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Preface 

 

The journey of this research work got initiated through identification of recent 

challenges in strategic planning faced by the decision-makers at managerial levels. Through 

interactions with practitioners of various sectors of the Industry, it started becoming clear that 

a peculiar situation is predominantly encountered by decision-makers. During a majority of 

situations of strategic planning, the selection of a move as a course of action by a decision-

maker gets a reaction from one or more concerned parties, which in turn affects the objective 

of the decision-maker under consideration. The introspection of the literature in mathematical 

programming enabled us to realize that the mathematical modelling of such situations is 

possible through bilevel programming framework. The industrial interactions and literature 

review provided the motivation to address these challenges of strategic planning by 

modelling such decision-making issues as bilevel programming problems. For meticulously 

and precisely modelling the problems and to test the models with appropriate data, we 

narrowed down our study to the problems of Railways and supply chain management, due to 

approachability to the practitioners in these two sectors. 

Subsequent to the task of modelling the addressed issues, another challenge which we 

faced during our research is the unavailability of solution algorithms to solve the problems 

modelled as variants of bilevel programming framework. Wherever any algorithms were 

available for solving such a problem, we discovered those as incapable of handling the 

problems of a practical scale of ours. This motivated us to work towards the development of 

solution algorithms for the variants of bilevel programming problems being dealt with, and 

thus achieve success in our main objective.  

In our study, we have addressed both of these challenges collectively and contributed 

towards the development of decision support for some of the identified challenges of 

decision-makers which can be categorized within the scope of modelling through the bilevel 

programming. Further, we have supported our study by an implementation of developed 

algorithms on the relevant data obtained for appropriate cases from firms facing such 

problems. This has enabled us to contribute to the society through an optimal utilization of 

available opportunities. 



The thesis entitled “Strategic Planning and Decision Making Problems in the 

Bilevel Programming Framework” comprises of five chapters followed by the bibliography 

and the list of publications. 

The precursory Chapter 1 manifests strategic planning and decision-making, and 

decision-support for the same. The concept of bilevel programming along with its variants is 

then introduced. A survey of literature on decision-making models using bilevel 

programming framework developed for assisting managerial decisions of firms from various 

sectors is presented thereafter. Noting some practical issues in the approaches followed in 

strategic planning, a scope of research for developing a decision-support is observed to fix 

the objective of thesis along with the plan of research work.  

Preliminary concepts from different areas are used in our research work for 

development of solution algorithms. They need to be introduced with a bit detailed 

explanation before using them in the presentation of our work in subsequent chapters. All of 

such relevant concepts are presented in Chapter 2 for providing the readers with a clear 

understanding of our interdisciplinary work. Additionally, an independent discussion on a 

special case of a variant of bilevel programming problem is explicated as a ground work for 

developing a GA-based solution methodology in a later chapter.  

In Chapter 3, problem of railways is studied for decision-making on an operational 

issue of running special trains to tackle higher demand on specific routes during seasons of 

festivals and holidays. The study includes development of decision support for operational 

decisions on optimal utilization of rolling-stocks and determining optimal fare-price structure 

in a competitive environment coerced by other travelling service providers. The influence on 

the demand-shares by the competitors of railways is incorporated in decision making to 

utilize the rolling-stock accordingly. The problem is modelled as a mixed integer single-

leader-multi-follower bilevel programming problem. A diversified-elitist genetic algorithm is 

introduced to solve the constructed model. The suggested methodology is illustrated by 

taking a test situation from Indian Railways. The work presented in this chapter has been 

published as a research paper entitled “A Bilevel Programming Model for Operative 

Decisions on Special Trains: An Indian Railways Perspective”, in Journal of Rail 

Transport Planning & Management (Elsevier), 8, (2018), 184-206. doi: 

10.1016/j.jrtpm.2018.03.001. 



xv 

 

Chapter 4 develops a decision support for strategic pricing and aggregate production 

distribution planning for a small scale supplier intending to penetrate into a potential market 

engendered by a single buyer. A novel mixed integer single-leader-single-follower bilevel 

programming model is developed to formulate the problem in which the supplier is 

considered as a leader and the buyer as a follower. The proposed model subsumes the 

assessment of demand share against the price quotation, enabling the supplier to prepare an 

aggregate production distribution plan accordingly. An integer coded genetic algorithm is 

developed to solve the model and its implementation is exhibited through a test scenario. The 

work presented in this chapter is published as a research paper entitled “A Bilevel 

Programming Model for a Cohesive Decision Making on Strategic Pricing and 

Production Distribution Planning for a Small Scale Supplier”, in the journal International 

Game Theory Review (World Scientific Publishing Company), 22(2), 2020, doi: 

10.1142/S0219198920400095. 

Chapter 5 studies a strategic problem of price negotiation of the buyer with its 

multiple suppliers in an oligopolistic-monopsony market. The problem is studied to develop a 

decision support for identifying target prices for negotiation through which the common goal 

of all stakeholders viz maintaining a sustainable business environment can be achieved. For 

this purpose it is suggested for the buyer to identify the Nash-equilibrium prices of the 

suppliers’ oligopolistic-competition as target prices, as adopting this strategy helps in 

avoiding adverse actions from either side. In order to develop a decision support for this 

strategic issue a mathematical model is formulated as a multi-leader-single-follower bilevel 

programming problem. A GA-based solution approach is proposed to solve such a bilevel 

programming problem. The proposed methodology is demonstrated by an implementation of 

a case of a manufacturing firm of the FMCG sector. The work presented in this chapter is 

communicated as a research paper entitled “A Bilevel Game Model for Ascertaining 

Competitive Target Prices for a Buyer in Negotiation with Multiple Suppliers” to the 

Journal Omega (Elsevier). 

A summary followed by future scope of the research work is evinced to conclude the 

thesis. Finally, two independent results on convex optimization are presented in Appendix, 

which are referred in Chapter 3 for developing a methodology to solve a problem modelled 

there. 

The thesis culminates in the bibliography and list of author’s publication. 
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Chapter 1 

 

Introduction 
 

 

 

 

Strategic planning and decision-making play a vital role in the progress of an organization 

and are main deciding factors of its future. Multiple issues in strategic planning and 

decision-making are faced by managers, in which a decision-maker requires including the 

reaction of other concerned parties to assess each possible course of action for choosing 

an optimal one. Bilevel programming (BLP) is an optimization framework which enables 

to mathematically model such decision-making situations. This introductory chapter is 

intended to give a brief understanding of structure of various types and variants of BLP 

and its applications into the strategic decision making. In this chapter, the foundations of 

BLP are presented followed by a description of its variants. The subsequent part of the 

chapter provides a review of literature on the design of models developed so far to handle 

managerial decision-making situations using the BLP framework. The chapter is 

concluded through a listing of objectives of this thesis and a brief plan of organizing our 

research work into this thesis. 
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The importance of strategic planning and decision-making can be understood from 

the quote of General Robert E. Wood “Business is like a war in one respect, if its grand 

strategy is correct, any number of tactical errors can be made and yet the enterprise 

proves successful”. A company may overcome inefficient internal resource use if its basic 

strategy is brilliant, but it is not likely to overcome the wrong strategies even with 

excellent production and distribution performance [1]. In the current scenario of 

competitive business environment the importance of game-theoretic aspects of decision-

support systems is highly realized due to the necessity of assessing the effects of others‟ 

action too. At the same time, situations are prevalently seen where there is a need of 

incorporating the reactions of other associated decision-makers while taking an action. 

Situations of decision-making on such strategic planning issues can be appropriately 

addressed by mathematically modelling them using the BLP framework. This chapter is 

aimed at providing an introduction to strategic planning and decision-making using the 

BLP framework. 

 

1.1 Strategic planning and decision-making 

Decision-making 

Decision-making is an art which needs the skill of understanding the situation in 

terms of available alternatives and possible consequences in response to the choice of 

each available alternative. Decision-makers generally use their past experience and 

intuition to assess the available alternatives and cognitively choose one which they 

understand to be best. 

In perplexed situations, where the future state of an organization depends on present 

decisions, the factual but precise information and scientific decision-support improve the 

decision-making ability of decision-makers. For such type of situations, data driven 

inputs help towards the reliability and validity of the information. Based on these data 

inputs, mathematical tools for decision-support suggest the best of available options to the 

decision-maker. Various optimization frameworks and their tools are capable of 

providing a decision-support to almost every data-driven decision-making situation. Just 

the need is to develop an appropriate optimization model which captures all the relevant 

aspects associated with the environment of the situation addressed. 



 

 
3 

Depending upon the purview, duration of implementation, and realization of its 

results the decision-making situations in any organization are broadly classified as 

strategic, operational, and tactical. Strategic decisions are prevalently for long-term 

durations and involve most crucial factors responsible for the growth and stability of an 

organization. Operational decisions often involve the planning of regular operations for 

mid-term durations ranging from a week to a month. Operational decisions are generally 

taken in pursuance of the strategic decisions. Whereas, tactical decisions, which are 

known as administrative decisions also, correspond to short-term duration of a day or two 

and generally cover the daily scheduling of tasks targeting efficient implementation of 

operational decisions. Among all the three categories discussed above, the strategic 

decisions are seen as most crucial, experienced to be complex, and require a systematic 

and rigorous planning on multiple aspects. Taking decision of strategic issues thus 

requires a proper decision-support. It is therefore appropriate here to know about the 

strategic planning and its role in management. 

 

Strategic planning and decision-making 

Every enterprise or organization has its pre-defined goals and mission to be 

achieved in a long-term. Each department of an enterprise plans a path of execution of 

operations for achieving these goals. But, it has been observed from the audits and 

introspective analysis of enterprises across the globe that there remains a lack of 

coordination among various departments. This results in some inefficient practices, some 

of them can be listed here (a) costly duplication of resources across departments, (b) 

interdepartmental conflicts, (c) difficulties in identifying profitable and unprofitable 

products. This defies the cohesiveness in planning of activities of various departments 

and therefore results in disinclination towards the vision and mission of the enterprise. In 

the current competitive business environment such inefficiencies give a significant 

setback to the growth of a company and eventually pose a threat to its survival.  

Strategists and analysts have realized that the traditional setups of functional or 

divisional type of organizational structures are responsible for this lack of 

interdepartmental coordination. Thus, business firms are gradually moving from a 

disconnected divisional structure to the matrix structure of organization for promoting 

inter-divisional collaborations while recognizing vertical and formal structures. This 

improves lateral communication and cooperation between various departments of an 
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organization. Consequently, the managers of various departments incline to cohesively 

address broader issues of the company, and thus plan their actions in an economically 

efficient manner. The planning and decision-making on crucial issues in such a 

coordinated organization setup improves the enterprise positioning and escalates their 

progress towards the goal of a company. The planning of long-term initiatives done in 

such a setup results as a strategic planning and provides a better framework for 

operational planning and action by various departments of the organization. 

Consequently, the coordinated decision-making for issues of strategic planning involves a 

large number of decision variables due to multiple aspects considered all together. This is 

experienced as one of challenging tasks to handle the resulting large-scale optimization 

problem.  

Further, for building a competitive advantage over other competitor firms, the 

stakeholders of each enterprise attempt using innovative ideas to achieve company‟s 

goals through a coordinated and optimally efficient strategic plan. This innovation in 

strategic planning demands the development of new decision-support accordingly. 

Some of important issues of business firms addressed under the strategic planning 

include minimizing the procurement costs and maximizing the resilience in inbound 

supply chain, strategic outsourcing through supplier selection and order allocation, an 

optimal utilization of available resources, competitive pricing of new products, and re-

pricing of existing products. The decision-making on such strategic issues of planning 

requires a proper decision-support involving mathematical procedures of optimization 

framework. This is discussed under the next heading. 

 

Decision-support for strategic planning 

In recent competitive business environment, the planning of most of strategic issues 

converges to financial centric aim. Consequently, minimization of operational 

expenditures and maximization of sales driven through competitive pricing are considered 

to be of strategic importance. Decisions on such issues of strategic planning get a 

mathematical support from optimization framework. 

Optimization problems are aimed at seeking those decisions which give the optimal 

value to the objective function of the decision-maker while restraining within limits of the 

constraints posed by external factors or agents. In some situations the constraints posed 
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by one or more of these external agents are not static and come as a response depending 

on the choice of decision of the decision-maker. Such a situation makes the search for 

optimal decision convoluted for the decision-maker, due to the requirement of 

incorporating the reaction of external agent(s) corresponding to each possible decision. 

For the situation, when the reaction of these external agent(s) is an optimal solution of 

their respective optimization problem(s), such an optimization problem of a decision-

maker is categorized as a BLP problem.  

 

1.2 Bilevel programming (BLP) 

This concept was originally proposed by H. Von Stackelberg [2] and thus a BLP 

problem is also termed as Stackelberg game. The framework of Stackelberg games is 

phenomenally different from the framework of Nash games. The problems discussed as 

Stackelberg games consider the situation when among two individuals or two groups of 

decision-makers, one takes the decision first and upon observing the same the other take 

decision. Whereas, in the Nash game framework all the decision-makers take their 

decisions simultaneously or subsequently without any knowledge of others decision. 

Henceforth, we fix to use the term BLP problem for a Stackelberg game. For theoretical 

developments on BLP framework one can refer to monographs [3,4]. 

BLP problems are mathematical programming problems involving sets of variables 

controlled by multiple decision-makers categorized at two levels. The hierarchy of levels 

involved in the structure of BLP is governed by the order of the decision-making. 

Decision-maker(s) who take the decision first are categorized as leader(s), whereas those 

who take a decision in response to the decision of these leader(s) are called followers. 

Leaders(s) are also called upper level decision-maker(s) and follower(s) as lower level 

decision-maker(s). The link between decision-maker(s) at two levels is established by the 

interdependence of their decisions on each other. It is assumed during the discussion of 

this framework that complete information is available, at least to the leader, about the 

constraints and objectives of both the leader and follower as well. This information makes 

it possible for the leader to assess the reaction of the follower for each of its action. One 

more assumption, which is considered except for a specific category of BLP, is that there 

is no cooperation among the leader and follower. 
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The mathematical formulation of BLP problem with most basic and general 

structure is presented below. Let the decision variables of the leader be 𝑥1, 𝑥2, … , 𝑥𝑛 . For 

given values of 𝑥 =  𝑥1, 𝑥2 , … , 𝑥𝑛 ∈ ℝ𝑛 , the response of the follower is an optimal 

solution 𝑦 =  𝑦1, 𝑦2 … , 𝑦𝑚  ∈ ℝ𝑚  of his optimization problem. 

i.e., for a given 𝑥 ∈ ℝ𝑛 , the response of the follower is a solution of the 

optimization problem 

max
𝑦

𝑓2 𝑥, 𝑦  

    s.t. 𝑔2 𝑥, 𝑦 ≤ 0.                                         (1.2.1) 

(Here, 𝑥 is a parameter in the follower‟s optimization problem.) 

The optimization problem of the leader is therefore expressed as given below while 

considering the reaction of the follower as a constraint to former‟s problem. 

 

 

                      (1.2.2) 

 

 

The optimization problem (1.2.2) expressed above is termed as a BLP problem. In 

the follower‟s problem (1.2.1) and the BLP problem (1.2.2) functions 𝑓1, 𝑓2: ℝ𝑛 × ℝ𝑚 →

ℝ, 𝑔1: ℝ𝑛 × ℝ𝑚 → ℝ𝑟 , 𝑔2: ℝ𝑛 × ℝ𝑚 → ℝ𝑠 . For a well-posed BLP problem, it is assumed 

that in (1.2.2), for any action of leader (𝑥) the reaction of the follower (optimal solution 𝑦 

of (1.2.1) parameterized in 𝑥) is unique1. The sequential nature of decision-making 

depicted in BLP problem (1.2.2) infers that 𝑦 can be considered as a function of 𝑥, as for 

any given values of vector 𝑥, the value of vector 𝑦 can be obtained by solving the 

optimization problem (1.2.1) for 𝑦. 

BLP problems can be classified into many categories depending upon the structure 

and properties of the constraints and the variables involved. The solution algorithms have 

been developed in the literature for some categories of these problems accordingly. A 

basic listing of categories is specifically detailed here for their clear identification and to 

                                                           
1
 The case when this assumption does not hold is reviewed in a later subsection as a separate category of 

BLP problem.  

                                    max
𝑥∈ℝ𝑛

𝑓1 𝑥, 𝑦                               

                                              max
𝑦∈ℝ𝑚

𝑓2 𝑥, 𝑦           

s.t. 𝑔1 𝑥, 𝑦 ≤ 0                                                      

where, 𝑦 is an optimal solution of follower‟s problem for a given 𝑥  

         s.t. 𝑔2 𝑥, 𝑦 ≤ 0. 
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distinguish the problem of each category from the other. This categorization of BLP 

problems becomes a base for distinguishing solution approaches of one category from the 

other. 

 

1.2.1 Classifications of BLP problems 

The classifications are based on variable types, constraints, objectives and the 

understanding between the leader and the follower. Some basic classifications of 

problems categorized under the BLP framework are given below. 

1. Linear and non-linear BLP problems 

This classification is done on the basis of presence of linearity in constraints and 

objectives included in the problem. A problem with general structure given by 

(1.2.2) is termed as linear BLP problem if all the constraints and objectives at both 

the levels are linear in the variables 𝑥 and 𝑦. Thus a general linear BLP problem 

will have a structure given as following. For given 𝑐1, 𝑐2 ∈ ℳ1×𝑛 ℝ , 𝑑1, 𝑑2 ∈

ℳ1×𝑚 ℝ , 𝐴1 ∈ ℳ𝑟×𝑛 ℝ , 𝐵1 ∈ ℳ𝑟×𝑚  ℝ , 𝐴2 ∈ ℳ𝑠×𝑛 ℝ , 𝐵2 ∈ ℳ𝑠×𝑚 ℝ , and 

for 𝑥 =  𝑥1, 𝑥2 , … , 𝑥𝑛 ∈ ℝ𝑛 , 𝑦 =  𝑦1, 𝑦2, … , 𝑦𝑚  ∈ ℝ𝑚  the representation of a 

linear BLP problem is given as following. 

 

 

   (1.2.3) 

 

 

(For any 𝑝, 𝑞 ∈ ℕ, ℳ𝑝×𝑞 ℝ  denotes the set of all matrices over ℝ of order 𝑝 × 𝑞.) 

In case, any of the functions 𝑓1 𝑥, 𝑦 , 𝑓2 𝑥, 𝑦 , 𝑔1 𝑥, 𝑦 , and 𝑔2 𝑥, 𝑦  in (2) are 

non-linear in 𝑥 or 𝑦, it is considered as non-linear BLP problem. One special type 

under this categorization is considered for the case when the objective function of 

the follower problem (1.2.1) is a convex function in 𝑦. In case of non-linear 

objective function of follower‟s problem the presence of convexity provides the 

uniqueness of optimal solution of follower‟s problem. 

max
𝑥∈ℝ𝑛

𝑐1𝑥 + 𝑑1𝑦                              

                                                 max
𝑦∈ℝ𝑚

𝑐2𝑥 + 𝑑2𝑦          

   s.t. 𝐴1𝑥 + 𝐵1𝑦 ≤ 0  

where, 𝑦 is an optimal solution of follower‟s problem for a given 𝑥 

s.t. 𝐴2𝑥 + 𝐵2𝑦 ≤ 0. 
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2. Continuous and discrete BLP problems 

This classification is done on the basis of the type of variables involved. For the 

case when all the variables involved in a BLP problem are real and continuous, the 

problem is categorized as a continuous BLP problem. Confirming to class of 

discrete optimization problems, if any of the variables, at any level of decision-

making, are restrained to belong to a subset of integers, the optimization problem is 

termed as a discrete BLP problem. One special type under the classification of 

discrete BLP problem is of binary BLP problem, in which each variable involves 

only two possibilities to attain a value (0 or 1).  In case, both continuous and 

discrete variables are involved at any level of the hierarchy, the problem is termed 

as mixed-integer BLP problem. 

3. Single and multi-objective BLP problems 

This classification is done on the basis of number of objectives of each decision-

maker. In the most fundamental form of a BLP problem it is assumed that each of 

the two decision-makers involved in a hierarchical decision-making has single 

objective only. Thus a BLP problem mathematically expressed in (1.2.2) is a single 

objective BLP problem. Whereas, for if any of the decision-makers has multiple 

objectives, the BLP problem is classified as a multi-objective BLP problem. 

In many practical situations of hierarchical decision-making, leader and/or follower 

aim for multiple objectives. This situation is modelled as multi-objective BLP 

(MOBLP) problem. A general MOBLP problem with the leader aiming for 𝑝 

objectives and follower aiming for 𝑞 objectives is expressed mathematically as 

following. 

 

 

 

                        (1.2.4) 

 

 

 

                             max
𝑥∈ℝ𝑛

𝑓1 𝑥, 𝑦 =  𝑓11 𝑥, 𝑦 ,… , 𝑓1𝑝 𝑥, 𝑦   

    s.t. 𝑔1 𝑥, 𝑦 ≤ 0                                                          

where, 𝑦 is an optimal solution of follower‟s problem for a given 𝑥

                         max𝑦∈ℝ𝑚 𝑓2 𝑥, 𝑦 =  𝑓21 𝑥, 𝑦 ,… , 𝑓2𝑞 𝑥, 𝑦   

        s.t. 𝑔2 𝑥, 𝑦 ≤ 0. 
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The case of 𝑝 = 𝑞 = 1 reduces the above problem to a single objective BLP 

problem (1.2.2). Thus for discussing a MOBLP problem it is assumed that 𝑝 > 1 or 

𝑞 > 1. 

 

1.2.2 BLP problems involving non-unique optimal response 

This particular case is discussed when multiple optimal solutions are possible for 

the follower‟s optimization problem in response to some values of leader‟s variables. In 

this case, it becomes a challenge for the leader to subsume one among multiple optimal 

responses of the follower for computing a solution, as there is no surety that such 

particular solution will be realized as a response to an action of the leader. Further, if it is 

assumed that the follower also has complete knowledge of the leader‟s objective and 

constraints, this leads to formulation of optimistic and pessimistic BLP problems. This 

classification depends basically on the (business) relations between leader and follower.  

If the leader can convince the follower for choosing that particular optimal solution 

of follower‟s parametric optimization problem which is favorable to the leader, in such a 

situation the BLP problem is termed as optimistic one. The practicality of this category of 

BLP problem lies in the fact that, principally, it is possible for the follower to choose such 

an optimal response as this does not amount to any compromise to his objective. If the 

long term goals of both the decision-makers are aligned and there is a harmony between 

them such case may be realized. Opposite to this is discussed the pessimistic BLP 

problem. Herein, it is assumed that the follower is completely aware of the leader‟s 

objective and selects that particular optimal response which is least favourable to the 

leader.  

The literature in this context is a bit detailed and is out of the scope of this thesis as 

the problems discussed in our research work do not pertain to this category of BLP 

problems. Although interested users may refer to the monograph by Dempe [3] with the 

same nomenclature and monograph by Bard [5] which describes it as ill-posed BLP 

problem under the discussion of general BLP. 

Remark 1.2.1: From this point onwards in this thesis, it is considered that the lower level 

parametric optimization problem has a unique solution for each given vector of values of 

leaders variables supplied as parameters there. 
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All the combinations of these types are also possible to model practical situations of 

optimization problems pertaining to BLP framework. To exemplify, continuous-linear 

BLP problem, continuous-non-linear BLP problem, discrete-linear BLP problem, 

discrete-non-linear BLP problem, multi-objective-discrete-linear BLP problem, etc. 

Through this classification, one can identify the traits of a BLP problem and this enables 

to understand the approaches of solution algorithms. In fact, these basic traits can be 

discussed even for the variants of the BLP discussed below. 

 

1.2.3 Some other variants of BLP problems 

In the most fundamental framework of BLP, the hierarchical structure of interactive 

decision-making among only two decision-makers is modelled, with one of them posed as 

leader and other as follower. But in some practical situations it is observed that multiple 

decision-makers participate at same level of the hierarchy by taking decisions 

simultaneously. In case of competitive and simultaneous decision-making of multiple 

decision-makers at same levels, the situation of a Nash game arises among them. The 

Nash game situation present in the hierarchical decision-making is discussed under the 

name multi-leader-follower BLP problem. Based on the situations of multiple decision-

makers acting simultaneously as leaders or followers in a hierarchical decision-making 

situation, this type of BLP problems are classified into following three variants. 

1. Single-leader-multi-follower BLP problem 

This type of game situation in a hierarchical decision-making arises when two or 

more followers react to the decisions made by a single leader. Due to the competition 

involved at the lower level of the hierarchy, the reaction from multiple followers 

corresponding to a decision of the leader is identified as a Nash-equilibrium point of 

the game2 situation among the follower. The following Figure 1.1 depicts the 

structure of this variant of BLP problem.  

                                                           
2
 When two or more decision makers take decision competitively and simultaneously keeping into the 

consideration the strategies of other competitors, such a situation is specified as Nash game and the 

equilibrium is specified as Cournot equilibrium or Nash equilibrium. Whereas the competition with a 

hierarchical structure present in the bilevel programming due to asynchronous decision-making is termed as 

Stackelberg game. Thus, the solution of a bilevel programming problem is also termed as Stackelberg 

solution. 
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The mathematical formulation of a problem pertaining to this variant of BLP is 

expressed as following. Let there be 𝐾 followers which respond to the actions of a 

leader. If for any value of the vector of leader‟s decision variables 

𝑥 =  𝑥1, 𝑥2 , … , 𝑥𝑛 ∈ ℝ𝑛 , followers  𝑘 = 1, 2, … , 𝐾  react competitively to settle at a 

constrained Nash-equilibrium point comprising of the values of their decision 

variables 𝑦1 =  𝑦11 , 𝑦12 , … , 𝑦1𝑚1
 , 𝑦2 =  𝑦21 , 𝑦22 , … , 𝑦2𝑚2

 , …, 

𝑦𝐾 =  𝑦𝐾1, 𝑦𝐾2, … , 𝑦𝐾𝑚𝐾
 , and if 𝑦 =  𝑦1, 𝑦2, … , 𝑦𝐾 =  𝑦11 , 𝑦12 , … , 𝑦1𝑚1

,

𝑦21 , 𝑦22 , … , 𝑦2𝑚2
, … , 𝑦𝐾1, 𝑦𝐾2, … , 𝑦𝐾𝑚𝐾  , then the single-leader-multi-follower BLP 

problem is expressed in general as following problem. 

 

 

 

 

(1.2.5) 

 

 

 

 

 

 

                                                max
𝑥∈ℝ𝑛

𝑓1 𝑥, 𝑦  

                                                        max
𝑦𝑘∈ℝ

𝑚𝑘
𝑓2𝑘   𝑥, 𝑦           

        s.t. 𝑔1 𝑥, 𝑦 ≤ 0  

where, for a given decision 𝑥 of leader, the reaction 𝑦 of followers is 

obtained a Nash-equilibrium of the game comprising of the optimization 

problem of each of the follower (parameterized in 𝑥) as given below. 

       s.t. 𝑔2𝑘
 𝑥, 𝑦 ≤ 0 (𝑘 = 1, 2, … , 𝐾). 

Figure 1.1: Multi-leader-single-follower BLP problem 
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2. Multi-leader-single-follower BLP problem 

This type of game situation arises in a hierarchical decision-making when there are 

multiple leaders who choose their strategies simultaneously and competitively while 

incorporating the response of a single follower. In this game situation, the strategic 

action of each leader is influenced by the reaction of the follower. Due to the 

competition involved at the upper level of the hierarchy, leaders settle at a Nash-

equilibrium point. The following Figure 1.2 depicts the structure of this variant of 

BLP problem. 

 

The mathematical formulation of a problem pertaining to this variant of BLP is 

expressed as following. Let us consider the situation where there are 𝐿 leaders. For 

the index 𝑙 (𝑙 = 1, 2, … , 𝐿) associated with each leader, if their decision variables are 

𝑥1 =  𝑥11 , 𝑥12 , … , 𝑥1𝑛1
 , 𝑥2 =  𝑥21 , 𝑥22 , … , 𝑥2𝑛2

 , … , 𝑥𝐿 =  𝑥𝐿1, 𝑥𝐿2, … , 𝑥𝐿𝑛𝐿 , 

respectively, with  

𝑥 =  𝑥1, 𝑥2, … , 𝑥𝐿 =  𝑥11 , 𝑥12 , … , 𝑥1𝑛1
, 𝑥21 , 𝑥22 , … , 𝑥2𝑛2

, … , 𝑥𝐿1, 𝑥𝐿2, … , 𝑥𝐿𝑛𝐿 ∈

ℝ𝑛1+⋯+𝑛𝐿  as the vector of all the leader‟s decision variables, and if follower‟s 

response to any given 𝑥 be in terms of the vector of variables given by  𝑦 =

 𝑦1, 𝑦2, … , 𝑦𝑚  , then the multi-leader-single-follower BLP problem is expressed in 

general as a constrained Nash-equilibrium game with the problem of each leader as a 

player of the game as given below. 

 

 

 

Figure 1.2: Multi-leader-single-follower BLP problem 
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            (1.2.6) 

                                                            

 

 

 

In the multi-leader-single-follower BLP problem expressed above it is evinced that 

each leader needs to take the decision competitively while keeping the response of 

follower into consideration. 

 

3. Multi-leader-multi-follower BLP problem 

This type of game situation arises in a hierarchical decision-making when there are 

two or more competitive leaders who choose their strategies simultaneously and 

competitively, to which multiple followers react simultaneously and competitively. 

In this game situation, the strategic action of each leader is influenced by a 

collectively reaction of all the followers. Due to the competition involved at the 

upper level of the hierarchy, leaders settle at a Nash-equilibrium point while 

incorporating the response again as a Nash-equilibrium point of followers‟ 

competition. The following Figure 1.3 depicts the structure of this variant of BLP 

problem. 

 

max
𝑥𝑙∈ℝ

𝑛𝑙
𝑓1𝑙 𝑥𝑙 , 𝑦                               

max
𝑦∈ℝ𝑚

𝑓2  𝑥, 𝑦           

      s.t. 𝑔1𝑙
 𝑥𝑙 , 𝑦 ≤ 0  

where, 𝑦 is optimal response of the follower 

corresponding to given values of all leader variables‟, 𝑥 

   s.t. 𝑔2 𝑥, 𝑦 ≤ 0. 

Figure 1.3: Multi-leader-multi-follower BLP problem 
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The mathematical formulation of a problem pertaining to this variant of BLP is 

explained below. Let us consider a situation where there are 𝐿 leaders. For index 

𝑙  𝑙 = 1, 2, … , 𝐿  associated with leaders, if their decision variables are 𝑥1 =

 𝑥11 , 𝑥12 , … , 𝑥1𝑛1
 , 𝑥2 =  𝑥21 , 𝑥22 , … , 𝑥2𝑛2

 , … , 𝑥𝐿 =  𝑥𝐿1, 𝑥𝐿2, … , 𝑥𝐿𝑛𝐿 , with 

𝑥 =  𝑥1, 𝑥2, … , 𝑥𝐿 =  𝑥11 , 𝑥12 , … , 𝑥1𝑛1
, 𝑥21 , 𝑥22 , … , 𝑥2𝑛2

, … , 𝑥𝐿1, 𝑥𝐿2, … , 𝑥𝐿𝑛𝐿 ∈

ℝ𝑛1+⋯+𝑛𝐿  as the vector of all leader‟s decision variables, and if each of the followers 

 𝑘 = 1, 2, … , 𝐾  reacts competitively to settle at a constrained Nash-equilibrium 

point comprising of the values of their decision variables 𝑦1 =  𝑦11 , 𝑦12 , … , 𝑦1𝑚1
 , 

𝑦2 =  𝑦21 , 𝑦22 , … , 𝑦2𝑚2
 , …, 𝑦𝐾 =  𝑦𝐾1, 𝑦𝐾2, … , 𝑦𝐾𝑚𝐾

 , with 𝑦 =  𝑦1, 𝑦2, … , 𝑦𝐾 =

 𝑦11 , 𝑦12 , … , 𝑦1𝑚1
, 𝑦21 , 𝑦22 , … , 𝑦2𝑚2

, … , 𝑦𝐾1, 𝑦𝐾2 , … , 𝑦𝐾𝑚𝐾
 , then the multi-leader-

multi-follower BLP problem is expressed in general as a constrained Nash-

equilibrium game with individual problem of each leader as a player of the game 

given by 

 

 

 

 

 

                                            (1.2.7) 

 

 

 

Through this subsection it is explained that different variants of BLP problems can 

be expressed depending on multiple players competing in Nash game as leaders or 

followers. The BLP problem (1.2.2) discussed initially in previous subsection is thus 

distinguished from these variants by designating a specific term, single-leader-single-

follower BLP problem. Each of the variants of BLP discussed in this subsection can be 

further classified into different types depending upon the type of variables and constraints 

involved, in a similar way as discussed for Single-leader-single-follower BLP problem in 

the previous subsection 1.2.1.  

max
𝑥𝑙∈ℝ

𝑛𝑙
𝑓1𝑙 𝑥𝑙 , 𝑦                               

max
𝑦𝑘∈ℝ

𝑚𝑘
𝑓2𝑘   𝑥, 𝑦           

         s.t. 𝑔1𝑙
 𝑥𝑙 , 𝑦 ≤ 0 

where, for a given decision 𝑥 of all leaders, the reactions of 

followers is obtained a Nash-equilibrium of the game comprising of 

the optimization problem of each of the follower (parameterized in 𝑥) 

as given below. 

 s.t. 𝑔2𝑘
 𝑥, 𝑦 ≤ 0 (𝑘 = 1, 2, … , 𝐾).  
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The categorization of BLP problems into the variants enables a learner to 

understand the structure of competition, whereas the classification of a BLP problem of 

each variant into different types enables to identify the appropriateness of the approaches 

for solution algorithms. In this chapter the nitty-gritty of the structure of various variants 

and types of BLP is presented, whereas a review of literature on methodologies to solve 

these problems is presented in the next chapter. With the acquaintance of structure of 

different types and variants of BLP, it is appropriate to review the literature addressing 

decision-making problems using the BLP framework. 

 

1.3 An overview of real life applications of BLP 

This section presents a brief review of the literature on applications of BLP for 

addressing real life decision-making problems. Application based works handling such 

modelling issues are found in three major areas viz government sector, engineering and 

technology, and business management.  

Government Sector 

The decision-support using BLP framework is developed for some typical decision-

making issues of toll setting, transport network design, environmental economics, and 

defence strategies in government sector. 

 Toll Setting Problems: The toll setting problems have been studied using BLP 

framework with an objective of maximizing revenue for the utilization of the 

available road network [6–13]. 

 Transportation/Transit network design: Transportation network management 

problems have been addressed in literature using BLP framework. Issues of transit 

network design including transit frequency optimization have been addressed in 

studies [14–17]. Transit network design problems in general are studied [18–26]. 

Management of traffic signalling is addressed in studies [27,28]. 

 Environmental Economics: Studies are available in literature which have 

addressed environmental policy making problems using BLP framework, to list 

some; optimal pollution control policies [29], water quality management [30], 

regulating norms for mining companies [31], agri-environmental policy framing 

[32]. 
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 Defence applications: Studies on defence strategies like attacker-defender 

Stackelberg games have been studied (c.f. [33–37]). Research on developing missile 

defence and counter-attack systems using BLP framework include [38–42]. 

Engineering and Technological Design 

The decision-support using BLP framework is developed for decision-making in 

following areas of engineering and technological designs. 

 Optimal Design: Optimal design problems with issues like structural design [43–

45] and shape optimization [46,47] have been studied in the field of materials 

management using BLP framework. 

 Optimal Control: Studies on optimal control of robots have also used BLP 

framework for addressing various control issues of the field [48–51]. 

 Chemical Industry: BLP framework has been used to address problems of 

chemical industry like chemical reaction equilibrium analysis [52], design of 

steady-state chemical process [53], chemical process engineering [54], optimization 

of multi-component chemical systems [55]. 

 Machine Learning: Researchers have used BLP framework in the area of machine 

learning also for proper tuning of parameters to achieve computational accuracy and 

efficiency of evolutionary algorithms [56–59]. 

Business Planning and Management 

The decision-support using BLP framework is developed for the decision-making in 

following areas of business planning and management. 

 Facility Location Problems: Long-term planning problems of identifying facility 

locations [60] and locations of logistics distribution centres (DCs) [61] have been 

addressed using BLP framework.  

 Principal-agent Problems: The principal-agent paradigm [62] has been addressed 

using BLP framework [63] and used to address problems of decision on executive 

compensation [64]. 

 Electricity markets: Pricing issues in electricity markets for handling competition 

have been addressed using BLP framework [65–67]. 
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 Supplier Chain Planning: BLP framework has been used by researchers for 

addressing problems of supply chain network planning [68,69] as well as planning 

of supply chain operations  [70,71] 

 

1.4 Literature review of some planning problems relevant to our work 

In this section we present in detail some mathematical concepts and results which 

are required as a fundamental knowledge to understand the work presented in subsequent 

chapters. 

 

1.4.1 Price setting problems  

Price setting is one of most crucial decisions of every business firm which sell 

their products or services. The decision on pricing is considered to very important as it is 

a major factor which influences the profit (or turnover) in a short term and governs the 

market-share as well as brand positioning in a long run. Especially in case of business-to-

business dealings as prevalent in oligopolistic-monopsony market situations pricing 

decisions influence business-relations among the organizations which in turn, in a long-

term, affect their performance also. This indicates a requirement of proper planning for 

making pricing decisions while focusing on the strategic vision and mission of the 

organization. 

An optimal price setting problem is generally aimed to determine the prices of 

commodities/ services so as to maximize the total profit, when addressed from a purview 

of short-term planning. General pricing strategies (including high and low pricing 

strategies), adjustable pricing strategies (like market segmentation), differential pricing 

strategies, price skimming, competitive pricing strategies like penetration pricing and 

revenue management-based pricing have been reviewed in the literature by Dolgui and 

Proth [72]. 

Mathematical model of a pricing problem considering the linkage between prices 

and demand to influence the turnover was studied for the first time by Labbe et al. [73]. 

The model studies a toll setting problem in a BLP framework. As the soul of this 
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modelling has remained an inspiration across our research work, it is appropriate to 

discuss this model here for a better understanding of our research work. 

The price setting model formulated by Labbe et al. [73] considers the toll setting 

decision problem from the perspective of a taxation authority with an aim of maximizing 

the revenue. Activities considered available to users are categorized as taxed and untaxed. 

Vector of variables representing taxes, denoted by 𝑇, represents taxation authority‟s 

action, whereas vectors of variables 𝑥 and 𝑦 are used to denote the extent of use of taxed 

and untaxed activities as a response to minimize total cost. As the authority declares the 

toll rates first and users respond only upon knowing the same, therefore earlier is posed as 

leader and later as follower in the formulation of BLP problem. Thereby, this formulation 

enables the leader decide on the toll vector 𝑇 by assessing the follower‟s response so as to 

maximize the revenue. Formulation of this problem modelling this action-and-reaction 

mechanism given by 

 

 

              (1.4.1) 

 

 

Here, 𝑐1 and 𝑐2 are considered as costs of taxed and untaxed activities incurred to 

user. 

This generic modelling is useful to address pricing problems on purchase of 

commodities as well as services. Further studies on toll-setting problems which have 

based their studies on this modelling can be referred as [7,74–76].  

Remark 1.4.1: (a) The approach used here for modelling the pricing problem is aimed at 

revenue maximization. This approach is appropriate for modelling the situation involving 

no significant operational costs for providing the products or services to the user. On the 

other hand, for situations involving larger costs the profit maximization approach is 

required to be followed for appropriately modelling of the pricing problem. Such a 

                           max
𝑇

  𝑇𝑥 

                                     min
𝑥,𝑦

   𝑐1 + 𝑇 𝑥 + 𝑐2𝑦 

                                                          𝑥, 𝑦 ≥ 0. 

where, 𝑥 is obtained by solving 

s.t. 𝐴1𝑥 + 𝐴2𝑦 = 𝑏 
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problem is prevalently faced during business-to-business price-negotiations, but has never 

been addressed for developing decision support.  

(b) For example, it is inappropriate to apply this model directly to any situation of 

strategic pricing and planning of supply chain operations. For addressing this strategic 

pricing problem it requires a cohesive assessment of cost to fulfil the replicating demand. 

This requires integrating the operational planning problem along with the pricing problem 

in a BLP framework. A study addressing this issue is accomplished in our research work 

presented in Chapter 4. 

The literature on operational planning in supply chain is reviewed below.  

 

1.4.2 Operational planning problems in supply chain  

Planning of various tasks to fulfil the demand of end-users over a short-term 

horizon is termed operational planning under the supply chain management [77]. In this 

context, aggregate production-distribution planning (APDP) problem is used to model the 

planning of these supply chain operations. An optimization problem modelled for 

collective planning of all the operations activities and arrangements namely,  

 production in regular-time and over-time (in each plant),  

 outsourcing,  

 shipping volumes from the production facility or stack buffers to warehouses,  

 shipping volumes from warehouses and stack buffers to end-users,  

 inventory levels of finished products in warehouses to be maintained,  

for each period with the aim of minimizing the total cost of all these operations is 

categorized as APDP problem [78]. The literature in the field of APDP problems is 

extensive and classified into seven categories [78]. Some of the significant contributions 

worth citing in APDP are [79–82]. Recent research developments in operational planning 

include [83,84].  

Remark 1.4.2: As noted in previous subsection on pricing problems, a need is felt to 

address pricing issues in cohesion with operational planning problems. In our extensive 

review of literature we haven‟t come across any noteworthy study addressing these 

strategic issues cohesively. 
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Another important area of decision-making for the management of supply chain 

focuses on the inbound supply. Among many important issues addressed in this context, 

those concerned about costs and performance are of supplier selection and order 

allocation of the demand for a pre-fixed planning horizon.  

 

1.4.3 Supplier selection and order allocation  

The supplier selection is a crucial strategic decision-making process for the 

procurement of the required products or the raw material. The primary literature on it 

begins with the work of Dickson [85]. The next accompanying vital decision is on the 

order allocation under multiple sourcing. Gaballa [86] and Jayaraman et al. [87] 

developed decision support for the order allocation problem to minimize the total 

procurement cost. The prevalent use of just-in-time approach for inventory procurement 

resulted in the recommendation of multiple factors for supplier selection [88–90]. Several 

researchers investigated the order allocation in concurrence with supplier selection [91–

93]. The supplier selection and order allocation issues have been modelled as multi-

objective decision-making problems also [94–96]. One can refer to the recent literature 

review by Aouadni et al. [97] on supplier selection and order allocation techniques. 

Remark 1.4.3: The literature on the discussed strategic aspects of supply chain 

management is extensive, but has never been studied in connection with price-

negotiations. This research gap is present despite that fact that price-negotiation is an 

important strategic issue which deeply influences the buyer-supplier business 

relationship. It further requires a decision-support mechanism to discern the demand-

order allocations in connection with the price-quotations, enabling a decision-support for 

negotiations. A study addressing this issue is accomplished in our research work 

presented in Chapter 5. 

 

1.4.4 Planning of railways operations 

The planning and management of railway operations need a robust support system 

for decision making. The monograph by Caprara et al. [98] can be referred for detailed 

incite of planning issues of railway operations and available mathematical models to 

support the decision process. Two widely explored areas in the literature are train-



 

 
21 

scheduling and rolling-stock management. Some of recent research in the area of train 

scheduling includes [99,100]. The studies in [101–109] focus on the management of 

rolling-stock considering a fixed demand for each type of train. Another challenging area 

of interest for railways is to determine the fare-price structure for running the trains in a 

competitive state of oligopoly. Limited work is available in this context to cite (c.f. [110–

112]). Li et al. [112] has developed a model in a BLP framework featuring fare-price 

Nash-equilibrium between the high-speed railways and civil aviation as leaders‟ problem 

and minimizing the total travelling-cost incurred by all passengers as a follower problem. 

Apart from these studies there is another setup where the railway operators declare 

the running schedule, the number as well as classes of coaches in the train, and their fare-

prices, much in advance of running the train. Models proposed in literature are not 

appropriate for addressing the fare-pricing strategies in such setups. Reason behind this is 

that the time window created due to prior declaration of fixed fare-prices provides ample 

opportunity to the competitors to react to the decision of railways by adjusting their fare-

prices and hence affecting the demand-shares of railways. No research work is seen to 

address the strategic issue of fare-pricing decisions in this setup. 

Remark 1.4.4: Research gaps noted in this section indicate need of establishing an inter-

linkage between strategic planning and operational decision-making issues. Also, these 

decision-making situations are appropriate to be handled using BLP framework. This 

motivates to develop decision-support by mathematically modelling these strategic issues. 

A study addressing this issue is accomplished in our research work and is presented in 

Chapter 3. 

 

1.5 Objectives of research work and organization of the thesis 

Adopting an integrated approach for addressing strategic planning issues facilitates 

an efficient utilization of internal capacities and better handling of competition, and 

thereby is seen as aligned towards the long term goals of the organization, as described in 

section 1.1. From the review of literature on decision-making models using BLP 

framework presented in section 1.3, it is observed that an appreciable amount of research 

work has addressed decision-making issues at higher-level management in context of 

Stackelberg-type-competition. But, a few among those consolidate the decision-making 
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on operational aspects of different departments within the organization simultaneously 

while addressing competition in the market. In this context, some of decision-making 

issues faced particularly in the supply chain management and railways planning are noted 

in section 1.4 which can be addressed in cohesion due to their inter-linkage and inter-

dependence. A lack of modelling these decision-making aspects in conjunction indicates a 

serious research gap in the literature on mathematical modelling approaches for 

addressing the strategic planning and decision-making problems. On this account, a prime 

objective of this thesis is to develop a decision-support for some critical issues of strategic 

planning and decision-making in a competitive business environment using the BLP 

framework. 

