training and remaining 

300 images from  each class is used for testing. 

 

 

Figure 4.6 Sample of Devanagari handwritten character dataset 

 

Patches were created was shown in Fig 4.7 ( Figure 4.8 is the original image). The Deep CNN was 

used instead of MLP. Extracted features were given to deep neural network and SVM was used as the 

classifier. An accuracy of 98.39% was reported. Such high accuracy clearly indicates the proposed 

method can be extended to different recognition activities. 

 

Figure 4.7 Five patches created from character 'bha' 

 
 

 

Figure 4.8 Character 'bha' 

 
 



 

45 
 

 

 

CHAPTER  5 

 

 CONCLUSION 

 

A novel learning paradigm for handwritten numeral images is proposed in this work that initialises 

CNNs by learning parts in pre-initialisation phase. Two image parts: top-half and bottom-half are used 

in this model for initialising the weights. The CNNs are further fined-tuned on the remaining images. 

As it can be seen, the accuracy using CNN Pre-Initialization by Minimalistic Part-Learning has 

improved the classification accuracy for handwritten numeral digit recognition. Further, the 

improvement was seen in the proposed method clearly indicate the masking the image as a better 

effect on the classification task rather than the resizing of the image approach. High accuracies, 

comparable to the state-of-the-art, confirms the effectiveness of the proposed model. 

The proposed model can further be applied for different classification tasks. The proposed model may 

be further divided to incorporate more stages. More than two parts of the image can be selected for 

pre-initialisation phase. Parts of an image that may contribute to maximum learning in pre-

initialisation stage can be further researched. 

After examining the accuracy using standard neural network method for MNIST dataset on two 

different architecture Net1 and Net2 , Structural Learning  approach was explored.  The hidden state 

vector as a feature vector method is applied to two different Multi-Layer Perceptron architecture. 

Improvement in accuracy was made in the classification of digits is made by clustering the hidden 

state vector of deep MLP. K-elbow method was used to determine the correct number of cluster. The 

K-elbow method runs the k-means clustering algorithm for a range of k values to determine the 

optimal value of k. Distortion score, which is sum of square distance between the sample and the 

cluster centre of cluster it is assigned, is used to determine goodness of cluster formed for each k 

value. Further improvement is seen in the model by using patch learning along with the efforts to 

learn the interpretable hidden state structure. It was found the in MLP having three hidden states, the 

third state had a meaningful clustering possible, and a structure(vector) could be learned . Giving this 

learned vector directly to k-Nearest Neighbor (kNN) classifier and the Support Vector Machine 

(SVM) with linear kernel yielded high accuracies.  



 

46 
 

Using autoencoder to learn the structure seems to improve the classification. This can be attribute that 

autoencoders are good at learning representation of given data. So the structures learned from CAE 

along with part-learning improves the accuracy,  Future scope of this work lies in the area of learning 

different structures. Learning that targets how to select patch area from images could be explored.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

47 
 

 

 

 

REFERENCES 

 

 

[1] Das, Nibaran, Ayatullah Faruk Mollah, Sudip Saha, and Syed Sahidul Haque. "Handwritten 

arabic numeral recognition using a multi layer perceptron." arXiv preprint 

arXiv:1003.1891 (2010). 

[2] Bhattacharya, Ujjwal, and Bidyut Baran Chaudhuri. "Handwritten numeral databases of 

Indian scripts and multi-stage recognition of mixed numerals." IEEE transactions on pattern 

analysis and machine intelligence 31, no. 3 (2008): 444-457. 

[3] Cecotti, Hubert. "Active graph based semi-supervised learning using image matching: 

application to handwritten digit recognition." Pattern Recognition Letters 73 (2016): 76-82. 

[4] Dudani, Sahibsingh A. "The distance-weighted k-nearest-neighbor rule." IEEE Transactions 

on Systems, Man, and Cybernetics 4 (1976): 325-327. 

[5] Susan, Seba, and Veerendra Singh. "On the discriminative power of different feature subsets 

for handwritten numeral recognition using the box-partitioning method." In 2011 Annual 

IEEE India Conference, pp. 1-5. IEEE, 2011. 

[6] Quraishi, Md Iqbal, J. Pal Choudhury, and Mallika De. "Image recognition and processing 

using Artificial Neural Network." In 2012 1st International Conference on Recent Advances 

in Information Technology (RAIT), pp. 95-100. IEEE, 2012. 

[7] Lopez, Marc Moreno, and Jugal Kalita. "Deep Learning applied to NLP." arXiv preprint 

arXiv:1703.03091 (2017). 

[8] Nazeer, Shahrin Azuan, Nazaruddin Omar, and Marzuki Khalid. "Face recognition system 

using artificial neural networks approach." In 2007 International Conference on Signal 

Processing, Communications and Networking, pp. 420-425. IEEE, 2007. 