Furthermore, while pursuing the research work towards our prime objective, we 

observed that the mathematical models developed using BLP framework for addressing 

such practical problems of strategic planning, involve 1000s of variables and 100s of 

constraints. And, the solution algorithms3 available in the literature for solving BLP 

problems and their variants, resulted as incapable of handling problems of the scale 

mentioned here. Even for some variants of BLP problems no algorithmic developments 

could be found. This may be a major reason behind the limited use of the BLP framework 

for addressing those strategic planning and decision-making problems which require 

incorporating the response of other decision-makers. For accomplishing our first 

objective, it is therefore compelling to develop solution algorithms capable of handling 

the problems formulated in our research work using BLP framework. Accordingly, the 

algorithmic development for such problems is identified as the second objective of our 

thesis. 

Comprehensively, a broad objective of this thesis is to develop a BLP based 

decision-support for some of the strategic planning issues which require incorporating a 

response assessment mechanism into decision-making. Here, it is aimed to develop such a 

decision-support which is capable of handling large-scale instances of real situations from 

industry. This broad objective can be clearly detailed as following constituent sub-

objectives of the study. 

                                                           
3
 For maintaining the flow of the thesis, the review of solution algorithms available in literature for different 

variants and types of BLP problems is separately presented in the next chapter, along with some other 

fundamentals of metaheuristic algorithms. 
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1. To identify and model some strategic issues of decision-making which require 

response assessment mechanism into decision-making, and appropriately design 

mathematical model using the BLP framework. 

2. To develop such methodologies for solving the problems taken up for study which 

are capable of handling practical instances of large scale. 

3. To implement both of the above developments on real cases from relevant industry 

for demonstrating the capability of proposed solution methodologies. 

4. To verify the success of developed decision-support through comparison of 

obtained results with appropriate situations. 

In this thesis, some pivotal issues of strategic planning have been addressed which 

are faced by business firms of some important sectors of the economy of any nation. In 

each part of our study, we have primarily focused on a crucial aspect of decision making 

under the strategic planning viz strategic pricing in conjunction with cost budgeting and 

planning of operational arrangements.  

For developing the decision support in line with the objectives our research, in each 

part of our study, a schematic research design is adopted as outlined below. 

1. An appropriate strategic planning and decision-making situation considered for 

the study is addressed in detail by modelling through the BLP framework. 

2. A solution methodology is developed using metaheuristic approach for handling 

large scale instances of addressed problem. For this purpose, particularly the 

genetic algorithm (GA) based approach is adopted. 

3. The developed GA-based solution method is coded into a computer program 

using the MATLAB software. 

4. Relevant data is obtained from appropriate organizations and used as inputs to 

implement the developed decision-support system. 

5. Comparison analysis of obtained results is performed to verify the 

predominance of the decision-support system. 

Organization of Thesis 

The forthcoming chapter presents solution algorithms existing in literature for 

various types and variants of BLP, fundamentals of GA for solving optimization 
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problems and specifically the GA-based approaches for solving BLP problems, and 

finally some other concepts to understand the work discussed in subsequent chapters. 

We start from the interest of public sector, among which the railways is an 

important service provider for commuting of general public of countries with connected 

landmasses. In Chapter 3, the strategic issue of decision on running special trains is 

addressed for the seasons of heavy demand overflowing the capacities of regularly 

running trains. The strategic planning includes decisions on optimal utilization of 

operational capacities of rolling-stock, and revenue management through competitive 

pricing with service to be provided to the general public as far as possible. A diversified-

elitist GA is proposed for solving a mixed-integer single-leader-multi-follower BLP 

problem thus formulated. A case of Indian Railways is studied to capably solve the 

problem addressed in the research work.  

Small and medium scale enterprises play a crucial role in a developing economy. 

Such an enterprise initially approaches a single buyer to sell its products, and experience 

a challenge to penetrate into this potential market due to some suppliers already selling 

those products to the buyer. With a competitive quality of its product a small scale 

supplier needs to quote smart prices of its products to the buyer so as to gain a profitable 

share of demand-order. This decision-making on pricing, at the same time, needs to be 

assessing on the capacity of the enterprise to fulfil the demand-orders in response to the 

prices to be quoted. The decision-support for this strategic pricing is developed in the 

Chapter 4 through a mixed-integer BLP problem with two objectives at lower level. The 

bi-objective programming problem at lower level is handles using the weighted-sum 

method. A GA-based approach is developed to solve the problem which internally 

handles bi-objective programming problem at lower level using the weighted-sum 

method. The success of the developed decision-support mechanism is illustrated through 

a data-set of a scenario of a small-scale enterprise from the manufacturer sector. 

Procurement of raw material or outsourced spares parts is another very important 

financial activity for any enterprise. For the case of oligopolistic-monopsony market, 

negotiations precede the actual procurement deal and managers meet for negotiation with 

a target price in mind. In this market situation it is crucial to identify the scope price 

negotiation upto which mutual financial interests are respected for the buyer as well as 

suppliers of the products. The Chapter 5 explores the target prices for such a price 
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negotiation with focus on a long term goal of maintaining sustained business 

environment. For addressing this strategic issue, a multi-leader-single-follower BLP 

problem is formulated to mathematically model the problem of identification of target 

prices negotiation of the buyer with the suppliers. A GA-based solution methodology 

combining a theoretical approach for computing stationary points is presented. The 

efficacy of the proposed concept and the solution algorithm is demonstrated through a 

data-set obtained from a manufacturing firm of fast-moving consumer goods (FMCG) 

sector. Further a demonstration indicates the capability of the proposed tool to aware the 

buyer about possible cartels or market sweeping pricing strategies of suppliers during the 

actual practice of negotiation. 

The thesis is finally summarized with findings and conclusions of the research 

work, followed by a discussion on the scope of further research in future. 
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Chapter 2 

 

Preliminary Concepts 
 

 

 

 

In this chapter, we review the solution algorithms available in the literature for solving 

different types and variants of BLP problems. Also, we discuss herein some preliminary 

facts which are necessary for understanding the algorithms proposed in our work to solve 

problems formulated as BLP models. First, the solution algorithms available in the 

literature for solving the variants of BLP problems are listed. Thereafter, a brief 

introduction of GAs is presented along with a detailed description of genetic operators 

used in our research work. A brief of GA-based methodologies available in literature for 

solving BLP problems is also included to summarize the same with a classification of 

such types. Finally, Nash-games and their role in BLP problems involving multiple 

leaders and/or multiple followers are presented with discussion on theoretical 

developments. Also, a theoretical development is discussed which is used in developing a 

GA-based solution methodology. 
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2.1. A survey of literature on methodologies for solving BLP problems  

 

BLP problems are non-convex in nature due to the hierarchical structure. Even the 

simpler types are also experienced as difficult to handle mathematically. BLP problems 

have been proved to be NP-hard
4
 [113,114]. The complexity issues indicating the 

nonexistence of a polynomial time algorithm even for linear BLP problem have been 

discussed by Deng [115]. Due to the convoluted structure of BLP there is no well-

established direct solution procedure and therefore a BLP problem is usually modified 

into a single level optimization problem, which is solved to obtain a solution [116]. 

A review of the literature on solution methodologies is presented for each variant of 

BLP problems, first for basic one involving single leader and single follower and then for 

the other variants involving multiple leaders or followers. Solution methodologies have 

been developed by researchers majorly for single-leader-follower BLP problems and a 

little attention has been paid towards BLP problems with multiple leaders and/ or multiple 

followers. Similar to any optimization problem, the solution methodologies can be 

classified as classical and metaheuristic, so we present this literature review accordingly. 

2.1.1 Methods for solving single-leader-follower BLP problems 

Surprisingly, there is no such approach available in literature which directly paves a 

theoretical procedure for solving a general single-leader-follower BLP problem. Some 

classical methods based on deterministic approaches have theoretically been developed in 

the literature and researchers have demonstrated these methods by solving problems 

involving a few variables. These approaches majorly suggest obtaining a system of 

conditions equivalent to the lower level problem to annex these as constraints to the upper 

level problem, and then solving thus obtained single level optimization problem through 

well known classical optimization techniques [116]. 

Whereas, the randomized search based metaheuristic methods have been developed 

to handle practical BLP problems involving a comparatively higher number of variables. 

The literature in this context is observed to tackle solving BLP problems with three types 

of approaches. First one employs random exploration at both levels. Herein, the lower 

                                                           
4
 NP-Hardness is a term frequently used to indicate the Non-deterministic Polynomial time hardness in 

computational complexity of a  problem [246]. 
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level optimization problem is solved corresponding to each candidate value of upper level 

variables and which in turn is explored for the optimal solution of the overall BLP 

problem through exploration for optimal value of leader‟s objective. The second one is a 

nested approach which suggests exploring for upper level variables through an 

evolutionary algorithm while evaluating the response by directly solving the lower level 

optimization problem. The third approach suggests rewriting the BLP problem as a single 

level optimization problem, and then solving the resulting problem using classical or 

evolutionary approaches. With this general introduction on solution approaches we get 

into the details presented subsequently. 

The presentation of the literature review on solution methods is organized with 

further classifications into its types as discussed in section 1.2. For each type of single-

leader-follower BLP problems, first the classical approaches are reviewed followed by 

evolutionary methods.  

The sequential nature of decision-making and the structure of the BLP (as depicted 

in (1.2.2)) indicates, that the follower‟s variables 𝑦 can be viewed as a function of 𝑥. i.e., 

𝑦 = 𝑦 𝑥 . In this line of thought, some definitions are used in the literature [4,117] to 

discuss about the structure and solution of BLP problem (1.2.2). These can be considered 

as an initial step towards the discussion of solution algorithms and are presented below. 

(a) The constrained region of the BLP problem: 

𝑆 =   𝑥, 𝑦 : 𝑥 ∈ ℝ𝑛 , 𝑦 ∈ ℝ𝑚 , 𝑔1 𝑥, 𝑦 ≤ 0, 𝑔2 𝑥, 𝑦 ≤ 0  

(b) Feasible set for the follower for each fixed 𝑥 ∈ ℝ𝑛 : 

𝑆 𝑥 =  𝑦 ∈ ℝ𝑚 : 𝑔2 𝑥, 𝑦 ≤ 0  

(c) Projection of S onto the leader‟s decision space: 

𝑆 𝑋 =  𝑥 ∈ ℝ𝑛 : ∃𝑦 ∈ ℝ𝑚 , 𝑔1 𝑥, 𝑦 ≤ 0, 𝑔2 𝑥, 𝑦 ≤ 0  

(d) Follower‟s rational reaction set for 𝑥 ∈ 𝑆 𝑋 : 

𝑃 𝑥 =  𝑦 ∈ ℝ𝑚 : 𝑦 ∈ arg min 𝑓2 𝑥, 𝑤 :𝑤 ∈ 𝑆 𝑥    

(e) Inducible region: 

ℐℛ =   𝑥, 𝑦 : 𝑥 ∈ 𝑆 𝑋 , 𝑦 ∈ 𝑃 𝑥   

Definition 2.1.1:  𝑥∗, 𝑦∗ ∈ ℝ𝑛+𝑚  is said to be an optimal solution of the BLP problem 

(1.2.2), for if it gives the maximum value to the leader‟s objective function over the 

inducible region (ℐℛ). 
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In terms of the definitions stated above, the BLP problem (1.2.2) can be re-

expressed as the following. 

max
 𝑥,𝑦 

𝑓1 𝑥, 𝑦  

   s.t.  𝑥, 𝑦 ∈ ℐℛ                                              (2.1.1) 

When we express the BLP problem (1.2.2) as an optimization problem (2.1.1), we 

must note that the leader has no direct control over the follower‟s variables 𝑦, but can 

indirectly control the follower by choosing such an 𝑥 which maximizes his objective 

function 𝑓1 𝑥, 𝑦  with 𝑦 as the follower‟s rational response (i.e., 𝑦 ∈ 𝑃 𝑥 ). 

To ensure that the BLP problem (2) is well-posed, following assumptions are 

needed to be considered. 

1. 𝑆 is a non-empty compact set. 

2. For any decision on 𝑥 taken by the leader, the follower should have some room to 

respond. Mathematically, it is expressible as 𝑃 𝑥 ≠ ∅.  

3. In fact, for the leader to assess the response 𝑦 ∈ ℝ𝑚  on behalf of the follower for 

each possible action (𝑥 ∈ ℝ𝑛  such that 𝑃 𝑥 ≠ ∅), the uniqueness of response is 

ensured through the assumption that 𝑃 𝑥  is a singleton set in ℝ𝑚 .  

Remark 2.1.1: The third assumption listed above indicates that the function 𝑃 is a point-

to-point map. For the situation where this assumption is not fulfilled the concept of 

cooperative and non-cooperative BLP is discussed accordingly depending on the behavior 

of the follower 

With this fundamental discussion on what a solution of a single-leader-follower 

BLP problem means, the development of solution algorithms further depends upon the 

particular types of BLP problem. Henceforth, we get into the solution approaches for each 

type of BLP problems distinguished from others as per the classifications made in 

subsection 1.2.1.  

 

Linear BLP problems with continuous variables 

A problem with general structure given by (2) is termed as linear BLP problem if all 

the constraints and objectives at both the levels are linear in the variables 𝑥 and 𝑦. Thus a 
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general linear BLP problem will have a structure given as following. For given 𝑐1, 𝑐2 ∈

ℳ1×𝑛 ℝ 5, 𝑑1, 𝑑2 ∈ ℳ1×𝑚 ℝ , 𝐴1 ∈ ℳ𝑟×𝑛 ℝ , 𝐵1 ∈ ℳ𝑟×𝑚 ℝ , 𝐴2 ∈ ℳ𝑠×𝑛 ℝ , 

𝐵2 ∈ ℳ𝑠×𝑚 ℝ , and for 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ𝑛 , 𝑦 =  𝑦1, 𝑦2, … , 𝑦𝑚 ∈ ℝ𝑚  the 

representation a linear BLP problem is given as following. 

 

 

                      (2.1.2) 

 

 

In terms of the terminologies discussed above and the optimization problem (2.1.1) 

explained as an equivalent of BLP problem (1.2.2), an equivalent of linear BLP problem 

(2.1.2) can be expressed as following. 

max
 𝑥,𝑦 

𝑐1𝑥 + 𝑑1𝑦 

  s.t.  𝑥, 𝑦 ∈ ℐℛ                                               (2.1.3) 

(Here, ℐℛ represents the inducible region corresponding to the BLP problem (2.2.2).) 

With this prelude of mathematical structure of linear BLP problem, we present the 

review of literature on solution methods to solve linear BLP problems. 

Classical methods available in the literature for solving a linear BLP problem can 

broadly be classified into three categories depending upon their approaches to handle the 

follower‟s problem. First category is of vertex enumeration approach which is based on 

extreme point ranking method for solving linear programming problems [118]. The K-th 

best algorithm is suggested by Bialas & Karwan [119] following this approach. Authors 

base this algorithm on (a) the result that the solution of a linear BLP problem occurs at a 

vertex of S (in ℝ𝑛+𝑚 ) (proved explicitly later by Bard [120] also), and (b) the fact that 

inducible region is a subset of the constrained region (𝐼𝑅 ⊆ 𝑆). Algorithm suggests to 

sequentially explore vertices of constrained region 𝑆 for optimality of the leader‟s 

                                                           
5
 For any 𝑝, 𝑞 ∈ ℤ+, ℳ𝑝×𝑞 ℝ  denotes the set of all matrices over ℝ of order 𝑝 × 𝑞. 

                                     max
𝑥∈ℝ𝑛

𝑐1𝑥 + 𝑑1𝑦                              

                                             max
𝑦∈ℝ𝑚

𝑐2𝑥 + 𝑑2𝑦          

         s.t. 𝐴1𝑥 + 𝐵1𝑦 ≤ 0                                                   

where, 𝑦 is an optimal solution of follower‟s problem for a 

given 𝑥 

         s.t. 𝐴2𝑥 + 𝐵2𝑦 ≤ 0. 
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objective function (i.e., solve the following linear programming problem (2.1.4)) and then 

test whether that particular point belongs to the inducible region (ℐℛ) or not.  

max
 𝑥,𝑦 

𝑐1𝑥 + 𝑑1𝑦 

   s.t.  𝑥, 𝑦 ∈ 𝑆                                               (2.1.4) 

where, 𝑆 =   𝑥, 𝑦 : 𝑥 ∈ ℝ𝑛 , 𝑦 ∈ ℝ𝑚 , 𝐴1𝑥 + 𝐵1𝑦 ≤ 0, 𝐴2𝑥 + 𝐵2𝑦 ≤ 0 . 

In case, of an affirmative result, the optimal solution of BLP problem (2.1.2) is 

achieved. If such an optimal solution does not belong to ℐℛ, then the algorithm 

suggests exploring for next best solution of (2.1.4) and then test again that one for 

being element of ℐℛ. 

The second approach is based on exploiting the Karush-Kuhn-Tucker (KKT) 

conditions for the lower-level problem. Methods following this approach [121–124] 

suggest obtaining the constraint qualifications based on KKT conditions 

corresponding to the lower-level optimization problems, annex them in the upper-

level problem, and then handle the complimentarity problem through different ways. 

The third approach suggested in works of Anandalingam and White [125,126] 

is based on penalty function defined by appending the duality gap of the follower‟s 

problem into the leader‟s objective function. The theoretical support behind this 

approach lies in the fact that the duality gap for the follower‟s problem becomes zero 

for if  𝑥, 𝑦 ∈ ℐℛ. Some other theoretical approaches for solving BLP problems by 

expressing them as single-level optimization problems are [127,128]. 

The only evolutionary approach available in the literature for solving a linear 

BLP problem is developed by Hejazi et al. [129]. Authors suggest first converting the 

linear BLP problem to a single level optimization problem by annexing the KKT 

conditions equivalent to the lower level linear programming problem (LPP), and then 

solve the resulting problem using a binary coded GA. 

 

Nonlinear BLP problems with continuous variables 

The problem with general structure (1.2.2) is specified as non-linear BLP problem 

for if at least one of the functions 𝑓1 𝑥, 𝑦 , 𝑓2 𝑥, 𝑦 , 𝑔1 𝑥, 𝑦 , and 𝑔2 𝑥, 𝑦  are non-linear 

in  𝑥, 𝑦 .  
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Classical methods available in the literature for solving a nonlinear BLP problem 

can broadly be classified into different categories depending upon their approaches to 

handle the follower‟s problem. Starting from the most fundamental one, first category is 

based on exploiting the KKT conditions for the lower-level problem. Method following 

this approach [130] suggest obtaining the constraint qualifications based on KKT 

conditions corresponding to the lower-level optimization problems, annex them in the 

upper-level problem, and then handle the complimentarity problem through different 

ways. The next category of methods is based on the descent direction approach which 

extracts derivative information for deciding on the direction of exploration [114,131,132]. 

Another category of methods based on penalty function approach are suggested in [133–

135]. Methods following the trust region approach for solving nonlinear BLP problems 

with continuous variables are [136–138]. One more method based on branch-and-bound 

approach is available in literature for solving BLP problems specifically with leader‟s 

objective function linear in  𝑥, 𝑦 , follower‟s objective function quadratic in  𝑥, 𝑦  and 

leader‟s constraints independent of 𝑦 (c.f., [139]). 

There are only two evolutionary approaches available in the literature for solving a 

nonlinear BLP problem with continuous variables. Both are Nested approaches which 

suggest applying GA at upper level and directly solving the parameterized lower level 

problem. Mathieu et al. [140] suggest the approach for the case in which lower level 

parametric optimization problem is a linear programming problem in follower‟s variables. 

Whereas, Yin [141] suggest applying Frank-Wolfe algorithm for solving non-linear 

programming problem at lower level. 

 

Discrete BLP problems 

The problem with general structure (1.2.2) is specified as discrete BLP problem for 

if variables 𝑥 and 𝑦 are discrete. These problems are also called integer or binary BLP 

problems, depending on the specific types of variables involved. Specific scenarios of 

discrete BLP problems are discussed theoretically as 

 Discrete-Discrete BLP problem: For if 𝑥 ∈ ℤ𝑛  and 𝑦 ∈ ℤ𝑚 . 

 Discrete-Continuous BLP problem: For if 𝑥 ∈ ℤ𝑛  and 𝑦 ∈ ℝ𝑚 . 

 Continuous-Discrete BLP problem: For if 𝑥 ∈ ℝ𝑛  and 𝑦 ∈ ℤ𝑚 . 
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In case, some of variables among  𝑥, 𝑦  are continuous and other discrete, then such 

a hierarchical problem is also termed as mixed-integer BLP problem. 

The review of literature is presented here together for both linear and nonlinear 

discrete BLP problems, as the available solution approaches focus mainly on the 

discreteness instead of linearity or nonlinearity. Fundamental work by Vicente et al. [142] 

demonstrates that the inducible region for each scenario can be different for same 

problem. Authors demonstrate further that a discrete variable at any level of the problem 

can lead to a disconnected inducible region. 

Most commonly used branch-and-bound technique and branch-and-cut to handle 

discreteness in optimization problems remain the base for work on classical methods for 

solving discrete BLP problems. Methods available in the literature mostly use the nested 

approaches or KKT-based single level reduction approach (for the case when lower level 

problem involves all continuous variables) to handle the hierarchical structure of discrete 

BLP problems [116]. 

Vicente et al. [142] address discrete linear BLP problems to analyze the properties 

and existence of the optimal solution for different scenarios listed above. Moore and Bard 

[143] propose a branch-and-bound approach with a nested structure for solving mixed-

integer linear BLP problem. But the approach is non-scalable beyond a few integer 

variables. Same authors handle binary BLP problem in [144]. Bialas and Karwan [121] 

use branch-and-cut technique seeking incremental improvements in the upper level 

objective function to solve the continuous-discrete linear BLP problem. Some authors use 

Bender-decomposition-based techniques along with KKT-based reduction techniques to 

solve mixed-integer BLP problems in studies [145–147]. 

Sinha et al. [116] in their review on methodologies to solve BLP problems indicate 

a scope of algorithmic development by pointing out the shortcoming of existing 

methodologies to solve discrete BLP problems involving a large number of variables. 

Due to this drawback of existing methodologies the evolutionary methods have been 

attempted to solve discrete BLP problems in [148–154]. By far, no evolutionary 

algorithm is developed for efficiently solving mixed-integer BLP problems by utilizing 

the properties of discreteness and the problem structure. 
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Multi-objective BLP problems 

Conforming to terminologies discussed for defining a solution of a BLP problem 

(presented in the beginning of section 2.1.1), the concept of “weak efficiency set of 

solutions to the lower level problem” is defined for MOBLP problems in place of 

“follower‟s reaction set”. 

Weak efficiency set of solutions to the lower level problem for 𝑥 ∈ 𝑆 𝑋 : 

𝑃 𝑥 =  𝑦 ∈ ℝ𝑚 : 𝑦 ∈ argmin 𝑓2 𝑥, 𝑤 :𝑤 ∈ 𝑆 𝑥    

A solution of a multi-objective BLP problem is discussed through following 

definitions [155]. 

Definition 2.1.2: For a fixed 𝑥 ∈ 𝑆 𝑋 , if 𝑦 is a Pareto-optimal
6
 solution to the lower 

level problem, then  𝑥, 𝑦  is a feasible solution to the problem (1.2.4). 

 Definition 2.1.3: If   𝑥∗, 𝑦∗  is a feasible solution to the problem (1.2.4) and there are no 

 𝑥, 𝑦 ∈ 𝐼𝑅, such that 𝑓1 𝑥, 𝑦 ≻ 𝑓1 𝑥
∗, 𝑦∗ , then  𝑥∗, 𝑦∗  is a Pareto-optimal

7
 solution to 

the problem (1.2.4). 

Remark 2.1.2:  

(1) For 𝑝 > 1, the solution set to the overall problem (1.2.4) is thus referred as the 

leader‟s Pareto-optimal frontier. 

(2) For the follower‟s problem to be multi-objective (i.e., 𝑞 > 1), corresponding to any 

given value of leader‟s variables 𝑥, there is a set of Pareto-optimal solutions of the 

follower‟s multiobjective optimization problem parameterized in 𝑥. Thus in this case 

the lower level optimization problem as a part of BLP problem (1.2.4) represents a 

set-valued map defined as 𝛹: 𝑆 𝑋 → ℘ ℝ𝑚   such that 

𝛹 𝑥 = argmax   𝑓2 𝑥, 𝑦 : 𝑔2 𝑥, 𝑦 ≤ 0 , which is the Pareto-optimal set of the 

follower‟s optimization problem parameterized in 𝑥.  

                                                           
6
 For multi-objective lower level problem (i.e., 𝑞 > 1), a response of the follower is considered in terms of 

Pareto-optimal solution. Whereas, for if lower level problem involves single objective (i.e., 𝑞 = 1), a 

response of the follower is considered in terms of an optimal solution. 
 
7
 For multi-objective upper level problem (i.e., 𝑝 > 1), a solution of the leader‟s problem is considered in 

terms of Pareto-optimal solution. Whereas, for if upper level problem involves single objective (i.e., 𝑝 = 1), 

a solution of the leader‟s problem is considered in terms of an optimal solution. 
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A more practical approach to tackle the MOBLP problems is possible if the leader 

is able to identify the choice function or pattern of the follower regarding the trade-off 

between multiple objectives of the later. Such patterns can be learnt through the 

identification of weights of objective functions of the lower level problem as decided by 

the follower. 

Eichfelder [156] proposes a theoretical approach to solve MOBLP problems by 

blending a numerical optimization technique to solve the lower level optimization 

problem with an adaptive exhaustive search method to handle the upper level 

optimization problem. Shi and Xia [157] use 𝜖-constraint method at both levels of 

MOBLP problem to convert the problem into an 𝜖-constraint BLP problem. Authors 

further replace this 𝜖-constrained BLP problem with a single level optimization problem 

by replacing the lower level problem with equivalent KKT conditions. Both the solution 

methodologies for MOBLP problems have been developed by considering multiple 

assumptions and demonstrated only on minuscule illustrations. Computational 

expensiveness and non-scalability to large-scale problems is noted for these 

methodologies by Sinha et al. [116]. 

For some theoretical results on optimality conditions for MOBLP problems 

research articles [158–160] can be referred. A more recent development by Lafhim [161] 

on necessary conditions for local weak efficient solution of MOBLP problem indicates 

the scope of emergence of research in the  context of solution methodologies for MOBLP 

problems. 

Evolutionary approaches like particle swarm optimization (PSO), hybridized 

evolutionary algorithms, GA have been used in literature to solve MOBLP problems with 

different variations through linearity [55], discreteness of variables [162]. The concerns 

of computational expense on solution methodologies for MOBLP problem which are 

noted above are addressed by Sinha [163]. The author proposes a progressively 

interactive evolutionary algorithm by considering interaction of lower level decision-

maker with upper level decision-maker for obtaining the most preferred response at upper 

level. The algorithm is thus suggested for a particular case of MOBLP problem similar to 

the optimistic BLP problem. 
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2.1.2 Methods for solving multi-leader-follower BLP problems 

BLP problems which involve multiple leaders or multiple followers have been 

addressed to a very limited extent for solution algorithms. A little research in this area is 

therefore listed in a single section only, but under separate headings of single-leader-

multi-follower, multi-leader-single-follower, and multi-leader-multi-follower BLP 

problems. For a BLP problem, where there are multiple leaders or followers which 

compete with each other for optimizing their individual objectives while incorporating the 

reaction or action from the other level, the complexity of the decision-making is observed 

to be very high. This situation is attributively termed as a Stackelberg-Nash game [164]. 

For understanding theoretically such variants of BLP problems, it is essential to 

understand the fact that at whichever level there are multiple decision-makers, the 

competition among them is appropriately modelled as a Nash game. 

Single-leader-multi-follower BLP problems 

In case of single-leader-multi-follower BLP problem (1.2.4), for any given value of 

leader‟s variables 𝑥, the reaction of followers (𝑦 =  𝑦1, 𝑦2, … 𝑦𝐾 ) needs to be computed 

by solving a constrained Nash-equilibrium game problem of 𝐾 players. The players in 

this situation are refer to the followers of BLP problem (1.2.4) and their optimization 

problems constituting the Nash-game precisely comprise the lower level problem of 

(1.2.4) parameterized in the values of the leader‟s variables 𝑥. It should be noted that in 

this framework, corresponding any given value of leader‟s variables 𝑥, the reaction 𝑦 

refers to a Nash-equilibrium point of the corresponding constrained Nash-equilibrium 

problem of the followers. For any given value of leader‟s variables 𝑥, once this Nash-

equilibrium point is computed, then only the leader‟s objective function value can be 

calculated. As solving a constrained Nash-equilibrium problem is itself a taxing task, the 

complexity involved in solving a single-leader-multi-follower BLP problem can be easily 

realized. 

Anandalingam [165] suggests a penalty function based approach for solving the 

linear case of single-leader-multi-follower BLP problem. Lu [166] suggests a method 

based on KKT approach for solving again the linear case of this variant of BLP problem. 

Calvete and Galé [167] proves that single-leader-multi-follower linear BLP problem with 

independent followers can be converted into a single-leader-follower linear BLP problem. 
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A GA-based approach for solving single-leader-multi-follower BLP problem is 

developed by Liu [164]. Author demonstrates the methodology by solving a few 

problems involving a maximum of eight variables, but the computational time reported by 

the author is surprisingly high even for such miniscule problems. 

Multi-leader-single-follower BLP problems 

The multi-leader-single-follower BLP problem addresses the situation of multiple 

leaders competing with each other in which the reaction of a follower in response to their 

actions affects their decisions-making. This competition among them amounts to a 

constrained Nash-game problem in which the follower‟s optimization problem is included 

as a part of constraints of each leader‟s optimization problem. This indicates that multi-

leader-single-follower BLP problems also involve a complex mathematical structure, 

making it difficult to develop some solution methodology. This variant of BLP problems 

is not seen to be properly addressed in literature for solution algorithms. 

Zhang et al. [168] present nine cases of multi-leader-single-follower BLP problem, 

and corresponding decision models depending upon various relationships between 

multiple leaders. All these models consider the follower‟s problem as a linear 

programming problem. Authors further propose use nested approach by applying particle 

swarm optimization algorithm at both levels for solving the problem. 

No more work is available in literature specifically addressing this variant of BLP 

problems. Some researchers have addressed this problem as a particular case of multi-

leader-multi-follower BLP problems with response of follower considered as optimal 

solution of single follower‟s optimization problem solved for any given vector of values 

for leaders‟ variables [169,170]. 

Multi-leader-multi-follower BLP problems 

Even more perplexed situation is of a BLP problem where there are multiple leaders 

competing among themselves as well as multiple followers competing among themselves. 

The situation involves Nash-games at both levels of action and reaction, wherein to the 

environment created due to a Nash-equilibrium point of competition among leaders, the 

followers react with another Nash-equilibrium point settled for the competition among 

them. General BLP problem involving multiple leaders and/or multiple followers 

involving continuously differentiable functions is addressed by Leyffer and Munson 
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[169], Hori and Fukushima [170] for developing solution algorithms through iterative 

approaches. 

Sinha et al. [171] suggest an evolutionary algorithm for solving the linear multi-

leader-multi-follower BLP problem in which GA is used for exploration of variables at 

both levels. As this approach suggests using evolutionary exploration at both levels for 

approximating a solution of the problem, therefore these approaches are computationally 

too expensive to be applied to the problems involving large number of variables. Nie 

[172] handles a special type of multi-leader-follower BLP problem in which some among 

a group of players become leaders and rest as followers, and this selection of leaders keep 

on changing dynamically. 

To summarize, there is a limited research on algorithms for solving BLP problems 

involving multiple leaders and/ or multiple followers. Over that, algorithms existing in the 

literature in this purview have strong limitations and are incapable of handling large-scale 

problems [173]. 

 

2.2. Genetic algorithms for solving optimization problems 

For handling NP-hard or nondeterministic polynomial time hard optimization 

problems or large-scale practical optimization problems the classical methods fail to find 

even a local optimal solution or a near-optimal solution [174]. For such problems it is 

aimed to look for a method capable of finding a good feasible solution in reasonable 

amount of time. Metaheuristic methods are observed to work successfully for producing a 

good-quality solution within a practical time frame most of the time. The mind map 

shown in Figure 2.1 lists various metaheuristic algorithms developed so far for solving 

various optimization problems.  

All these metaheuristic algorithms are basically inspired from the nature and use a 

blend of global exploration and local exploitation of the search space. There are no agreed 

guidelines available in literature for choosing an algorithm for solving large-scale 

nonlinear optimization problems. Especially for those problems which are 

nondeterministic polynomial time hard or NP-hard, any particular algorithm cannot be 

identified as all time efficient one [175]. Thus, it is difficult to justify the choice of one 

particular artificially intelligent metaheuristic algorithm over another for solving such 
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problems. Among all these metaheuristic algorithms, genetic algorithms (GAs) are the 

most incipient one and have been widely used for solving various optimization problems, 

especially the complex and NP-hard ones. 

 

Figure 2.1: Various metaheuristic algorithms for solving optimization problems 

GA approaches are practically relevant till date, as are being successfully used by 

researchers for solving practical problems in emerging areas of optimization. The area of 

BLP is also indifferent in this context. As the research work presented in subsequent 

chapters of this thesis include design of GA-based methodologies for solving variants of 

BLP problems, therefore it is impelling to present here fundamentals of GAs. 

 

2.2.1 Fundamentals of genetic algorithms 

The concept of GA as originally conceived by John Holland, Professor at 

University of Michigan, Ann Arbor, and developed with his students, codes the 
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chromosomes as binary numbers. For fundamental details one can refer to well 

documented texts [176,177]. Since then the GAs with its variants have broadly evolved as 

a class of methodologies, which the researchers have used innovatively for solving 

various types of optimization problems formulated for almost every area of application. 

GA involves some basic terminologies which are explained below. 

 Chromosome: Chromosome is a set of numbers ordered generally in a form of 

string or sequence, and representing a candidate solution to the problem under 

consideration. There are multiple chromosomes involved in a practical execution of 

GA and all are of a fixed length. 

 Gene: A gene is an element position of a chromosome. 

 Allele: Allele is a value which a gene takes in a chromosome. 

 Population: A set of certain number of chromosomes taken together during any 

iterative stage of the GA. 

 Generation: Each iterative stage of GA is termed as a generation.  

 Population size: The number of chromosomes in any population of GA is termed 

as population size. It is decided prior to the execution of GA and kept as fixed 

across generations. This depends on the nature and the scale of the problem. There 

has not been any particular mechanism for deciding the population size, and there 

remained a practice to fine-tuned it depending upon the size of the problem being 

solved and complexity involved in computations (for e.g., evaluation of fitness 

function). But very recent research has come up to support a decision on this [178]. 

 Parent and offspring chromosomes: Chromosomes of any particular generation 

on which genetic operators
8
 are applied are termed as parent chromosomes whereas 

those obtained as outcome of these operators are termed as offspring. 

The execution of GA involves an iterative computational procedure performed in 

a sequential manner which is described through a flow chart depicted in Figure 2.2. Steps 

mentioned in the flow chart are further explained hereafter. 

Initialization 

Initial population of chromosomes is generated randomly with an attempt to cover 

a diverse range of candidate solutions. This involves an encoding mechanism to represent 

                                                           
8
 Genetic operators are explained subsequently with detailed explanation on GA. 
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candidate solutions as chromosomes. There are multiple ways available in literature for 

genetic representation of candidate solutions as chromosomes. Apart from the originally 

developed binary coding [176], some other representation used to encode chromosomes 

include real encoding, integer encoding, encoding as matrices, encoding as tree. A GA 

encoding chromosomes using binary numbers is termed as binary-coded genetic 

algorithm (BCGA), whereas the one using real numbers as real-coded genetic algorithm 

(RCGA), and one the using integers only as integer-coded GA. With no superiority of a 

particular way of encoding over the other [179], users choose one depending on its 

appropriateness to the problem being solved. 

Fitness evaluation 

The quality of candidate solutions represented as chromosomes is assessed by its 

fitness function value. For this sake, a fitness function is ingeniously defined so that with 

the improvement in value computed for chromosomes across generations, the 

corresponding candidate solutions move towards becoming a feasible solution with better 

value of the objective function. The fitness function is generally seen to be user defined as 

specific to the problem. Also, some constraint handling techniques for GA suggest using 

penalty functions against infeasibility and associate them with fitness function [180,181]. 

Selection 

From the population of each particular generation some chromosomes are selected 

to breed a new generation. The selection process is so designed to prefer the fitter 

chromosomes (i.e., those with better fitness function value). There are multiple 

procedures suggested in literature for random selection of chromosomes. Most basic one 

is roulette-wheel selection [176] which considers the probability of selecting a 

chromosome proportional to its fitness
9
. Another such procedure is of tournament 

selection, in which fittest chromosome is selected from a randomly selected subset of 

population and this process is repeated till the pool of chromosomes required for breeding 

is complete [182]. The procedure of selecting from top a proportion of chromosomes 

ranked per their fitness to generate the offspring population is termed as truncation 

selection [183]. 

                                                           
9
 Fitness is a relative term which indicates the qualitative status of a chromosome compared with others in 

terms of the fitness function value. 
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Figure 2.2: Flowchart of GA for solving optimization problems  
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Elitism is a strategy which is used by annexing it to various selection techniques 

with an intension of improving convergence speed of the GA. The strategy is about 

carrying over a small proportion of best chromosomes of the previous generation to the 

next one [184]. Experimental studies (e.g., [185,186]) have examined the efficacy of use 

of elitism into GAs. 

Genetic operators 

Chromosomes selected using any one of procedures mentioned above are operated 

using crossover operator followed by mutation operator. This process generates new 

chromosomes from those which are selected using any of above discussed procedures. As 

the application of these operators generates a new population from that of previous 

generation, the process is usually termed as breeding or mating. Crossover operator is 

designed to generate a new pair of chromosomes from any pair of selected chromosomes. 

There are application-dependent as well as application-independent crossovers suggested 

in literature, some review papers worth referring in this context are [187–189]. Some 

application specific crossover operators have recently been developed [190]. There are 

many crossover operators available in literature which are application independent in 

general but can be used appropriately depending upon the situation, to name some one-

point crossover and two-point crossover [191], multi-section crossover [192], Laplace 

crossover [193]. 

On the other hand, the mutation operator is designed to alter alleles of one or more 

randomly selected genes thereby generating a new chromosome. There are many mutation 

operators available in literature, to name some Gaussian mutation operator [194], Cauchy 

mutation operator [195], mean mutation operator [196], power mutation [197]. Review 

articles on mutation operators suggested in literature can be referred in this context 

[198,199]. Some application specific mutation operators can be referred [200–202].  

The literature on the genetic operators is enormous and it is practically impossible 

to present here an exhaustively review of it. We explain in subsequent sections only those 

genetic operators which we have specifically used in the research work explained, viz, 

Laplace crossover and power mutation. 
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Termination 

The sequential computational process continues from one generation to the next 

until a termination condition is met. Conditions generally used as termination criteria are:  

 a solution is found that satisfies minimum criteria, 

 pre-fixed number of generations is reached, 

 pre-fixed computation time spent, 

 best fitness value across generations after reaching a plateau does not improve any 

more for many successive iterations, 

 a combinations of above criteria. 

Designing of GA for solving any particular optimization problem requires the user 

to decide on (a) type of encoding of chromosomes (i.e., genetic representation), (b) choice 

of genetic operators, and (c) defining a problem specific fitness function. In case of 

practical problems involving a large number of variables and large real number values 

associated with those variables, the use of BCGA is faced with some issues like hamming 

cliff, uneven variations due to changes in alleles of genes representing significant and 

insignificant bits. Such challenges are not faced with RCGA. The chromosome encoding 

is also simple and straightforward for RCGA as compared with BCGA. In case of mixed 

integer programming problems (MIPP) the encoding of chromosomes can be done with 

the genes representing real variables to have a real allele and those representing integer 

variables to have integer allele. Such algorithms are termed in literature as RCGAs for 

MIPPs. 

 

2.2.2 Metaheuristic-based approaches for solving BLP problems  

Majorly two metaheuristic-based approaches are available in the literature for 

solving a BLP problem. First one applies metaheuristic algorithm at both levels of BLP 

problem, one for exploration of leader‟s variables and the other for approximating the 

corresponding reaction of follower. The second approach suggests applying a 

metaheuristic algorithm for exploration of leader‟s variables only, while directly solving 

the follower‟s parameterized optimization problem for obtaining the reaction 

corresponding to any action of leader encoded for exploration through the metaheuristic 
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algorithm. This approach is commonly termed as Nested approach for solving BLP 

problems. 

The fitness function in these approaches is mostly seen to be considered as 

leader‟s objective function or a composite of the same with some real function. As a BLP 

problem is posed to assess best action of the leader while incorporating the follower‟s 

reaction mechanism, therefore defining the fitness function for corresponding to the 

leader‟s objective function justifies the comparison of chromosomes of any population 

and appropriately reflects the progress of the algorithmic computations over the 

generations.  

For the situations in which solving the follower‟s problem for any given values of 

leader‟s variables is a challenging task, the first approach is observed to be appropriate to 

apply. On the other hand, if computing the response of follower(s) by directly or 

indirectly solving the follower‟s optimization problem is viable, the nested approach gives 

an advantage over the first approach. The advantage of nested approach in this situation is 

that herein each chromosome representing vector of values of leader‟s variables along 

with corresponding reaction of follower(s) corresponds to a point in inducible region of 

the BLP problem. Thereby, the exploration by such an algorithm remains confined to 

feasible solution of the BLP problem. This provides superiority to the nested approach 

over the other metaheuristic approach in terms of computational efficiency and closeness 

to the realization of the implementation of the solution due to exactness of the computed 

response. 

In our research work we have adopted GA-based nested approach for solving the 

BLP problems formulated to address some strategic decision-making issues. The 

execution of this approach is described through the flow chart depicted in Figure 2.3. 
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Figure 2.3: Flow Chart of GA-based nested approach for solving BLP problems  
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2.2.3 Detailed explanation of genetic operators used in our work 

In our research work included in subsequent chapters, the modelled optimization 

problems involve a mix of integer and real variables. Also, these problems are of a 

practically large scale, requiring the use of metaheuristic algorithms like GAs for solving 

them. Therefore, we have designed problem specific RCGAs with chromosome-encoding 

through real numbers or integers. As a second important step towards designing such a 

GA, we have used Laplace crossover [193] and power mutation [197] as genetic 

operators. The reason behind using these operators is that they have been appropriately 

developed to use in RCGAs for MIPPs and preserve the feasibility of the problem further 

the offspring chromosomes generated as a result. The success of these operators is 

demonstrated in a later development [203]. Popular use in further research developments 

of GA indicates their acceptance to use appropriately [204–207]. These genetic operators 

are accordingly explained below. 

Laplace crossover [193] 

It generates two offspring chromosomes 𝑦1  =   𝑦1
1, 𝑦2

1, . . . , 𝑦𝑠
1  and 𝑦2  =

  𝑦1
2, 𝑦2

2, . . . , 𝑦𝑠
2  from the parent chromosomes 𝑥1  =   𝑥1

1, 𝑥2
1 , . . . , 𝑥𝑠

1  and 𝑥2  =

  𝑥1
2, 𝑥2

2, . . . , 𝑥𝑠
2 . A random number is uniformly generated in the interval  0, 1  and if it 

is greater than the probability of crossover (pc), then 𝑦1 =  𝑥1 and 𝑦2 =  𝑥2, else 

otherwise Laplace crossover operates on pair 𝑥1 and 𝑥2 to generate 𝑦1 and 𝑦2 as follows. 

Step 1. Generate uniformly distributed random numbers 𝑢𝑖 , 𝑟𝑖 ∈  0, 1  

Step 2. Generate a random number 𝜌𝑖  satisfying the Laplace distribution as: 

𝜌𝑖 =  
𝑎 − 𝑏 log 𝑢𝑖 , 𝑟𝑖 ≤ 1/2;

𝑎 + 𝑏 log 𝑢𝑖 , 𝑟𝑖 ≥ 1/2.
  

where 𝑎 is location parameter and 𝑏 >  0 is a scaling parameter which is taken 

as an integer in present study. 

Step 3. Obtain offspring 𝑦1 and 𝑦2 with  

𝑦𝑖
1 = 𝑥𝑖

1 + 𝜌𝑖  𝑥𝑖
1 − 𝑥𝑖

2  

𝑦𝑖
2 = 𝑥𝑖

2 + 𝜌𝑖  𝑥𝑖
1 − 𝑥𝑖

2 . 

Step 4. If any of the 𝑦𝑖
1 and/ or 𝑦𝑖

2 is not an integers, then it is truncated to an integer 

by using ceiling or floor functions with probability 0.5. 
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Power mutation [197] 

This operator generates the chromosome 𝑦 =  𝑦1, 𝑦2, … , 𝑦𝑠    from the parent 

chromosome 𝑥 =  𝑥1, 𝑥2, … , 𝑥𝑠   . For each  𝑖 = 1,… , 𝑠, a random number is uniformly 

generated in the interval  0, 1  and if it is found to be greater than the probability of 

mutation (pm), then 𝑦𝑖 = 𝑥𝑖 , else otherwise mutation is carried out in the i
th

 gene as 

follows. 

Step 1. Generate a random number 𝜐𝑖 ∈ [0, 1] following the uniform distribution. 

Step 2. Obtain 𝜂𝑖 =  𝜐𝑖 
𝑝 , where 𝑝 is considered as an integer in case of integer 

restriction on the 𝑖𝑡ℎ component of the chromosome. 

Step 3. Generate a random number 𝑟 ∈  0, 1  uniformly distributed. 

Step 4. Take 𝜏 =
 𝑥𝑖−𝑥𝑖

𝑙 

 𝑥𝑖
𝑢−𝑥𝑖 

 , 𝑥𝑖
𝑙  and 𝑥𝑖

𝑢  are lower and upper bounds respectively on the 𝑖𝑡ℎ 

component of the decision variable, and obtain 𝑦𝑖  from 𝑥𝑖  as 

𝑦𝑖 =  
𝑥𝑖 − 𝜂𝑖 𝑥𝑖 − 𝑥𝑖

𝑙 , 𝜏 < 𝑟;

𝑥𝑖 + 𝜂𝑖 𝑥𝑖
𝑢 − 𝑥𝑖 , 𝜏 ≥ 𝑟.

  

Step 5. If 𝑦𝑖  is not an integer, then it is truncated to an integer by using ceiling or floor 

functions with probability 0.5. 

 

2.3. Nash games and their role in multi-leader-follower BLP problems 

 

2.3.1 Nash games 

A competitive situation is termed as a Nash game when two or more decision-

makers choose their strategies simultaneously or consequently but without any knowledge 

on opponents‟ actual decision. Although herein, it is assumed that each decision-maker 

has complete information about all possible strategies available to other opponents. 

Another assumption considered in this context is that all of them behave non-

cooperatively. In the context of this Nash game the decision-makers are customarily 

called as players and sets of values of decision variables under their control are termed as 

strategies. 



 

 
50 

Unconstrained Nash Game 

Definition 2.3.1: The solution of a Nash-game, termed as a Nash-equilibrium point, is 

identified as the vector of values corresponding to decision variables of each player such 

that no player can improve the individual payoff by altering its strategy with other players 

adhering to their strategies specified by this point. 

Herein, it is assumes that: 

 The payoff of each player is influenced by the choice of that particular player‟s 

strategy and that of the other players too. 

 All the players aim to maximize their own payoffs. 

 All the players can control on their individual strategy. 

Mathematically, a Nash-equilibrium point can be expressed as following. 

Definition 2.3.2: For a Nash game among 𝐾 players, let 𝑓𝑘 𝑥1, … , 𝑥𝐾  denote the payoff 

of player 𝑘 (𝑘 = 1, 2, … , 𝐾), with all possible values of 𝑥𝑘  as the strategies available to 

player 𝑘. A point 𝑥∗ =  𝑥1
∗, … , 𝑥𝐾

∗   is a Nash-equilibrium point of this game if  

   𝑓𝑘 𝑥1
∗, … , 𝑥𝑘

∗ , … , 𝑥𝐾
∗  ≥ 𝑓𝑘 𝑥1

∗, … , 𝑥𝑘 , … , 𝑥𝐾
∗  ,   ∀𝑥𝑘 , ∀𝑘.    (2.3.1) 

Remark 2.3.1: (Necessary condition for a Nash-equilibrium point) 

For an unconstrained Nash-game with strategy vector 𝑥 =  𝑥1, … , 𝑥𝐾  as 

continuous and payoff functions 𝑓𝑘  continuously differential w.r.t. 𝑥𝑘 , above condition 

(2.3.1) implies that the Nash-equilibrium point 𝑥∗ is a stationary point of each player‟s 

payoff function 𝑓𝑘 , i.e., 𝑥∗ satisfies  

                                                 
𝜕𝑓𝑘
𝜕𝑥𝑘

= 0, ∀ 𝑘.                                                 (2.3.2) 

These conditions (2.3.2) are famously termed as “first order conditions (FOCs)”. 

Further, for developing a method to solve an unconstrained Nash-equilibrium 

problem, sufficient conditions should be established to ascertain a Nash-equilibrium 

point. Following result discuss about when these conditions become sufficient to 

conclude the existence of Nash-equilibrium point. 
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Result 2.3.2: (Sufficiency of FOCs in case of concavity of payoff functions [208]) 

If the payoff 𝑓𝑘  of each player 𝑘 (𝑘 = 1, 2, … , 𝐾) is concave functions w.r.t. the strategy 

𝑥𝑘 , then the FOCs (2.3.2) become sufficient for concluding a point 𝑥∗ =  𝑥1
∗, … , 𝑥𝐾

∗   is a 

Nash-equilibrium point. 

Result 2.3.3: (Sufficiency of FOCs in case of quasi-concavity of payoff functions [209]) 

FOCs (2.3.2) are sufficient for existence of Nash-equilibrium even for the case when 

payoffs 𝑓𝑘  quasiconcave. 

Remark 2.3.1: If the profit function is concave with respect to price, FOCs (2.3.2) 

become sufficient for Nash-equilibrium point of a Nash game among players competing 

to maximize individual profit. However, in the case of non-concavity, and in the situation 

when no sufficient condition is satisfied, then the solutions obtained by solving the 

conditions (2.3.2) must be verified using the Nash equilibrium definition post-hoc. 

Further, a specific situation where the uniqueness of Nash equilibrium can be 

assured is discussed in following result by Anderson et al. [209]. 

Result 2.3.4: For strictly quasi-concave payoff function defined to model the profit using 

the logit demand results in a unique Nash price equilibrium. 

A basic method for solving a Nash game stems from the above discussed results 

which is known as FOC method [208].  

Some other methods discussed in literature for solving unconstrained Nash games 

are: relaxation method [210], projection method [211], nonlinear complementarity 

problem approaches [212], fixed point iteration method [213]. 

 

Constrained Nash Game 

Mathematically, a constrained Nash game can be expressed as following. 

Definition 2.3.3: For a Nash game among 𝐾 players, with 𝑓𝑘 𝑥1, … , 𝑥𝐾  denoting the 

payoff to player 𝑘 (𝑘 = 1, 2, … , 𝐾), and values of 𝑥𝑘  as the strategies available to player 

𝑘. If the strategies available to each player 𝑘 is restricted by a set of equality constraints 

represented by 𝑕𝑘 𝑥1, … , 𝑥𝐾 = 0 and a set of inequality constraints represented by 

𝑔𝑘 𝑥1, … , 𝑥𝐾 ≤ 0, then the constrained Nash game can be mathematically expressed as a 

set of following 𝐾 constrained optimization problems considered together.  
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                     (2.3.3) 

 

 

Definition 2.3.4: Nash-equilibrium point of such a game refers to a point  𝑥1
∗, … , 𝑥𝐾

∗   

satisfies (2.3.1) and all the constraints (of each player) given in (2.3.3). 

In the case of a constrained Nash-game, the FOCs obtained for the Lagrangian 

function together with additional inequality constraints represent the KKT-necessary 

conditions [214] of Nash equilibrium for regular points [215]. Whereas, Friedman [208] 

suggested sufficient conditions in this case are as following. 

Result 2.3.5: For a non-cooperative game with complete information, Nash equilibrium 

exists if,  

(1) the strategy set is nonempty, compact, and convex for each player;  

(2) the payoff function is defined, continuous, and bounded; and  

(3) each individual payoff function 𝑓𝑘  is concave with respect to individual strategy 𝑥𝑘 . 

Result 2.3.2: Anderson et al. [209] proves the existence of unique (price) equilibrium 

point of a constrained Nash game with strictly quasi-concave payoff functions 

representing the profit functions modelled under the logit demand. Thus, for such a case, 

solution of KKT-necessary conditions would uniquely determine the Nash equilibrium 

prices. 

Next two subsections demonstrate theoretical development of conditions for 

handling Nash game at lower and upper levels of BLP problem, in case of multiple 

players (decision-makers in context of BLP problem) at respective levels.  

 

2.3.2 Nash game situation in single-leader-multi-follower BLP problems 

The literature in this context is minuscule and is listed in section 2.1.2. Majority of 

methods suggest ascertaining Nash equilibrium point based on approaches inspired from 

the above theoretical discussion. The same approach is used by Leyffer and Munson 

[169] in a development towards solution methodology for solving multi-leader-follower 

BLP problem. Authors suggest to, first obtain FOCs for followers‟ problems as a system 

                     max
𝑥𝑘

𝑓𝑘 𝑥1, … , 𝑥𝐾  

  subject to             ∀ 𝑘 = 1, 2, … , 𝐾 

              𝑕𝑘 𝑥1, … , 𝑥𝐾 = 0 

                          𝑔𝑘 𝑥1, … , 𝑥𝐾 ≤ 0 
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of equations, which equivalently represents optimal response of followers competing in a 

Nash game among each other. These FOCs are then suggested to be annexed to the 

leader‟s constraints for obtaining single level optimization problem. Thus, using this 

procedure, a single level optimization problem is obtained as an equivalent of the single-

leader-multi-follower BLP problem. 

 

2.3.3 Nash game situation in multi-leader-single-follower BLP problems 

Theoretical developments for solution methodologies of multi-leader-single-

follower BLP problems can only be taken as a special case from the literature in the 

context of multi-leader-multi-follower BLP problems. Among limited developments, a 

major break-through has come through the work of Leyffer and Munson [169], Hori and 

Fukushima [170]. 

In our research work presented in Chapter 5, we have developed a methodology 

for solving a large scale multi-leader-single-follower BLP problem with bilinear objective 

functions. This methodology is proposed on the basis of a theoretical development 

appropriately derived from the work of Leyffer and Munson [169] for the case discussed. 

First we present here the part of work of Leyffer and Munson [169] used for our 

theoretical development and the same is followed by our theoretical development derived 

for using the same in solution methodology. 

 

Approach of Leyffer and Munson [169] 

A multi-leader-single-follower BLP problem is considered as expressed below for 

𝑘 leaders (indexed 𝑖 = 1,2, … , 𝑘) competing with each other. 

(MLSF-BLP) 

 

 

 

 (2.3.4) 

 

 

 LDMP − 𝑖                    min
𝑥𝑖≥0

𝑓𝑖 𝑥𝑖 , 𝑦  

 FDMP                                  min
𝑤

𝑏 𝑥, 𝑤  

subject to 

           𝑔𝑖 𝑥𝑖 , 𝑦 ≥ 0,  

           𝐺𝑖 𝑥𝑖 , 𝑦 = 0, 

where, 𝑦 is optimal response of the follower corresponding 

to the leaders‟ variables,  𝑥 =  𝑥𝑖 : 𝑖 = 1,2, … , 𝑘 , 

            subject to  

                 𝑐 𝑥, 𝑤 ≥ 0, 

                    𝑤 ≥ 0. 



 

 
54 

Here, (LDMP − 𝑖) is optimization problem of leader 𝑖,  𝑖 = 1, 2, … , 𝑘  in which 

the follower‟s optimization problem (FDMP) is incorporated as a constraint. 

Definition 2.3.1: If, for any given vector 𝑥 =  𝑥𝑖 : 𝑖 = 1, 2, … , 𝑘 , 𝑦 is an optimal solution 

of (FDMP) in (MLSF-BLP), such that the vector  𝑥, 𝑦  satisfy constraints 𝑔𝑖 𝑥𝑖 , 𝑦 ≥ 0 

and 𝐺𝑖 𝑥𝑖 , 𝑦 = 0,  𝑖 = 1, 2, … , 𝑘 , then  𝑥, 𝑦  is a feasible solution of (MLSF-BLP). 

For the (MLSF-BLP) problem described above the penalty approach is described in 

following the steps. 

Step 1: The KKT equivalent of (FDMP) (in variables 𝑤), is expressed as following 

with multipliers denoted by 𝑧 

0 ≤ 𝑤 ⊥  ∇𝑤𝑏 𝑥, 𝑤 − ∇𝑤𝑐 𝑥, 𝑤 𝑧 ≥ 0   (2.3.5) 

0 ≤ 𝑧 ⊥  𝑐 𝑥, 𝑤 ≥ 0.                                (2.3.6) 

Step 2: (a) Redefining 𝑦 as 𝑦 =  𝑤, 𝑧 , and defining 

ℎ 𝑥, 𝑦 =  
∇𝑤𝑏 𝑥, 𝑤 − ∇𝑤𝑐 𝑥, 𝑤 𝑧

𝑐 𝑥, 𝑤 
    (2.3.7) 

 (b) Introducing slack variables 𝑠, the conditions become 

  ℎ 𝑥, 𝑦 − 𝑠 = 0     (2.3.8) 

  0 ≤ 𝑦 ⊥ 𝑠 ≥ 0     (2.3.9) 

Step 3: Incorporating these conditions reduces (MLSF-BLP) to the following 

equilibrium problem with equilibrium constraints (EPEC). 

For each leader 𝑖 = 1, 2, … , 𝑘 

                                         min
𝑥𝑖≥0

𝑓𝑖 𝑥𝑖 , 𝑦  

               subject to  

    𝑔𝑖 𝑥𝑖 , 𝑦 ≥ 0, 

    𝐺𝑖 𝑥𝑖 , 𝑦 = 0, 

    ℎ 𝑥, 𝑦 − 𝑠 = 0, 

    0 ≤ 𝑦 ⊥ 𝑠 ≥ 0. 
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The above equilibrium problem with equilibrium constraints is rewritten as 

following single level constrained Nash game problem. 

 SLNG                          min𝑓𝑖 𝑥𝑖 , 𝑦  

subject to  

    −𝑔𝑖 𝑥𝑖 , 𝑦 ≤ 0, 

    𝐺𝑖 𝑥𝑖 , 𝑦 = 0, 

    𝑠 − 𝑕 𝑥, 𝑦 = 0,              (2.3.10) 

    −𝑥𝑖 ≤ 0, 

    −𝑦 ≤ 0, 

    −𝑠 ≤ 0, 

    𝑌𝑠 ≤ 0. 

(Here, 𝑌 = 𝑑𝑖𝑎𝑔 𝑦1, 𝑦2, … , 𝑦𝑟 .) 

Step 4: A desired solution to (SLNG) is a solution of the following strong-stationarity 

conditions 

∇𝑥𝑖𝑓𝑖 𝑥𝑖 , 𝑦 − 𝜆𝑖
′∇𝑥𝑖𝑔𝑖 𝑥𝑖 , 𝑦 − 𝜈𝑖

′∇𝑥𝑖𝐺𝑖 𝑥𝑖 , 𝑦 − 𝜇𝑖
′∇𝑥𝑖𝑕 𝑥𝑖 , 𝑦 − 𝜒𝑖 = 0         

     … (2.3.11) 

∇𝑦𝑓𝑖 𝑥𝑖 , 𝑦 − 𝜆𝑖
′∇𝑦𝑔𝑖 𝑥𝑖 , 𝑦 − 𝜈𝑖

′∇𝑦𝐺𝑖 𝑥𝑖 , 𝑦 − 𝜇𝑖
′∇𝑦𝑕 𝑥𝑖 , 𝑦 − 𝜓𝑖 +  𝑆𝜉𝑖 = 0    

     … (2.3.12) 

𝜇𝑖
′∇𝑠 𝑠 − 𝑕 𝑥, 𝑦  − 𝜍𝑖

′∇𝑠 𝑠 − 𝜉𝑖
′∇𝑠 𝑌𝑠 = 0              (2.3.13) 

0 ≤ 𝑔𝑖 𝑥𝑖 , 𝑦  ⊥ 𝜆𝑖 ≥ 0                 (2.3.14) 

𝐺𝑖 𝑥𝑖 , 𝑦 = 0                  (2.3.15) 

𝑕 𝑥, 𝑦 − 𝑠 = 0                  (2.3.16) 

0 ≤ 𝑥𝑖 ⊥ 𝜒𝑖 ≥ 0                  (2.3.17) 

0 ≤ 𝑦 ⊥ 𝜓𝑖 ≥ 0                  (2.3.18) 

0 ≤ 𝑠 ⊥ 𝜍𝑖 ≥ 0                  (2.3.19) 

0 ≤ −𝑌𝑠 ⊥ 𝜉𝑖 ≥ 0                  (2.3.20) 
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(Here, 𝑆 = 𝑑𝑖𝑎𝑔 𝑠1, 𝑠2, … , 𝑠𝑟 .) 

Definition 2.3.2: A feasible solution  𝑥, 𝑦  of (MLSF-BLP) is called a strong-stationarity 

point if there exist multipliers 𝜆𝑖 , 𝜒𝑖 , 𝜓𝑖 , 𝜍𝑖 , 𝜉𝑖 , 𝜈𝑖 , 𝜇𝑖  which satisfy strong-stationarity 

conditions (2.3.11) – (2.3.20). 

Step 5: Among the strong-stationarity conditions written above, as (2.3.14), (2.3.17)-

(2.3.20) are complementarity conditions, therefore the process of solving the 

system of conditions (2.3.11) – (2.3.20) can be eased out by solving instead the 

following nonlinear programming problem. If an optimal solution of (2.3.21) – 

(2.3.29) gives the objective function value zero i.e., 𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 0, then that 

optimal solution satisfies the strong-stationarity conditions (2.3.11) – (2.3.20). 

(Pen – NLP) 

min𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 =   𝑥𝑖
′𝜒𝑖 + 𝑡𝑖

′𝜆𝑖 + 𝑦′𝜓𝑖 + 𝑠′𝜍𝑖 + 𝑦′𝑠

𝑘

𝑖=1

                                        (2.3.21) 

subject to  

∇𝑥𝑖𝑓𝑖 𝑥𝑖 , 𝑦 − 𝜆𝑖
′∇𝑥𝑖𝑔𝑖 𝑥𝑖 , 𝑦 − 𝜈𝑖

′∇𝑥𝑖𝐺𝑖 𝑥𝑖 , 𝑦 − 𝜇𝑖
′∇𝑥𝑖ℎ 𝑥𝑖 , 𝑦 − 𝜒𝑖 = 0,     

                                                                                        ∀ 𝑖 = 1, 2, … , 𝑘,   (2.3.22) 

∇𝑦𝑓𝑖 𝑥𝑖 , 𝑦 − 𝜆𝑖
′∇𝑦𝑔𝑖 𝑥𝑖 , 𝑦 − 𝜈𝑖

′∇𝑦𝐺𝑖 𝑥𝑖 , 𝑦 − 𝜇𝑖
′∇𝑦ℎ 𝑥𝑖 , 𝑦 − 𝜓𝑖 +  𝑆𝜉𝑖 = 0,     

                                                                                        ∀ 𝑖 = 1, 2, … , 𝑘,   (2.3.23)  

𝜇𝑖 − 𝜍𝑖 + Y𝜉𝑖 = 0,    ∀ 𝑖 = 1, 2, … , 𝑘,              (2.3.24)  

−𝑔𝑖 𝑥𝑖 , 𝑦 + 𝑡𝑖 = 0,    ∀ 𝑖 = 1, 2, … , 𝑘,             (2.3.25)           

𝐺𝑖 𝑥𝑖 , 𝑦 = 0,    ∀ 𝑖 = 1, 2, … , 𝑘,              (2.3.26)          

ℎ 𝑥, 𝑦 − 𝑠 = 0,                (2.3.27)  

𝑥𝑖 ≥ 0, 𝑦 ≥ 0, 𝑠 ≥ 0, 𝑡𝑖 ≥ 0, 𝜆𝑖 ≥ 0, 𝜒𝑖 ≥ 0, 𝜓𝑖 ≥ 0, 𝜍𝑖 ≥ 0, 𝜉𝑖 ≥ 0,      (2.3.28) 

𝜈𝑖 , 𝜇𝑖  unrestricted in sign.                (2.3.29) 

(Here, 𝑌 = diag 𝑦1, 𝑦2, … , 𝑦𝑟 .) 
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Result 2.3.6: If  𝑥∗, 𝑦∗, 𝑠∗, 𝑡𝑖
∗, 𝜆𝑖

∗, 𝜒𝑖
∗, 𝜓𝑖

∗, 𝜍𝑖
∗, 𝜉𝑖

∗, 𝜈𝑖
∗, 𝜇𝑖

∗  is a local optimal solution of the 

non-linear programming problem (2.3.21) – (2.3.29) with 𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 0, then  𝑥∗, 𝑦∗  is a 

strong-stationary point of (MLSF-BLP). 

From all this theoretical development suggested by Leyffer and Munson we 

extract the following conclusion. 

For testing a feasible solution  𝑥∗, 𝑦∗  of (MLSF-BLP) to be a strong-stationary 

point, it is sufficient to solve the (Pen-NLP) parameterized in  𝑥, 𝑦 =  𝑥∗, 𝑦∗  for 

optimal values of 𝑠, 𝑡𝑖 , 𝜆𝑖 , 𝜒𝑖 , 𝜓𝑖 , 𝜍𝑖 , 𝜉𝑖 , 𝜈𝑖 , 𝜇𝑖  and check whether the objective function 

value 𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 0. 

Remark 2.3.2: Nash games situation in multi-leader-multi-follower BLP problems is 

addressed also addressed by Leyffer and Munson in the same study [169]. For addressing 

the situation of Nash game at lower level of such a variant of BLP problem authors 

suggest using FOCs as equivalent of Nash-equilibrium problem of followers and adopting 

them in place of conditions (2.3.8) and (2.3.9). The same procedure as presented above is 

suggested by authors to be followed subsequently. The convexity is assumed here for 

individual optimization problems of followers with leaders‟ variables considered as 

parameters therein. 

 

2.4. A special case of multi-leader-single-follower BLP problem 

In this section, a special case of (MLSF-BLP) is discussed and a practical method 

to test the strong-stationarity of a feasible solution is observed for this case. We consider 

the case of a multi-leader-single-follower BLP problem formulated as (MLSF-BLP) with 

the upper level constraint functions 𝑔𝑖 , 𝐺𝑖  are linear in  𝑥, 𝑦 , lower level constraints are 

linear in  𝑥, 𝑦 ; and upper level objective functions 𝑓𝑖  are bilinear in  𝑥𝑖 , 𝑦 , lower level 

objective is bilinear in  𝑥, 𝑤 . Henceforth, we term this special case of BLP problem as 

“bilinear multi-leader-single-follower BLP problem”. 

Result 2.4.1: For a feasible solution  𝑥∗, 𝑦∗  of a bilinear multi-leader-single-follower 

BLP problem expressed as (MLSF-BLP) (numbered as (2.3.4)) with functions involved in 

objectives and constraints considered as mentioned above, the optimization problem 

(2.3.21) – (2.3.29) becomes the linear programming problem (Para –  LP) (numbered as 
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(2.4.1)) in variables 𝜆𝑖 , 𝜒𝑖 , 𝜓𝑖 , 𝜍𝑖 , 𝜉𝑖 , 𝜈𝑖 , 𝜇𝑖 , and parameterized in corresponding values 

𝑥∗, 𝑦∗, 𝑠∗, 𝑡𝑖
∗, 𝑆∗, 𝑌∗, where, 

(1)  𝑠∗ and 𝑡𝑖
∗ are values of 𝑠 and 𝑡𝑖 , respectively obtained by using conditions 

(2.3.27) and (2.3.25), respectively, and 

(2) 𝑆∗ = 𝑑𝑖𝑎𝑔 𝑠1
∗, 𝑠2

∗, … , 𝑠𝑟
∗  and 𝑌∗ = diag 𝑦1

∗, 𝑦2
∗, … , 𝑦𝑟

∗  . 

(Para –  LP)                 … (2.4.1) 

 

 

 

 

 

 

 

 

 

Therefore, by using the conclusion of result 2.3.6 with 2.4.1, the following 

deduction can be made. 

Deduction 2.4.1: For testing a feasible solution  𝑥∗, 𝑦∗  of bilinear multi-leader-single-

follower BLP problem considered as a special case of (MLSF-BLP) to be a strong-

stationary point, it reduces to: 

(1) obtain values of 𝑡𝑖
∗ and 𝑠∗ using (2.3.25) and (2.3.27), respectively, such that 

𝑠∗ ⊥  𝑦∗, with a check for non-negativity conditions, then 

(2) solve the linear programming problem (Para-LP) given in (2.4.1) parameterized in 

 𝑥∗, 𝑦∗, 𝑠∗, 𝑡𝑖
∗ , for 𝜆𝑖 , 𝜒𝑖 ,𝜓𝑖, 𝜍𝑖, 𝜉𝑖, 𝜈𝑖, 𝜇𝑖, and then 

(3) check if the objective function value 𝐶𝑝𝑝 = 0 for an optimal solution. 

min
𝜆𝑖 ,𝜒 𝑖 ,𝜓 𝑖 ,𝜍𝑖 ,𝜉𝑖 ,𝜈𝑖 ,𝜇 𝑖

𝐶𝑝𝑝 =   𝑥𝑖
∗′𝜒𝑖 + 𝑡𝑖

∗′𝜆𝑖 + 𝑦∗′𝜓𝑖 + 𝑠∗′𝜍𝑖 

𝑘

𝑖=1

 

∇𝑥𝑖𝑓𝑖 𝑥𝑖
∗, 𝑦∗ − 𝜆𝑖

′∇𝑥𝑖𝑔𝑖 𝑥𝑖
∗, 𝑦∗ − 𝜈𝑖

′∇𝑥𝑖𝐺𝑖 𝑥𝑖
∗, 𝑦∗ − 𝜇𝑖

′∇𝑥𝑖ℎ 𝑥𝑖
∗, 𝑦∗ − 𝜒𝑖 = 0,     

∇𝑦𝑓𝑖 𝑥𝑖
∗, 𝑦∗ − 𝜆𝑖

′∇𝑦𝑔𝑖 𝑥𝑖
∗, 𝑦∗ − 𝜈𝑖

′∇𝑦𝐺𝑖 𝑥𝑖
∗, 𝑦∗ − 𝜇𝑖

′∇𝑦ℎ 𝑥𝑖
∗, 𝑦∗ − 𝜓𝑖 +  𝑆∗𝜉𝑖 = 0,  

subject to                

                  ∀ 𝑖 = 1, 2, … , 𝑘, 

                  ∀ 𝑖 = 1, 2, … , 𝑘, 

𝜇𝑖 − 𝜍𝑖 + 𝑌∗𝜉𝑖 = 0,    ∀ 𝑖 = 1, 2, … , 𝑘,  

𝜆𝑖 ≥ 0, 𝜒𝑖 ≥ 0, 𝜓𝑖 ≥ 0, 𝜍𝑖 ≥ 0, 𝜉𝑖 ≥ 0, 

𝜈𝑖 , 𝜇𝑖  unrestricted in sign. 
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Theoretical development for solving bilinear multi-leader-single-follower BLP 

problem 

For a bilinear multi-leader-single-follower BLP problem discussed above, if a 

vector of values for the variable 𝑥 is chosen randomly, then the lower level problem 

(FDMP) in (2.3.4) becomes a linear programming problem in variables 𝑤, parametrized 

in the values of 𝑥. This LPP can be easily solved for obtaining an optimal solution 𝑦. And 

therefore, the corresponding vector of values for  𝑥, 𝑦  would satisfy the KKT conditions 

(2.3.5) and (2.3.6). Accordingly, the vector of values for the variable 𝑠 can be obtained 

using (2.3.8) (same as (2.3.27)). Further, the values of each variable 𝑡𝑖  can be obtained 

using (2.3.25) and tested for non-negativity. If, through all these computations a vector of 

values for  𝑥, 𝑦  is obtained which satisfies the testing criteria just discussed, then by 

Definition 2.3.1, it is a feasible solution of (MLSF-BLP). In such a case, for the obtained 

values of (𝑥, 𝑦, 𝑠, 𝑡𝑖), the (Para-LP) can be solved to obtain an optimal solution. If the 

objective function value 𝐶𝑝𝑝 = 0, then we get  𝑥, 𝑦  as a strong stationary point of 

(MLSP-BLP). 

Through this discussion it is learnt that if we randomly generate a vector of values 

for leaders‟ variables 𝑥, we can obtain follower‟s reaction 𝑦 and test for strong-stationary 

point of this special case of (MLSP-BLP). Thus, if we use a real-coded GA by coding the 

chromosomes as vectors of values for 𝑥, obtaining corresponding values for 𝑦, and taking 

the fitness value of each chromosome as objective function value 𝐶𝑝𝑝  to be computed by 

the above procedure, then we can achieve a stationary-point in some generation obtained 

through reproduction operators of GA.  

Stemmed from the theoretical developments presented above, a GA-based 

approach is proposed in Chapter 5 for obtaining strong-stationarity points of the bilinear 

multi-leader-single-follower BLP problem, which is a special case of (MLSF-BLP) 

involving linear constraints and bilinear objective functions. 

Remark 2.4.1: A strong-stationarity point  𝑥∗, 𝑦∗  for 𝑥∗ =  𝑥𝑖
∗: 𝑖 = 1, 2, … , 𝑘 , thus 

obtained can further be tested for a strong-stationary Nash-equilibrium point of the 

(MLSF-BLP) by repeatedly solving the single-leader-single-follower BLP problem 

(2.4.2) as given below for each leader 𝑖  𝑖 = 1, 2, … , 𝑘 . 
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 (2.4.2) 

 

 

 

Remark 2.4.2: Solving such a single-leader-single-follower bilevel programming 

problem having large number of variables further requires a heuristic algorithm. One such 

algorithm is proposed in Chapter 3. 

With this necessary backdrop of concepts introduced by now our research work is 

presented in subsequent chapters. 

 

 

  

 LDMP − 𝑖−1               min
𝑥𝑖≥0

𝑓𝑖 𝑥𝑖 , 𝑦  

 FDMP                                  min
𝑤

𝑏 𝑥, 𝑤  

 subject to  

   𝑔𝑖 𝑥𝑖 , 𝑦 ≥ 0, 

   𝐺𝑖 𝑥𝑖 , 𝑦 = 0, 

where, 𝑦 is optimal response of the follower corresponding to 

above values of 𝑥𝑖  and keeping values of other leaders‟ variables fixed as 

𝑥𝑖 = 𝑥𝑖 
∗: 𝑖  = 1,2, … , 𝑘, 𝑖 ≠ 𝑖, 

        subject to  

          𝑐 𝑥, 𝑤 ≥ 0 

           𝑤 ≥ 0. 
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Chapter 3 

 

Decision Support to Railways on Running 

Special Trains 
 

 

 

 

In this chapter
10

, we develop a decision support for railways on operational decisions of 

running special trains to tackle higher demand on specific routes during seasons of 

festivals and holidays. These operational decisions comprise of utilizing rolling-stocks 

and determining optimal fare-price structure in a competitive environment coerced by 

other travelling service providers. The influence on the demand-shares by the competitors 

of railways is incorporated in decision making on utilizing the rolling-stock accordingly. 

A novel mixed-integer single-leader-multi-follower bilevel programming model is 

proposed in which the railways is considered a leader and a group of all competitors to 

railways is a follower. The model is designed with the objective of railways as the leader 

to maximize the expected revenue by deciding on routes, rolling-stock assembly planning 

and fare-pricing for special trains subject to constraints on resources and the anticipated 

demand arising out of Nash-equilibrium fares of the follower. A diversified-elitist genetic 

algorithm is introduced to solve the proposed model. The proposed methodology is 

illustrated by taking a test situation from Indian Railways (IR). The empirical analysis 

demonstrates the success of the proposed model in strategically addressing the fare-price 

competition and preparing the operational plan for running the special trains. 

 

 

 

  

                                                           
10

 The contents of this chapter are based on research paper: “A bilevel programming model for operative 

decisions on special trains: An Indian Railways perspective”, Journal of Rail Transport Planning and 

Management (Elsevier). 8(3) 2018, 184–206. doi:10.1016/j.jrtpm.2018.03.001. 
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3.1 Introduction 

Worldwide, apart from the regular demand of travelling services across the year, a 

significantly higher demand is observed on specific routes during seasons of holidays and 

festivals. In a majority of countries, the railways being the largest state-owned enterprise 

for mass public transport, take initiatives to fulfil this demand. This happens so due to one 

more fact that, in comparison to other modes of public-transport, railways have a scope of 

enhancing the capacity of its already running fleet by attaching a few more train units 

(commonly known as passenger coaches). 

However, when a relatively high volume of passengers is expected to be received, 

the railway operators plan to run some special trains to clear the rush which may also 

result in generating additional revenue for the railways. It is frequently the case that the 

rolling-stock which is retired into the yards due to high maintenance costs is temporarily 

brought in back for use in providing service under the exercise of running special-trains. 

In such a seasonal situation, the efficient usage of existing rolling-stock is considered as a 

viable option instead of blocking a considerable investment in procuring a new one which 

may later remain unused for long. Thus, in addition to running regular trains, railway 

operators can strategically plan to run special trains on specific potential routes where a 

higher mass of passengers is expected during specific seasons. The decisions on fare-

pricing and rolling-stock assembly are the other two significant components embedded in 

this decision problem. 

During such seasons of higher demands, the competitors to railways perceive this 

situation as an opportunity of earning more revenue, and therefore adjust their fare-prices 

competitively while considering the pre-fixed fare-prices of railways
11

 into their pricing 

mechanism. Such price adjustment by these public transport service providers influences 

the demand-shares of railways, and further perplexes the decision-making problem of 

later on an efficient utilization of available resources.  

A railway operator is thus posed with a challenge to ingeniously decide on the 

choice of routes for running special trains, associated fare-pricing, and an efficient 

assembly of rolling-stock for its special trains according to its demand-share resulting out 

                                                           
11

 It is a conventional practice by state-owned railway operators to announce the full fare-price structure in 

advance for its mass-transit trains. The reason behind this are considered as socio-economic status of the 

general public and some practical issues in accessing the real-time fare-prices are travelers. 
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of the fare-price competition of other transport service providers. As all these decision-

making aspects are needed to be addressed cohesively, so this posses the overall problem 

before the railway authorities as an issue of strategic planning.  

Although the literature is available on some associated aspects decision-making 

problems of railways, but no such work is found to address this challenging and 

perplexed problem of railways which requires assessing the competitive response of other 

travelling service providers. This has motivated us to develop a decision-support for 

railways for the issue of strategically planning discussed above.  

The facts noted below verify the practicality of the described strategic planning 

problem and encourage for the development of a decision-support for this problem. 

 In China, during the National Day week October 1-7, Labour Day week May 1-7, 

and Chinese New Year period in January/ February, and during the fall season in 

Japan, a very high footfall of travellers is observed. India, the culturally and 

seasonally diverse country, witnesses such overshooting demand on different routes 

at different times throughout the year. Although no information is available on 

special trains for China Railway Corporation, Japan Railways Group [216] and 

Indian Railways [217] run special trains to clear the rush.  

 The Government of India has recently approved the formation of Rail Development 

Authority to thrive for decision support on some strategic issues including pricing of 

services, efficient allocation of resources, and promoting competition as well as 

protection of customer interests [218]. It had been realized to design a realistic 

program of fare revision to eliminate the losses on passenger services and to stop the 

subsidy for non-suburb trains [219]. 

 There does not seem to exist any noteworthy study explicating the mathematical rigor 

of the decision-making problem on running special trains.  

 Moreover, in our literature research regarding the decision support of railway 

operations, narrated in section 1.4.4, we could not find any research on „the price 

dependent demand‟ together with „demand-dependent allocation of rolling-stock‟ for 

railways.  

These research gaps have motivated us to develop a decision-support in this 

context, the relevance of which is indicated by the initiative of the Government of India 
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cited above for mentoring the IR on its operations. To address this issue of decision-

support, we contemplate a model which enables the railways for demand-dependent 

assembly planning while dictating the fare-pricing rather than being at a receiving end of 

its competitors‟. This model formulates the above-discussed decision-making situation as 

single-leader-multi-follower BLP problem involving mixed integer variables and bilinear 

objective functions considering railways as the leader and their competitors as followers. 

Herein, the leader has to take the necessary decisions on running special trains to 

maximize its total expected revenue in anticipation of the reaction of the follower 

described through Nash-equilibrium. Further, due to lack of theoretical developments for 

methods to solve a single-leader-multi-follower BLP problem involving mixed integer 

variable problems, we design a GA based methodology for a better search of a solution of 

the proposed bilevel programming model. Thereby, two of research contributions are 

presented in this chapter. A case is further studied using the designed model and proposed 

solution methodology on an instance taken from IR to demonstrate a pattern of outcomes 

for decision-support. 

This chapter is arranged into six sections. The subsequent section 3.2 demonstrates 

the design of model for the addressed decision-making issue of railways. Section 3.3 

presents a GA based methodology developed for solving the modelled problem. A case 

study is presented in subsequent section 3.4 to demonstrate the implementation of devised 

solution methodology for the modelled problem. Following this, a comparison analysis is 

presented in section 3.5 to demonstrate the success of proposed model against the one in 

which the competition from other transport service providers on the concerned routes is 

ignored into the modelling. Also, the efficiency of developed solution methodology is 

also tested in comparison to the simple GA. The chapter is conclusively summarized in 

section 3.6. 

 

3.2 Formulation of mathematical model 

3.2.1 Assumptions and notations 

To build the mathematical model, a finite planning horizon is partitioned into 

multiple time periods. Also, on each route, we assume the following to hold. 
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 The travelling-mode-choice behaviour of passengers is not influenced by departure 

and arrival times of transport services. During seasons of festivals and holidays, 

when only a limited number of seats remain available against a high demand, 

passengers are more concerned about the availability of seat rather than the departure 

and arrival times. Also, through this assumption, we intend to communicate that the 

proposed study includes only the decision making on operational planning and 

pricing for special trains, and it does not include scheduling and time-tabling or 

runtime planning of special trains. 

 The competitors of railways remain same in each period on the route. The planning 

horizon for running special trains is typically not so long for observing a significant 

change in the number of service providers in the competition. 

 The price sensitivity of passengers on each route is identical for all service providers 

on the route. The price sensitivity is a behavioural aspect of passengers and not 

affected by service providers. 

 The demand arising on intermediate halts in a route is not explicitly considered but 

integrated into the expected demand on that route; the fare-prices of the special trains 

are observed to remain same on its entire route irrespective of boarding and de-

boarding points of passengers. 

 The demand shares received by the service providers are probabilistic; the total profit 

to be earned through operational planning is an expected profit only. To this effect, 

we apply the multinomial Logit model to determine the demand shares of the 

railways and its competitors. 

The indices, parameters, and variables used to describe the mathematical formulation of 

our model are listed below. 

 

Indices 

𝐼 potential route to run train(s); 𝑖 =  1, 2, . . . , 𝐼 

𝑅 type of train; 𝑟 =  1, 2, … , 𝑅 

𝐽 class/ type of coach; 𝑗 =  1, 2, … , 𝐽  

𝑇 number of time periods
12

; 𝑡 =  1, 2, … , 𝑇 

𝐾𝑖  the number of competitor transporters
13

 on route 𝑖; (𝑘𝑖  =  1, 2, . . . , 𝐾𝑖)  

                                                           
12

 The total planning horizon is discretized into equal subintervals enumerated by 𝑡 = 1, 2, … , 𝑇. 
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Leader‟s parameters and variables 

Parameters 

𝑎𝑗  number of seats in each coach of class 𝑗 

𝑓𝑖𝑟  fixed cost of running a train of type 𝑟 on route 𝑖 

𝑔𝑖𝑟𝑗  cost of adding one coach of class 𝑗 to train type 𝑟 on route 𝑖 

𝐵 total budget to run special trains on various proposed routes 

𝐷𝑖𝑡  total demand in terms of number of passengers to travel on route 𝑖 in period 𝑡 

𝑐𝑖𝑟𝑗  cost incurred per passenger travelling in class 𝑗 of train type 𝑟 on route 𝑖 

(INR/passenger) 

𝑝𝑙𝑖𝑟𝑗  the minimum reservation price of coach of class 𝑗 in train type 𝑟 on route 𝑖 

(INR/ passenger) 

𝑝𝑢𝑖𝑟𝑗  the maximum reservation price of coach of class 𝑗 in train type 𝑟 on route 𝑖 

(INR/ passenger) 

𝛼𝑖𝑟𝑗  the coefficient of non-monetary factors in services of a coach of class 𝑗 in 

train type 𝑟 on route 𝑖 

𝑀𝑟𝑗  maximum number of coaches of class 𝑗 that can be assembled to a train type 𝑟 

𝑀𝑖𝑟  maximum number of coaches that can be attached in a train type 𝑟 on route 𝑖 

𝑀𝑗  number of coaches of class 𝑗 that are available for use in running special 

trains on various routes 

Variables 

𝑧𝐿 the expected gross profit of leader 

𝑋𝑖𝑟  binary variable taking value 1 if route 𝑖 is initiated with a train type 𝑟 and else 

zero 

𝑥𝑖𝑟𝑗  number of coaches of class 𝑗 to be assembled in train type 𝑟 on route 𝑖 

𝑌𝑖𝑟𝑗  binary variable taking value 1 if at least one coach of class 𝑗 is assembled to 

train type 𝑟 initiated on route 𝑖 and else zero 

𝑝𝑖𝑟𝑗𝑡  fare of a seat in class 𝑗 of train type 𝑟 on route 𝑖 in period 𝑡 (INR/seat) 

𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  the probability of choosing to travel in class 𝑗 of train type 𝑟 on route 𝑖 in 

period 𝑡 when the vector of fares is 𝑝𝑖𝑡 =   𝑝𝑖𝑟𝑗𝑡 : 𝑟, 𝑗 ,  𝑝𝑘𝑖𝑡 : 𝑘𝑖   

𝑑𝑟𝑖𝑟𝑗𝑡  number of passengers to be offered seats in class 𝑗 of train type 𝑟 on route 𝑖 in 

period 𝑡 

                                                                                                                                                                             
13

 The assumption that the number of competitors on the route remain same during the planning horizon is 

reflected in the model here when this parameter is taken independent of 𝑡. 
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𝑈𝑖𝑟𝑗𝑡  utility of travelling in class 𝑗 of train type 𝑟 on route 𝑖 in period 𝑡 

Follower‟s parameters and variables 

Parameters 

𝑐𝑘𝑖  cost incurred to competitor transporter 𝑘𝑖  on route 𝑖 (INR/passenger) 

𝛼𝑘𝑖  coefficient for non-monetary factors in services of competitor 𝑘𝑖  on route 𝑖  

𝜉𝑘𝑖  the minimum proportion of cost per passenger to be recovered by 𝑘𝑖  

𝐴𝑣𝑘𝑖  availability of seats with 𝑘𝑖  

Variables 

𝑧𝐹𝑘𝑖
 the expected gross profit of all competitors on route 𝑖 

𝑝𝑘𝑖𝑡  fare to travel on route 𝑖 through competitor transporter 𝑘𝑖  on route 𝑖 in period 

𝑡 (INR/person) 

𝑃𝑘𝑖𝑡 𝑝𝑖𝑡  the probability of choosing to travel with 𝑘𝑖  on route 𝑖 in period 𝑡 when the 

vector of fares is 𝑝𝑖𝑡 =   𝑝𝑖𝑟𝑗𝑡 : 𝑟, 𝑗 ,  𝑝𝑘𝑖𝑡 : 𝑘𝑖   

𝑑𝑟𝑘𝑖𝑡  number of passengers to be offered a seat by the competitor 𝑘𝑖  on route 𝑖 in 

period 𝑡 

𝑈𝑘𝑖𝑡  utility of travelling through 𝑘𝑖  on route 𝑖 in period 𝑡 

Global parameter for both Leader and Follower 

𝛽𝑖  Price sensitivity factor for all participating decision makers
14

 on route 𝑖 

 

3.2.2 Estimating demand shares through multinomial logit model 

The multinomial logit (MNL) model is typically used in literature to learn the 

discrete choice behavior of travellers [220–228]. In our proposed model, once we have an 

information on the fare-prices of competitors in response to the fare-prices of railways, 

the MNL model determines the probabilistic demand share of railways which in turn 

facilitates in assembly planning of rolling stocks for running special trains. 

It is important to realize that the fare-price competition is a crucial factor affecting 

the demand-shares and revenues of all the transport service providers. For any given price 

structure of railways declared in advance, the fare-price competition among the 

                                                           
14

 The assumption that the  price sensitivity of passengers on each route is identical is reflected in this 

parameter which is taken to be independent of all service providers including the railways and its 

competitors 𝐾𝑖 . 
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competitors of railways settles at a Nash-equilibrium point. In this competition, each 

contender aims to maximize the individual revenue
15

 with a binding limit on its seating 

capacities. The problem fits well in a BLP framework with the railways considered as the 

leader decision maker, and each of its competitors on each route considered as a follower 

decision maker. On each route 𝑖 and time period 𝑡, let the vector of fares of railways and 

its competitors be 

                    𝑝𝑖𝑡 =   𝑝𝑖𝑟𝑗𝑡 : 𝑟 = 1,… , 𝑅, 𝑗 = 1,… 𝐽 ,  𝑝𝑘𝑖𝑡 : 𝑘𝑖 = 1,…𝐾𝑖   .  (3.2.1) 

Then, as per the MNL model, the utility of travelling in the class 𝑗 of train type 𝑟 on 

route 𝑖 in time 𝑡 is given by 

                                 𝑈𝑖𝑟𝑗𝑡 = 𝛼𝑖𝑟𝑗 − 𝛽𝑖  𝑝𝑖𝑟𝑗𝑡 +  𝜖𝑖𝑟𝑗𝑡  ,    ∀ 𝑖, ∀ 𝑟, ∀ 𝑗,    (3.2.2) 

while the utility of travelling through an alternative 𝑘𝑖  at the same time 𝑡, is given 

by 

                                        𝑈𝑘𝑖𝑡 = 𝛼𝑘𝑖  − 𝛽𝑖  𝑝𝑘𝑖𝑡 +  𝜖𝑘𝑖𝑡  ,    ∀ 𝑘𝑖  ,        (3.2.3)  

and the utility of not to travel at all on the route 𝑖 is given by 

                                                      𝑈𝑡
0 = 𝜖𝑡

0,     ∀ 𝑖, ∀ 𝑟, ∀ 𝑗.         (3.2.4) 

The parameters 𝛼𝑖𝑟𝑗  , 𝛼𝑘𝑖  amount for non-monetary factors like comfort, travelling 

time, the number of intermediate halts, personal preference, ambiance, and branding, and 

the variables 𝜖𝑖𝑟𝑗 , 𝜖𝑘𝑖   and 𝜖𝑡
0 are assumed to be independently and identically distributed 

random variables following the Gumbel distribution. 