[9] Courellis, Spiros H., and Vasilis Z. Marmarelis. "An artificial neural network for motion 

detection and speed estimation." In 1990 IJCNN International Joint Conference on Neural 

Networks, pp. 407-421. IEEE, 1990 



 

48 
 

[10] J. Dacombe, An introduction to Artificial Neural Networks, 2017. [Online] . Available: 

https://medium.com/@jamesdacombe/an-introduction-to-artificial-neural-networks-with-

example-ad459bb6941b. [Accessed: 07- Jul- 2020] 

[11] S. Saha, A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way, 2018. 

[Online] . Available: https://towardsdatascience.com/a-comprehensive-guide-to-

convolutional-neural-networks-the-eli5-way-3bd2b1164a53. [Accessed: 07- Jul- 2020] 

[12] Liu, Lingqiao, Chunhua Shen, and Anton van den Hengel. "The treasure beneath 

convolutional layers: Cross-convolutional-layer pooling for image classification." 

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 

4749-4757. 2015. 

[13] A. Biswal, Convolutional Neural Network Tutorial, 2020. [Online] . Available: 

https://www.simplilearn.com/convolutional-neural-network-tutorial-article. [Accessed: 07- 

Jul- 2020] 

[14] Pala, Tuba, Uğur Güvenç, Hamdi Tolga Kahraman, İbrahim Yücedağ, and Yusuf Sönmez. 

"Comparison of Pooling Methods for Handwritten Digit Recognition Problem." In 2018 

International Conference on Artificial Intelligence and Data Processing (IDAP), pp. 1-5. 

IEEE, 2018. 

[15] Scherer, D., Müller, A. and Behnke, S., 2010, September. Evaluation of pooling operations in 

convolutional architectures for object recognition. In International conference on artificial 

neural networks (pp. 92-101). Springer, Berlin, Heidelberg. 

[16] A. Biswal, Convolutional Neural Network Tutorial, 2020. [Online] . Available: 

https://www.simplilearn.com/convolutional-neural-network-tutorial-article. [Accessed: 07- 

Jul- 2020] 

[17] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. 

[18] A. Gad, Image Compression using Autoencoders in Keras,2020. [Online] . Available: 

https://blog.paperspace.com/autoencoder-image-compression-keras/. [Accessed: 07- Jul- 

2020] 

[19] Larrue, Tara, Yunchuan Li, Xiaoxu Meng, and Chang-Mu Han. "Denoising Videos with 

Convolutional Autoencoders." (2018). 

[20] Daniely, Amit, Roy Frostig, and Yoram Singer. "Toward deeper understanding of neural 

networks: The power of initialisation and a dual view on expressivity." In Advances In Neural 

Information Processing Systems, pp. 2253-2261. 2016. 

[21] Drago, Gian Paolo, and Sandro Ridella. "Statistically controlled activation weight 

initialisation (SCAWI)." IEEE Transactions on Neural Networks 3, no. 4 (1992): 627-631. 

[22] Yam, Jim YF, and Tommy WS Chow. "A weight initialisation method for improving training 

speed in feedforward neural network." Neurocomputing 30, no. 1-4 (2000): 219-232. 



 

49 
 

[23] Nienhold, Dino, Kilian Schwab, Rolf Dornberger, and Thomas Hanne. "Effects of weight 

initialisation in a feedforward neural network for classification using a modified genetic 

algorithm." In 2015 3rd International Symposium on Computational and Business 

Intelligence (ISCBI), pp. 6-12. IEEE, 2015. 

[24] Mishkin, Dmytro, and Jiri Matas. "All you need is a good init." arXiv preprint 

arXiv:1511.06422 (2015). 

[25] Saxe, Andrew M., James L. McClelland, and Surya Ganguli. "Exact solutions to the nonlinear 

dynamics of learning in deep linear neural networks." arXiv preprint arXiv:1312.6120 (2013). 

[26] Sussillo, David, and L. F. Abbott. "Random walk initialisation for training very deep 

feedforward networks." arXiv preprint arXiv:1412.6558 (2014). 

[27] Susan, Seba, Rohit Ranjan, Udyant Taluja, Shivang Rai, and Pranav Agarwal. "Neural net 

optimisation by weight-entropy monitoring." In Computational Intelligence: Theories, 

Applications and Future Directions-Volume II, pp. 201-213. Springer, Singapore, 2019. 

[28] Susan, Seba, Nandini Aggarwal, Shefali Chand, and Ayush Gupta. "Image coding based on 

maximum entropy partitioning for identifying improbable intensities related to facial 

expressions." Sādhanā 41, no. 12 (2016): 1393-1406. 

[29] BakIr, Gökhan, Thomas Hofmann, Bernhard Schölkopf, Alexander J. Smola, and Ben Taskar, 

eds. Predicting structured data. MIT press, 2007. 

[30] Liu, Weiwei, Ivor W. Tsang, and Klaus-Robert Müller. "An easy-to-hard learning paradigm 

for multiple classes and multiple labels." The Journal of Machine Learning Research 18, no. 