Given a price vector in (3.2.1) and the values of variables 𝑌𝑖𝑟𝑗 , indicating the classes 

of coaches and types of trains available on route 𝑖, the probability that a passenger 

choosing the class 𝑗 of train type 𝑟 to travel on route 𝑖 at time 𝑡, is given by 

                                                           
15

 The transport service providers identified as competitor to railways are assumed to have fixed capacities 

to accommodate passengers unlike a flexible capacity of railways. Thereby it is considered that these 

competitors bear no significant operational cost per passenger. And that, only a fixed cost is incurred for 

operating their service, which is irrespective of the number of passengers travelling with them. Therefore, 

for modelling their fare-pricing mechanism it is appropriate to consider their objective as maximization of 

total revenue instead of total profit. 
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                𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡 =
𝑌𝑖𝑟𝑗  𝑒𝛼𝑖𝑟𝑗 −𝛽𝑖  𝑝𝑖𝑟𝑗𝑡

1 +    𝑌𝑖𝑟𝑗 𝑒
𝛼𝑖𝑟𝑗 −𝛽𝑖  𝑝𝑖𝑟𝑗𝑡𝐽

𝑗=1
𝑅
𝑟=1  +   𝑒𝛼𝑘𝑡−𝛽𝑖  𝑝𝑘𝑖𝑡

𝐾𝑖
𝑘𝑖=1

 .           (3.2.5) 

The probability that a passenger chooses the competitor 𝑘𝑖  as an alternative, is 

given by 

               𝑃𝑘𝑖 𝑝𝑖𝑡 =
𝑒𝛼𝑘𝑖−𝛽𝑖  𝑝𝑘𝑖𝑡

1 +    𝑌𝑖𝑟𝑗  𝑒𝛼𝑖𝑟𝑗 −𝛽𝑖  𝑝𝑖𝑟𝑗𝑡𝐽
𝑗=1

𝑅
𝑟=1  +   𝑒𝛼𝑘𝑡−𝛽𝑖  𝑝𝑘𝑖𝑡

𝐾𝑖
𝑘𝑖=1

 ,            (3.2.6) 

and the probability that a passenger drops the idea of travelling is given by 

                 𝑃𝑡
0 𝑝𝑖𝑡 =

1

1 +   𝑌𝑖𝑟𝑗  𝑒𝛼𝑖𝑟𝑗 −𝛽𝑖  𝑝𝑖𝑟𝑗𝑡𝐽
𝑗=1

𝑅
𝑟=1  +   𝑒𝛼𝑘𝑡−𝛽𝑖  𝑝𝑘𝑖𝑡

𝐾𝑖
𝑘𝑖=1

.          (3.2.7) 

Corresponding to the total demand on route 𝑖 at time 𝑡, the demand-shares of 

railways (for class 𝑗 and train type 𝑟) and competitor transporters (𝑘𝑖) are given by 

𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  𝐷𝑖𝑡  and 𝑃𝑘𝑖 𝑝𝑖𝑡  𝐷𝑖𝑡 , respectively.
16 

 

3.2.3 Components of the problem related to railways 

Objective function of expected profit  

The leader (railways) has to identify the routes to run trains, decide on the type of 

trains to be run on these routes, the number of coaches of each relevant class to be 

assembled in these trains, and the fare-prices for each class of coach so as to maximize 

the total profit. 

Profit is obtained by subtracting the total fixed cost of running trains of various 

types on various routes and the fixed cost of assembling coaches of various classes of 

trains being decided to run from the net profit earned from passengers during the entire 

planning horizon. For this, the railways decides on binary variables 𝑋𝑖𝑟 , integer 

variables 𝑥𝑖𝑟𝑗 , and prices 𝑝𝑖𝑟𝑗𝑡 . 

                                                           
16

 For estimating the expected number of passengers to choose each of these transport service providers, 

expressions of their demand-shares can be rounded to the nearest integer. 
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     max 𝑧𝐿 =      𝑝𝑖𝑟𝑗𝑡 − 𝑐𝑖𝑟𝑗  min 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  𝐷𝑖𝑡 ,   𝑎𝑗  𝑥𝑖𝑟𝑗  

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

𝑇

𝑡=1

−   𝑓𝑖𝑟  𝑋𝑖𝑟

𝑅

𝑟=1

𝐼

𝑖=1

−    𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

                                                                               (3.2.8) 

Price bounds 

The fare-prices are surmised to be bounded; lower bounds are the minimum 

acceptable fares to railways, and the oligopolistic market enforces upper bounds. These 

bounds on fare-prices restrain the railways from moving out of affordable limits of fares 

in a fray of competition and profitability. 

                                   𝑝𝑙𝑖𝑟𝑗 ≤ 𝑝𝑖𝑟𝑗 𝑡 ≤ 𝑝𝑢𝑖𝑟𝑗 ,    ∀𝑖,    ∀𝑟,    ∀𝑗,    ∀𝑡.                                   3.2.9  

Budget constraint 

The railways in capacity has to perform all operations of running various special 

trains and assembling various coaches to these trains within the available budget. 

                                         𝑓𝑖𝑟  𝑋𝑖𝑟

𝑅

𝑟=1

𝐼

𝑖=1

+     𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

≤ 𝐵.                                3.2.10  

Constraints on recovery of operational cost 

Each train, if decided to run, should generate a turnover which recovers the 

investment on running it. 

   𝑝𝑖𝑟𝑗𝑡 − 𝑐𝑖𝑟𝑗   min 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  𝐷𝑖𝑡 ,   𝑎𝑗  𝑥𝑖𝑟𝑗  

𝐽

𝑗=1

𝑇

𝑡=1

≥ 𝑓𝑖𝑟  𝑋𝑖𝑟 +   𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

,    ∀𝑖,    ∀𝑟     

                 …  3.2.11  

Constraints on assembly of coaches 

Coaches are assembled in types of trains (decided to run on the route) for which 

they are appropriate, that is, if 𝑋𝑖𝑟 = 1 and 𝑌𝑖𝑟𝑗 = 1, then 0 ≤ 𝑥𝑖𝑟𝑗 ≤ 𝑀𝑟𝑗 . Equivalently,  

                                  0 ≤ 𝑥𝑖𝑟𝑗 ≤ 𝑀𝑟𝑗  𝑋𝑖𝑟  𝑌𝑖𝑟𝑗 ,    ∀𝑖,    ∀𝑟,    ∀𝑗.                                        3.2.12  
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Upper bound on the length of trains posses a constraint on assembly of coaches as 

following. 

                                                𝑥𝑖𝑟𝑗

𝐽

𝑗=1

≤ 𝑀𝑖𝑟  ,    ∀𝑖,    ∀𝑟.                                                 3.2.13  

Maximum availability of coaches of each type also governs the assembly. 

                                                   𝑥𝑖𝑟𝑗

𝑅

𝑟=1

𝐼

𝑖=1

≤ 𝑀𝑗 ,    ∀𝑗.                                                     3.2.14  

 

3.2.4 Components of problem related to competitors of railways 

Objective function of expected profit  

In each period 𝑡 = 1,… , 𝑇, and each route 𝑖 = 1, . . . , 𝐼, the competitors  𝑘𝑖 =

1,… , 𝐾𝑖  , compete to settle at Nash-equilibrium price vector {𝑝𝑘𝑖𝑡 : 𝑘𝑖 = 1,… , 𝐾𝑖}, with the 

individual objective of maximizing their revenue in this price-competition. 

                                    max  𝑧𝐹𝑘𝑖
=  𝑝𝑘𝑖𝑡 min 𝑃𝑘𝑖𝑡 𝑝𝑖𝑡 𝐷𝑖𝑡 ,  𝐴𝑣𝑘𝑖 .                             3.2.15   

Reservation price constraint 

Each competitor of railways decides its price while following the “cost plus” policy, 

that is, fare-price in any duration should be at least some percentage more than the cost 

incurred for providing services to the passengers. 

                                                𝑝𝑘𝑖𝑡 ≥  1 + 𝜉𝑘𝑖 𝑐𝑘𝑖  ,    ∀𝑘𝑖 ,    ∀𝑡,                                    3.2.16   

where 𝜉𝑘𝑖 > 0 are predetermined constants. 

Remark 3.2.1: Since the capacity of each competitor of railways to accommodate 

passengers is fixed and the same is included in the formulation of the objective function 

(3.2.15), the there are no more aspects other than the reservation price constraint to be 

appropriately included for modelling their fare-price decision mechanism. 
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3.2.5 Decision-making problem of railways on special trains 

The bilinear bilevel mixed integer programming problem (RBPP) for railways is 

described as follows. 

To determine   𝑋𝑖𝑟 ,  𝑥𝑖𝑟𝑗  ,  𝑌𝑖𝑟𝑗  ,  𝑝𝑖𝑟𝑗𝑡  : 𝑖, 𝑟, 𝑗, 𝑡  which solve (LDMP). 

(RBPP) 

 LDMP        max 𝑧𝐿

=       𝑝𝑖𝑟𝑗𝑡 − 𝑐𝑖𝑟𝑗   min 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  𝐷𝑖𝑡 ,   𝑎𝑗  𝑥𝑖𝑟𝑗  

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

𝑇

𝑡=1

−   𝑓𝑖𝑟  𝑋𝑖𝑟

𝑅

𝑟=1

𝐼

𝑖=1

−    𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

  

s.t.    𝑝𝑙𝑖𝑟𝑗 ≤ 𝑝𝑖𝑟𝑗𝑡 ≤ 𝑝𝑢𝑖𝑟𝑗                 ∀𝑖, ∀𝑟, ∀𝑗, ∀𝑡 

           𝑓𝑖𝑟  𝑋𝑖𝑟

𝑅

𝑟=1

𝐼

𝑖=1

+     𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

≤ 𝐵 

            𝑝𝑖𝑟𝑗𝑡 − 𝑐𝑖𝑟𝑗   min 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  𝐷𝑖𝑡 ,   𝑎𝑗  𝑥𝑖𝑟𝑗  

𝐽

𝑗=1

𝑇

𝑡=1

≥ 𝑓𝑖𝑟  𝑋𝑖𝑟 +   𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

    ∀𝑖, ∀𝑟 

         𝑥𝑖𝑟𝑗 ≤ 𝑀𝑟𝑗  𝑋𝑖𝑟  𝑌𝑖𝑟𝑗                                      ∀𝑖,   ∀𝑟,   ∀𝑗 

          𝑥𝑖𝑟𝑗

𝐽

𝑗=1

≤ 𝑀𝑖𝑟                                  ∀𝑖,   ∀𝑟 

           𝑥𝑖𝑟𝑗

𝑅

𝑟=1

𝐼

𝑖=1

≤ 𝑀𝑗                ∀𝑗 

         𝑝𝑖𝑟𝑗𝑡 ≥ 0, 𝑋𝑖𝑟 , 𝑌𝑖𝑟𝑗 ∈  0, 1 , 𝑥𝑖𝑟𝑗  are non-negative integers 

where, in each period 𝑡 and each route  𝑖, competitors  𝑘𝑖  aim to compute the Nash-

equilibrium price vector {𝑝𝑘𝑖𝑡 : 𝑘𝑖 = 1,… , 𝐾𝑖}, 
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         (FDMP − 𝑘𝑖)        max 𝑧𝐹𝑘𝑖
=  𝑝𝑘𝑖𝑡 min 𝑃𝑘𝑖𝑡 𝑝𝑖𝑡 𝐷𝑖𝑡 ,  𝐴𝑣𝑘𝑖  

               s.t.   𝑝𝑘𝑖𝑡 ≥  1 + 𝜉𝑘𝑖 𝑐𝑘𝑖                                          ∀𝑘𝑖 ,   ∀𝑡 

Remark 3.2.2: In the BLP problems formulated above for decision-making of railways, 

the binary variables 𝑌𝑖𝑟𝑗  are implicitly involved in the objective functions at both levels 

through the factor 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡 . 

The BLP problem (RBPP) formulated above to model the decision-making situation 

of Railways involves peculiar expressions in the objective functions at both levels which 

are complicated to handle while solving the problem. Therefore, it is suggested to 

perform the following simplifications in the original form of the problem. 

Let 𝑑𝑟𝑖𝑟𝑗𝑡  denote the number of passengers to be served by the railways in coach 

class j of train type r on route 𝑖 in period t, and 𝑑𝑟𝑘𝑖𝑡  the number of passengers to be 

served by the competitor 𝑘𝑖  in time period 𝑡. Then, 𝑑𝑟𝑖𝑟𝑗 𝑡 = min 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  𝐷𝑖𝑡 , 𝑎𝑗  𝑥𝑖𝑟𝑗   

and 𝑑𝑟𝑘𝑖𝑡 = min 𝑃𝑘𝑖𝑡 𝑝𝑖𝑡 𝐷𝑖𝑡 , 𝐴𝑣𝑘𝑖 . 

Thus, the problem (RBPP) is equivalently expressed below for determining 

   𝑋𝑖𝑟  ,  𝑥𝑖𝑟𝑗  ,  𝑌𝑖𝑟𝑗  ,  𝑝𝑖𝑟𝑗𝑡  ,  𝑑𝑟𝑖𝑟𝑗𝑡  : 𝑖, 𝑟, 𝑗, 𝑡 ; where 𝑋𝑖𝑟  and 𝑌𝑖𝑟𝑗  are binary variables, 𝑥𝑖𝑟𝑗  

and 𝑑𝑟𝑖𝑟𝑗𝑡  are non-negative integer variables, and 𝑝𝑖𝑟𝑗𝑡  are price variables. 

(LDMP) 

max  𝑧1 =      𝑝𝑖𝑟𝑗𝑡 − 𝑐𝑖𝑟𝑗   𝑑𝑟𝑖𝑟𝑗𝑡

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

𝑇

𝑡=1

−   𝑓𝑖𝑟  𝑋𝑖𝑟

𝑅

𝑟=1

𝐼

𝑖=1

−    𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

 

s.t.  𝑝𝑙𝑖𝑟𝑗 ≤ 𝑝𝑖𝑟𝑗𝑡 ≤ 𝑝𝑢𝑖𝑟𝑗 ,    ∀𝑖, ∀𝑟, ∀𝑗, ∀𝑡 

                𝑓𝑖𝑟  𝑋𝑖𝑟

𝑅

𝑟=1

𝐼

𝑖=1

+     𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

𝑅

𝑟=1

𝐼

𝑖=1

≤ 𝐵 

                 𝑝𝑖𝑟𝑗𝑡 − 𝑐𝑖𝑟𝑗   𝑑𝑟𝑖𝑟𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

≥ 𝑓𝑖𝑟  𝑋𝑖𝑟 +   𝑔𝑖𝑟𝑗  𝑥𝑖𝑟𝑗

𝐽

𝑗=1

,    ∀𝑖,    ∀𝑟, 
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              𝑑𝑟𝑖𝑟𝑗𝑡 − 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡  𝐷𝑖𝑡 ≤ 0,    ∀𝑖,   ∀𝑟,   ∀𝑗,   ∀𝑡, 

              𝑑𝑟𝑖𝑟𝑗𝑡 − 𝑎𝑗  𝑥𝑖𝑟𝑗 ≤ 0,    ∀𝑖,   ∀𝑟,   ∀𝑗,   ∀𝑡, 

              𝑥𝑖𝑟𝑗 −𝑀𝑟𝑗  𝑋𝑖𝑟  𝑌𝑖𝑟𝑗 ≤ 0,    ∀𝑖,   ∀𝑟,   ∀𝑗, 

               𝑥𝑖𝑟𝑗

𝐽

𝑗=1

≤ 𝑀𝑖𝑟 ,    ∀𝑖,   ∀𝑟, 

                𝑥𝑖𝑟𝑗

𝑅

𝑟=1

𝐼

𝑖=1

≤ 𝑀𝑗 ,    ∀𝑗, 

              𝑑𝑟𝑖𝑟𝑗𝑡 ≥ 0,    ∀𝑖,   ∀𝑟,   ∀𝑗,   ∀𝑡, 

              𝑝𝑖𝑟𝑗𝑡 ≥ 0, 𝑋𝑖𝑟 ,  𝑌𝑖𝑟𝑗 ∈  0, 1 , 𝑥𝑖𝑟𝑗 , and 𝑑𝑟𝑖𝑟𝑗𝑡  are non-negative integers, 

where, in each period 𝑡 and for each route  𝑖, competitors  𝑘𝑖  aim to compute the 

Nash equilibrium price vector {𝑝𝑘𝑖𝑡 : 𝑘𝑖 = 1,… , 𝐾𝑖}, 

              (FDMP − 𝑘𝑖)        max  𝑧2𝑘𝑖
=  𝑝𝑘𝑖𝑡  𝑑𝑟𝑘𝑖𝑡  

                  s.t.   𝑝𝑘𝑖𝑡 ≥  1 + 𝜉𝑘𝑖 𝑐𝑘𝑖 , 

                                               𝑑𝑟𝑘𝑖𝑡 ≤ 𝑃𝑘𝑖𝑡 𝑝𝑖𝑡  𝐷𝑖𝑡  , 

                                               𝑑𝑟𝑘𝑖𝑡 ≤ 𝐴𝑣𝑘𝑖  , 

                                               𝑑𝑟𝑘𝑖𝑡 ≥  0,  𝑑𝑟𝑘𝑖𝑡  are non-negative integers. 

 

3.3 Solution methodology  

Though some alterations and relaxations can be worked out in (RBPP) model, yet 

this in no way will reduce the computational challenges associated with the (RBPP) 

model. Some of such concerns are addressed in the following remark. 

Remark 3.3.1: Following the approach of [146,229] in applying Bender‟s decomposition, 

and setting 𝑍𝑖𝑟𝑗 = 𝑋𝑖𝑟𝑌𝑖𝑟𝑗 , we can resolve the nonlinear implicative constraints (12) into 
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the linear constraints by introducing additional binary variables. However, this 

transformation will add to the computational difficulty in solving (LDMP) problem due to 

increase in the number of binary variables. Moreover, it will neither simplify the bilinear 

structure of the objective function. 

 

3.3.1 A theoretical development for computing Nash-equilibrium fare-prices of 

competitors 

The lower level problem amounts to solve a constrained Nash-equilibrium problem 

of determining equilibrium prices  𝑝𝑘𝑖𝑡 : 𝑘𝑖 , for each route 𝑖 and in each period 𝑡. For 

each competitor 𝑘𝑖 , in each period 𝑡, the problem (FDMP − 𝑘𝑖) is a constrained bilinear 

optimization problem of the form (A.1) in Appendix. Therefore, using part (a) of Result 

A.1 of Appendix, the optimization problem of each follower (FDMP − 𝑘𝑖) can be 

rewritten as below. 

max  𝜋𝑘𝑖𝑡 𝑝𝑘𝑖𝑡 : 𝑘𝑖 = 1,… , 𝐾𝑖 = 𝐷𝑖𝑡  
𝑝𝑘𝑖𝑡  𝑒

𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡

 1 + 𝐾 +   𝑒𝛼𝑘𝑡−𝛽 𝑝𝑘𝑖𝑡
𝐾𝑖
𝑘𝑖=1  

                           3.3.1  

s. t.   𝐷𝑖𝑡  
𝑒𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡

 1 + 𝐾 +   𝑒𝛼𝑘𝑡−𝛽 𝑝𝑘𝑖𝑡
𝐾𝑖
𝑘𝑖=1  

≤ 𝐴𝑣𝑘𝑖  ,                                                              3.3.2  

         𝑝𝑘𝑖𝑡 ≥  1 + 𝜉𝑘𝑖 𝑐𝑘𝑖  ,                                                                                                     3.3.3  

where 𝐾 =   𝑌𝑖𝑟𝑗  𝑒𝛼𝑖𝑟𝑗 −𝛽 𝑝𝑖𝑟𝑗𝑡𝐽
𝑗=1

𝑅
𝑟=1   is a constant for values of variables 𝑝𝑖𝑟𝑗𝑡  

and 𝑌𝑖𝑟𝑗  passed by (LDMP). 

The Lagrangian function corresponding to this optimization problem is 

 𝐿𝑘𝑖 𝑝𝑘𝑖𝑡 , 𝑠𝑘𝑖 , 𝑠
′
𝑘𝑖

, 𝜆𝑘𝑖 , 𝜇𝑘𝑖  

= 𝐷𝑖𝑡  
𝑝𝑘𝑖𝑡  𝑒

𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡

 1 + 𝐹 
− 𝜆𝑘𝑖  𝐷𝑖𝑡

 𝑒𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡

 1 + 𝐹 
− 𝐴𝑣𝑘𝑖 + 𝑠𝑘𝑖

2  

− 𝜇𝑘𝑖   1 + 𝜉𝑘𝑖 𝑐𝑘𝑖 − 𝑝𝑘𝑖𝑡 + 𝑠′ 𝑘𝑖
2
  

             = 𝐷𝑖𝑡  
 𝑝𝑘𝑖𝑡 − 𝜆𝑘𝑖  𝑒𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡

 1 + 𝐹 
− 𝜆𝑘𝑖 −𝐴𝑣𝑘𝑖 + 𝑠𝑘𝑖

2  

− 𝜇𝑘𝑖   1 + 𝜉𝑘𝑖 𝑐𝑘𝑖 − 𝑝𝑘𝑖𝑡 + 𝑠′𝑘𝑖
2                                                3.3.4  
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Here, 𝐹 ≡ 𝐹 𝑝1𝑡 , 𝑝2𝑡 , … , 𝑝𝐾𝑖𝑡 = 𝐾 +   𝑒𝛼𝑘𝑡−𝛽 𝑝𝑘𝑖𝑡
𝐾𝑖
𝑘𝑖=1  and  𝑠𝑘𝑖  and 𝑠′𝑘𝑖  are slack 

variables for constraints  3.3.2  and  3.3.3 , respectively. 

The profit function  3.3.1  is strictly quasiconcave with respect to individual price 

𝑝𝑘𝑖𝑡  (by referring to part (b) of Result A.1 in Appendix) over a convex feasible set 

determined by  3.3.2  –  3.3.3 . Therefore, it suffices to solve the KKT conditions (with 

complementary slackness conditions) for obtaining Nash-equilibrium prices [209,230]. 

The KKT conditions for optimal fare-prices 𝑝𝑘𝑖  of the competitor 𝑘𝑖  are  

           
𝜕𝐿𝑘𝑖
𝜕𝑝𝑘𝑖

= 0,
𝜕𝐿𝑘𝑖
𝜕𝜆𝑘𝑖

= 0,
𝜕𝐿𝑘𝑖
𝜕𝜇𝑘𝑖

= 0,
𝜕𝐿𝑘𝑖
𝜕𝑠𝑘𝑖

= 0,
𝜕𝐿𝑘𝑖
𝜕𝑠′𝑘𝑖

= 0     𝑘𝑖 = 1,… , 𝐾𝑖 ,               3.3.4  

yielding the following system of equations, for each 𝑘𝑖 = 1,… , 𝐾𝑖 . 

 

 

 

(3.3.5) 

 

 

 

For each route 𝑖 and in each period 𝑡, the lower level (Nash equilibrium) problem of 

(RBPP) reduces to solving the system of equations (3.3.5).  

Remark 3.3.2: With this development in hand, we can express the BLP problem (RBPP) 

into a single level optimization problem by inserting the system of nonlinear equations 

(3.3.5) as constraints into the upper level (LDMP) problem. However, the resulting 

optimization problem still includes a bilinear objective function and a mix of nonlinear 

and linear constraints along with continuous and discrete variables. As there does not 

seem to exist a computationally tractable algorithm for solving such a class of 

optimization problems, therefore the approach of converting the BLP problem into a 

single level optimization problem and solving the same is not viable. 

𝐷𝑖𝑡  𝜆𝑘𝑖  𝑒
𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡 1 + 𝐹  

+  𝛽𝐷𝑖𝑡   𝜆𝑘𝑖 − 𝑝𝑘𝑖𝑡  𝑒𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡 1 + 𝐹 − 𝑒𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡 

+ 𝜇𝑘𝑖 1 + 𝐹  =  0 

𝐷𝑖𝑡  𝑒𝛼𝑘𝑖−𝛽 𝑝𝑘𝑖𝑡  +   𝑠𝑘𝑖
2 − 𝐴𝑣𝑘𝑖  1 + 𝐹 = 0 

 1 + 𝜉𝑘𝑖 𝑐𝑘𝑖  −  𝑝𝑘𝑖𝑡 + 𝑠′𝑘𝑖
2 = 0 

𝑠𝑘𝑖𝜆𝑘𝑖  =  0 

𝑠′𝑘𝑖𝜇𝑘𝑖 = 0     
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We utilize this mechanism of solving equations (3.3.5) for obtaining followers‟ 

response rather for developing a GA-based nested approach for solving the modeled 

problem (RBPP). Such a solution methodology is suggested below under the name 

Diversified-Elitist-genetic algorithm (DEGA). 

 

3.3.2 Diversified-Elitist-genetic algorithm for solving problem of railways 

The conventional solution methodologies for solving bilevel programming 

problems often postulate smoothness, linearity or convexity set-up in the models. 

However, many real-life situations of decision-making do not meet these aspects, and 

same is the case for the situation addressed in this study. Also, the proposed model is an 

instance of the class of bilevel programming problems having a single leader and multiple 

followers, and the problem at the follower level demands computing constrained Nash-

equilibrium solution. This class of bilevel programming problems seems to have been 

overlooked and not investigated with rigor in the literature. As a result, there exists no 

algorithm to solve such problems. Acknowledging these challenges associated with the 

solution procedures, we propose DEGA to solve (RBPP) model. The DEGA embeds in 

itself, addressing the system of equations in (3.3.5) for computation of Nash-equilibrium 

fare-prices of the followers. An elite-preserving diversification operator endeavors to 

maintain diversity in the population by avoiding accumulation of chromosomes near the 

fittest chromosome, which in turn prevent a premature convergence of the algorithm to a 

locally optimal solution. 

Chromosome encoding 

The chromosomes of the population are encoded as three-part array.  The first part 

comprises of an array of length 𝐼 × 𝑅, of binary numbers indicating the values of 

variables  𝑋𝑖𝑟 : 𝑖 = 1,… , 𝐼, 𝑟 = 1,… , 𝑅 . The second part corresponds to a two-

dimensional array of order  𝐼 × 𝑅, 𝐽  of binary numbers indicating the values of variables 

 𝑌𝑖𝑟𝑗 : 𝑖 = 1,… , 𝐼, ;  𝑟 = 1,… , 𝑅;  𝑗 = 1,… , 𝐽 . And the third part corresponds to a two-

dimensional array of order  𝐼 × 𝑅, 𝐽 × 𝑇  representing fare-prices of various coaches of 

various trains on various potential routes  𝑝𝑖𝑟𝑗𝑡 : 𝑖 = 1,… , 𝐼, ;  𝑟 = 1,… , 𝑅;  𝑗 = 1,… , 𝐽; 𝑡 =

1, … , 𝑇  in the range of reservation prices  𝑝𝑙𝑖𝑟𝑗 , 𝑝𝑢𝑖𝑟𝑗  .   
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The search space for fare-prices could be enormous for applying the heuristic elitist 

diversified GA algorithm. To enhance the search efficiency, and thereby to reduce the 

search time, we have discretized the search space to consider only the integer grid points. 

This step is also practically viable since the fare prices in the coaches‟ class typically vary 

by some multiple of a constant factor of currency. 

A general chromosome structure used in the implementation of the algorithm is 

shown in Figure 3.1. The GA parameters used in the proposed algorithm are population 

size (popsize); number of generations (𝐺); current generation (𝑔, 𝑔 = 1, 2, … , 𝐺); 

crossover rate (pcX for  𝑋𝑖𝑟   and pc for  𝑝𝑖𝑟𝑗𝑡  ); mutation rate (pmX for  𝑋𝑖𝑟   and pm for 

 𝑝𝑖𝑟𝑗𝑡  ). 

Initialization 

The initial population is randomly generated as follows. The first part of a 

chromosome is randomly generated as a one-dimensional array of length 𝐼 × 𝑅 with 

binary entries. The second part of this chromosome is a two-dimensional array of 

order  𝐼 × 𝑅, 𝐽  with binary entries in each row depending on the corresponding value in 

the first part of the chromosome. If the entry in the first part is 0, then the corresponding 

row in the second part of a chromosome is taken all zeros to indicate that assembly of 

coaches is superfluous in a not running train; else the corresponding row of binary 

numbers is generated randomly with at least one entry as 1. The third part of a 

chromosome is randomly generated as a two-dimensional array of order  𝐼 × 𝑅, 𝐽 × 𝑇  

with integer values ranging in the interval  𝑝𝑙𝑖𝑟𝑗 , 𝑝𝑢𝑖𝑟𝑗  . 

Genetic operators 

Crossover operator: We use the conventional single point crossover operator in 

the first part of the chromosomes with the probability pcX. If it happens, then the 

crossover in the second part of the chromosome is carried out at the same position. The 

crossover in the third part of the chromosome is performed with the probability pc using 

the Laplace crossover operator [193], detailed in Chapter 2. 
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𝑖 = 1 𝑖 = 2 … 𝑖 = 𝐼 

𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 … … 𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 

𝑋11  𝑋12  … 𝑋1𝑅  𝑋21  𝑋22  … 𝑋2𝑅 … … 𝑋𝐼1 𝑋𝐼2 … 𝑋𝐼𝑅  

  

   𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽   

  

𝑖
=

1
 

𝑟 = 1 𝑌111  𝑌112  … 𝑌11𝐽  

𝑟 = 2 𝑌121  𝑌122  … 𝑌12𝐽  

… … … … … 

𝑟 = 𝑅 𝑌1𝑅1 𝑌1𝑅2 … 𝑌1𝑅𝐽  

𝑖
=

2
 

𝑟 = 1 𝑌211  𝑌212  … 𝑌21𝐽  

𝑟 = 2 𝑌221  𝑌222  … 𝑌22𝐽  

… … … … … 

𝑟 = 𝑅 𝑌2𝑅1 𝑌2𝑅2 … 𝑌2𝑅𝐽  

      

     

𝑖
=
𝐼 

𝑟 = 1 𝑌𝐼11  𝑌𝐼12  … 𝑌𝐼1𝐽  

𝑟 = 2 𝑌𝐼21  𝑌𝐼22  … 𝑌𝐼2𝐽  

… … … … … 

 𝑟 = 𝑅 𝑌𝐼𝑅1 𝑌𝐼𝑅2 … 𝑌𝐼𝑅𝐽  

 

  𝑡 = 1 … 𝑡 = 𝑇 

  𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 … … … 𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 

𝑖
=

1
 

𝑟 = 1 𝑝1111  𝑝1121  … 𝑝11𝐽1 … … … 𝑝111𝑇  𝑝112𝑇  … 𝑝11𝐽𝑇  

𝑟 = 2 𝑝1211  𝑝1221  … 𝑝12𝐽1 … … … 𝑝121𝑇  𝑝122𝑇  … 𝑝12𝐽𝑇  

… … … … … … … … … … … … 

𝑟 = 𝑅 𝑝1𝑅11  𝑝1𝑅21  … 𝑝1𝑅𝐽1 … … … 𝑝1𝑅1𝑇  𝑝1𝑅2𝑇  … 𝑝1𝑅𝐽𝑇  

𝑖
=

2
 

𝑟 = 1 𝑝2111  𝑝2121  … 𝑝21𝐽1 … … … 𝑝211𝑇  𝑝212𝑇  … 𝑝21𝐽𝑇  

𝑟 = 2 𝑝2211  𝑝2221  … 𝑝22𝐽1 … … … 𝑝221𝑇  𝑝222𝑇  … 𝑝22𝐽𝑇  

… … … … … … … … … … … … 

𝑟 = 𝑅 𝑝2𝑅11  𝑝2𝑅21  … 𝑝2𝑅𝐽1 … … … 𝑝2𝑅1𝑇  𝑝2𝑅2𝑇  … 𝑝2𝑅𝐽𝑇  

             

            

𝑖
=
𝐼 

𝑟 = 1 𝑝𝐼111  𝑝𝐼121  … 𝑝𝐼1𝐽1 … … … 𝑝𝐼11𝑇  𝑝𝐼12𝑇  … 𝑝𝐼1𝐽𝑇  

𝑟 = 2 𝑝𝐼211  𝑝𝐼221  … 𝑝𝐼2𝐽1 … … … 𝑝𝐼21𝑇  𝑝𝐼22𝑇  … 𝑝𝐼2𝐽𝑇  

… … … … … … … … … … … … 

𝑟 = 𝑅 𝑝𝐼𝑅11  𝑝𝐼𝑅21  … 𝑝𝐼𝑅𝐽1 … … … 𝑝𝐼𝑅1𝑇  𝑝𝐼𝑅2𝑇  … 𝑝𝐼𝑅𝐽𝑇  

Figure 3.1: Chromosome structure 

 

Mutation operator: A bit-flip mutation is performed on the first part of the chromosome 

with the probability pmX for each gene. If a gene in first part of the chromosome does not 

go through the mutation, then the corresponding row in the second part of the 

chromosome remains unchanged. In case a gene in the first part of chromosome 

undergoes mutation to become 1, then the corresponding row in the second part of the 
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chromosome is randomly generated with at least one entry as 1, otherwise it is taken to be 

all zeros. The mutation in the third part of the chromosome is performed with the 

probability pm using the power mutation operator [197], detailed in Chapter 2. 

The use of Laplace crossover and power mutation operators on the third part of 

chromosomes (which represents prices of railways) provides an advantage that the 

feasibility of chromosomes is not disturbed in terms of reservation price bounds in 

problem (LDMP). 

Incorporating followers reaction and fitness evaluation 

Nash-equilibrium: For each chromosome in population representing leader‟s variables, 

the followers‟ response in terms of the competitors‟ prices is obtained by solving the 

system of equations (3.3.5). Nash-equilibrium prices thus obtained for competitors on 

each route and each period are supplied to (LDMP). This provides complete information 

about the vector of fares 𝑝𝑖𝑡 =   𝑝𝑖𝑟𝑗𝑡 : 𝑟, 𝑗 ,  𝑝𝑘𝑖𝑡 : 𝑘𝑖  . 

Fitness evaluation: For each chromosome, with its values  𝑋𝑖𝑟 ,  𝑌𝑖𝑟𝑗  ,  𝑝𝑖𝑟𝑗𝑡   and 

obtained values 𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡 , problem (LDMP) is solved to obtain the optimal number of 

coaches of each class in each train and the number of seats in these coaches. The fitness 

value of each chromosome is taken as the optimal value of 𝑧1. The chromosome with the 

highest fitness value is taken to be the elitist of that population. 

Updating the new population 

The new population obtained from the parent population 𝑃𝑔  is adopted to be a 

population of the next generation  𝑃𝑔+1 only if it‟s maximum fitness value, in comparison 

to the maximum fitness value of the previous generation, does not decrease. Otherwise, 

the elitist chromosome of population 𝑃𝑔  is added to the new population by removing one 

randomly selected chromosome from it. The population, thus obtained is then adopted to 

form population for the next generation 𝑃𝑔+1. 

Elite-preserving diversification operator 

For any generation 𝑔, before sending the population 𝑃𝑔+1 for further reproduction 

to 𝑃𝑔+2, a check of diversity is suggested to be applied on the population 𝑃𝑔+1 as detailed 

below. Firstly, distance of each chromosome from the elitist one are measured using the 
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computation rule (3.3.6), and then the variance of these distances is obtained to determine 

the density of the population. The distance between two chromosomes  𝑋𝑖𝑟
1 , 𝑌𝑖𝑟𝑗

1 , 𝑝𝑖𝑟𝑗𝑡
1   

and  𝑋𝑖𝑟
2 , 𝑌𝑖𝑟𝑗

2 , 𝑝𝑖𝑟𝑗𝑡
2   of the population is defined as 

             
     𝑌𝑖𝑟𝑗

1 𝑝𝑖𝑟𝑗𝑡
1 − 𝑌𝑖𝑟𝑗

2 𝑝𝑖𝑟𝑗𝑡
2  

2𝑇
𝑡=1

𝐽
𝑗=1

𝑅
𝑟=1

𝐼
𝑖=1

𝑝𝑢𝑖𝑟𝑗 − 𝑝𝑙𝑖𝑟𝑗
+
   𝑋𝑖𝑟

1 − 𝑋𝑖𝑟
2   𝑅

𝑟=1
𝐼
𝑖=1

𝐼 × 𝑅
          (3.3.6) 

In the above expression, first term is the rationalized Euclidean distance between 

fare-prices and second term is the rationalized Hamming distance between binary vectors. 

If variance is found to be less than a pre-specified threshold, then the elitist 

chromosome of the population is retained, and the diversification operator is repeatedly 

applied on other chromosomes until the population density overshoots the threshold or the 

upper limit on the number of attempts 𝐷  of diversification is reached. The diversification 

operator explained below is applied to each chromosome other than the elitist one as 

follows. 

(i) A chromosome is randomly generated afresh (as in the initialization step) with a 

probability 0.3. 

(ii) Otherwise,  

 a bit-flip mutation operator is applied on the first part of the chromosome with 

probability 0.5. If the gene in the first part of the chromosome undergoes mutation 

to become 1, then the corresponding row in the second part of the chromosome is 

randomly generated with at least one entry 1; else it is taken as row of zeros. 

 the first and second parts of the chromosome are retained and power mutation is 

applied to the third part with probability 0.5. 

This procedure preserves the elitist chromosome in the population 𝑃𝑔+1. This 

operator is developed to avoid a premature convergence of the algorithm to a local 

solution of the problem. Similar strategies were adopted in [231–233]. 

Termination criterion 

Maximum number of generations is prefixed and the execution of algorithm is 

terminated upon reaching this point. 
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The algorithm detailed above is summarized through a flowchart given as following 

Figure 3.2. 

 

Figure 3.2: Flow Chart of DEGA for solving (RBPP) problem  

Start 

g = 1 

Initialize population 

Binary numbers corresponding 

to 𝑋𝑖𝑟 , 𝑌𝑖𝑟𝑗  and fare-prices 𝑝𝑖𝑟𝑗𝑡  

Check for density of population & apply 

diversification operator if required 

Apply Power Mutation to 

the current population 

Apply extended Laplace Crossover to 

the current population 

𝑔 =  𝑔 +  1 

 

Is 𝑔 > 𝐺 

Solve for 𝑥𝑖𝑟𝑗 , 𝑑𝑟𝑖𝑟𝑗𝑡  and evaluate the 

fitness value of each chromosome as 

optimal objective value of (LDMP) 

Input each chromosome to followers‟ 

problem of Nash-equilibrium prices 𝑝𝑘𝑖𝑡  

Select the best chromosome from the current 

population and corresponding expected demands 

which gives maximum fitness population 

 

Select the best chromosome and 

corresponding demand of travellers with 

maximum fitness from the best selected 

chromosomes of all generations 

End 
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3.4 An experimental study from Indian Railways 

3.4.1 Relevant information and terminology of Indian Railways 

Indian Railways (IR) is fourth most sizable voluminous railway network in the 

world comprising of 119,630 kilometres of total track and 92,081 kilometres of running 

track covering routes of 66,687 kilometres with 7,216 stations as on March 31, 2016 

[234].  In 2015-16, IR carried 8.107 billion passengers and transported 1.101 billion tons 

of freight [235]. A total of 13,313 passenger trains ran daily during 2016 – 17. IR is the 

single largest provider of transportation services and is rightly called the lifeline of India. 

The widespread infrastructure of IR is geographically divided into 17 zones, each 

responsible for maintaining and managing its own rolling-stock. The decision on running 

special trains through major junctions is considered independently by each zone. The 

trains run by IR are categorized into 26 types. This classification is based on the average 

speed, number of stoppages (halts), distance covered, and some special features. Out of 

these, three types of trains namely “Superfast Express/ Mail”, “Express/ Mail”, and 

“Passenger Trains” are majorly run to serve the general public. These three types of trains 

are assembled with five classes of passenger coaches, namely AC-I, AC-II, AC-III, 

sleeper class (SL), second class (II-class). These coaches differ in the type of 

accommodation provided to the passengers and have seating/ accommodation capacity 

(per coach) as 28, 48, 64, 72, and 90, respectively. The special trains are also considered 

among these three categories because of much availability of the rolling-stock in these 

segments. 

The special trains face competition from private airlines and luxury buses; 

nowadays some private airlines in India offer fares as low as comparable not only with 

AC-I class but also with AC-II class, and infrequently with AC-III (on long routes).  Also, 

studies have revealed that road transportation may be detrimental to the railways industry. 

3.4.2 Data inputs 

We consider the test case of the Northern Railway Zone with 4 potential routes, 

namely Delhi – Mumbai, Delhi – Chandigarh, Delhi – Ranchi, and Jaipur – Lucknow 

(depicted by 𝑖 = 1, 2, … ,4, respectively) for making a decision on running special trains 

with the planning horizon comprising of 4 weeks (𝑡 = 1, 2, … ,4). On these routes, 3 types 
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of trains can run by appropriately assembling 5 classes of coaches. For coaches of 5 

types, the indices used are 𝑗 = 1: AC-I, 𝑗 = 2: AC-II,  𝑗 = 3: AC-III, 𝑗 = 4: sleeper class 

(SL), 𝑗 = 5: second class (II-class). The availability of numbers of coaches in respective 

classes is taken as 10, 10, 30, 50, and 50. The price sensitivity coefficients  𝛽𝑖  of the 

four routes are 0.0009, 0.001, 0.0045, and 0.004, respectively. The profit margin 

coefficients  𝜉𝑘𝑖  for each alternative transport service provider on the four routes are 0.8, 

0.6, 0.7, and 0.5, respectively. The sanctioned budget for running special trains on 

potential routes is assumed to be INR 20,00,000. The forecasted demand and other input 

parameters are listed in Table 3.1 to Table 3.6. 

 

 time (t) in week 

routes (i) 1 2 3 4 

1 2000 3000 4000 3000 

2 1000 2500 2000 1000 

3 3000 3200 3300 1500 

4 3000 3500 4000 3500 

Table 3.1: Demand on various routes  𝐷𝑖𝑡  

 

 routes (i) 

train type (r) 1 2 3 4 

1 (25, 20) (25, 20) (25, 20) (25, 20) 

2 (25, 15) (25, 15) (25, 15) (25, 15) 

3 (20, 10) (20, 10) (20, 10) (20, 10) 

Table 3.2:  Length of train, fixed cost (in INR with multiple 104)  𝑚𝑙𝑖𝑟 ,  𝑓𝑖𝑟  

 

train type (r) 
coach class (j)  

1 2 3 4 5 

1 (1, 85) (3, 55) (25, 45) (25, 30) (25, 15) 

2 (1, 80) (3, 50) (25, 40) (25, 25) (25, 10) 

3 (0, 80) (0, 50) (0, 40) (0, 25) (25, 9) 

Table 3.3: Maximum number possible to assemble, cost of adding a coach (INR with multiple 

of 102)  𝑀𝑟𝑗 , 𝑔𝑖𝑟𝑗   
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route train type coach type (j) 

(i) (r) 1 2 3 4 5 

 1 (0.4, 250) (0.3, 150) (0.1, 100) (0.05, 50) (0.02, 30) 

1 2 (0.3, 300) (0.2, 140) (0.09, 90) (0.04, 40) (0.01, 30) 

 3 (0.001, 210) (0.001, 130) (0.001, 80) (0.001, 30) (0.001, 30) 

 1 (0.85, 150) (0.8, 100) (0.2, 60) (0.05, 40) (0.02, 10) 

2 2 (0.81, 130) (0.7, 80) (0.1, 50) (0.04, 30) (0.02, 10) 

 3 (0.001, 120) (0.001, 70) (0.001, 40) (0.001, 20) (0.001, 10) 

 1 (0.4, 250) (0.3, 150) (0.1, 100) (0.05, 60) (0.01, 35) 

3 2 (0.3, 300) (0.2, 140) (0.09, 90) (0.04, 50) (0.01, 35) 

 3 (0.001, 210) (0.001, 130) (0.001, 80) (0.001, 40) (0.001, 35) 

 1 (0.3, 180) (0.4, 120) (0.2, 80) (0.03, 40) (0.02, 10) 

4 2 (0.4, 200) (0.3, 100) (0.095, 70) (0.02, 30) (0.02, 10) 

 3 (0.001, 140) (0.001, 90) (0.001, 50) (0.001, 20) (0.001, 10) 

Table 3.4: Coefficient of non-monetary factors, Cost incurred to railways per passenger-

(INR/passenger)  𝛼𝑖𝑟𝑗 , 𝑐𝑖𝑟𝑗   

 

 

 𝒑𝒍𝒊𝒓𝒋 𝒑𝒖𝒊𝒓𝒋 

routes 

 (i) 

train type 

(r) 

coach type (j) coach type (j) 

1 2 3 4 5 1 2 3 4 5 

 1 3100 2000 1000 410 150 6000 3000 1950 900 400 

1 2 3000 1950 950 380 120 5900 2950 1900 870 370 

 3 300 300 300 300 90 300 300 300 300 340 

 1 900 610 410 170 100 1500 800 600 350 150 

2 2 800 560 360 140 70 1400 780 550 320 120 

 3 300 300 300 300 50 300 300 300 300 100 

 1 3100 2000 1000 410 150 6000 3000 1950 900 400 

3 2 3000 1950 950 380 120 5900 2950 1900 850 370 

 3 300 300 300 300 90 300 300 300 300 340 

 1 3100 2000 1000 410 150 6000 3000 1950 900 380 

4 2 3000 1950 950 380 120 5900 2950 1900 850 350 

 3 300 300 300 300 100 300 300 300 300 330 

Table 3.5: Reservation prices of railways (INR/ passenger) for each category of coach in each 

type of train on each route, 𝑝𝑙𝑖𝑟𝑗  and 𝑝𝑢𝑖𝑟𝑗  
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route 

(i) 
parameters 

competitors  𝒌𝒊  

1 2 3 4 5 6 7 8 

 𝑐𝑘𝑖  700 540 470 680 530 440 630 400 

1 𝐴𝑣𝑘𝑖  150 350 350 150 350 350 150 550 

 𝛼𝑘𝑖  1 1.1 1.2 0.9 0.95 1.3 0.8 1 

 𝑐𝑘𝑖  100 250 100 180 250 500 450 550 

2 𝐴𝑣𝑘𝑖  150 80 200 100 900 150 150 150 

 𝛼𝑘𝑖  0.02 0.1 0.015 0.06 0.4 1 0.8 1.1 

 𝑐𝑘𝑖  380 280 380 600 450 750 - - 

3 𝐴𝑣𝑘𝑖  150 350 150 550 150 150 - - 

 𝛼𝑘𝑖  0.02 0.1 0.015 0.06 0.4 1 - - 

 𝑐𝑘𝑖  310 510 420 810 320 610 660 620 

4 𝐴𝑣𝑘𝑖  150 120 200 100 500 150 150 150 

 𝛼𝑘𝑖  0.01 0.06 0.015 0.05 0.2 1 0.9 1.1 

Table 3.6: Parameters pertaining to competitor transporters 

 

Remark 3.4.1: For considering the befitting instance of our problem and its scale 

(regarding the number of routes and planning horizon), we referred to the webpage of 

special trains on the website of IR (“National Train Enquiry System - Special Trains, 

Indian Railways,” 2017). The webpage lists all special trains scheduled to run in the 

following two months. On May 03, 2017, a total of 412 trains were listed to run, out of 

which 290 trains were scheduled in May 2017. Due to different train numbers assigned to 

the same train while up and down journey, the actual number of trains running was 145. 

About 15 trains were scheduled only for a single run on specific but different dates, so we 

do not account for them. The remaining 130 trains in 26 zones result on an average five 

trains per zone. A further re-look indicate that Northern Railway Zone in IR had run only 

four special trains in May 2017. 

 

3.4.3 Implementation of Diversified-Elitist-genetic algorithm 

We solved the proposed bilevel programming problem (RBPP) applying the above 

input data. We used MATLAB 2015b to code the program. The parameters involved in 

Laplace crossover and power mutation along with the population size (𝑝𝑜𝑝𝑠𝑖𝑧𝑒) are tuned 
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for various combinations of probabilities of crossover, mutation and tournament selection. 

The initial experiments of DEGA with different sets of parameters enabled us to tune the 

maximum number of generations to  𝐺 = 150 (i.e., each run of DEGA is stopped with 

maximum 150 iterations). The best result obtained with a specific set of GA parameters 

shows no significant improvement in fitness value in the last 100 iterations (depicted later 

in Figure 3.3), establishing stability of DEGA. The best one found are 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 = 50, 

𝑎 = 0, 𝑏 = 1, and 𝑝 = 1 or 0.5. We set the maximum number of generations to 150 after 

tuning the parameters up to 500 iterations. The threshold for population density is tuned 

to 0.8 and 𝐷  is set at 50. For each combination of the parameters (Table 3.7), we 

performed a set of 10 experiments of DEGA. Table 3.7 tabulates the relative error of the 

best solution obtained for each combination of parameters in comparison to the overall 

best solution. Figure 3.3, shows variation in the maximum fitness attained in various 

generations of a DEGA run. Among the 320 solutions generated (32 combinations with 

ten runs each) for (RBPP), we finally pick the one yielding the best fitness value in the 

results and analysis.  

 

 

Figure 3.3: Maximum fitness vs. generations of best solution by DEGA 
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pcX pc pmX pm p relative error mean error 

0.5 0.9 0.2 0.4 1 0.173 0.027 

0.5 0.9 0.2 0.6 1 0.177 0.022 

0.5 0.9 0.4 0.4 1 0.227 0.041 

0.5 0.9 0.4 0.6 1 0.099 0.119 

0.5 0.8 0.2 0.4 1 0.172 0.028 

0.5 0.8 0.2 0.6 1 0.161 0.041 

0.5 0.8 0.4 0.4 1 0.000 0.242 

0.5 0.8 0.4 0.6 1 0.210 0.019 

0.2 0.9 0.2 0.4 1 0.099 0.119 

0.2 0.9 0.2 0.6 1 0.105 0.111 

0.2 0.9 0.4 0.4 1 0.247 0.065 

0.2 0.9 0.4 0.6 1 0.147 0.059 

0.2 0.8 0.2 0.4 1 0.225 0.037 

0.2 0.8 0.2 0.6 1 0.211 0.020 

0.2 0.8 0.4 0.4 1 0.105 0.111 

0.2 0.8 0.4 0.6 1 0.173 0.027 

0.5 0.9 0.2 0.4 0.5 0.211 0.020 

0.5 0.9 0.2 0.6 0.5 0.267 0.090 

0.5 0.9 0.4 0.4 0.5 0.173 0.027 

0.5 0.9 0.4 0.6 0.5 0.243 0.060 

0.5 0.8 0.2 0.4 0.5 0.186 0.011 

0.5 0.8 0.2 0.6 0.5 0.210 0.019 

0.5 0.8 0.4 0.4 0.5 0.218 0.029 

0.5 0.8 0.4 0.6 0.5 0.240 0.056 

0.2 0.9 0.2 0.4 0.5 0.275 0.099 

0.2 0.9 0.2 0.6 0.5 0.273 0.097 

0.2 0.9 0.4 0.4 0.5 0.211 0.020 

0.2 0.9 0.4 0.6 0.5 0.230 0.045 

0.2 0.8 0.2 0.4 0.5 0.246 0.063 

0.2 0.8 0.2 0.6 0.5 0.268 0.091 

0.2 0.8 0.4 0.4 0.5 0.259 0.080 

0.2 0.8 0.4 0.6 0.5 0.186 0.010 

Table 3.7: Error analysis for different combination of parameters in DEGA; the best one is 

highlighted in bold 
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3.4.4 Results and analysis 

The output decisions are as follows. Table 8 shows the decision of IR on types of 

trains.  Table 3.9 tabulated the optimal number of coaches in the running trains. Table 

3.10 provides the best fare-prices for different category of coaches in various types of 

trains. Table 3.11 lists the expected number of passengers in response to the arrangement 

for IR. Table 3.12 to Table 3.15 present the fare-price reaction of competitors on various 

routes in different periods, and also their expected passenger turn-ups. The projected total 

profit to IR is INR 1,01,38,195. Here, we observe that the fares listed in Table  are 

compatible with the fare-chart of IR for the regularly running trains [236]. 

train type  

(r) 

routes (i) 

1 2 3 4 

1 1  1 0 1 

2 1 0 1 0 

3 0 0 0 0 

Table 3.8: Decision on running trains suggested for IR (𝑋𝑖𝑟 ) 

 

route train type coach type (j) 

(i) (r) 1 2 3 4 5 

 
1 1 0 12 12 0 

1 2 1 3 12 9 0 

 
3 0 0 0 0 0 

 
1 0 3 5 0 0 

2 2 0 0 0 0 0 

 
3 0 0 0 0 0 

 
1 0 0 0 0 0 

3 2 0 0 1 0 8 

 
3 0 0 0 0 0 

 
1 0 0 0 8 17 

4 2 0 0 0 0 0 

 
3 0 0 0 0 0 

Table 3.9: Decision on number of coaches suggested for IR (𝑥𝑖𝑟𝑗 ) 
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time (t) 

1 2 

route train type coach type (j) coach type (j) 

(i) (r) 1 2 3 4 5 1 2 3 4 5 

 
1 5946 - 1082 621 - 4515 - 1076 893 - 

1 2 3400 2477 1026 462 0 4174 2083 1550 417 0 

 
3 - - - - - - - - - - 

 
1 - 720 584 - - - 697 593 - - 

2 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

 
1 - - - - - - - - - - 

3 2 - - 1022 - 354 - - 1823 - 122 

 
3 - - - - - - - - - - 

 
1 - - - 410 150 - - - 430 150 

4 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

  
time (t) 

  
3 4 

 
1 5465 - 1847 707 - 3820 - 1932 412 - 

1 2 3458 2399 1024 645 - 5826 2874 1534 385 - 

 
3 - - - - - - - - - - 

 
1 - 676 482 - - - 790 508 - - 

2 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

 
1 - - - - - - - - - - 

3 2 - - 996 - 158 - - 1752 - 245 

 
3 - - - - - - - - - - 

 
1 - - - 749 151 - - - 835 161 

4 2 - - - - - - - - - - 

 3 - - - - - - - - - - 

Table 3.10: Fare-prices suggested for IR (INR/ Passenger) (𝑝𝑖𝑟𝑗𝑡 ) 



 

 
91 

 

 

Table 3.11: Number of passengers expected to travel through IR (𝑑𝑟𝑖𝑟𝑗𝑡 ) 

 

 
time (t) 

 
1 2 

route train type coach type (j) coach type (j) 

(i) (r) 1 2 3 4 5 1 2 3 4 5 

 
1 1 - 71 44 - 8 - 479 661 - 

1 2 10 22 74 0 - 28 144 499 0 - 

 
3 - - - - - - - - - - 

 
1 0 102 64 0 0 0 144 273 0 0 

2 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

 
1 - - - - - - - - - - 

3 2 0 0 29 0 554 0 0 35 0 657 

 
3 - - - - - - - - - - 

 
1 0 0 0 434 677 0 0 0 506 1419 

4 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

  
time (t) 

  
3 4 

 
1 11 - 760 863 - 8 - 487 701 - 

1 2 27 144 768 647 - 27 144 506 148 - 

 
3 - - - - - - - - - - 

 
1 0 144 294 0 0 0 117 73 0 0 

2 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

 
1 - - - - - - - - - - 

3 2 0 0 34 0 646 0 0 14 0 241 

 
3 - - - - - - - - - - 

 
1 0 0 0 576 1530 0 0 0 505 705 

4 2 - - - - - - - - - - 

 3 - - - - - - - - - - 
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time 

(t) 

competitors  𝒌𝒊  

1 2 3 4 5 6 7 8 

𝒑𝒌𝒊𝒕 

1 1265 973 854 1225 957 800 1137 720 

2 26930 25861 2703 27554 25580 2814 27177 25717 

3 26346 24796 24945 22873 24751 3411 26645 24321 

4 3416 26581 26755 26996 2419 26914 3194 26007 

𝒅𝒌𝒊𝒕 

1 150 215 265 140 188 307 137 245 

2 0 0 349 0 0 349 0 0 

3 0 0 0 0 0 349 0 0 

4 150 0 0 0 350 0 150 0 

Table 3.12: Nash-equilibrium fare-prices of competitors in INR (𝑝𝑘𝑖𝑡) and expected passenger 

demand (𝑑𝑘𝑖𝑡) on route 𝑖 = 1 

 

 

 

 
time 

(t) 

competitors  𝒌𝒊  

1 2 3 4 5 6 7 8 

𝒑𝒌𝒊𝒕 

1 160 400 160 290 400 800 720 880 

2 1005 1714 712 1451 400 1985 1785 2085 

3 1080 19509 788 1526 17502 19170 1860 2160 

4 201 433 160 311 400 800 720 21893 

𝒅𝒌𝒊𝒕 

1 82 69 81 75 94 115 102 117 

2 150 79 200 99 401 150 150 150 

3 150 0 199 99 0 0 150 150 

4 90 77 93 84 108 132 117 0 

Table 3.13: Nash-equilibrium fare-prices of competitors in INR (𝑝𝑘𝑖𝑡) and expected passenger 

demand (𝑑𝑘𝑖𝑡) on route 𝑖 = 2 
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time 

(t) 

competitors  𝒌𝒊  

1 2 3 4 5 6 

𝒑𝒌𝒊𝒕 

1 647 5940 646 3097 3228 9500 

2 4756 4862 4810 4788 4708 4948 

3 5434 4714 5369 5315 765 5377 

4 6526 480 5264 5694 7368 5372 

𝒅𝒌𝒊𝒕 

1 149 0 149 0 0 0 

2 0 0 0 0 0 0 

3 0 0 0 0 0 0 

4 0 169 0 0 0 0 

Table 3.14: Nash-equilibrium fare-prices of competitors in INR (𝑝𝑘𝑖𝑡) and expected 

passenger demand (𝑑𝑘𝑖𝑡) on route 𝑖 = 3 

 

 
time 

(t) 

competitors  𝒌𝒊  

1 2 3 4 5 6 7 8 

𝒑𝒌𝒊𝒕 

1 671 3759 9855 4838 488 919 5039 944 

2 5830 5825 5832 6071 5908 6018 1002 6044 

3 804 6042 6091 5119 5433 6210 1026 5942 

4 4684 770 631 4575 488 949 7402 974 

𝒅𝒌𝒊𝒕 

1 149 0 0 0 376 149 0 149 

2 0 0 0 0 0 0 149 0 

3 149 0 0 0 0 0 150 0 

4 0 119 199 0 425 149 0 149 

Table 3.15: Nash-equilibrium fare-prices of competitors in INR (𝑝𝑘𝑖𝑡) and expected 

passenger demand (𝑑𝑘𝑖𝑡) on route 𝑖 = 4 

 

routes 

(i) 

time (t) 

1 2 3 4 

1 1869 2517 3569 2671 

2 901 1796 1186 891 

3 881 692 830 424 

4 1934 2074 2405 2251 

Table 3.16: Total demand expected to be satisfied by all travelling service providers 

including IR 
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3.5 Comparison analysis 

Among three comparisons presented below, the first one is intended to verify the 

performance of the developed solution methodology, whereas other two comparisons 

justify the model formulation and results of computation. 

Comparison 1: Comparison of the performance of DEGA against simple GA 

Keeping all other parameters and input data same, when simple GA is run on the 

test case, it provides a solution which yields a profit of INR 74,52,482 to IR. As this 

profit is much lower than the one obtained from DEGA, it indicates the significance of 

the Diversification operator used in our solution methodology. 

The proposed (RBPP) model incorporates influences of competitors on demand-

share through the fare-price reaction. To test the acclaimed prominence of our model we 

attempt to compare the results of the previous section with two cases when either the 

reaction of competitors is completely ignored in the model or the railways assumes a 

monopoly in the market by setting the escalated fare-prices in special trains. 

Comparison 2: Comparison with a case in which competition is ignored 

For this case, we consider a single level optimization model as (LDMP) (without 

considering competitors‟ reaction on prices thorough  FDMP − 𝑘𝑖 ) for determining 

variables  𝑑𝑟𝑖𝑟𝑗𝑡  ,  𝑥𝑖𝑟𝑗   by fixing values of variables  𝑋𝑖𝑟  and  𝑝𝑖𝑟𝑗𝑡   given in Table 3.8 

and Table 3.10, respectively, as parameters. Further, to omit the influence of competitors 

we use the following expression for estimating the expected number of passengers to 

prefer the class 𝑗 (𝑗 = 1, 2, … , 𝐽) of train type 𝑟 (𝑟 = 1, 2, … , 𝑅) to travel on route 𝑖 

(𝑖 = 1, 2, … , 𝐼) at time 𝑡 (𝑡 = 1, 2, … , 𝑇). 

                              𝑃𝑖𝑟𝑗𝑡  𝑝𝑖𝑡 =
𝑌𝑖𝑟𝑗  𝑒𝛼𝑖𝑟𝑗 −𝛽𝑖  𝑝𝑖𝑟𝑗𝑡

1 +    𝑌𝑖𝑟𝑗 𝑒
𝛼𝑖𝑟𝑗 −𝛽𝑖  𝑝𝑖𝑟𝑗𝑡𝐽

𝑗=1
𝑅
𝑟=1  

.                                   (3.5.1) 

Solving this optimization problem, the optimal values obtained for 

variables  𝑑𝑟𝑖𝑟𝑗𝑡  , and  𝑥𝑖𝑟𝑗   are listed in Table 3.17 and Table 3.18, respectively. These 
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tables depict the number of passengers expected to travel with IR on considered routes 

and the train-assembly arrangements required accordingly, for the discussed case. 

 

 
time (t) 

 
1 2 

route train type coach type (j) coach type (j) 

(i) (r) 1 2 3 4 5 1 2 3 4 5 

 
1 4 0 249 359 0 6 0 400 577 0 

1 2 28 78 260 411 0 28 126 417 660 0 

 
3 0 0 0 0 0 0 0 0 0 0 

 
1 0 144 246 0 0 0 144 611 0 0 

2 2 0 0 0 0 0 0 0 0 0 0 

 
3 0 0 0 0 0 0 0 0 0 0 

 
1 0 0 0 0 0 0 0 0 0 0 

3 2 0 0 27 0 506 0 0 22 0 413 

 
3 0 0 0 0 0 0 0 0 0 0 

 
1 0 0 0 340 954 0 0 0 401 1123 

4 2 0 0 0 0 0 0 0 0 0 0 

 
3 0 0 0 0 0 0 0 0 0 0 

  
time (t) 

  
3 4 

 
1 9 0 557 802 0 6 0 405 585 0 

1 2 27 144 576 864 0 28 128 423 669 0 

 
3 0 0 0 0 0 0 0 0 0 0 

 
1 0 144 471 0 0 0 144 248 0 0 

2 2 0 0 0 0 0 0 0 0 0 0 

 
3 0 0 0 0 0 0 0 0 0 0 

 
1 0 0 0 0 0 0 0 0 0 0 

3 2 0 0 23 0 449 0 0 11 0 230 

 
3 0 0 0 0 0 0 0 0 0 0 

 
1 0 0 0 496 1391 0 0 0 443 1246 

4 2 0 0 0 0 0 0 0 0 0 0 

 3 0 0 0 0 0 0 0 0 0 0 

Table 3.17: Number of passengers expected to travel with IR in new arrangement (𝑑𝑟𝑖𝑟𝑗𝑡 ) 

 



 

 
96 

 

 

route train type coach type (j) 

(i) (r) 1 2 3 4 5 

 

1 1 0 9 12 0 

1 2 1 2 8 12 0 

 

3 0 0 0 0 0 

 

1 0 3 10 0 0 

2 2 0 0 0 0 0 

 

3 0 0 0 0 0 

 

1 0 0 0 0 0 

3 2 0 0 1 0 6 

 

3 0 0 0 0 0 

 

1 0 0 0 7 16 

4 2 0 0 0 0 0 

 

3 0 0 0 0 0 

Table 3.18: Decision of IR on number of coaches for the new arrangement (𝑥𝑖𝑟𝑗 )  

 

With this arrangement, the total profit of IR is deceptively expected to be INR 

1,06,16,014. At first look, this profit appears lucrative than the one obtained from 

(RBPP), but it is elusive as explained below through a comparison with the solution of 

our model.  

Overlooking the competitors in terms of their fare-price response (and thereby 

overestimating the preference of passengers), the IR obtains inappropriate estimates the 

expected demand and hence quixotically plan for the number of coaches of various types 

to be assembled in its trains. For example, Table 3.18 suggests for 9 coaches of type 

𝑗 = 3 in train type 𝑟 = 1 on route 𝑖 = 1, which is 3 lesser than the same directed in Table 

3.9. The 9 coaches of this type have a total capacity for 576 passengers only, and for the 

situation to be actually realized due to the influence of competitors, this is insufficient to 

accommodate the expected passenger turnout in period 𝑡 = 3 (i.e., 760, see Table 3.11), 

resulting in an opportunity loss. On the other hand, Table 3.18 suggests for 10 coaches of 

type 𝑗 = 3 in train type 𝑟 = 1 on route 𝑖 = 2, which is 5 more than the same suggested in 
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Table 3.9. Therefore, with this arrangement of trains, the capacity of additional 5 coaches 

is expected to remain unused during actual runs of these special trains. 

Comparison 3: Comparison with an optimistic approach 

We compare the results of our model with one more similar decision-making 

situation, when the IR decides for highest possible fare-prices to encash on the 

opportunity of rising demand and overlooks its competitors. The solutions of the single 

level optimization problem with fare-prices fixed as upper reservation prices
17

, i.e., 

 𝑝𝑖𝑟𝑗𝑡 = 𝑝𝑢𝑖𝑟𝑗 , ∀ 𝑡, are reported in Table 3.19 to Table 3.21. The total profit to this 

arrangement is expected as INR 71,29,662, indicating a significant decrease in profit due 

to lower passenger ridership. It betokens that if the IR ignores its competitors and 

monopolizes the market by declaring its highest fare-prices, then the public reacts with a 

small passenger turnout and thereby the objective of earning a maximum profit gets 

deified. The above comparisons indicate the superiority of our proposed bilevel model 

which incorporates competition while deciding on the optimal fare-prices and assembly 

planning of special trains. 

 

 

 

Train decision (𝑋𝑖𝑟 ) routes (i) 

train type (r) 1 2 3 4 

1 1  1 0 1 

2 1 0 1 0 

3 0 0 0 0 

Table 3.19: Decision on running trains of IR 

  

                                                           
17

 Instead of upper reservation prices, following the approach of [247], we may consider demand share 

based discrete set of fare points and solve the resultant single level operational planning  problem. 
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time (t) 

 
1 2 

route train type coach type (j) coach type (j) 

(i) (r) 1 2 3 4 5 1 2 3 4 5 

 
1 1 - 71 44 - 8 - 479 661 - 

1 2 10 22 74 0 - 28 144 499 0 - 

 
3 - - - - - - - - - - 

 
1 0 102 64 0 0 0 144 273 0 0 

2 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

 
1 - - - - - - - - - - 

3 2 0 0 29 0 554 0 0 35 0 657 

 
3 - - - - - - - - - - 

 
1 0 0 0 434 677 0 0 0 506 1419 

4 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

  
time (t) 

  
3 4 

 
1 11 - 760 863 - 8 - 487 701 - 

1 2 27 144 768 647 - 27 144 506 148 - 

 
3 - - - - - - - - - - 

 
1 0 144 294 0 0 0 117 73 0 0 

2 2 - - - - - - - - - - 

 
3 - - - - - - - - - - 

 
1 - - - - - - - - - - 

3 2 0 0 34 0 646 0 0 14 0 241 

 
3 - - - - - - - - - - 

 
1 0 0 0 576 1530 0 0 0 505 705 

4 2 - - - - - - - - - - 

 3 - - - - - - - - - - 

Table 3.20: Number of passengers expected to travel in response to prices 𝑝𝑖𝑟𝑗𝑡 = 𝑝𝑢𝑖𝑟𝑗  

of IR (𝑑𝑟𝑖𝑟𝑗𝑡 ) 
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route train type coach type (j) 

(i) (r) 1 2 3 4 5 

 

1 1 0 5 11 0 

1 2 1 3 5 10 0 

 

3 0 0 0 0 0 

 

1 0 2 10 0 0 

2 2 0 0 0 0 0 

 

3 0 0 0 0 0 

 

1 0 0 0 0 0 

3 2 0 0 0 0 5 

 

3 0 0 0 0 0 

 

1 0 0 0 2 8 

4 2 0 0 0 0 0 

 

3 0 0 0 0 0 

Table 3.21: Decision of IR on number of coaches 𝑥𝑖𝑟𝑗  for passengers‟ turn-up 

corresponding to prices 𝑝𝑖𝑟𝑗𝑡 = 𝑝𝑢𝑖𝑟𝑗  

 

3.6 Conclusions 

In this chapter, we addressed a strategic planning problem of railways for decisions 

on running special-trains, including the decision on optimal fare-pricing and assembly 

planning, in a competitive environment. On that front, we proposed a bilinear bilevel 

mixed integer programming model featuring a constrained Nash-equilibrium problem at 

the follower‟s level to capture the fare-price response of the competitors of railways. A 

diversified elitist genetic algorithm is suggested to solve the proposed problem. The 

model as well as the solution methodology, is demonstrated with an experimental study of 

scenario extracted from the IR. The empirical results are further compared with two 

situations for verifying the efficacy of the suggested model. It is demonstrated though 

comparison analysis that using the proposed approach for decision on arranging trains the 

IR can generate an additional revenue to a maximum possible extent by running special 

trains in a financially viable way. The developed decision support system is useful for 

every such railway authority for which it is obligatory to declare the fixed fare-prices in 
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advance at the time of announcing the schedule of special trains. The proposed 

conceptions of the model and its solution procedure are incipient and novel. 

Here we have taken an opportunity to address the issue of paucity of solution 

methods to efficiently handle the single-leader-multi-follower BLP problems of large 

scale. To address this issue, we have suggested a diversified-elitist GA based solution 

methodology. This attempt is the first initiative to design a solution technique for 

handling large scale single-leader-multi-follower BLP problems. 

This chapter can be summarized by noting two of our contributions. The first is to 

address a strategic planning problem of railways by designing a mathematical model for 

the same, and the second is to suggest a GA based solution methodology for solving a 

case of single-leader-multi-follower BLP problem.  
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Chapter 4 

 

Decision Support to Small Scale Supplier for 

Strategically Negotiating Prices with a Buyer 
 

 

 

In this chapter
18

, we develop a decision support for a small scale supplier to identify 

target prices for negotiation with potential buyer in order to clinch a deal with maximum 

profit. In this study, the supplier is known to adopt multi-sourcing strategy for the 

required products. Whereas, negotiations are considered in the situation where the prices 

with other existing suppliers of the buyer are already fixed and the small scale supplier 

considered is preparing to enter into business with this buyer. For strategic pricing 

decisions of the small scale supplier in such a situation, it is imperative to identify the 

demand order allocation mechanism of the buyer while cohesively estimating the cost of 

the production-and-logistic operations to fulfil the replicating demand. In this context a 

novel mixed integer bilevel programming model is proposed to formulate the problem in 

which the supplier is considered as a leader and the buyer is a follower. The proposed 

model subsumes the assessment of demand share against the price quotation, enabling the 

supplier to prepare an aggregate production distribution plan accordingly. An integer 

coded genetic algorithm is used to solve the model and its implementation is exhibited 

through a test scenario. Through the analysis of results it is demonstrated that the prices 

suggested by the decision-support developed enable the small scale supplier to 

successfully penetrate into the considered potential market. The comparison analysis 

demonstrates that targeting the suggested prices during negotiation is better than adopting 

penetration pricing strategy. 

 

 

  

                                                           
18

 The contents of this chapter are based on research paper: “A Bilevel Programming Model for a 

Cohesive Decision Making on Strategic Pricing and Production Distribution Planning for a Small Scale 

Supplier”, International Game Theory Review (World Scientific Publishing Co.). 22(2) (2020) 204009-

1–34. doi: 10.1142/S0219198920400095. 
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4.1 Introduction 

Small scale suppliers, due to limited resources, customarily start their business 

with a single buyer. It is intended by an ingenious small scale supplier to negotiate prices 

of its products so as to penetrate into the market while receiving a profitable business 

from the potential buyer. Once the prices get settled as a result of negotiation, the buyer 

allocates demand orders to all the suppliers including the new small scale supplier in 

order to receive a supply of required products at it delivery location(s) for a span of 

certain planning horizon, with a minimum total procurement cost. The supplier then 

discerns the production, stocking and distribution plan, considering its limited resources 

for fulfilling the demand received from the buyer in response to the prices settled at. By 

adhering to this sequential decision making, the supplier may receive a demand share 

beyond its capacity to fulfil in a pursuit of acquiring maximum demand share through 

penetration pricing
19

. If such a situation is encountered, it would consequent not only in 

an opportunity loss, but also adversely affect future business prospects of the supplier due 

to the loss of credibility. Therefore, for any supplier with limited operational capacities, it 

is suggested to adopt a profit maximization strategy for pricing while contemplating the 

capacities to fulfil the replicating demand. For this purpose it is imperative for such a 

supplier to concurrently discern the total cost of production-and-logistics and the 

operational capacities for fulfilling the demand to be replicated. 

For such a significant problem, there does not seem to exist any noteworthy study 

explicating strategic pricing by estimating the replicating demand and cohesively 

assessing the operational plans in accordance. In this regard, a novel mixed integer 

bilinear BLP model is presented to address the strategic pricing problem from the 

perspective of a small-scale supplier approaching a potential buyer. The proposed model 

poses the supplier as a leader and the potential buyer as a follower. The problem before 

the leader is of price-setting for its various products and coherent assessment of 

production-and-logistics arrangements to fulfil the replicating demand-orders from 

various delivery locations of the buyer as a follower. The proposed model in the BLP 

framework involves bilinear objective function for leader and bi-objective integer 

programming problem for formulating the follower‟s reaction and further involves binary 

and integer variables. 

                                                           
19

 Penetration pricing consists of setting competitive prices to obtain a larger market share [72]. 
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Further, no algorithm is available in the literature for solving a class of bilinear 

BLP problems with multiple objectives at follower‟s level and involving binary and 

integer variables at both the levels. To cover this research gap, at first hand, a variant of 

GA is proposed to solve such a class of problems. Thus this chapter can be comprehended 

to include dual contribution in research, first to develop a decision-support through 

modelling the problem being addressed, and the second to develop a GA-based solution 

methodology for an unattended classed of BLP problems. 

This chapter is structured into six sections. Section 4.2 introduces the bilevel 

optimization model for a cohesive decision-making for the small scale supplier. Section 

4.3 explains the devised solution methodology based on GA. Section 4.4 presents an 

experimental evaluation of the proposed approach through an implementation of proposed 

solution methodology on a test scenario. Section 4.5 presents comparative analysis to 

demonstrate efficiency of the proposed approach for decision-support on price 

negotiation. Section 4.6 presents managerial implications of the accomplished research 

work and Section 4.7 gives a summary of the work presented in this chapter. 

 

4.2 Formulation of mathematical model 

4.2.1 Problem description 

To design a model for the strategic pricing problem of a small scale supplier, it is 

considered that the supplier intends to quote prices of N products manufactured at its 

production centre (PC) so as to receive a profitable demand-order for initiating a business 

with a specific buyer. We consider the situation where the suppliers have to deliver these 

products at multiple delivery locations (DLs) of the buyer firms situated at J different 

geographical sites. This setup is considered for a pre-defined planning horizon discretized 

into a total of T periods. This dictates that, the prices of a product will remain same in the 

planning horizon, but can vary from one DL to the other. 

On the other hand, the buyer firm is already in business with K other suppliers for 

purchasing similar products. The price-negotiation of the buyer with these K suppliers is 

concluded. Upon an analysis of outcomes of negotiation with existing suppliers the buyer 

is keen to induce a new supplier for improving the performance of inbound supply chain 

by intensifying the competition among the suppliers in a long term in a context of prices 
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and quality of the products. In this situation, we consider the case when a small-scale 

supplier, upon an assessment of quality performance records, is called by this buyer for a 

negotiation on prices.  

Observing this available opportunity, a perspicacious supplier tries to target such 

prices for negotiation which enable penetrating into the prospective market with most 

profitable demand share. For ascertaining such target prices the supplier is assumed to 

have an estimate of the prices negotiated with the existing suppliers. Acquiring such 

information is quite possible through market intelligence. The supplier under 

consideration, further needs to simulate the buyer‟s decision behaviour in terms of 

demand-order allocations in a response to the prices negotiated with this supplier and 

those already fixed by other K suppliers. In this context, it is considered that the buyer 

allocates these demand-orders to each of these suppliers aiming to minimize total 

purchase cost and maximize the economic qualitative score of procurement over the 

entire planning horizon. The knowledge of this business environment enables the small-

scale supplier to discern the production-and-logistics arrangements and associated costs 

of fulfilling the replicating demand-orders, so as to assess the resulting profit. This 

mechanism is depicted in Figure 4.1. 

A cost optimal arrangement as referred above for fulfilling the demand-orders 

includes decisions on regular and overtime production volumes, transportation volumes 

from PC to its warehouses/ distribution centres (DCs), transportation volumes from DCs 

to buyer‟s DLs and inventories in each of its warehouse for each period of the planning 

horizon. The situation is described in Figure 4.2. 

In nutshell, the demand and hence the production and distribution decisions 

depend on the prices offered to the supplier. Therefore, the decision on prices of the 

products is primary, and this mechanism involves the pricing decision to be taken first, 

followed by the buyer‟s decision on demand-order allocation as a response to it. 

Observing this chronology of decision-making, the bilevel programming framework 

seems to be appropriate for modelling the pricing problem of the supplier considering the 

small scale supplier as leader and the buyer as follower. As the prices already settled with 

existing suppliers are known and fixed, therefore there is no role of them as decision-

makers in this problem, except that their fixed prices are taken as constant coefficients 

while modelling the response of the buyer. 
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Figure 4.1: Depiction of problem structure 
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4.2.2 Assumptions and notations 

 To build the mathematical model, a finite planning horizon is partitioned into 𝑇 

multiple periods  𝑡 = 1, 2, … , 𝑇 . 

 The small-scale supplier has limited production capacity, in sense of labour/ machine 

capacity in planning horizon T. 

 The small-scale supplier can produce more number of units than those demanded in a 

period and keep them as inventory in I warehouses/ DCs for the next period. The 

DCs have limited storage capacities. 

 Products can be supplied either directly from the PC of the small-scale supplier or 

through DCs to buyer‟s DLs. But, at the end of each period of the planning horizon, 

it is ensured that nothing is left as stock at PC due to no storage capacity available 

there. 

 The cost of transportation to deliver the product at DLs is to be borne by the suppliers 

themselves and not by the buyer. So, the prices of products depend on DLs also. 

 The small scale supplier or any other supplier is not allowed to backorder any 

quantity in any period. 

Figure 4.2: Production and distribution structure 
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 A fix ordering cost is incurred to the buyer every time when he purchases any 

product from a supplier for a DL. 

 The buyer has a storage capacity at its delivery locations for keeping quantities more 

than the demand in any period, so that the ordering cost for next period can 

sometimes be compensated by the inventory cost. 

 Buyer keeps a bound on maximum number of defective units in the purchase while 

deciding of purchase volumes from various suppliers. 

 For a given pricing vector of the products by the small scale supplier, the buyer‟s 

problem, on conversion to a scalar problem by weighted sum approach, has a unique 

optimal order allocation vector.  

The small scale supplier henceforth is called as “the supplier” and differentiated 

from other suppliers with the name “existing suppliers” throughout this discussion. 

Indices, parameters, and variables used to describe the mathematical formulation of our 

model are listed below. 

Indices and sets 

N number of different type of products; 𝑛 = 1, 2, … ,𝑁 

I number of DCs of the supplier; 𝑖 = 1, 2, … , 𝐼 

𝑖 =  0 stands for the PC as a source to transport products to directly to DLs. 

K number of existing suppliers; 𝑘 = 1, 2, … , 𝐾 

J number of buyer‟s DLs; 𝑗 = 1, 2, … , 𝐽 

T planning horizon (number of periods); 𝑡 = 1, 2, … , 𝑇 

Leaders parameters and variables 

Parameters 

𝑙𝑝𝑛𝑗  minimum reservation price of product 𝑛 for its demand at buyer‟s DL j 

(INR/ unit) 
20

 

𝐿𝑝𝑛𝑗  maximum reservation price of product 𝑛 for its demand at buyer‟s DL j 

(INR/ unit) 

𝑎𝑛𝑡  regular time production cost of product 𝑛 in period t (INR/unit) 

𝑏𝑘𝑛𝑘𝑡  overtime production cost of product 𝑛 in period t (INR/unit) 

𝑟𝑛𝑡  machine-hours required for production of per unit of product 𝑛 in period t 

                                                           
20

 This is practically interpreted as break-even price of the supplier for a particular product. 
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𝑡𝑐𝑝𝑖𝑛𝑡  cost of transportation of product 𝑛 from PC to DC 𝑖 of the supplier in period 

t (INR/ unit) 

𝑡𝑐𝑖𝑗𝑛𝑡  cost of transportation of product 𝑛 from DC 𝑖 of the supplier to buyer‟s DL j 

in period t (INR/ unit) 

𝑑𝑖𝑛𝑡  inventory carrying cost of product 𝑛 at DC 𝑖 of the supplier in period t 

(INR/unit) 

𝑣𝑛  space occupied by per unit of product 𝑛 (cu-ft/unit) 

𝑀𝑅𝑡  maximum regular machine-hours (man-hours) available with the supplier in 

period t 

𝑀𝑡  maximum total machine-hours (man-hours) available with the supplier in 

period t 

𝑉𝑖𝑡  maximum space available in DC 𝑖 of the supplier in period t (cu-ft) 

Variables 

𝑧𝐿 Gross profit of the supplier 

𝑚𝑝𝑛𝑗  per unit price of product 𝑛 from the supplier for its demand at DL j 

(INR/unit) 

𝑄𝑛𝑡  regular time production volume of product 𝑛 of the supplier in period t 

(units)  

𝑂𝑛𝑡  overtime production volume of product 𝑛 of supplier in period t (units) 

𝑆𝑆𝑖𝑛𝑡  inventory level (safety stock) of product 𝑛 at DC 𝑖 of supplier in period t 

(units) 

𝐼𝑖𝑛𝑡  consignment volume of product 𝑛 sent from PC to DC 𝑖 of the supplier in 

period t (units) 

𝑥𝑖𝑗𝑛𝑡  consignment volume of product 𝑛 from DC 𝑖 of the supplier to buyer‟s DL j 

in period t (units) 

Follower‟s parameters and variables 

Parameters 

𝑧𝐹1
 total cost of procurement and holding products at various DLs (INR/unit) 

𝑧𝐹2
 total economic qualitative score of procurement 

𝑝𝑛𝑗𝑘  price of product 𝑛 fixed by supplier 𝑘 at DL 𝑗 (INR/unit) 

𝑂𝑗  fixed cost of ordering a delivery at DL 𝑗 from the supplier (INR/unit) 

𝑂𝑗𝑘  fixed cost of ordering a delivery at DL 𝑗 from existing supplier 𝑘 (INR/unit) 
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𝐻𝑛𝑗  Inventory carrying cost per unit of product 𝑛 incurred at delivery at DL 𝑗 

(INR/unit) 

𝐷𝑗𝑛𝑡  total forecasted demand of product n at buyer‟s DL j in period t (units) 

𝑀𝑦𝑜𝑗𝑛𝑘  maximum purchase volume of product 𝑛 from existing supplier k for DL 𝑗 in 

any period 

𝑀𝑥𝑜𝑛  maximum purchase volume of product 𝑛 from the supplier for various DLs 

in any period 

𝑉𝐹𝑗  maximum inventory carrying space at DL j of the buyer (cu-ft) 

𝑚𝑞𝑛  Economic qualitative score of the supplier for product 𝑛  

𝑞𝑛𝑘  Economic qualitative score of existing supplier 𝑘 for product 𝑛  

𝑑𝑛  average number of defects expected in product 𝑛 to be purchased from the 

supplier (in %) 

𝑑𝑛𝑘  average number of defects expected in product 𝑛 to be purchased from 

existing supplier 𝑘 (in %) 

𝑑𝑓𝑛  maximum acceptable average number defects in product 𝑛 (in %) 

Variables 

𝑦𝑗𝑛𝑡  number of units of product 𝑛 to be purchased from the supplier for DL j in 

period t 

𝑦𝑜𝑗𝑛𝑘𝑡  number of units of product 𝑛 to be purchased from existing supplier k for DL 

j in period t 

𝑌𝑗𝑡  binary variable: takes value 1 if at least one unit of any of 𝑁 products is 

purchased by the buyer from the supplier for delivery at DL j in period t; and   

0 otherwise 

𝑌𝑂𝑗𝑘𝑡  binary variable: takes value 1 if at least one unit of any of 𝑁 products is 

purchased by the buyer from existing supplier 𝑘 for delivery at DL j in 

period t; and 0 otherwise 
 

With all the details on the problem, assumptions and notations given by now, the 

mathematical model in BLP framework is presented below from the supplier‟s 

perspective for strategically ascertaining prices to negotiate with the buyer. Herein, the 

supplier is posed as leader and the buyer as follower. 
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4.2.3 Components of the problem related to the supplier 

Objective function of expected profit  

The objective of the supplier is to maximize the total profit through the decision 

on values of price variables (𝑚𝑝𝑛𝑗 ) for each product 𝑛 and each DL 𝑗 = 1, 2, … , 𝐽, and 

there upon values of variables of production, inventory, and transportation 

(𝑄𝑘𝑛𝑘 𝑗 , 𝑂𝑘𝑛𝑘 𝑗 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 ) based on the demand shares received as a 

response to the prices quoted by all the suppliers. The objective function is given as 

following. 

max 𝑧𝐿 =     𝑚𝑝𝑛𝑗 𝑦𝑗𝑛𝑡

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

−    𝑎𝑛𝑡𝑄𝑛𝑡 + 𝑏𝑛𝑡𝑂𝑛𝑡  

𝑁

𝑛=1

𝑇

𝑡=1

−     𝑑𝑖𝑛𝑡 𝑆𝑆𝑖𝑛𝑡

𝐼

𝑖=1

𝑁

𝑛=1

𝑇

𝑡=1

+    𝑡𝑐𝑝𝑖𝑛𝑡 𝐼𝑖𝑛𝑡

𝐼

𝑖=1

𝑁

𝑛=1

𝑇

𝑡=1

+     𝑡𝑐𝑖𝑗𝑛𝑡 𝑥𝑖𝑗𝑛𝑡

𝐽

𝑗=1

𝐼

𝑖=0

𝑁

𝑛=1

𝑇

𝑡=1

  . 

                    … (4.2.1) 

Price bounds 

The prices are speculated within bounds; lower bounds are the minimum 

acceptable prices to the supplier. Upper bounds are enforced due to the competition 

imposed by other suppliers, in a sense that for prices more than these prices would not 

replicate any demand to the supplier. 

                                             𝑙𝑝𝑛𝑗  ≤  𝑚𝑝𝑛𝑗 ≤ 𝐿𝑝𝑛𝑗  ,    𝑛𝑘 ,𝑗.                                          (4.2.2) 

Regular time production hours 

The production volumes for various products are restricted by the regular time 

production hours. 

                                                     𝑟𝑛𝑡𝑄𝑛𝑡

𝑁

𝑛=1

≤ 𝑀𝑅𝑡  ,    ∀𝑡.                                                    4.2.3  
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Total production hours 

The total production volumes obtainable through the provisions of overtime 

engagement of labour/ machines along with the regular time production are also restricted 

by the total available production hours. 

                                               𝑟𝑛𝑡  𝑄𝑛𝑡 + 𝑂𝑛𝑡  

𝑁

𝑛=1

≤ 𝑀𝑡  ,    𝑡.                                          4.2.4  

Inventory balancing constraints 

The demand orders received for each product are fulfilled through the total 

production volumes together with the available inventory volumes maintained in the 

previous period while maintaining required inventory volumes for the current period. 

                  𝑄𝑛𝑡 + 𝑂𝑛𝑡 +  𝑆𝑆𝑖𝑛 𝑡−1 

𝐼

𝑖=1

− 𝑆𝑆𝑖𝑛𝑡

𝐼

𝑖=1

=  𝑦𝑗𝑛𝑡

𝐽

𝑗=1

,    𝑛,𝑡.                       4.2.5  

Space constraints at DC 

At any period, the consignment volumes of various products to be received at each 

DC (𝐼𝑖𝑛𝑡 ) along with the products already available there as inventory maintained during 

the previous period (𝑆𝑆𝑖𝑛 𝑡−1 ) should be capacitated in the available space at the DC 

particular. 

                                        𝑣𝑛 𝐼𝑖𝑛𝑡 +  𝑆𝑆𝑖𝑛 𝑡−1  

𝑁

𝑛=1

≤ 𝑉𝑖𝑡  ,    𝑖,𝑡.                                    4.2.6  

Transport plan for delivery at each DL 

For each period, the consignment volumes of various products from PC to DC(s), 

from DC(s) to DLs, and directly from PC to DLs are to be planned to fulfil the demand of 

each DL for each product. Following three constraints govern this requirement. First two 

of the following constraints describe the transportation plan from DC(s) to DLs, whereas 

the third one describes transportation plan directly from PC to DLs. 

                        𝑥𝑖𝑗𝑛𝑡

𝐼

𝑖=0

≥ 𝑦𝑗𝑛𝑡  ,    𝑗,𝑛,𝑡,                                                                     4.2.7  
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                        𝑥𝑖𝑗𝑛𝑡

𝐽

𝑗=1

≤ 𝐼𝑖𝑛𝑡 +  𝑆𝑆𝑖𝑛 𝑡−1 − 𝑆𝑆𝑖𝑛𝑡  ,    𝑖 ≠ 0,𝑛,𝑡,                        4.2.8  

                        𝑥0𝑗𝑛𝑡

𝐽

𝑗=1

=  𝑄𝑛𝑡 + 𝑂𝑛𝑡 − 𝐼𝑖𝑛𝑡

𝐼

𝑖=1

,    𝑖 = 0,𝑛,𝑡.                                4.2.9  

 

4.2.4 Components of the problem related to the buyer 

Based on the price quotes received from all the suppliers, the buyer solves the 

cost-optimal demand order allocation problem. 