1 (2017): 3300-3337. 

[31] Wang, Kai, Zhaoyan Ming, and Tat-Seng Chua. "A syntactic tree matching approach to 

finding similar questions in community-based qa services." In Proceedings of the 32nd 

international ACM SIGIR conference on Research and development in information retrieval, 

pp. 187-194. ACM, 2009. 

[32] Chen, Liang-Chieh, Alexander Schwing, Alan Yuille, and Raquel Urtasun. "Learning deep 

structured models." In International Conference on Machine Learning, pp. 1785-1794. 2015. 

[33] Liu, Weiwei, and Ivor Tsang. "On the optimality of classifier chain for multi-label 

classification." In Advances in Neural Information Processing Systems, pp. 712-720. 2015. 

[34] Hou, Bo-Jian, and Zhi-Hua Zhou. "Learning with interpretable structure from rnn." arXiv 

preprint arXiv:1810.10708 (2018). 

[35] Collins, Michael. "Discriminative training methods for hidden markov models: Theory and 

experiments with perceptron algorithms." In Proceedings of the ACL-02 conference on 

Empirical methods in natural language processing-Volume 10, pp. 1-8. Association for 

Computational Linguistics, 2002. 



 

50 
 

[36] Tickle, Alan B., Robert Andrews, Mostefa Golea, and Joachim Diederich. "The truth will 

come to light: Directions and challenges in extracting the knowledge embedded within trained 

artificial neural networks." IEEE Transactions on Neural Networks 9, no. 6 (1998): 1057-

1068. 

[37] Susan, Seba, and Mayank Dwivedi. "Dynamic growth of hidden-layer neurons using the non-

extensive entropy." In 2014 Fourth International Conference on Communication Systems and 

Network Technologies, pp. 491-495. IEEE, 2014. 

[38] Zhai, Shuangfei, Yu Cheng, Weining Lu, and Zhongfei Zhang. "Deep Structured Energy 

Based Models for Anomaly Detection." In International Conference on Machine Learning, 

pp. 1100-1109. 2016. 

[39] Chiaroni, Florent, Mohamed-Cherif Rahal, Nicolas Hueber, and Frédéric Dufaux. "Learning 

with a generative adversarial network from a positive unlabeled dataset for image 

classification." In 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 

1368-1372. IEEE, 2018. 

[40] Northcutt, Curtis G., Tailin Wu, and Isaac L. Chuang. "Learning with confident examples: 

Rank pruning for robust classification with noisy labels." arXiv preprint arXiv:1705.01936 

(2017). 

[41] LeCun, Yann, and Yoshua Bengio. "Convolutional networks for images, speech, and time 

series." The handbook of brain theory and neural networks 3361, no. 10 (1995): 1995. 

[42] LeCun, Yann, Corinna Cortes, and Christopher JC Burges. "The MNIST database of 

handwritten digits, 1998." URL http://yann. lecun. com/exdb/mnist 10 (1998): 34. Maaten, 

Laurens van der, and Geoffrey Hinton.  

[43] Sutskever, Ilya, James Martens, George Dahl, and Geoffrey Hinton. "On the importance of 

initialisation and momentum in deep learning." In International conference on machine 

learning, pp. 1139-1147. 2013. 

[44] Kim, Y. K., and J. B. Ra. "Weight value initialisation for improving training speed in the 

backpropagation network." In [Proceedings] 1991 IEEE International Joint Conference on 

Neural Networks, pp. 2396-2401. IEEE, 1991. 

[45] S. Acharya, A.K. Pant and P.K. Gyawali â€œDeep Learning Based Large Scale Handwritten 

Devanagari Character Recognitionâ€•,In Proceedings of the 9th International Conference on 

Software, Knowledge, Information Management and Applications (SKIMA), pp. 121-126, 

2015. 

[46] Susan, Seba, and Jatin Malhotra. "CNN Pre-Initialization by Minimalistic Part-Learning for 

Handwritten Numeral Recognition." In International Conference on Mining Intelligence and 

Knowledge Exploration. Springer, Cham, 2019.  



 

51 
 

[47] Susan, Seba, and Jatin Malhotra. "Learning Interpretable Hidden State Structures for 

Handwritten Numeral Recognition." In 2020 4th International Conference on Computational 

Intelligence and Networks (CINE), pp. 1-6. IEEE, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 
 

 

 

 

LIST OF PUBLICATIONS 

 

 

1. Susan, Seba, and Jatin Malhotra. "CNN Pre-Initialization by Minimalistic Part-Learning for 

Handwritten Numeral Recognition." In International Conference on Mining Intelligence and 

Knowledge Exploration. Springer, Cham, 2019.  

 
2. Susan, Seba, and Jatin Malhotra. "Learning Interpretable Hidden State Structures for 

Handwritten Numeral Recognition." In 2020 4th International Conference on Computational 

Intelligence and Networks (CINE), pp. 1-6. IEEE, 2020. 

 

 