First objective function 

The buyer decides on allocating demand shares (𝑦𝑗𝑛𝑡 , 𝑦𝑜𝑗𝑛𝑘𝑡 ) for various products 

in response to the received price quotes (𝑚𝑝𝑛𝑗 ) from the supplier while considering the 

prices already settled with existing suppliers (𝑝𝑛𝑗𝑘 ) for minimum total procurement cost. 

min 𝑧𝐹1
=     𝑚𝑝𝑛𝑗 𝑦𝑗𝑛𝑡 +   𝑝𝑛𝑗𝑘 𝑦𝑜𝑗𝑛𝑘𝑡  

𝐾

𝑘=1

 

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

+   𝑂𝑗𝑌𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

+    𝑂𝑗𝑘𝑌𝑂𝑗𝑘𝑡

𝐾

𝑘=1

𝐽

𝑗=1

𝑇

𝑡=1

+    𝐻𝑛𝑗    𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑡 ′

𝑡=1

−  𝐷𝑗𝑛𝑡

𝑡 ′

𝑡=1

 

𝑁

𝑛=1

𝐽

𝑗=1

𝑇

𝑡=1

 

                                                                                                           … (4.2.10) 

Second objective function  

In each period 𝑡 = 1,… , 𝑇, and each route 𝑖 = 1, . . . , 𝐼, the competitors  𝑘𝑖 =

1,… , 𝐾𝑖  , aim to compute  Nash-equilibrium price vector {𝑝𝑘𝑖𝑡 : 𝑘𝑖 = 1,… , 𝐾𝑖}, so as to 

maximize their profit through a competition. 

                      max 𝑧𝐹1
  =     𝑚𝑞𝑛𝑦𝑗𝑛𝑡 +  𝑞𝑛𝑘𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

                              4.2.11  
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Upper bound on demand-order to existing suppliers 

This constraint of FDMP gives a prefixed upper bound on the demand orders of 

each product to be assigned to the existing suppliers (depending upon the production 

capacities, transportation carrier capacities and profitability of existing suppliers) 

                                         𝑦𝑜𝑗𝑛𝑘𝑡 ≤ 𝑀𝑦𝑜𝑗𝑛𝑘 ,    ∀𝑗, ∀𝑛, ∀𝑘, ∀𝑡,                                         4.2.12  

Upper bound on demand-order to the suppliers 

This constraint bounds an upper limit on the total demand-order of each product to 

the supplier, according to prior information by the later. At this initial stage of business, 

the supplier can give only one upper bound on the total order of each product as the price 

is yet to decided and negotiable. 

                                               𝑦𝑗𝑛 𝑡

𝐽

𝑗=1

≤ 𝑀𝑥𝑜𝑛 ,    ∀𝑛, ∀𝑡,                                                   4.2.13  

Order-allocation against demand fulfilment 

The following two constraints ensure that in any period, the buyer purchases 

products for each DL not less than what is required while keeping a room for purchasing 

additional quantities to reduce the total ordering cost. Whereas, in the final period there 

should not be any inventory remaining at any DL. 

                  𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑡 ′

𝑡=1

≥ 𝐷𝑗𝑛𝑡

𝑡 ′

𝑡=1

,    ∀𝑗, ∀𝑛, 𝑡′ = 1,… , 𝑇 − 1,              4.2.14  

                  𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑇

𝑡=1

=  𝐷𝑗𝑛𝑡

𝑇

𝑡=1

,    ∀𝑗, ∀𝑛,                                               4.2.15  

Inventory capacity constraints 

At each DL, total inventory volumes of various products to be stocked for the next 

period after their consumption as per the demand in any period should not exceed the 

storage capacity available there. 
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               𝑣𝑛    𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑡 ′

𝑡=1

− 𝐷𝑗𝑛𝑡

𝑡 ′

𝑡=1

 

𝑁

𝑛=1

≤ 𝑉𝐹𝑗  ,    ∀𝑗, ∀𝑛, ∀𝑡′ ,           4.2.16  

Constraint to limit average number of defects 

This constraint is employed to limit the average number of defects in various 

products up to a certain tolerance limit. 

                𝑑𝑛𝑦𝑗𝑛𝑡 +   𝑑𝑛𝑘𝑦𝑜𝑗𝑛𝑘𝑡  

𝐾

𝑘=1

 

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

 ≤   𝑑𝑓𝑛   𝐷𝑗𝑛𝑡

𝐽

𝑗=1

𝑇

𝑡=1

𝑁

𝑛=1

 ,                 4.2.17   

Inventory capacity constraints 

The following sets of constraints ensure that the ordering cost is accounted only on 

the purchase of the product. First set of constraints  

                                     𝐷𝑗𝑛𝑡

𝑇

𝑡=1

 𝑌𝑗𝑡 − 𝑦𝑗𝑛𝑡 ≥ 0,    ∀𝑗, ∀𝑛, ∀𝑡,                                        4.2.18  

                                     𝐷𝑗𝑛𝑡

𝑇

𝑡=1

 𝑌𝑂𝑗𝑘𝑡 − 𝑦𝑜𝑗𝑛𝑘𝑡 ≥ 0,    ∀𝑗, ∀𝑛, ∀𝑘, ∀𝑡.                       4.2.19  

 

4.2.5 Decision-making problem of the supplier on pricing 

The strategic problem of the supplier to identify prices for negotiation is 

summarized as following. Herein, the part of optimization problem directly controlled by 

supplier (leader) is identified as (LDMP) and the part of optimization problem considered 

on behalf of buyer (follower) is identified as (FDMP). The overall bilevel price setting 

problem (BPSP) is modelled as following. 

To determine   𝑚𝑝𝑛𝑗  ,  𝑄𝑛𝑡  ,  𝑂𝑛𝑡  ,  𝑆𝑆𝑖𝑛𝑡  ,  𝐼𝑖𝑛𝑡  ,  𝑥𝑖𝑗𝑛𝑡  : 𝑖, 𝑗, 𝑛, 𝑡  by solving 

(LDMP) with reaction of the buyer in terms of optimal solution of his decision-making 

problem, formulated as (FDMP), incorporated into the problem. 
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(BPSP) 

(LDMP)  max 𝑧𝐿

=     𝑚𝑝𝑛𝑗 𝑦𝑗𝑛𝑡

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

−    𝑎𝑛𝑡𝑄𝑛𝑡 + 𝑏𝑛𝑡𝑂𝑛𝑡  

𝑁

𝑛=1

𝑇

𝑡=1

−     𝑑𝑖𝑛𝑡 𝑆𝑆𝑖𝑛𝑡

𝐼

𝑖=1

𝑁

𝑛=1

𝑇

𝑡=1

+    𝑡𝑐𝑝𝑖𝑛𝑡 𝐼𝑖𝑛𝑡

𝐼

𝑖=1

𝑁

𝑛=1

𝑇

𝑡=1

+     𝑡𝑐𝑖𝑗𝑛𝑡 𝑥𝑖𝑗𝑛𝑡

𝐽

𝑗=1

𝐼

𝑖=0

𝑁

𝑛=1

𝑇

𝑡=1

   

 s.t. 𝑙𝑝𝑛𝑗  ≤  𝑚𝑝𝑛𝑗 ≤ 𝐿𝑝𝑛𝑗  , 𝑛𝑘 ,𝑗, 

                           𝑟𝑛𝑡𝑄𝑛𝑡

𝑁

𝑛=1

≤ 𝑀𝑅𝑡  , ∀𝑡, 

                           𝑟𝑛𝑡 𝑄𝑛𝑡 +  𝑂𝑛𝑡  

𝑁

𝑛=1

≤ 𝑀𝑡  , 𝑡, 

                          𝑄𝑛𝑡 + 𝑂𝑛𝑡 +  𝑆𝑆𝑖𝑛 𝑡−1 

𝐼

𝑖=1

− 𝑆𝑆𝑖𝑛𝑡

𝐼

𝑖=1

=  𝑦𝑗𝑛𝑡

𝐽

𝑗=1

, 𝑛,𝑡, 

                           𝑣𝑛 𝐼𝑖𝑛𝑡 +  𝑆𝑆𝑖𝑛 𝑡−1  

𝑁

𝑛=1

≤ 𝑉𝑖𝑡  , 𝑖,𝑡, 

                           𝑥𝑖𝑗𝑛𝑡

𝐼

𝑖=0

≥ 𝑦𝑗𝑛𝑡  , 𝑗,𝑛,𝑡, 

                           𝑥𝑖𝑗𝑛𝑡

𝐽

𝑗=1

≤ 𝐼𝑖𝑛𝑡 +  𝑆𝑆𝑖𝑛 𝑡−1 − 𝑆𝑆𝑖𝑛𝑡  , 𝑖 ≠ 0,𝑛,𝑡, 

                           𝑥0𝑗𝑛𝑡

𝐽

𝑗=1

=  𝑄𝑛𝑡 + 𝑂𝑛𝑡 − 𝐼𝑖𝑛𝑡

𝐼

𝑖=1

 , 𝑖 = 0,𝑛,𝑡, 

            𝑚𝑝𝑛𝑗 ≥ 0, 𝑄𝑛𝑡 , 𝑂𝑛𝑡 , 𝑆𝑆𝑖𝑛𝑡 , 𝐼𝑖𝑛𝑡 , 𝑥𝑖𝑗𝑛𝑡  ≥ 0 are integers, ∀𝑖, ∀𝑗, ∀𝑛, ∀𝑡,  
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where,  𝑦𝑗𝑛𝑡 : 𝑗, 𝑛, 𝑡   are obtained by solving the following bi-objective 

programming problem in variables 𝑦𝑗𝑛𝑡 , 𝑦𝑜𝑗𝑛𝑘𝑡 , 𝑌𝑗𝑡 , 𝑌𝑂𝑗𝑘𝑡  ∀𝑗, 𝑛, 𝑘, 𝑡. 

 FDMP            min 𝑧𝐹1

=      𝑚𝑝𝑛𝑗 𝑦𝑗𝑛𝑡 +   𝑝𝑛𝑗𝑘 𝑦𝑜𝑗𝑛𝑘𝑡  

𝐾

𝑘=1

 

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

+   𝑂𝑗𝑌𝑗𝑡

𝐽

𝑗=1

𝑇

𝑡=1

+    𝑂𝑗𝑘𝑌𝑂𝑗𝑘𝑡

𝐾

𝑘=1

𝐽

𝑗=1

𝑇

𝑡=1

+    𝐻𝑛𝑗    𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑡 ′

𝑡=1

−  𝐷𝑗𝑛𝑡

𝑡 ′

𝑡=1

 

𝑁

𝑛=1

𝐽

𝑗=1

𝑇

𝑡=1

 

                           max 𝑧𝐹1
  =     𝑚𝑞𝑛𝑦𝑗𝑛𝑡 +  𝑞𝑛𝑘𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

 

                 s.t.    𝑦𝑜𝑗𝑛𝑘𝑡 ≤ 𝑀𝑦𝑜𝑗𝑛𝑘 , ∀ 𝑗, ∀𝑛, ∀𝑘, ∀𝑡, 

                                             𝑦𝑗𝑛𝑡

𝐽

𝑗=1

≤ 𝑀𝑥𝑜𝑛 , ∀𝑛, ∀𝑡, 

                                              𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑡 ′

𝑡=1

≥ 𝐷𝑗𝑛𝑡

𝑡 ′

𝑡=1

  ∀𝑗, ∀𝑛, 𝑡′ = 1,… , 𝑇 − 1, 

                                              𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑇

𝑡=1

=  𝐷𝑗𝑛𝑡

𝑇

𝑡=1

  ∀𝑗, ∀𝑛, 

                                             𝑣𝑛    𝑦𝑗𝑛𝑡 +  𝑦𝑜𝑗𝑛𝑘𝑡

𝐾

𝑘=1

 

𝑡 ′

𝑡=1

− 𝐷𝑗𝑛𝑡

𝑡 ′

𝑡=1

 

𝑁

𝑛=1

≤ 𝑉𝐹𝑗  , ∀𝑗, ∀𝑛, ∀𝑡′  

                                                𝑑𝑛𝑦𝑗𝑛𝑡 +   𝑑𝑛𝑘𝑦𝑜𝑗𝑛𝑘𝑡  

𝐾

𝑘=1

 

𝐽

𝑗=1

𝑁

𝑛=1

𝑇

𝑡=1

 ≤   𝑑𝑓𝑛   𝐷𝑗𝑛𝑡

𝐽

𝑗=1

𝑇

𝑡=1

𝑁

𝑛=1

 , 

                                              𝐷𝑗𝑛𝑡

𝑇

𝑡=1

 𝑌𝑗𝑡 − 𝑦𝑗𝑛𝑡 ≥ 0, ∀𝑗, ∀𝑛, ∀𝑡, 
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                                              𝐷𝑗𝑛𝑡

𝑇

𝑡=1

 𝑌𝑂𝑗𝑘𝑡 − 𝑦𝑜𝑗𝑛𝑘𝑡 ≥ 0, ∀𝑗, ∀𝑛, ∀𝑘, ∀𝑡, 

                           𝑦𝑗𝑛𝑡 , 𝑦𝑜𝑗𝑛𝑘𝑡 ≥ 0, 𝑌𝑗𝑡 , 𝑌𝑂𝑗𝑘𝑡 ∈  0, 1 , 

   𝑦𝑗𝑛𝑡 , 𝑦𝑜𝑗𝑛𝑘𝑡  are integers. 

This mathematical model is formulated using BLP framework to address the issue 

of decision on identifying prices for the supplier to target during negotiation with the 

buyer. The formulated model involves integer variables and a bilinear objective functions 

at both levels with the follower‟s reaction problem as a bi-objective programming 

problem. 

 

4.3 Solution methodology  

As noted already, no algorithm is available in the literature to solve this class of 

BLP problem. Taking this opportunity, a GA based solution methodology for solving 

such a BLP problem is developed in our research work as presented below. As the 

discussed BLP problem involves a bi-objective programming problem at follower‟s level, 

herein we adopt the weighted sum approach after normalizing two objectives different 

scales.  

 

4.3.1 Handling the follower’s bi-objective problem using weighted sum approach 

For any given prices of the supplier corresponding to variables  𝑚𝑝𝑛𝑗  , the bi-

objective follower‟s problem is solved using weighted sum approach. As in our problem, 

first objective of the follower‟s problem involves total cost and the second objective 

involves economic qualitative score, so before converting the problem into single 

objective using weighted sum method, it is requires to normalize these objectives first 

using the technique of Positive Ideal Solution (PIS) and Negative Ideal Solution (NIS) 

proposed by Lai and Hwang [237]. 
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4.3.2 GA-based approach for solving problem of the supplier 

For developing a methodology to solve the BLP problem (BPSP), mimicking the 

price-negotiation mechanism between the supplier and the buyer helps understanding the 

chronology of an interlinked decision-making at both the levels. A price offer of the 

supplier is responded by the buyer in terms of demand-order allocations as a solution to 

(FDMP). Consequently the supplier discerns the aggregate production-distribution plan to 

estimate the total cost of fulfilling these demand-orders. This indicates that variables 

representing prices of the supplier  𝑚𝑝𝑛𝑗   are the most basic and independent variables 

and values of rest of the variables depend on these only. Therefore, it is imperative to 

encode the price variables of the supplier as chromosomes in the GA. 

Further, it is noteworthy that due to the currency systems followed across the globe, 

the prices of the products can be quoted up to two to three decimal places. Even, as all 

variables except 𝑚𝑝𝑛𝑗  are integers, hence, without loss of generality, we propose to use 

an integer coded GA to solve (BPSP), with price variables encoded as integers. Also it 

further reduces the search space for variables 𝑚𝑝𝑛𝑗  through an adoption of integer-coded 

GA. Therefore, this scheme is observed to be appropriateness due to noted practicality 

and computational efficiency. 

Based on these practical implications and theoretical developments discussed by 

far, we propose a GA-based solution methodology which is summarized through 

pseudocode presented in Algorithm 4.1 and Algorithm 4.2. Other details of the GA are 

presented subsequently.  

 

Chromosome encoding 

As the very purpose of the problem is to obtain the prices which can give maximum 

profit to leader, the chromosomes of population are taken as an array of prices of various 

products for various delivery locations  𝑚𝑝𝑛𝑗 : 𝑛 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝐽 . A general 

chromosome structure is shown in Figure 4.3. The number of genes in a chromosome is 

NJ. First J genes represent prices of product 1 for supplying at J locations, so on, the last 

J genes represent price of product N for supply at J locations. Each allele is an integer 

value representing respective prices. 
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𝑚𝑝11  𝑚𝑝12  … 𝑚𝑝1𝐽  𝑚𝑝21  𝑚𝑝22  … 𝑚𝑝2𝐽  … … 𝑚𝑝𝑁1 𝑚𝑝𝑁2 … 𝑚𝑝𝑁𝐽  

𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 … … 𝑗 = 1 𝑗 = 2 … 𝑗 = 𝐽 

prices of product1 (𝑖 = 1) 

at various J locations 
prices of product1 (𝑖 = 2)  

at various J locations 
… 

prices of product1 (𝑖 = 𝑘)  

at various J locations 

Figure 4.3: Chromosome structure 

 

Input: GA population of chromosomes 

for  𝑖 ← 1 to 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do 

substitute the supplier’s prices 𝑚𝑝𝑛𝑗  (represented by chromosome) in 

 FDMP  to solve the follower’s bi-objective mixed-integer linear programming 
problem using weighted-sum approach (detailed in Section 4.3.1) to obtain 
corresponding demand order vector 𝑦𝑗𝑛𝑡 ; 

 evaluate the fitness value as objective function value of (LDMP); 

end 

Output: Fitness values of all chromosomes of the population 

Algorithm 4.2: Fitness evaluation of population members 

Algorithm 4.1: Genetic Algorithm for solving (BPSP) 

Data: Input data and GA parameters  

𝑔 ← 0; 

Initialize population (The supplier’s prices  𝑚𝑝𝑛𝑗 : 𝑛, 𝑗 ); 

Evaluate fitness of population members (using Algorithm 4.2); 

while 𝑔 < 𝐺 do 

 tournament selection (retaining best-fit chromosome); 

 generate new individuals through extended Laplace crossover 

 and power mutation; 

 evaluation fitness of population members (using Algorithm 4.2); 

 update new population for next generation. 

 𝑔 ← 𝑔 + 1; 

select best-fit chromosome of the new generation (along with 
corresponding response 𝑦); 

end 

Return best-fit chromosome (along with corresponding response 𝑦) over all 
generations 
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Initialization 

The following GA parameters are used in the proposed algorithm: population size 

popsize; number of generations 𝐺; current generation 𝑔,  𝑔 = 1, 2, … , 𝐺 ; crossover rate 

pc; mutation rate pm; location parameter 𝑎 and scaling parameter 𝑏 > 0 for Laplace 

crossover; index of power mutation 𝑝. The initial population size popsize is randomly 

generated for prices {𝑚𝑝𝑛𝑗 : 𝑛, 𝑗} with integer values in the range of reservation prices 

[𝑙𝑝𝑛𝑗 , 𝐿𝑝𝑛𝑗 ]. 

Genetic operators 

Crossover operator: We use a single point crossover namely the Laplace crossover 

[203] on each chromosome with the probability pc. The same is explained in Section 

2.2.2. 

Mutation operator: The mutation is performed on a chromosome with the probability 

pm using the power mutation operator [203]. The same is explained in Section 2.2.2. 

We note that Laplace crossover and the power mutation operators do not disturb 

feasibility of chromosomes in terms of reservation price bounds in problem (LDMP). 

Selection 

A tournament selection mechanism with tournament size 2, is adopted for 

selecting better fitness chromosomes for reproduction phase. The best-fit (elitist) 

chromosome is, although, preserved. 

Incorporating follower’s reaction and fitness evaluation 

The fitness of each chromosome is measured as the corresponding objective value 

𝑧𝐿 of (LDMP). For this, a chromosome is supplied to (FDMP) which is solved by the 

above-mentioned procedure using the weighted sum approach. The optimal demand (i.e., 

optimal solution of (FDMP)) received from it is supplied to (LDMP). Then (LDMP) is 

solved to generate the optimal aggregate-production-distribution plan. The objective 

function value 𝑧𝐿 of (LDMP) is thereby computed and is taken as the fitness value of the 

chromosome considered. 
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Updating the new population 

The new population obtained from the parent population 𝑃𝑔  is adopted to be a 

population of the next generation 𝑃𝑔+1 only if it‟s maximum fitness value, in comparison 

to the maximum fitness value of the previous generation, does not decrease. Otherwise, 

the population 𝑃𝑔  is preserved as population 𝑃𝑔+1 for regenerating the next generation. 

Termination criterion 

The execution of the algorithm is terminated after the completion of pre-defined 

maximum number of generations 𝐺. The value of 𝐺 may be tuned by observing stability 

in the fitness value through various combinations of GA parameters. 

 

4.4 An experimental study on a relevant case of a small-scale supplier 

In this section, the effectiveness of the proposed model and its solution algorithm 

are demonstrated through a test instance generated in consultation with some industry 

experts. Also a comparison analysis between the proposed approach and the low price 

strategy is shown to exhibit the superiority of the former. The formulation of our model is 

inspired by a scenario of a small-scale supplier. 

 

4.4.1 Relevant information about the market ecosystem 

A scenario of a supplier firm is considered which produce 5 types of products at 

their PC and is enter into a negotiation on prices with a potential buyer requiring the 

delivery of these products at 10 DLs. There are 3 other existing suppliers who also supply 

these 5 products to the buyer. The planning horizon of 4 months is considered for month-

wise planning.  

 

4.4.2 Data inputs 

The data input including various costs, prices, demand and other parameters is 

given in Tables 4.1 to 4.8. The initial period available inventory and the pre-decided final 

period inventory levels are not listed explicitly but are included in Table 4.13. Let the 
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regular time machine hours and a total machine hours including overtime available for 

production be 700 hours and 1050 hours, respectively. Also, the available storage space at 

DC 1 and DC 2 are 15000 cu-ft and 7500 cu-ft, respectively. The maximum acceptable 

percentage of defects by the buyer for the 5 products be 4, 2.5, 6, 2 and 2.7 respectively. 

Fixed cost of ordering products for each location from the supplier is Rs. 2700 and from 

each of existing suppliers (indexed by 𝑘 =  1, 2, 3) is Rs. 2000, 3000 and 4000, 

respectively. 

 

period  

(t) 

product  

(n) 

delivery location (j) 

1 2 3 4 5 6 7 8 9 10 

 1 8000 9000 5000 5000 3000 8000 8500 4500 5000 2500 

 2 5000 1000 2000 7000 1000 4500 1500 2500 6500 1500 

1 3 6000 6800 3800 3800 2300 6000 6400 3400 3800 1900 

 4 800 1000 400 400 200 900 1000 500 600 1600 

 5 4500 900 1800 6300 900 4100 1400 2300 5900 1400 

 1 4000 5000 2000 2000 1000 4500 5000 2500 3000 8000 

 2 1500 1500 1000 3000 800 2000 2000 1500 3500 1200 

2 3 3600 720 1440 5040 720 3280 1120 1840 4720 1120 

 4 1000 1100 600 600 400 1000 1100 600 600 1300 

 5 5200 5900 3300 3300 2000 5200 5600 3000 3300 1700 

 1 5000 5500 2500 3000 1600 5500 6000 2500 3500 2400 

 2 7000 2500 1000 6000 2500 6500 2000 1500 6500 2000 

3 3 3200 600 1300 4500 600 3000 1000 1700 4200 1000 

 4 1100 1000 700 500 400 900 1200 500 700 1200 

 5 5700 5300 3600 3000 2200 4700 6200 2700 3600 1500 

 1 9000 10000 4000 4000 2500 8500 9000 3500 3000 3500 

 2 5000 1700 3000 8000 3000 5500 1500 2500 7500 5000 

4 3 5400 6100 3400 3400 2100 5400 5800 3100 3400 1700 

 4 700 900 400 400 200 800 900 500 500 1400 

 5 4100 800 1600 5700 800 3700 1300 2100 5300 1300 

Table 4.1: Total demand of the buyer at various DLs 
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production costs 
regular time (𝑎𝑛𝑡 ) overtime (𝑏𝑛𝑡 ) 

product (n) product (n) 

Period (t) 1 2 3 4 5 1 2 3 4 5 

1  10 20 15 25 18 15 25 20 30 24 

2  11 21 13 26 19 13 26 18 31 25 

3  10.5 21 12.5 26 18 12.5 26 17 31 24 

4  10 20.5 17 27 17 17 26.5 22 33 23 

Table 4.2: Production costs (INR/unit) at PC 

 

 

𝑡𝑐𝑝𝑖𝑛𝑡  
DC 1 DC 2 

product (n) product (n) 

period (t) 1 2 3 4 5 1 2 3 4 5 

1 0.2 0.4 0.3 0.5 0.35 0.42 0.84 0.63 1.05 0.74 

2 0.2 0.4 0.3 0.5 0.35 0.42 0.84 0.63 1.05 0.74 

3 0.2 0.4 0.3 0.5 0.35 0.42 0.84 0.63 1.05 0.74 

4 0.2 0.4 0.3 0.5 0.35 0.42 0.84 0.63 1.05 0.74 

𝑑𝑖𝑛𝑡  (∀ 𝑡 = 1, 2,3, 4) 0.1 0.19 0.15 0.2 0.18 0.2 0.38 0.3 0.4 0.36 

Table 4.3: Transportation costs (INR/unit) from PC to DCs and inventory costs (INR/unit) at DCs 

 

 

 product (n) deliver location (j) 

 1 2 3 4 5 6 7 8 9 10 

 1 2 2.5 3 3.3 1 2 2.5 3 3.3 1 

 2 3 3 3 3.3 1 3 3 3 3.3 1 

PC (i = 0) 3 2.5 3 3.1 3.1 1 2.5 3 3.1 3.1 1 

 4 4 5 5 5.2 2.5 4 5 5 5.2 2.5 

 5 2.8 2.9 3 3 2 2.8 2.9 3 3 2 

 1 1 2 5 3 3 1 2 5 3 3 

 2 2 4 8 6 5 2 4 8 6 5 

DC 1 (i = 1) 3 1.5 2.5 5.5 3.5 3.5 1.5 2.5 5.5 3.5 3.5 

 4 2.5 5 9 7 6 2.5 5 9 7 6 

 5 1.8 3 6 4 4 1.8 3 6 4 4 

 1 3 1 1 4 5 3 1 1 4 5 

 2 3.5 1.5 1.5 4.5 4.5 3.5 1.5 1.5 4.5 4.5 

DC 2 (i = 2) 3 4.5 2.5 2.5 5 5 4.5 2.5 2.5 5 5 

 4 6 3 3.3 7 7 6 3 3.3 7 7 

 5 4 2 2.2 4.8 4.8 4 2 2.2 4.8 4.8 

Table 4.4: Transportation costs (INR/unit) to DLs (𝑡𝑐𝑖𝑗𝑛𝑡 ) (same for each period t) 
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reservation product delivery location (j) 

prices (n) 1 2 3 4 5 6 7 8 9 10 

 1 231 220 230 240 245 230 235 238 240 245  

 2 382 360 380 400 410 380 390 396 400 410  

𝑙𝑝𝑛𝑗  3 347 348 363 378 386 363 371 375 378 386  

 4 428 400 425 450 463 425 438 445 450 463  

 5 316 296 314 332 341 314 323 329 332 341  

 1 531 520 530 540 545 530 535 538 540 545  

 2 682 660 680 700 710 680 690 696 700 710  

𝐿𝑝𝑛𝑗  3 647 648 663 678 686 663 671 675 678 686  

 4 728 700 725 750 763 725 738 745 750 763  

 5 616 596 614 632 641 614 623 629 632 641  

Table 4.5: Reservation prices (INR/unit) of products at various DLs for the supplier 

 

 Product (n) 

 1 2 3 4 5 
𝑣𝑛  0.16 0.32 0.2 0.35 0.3 

𝑀𝑥𝑜𝑛  10,000 5000 6600 4000 5500 
𝑟𝑛𝑡  (∀ 𝑡 =  1, 2, . . . , 4) 0.02 0.04 0.03 0.05 0.035 

𝐻𝑛𝑗  (∀ 𝑗 =  1, 2, . . . , 10) 40 80 60 90 70 

Table 4.6: Volume/unit of product, maximum purchase volumes from the supplier, machine hours 

required per unit of product, and holding costs/unit incurred to the buyer 

 

 

Product 

(n) 
 𝑑𝑛 , 𝑚𝑞𝑛  

 𝑑𝑛𝑘 , 𝑞𝑛𝑘   

𝑘 = 1 𝑘 = 2 𝑘 = 3 

1 (2.57, 0.25) (3.47, 0.28) (3.15, 0.26) (4.25, 0.21) 

2 (1.75, 0.3) (6.74, 0.21) (6.11, 0.27) (2, 0.23) 

3 (2.1, 0.28) (5.205, 0.23) (4.725, 0.25) (6.375, 0.21) 

4 (1.5, 0.32) (1.735, 0.3) (1.575, 0.28) (2.125, 0.26) 

5 (1.95, 0.29) (5.25, 0.25) (5.01, 0.26) (2.1, 0.24) 

Table 4.7: Average number of defects (in %), economic qualitative scores of suppliers
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competitor    product       Delivery location (j) 

(k) (n) 1 2 3 4 5 6 7 8 9 10 

 1 (338, 3000) (357, 3000) (330, 2500) (344, 2000) (357, 1000) (338, 3000) (357, 3000) (330, 2500) (344, 2000) (357, 1000) 

 2 (455, 3000) (462, 1000) (447, 1500) (462, 2000) (473, 1000) (455, 3000) (462, 1000) (447, 1500) (462, 2000) (473, 1000) 

1 3 (482, 4000) (495, 4500) (475, 2000) (492, 2500) (490, 1000) (482, 4000) (495, 4500) (475, 2000) (492, 2500) (490, 1000) 

 4 (510, 1000) (523, 1200) (502, 1100) (515, 1000) (520, 900) (510, 1000) (523, 1200) (502, 1100) (515, 1000) (520, 900) 

 5 (440, 5000) (455, 5200) (435, 4800) (444, 4700) (450, 4800) (440, 5000) (455, 5200) (435, 4800) (444, 4700) (450, 4800) 

 1 (335, 4000) (331, 4500) (357, 2000) (344, 2500) (357, 1000) (335, 4000) (331, 4500) (357, 2000) (344, 2500) (357, 1000) 

 2 (452, 2500) (451, 1000) (473, 1500) (462, 3000) (462, 1500) (452, 2500) (451, 1000) (473, 1500) (462, 3000) (462, 1500) 

2 3 (478, 3000) (480, 3500) (468, 1500) (488, 2000) (480, 1100) (478, 3000) (480, 3500) (468, 1500) (488, 2000) (480, 1100) 

 4 (505, 1100) (518, 1200) (498, 1300) (510, 1000) (510, 800) (505, 1100) (518, 1200) (498, 1300) (510, 1000) (510, 800) 

 5 (435, 4500) (448, 5000) (428, 5000) (438, 5000) (445, 4800) (435, 4500) (448, 5000) (428, 5000) (438, 5000) (445, 4800) 

 1 (330, 4000) (331, 4500) (357, 3000) (344, 3000) (357, 2000) (330, 4000) (331, 4500) (357, 3000) (344, 3000) (357, 2000) 

 2 (447, 1800) (448, 1000) (462, 1000) (462, 3500) (473, 2000) (447, 1800) (448, 1000) (462, 1000) (462, 3500) (473, 2000) 

3 3 (470, 2500) (475, 3200) (462, 1500) (480, 1800) (470, 1000) (470, 2500) (475, 3200) (462, 1500) (480, 1800) (470, 1000) 

 4 (490, 1000) (515, 1300) (495, 800) (505, 900) (510, 800) (490, 1000) (515, 1300) (495, 800) (505, 900) (510, 800) 

 5 (435, 4800) (448, 4800) (425, 4500) (438, 4900) (440, 5000) (435, 4800) (448, 4800) (425, 4500) (438, 4900) (440, 5000) 

Table 4.8: Competitor suppliers‟ prices (INR/unit), maximum supply quantities (𝑝𝑛𝑗𝑘 , 𝑀𝑦𝑜𝑛𝑗𝑘 )  
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4.4.3 Implementation of proposed GA-based approach 

We solved the proposed bilevel programming problem (BPSP) applying the above 

input data.  The program was coded in MATLAB 2014a. The (FDMP) problem is solved 

by attaching weights 0.5 and 0.5 with two objectives. We have also presented the results 

for an ordered weights combinations (0.6, 0.4), (0.4, 0.6), (0.7, 0.3), (0.3, 0.7), in the 

Appendix at the end of the paper. The population size popsize is tuned for various 

combinations of probabilities of crossover, mutation and tournament selection, 

parameters of Laplace crossover a, b and that of power mutation p. It is found to be best 

at 10. The maximum number of generations is set to 6000 and the parameter 𝑎 is tuned to 

0. For each combination of the parameters (Table 9), a set of 10 experiments of GA are 

performed. The relative error of the best solution obtained from each combination of 

parameters in comparison to the overall best solution obtained is tabulated in Table 4.9.  

Figure 4.4, shows the variation of the maximum fitness attained at various 

generations for a GA run that yields the best fitness value of those reported in Table 9. 

The best result obtained with a specific set of GA parameters shows no improvement in 

its fitness value in the last 500 iterations establishing its stability.  

 

Figure 4.4: Maximum fitness vs. generations of best solution 
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pt pc a b pm p relative error (%) 

0.95 0.9 0 50 0.05 10 0.071 

0.95 0.8 0 50 0.05 10 0.095 

0.95 0.6 0 50 0.05 10 0.05 

0.95 0.9 0 50 0.01 10 0.067 

0.95 0.8 0 50 0.01 10 0.083 

0.95 0.6 0 50 0.01 10 0.109 

0.95 0.9 0 50 0.01 0.1 0.06 

0.95 0.9 0 50 0.01 1 0.089 

0.95 0.9 0 50 0.05 1 0.047 

0.8 0.9 0 50 0.05 10 0.061 

0.8 0.8 0 50 0.05 10 0.047 

0.8 0.6 0 50 0.05 10 0.069 

0.8 0.9 0 50 0.01 10 0.047 

0.8 0.8 0 50 0.01 10 0.086 

0.8 0.6 0 50 0.01 10 0.063 

0.8 0.9 0 50 0.01 0.1 0 

0.8 0.9 0 50 0.01 100 0.133 

0.8 0.9 0 500 0.01 0.1 0.091 

0.8 0.9 0 5 0.01 100 0.109 

0.8 0.9 0 500 0.01 100 0.126 

0.8 0.9 0 500 0.01 10 0.081 

0.8 0.9 0 5 0.01 10 0.091 

0.8 0.9 0 5 0.01 0.1 0.015 

0.8 0.9 0 1 0.01 0.1 0.029 

0.8 0.9 0 5 0.01 0.01 0.088 

0.8 0.9 0 1 0.01 0.01 0.054 

0.8 0.9 0 50 0.01 0.01 0.03 

0.8 0.9 0 50 0.01 1 0.024 

0.8 0.9 0 50 0.05 1 0.063 

Table 4.9: Results corresponding to different settings of the GA parameters 
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4.4.4 Results and analysis 

Among the 290 optimal solutions generated (29 combinations with 10 run each) for 

problem (BPSP), the one yielding the best fitness value is finally picked and shown below 

in the results and analysis. 

Using the developed model and designed solution methodology discussed by now, 

the best prices suggested for the supplier to target during negotiation are shown in Table 

4.10 

product  

(n) 

delivery location (j) 

1 2 3 4 5 6 7 8 9 10 

1 385 356 403 540 293 526 535 538 461 545 

2 600 360 380 557 710 599 690 696 616 561 

3 647 437 662 678 686 663 579 675 678 686 

4 728 700 604 575 763 425 738 745 643 762 

5 616 596 415 632 341 610 623 329 629 641 

Table 4.10: Prices suggested for the supplier (INR/unit) 

 

Table 4.11 shows the demand orders assessed to be obtained by the supplier for 

different products in each period as a response to the price offer depicted in Table 4.10. 

Table 4.12 shows production volumes of products in various periods required to fulfil the 

replicated demand orders. Table 4.13 lists the transportation volumes from PC to the two 

DCs and the inventory volumes suggested to be maintained in the two DCs in periods 

𝑡 =  1, 2, 3, 4; row for period 𝑡 =  0 shows the inventory volumes available at the 

beginning of the period 𝑡 =  1 and the row for 𝑡 =  4 shows the pre-decided inventory 

volumes to be maintained at final period. These two rows are the inputs to the problem. 

Table 4.14 shows the transport arrangements for the five products to be shipped from the 

DCs or PC to DLs in each period as a part of cost optimal aggregate production 

distribution plan. For example, in period 𝑡 =  1, DL 𝑗 =  5 is to be supplied with 1000 

units of product 1 and 200 units of product 3, both from PC. Similarly, in period 𝑡 =  2, 

5700 units of product 1, 281 units of product 2, 720 units of product 3 and 3000 units of 

product 4 are planned to be supplied to DL 𝑗 =  10, directly from PC (𝑖 =  0), and 4300 

units of product 1 and 1000 units of product 4 are planned to be supplied to DL 𝑗 =  7, 

from DC 2 (𝑖 =  2), and so on. 



 

 
129 

period Product delivery location (j) 

(t) (n) 1 2 3 4 5 6 7 8 9 10 

 1 1000 1500 500 500 1000 1000 1000 2500 500 500 

 2 0 0 1000 2000 0 0 0 1500 500 0 

1 3 0 0 1900 0 200 0 0 1900 1800 800 

 4 0 0 0 0 0 0 0 0 0 700 

 5 0 0 0 4500 0 0 0 0 1000 0 

 1 0 0 0 0 0 0 4300 0 0 5700 

 2 0 0 0 0 1800 0 0 1500 1419 281 

2 3 0 0 1140 2780 320 0 0 1640 0 720 

 4 0 0 0 0 0 0 1000 0 0 3000 

 5 0 0 783 4717 0 0 0 0 0 0 

 1 0 0 0 2500 0 0 7500 0 0 0 

 2 0 0 0 1900 0 3100 0 0 0 0 

3 3 0 0 0 3360 0 620 0 0 2620 0 

 4 1800 1900 0 0 0 0 300 0 0 0 

 5 0 0 0 0 0 2583 2917 0 0 0 

 1 4000 0 0 0 0 5500 0 0 0 0 

 2 3200 0 0 0 0 0 500 0 1300 0 

4 3 2700 0 0 500 0 0 0 0 3400 0 

 4 0 0 0 0 0 0 0 0 0 0 

 5 3517 800 0 0 0 0 1183 0 0 0 

Table 4.11: Demand obtained by the supplier (𝑦𝑗𝑛𝑡 ) 

  𝑄𝑛𝑡  𝑂𝑛𝑡  
period 

 (t) 

product (n) product (n) 

1 2 3 4 5 1 2 3 4 5 

1 12,800 2462 5100 0 5500 0 1538 0 5700 0 

2 1175 7588 6600 0 5000 4525 0 0 3000 0 

3 0 2537 14,700 0 4500 10,000 0 0 0 0 

4 11,000 5875 0 0 7000 0 0 0 0 0 

Table 4.12: Production volumes for the supplier 

 

 

period 

(t) 

DC 1 DC 2 

product (n) product (n) 

1 2 3 4 5 1 2 3 4 5 

𝐼𝑖𝑛𝑡  

1 2000 0 0 1800 0 9300 1500 0 3200 0 

2 0 2588 0 0 0 0 1500 0 0 283 

3 2500 637 7720 0 1583 7500 0 1000 0 2917 

4 10,000 3075 0 0 4017 1000 1500 0 0 2983 

𝑆𝑆𝑖𝑛𝑡  

0 1000 500 1000 500 1000 500 1000 500 1000 500 

1 0 500 0 2300 1000 4300 0 0 4200 500 

2 0 3088 0 2300 1000 0 0 0 3200 0 

3 0 625 7100 500 0 0 0 1000 1000 0 

4 500 500 500 500 500 1000 1000 1000 1000 1000 

Table 4.13: Transportation volumes from PC to DCs in each period and inventory volumes to be 

maintained at DCs in each period 
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 period (t)  

source (i)  1   2   3   4   

 (n, j)  𝑥𝑖𝑗𝑛𝑡  (n, j)  𝑥𝑖𝑗𝑛𝑡  (n, j)  𝑥𝑖𝑗𝑛𝑡  (n, j)  𝑥𝑖𝑗𝑛𝑡  

PC (i = 0) 

(1, 5)  1000 (1, 10)  5700 (2, 4)  1900 (2, 9)  1300  

(1, 10)  500 (2, 5)  1800 (3, 4)  3360 -  -  

(2, 4)  2000 (2, 9)  1419 (3, 9)  2620 -  -  

(2, 9)  500 (2, 10)  281 -  - -  -  

(3, 3)  1400 (3, 3)  1140 -  - -  -  

(3, 5)  200 (3, 4)  2780 -  - -  -  

(3, 8)  1900 (3, 5)  320 -  - -  -  

(3, 9)  800 (3, 8)  1640 -   - -  -  

(3, 10)  800 (3, 10)  720 -  - -  -  

(4, 10)  700 (4, 10)  3000 -  - -  -  

(5, 4)  4500 (5, 4)  4717 -  - -  -  

(3, 9)  1000 -  - -  - -  -  

DC 1 (i = 1) 

(1, 1)  1000 -  - (1, 4)  2500 (1, 1)  4000  

(1, 4)  500 -  - (2, 6)  3100 (1, 6)  5500  

(1, 6)  1000 -  - (3, 6)  620 (2, 1)  3200  

(1, 9)  500 -  - (4, 1)  1800 (3, 1)  2700  

(3, 9)  1000 -  - (5, 6)  2583 (3, 4)  500  

-  - -  - -  - (3, 9)  3400  

-  - -  - -  - (5, 1)  3517  

DC 2 (i = 2) 

(1, 2)  1500 (1, 7)  4300 (1, 7)  7500 (2, 7)  500  

(1, 3)  500 (2, 8)  1500 (4, 2)  1900 (5, 2)  800  

(1, 7)  1000 (4, 7)  1000 (4, 7)  300 (5, 7)  1183  

(1, 8)  2500 (5, 3)  783 (5, 7)  2917 -  -  

(2, 3)  1000 -  - -  - -  -  

(2, 8)  1500 -  - -  - -  -  

(3, 3)  500 -  - -  - -  -  

Table 4.14: Transportation volumes (𝑥𝑖𝑗𝑛𝑡 ) for DLs, (𝑛, 𝑗) = (product, DL), transportation 

volumes not mentioned are 0 

The demand orders obtained by other existing suppliers (for comparison) are shown 

in Tables 4.15 to Table 4.17.  
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period Product delivery location (j) 

(t) (n) 1 2 3 4 5 6 7 8 9 10 

 1 3000 3000 2500 2000 1000 3000 3000 0 2000 1000 

 2 3000 0 0 2000 0 3000 500 0 2000 0 

1 3 3000 3300 400 1800 1000 3000 2900 0 0 0 

 4 800 1000 400 400 200 900 1000 500 600 900 

 5 0 0 0 0 0 0 0 0 0 0 

 1 3000 3000 2500 2000 1000 3000 3000 2500 2000 1000 

 2 3000 1000 1500 2000 1000 3000 1000 1500 2000 1000 

2 3 4000 4220 2000 2500 1000 4000 4500 2000 2500 1000 

 4 1000 1100 1100 1000 900 1000 1200 1100 1000 900 

 5 5000 1400 0 0 0 5000 0 0 0 0 

 1 3000 0 1000 2000 1000 3000 0 1000 0 0 

 2 0 0 0 0 0 0 0 0 0 0 

3 3 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 0 0 0 0 0 0 0 

 1 0 3000 0 0 0 3000 0 0 0 0 

 2 0 0 0 0 0 0 0 0 0 0 

4 3 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 0 0 0 0 0 0 0 

Table 4.15: Demand-orders of existing supplier 𝑘 = 1 
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period Product delivery location (j) 

(t) (n) 1 2 3 4 5 6 7 8 9 10 

 1 4000 4500 2000 2500 1000 4000 4500 2000 2500 1000 

 2 2000 1000 0 3000 0 1500 1000 0 3000 0 

1 3 3000 3500 1500 2000 1100 3000 3500 1500 2000 1100 

 4 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 0 0 0 0 0 0 0 

 1 4000 4500 2000 2500 1000 0 4500 2000 2000 1000 

 2 2500 1000 1500 3000 1500 2500 1000 1500 3000 1500 

2 3 3000 0 1500 2000 1100 3000 220 1500 2000 1100 

 4 0 0 600 0 100 1100 700 500 800 0 

 5 4500 5000 0 5000 0 4500 5000 0 5000 0 

 1 0 4500 0 0 100 0 0 0 0 0 

 2 0 0 0 0 0 0 0 0 0 0 

3 3 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 0 0 0 0 0 0 0 

 1 0 1000 0 0 0 0 0 0 2500 0 

 2 0 700 0 0 0 0 0 0 0 0 

4 3 0 0 0 0 0 1560 0 0 0 0 

 4 0 0 0 0 0 0 0 0 0 0 

 5 0 0 0 0 0 0 0 0 0 0 

Table 4.16: Demand-orders of existing supplier 𝑘 = 2 
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period product delivery location (j) 

(t) (n) 1 2 3 4 5 6 7 8 9 10 

 1 0 0 0 0 0 0 0 0 0 0 

 2 0 0 1000 0 1000 0 0 1000 1000 1500 

1 3 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 0 0 0 0 0 0 0 

 5 4500 900 1800 1800 900 4100 1400 2300 4900 1400 

 1 4000 4500 3000 0 2000 4000 700 3000 3000 2000 

 2 1800 1000 1000 3500 2000 1800 1000 1000 3500 2000 

2 3 2500 3200 1500 1800 1000 2500 3200 1500 1800 1000 

 4 0 0 0 500 0 600 0 0 0 0 

 5 780 4800 4500 373 3433 1517 4000 4500 4900 4000 

 1 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 

 2 1200 1000 0 3500 0 1800 1000 0 2781 819 

 3 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 0 0 0 0 0 0 0 

 5 1203 0 1617 0 767 0 0 1200 0 500 

4 1 

2 

3 

4 

5 

0 0 0 0 0 0 0 0 0 0 

 2 1800 1000 1000 3100 0 1800 1000 0 3500 2000 

 3 0 0 0 0 0 0 0 0 0 0 

 4 0 0 0 0 0 0 0 0 0 0 

Table 4.17: Demand-orders of existing supplier 𝑘 = 3 
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Figure 4.5 shows the demand shares of each product received by the supplier 

against those to be received by other existing suppliers in the planning horizon.  

 

4.5 Comparison analysis 

The efficacy of the proposed approach for taking a strategic decision on target 

prices for negotiation is highlighted in this section through a comparison of the results 

obtained in the previous section with two more experiments.  

First, we attempt to anticipate the demand orders from the buyer in response to the 

lowest prices (minimum reservation prices 𝑙𝑝𝑛𝑗  of the supplier). The demand shares are 

obtained by solving (FDMP) with the supplier‟s prices set at 𝑚𝑝𝑛𝑗  =  𝑙𝑝𝑛𝑗 . When we 

endeavour to solve the subsequent APDP problem, it is realized that the demand orders 

are out of the capacity of the supplier to fulfil. This confirms that adopting the strategy of 

targeting for lowest possible prices in pursuit of penetration into the market is not always 

effective and may even result in an opportunity loss by falling into an incapacitated 

situation to fulfil the replicating demand-orders allocations.  

Second, we perform the experimental analysis as demonstrated in the previous 

section for each case of variation in weights of two objectives in (FDMP) as (0.4, 0.6), 

Figure 4.5: Comparison of demand shares of the supplier and existing suppliers 
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(0.6, 0.4), (0.3, 0.7) and (0.7, 0.3). The optimal prices thus opined by using the developed 

decision support for the supplier and corresponding demand-order allocations to be 

replicated by the buyer are shown in Tables 4.18 to Table 4.25. Also, demand shares 

corresponding to these weights are depicted in Figure 4.6 and Figure 4.7, exhibiting a 

significant market share to be received for each case of weights of two objectives of the 

buyer. 

 

 

product 

(n) 

delivery location (𝑗) 

1 2 3 4 5 6 7 8 9 10 

1 501 491 408 429 500 518 252 536 493 398 

2 541 467 635 557 611 513 466 522 686 621 
3 643 466 661 541 476 588 670 490 678 681 
4 606 616 714 621 717 665 733 700 710 705 
5 444 563 553 622 516 407 407 446 468 626 

Table 4.18: Prices suggested for the supplier (INR/unit) for weights (0.4, 0.6) 

 

 

Figure 4.6: Comparison of demand-shares obtained by the supplier and existing suppliers for 

weights (0.4, 0.6) and (0.6, 0.4) 
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product 

(n) 

delivery location (𝑗) 
1 2 3 4 5 6 7 8 9 10 

1 372 501 470 394 545 377 476 461 364 545 
2 641 392 680 700 710 664 465 696 498 710 
3 647 648 663 678 423 663 371 663 678 686 
4 669 700 654 750 463 668 738 670 750 763 
5 616 296 314 632 341 470 399 629 579 641 

Table 4.19: Prices suggested for the supplier (INR/unit) for weights (0.6, 0.4) 

 

 

product 

(n) 

delivery location (𝑗) 
1 2 3 4 5 6 7 8 9 10 

1 262 459 286 490 534 523 480 362 521 545 

2 679 658 672 691 641 658 466 668 444 546 
3 446 374 367 569 681 599 390 675 588 672 
4 605 487 673 588 463 682 438 743 624 726 
5 536 305 533 625 351 441 623 489 625 475 

Table 4.20: Prices suggested for the supplier (INR/unit) for weights (0.3, 0.7) 

 

 

product 

(n) 

delivery location (𝑗) 
1 2 3 4 5 6 7 8 9 10 

1 337 520 430 540 323 497 451 440 357 543 

2 622 660 385 400 463 534 624 601 657 570 
3 645 531 663 650 597 555 387 628 652 446 
4 496 700 496 459 562 725 728 445 529 739 
5 600 298 532 471 617 556 345 556 559 620 

Table 4.21: Prices suggested for the supplier (INR/unit) for weights (0.7, 0.3) 
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product 

(n) 

delivery location (𝑗) 

1 2 3 4 5 6 7 8 9 10 

 1 (1000, 7000) (1500, 7500) (500, 4500) (2500, 2500) (1000, 2000) (1000, 7000) (0, 8500) (1500, 3000) (500, 4500) (500, 2000) 

 2 (0, 5000) (0, 1000) (1000, 1000) (0, 7000) (0, 1000) (1000, 3500) (0, 1500) (1500, 1000) (0, 6500) (1500, 0) 

t = 1 3 (3000, 3000) (0, 6800) (300, 3500) (300, 3500) (1200, 1100) (0, 6000) (0, 6400) (0, 3400) (1800, 2000) (0, 1900) 

 4 (0, 800) (0, 1000) (0, 400) (0, 400) (0, 200) (0, 900) (0, 1000) (0, 500) (0, 600) (700, 900) 

 5 (0, 4500) (0, 900) (0, 1800) (4500, 1800) (0, 900) (0, 4100) (0, 1400) (0, 2300) (1000, 4900) (0, 1400) 

 1 (0, 7000) (0, 12,000) (0, 7500) (3831, 4500) (0, 2000) (0, 7000) (0, 11,000) (0, 4500) (0, 4500) (6169, 2000) 

 2 (0, 7300) (0, 3000) (0, 4000) (0, 8500) (1641, 4500) (0, 7300) (259, 3000) (0, 4000) (0, 8500) (3100, 4500) 

t = 2 3 (0, 9500) (0, 7420) (1140, 5000) (0, 6300) (0, 3100) (0, 9500) (0, 7920) (1490, 5000) (3250, 6300) (720, 3100) 

 4 (0, 2297) (0, 2823) (0, 717) (0, 1500) (0, 900) (0, 1000) (0, 2663) (500, 1100) (800, 1000) (2700, 1200) 

 5 (0, 10,900) (0, 9190) (5500, 930) (0, 9900) (0, 5000) (0, 13,000) (0, 9800) (0, 7800) (0, 10,580) (0, 1810) 

 1 (0, 3000) (2900, 1100) (0, 0) (0, 0) (2100, 1000) (500, 3000) (0, 4500) (4000, 0) (500, 2000) (0, 0) 

 2 (2600, 1800) (0, 2000) (0, 0) (2400, 2600) (0, 0) (0, 4300) (0, 2000) (0, 500) (0, 1500) (0, 0) 

t = 3 3 (0, 0) (0, 0) (0, 0) (3830, 1090) (0, 320) (0, 0) (0, 0) (0, 150) (2770, 0) (0, 0) 

 4 (503, 0) (177, 0) (983, 0) (0, 0) (100, 0) (1700, 0) (537, 0) (0, 0) (0, 0) (0, 0) 

 5 (0, 0) (2810, 0) (0, 470) (0, 0) (0, 0) (0, 0) (0, 2000) (0, 0) (0, 0) (2690, 0) 

 1 (5000, 3000) (0, 4500) (0, 1000) (0, 669) (0, 0) (5000, 3000) (0, 4500) (0, 0) (0, 2500) (0, 1531) 

 2 (0, 1800) (0, 700) (0, 1000) (0, 3500) (0, 159) (1000, 1400) (0, 241) (0, 1000) (4000, 3500) (0, 0) 

t = 4 3 (2700, 1800) (0, 700) (0, 1000) (1720, 3500) (0, 159) (2180, 1400) (0, 241) (0, 1000) (0, 3500) (0, 0) 

 4 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

 5 (4100, 0) (0, 0) (1400, 200) (0, 2100) (0, 0) (0, 600) (0, 1300) (0, 0) (0, 1620) (0, 0) 

Table 4.22: Comparison of demand orders to be obtained by the supplier against the total to be obtained by existing suppliers for weights (0.4, 0.6) 

 𝑦𝑗𝑛𝑡 ,  𝑦𝑜𝑗𝑛𝑘𝑡
𝐾
𝑘=1   
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product 

(n) 

delivery location (𝑗) 

1 2 3 4 5 6 7 8 9 10 

  1 (4000,4000) (0,9000) (500,4500) (500,4500) (2000, 1000) (1000,7000) (1000,7500) (0,4500) (500,4500) (500,2000) 

 2 (3200,1800) (0,1000) (1000,1000) (0,7000) (0,1000) (0,4500) (0,1500) (800,1700) (0,6500) (0,1500) 

t = 1 3 (3000,3000) (300,6500) (300,3500) (0,3800) (1200, 1100) (0,6000) (0,6400) (0,3400) (1800, 2000) (0,1900) 

 4 (0,800) (0,1000) (0,400) (0,400) (0,200) (0,900) (0,1000) (0,500) (0,600) (700,900) 

 5 (0,4500) (0,900) (0,1800) (4500,1800) (0,900) (0,4100) (0,1400) (0,2300) (1000, 4900) (0,1400) 

 1 (0,11,000) (0,10,500) (0,6300) (0,7500) (3100, 2000) (0,10,500) (1200,12,000) (0,7500) (0,7500) (5700,4000) 

 2 (0,7300) (0,3000) (0,4000) (5000,8500) (0,4300) (0,7300) (0,3000) (0,4000) (0,8500) (0,4500) 

t = 2 3 (0,9500) (0,7420) (1140,5000) (0,6300) (320,3100) (620,9500) (0,7920) (1640, 5000) (2160, 6300) (720,3100) 

 4 (0,1669) (320,2680) (0,1700) (0,1500) (0,1000) (0,2046) (680,2500) (0,1600) (800,1000) (2200,1700) 

 5 (0,9500) (0,9783) (0,5923) (0,5010) (0,4980) (0,9500) (0,8300) (1600, 4500) (0,9707) (3900,400) 

 1 (0,3000) (0,0) (2200,0) (0,0) (0,0) (0,4000) (6800,0) (1000,0) (0,2000) (0,0) 

 2 (0,1800) (0,2000) (0,0) (0,3500) (0,0) (1400,1800) (500,1000) (0,500) (0,3500) (3100,0) 

t = 3 3 (0,0) (0,0) (0,0) (6140,0) (0,0) (0,1560) (0,0) (0,0) (460,0) (0,0) 

 4 (1131,0) (0,0) (0,0) (0,0) (0,0) (654,0) (0, 20) (0,0) (0,0) (0,0) 

 5 (5500,0) (0,1417) (0,977) (0,1290) (0,0) (0,4100) (0,4800) (0,0) (0,0) (0,0) 

 1 (0,4000) (10,000,0) (0,0) (0,1500) (0,0) (0,4000) (0,0) (0,0) (0,0) (0,0) 

 2 (3000,1400) (0,700) (0,1000) (0,0) (0,2000) (0,3500) (0,1000) (0,1000) (2000, 3500) (0,0) 

t = 4 3 (2700,0) (0,0) (0,0) (500,0) (0,0) (0,0) (0,0) (0,0) (3400,0) (0,0) 

 4 (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) 

 5 (0,0) (0,800) (0,1600) (5500,200) (0, 20) (0,0) (0,0) (0,1700) (0,2493) (0,200) 

Table 4.23: Comparison of demand orders to be obtained by the supplier against the total to be obtained by existing suppliers for weights (0.6, 0.4) 

 𝑦𝑗𝑛𝑡 ,  𝑦𝑜𝑗𝑛𝑘𝑡
𝐾
𝑘=1   
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 product 

(n) 
delivery location (𝑗) 

 1 2 3 4 5 6 7 8 9 10 

 1 (1000, 7000) (1500, 7500) (500, 4500) (500, 4500) (1000, 2000) (2500, 5500) (1000, 7500) (0, 4500) (500, 4500) (1500, 1000) 

 2 (800, 4200) (0, 1000) (1000, 1000) (500, 6500) (1000, 0) (200, 4300) (0, 1500) (1500, 1000) (0, 6500) (0, 1500) 

t = 1 3 (0, 6000) (0, 6800) (300, 3500) (400, 3400) (200, 2100) (3000, 3000) (0, 6400) (1900, 1500) (0, 3800) (800, 1100) 

 4 (0, 800) (0, 1000) (0, 400) (0, 400) (0, 200) (0, 900) (0, 1000) (0, 500) (0, 600) (700, 900) 

 5 (0, 4500) (0, 900) (0, 1800) (1400, 4900) (0, 900) (0, 4100) (0, 1400) (0, 2300) (4100, 1800) (0, 1400) 

 1 (0, 7000) (0, 7500) (0, 4500) (0, 4500) (0, 1600) (0, 7000) (1300, 7500) (0, 2500)

 (30

00, 4500) 

(5700, 2000) 

(0, 4500) (6169, 2000) 

 2 (0, 7300) (0, 3000) (0, 4000) (312, 8500) (1731, 4500) (291, 7300) (0, 3000) (1500, 4000)

 (

0, 8500)

 (

1166, 4500) 

(0, 8500) (3100, 4500) 

t = 2 3 (1620, 9500) (0, 7420) (0, 5000) (0, 6300) (0, 3100) (0, 9500) (0, 7920) (1640, 5000) 

(2620, 6300)  

(720, 3100) 

(3250, 6300) (720, 3100) 

 4 (471, 2100) (229, 2400) (0, 1300) (500, 1000) (0, 1000) (600, 2100) (0, 3200) (0, 1600) (0, 1800) (2200, 1700) 

 5 (0, 9500) (0, 11,817) (0, 8110) (2010, 9600) (0, 5000) (0, 10,707) (823, 9800) (2667, 4500) (0, 9400) (0, 4123) 

 1 (0, 7000) (6500, 0) (0, 2000) (0, 2500) (3500, 0) (0, 4000) (0, 6700) (0, 4000) (0, 2000) (0, 1000) 

 2 (4088, 0) (0, 1000) (0, 0) (0, 3000) (0, 0) (0, 3909) (0, 1500) (0, 0) (0, 6000) (912, 1022) 

t = 3 3 (660, 0) (0, 0) (0, 1140) (5620, 0) (320, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

 4 (0, 229) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

 5 (5110, 0) (0, 183) (0, 0) (390, 0) (0, 0) (0, 2893) (0, 1177) (0, 0) (0, 0) (0, 0) 

 1 (0, 4000) (6500, 0) (0, 2000) (0, 2000) (0, 0) (3500, 4000) (0, 4500) (0, 2000) (0, 0) (0, 1000) 

 2 (2112, 0) (700, 1000) (0, 1000) (2188, 3000) (0, 69) (0, 2500) (0, 1000) (0, 0) (0, 3000) (0, 0) 

t = 4 3 (0, 420) (0, 0) (0, 0) (1020, 0) (0, 0) (2180, 0) (0, 0) (0, 0) (3400, 0) (0, 0) 

 4 (0, 0) (0, 371) (0, 400) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

 5 (390, 0) (0, 0) (0, 390) (0, 0) (0, 0) (0, 0) (1300, 0) (633, 0) (2800, 0) (377, 0) 

Table 4.24: Comparison of demand orders to be obtained by the supplier against the total to be obtained by existing suppliers for weights (0.3, 0.7) 

 𝑦𝑗𝑛𝑡 ,  𝑦𝑜𝑗𝑛𝑘𝑡
𝐾
𝑘=1   
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 product 

(n) 

delivery location (𝑗) 

 1 2 3 4 5 6 7 8 9 10 

  1 (1000, 7000) (1500, 7500) (500, 4500) (500, 4500) (1000, 2000) (1000, 7000) (3500, 5000) (0, 4500) (500, 4500) (500, 2000) 

 2 (500, 4500) (0, 1000) (0, 2000) (0, 7000) (0, 1000) (0, 4500) (0, 1500) (1000, 1500) (3500, 3000) (0, 1500) 

t = 1  3 (0, 6000) (3300, 3500) (300, 3500) (1800, 2000) (200, 2100) (0, 6000) (1000, 5400) (0, 3400) (0, 3800) (0, 1900) 

 4 (0, 800) (1000, 0) (0, 400) (0, 400) (0, 200) (900, 0) (500, 500) (0, 500) (0, 600) (1600, 0) 

 5 (0, 4500) (0, 900) (0, 1800) (1400, 4900) (0, 900) (3100, 1000) (0, 1400) (0, 2300) (1000, 4900) (0, 1400) 

 1 (0, 8000) (3000, 7500) (0, 5500) (800, 7500) (0, 2000) (500, 11000) (0, 12000) (0, 5500) (0, 7500) (5700, 4000) 

 2 (1400, 5897) (700, 3000) (0, 1984) (0, 8500) (1800, 4500) (0, 6000) (0, 3000) (0, 3406) (0, 8500) (1100, 4500) 

t = 2  3 (0, 9500) (0, 7420) (1140, 5000) (325, 6300) (0, 3100) (0, 9500) (0, 7920) (1640, 5000) (2775, 6300) (720, 3100) 

 4 (0, 2800) (0, 2003) (0, 1700) (0, 1500) (0, 1000) (0, 2700) (900, 1200) (0, 1600) (0, 1454) (3100, 800) 

 5 (283, 9500) (0, 10200) (0, 8500) (0, 9700) (4713, 0) (503, 9500) (0, 10,200) (0, 7800) (0, 9700) (0, 3127) 

 1 (0, 7000) (10,000, 0) (0, 0) (0, 0) (0, 3000) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) 

 2 (1203, 2500) (0, 1000) (0, 3000) (0, 5500) (0, 0) (0, 2500) (500, 1000) (0, 2094) (3297, 703) (0, 1000) 

t = 3  3 (0, 0) (0, 0) (0, 0) (2915, 0) (320, 0) (2180, 0) (0, 0) (0, 0) (1185, 0) (0, 0) 

 4 (0, 0) (997, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1100, 0) (0, 0) (0, 0) (0, 0) 

 5 (1617, 0) (0, 1800) (0, 0) (0, 2300) (287, 0) (3597, 0) (0, 2900) (0, 0) (0, 600) (0, 1373) 

 1 (0, 3000) (0, 0) (0, 3000) (0, 700) (0, 100) (0, 7000) (8000, 0) (0, 3000) (2000, 0) (0, 0) 

 2 (0, 2500) (0, 1000) (0, 16) (0, 3000) (0, 0) (0, 5500) (0, 1000) (0, 0) (5000, 0) (0, 1000) 

t = 4  3 (2700, 0) (0, 0) (0, 0) (1840, 1560) (0, 0) (0, 0) (0, 0) (0, 0) (2060, 0) (0, 0) 

 4 (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (346, 0) (0, 0) 

 5 (3600, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (1900, 0) (0, 0) 

Table 4.25: Comparison of demand orders to be obtained by the supplier against the total to be obtained by existing suppliers for weights (0.7, 0.3) 

 𝑦𝑗𝑛𝑡 ,  𝑦𝑜𝑗𝑛𝑘𝑡
𝐾
𝑘=1   
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The above analysis exhibits that the proposed approach yields a successful pricing 

strategy for penetration as well as profit based revenue management strategy for a small 

scale supplier intending to enter into a potential market engendered by a single buyer 

(Figures 4.5, 4.6 and 4.7). 

 

4.6 Managerial implications 

In this chapter, a decision support is developed to handle pricing decisions 

strategically maximizing profit while focusing to penetrate into a market engendered by 

single buyer and some existing suppliers. Through this study it is demonstrated that in 

case of business-to-business dealings the pricing strategy should be wisely used by 

adopting a proper decision-support rather than simply following penetration pricing in 

pursuit of acquiring greater market shares. It is further demonstrated that for negotiating 

with a buyer to get a profitable share of demand-orders a small scale supplier needs to 

assess the demand order allocation mechanism of the buyer and price structure of other 

suppliers already in business with the buyer. 

The business situation described above is predominantly observed in sectors of 

small scale manufacturing. One example is of the non-branded apparel manufacturing 

Figure 4.7: Comparison of total demand obtained by the supplier and existing suppliers 

weights (0.3, 0.7) and (0.7, 0.3) 
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sector, where small scale suppliers approach a potential buyer for seeking business 

through price negotiation for a range of apparels. Another example is of FMCG sector, 

where the small/ medium scale manufacturers target the marketing based companies (for 

their brand values) to get associated as third-party-manufacturer and supply their 

products. Furthermore, even the medium and large scale suppliers of any manufacturing 

industry also customarily identify and dedicate their specific production plant and/ or 

division and/ or DC to a particular buyer. This production plant and/ or DC forms a 

business division of the principal supplier. This business division acts as a small supplier 

in its own capacity for the decision making with the buyer. Therefore, a business division 

has to face the aforementioned planning problems independently.  

 

4.7 Conclusions 

In this chapter, a decision support is developed for the cohesive decision making 

on pricing strategy and operational planning of production and logistics. The problem is 

addressed from the perspective of a small scale supplier who is approaching a potential 

buyer to solicit a business through compelling prices in comparison to those from existing 

suppliers of the buyer. The proposed model accomplishes to devise a revenue 

management based penetration pricing strategy utilizing the capacity assessment through 

assessment of demand allocation from the buyer. The model is formulated in a bilevel 

programming framework, wherein the supplier is considered as leader while the buyer is 

considered as the follower. The problem enables the assessment of demand allocation 

from the buyer is considered as modelled as a bi-objective integer programming problem 

so as to minimize the total purchasing cost with maximum economic qualitative score. 

A GA based approach is suggested to solve the proposed problem. The model as 

well as the solution methodology is demonstrated with an experimental study through a 

test scenario designed in consultation with some industry experts. The experimental 

results are further compared with two situations to test the efficacy of the suggested 

model. Results of test case along with the comparative analysis demonstrate the strength 

of the proposed model to successfully devise penetration strategy through revenue 

management.  
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Chapter 5 

 

Decision Support to Buyer for Strategically 

Ascertaining Target Prices to Negotiate with 

Multiple Suppliers 
 

 

 

In this chapter
21

, a decision-support is developed for a strategic problem of identifying 

target prices for the single buyer to negotiate with multiple suppliers in order to achieve 

common goal of maintaining sustained business environment. For this purpose, 

oligopolistic-competitive equilibrium prices of suppliers are suggested to be considered as 

target prices. The problem of identifying these prices is modeled as a multi-leader-single-

follower BLP problem. Herein, suppliers are considered as leaders competing in a Nash 

game to maximize individual profit and the buyer as follower responding with demand-

order allocations to minimize the total procurement-cost. In order to formulate individual 

profits of suppliers, assessment of respective operational cost to fulfil replicating demand-

orders is achieved by integrating aggregate-production-distribution-planning mechanism 

into the problem. Additionally, a genetic-algorithm-based technique is designed to solve 

large-scale instances of the modelled problem. The proposed methodology is tested on the 

data of a leading FMCG manufacturing firm, which manufactures goods through multiple 

sourcing. Empirical analysis shows that target prices obtained through the proposed 

model outmatch negotiated rates in terms of company‟s procurement cost. Besides, our 

strategy inherits capability of identifying market-sweeping activities and possibility of 

supplier-cartel, which are potential threats to the business prospects of the buyer. 
 

  

                                                           
21

 The contents of this chapter are based on research paper: “A bilevel game model for ascertaining 

competitive target prices for a buyer in negotiation with multiple suppliers”, communicated to the 

Journal Omega (Elsevier). 
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5.1 Introduction 

In an oligopolistic-monopsony market, suppliers compete on prices to attract a 

competitive demand share from their buyer, for maximizing their profits. The buyer, on 

the other side, intends to minimize overall procurement cost for receiving a regular supply 

of required products. For pursuing this objective, the buyer seeks to exploit the 

competition between suppliers and therefore negotiates with them to further lower down 

the prices. The status of being a sole buyer of an oligopolistic-monopsony market 

provides a bargaining power to entice suppliers with a larger share of demand-order in 

exchange for lowering the prices. In our problem, the overall demand of buyer is 

considered to be less than the combined output capacities of all the suppliers. In this 

situation, bargaining power of the buyer is further increased, and therefore suppliers are 

forced to renegotiate prices for obtaining demand-orders. 

In such a scenario, the buyer sometimes adopts an opportunistic discriminatory 

approach for negotiation with suppliers to reduce the procurement cost to a minimum 

extent possible. For some suppliers prices negotiated in this manner may be well below a 

point where all the suppliers would have agreed upon due to complete awareness of 

competition in the discussed business environment. This develops a dissonance among 

such suppliers and a tendency of non-cooperation starts developing [238]. This antipathy 

adversely affects the buyer-supplier relationship [239–242], which, in turn impacts 

performance of their supply chain detrimentally [243]. On the other hand, if price-

negotiations of the buyer with suppliers settle at a point which is well above an 

equilibrium point of suppliers‟ oligopolistic competition, financial interests of the buyer 

are adversely affected in this case in terms of a potentially higher procurement cost 

incurred. In such a situation, the buyer is compelled to look for alternative arrangements 

of sourcing as a long term initiative for intensifying the competition among suppliers. 

This, in turn, reduces the bargaining power of the suppliers and their demand-shares also 

in the future, resulting in reduced profit in long run. 

This indicates that aggrieved stakeholders on either side of the considered market 

situation have an adverse action space that can thwart from maintaining a sustained and 

continuous business environment. Accordingly, the outcome of price-negotiations should 

ensure long term gains through sustained and continuous replenishment of products for 

the buyer vis-à-vis short term gains through opportunistic discrimination in price 
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negotiation. Similarly, each supplier should prefer getting sustained and continuous 

replenishment orders from the buyer vis-à-vis creating an adverse action space which may 

affect their business prospects. Therefore, it is imperative to identify those prices for the 

business deal at which this common goal is achieved while pursuing the individual 

objectives. Consequently, it is appropriate for the stakeholders at both sides to settle at 

equilibrium prices of suppliers‟ oligopolistic-competition. 

Identifying oligopolistic-competitive equilibrium prices of suppliers as target 

prices for negotiation imposes the competition among suppliers up to their individual 

production-distribution capabilities, and cost-efficiencies. As a result, the prices thus 

negotiated leave no space for any opportunistic discrimination on the part of buyer. 

Further, as these target prices for negotiation are based only on competitive capabilities of 

suppliers, therefore we appropriately term these as competitive target prices. 

In an oligopolistic-monopsony market ecosystem, the sole buyer being a pivotal 

player is in a position to step forward for taking an initiative for maintaining a sustained 

business environment. Also, having complete information on costs and capacities of 

suppliers, the buyer is in a position to assess the oligopolistic-competitive equilibrium 

prices of suppliers and identify those as target prices for negotiation. Due to these reasons 

it is appropriate to address this problem from the buyer‟s perspective in this market 

situation. The situation of oligopolistic-monopsony market is common in many sectors, 

but the problem of identifying target prices for negotiations has never been studied to the 

best of our knowledge. 

In this study, a decision support system developed for identifying competitive 

target prices for negotiations of the buyer with multiple suppliers in the oligopolistic-

monopsony market situation is presented. We model the problem of identifying the 

competitive target prices as a multi-leader-single-follower BLP problem with linear 

constraints and bilinear objective functions. As suppliers make the first move by offering 

the prices, therefore they are considered as leaders; whereas the buyer responding in 

terms of the demand-order allocation is the follower, in this model. Price competition 

among the group of suppliers for receiving maximum profitable demand shares from the 

buyer leads to a game situation among these suppliers. In the considered environment of 

oligopolistic competition among suppliers, the assessment of prices requires integrated 

planning as total cost of fulfilling the demand-orders is related with different operational 
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costs pertaining to production and distribution. In order to formulate their total 

operational costs as a part of respective profit functions and for keeping the production-

and-logistics capacity constraints at suppliers‟ end into consideration, it is pressing to 

embed the APDP problem in the price-setting problem for replicating their decision 

behaviour in the model. The follower‟s reaction is embedded in the bilevel structure 

through a solution of the optimal demand-order allocation problem. As this model is 

designed to consider all the essential factors which are discussed above relating to the 

buyer and suppliers, the solution of this model would render competitive target prices for 

negotiation. 

Furthermore, we experienced that the methodologies available in the literature for 

solving multi-leader-single-follower BLP problems are not adequate to handle large scale 

instances. We thus propose a GA-based procedure for solving general multi-leader-

single-follower BLP problems specifically involving linear constraints and bilinear 

objective functions.  The proposed algorithm is suitably modified to address the bilevel 

game problems with a specific structure as exhibited by our model. Thus, the contribution 

of this paper is two-fold, from the modelling as well as methodology development 

perspectives. The proposed model and solution algorithm are finally illustrated on a data 

set of an FMCG manufacturing firm concerned about the procurement cost of the 

ingredients of its products. 

We demonstrate an implied advantage of using our model that upon identifying 

competitive target prices prior to the real negotiation the buyer is enabled to identify the 

possibility of cartels or price sweeping strategies. Such practices in oligopolistic-

monopsony markets adversely affect the buyer‟s business immediately or in the long run. 

Suppliers collusively making a cartel
22

 for price rigging turn out to be a threat to the 

buyer‟s business environment. Further, during the price negotiation, large-scale suppliers 

often offer extraordinarily low prices, sometimes even lower than the break-even-point of 

their business, to pose cut-throat competition among other suppliers. Such a strategy 

played by a supplier may, prima facie, indicate a reduction in the total procurement cost 

of the buyer. But, if the buyer is carried away by these offers, this may result in success of 

such a market sweeping strategy of a supplier, and a loss of business and business 

relations with other suppliers, thereby taking away the buyer‟s potential to negotiate in 

                                                           
22

 The practice of suppliers colluding as a cartel is unethical and illegal [248]. 
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the long run. Such a strategy of a supplier can result in a more significant threat to the 

business environment of the buyer. The implicit advantage of our model to identify the 

possibility of these two threats as demonstrated during the case study presented in the 

later section. 

This chapter is arranged into seven sections. The upcoming section 5.2 presents 

the problem description, some basic assumptions, and formulation of the problem of 

ascertaining competitive target prices as a multi-leader-single-follower BLP problem. 

Section 5.3 presents a GA-based solution methodology proposed for solving the discussed 

problem. Section 5.4 demonstrates an experimental study of a manufacturing firm. 

Comparative analysis of obtained results is presented in Section 5.5 to demonstrate the 

success of the decision-support. Managerial implications of adopting the suggested 

approach and utilizing the proposed decision-support are listed in Section 5.6. The 

chapter is concluded in section 5.7 with a summary of the work presented herein. 

 

5.2 Formulation of mathematical model 

5.2.1 Problem description 

The negotiation process among buyer and suppliers is considered in the following 

setup.  

 A buyer has already identified a set of suppliers based on their production and 

logistic infrastructural capacities and the quality standards of both products and 

services.  

 Each of these suppliers can produce some or all of the required products and deliver 

them at various locations of the buyer.  

 Considering the supply capacities of all the suppliers the total requirements of the 

buyer for various products can be fulfilled in each period.  

 This setup is considered to be fixed for a pre-defined multi-period planning horizon.  

The buyer wishes to negotiate on prices with these suppliers before entering into a 

new agreement. At this stage, suppliers have opportunity to review and agree on the 

prices of the goods considering production-and-logistics costs over the planning period 

and competition from the other suppliers. We have considered the business setup where 
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the suppliers bear the cost of on-time delivery at various DLs of the buyer. It compels the 

suppliers to assess their costs of transportation, inventory, and production while 

negotiating on prices with the buyer. 

The price-negotiation process of the buyer with each supplier begins with the 

supplier's offer on the prices of the products. The buyer tries to negotiate with each 

supplier to lower the prices of the products by offering a greater proportion of the 

demand-order. The supplier rethinks on the profit while discerning the production-

distribution costs, and reviews the competition from those suppliers who deal with the 

buyer in these products particularly. The supplier then agrees for these prices or tries to 

negotiate further with the buyer. The process of price negotiation gets over once the 

supplier and the buyer arrive at the final prices. Figure 5.1 provides a schema for the 

discussed negotiation process. We develop a model for the buyer to identify competitive 

target prices for negotiations with a relatively competitive group of suppliers. 

 

 

Figure 5.1: Depiction of structure 

 

5.2.2 Assumptions and notations 

For modelling the negotiation process described above some basic assumptions 

are considered about the products under consideration, suppliers and their supply 
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arrangements, planning horizon, and some demand related technicalities of the business 

environment surrounding both the buyer and suppliers. These assumptions are listed 

below. 

 The buyer has a knowledge of production and logistic resources and infrastructure 

of each supplier, to assess an aggregate-production-distribution plan on behalf of 

the later for any given demand order allocation.
23

 

 Each supplier may deal in some or all products among those required by the buyer. 

A general situation is considered in which different suppliers can deal in subsets of 

the set of all products required by the buyer. 

 Each product is homogenous in form, quality, quantity, size, across various 

suppliers dealing in that product. 

 The prices of products are to be negotiated for a fixed time horizon which is 

discretized into equal subintervals. These subintervals are termed as periods. The 

demand orders are to be allocated to various suppliers for delivery of products at 

each delivery location, during every period of planning horizon. 

 Each supplier has a single PC with no capacity to store any inventory over a period. 

 All or some part of products manufactured in any period can be transported directly 

to various DLs of the buyer. In general, the products are transported first from the 

PC to DC for inventory and cross-docking, and from there transported to the 

different DLs. This transportation arrangement of each supplier is depicted in 

Figure 5.2. 

 The DC can store each product that the supplier is dealing in. Likewise, all the DLs 

can accommodate all types of products. 

 Suppliers are aware of the production-distribution capacities of their competitors. 

 No significant changes in technology and business environment are expected during 

the planning horizon to impact the costs drastically. 

 The demand fluctuations for the required goods shall be negligible during the 

planning horizon.
24

 

                                                           
23

 Such an assumption is practical in view of the assessment by the buyer during the supplier selection 

process. 
24

 Since the planning horizon is short-term, it is reasonable to assume that the buyer can forecast demand encompassing 

fluctuations in it. 
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 The buyer knows the price for each supplier below which the supplier would no 

longer be able to bargain. These prices are identified through break-even prices of 

suppliers. 

 Discounts or differential pricing are not provisioned in our model. 

 

The indices, parameters, and variables used to describe the mathematical 

formulation of our model are listed below. 

Indices and sets 

K number of suppliers; 𝑘 = 1, 2, … , 𝐾 

N number of different type of products; 𝑛 = 1, 2, … ,𝑁 

𝑁𝑘  set of indices of the products that the supplier k deals in (𝑁𝑘 ⊆  1, 2, … ,𝑁 ); 

𝑛𝑘 ∈ 𝑁𝑘  

J number of buyer‟s DLs; 𝑗 = 1, 2, … , 𝐽 

T planning horizon (number of periods); 𝑡 = 1, 2, … , 𝑇 

Figure 5.2: Production and distribution structure 
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𝐼𝑘  number of DCs of the supplier k; 𝑖𝑘 = 1, 2, … , 𝐼𝑘  

𝑖𝑘  =  0 stands for the PC of the supplier k, to act as a source to transport 

products to directly to DLs. 

Leaders parameters and variables 

Parameters 

𝑙𝑝𝑘𝑛𝑘 𝑗  minimum reservation price of product 𝑛𝑘  from supplier k for its demand at 

buyer‟s DL j (INR/ unit) 
25

 

𝐿𝑝𝑘𝑛𝑘 𝑗  maximum reservation price of product 𝑛𝑘  from supplier k for its demand at 

buyer‟s DL j (INR/ unit) 

𝑎𝑘𝑛𝑘𝑡  regular time production cost of product 𝑛𝑘  for supplier k in period t 

(INR/unit) 

𝑏𝑘𝑛𝑘𝑡  overtime production cost of product 𝑛𝑘  for supplier k in period t (INR/unit) 

𝑟𝑘𝑛𝑘𝑡  machine-hours required by supplier k for production of per unit of product 𝑛 

in period t 

𝑡𝑐𝑝𝑘𝑛𝑘 𝑖𝑘 𝑡  cost of transportation of product 𝑛𝑘  from PC to DC 𝑖𝑘  of supplier k in period 

t (INR/ unit) 

𝑡𝑐𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  cost of transportation of product 𝑛𝑘  from DC 𝑖𝑘of supplier k to buyer‟s DL j 

in period t (INR/ unit) 

𝑑𝑘𝑛𝑘 𝑖𝑘 𝑡  inventory carrying cost of product 𝑛𝑘  at DC 𝑖𝑘  of supplier k in period t 

(INR/unit) 

𝑣𝑛  space occupied by per unit of product 𝑛𝑘  (cu-ft/unit) 

𝑀𝑅𝑘𝑡  maximum regular machine-hours (man-hours) available with supplier k in 

period t 

𝑀𝑘𝑡  maximum total machine-hours (man-hours) available with supplier k in 

period t 

𝑉𝑖𝑘𝑡  maximum space available in DC 𝑖𝑘  of supplier k in period t (cu-ft) 

Variables 

𝑧𝐿𝑘  Gross profit of supplier k 

𝑝𝑘𝑛𝑘 𝑗  per unit price of product 𝑛𝑘  from supplier k for its demand at DL j (INR/unit) 

𝑄𝑘𝑛𝑘 𝑡  regular time production volume of product 𝑛𝑘  of supplier k in period t (units)  

𝑂𝑘𝑛𝑘 𝑡  overtime production volume of product 𝑛𝑘  of supplier k in period t (units) 

                                                           
25

 This is practically interpreted as break-even price of the supplier for a particular product. 
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𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡  inventory level (safety stock) of product 𝑛𝑘  at DC 𝑖𝑘  of supplier k in period t 

(units) 

𝐼𝑘𝑛𝑘 𝑖𝑘 𝑡  consignment volume of product 𝑛𝑘  to be sent from PC to DC 𝑖𝑘  of the 

supplier k in period t (units) 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  consignment volume of product 𝑛𝑘  from DC 𝑖𝑘  of supplier k to buyer‟s DL j 

in period t 

Follower‟s parameters and variables 

Parameters 

𝑧𝐹  total cost of procurement and holding products at various DLs (INR/unit) 

𝐷𝑗𝑛𝑡  total forecasted demand of product n at buyer‟s DL j in period t (units) 

𝑀𝑦𝑘𝑛𝑘  maximum purchase volume of product 𝑛𝑘  from supplier k in any period 

𝑉𝐹𝑗  maximum inventory carrying space at DL j of the buyer (cu-ft) 

Variables 

𝑦𝑘𝑛𝑘 𝑗𝑡  number of units of product 𝑛𝑘  to be purchased from supplier k for DL j in 

period t 

 

With all these details, the formulation of a mathematical model for ascertaining 

competitive target prices as a bilinear multi-leader-single-follower BLP problem is 

explained below. 

 

5.2.3 Components of problem related to suppliers 

For each supplier (𝑘 = 1, 2, … , 𝐾), the objective function and constraints which directly 

control the decision-behaviour are mathematically modelled below. 

Objective function 

The objective is to maximize the total profit through the decision on values of 

price variables (𝑝𝑘𝑛𝑘 𝑗 ) for each product 𝑛𝑘 ∈ 𝑁𝑘  and each delivery location 𝑗 = 1, 2, … , 𝐽, 

and there upon values of variables of production, inventory, and transportation 

(𝑄𝑘𝑛𝑘 𝑗 , 𝑂𝑘𝑛𝑘 𝑗 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 ) based on the demand shares received as a 

response to the prices quoted by all the suppliers. The objective function is given as 

following. 
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max 𝑧𝐿𝑘 =    𝑝𝑘𝑛𝑘 𝑗𝑦𝑘𝑛𝑘 𝑗𝑡

𝐽

𝑗=1𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

−     𝑎𝑘𝑛𝑘𝑡𝑄𝑘𝑛𝑘𝑡 + 𝑏𝑘𝑛𝑘 𝑡𝑂𝑘𝑛𝑘𝑡 

𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

+     𝑑𝑘𝑛𝑘 𝑖𝑘𝑡𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡

𝐼𝑘

𝑖𝑘=1𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

+    𝑡𝑐𝑝𝑘𝑛𝑘 𝑖𝑘𝑡𝐼𝑘𝑛𝑘 𝑖𝑘𝑡

𝐼

𝑖=1𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

+     𝑡𝑐𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡

𝐽

𝑗=1

𝐼

𝑖=0𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

  .                                            5.2.1  

 

Price bounds 

The prices are speculated within bounds; lower bounds are the minimum 

acceptable prices to the supplier, whereas the upper bounds are enforced through the 

competition imposed by the other suppliers. 

                                            𝑙𝑝𝑘𝑛𝑘 𝑗  ≤  𝑝𝑘𝑛𝑘 𝑗 ≤ 𝐿𝑝𝑘𝑛𝑘 𝑗  ,    𝑛𝑘 ,𝑗.                                 (5.2.2) 

 

Regular time production hours 

The production volumes for various products are restricted by the regular time 

production hours. 

                                                 𝑟𝑘𝑛𝑘𝑡𝑄𝑘𝑛𝑘𝑡
𝑛𝑘∈𝑁𝑘

≤ 𝑀𝑅𝑘𝑡  ,    ∀𝑡.                                        (5.2.3) 

 

Total production hours 

The total production volumes obtainable through the provisions of overtime 

engagement of labour/ machines along with the regular time production are also restricted 

by the total available production hours. 

                                      𝑟𝑘𝑛𝑘 𝑡 𝑄𝑘𝑛𝑘 𝑡 +  𝑂𝑘𝑛𝑘 𝑡 

𝑛𝑘∈𝑁𝑘

≤ 𝑀𝑘𝑡  ,    ∀𝑡.                                 (5.2.4) 
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Inventory balancing constraints 

The demand orders received for each product are fulfilled through the total 

production volumes together with the available inventory volumes maintained in the 

previous period while maintaining required inventory volumes for the current period. 

     𝑄𝑘𝑛𝑘 𝑡 + 𝑂𝑘𝑛𝑘 𝑡 +  𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡−1 

𝐼𝑘

𝑖𝑘=1

−  𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡

𝐼𝑘

𝑖𝑘=1

=  𝑦𝑘𝑛𝑘 𝑗𝑡

𝐽

𝑗=1

,    𝑛𝑘 ,𝑡.       (5.2.5) 

 

Space constraints at DC 

At any period, the consignment volumes of various products to be received at each 

DC (𝐼𝑘𝑛𝑘 𝑖𝑘𝑡) along with the products already available there as inventory maintained 

during the previous period (𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡−1 ) should be capacitated in the available space at 

the DC particular. 

                              𝑣𝑛 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 +  𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡−1  

𝑛𝑘∈𝑁𝑘

≤ 𝑉𝑖𝑘𝑡  ,    𝑡,𝑖𝑘 .                           5.2.6  

 

Transport plan for delivery at each DL 

For each period, the consignment volumes of various products from PC to DC(s), 

from DC(s) to DLs, and directly from PC to DLs are to be planned to fulfil the demand of 

each DL for each product. Following three constraints govern this requirement. First two 

of the following constraints describe the transportation plan from DC(s) to DLs, whereas 

the third one describes transportation plan directly from PC to DLs. 

             𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡

𝐼

𝑖=0

≥ 𝑦𝑘𝑛𝑘 𝑗𝑡  ,    𝑗,𝑛𝑘 ,𝑡,                                                                     5.2.7  

              𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡

𝐽

𝑗=1

≤ 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 +  𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡−1 − 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡  ,    𝑖𝑘 ≠ 0,𝑛𝑘 ,𝑡,        5.2.8  

              𝑥𝑘𝑛𝑘0𝑗𝑡

𝐽

𝑗=1

=  𝑄𝑘𝑛𝑘 𝑡 + 𝑂𝑘𝑛𝑘 𝑡 −  𝐼𝑘𝑛𝑘 𝑖𝑘𝑡

𝐼𝑘

𝑖𝑘=1

 ,    𝑖𝑘 = 0,𝑛𝑘 ,𝑡.                    5.2.9  
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5.2.4 Components of the problem related to the buyer  

Based on the price quotations received from various suppliers, the buyer solves 

the cost optimal demand allocation problem. 

Objective function 

The buyer decides on allocating demand shares (𝑦𝑘𝑛𝑘 𝑗𝑡 ) corresponding to the 

received price quotes (𝑝𝑘𝑛𝑘 𝑗 ) from each supplier for various products for minimum total 

procurement cost. 

                    min 𝑧𝐹   =     𝑝𝑘𝑛𝑘 𝑗𝑦𝑘𝑛𝑘 𝑗𝑡

𝑇

𝑡=1𝑛𝑘∈𝑁𝑘

𝐽

𝑗=1

𝐾

𝑘=1

                                                     5.2.10  

Constraint on maximum purchase volumes 

The total of purchase volumes of each product over all DLs is restricted by a 

maximum value in any period by each supplier. Such restrictions are pre-decided by the 

suppliers due to the potential of their production line or sometimes the supplier managing 

business with multiple buyers. 

                                        𝑦𝑘𝑛𝑘 𝑗𝑡

𝐽

𝑗=1

≤ 𝑀𝑦𝑘𝑛𝑘  ,    𝑘,𝑛𝑘 ,𝑡.                                          5.2.11  

Constraint on maximum purchase volumes 

The total of purchase volumes of each product for each period from various 

suppliers must meet the demand of each DL. 

                                      𝑦𝑘𝑛𝑘 𝑗𝑡

𝐾

𝑘=1

= 𝐷𝑗𝑛𝑡  ,    𝑗,𝑛𝑘  , ∀𝑡.                                                 5.2.12  

Space constraint 

The total of purchase volumes of all the products from various suppliers at each 

DL should be up to maximum inventory carrying capacity of the DL, for each period. 

                                       𝑣𝑛𝑦𝑘𝑛𝑘 𝑗𝑡
𝑛𝑘∈𝑁𝑘

𝐾

𝑘=1

≤  𝑉𝐹𝑗  ,    𝑗,𝑡.                                         5.2.13  
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5.2.5 Decision-making problem of the buyer on finding target prices 

The multi-leader-single-follower BLP problem (Price-BLP) for obtaining 

competitive target prices is summarized as follows. To determine values of the variables 

  𝑝𝑘𝑛𝑘 𝑗  ,  𝑄𝑘𝑛𝑘𝑡 ,  𝑂𝑘𝑛𝑘𝑡 ,  𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡 ,  𝐼𝑘𝑛𝑘 𝑖𝑘 𝑡 ,  𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  : 𝑛𝑘 , 𝑖𝑘 , 𝑗, 𝑡 , by solving a 

constrained Nash-game of 𝐾 suppliers depicted by optimization problems (LDMP − 𝑘) 

incorporating therein the response of buyer as an optimal solution of the problem 

(FDMP). 

(Price-BLP) 

 LDMP − 𝑘    max 𝑧𝐿𝑘  

=    𝑝𝑘𝑛𝑘 𝑗𝑦𝑘𝑛𝑘 𝑗𝑡

𝐽

𝑗=1𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

−     𝑎𝑘𝑛𝑘𝑡𝑄𝑘𝑛𝑘𝑡 + 𝑏𝑘𝑛𝑘 𝑡𝑂𝑘𝑛𝑘 𝑡 

𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

+     𝑑𝑘𝑛𝑘 𝑖𝑘 𝑡𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡

𝐼𝑘

𝑖𝑘=1𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

+    𝑡𝑐𝑝𝑘𝑛𝑘 𝑖𝑘 𝑡𝐼𝑘𝑛𝑘 𝑖𝑘𝑡

𝐼

𝑖=1𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

+     𝑡𝑐𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡

𝐽

𝑗=1

𝐼

𝑖=0𝑛𝑘∈𝑁𝑘

𝑇

𝑡=1

   

subject to  

𝑙𝑝𝑘𝑛𝑘 𝑗  ≤  𝑝𝑘𝑛𝑘 𝑗 ≤ 𝐿𝑝𝑘𝑛𝑘 𝑗  , 𝑛𝑘 ,𝑗, 

 𝑟𝑘𝑛𝑘 𝑡𝑄𝑘𝑛𝑘 𝑡
𝑛𝑘∈𝑁𝑘

≤ 𝑀𝑅𝑘𝑡  , 𝑡, 

 𝑟𝑘𝑛𝑘 𝑡 𝑄𝑘𝑛𝑘 𝑡 +  𝑂𝑘𝑛𝑘 𝑡 

𝑛𝑘∈𝑁𝑘

≤ 𝑀𝑘𝑡  , 𝑡, 

𝑄𝑘𝑛𝑘𝑡 + 𝑂𝑘𝑛𝑘𝑡 +  𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡−1 

𝐼𝑘

𝑖𝑘=1

−  𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡

𝐼𝑘

𝑖𝑘=1

=  𝑦𝑘𝑛𝑘 𝑗𝑡

𝐽

𝑗=1

, 𝑛𝑘 ,𝑡, 
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 𝑣𝑛 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 + 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘  𝑡−1  

𝑛𝑘∈𝑁𝑘

≤ 𝑉𝑖𝑘𝑡  , 𝑡,𝑖𝑘 , 

 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡

𝐼

𝑖=0

≥ 𝑦𝑘𝑛𝑘 𝑗𝑡  , 𝑗,𝑛𝑘 ,𝑡, 

 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡

𝐽

𝑗=1

≤ 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 + 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘  𝑡−1 − 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡  , 𝑖𝑘 ≠ 0,𝑛𝑘 ,𝑡, 

 𝑥𝑘𝑛𝑘𝟎𝑗𝑡

𝐽

𝑗=1

=  𝑄𝑘𝑛𝑘𝑡 + 𝑂𝑘𝑛𝑘𝑡 −  𝐼𝑘𝑛𝑘 𝑖𝑘 𝑡

𝐼𝑘

𝑖𝑘=1

 , 𝑖𝑘 = 0,𝑛𝑘 ,𝑡, 

𝑝𝑘𝑛𝑘 𝑗 , 𝑄𝑘𝑛𝑘𝑡 , 𝑂𝑘𝑛𝑘𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 ≥ 0 ,         𝑛𝑘 ,𝑖𝑘 ,𝑗,𝑘,𝑡; 

where,  𝑦𝑘𝑛𝑘 𝑗𝑡 : 𝑘, 𝑛𝑘 , 𝑗, 𝑡  is rational response obtained from following problem 

 FDMP        𝑀𝑖𝑛 𝑧𝐹 =     𝑝𝑘𝑛𝑘 𝑗𝑦𝑘𝑛𝑘 𝑗𝑡

𝑇

𝑡=1𝑛𝑘∈𝑁𝑘

𝐽

𝑗=1

𝐾

𝑘=1

 

subject to 

 𝑦𝑘𝑛𝑘 𝑗𝑡

𝐽

𝑗=1

≤ 𝑀𝑦𝑘𝑛𝑘  , 𝑘,𝑛𝑘 ,𝑡 

 𝑦𝑘𝑛𝑘 𝑗𝑡

𝐾

𝑘=1

= 𝐷𝑗𝑛𝑡  , 𝑗,𝑛𝑘  , ∀𝑡 

  𝑣𝑛𝑦𝑘𝑛𝑘 𝑗𝑡
𝑛𝑘∈𝑁𝑘

𝐾

𝑘=1

≤  𝑉𝐹𝑗  , 𝑗,𝑡 

𝑦𝑘𝑛𝑘 𝑗𝑡 ≥ 0 , 𝑗,𝑛𝑘 ,𝑘,𝑡 . 

Here, it is to be observed that all the constraints of the multi-leader-single-

follower BLP problem modelled above are linear and objective functions of leaders and 

follower are bilinear. Therefore, this model is formulated specifically as a bilinear multi-

leader-single-follower BLP problem, as discussed in section 2.4. 
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5.3 Solution methodology 

The solution methodologies available in the literature suggest solving the multi-

leader-common-follower BLP problems in terms of strong-stationary points [169] and 

strong-stationary equilibrium points [170]. Leyffer and Munson [169] suggest a direct 

method to obtain strong-stationary points by solving a nonlinear programming problem 

derived from strong-stationarity conditions by posing complementarity conditions as the 

objective function to be minimized to zero. The authors demonstrated the proposed 

approach through numerical experiments on randomly generated small-scale and 

medium-scale electricity market problems involving a maximum of 150 constraints and 

160 variables. Hori and Fukushima [170] proposed a Gauss-Seidel method for numerical 

convergence to a strong-stationary equilibrium point, which involves solving a penalty-

based quadratic optimization problem in each of the iterations. Authors demonstrate the 

proposed approach by solving five examples, involving a maximum of 12 variables and 

less than 10 constraints, are presented to demonstrate the process. Altogether, no instance 

of such a BLP problem involving more than 150 variables is seen to be solved in the 

literature. 

From the literature review of methodologies to solve multi-leader-single-follower 

BLP problems, it is found that, till date, no such problem of a size more than 150 

variables has been solved to obtain strong-stationary points. When we applied the 

approaches suggested by Hori and Fukushima [170] and Leyffer and Munson [169] for 

solving an instance of our practical problem with data obtained from a manufacturing 

firm which involve a total of 1000 variables (760 of leaders‟ and 240 of the follower), the 

nonlinear optimization problems formulated accordingly did not converge to any solution. 

This impels us to consider developing an algorithm capable of handling large scale multi-

leader-single-follower BLP problems for obtaining strong-stationary points. As our model 

for identifying competitive target prices is formulated as a multi-leader-single-follower 

BLP problem with bilinear objective functions and linear constraints at both levels, we 

concentrate on developing an algorithm for solving this case of BLP problems. This case 

is termed as bilinear multi-leader-single-follower BLP problem (please see Section 2.4). 

A GA-based approach is proposed here for solving bilinear multi-leader-single-

follower BLP problems. Computationally, linear programming problems are experienced 

to be easier to solve in comparison to nonlinear programming problems of comparable 
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scale. Considering this computational experience and the fact given below, a GA-based 

solution approach is developed which is explained subsequently. 

For this purpose, the optimization problem derived as equivalent of the strong-

stationarity conditions using penalty based approach of Leyffer and Munson [169], is 

considered as explained in Chapter 2 (c.f.: optimization problem (2.3.1) – (2.3.29)). 

Further, for a bilinear multi-leader-single-follower BLP problem, this optimization 

problem when parameterized in the leaders‟ and followers‟ variables becomes a linear 

programming problem in multipliers (c.f. (Para – LP) enumerated as (2.4.1)). This 

enables testing a feasible solution  𝑥∗, 𝑦∗  of the bilinear multi-leader-single-follower 

BLP problem for a strong-stationarity point by simply solving a linear programming 

problem, as explained theoretically in Section 2.4. Whereas, a feasible solution of such a 

multi-leader-single-follower BLP problem can be obtained for any given values of 

leaders‟ variables 𝑥∗, by deterministically solving the follower‟s optimization problem (as 

the same is a linear programming problem parameterized in 𝑥∗). Therefore, a GA-based 

methodology is designed for (a) random exploration of values of leaders‟ variables, (b) 

obtain correspondingly a feasible solution, and (c) then test the same for strong 

stationarity by following the procedure given in deduction 2.4.1. The solution 

methodology developed on these lines is explained below. 

 

5.3.1 GA-based approach for solving a general bilinear multi-leader-single-

follower BLP problem 

Based on the theoretical developments discussed in Section 2.4, we propose a GA-

based solution methodology for obtaining strong-stationary points for a general bilinear 

multi-leader-single-follower BLP problem. The steps involved in the methodology are 

summarized through pseudocode presented in Algorithm 5.1 and Algorithm 5.2. Other 

details of the GA are presented subsequently. 

 

Chromosome encoding 

For leaders‟ variables 𝑥 =  𝑥𝑖 : 𝑖 = 1, 2, … , 𝑘 , where each 𝑥𝑖 =  𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑟𝑖 , 

the chromosomes of the population are encoded as an array of length equal to the number 
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of all the leaders‟ variables indicating the values  𝑥𝑖 : 𝑖 = 1, 2, … , 𝑘 . A general 

chromosome structure used for the proposed algorithm is shown in Figure 5.3. 

 

 

 

 

𝑖 = 1 𝑖 = 2 … 𝑖 = 𝑘 

𝑗 = 1 𝑗 = 2 … 𝑗 = 𝑟1 𝑗 = 1 𝑗 = 2 … 𝑗 = 𝑟2 … … 𝑗 = 1 𝑗 = 2 … 𝑗 = 𝑟𝑘  

𝑥11  𝑥12  … 𝑥1𝑅  𝑥21  𝑥22  … 𝑥2𝑟2
 … … 𝑥𝑘1 𝑥𝑘2 … 𝑥𝑘𝑟𝑘  

Figure 5.3: Chromosome structure 

Input: GA population of chromosomes 

for  𝑖 ← 1 to 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do 

substitute leaders’ variables 𝑥 (represented by chromosome) in (FDMP) to 

solve the follower’s LPP (parameterized in 𝑥) for obtaining 𝑦; 

 obtain 𝑠 = 𝑕 𝑥, 𝑦  and 𝑡𝑖 = 𝑔𝑖 𝑥𝑖 , 𝑦  (following explanation of Section 2.4); 

 solve the LPP (Pen – LP) (numbered 2.4.1) by supplying values of 𝑥, 𝑦, 𝑠, 𝑡𝑖 . 

 evaluate the fitness value as objective function value of (Pen – LP); 

end 

Output: Fitness values of all chromosomes of the population 

Algorithm 5.2: Fitness evaluation of population members 

Algorithm 5.1: Genetic Algorithm 

Data: Input data and GA parameters  

𝑔 ← 0; 

Initialize population (values of leaders’ variables 𝑥 = 𝑥𝑖 : 𝑖 = 1, 2, … , 𝑘); 

Evaluate fitness of population members (using Algorithm 5.2); 

while 𝑔 < 𝐺 do 

 tournament selection (retaining best-fit chromosome); 

 generate new individuals through extended Laplace crossover 

 and power mutation. 

 evaluation fitness of population members (using Algorithm 5.2); 

 update new population for next generation. 

 𝑔 ← 𝑔 + 1; 

select best-fit chromosome of the new generation (along with corresponding 

response 𝑦); 

end 

Return best-fit chromosome (along with corresponding response 𝑦) over all 

generations 
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Initialization 

The following GA parameters are used in the proposed algorithm: population size 

popsize; number of generations 𝐺; current generation 𝑔,  𝑔 = 1, 2, … , 𝐺 ; crossover rate 

pc; mutation rate pm; location parameter 𝑎 and scaling parameter 𝑏 > 0 for Laplace 

crossover; index of power mutation 𝑝. 

 

Genetic operators 

Crossover operator: We use a single point crossover for a chromosome, Laplace 

crossover operator with the probability pc [203]. The same is explained in Section 2.2.2. 

Mutation operator: The mutation is performed on a chromosome with the probability 

pm using the power mutation operator [203]. The same is explained in Section 2.2.2. 

We note that Laplace crossover and the power mutation operators do not disturb 

feasibility of chromosomes in terms of reservation price bounds in problem (LDMP – k). 

 

Incorporating follower’s reaction and fitness evaluation 

Follower’s reaction and inputs for (Pen – LP): For each chromosome in population 

(which corresponds to leaders‟ variables 𝑥), problem (FDMP) is solved. The optimal 

response 𝑦 thus obtained along with value of 𝑥 is supplied to tested for feasibility of each 

(LDMP – k) of (MLSF-BLP). Through this complete information about  𝑥, 𝑦 , the values 

of variables 𝑠 and 𝑡𝑖  are calculated using (2.3.25) and (2.3.27). 

Fitness evaluation: For each chromosome, with its value 𝑥 =  𝑥𝑖 : 𝑖 = 1, 2, … , 𝑘  and 

obtained values 𝑦, 𝑠, 𝑡𝑖 : 𝑖 = 1, 2, … , 𝑘, the problem (Pen – LP) numbered as (2.4.1) is 

solved. Corresponding value of the objective function 𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦  is considered as the fitness 

value of that chromosome. 

 

Updating the new population 

The new population obtained from the parent population 𝑃𝑔  is adopted to be a 

population of the next generation 𝑃𝑔+1 only if it‟s maximum fitness value, in comparison 
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to the maximum fitness value of the previous generation, does not decrease. Otherwise, 

the population 𝑃𝑔  is preserved as population 𝑃𝑔+1 for regenerating the next generation. 

 

Termination criterion 

The execution of the algorithm is terminated after the completion of pre-defined 

maximum number of generations 𝐺. The value of 𝐺 may be tuned by observing stability 

in the fitness value through various combinations of GA parameters. 

 

5.3.2 Some adaptations in the proposed algorithm for solving the problem of the 

buyer 

As in the problem (Price-BLP), the values of Leaders‟ price variables 

  𝑝𝑘𝑛𝑘 𝑗 : 𝑘, 𝑛𝑘 , 𝑗   decide the demand allocations  𝑦𝑘𝑛𝑘 𝑗𝑡 : 𝑘, 𝑛𝑘 , 𝑗, 𝑡  by the follower, and 

thereafter the values of production-and-distribution planning variables 

(𝑄𝑘𝑛𝑘 𝑗 , 𝑂𝑘𝑛𝑘 𝑗 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 : 𝑘, 𝑛𝑘 , 𝑖𝑘 , 𝑗, 𝑡) can be obtained, depending on these 

demand allocations. This gives a specific structure to the bilevel programming problem 

(Price-BLP). A problem specific slight modification is thus presented for the proposed 

GA for solving the problem (Price-BLP). We encode the chromosomes as a row vector of 

values corresponding to Leaders‟ price variables (𝑝𝑘𝑛𝑘 𝑗 ) only, with each value ranging in 

the interval  𝑙𝑝𝑘𝑛𝑘 𝑗 , 𝐿𝑝𝑘𝑛𝑘 𝑗   for 𝑘 = 1, 2, … , 𝐾, 𝑛𝑘 = 1, 2, … ,𝑁𝑘 , 𝑗 = 1, 2, … , 𝐽. Values of 

the rest of leaders‟ variables are obtained during the fitness evaluation. For a set of values 

of leaders‟ prices  𝑝𝑘𝑛𝑘 𝑗 : 𝑘, 𝑛𝑘 , 𝑗  generated as a chromosome, we first evaluate the 

optimal response of the follower  𝑦𝑘𝑛𝑘 𝑗𝑡 : 𝑘, 𝑛𝑘 , 𝑗, 𝑡 . Thereby,  LDMP − 𝑘  is solved to 

obtain 𝑄𝑘𝑛𝑘 𝑡 , 𝑂𝑘𝑛𝑘 𝑡 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 ∶ 𝑘, 𝑛𝑘 , 𝑖𝑘 , 𝑗, 𝑡 for each leader 𝑘. 

The concatenated vector of values for 

 𝑝𝑘𝑛_𝑘𝑗 , 𝑄𝑘𝑛𝑘 𝑗 , 𝑂𝑘𝑛𝑘 𝑗 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 , 𝑦𝑘𝑛𝑘 𝑗𝑡 : 𝑘, 𝑛𝑘 , 𝑖𝑘 , 𝑗, 𝑡  thus becomes a 

feasible solution of the (Price-BLP), in concurrence with  𝑥, 𝑦  as a feasible solution of 

the general bilinear multi-leader-single-follower BLP problem. 

The algorithm modified for the problem (Price-BLP) is summarized through the 

pseudocode presented below. 
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For further testing the strong stationarity points thus obtained for strong 

stationarity equilibrium points, one can refer to the description given in Remark 2.4.1. 

 

 

Data: Input data and GA parameters  

𝑔 ← 0; 

Initialize population (values of suppliers’ variables 𝑝𝑘𝑛𝑘 𝑗 : 𝑘, 𝑛𝑘 , 𝑗); 

Evaluate fitness of population members, and corresponding 𝑥 and 𝑦 (using Algorithm 

5.4); 

while 𝑔 < 𝐺 do 

 tournament selection (retaining best-fit chromosome); 

 generate new individuals through extended Laplace crossover 

 and power mutation; 

Evaluate fitness of population members, and corresponding 𝑥 and 𝑦 (using 

Algorithm 5.4); 

 update new population for next generation; 

 𝑔 ← 𝑔 + 1; 

Select best-fit chromosome of the new generation (along with complete 𝑥 and 

𝑦, as obtained in Algorithm 5.4); 

end 

Return best-fit chromosome (along with corresponding response 𝑦) over all 

generations 
Algorithm 5.3: Genetic Algorithm for (Price-BLP) 

Input: GA population of chromosomes 

for  𝑖 ← 1 to 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 do 

substitute suppliers’ prices 𝑝𝑘𝑛𝑘 𝑗  (represented by chromosome) in (FDMP) to 

solve the follower’s LPP for obtaining 𝑦𝑘𝑛𝑘 𝑗𝑡 ; 

for each leader 𝑘, solve (LDMP − 𝑘) to obtain 𝑄𝑘𝑛𝑘 𝑡 , 𝑂𝑘𝑛𝑘𝑡 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘 𝑡 , 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  

 obtain 𝑠 and 𝑡𝑖  following the rule 𝑠 = 𝑕 𝑥, 𝑦  and 𝑡𝑖 = 𝑔𝑖 𝑥𝑖 , 𝑦  with

 𝑥 =  𝑝𝑘𝑛_𝑘𝑗 , 𝑄𝑘𝑛𝑘 𝑗 , 𝑂𝑘𝑛𝑘 𝑗 , 𝑆𝑆𝑘𝑛𝑘 𝑖𝑘 𝑡 , 𝐼𝑘𝑛𝑘 𝑖𝑘 𝑡 , 𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 , 𝑦𝑘𝑛𝑘 𝑗𝑡   and 𝑦 =  𝑦𝑘𝑛𝑘 𝑗𝑡  ; 

 solve (Pen – LP) with values of 𝑥, 𝑦, 𝑠, 𝑡𝑖  supplied as parameters. 

 evaluate the fitness value as objective function value of (Pen – LP); 

end 

Output: Fitness values of all chromosomes of the population 

Algorithm 5.4: Fitness evaluation of population members - for (Price-BLP) 
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5.4 An experimental study on a manufacturing firm 

5.4.1 Relevant information about the firm 

The formulation of our model is inspired by a scenario of a leading manufacturing 

firm of the FMCG sector. The firm has 5 production plants in the southern region of the 

Republic of India. Each of its production plants manufactures certain finished products, 

which require 5 ingredients of varied quantities over each week, depending upon the 

production plan. A production plan is prepared for a block of 4 weeks. The requirement 

arises for procuring different amounts of ingredients for each of the manufacturing plants 

by suppliers over each week. These ingredients are procured from a total of 8 suppliers 

who deal with some or all these ingredients. The manufacturing firm is therefore 

considered as buyer in the context of our study. The buyer has already identified these 

suppliers through various quality and potential parameters. As most of the required 

components involve frequently fluctuating production costs to vary over each month, the 

price-quotes must be invited from the suppliers. Based on their price-quotes, the demand 

allocation is done to these suppliers to supply the ingredients over the planning horizon of 

4 weeks. 

For its financial planning, the firm is concerned about assessing the total budget 

allocated for the procurement of ingredients before the invitation of price quotes from 

suppliers. The firm is also keen to observe whether its suppliers are competing for price 

quotes or colluding to settle at some higher prices. The latter situation may result in a 

dominance of its suppliers over the buyer. In such a case, the buyer firm would need to 

consider more suppliers for selection and demand order allocation to induce more 

competition to the existing suppliers. A manufacturer is vigilant for performing such 

analysis in pursuit of minimizing procurement cost, which comes as a significant 

component of production cost. At the same time, the firm is a production giant with a 

high brand value in the market of its finished products. Another priority concern of such a 

firm at this point of time is supplier integration to strengthen its inbound supply chain. In 

this line of thought, the firm is open to suggesting that any of its suppliers adjust the price 

quotes to avoid their opportunity losses for the same demand order allocation in case of 

raised prices. Further, through a prior assessment of prices, the firm would be better 

prepared to manage its inbound supply chain to be snag-free by allocating demand orders 
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to its suppliers. As the concerns of this manufacturing firm match the theme of our 

framework therefore a case data from this firm is taken-up our study. 

 

5.4.2 Data inputs 

Henceforth, the manufacturing firm is the buyer, whereas the ingredients to be 

procured from its suppliers are products. Out of the five, one product is patent with a 

specific supplier, and the supplier can supply this product only, so there is no 

competition. We consider the remaining 4 products to be provided by 7 suppliers. Each of 

the seven suppliers has a single PC and a different number of DCs/ warehouses for 

inventory storage as well as for cross-docking of shipments of products for transportation 

from PC to DLs.  For reference, the products, suppliers, and their DCs, and DLs 

numbered with corresponding indices. 

The 4
th

 product is a volatile product in a liquid state and is transported only 

through special containers, so neither its cross-docking nor maintaining inventory is 

considered practically feasible. This specification of the structural setup can easily be 

incorporated into the modelling by not defining any variable against the product for 

inventory and transportation to DCs for all suppliers dealing in this product. The details 

of the suppliers dealing in products and number of DCs are tabulated in Table 5.1. 

Reservation prices of all the suppliers are listed in Table 5.2 and other supply chain 

related data relevant to our study is tabulated in Table 5.3 to Table 5.9. 

 

 supplier (k) 

 1 2 3 4 5 6 7 

Product sets (𝑵𝒌)   1   2, 3   1   4   2, 3   1, 4   2, 3, 4  

Number of DC(s) (𝑰𝒌) 2 1 1 0 1 2 2 

Table 5.1: Supplier's profile (products and DCs) 
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supplier (k) 

  
1 2 3 4 5 6 7 

 
DL 𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 

 
(j) 1 2 3 1 4 2 3 1 4 2 3 4 

𝒍𝒑𝒌𝒏𝒌𝒋 

1 25700 5560 5550 31000 89600 4750 4695 24250 90050 5790 6010 92700 

2 25800 5660 5700 31100 89300 4850 4795 24100 89800 6040 6260 92800 

3 25950 5810 5450 31175 89700 5000 4945 24200 89350 6365 6585 92875 

4 25950 5560 5050 30300 91000 5000 4945 24350 89600 6340 6560 92000 

5 25600 5160 4850 29800 90600 4650 4595 24250 89850 5640 5860 91500 

𝑳𝒑𝒌𝒏𝒌𝒋 

1 28700 5700 5700 32900 94500 5100 4900 27700 92500 6250 6350 97400 

2 28800 5800 5850 33000 94200 5200 5000 27550 92250 6500 6600 97500 

3 28950 5950 5600 33075 94600 5350 5150 27650 91800 6825 6925 97575 

4 28950 5700 5200 32200 95900 5350 5150 27800 92050 6800 6900 96700 

5 28600 5300 5000 31700 95500 5000 4800 27700 92300 6100 6200 96200 

𝑴𝒚𝒌𝒏𝒌  175 350 430 225 175 275 350 250 100 300 300 100 

Table 5.2: Reservation prices and maximum purchase volumes 
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𝑫𝒋𝒏𝒕 
DL (j) 

1 2 3 4 5 

Product 

(n) 

time period (t) time period (t) time period (t) time period (t) time period (t) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 150 75 100 75 125 100 75 50 75 75 50 50 75 50 75 50 200 100 120 80 

2 75 75 75 75 75 75 75 50 75 50 75 25 75 75 50 25 100 100 80 50 

3 125 125 100 50 100 75 75 75 100 75 50 50 80 80 100 15 130 130 90 90 

4 50 75 75 50 50 75 75 25 75 75 50 0 60 60 80 0 80 80 80 60 

Table 5.3: Forecasted demands of products at each DL for each time period 
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supplier (k) 

 

product 

(n) 
1 2 3 4 5 6 7 

𝒂𝒌𝒏𝒌𝒕 

1 20000 - 21000 - - 20500 - 

2 - 3600 - - 3500 - 3400 

3 - 3500 - - 3450 - 3600 

4 - - - 81000 - 80500 83000 

𝒃𝒌𝒏𝒌𝒕 

1 20200 3650 21200 - - 20700 - 

2 - 3550 - - 3550 - 3450 

3 - - - - 3500 - 3650 

4 - - - 82000 - 81500 84000 

𝒓𝒌𝒏𝒌𝒕 

1 0.75 0.5 0.75 - - 0.75 - 

2 - 0.5 - - 0.5 - 0.33 

3 - - - - 0.5 - 0.33 

4 - - - 1.5 - 1.5 1.25 

Table 5.4: Production costs - regular-time and overtime (INR per unit), and machine-hours 

required for production (hours per unit) 

 

 supplier (k) 

 1 2 3 4 5 6 7 

𝑴𝑹𝒌𝒕 168 144 168 168 288 336 456 

𝑴𝒌𝒕 168 168 168 168 336 336 504 

Table 5.5: Maximum machine-hours available regular-time and total (including overtime) 

 

𝒌 𝒏𝒌 𝒊𝒌 𝒕𝒄𝒑𝒌𝒏𝒌𝒊𝒌𝒕 𝒅𝒌𝒏𝒌𝒊𝒌𝒕 𝑽𝒊𝒌𝒕 

1 1 
1 1200 10 4000 

2 900 10 6000 

2 
2 1 1000 10 4000 

3 1 1000 10  

3 1 1 6500 10 6000 

5 
2 1 400 9 4000 

3 1 400 9  

6 1 
1 900 10 5000 

2 600 10 5000 

7 

2 
1 850 10 4000 

2 950 10 4000 

3 
1 850 10  

2 950 10  

Table 5.6: Transportation costs from PC to DC(s) and costs of inventory at DC(s) (INR per unit), 

maximum space available at DC(s) 
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 𝑖𝑘 = 0 𝑖𝑘 = 1 𝑖𝑘 = 2 

supplier 

(k) 

product 

(𝑛𝑘) 

DL (j) DL (j) DL (j) 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 

1 1 1000 1100 1250 1000 850 500 600 750 750 400 750 800 900 700 400 

2 
2 500 600 750 750 400 600 700 850 600 200 - - - - - 

3 500 600 750 750 400 600 700 850 600 200 - - - - - 

3 1 5500 5000 4800 5500 6500 1400 1500 1575 700 200 - - - - - 

4 4 500 200 600 1900 1500 - - - - - - - - - - 

5 
2 900 1000 1000 1000 400 500 600 750 750 400 - - - - - 

3 900 1000 1000 1000 400 500 600 750 750 400 - - - - - 

6 
1 1500 1250 800 1050 1300 500 600 750 750 400 1100 950 200 1200 1100 

5 1500 1250 800 1050 1300 - - - - - - - - - - 

7 

2 1400 1500 1575 700 200 600 800 1150 1550 850 1100 1350 1675 1650 950 

3 1400 1500 1575 700 200 600 800 1150 1550 850 1100 1350 1675 1650 950 

5 1400 1500 1575 700 200 - - - - - - - - - - 

Table 5.7: Costs of transportation from PC or DC(s) to DLs
26

 (𝑡𝑐𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡 ) 

 

                                                           
26

As all the suppliers in the problem have DCs not more than 2, due to this fact the costs of transportation have been listed in a single table only. But this doesn‟t mean that 

all the suppliers have same DCs. It is simply an enumeration of DCs. They own or hire for their individual warehouses which are located even at different places. 
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product (n) 

1 2 3 4 

8 8 8 12.5 

Table 5.8: Space occupied per tonne (in sq. ft) (𝑣𝑛 ) 

 

 

DL (j) 

1 2 3 4 5 

8000 8000 4000 5500 6000 

Table 5.9: Maximum inventory carrying space at DLs of the buyer
27

 (sq. ft) (𝑉𝐹𝑗 ) 

 

 
 

5.4.3 Implementation of proposed GA-based approach 

The (Price-BLP) problem modelled as a multi-leader-single-follower BLP 

problem, discussed in context of manufacturing firm with the input data tabulated above 

is solved using the modified algorithm proposed in the Section 5.3.2. The program is 

coded in MATLAB 2019a. The parameters of Laplace crossover and power mutation 

along with population size (𝑝𝑜𝑝𝑠𝑖𝑧𝑒) are tuned for various combinations of probabilities 

of crossover, mutation, and tournament selection. The best found are 𝑝𝑜𝑝𝑠𝑖𝑧𝑒 = 20, 

𝑎 =  0, 𝑏 =  0.15, 𝑝 =  1 or 10.We set the maximum number of generations to 1000 

after tuning the parameters for attainment of the best fitness value equal to zeros for 

strong stationary point. For each combination of parameters (Table 5.10), we performed a 

set of 10 experiments of GA. Table 5.10 tabulates the relative error of the best solutions 

obtained for each combination of parameters against the ideal fitness value zero in 

comparison with the arithmetic mean of the best fitness values of various combinations. 

Figure 5.4 shows variation in the best fitness attained in various generations of a GA run. 

Among 240 solutions generated (24 combinations with 10 runs each) for (Price-BLP), 22 

strong-stationary points (fitness value = 0) were obtained. The arithmetic mean of total 

                                                           
27

 This accounts for the capacity to accommodate all the products except product 4, which needs to be 

stored in a separately installed container (at each DL) having storage capacity which is more sufficient to 

accommodate the demand for each period. 
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procurement cost of the buyer corresponding to these 22 instances of prices (which 

correspond to strong-stationarity points) is INR 166,844,775, with a standard deviation of 

266396.83, giving coefficient of variation 0.16 %.This indicates parity among all the 22 

strong-stationarity points from buyer‟s perspective, in terms of the total procurement cost. 

The desired fitness value zero (for strong-stationarity points) is attained for the runs of 18 

out of 24 combinations of GA parameters, whereas for rest of the combinations there no 

improvement in fitness value for more than last 300 generations. 

 

pt pc pm P fitness value relative error 

0.8 0.7 0.001 1 0 0 

0.8 0.7 0.001 10 6263 0.920 

0.8 0.7 0.005 1 0 0 

0.8 0.7 0.005 10 0 0 

0.8 0.8 0.001 1 0 0 

0.8 0.8 0.001 10 12780 1.877 

0.8 0.8 0.005 1 0 0 

0.8 0.8 0.005 10 0 0 

0.8 0.9 0.001 1 0 0 

0.8 0.9 0.001 10 1145 0.168 

0.8 0.9 0.005 1 3500 0.514 

0.8 0.9 0.005 10 0 0 

0.9 0.7 0.001 1 0 0 

0.9 0.7 0.001 10 3500 0. 514 

0.9 0.7 0.005 1 0 0 

0.9 0.7 0.005 10 0 0 

0.9 0.8 0.001 1 0 0 

0.9 0.8 0.001 10 0 0 

0.9 0.8 0.005 1 0 0 

0.9 0.8 0.005 10 0 0 

0.9 0.9 0.001 1 197 0.029 

0.9 0.9 0.001 10 0 0 

0.9 0.9 0.005 1 0 0 

0.9 0.9 0.005 10 0 0 

Table 5.10: Error analysis for different combinations of parameters in GA; those giving strong-

stationary points highlighted in bold 
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Figure 5.4: Best fitness value vs. Generation of a solution. 

 

 

5.4.4 Results and analysis 

The strong-stationarity point with the total procurement cost closest to the 

arithmetic mean of all the 22 ones obtained from our computation is detailed as 

following. Table 5.11 shows prices for the suppliers for various products they deal in to 

be delivered at each of 5 DLs. As a response to these prices, the consequent demand 

allocations from the buyer are tabulated in Table 5.12. Subsequently, the aggregate-

production-distribution plans of each of 7 suppliers are presented in Table 5.13 to Table 

5.32. The total procurement cost of the buyer in this instance is assessed as INR 

166,871,150. It is noted that the inventory volumes of all the suppliers at each of their 

warehouses are obtained as zeros for all products during each period. 

Remark 5.4.1: For the discussed scenario of the firm, a further testing of each of these 22 

strong-stationarity points for strong-stationarity Nash-equilibrium point is not being 

taken-up for the following reasons. 
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1. There is parity among all the obtained strong-stationarity points in terms of total 

procurement cost of the buyer (the problem being studied from buyer‟s 

perspective only). 

2. The decision-makers of the discussed firm (buyer here) confirmed the efficacy of 

the results obtained so far in the context of total procurement cost assessed 

corresponding to competitive prices obtained corresponding to all the 22 strong-

stationarity points when compared with the actual costs incurred. From the 

perspective of business management, this indicates that for the buyer a scope of 

further negation on prices was there without any compromise on the cooperative 

relation with suppliers. 

3. Thus, even if the buyer would have considered the target prices as any one of 

those obtained corresponding to these strong-stationarity points, and negotiated up 

to the same with suppliers, then the objective of strategic pricing as, discussed in 

section 1, would be satisfactorily achieved. 

4. Over that, theoretically, there is no surety of obtaining a strong-stationarity Nash-

equilibrium point, and the question of its existence remaining unconfirmed. 

 

 

 
DL (j) 

supplier (k) product (𝑛𝑘) 1 2 3 4 5 

1 1 28700 25800 25950 28950 28599.92 

2 
2 5560 5560 5950 5560 5160 

3 5689.914 5850 5450 5050 4850 

3 1 32899.92 33000 31175 30300 29800 

4 4 89600 94200 93504.25 91000 90600 

5 
2 4750 4850 5000 5000 4650 

3 4695 4795 4945 5150 4595 

6 
1 24250 27550 24200 24350 24250 

4 92499.98 89800 89350 92050 93292.56 

7 

2 6250 6499.984 6824.942 6800 6100 

3 6350 6599.426 6925 6882.551 6200 

4 92707.78 92800 92875 96700 91500 

Table 5.11: Target prices with suppliers  𝑝𝑘𝑛𝑘 𝑗   (INR per tonne) 
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DL (j) 

  
1 2 3 4 5 

supplier 

(k) 

product 

(𝑛𝑘) 

time period (t) time period (t) time period (t) time period (t) time period (t) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 1 0 0 0 0 125 100 75 50 50 0 25 25 0 0 0 0 0 0 0 0 

2 
2 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 100 100 80 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 80 80 100 15 105 55 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 100 120 30 

4 4 50 75 75 50 0 0 0 0 0 0 0 0 60 60 80 0 65 40 20 60 

5 
2 75 75 75 75 75 75 75 50 75 50 75 25 50 75 50 25 0 0 0 50 

3 125 125 100 50 100 75 75 75 100 75 50 50 0 0 0 0 25 75 90 90 

6 
1 150 75 100 75 0 0 0 0 25 75 25 25 75 50 75 50 0 0 0 50 

4 0 0 0 0 25 25 50 25 75 75 50 0 0 0 0 0 0 0 0 0 

7 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 25 50 25 0 0 0 0 0 0 0 0 0 15 40 60 0 

Table 5.12: Buyer‟s Demand allocation (𝑦𝑘𝑛𝑘 𝑗𝑡 ) - (number of tonnes to be purchased) 
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time period (t) 

  
1 2 3 4 

𝑸𝒌𝒏𝒌𝒕 𝑛𝑘 = 1 175 100 100 75 

𝑶𝒌𝒏𝒌𝒕 𝑛𝑘 = 1 0 0 0 0 

Table 5.13: Production volumes (regular-time and over-time): Supplier 1 

 

𝑰𝒌𝒏𝒌𝒊𝒌𝒕 time period (t) 

DC (𝒊𝒌) 1 2 3 4 

1 0 0 0 0 

2 0 0 0 0 

Table 5.14: Consignment volumes from PC to DC(s): Supplier 1 

 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  DC (𝑖𝑘) 

 0 1 2 

 time period (t) time period (t) time period (t) 

J 1 2 3 4 1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 125 100 75 50 0 0 0 0 0 0 0 0 

3 50 0 25 25 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 

Table 5.15: Transportation volumes from PC to DC(s): Supplier 1 (𝑛𝑘 = 1) 

 

 
time period (t) 

 
product (𝑛𝑘) 1 2 3 4 

𝑸𝒌𝒏𝒌𝒕 
1 103 100 80 0 

2 185 135 100 15 

𝑶𝒌𝒏𝒌𝒕 
1 22 0 0 0 

2 0 0 0 0 

Table 5.16: Production volumes (regular-time and over-time): Supplier 2 
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𝑰𝒌𝒏𝒌𝒊𝒌𝒕 time period (t) 

product (𝒊𝒌) 1 2 3 4 

2 0 0 0 0 

3 0 0 0 0 

Table 5.17: Consignment volumes from PC to DC(s): Supplier 2 (DC: 𝑖𝑘 = 1)  

 

 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡   𝑖𝑘 = 0 𝑖𝑘 = 1 

Product DL time period (t) time period (t) 

(𝑛𝑘) (j) 1 2 3 4 1 2 3 4 

2 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 25 0 0 0 0 0 0 0 

5 100 100 80 0 0 0 0 0 

3 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 80 80 100 15 0 0 0 0 

5 105 55 0 0 0 0 0 0 

Table 5.18: Transportation volumes from PC to DC(s): Supplier 2 

 

 

  
time period (t) 

 
product (𝑛𝑘) 1 2 3 4 

𝑸𝒌𝒏𝒌𝒕 1 200 100 120 30 

𝑶𝒌𝒏𝒌𝒕 1 0 0 0 0 

Table 5.19: Production volumes (regular-time and over-time): Supplier 3 
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time period (t) 

1 2 3 4 

0 0 0 0 

Table 5.20: Consignment volumes from PC to DC(s) (𝐼𝑘𝑛𝑘 𝑖𝑘 𝑡;𝑛3 = 1, 𝑖3 = 1): Supplier 3 

 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  𝑖𝑘 = 0 𝑖𝑘 = 1 

 time period (t) time period (t) 

DL (j) 1 2 3 4 1 2 3 4 

1 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 200 100 120 30 0 0 0 0 

Table 5.21: Transportation volumes from PC to DC(s) (𝑛3 = 1): Supplier 3 

 

 
time period (t) 

 
1 2 3 4 

𝑸𝒌𝒏𝒌𝒕 175 175 175 110 

𝑶𝒌𝒏𝒌𝒕 0 0 0 0 

Table 5.22: Production volumes (regular-time and over-time) (𝑛𝑘 = 5): Supplier 4 

 

 time period (t) 

DL (j) 1 2 3 4 

1 50 75 75 50 

2 0 0 0 0 

3 0 0 0 0 

4 60 60 80 0 

5 65 40 20 60 

Table 5.23: Transportation volumes from PC to DC(s) (𝑖𝑘 = 0, 𝑛𝑘 = 5): Supplier 4 
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time period (t) 

 
𝑡 1 2 3 4 

𝑸𝒌𝒏𝒌𝒕 
𝑛𝑘 = 2 226 226 261 225 

𝑛𝑘 = 3 350 350 315 265 

𝑶𝒌𝒏𝒌𝒕 
𝑛𝑘 = 2 49 49 14 0 

𝑛𝑘 = 3 0 0 0 0 

Table 5.24: Production volumes (regular-time and over-time): Supplier 5 

 

 

 
time period (t) 

 
1 2 3 4 

𝒏𝒌 = 𝟐, 𝒊𝒌 = 𝟏 0 0 0 0 

𝒏𝒌 = 𝟑, 𝒊𝒌 = 𝟏 0 0 0 0 

Table 5.25: Consignment volumes from PC to DC(s): Supplier 5 

 

 

 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡   𝑖𝑘 = 0 𝑖𝑘 = 1 

  time period (t) time period (t) 

 DL(j) 1 2 3 4 1 2 3 4 

𝑛𝑘 = 2 

1 75 75 75 75 0 0 0 0 

2 75 75 75 50 0 0 0 0 

3 75 50 75 25 0 0 0 0 

4 50 75 50 25 0 0 0 0 

5 0 0 0 50 0 0 0 0 

𝑛𝑘 = 3 

1 125 125 100 50 0 0 0 0 

2 100 75 75 75 0 0 0 0 

3 100 75 50 50 0 0 0 0 

4 0 0 0 0 0 0 0 0 

5 25 75 90 90 0 0 0 0 

Table 5.26: Transportation volumes from PC to DC(s): Supplier 5 
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time period (t) 

 
product (𝑛𝑘) 1 2 3 4 

𝑸𝒌𝒏𝒌𝒕 
1 250 200 200 200 

5 100 100 100 25 

𝑶𝒌𝒏𝒌𝒕 
1 0 0 0 0 

5 0 0 0 0 

Table 5.27: Production volumes (regular-time and over-time): Supplier 6 

 

 

𝑰𝒌𝒏𝒌𝒊𝒌𝒕 
time period (t) 

1 2 3 4 

𝒏𝒌 = 𝟐, 𝒊𝒌 = 𝟏 150 75 100 75 

𝒏𝒌 = 𝟑, 𝒊𝒌 = 𝟏 0 0 0 0 

Table 5.28: Consignment volumes from PC to DC(s): Supplier 6 

 

 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  
 DC (𝑖𝑘) 

 0 1 2 

Product DL time period (t) time period (t) time period (t) 

(𝑛𝑘) (j) 1 2 3 4 1 2 3 4 1 2 3 4 

1 

1 0 0 0 0 150 75 100 75 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 

3 25 75 25 25 0 0 0 0 0 0 0 0 

4 75 50 75 50 0 0 0 0 0 0 0 0 

5 0 0 0 50 0 0 0 0 0 0 0 0 

5 

1 0 0 0 0 - - - - - - - - 

2 25 25 50 25 - - - - - - - - 

3 75 75 50 0 - - - - - - - - 

4 0 0 0 0 - - - - - - - - 

5 0 0 0 0 - - - - - - - - 

Table 5.29: Transportation volumes from PC to DC(s): Supplier 6 
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time period (t) 

 
product (𝑛𝑘) 1 2 3 4 

𝑸𝒌𝒏𝒌𝒕 

1 0 0 0 0 

3 0 0 0 0 

5 40 90 85 0 

𝑶𝒌𝒏𝒌𝒕 

1 0 0 0 0 

3 0 0 0 0 

5 0 0 0 0 

Table 5.30: Production volumes (regular-time and over-time): Supplier 7 
 

 
 

time period (t) 

product (𝒏𝒌) DC (𝑖𝑘) 1 2 3 4 

2 
1 0 0 0 0 

2 0 0 0 0 

3 
1 0 0 0 0 

2 0 0 0 0 

Table 5.31: Consignment volumes from PC to DC(s) (𝐼𝑘𝑛𝑘 𝑖𝑘 𝑡): Supplier 7 

 

𝑥𝑘𝑛𝑘 𝑖𝑘 𝑗𝑡  
 DC (𝑖𝑘) 

 0 1 2 

  time period (𝑡) time period (𝑡) time period (𝑡) 

product 

(𝑛𝑘) 

DL 

(j) 
1 2 3 4 1 2 3 4 1 2 3 4 

1 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 

3 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 

5 

1 0 0 0 0 - - - - - - - - 

2 25 50 25 0 - - - - - - - - 

3 0 0 0 0 - - - - - - - - 

4 0 0 0 0 - - - - - - - - 

5 15 40 60 0 - - - - - - - - 

Table 5.32: Transportation volumes from PC to DC(s): Supplier 7 
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The results of our model have been shared with the concerned managers of the 

manufacturing firm. Upon the comparison of our results with the firm‟s actual 

procurement expenses and arrangements, it is shared by the decision-makers of the firm 

that the projected total procurement costs assessed through the instances of our results are 

significantly lower than their actual procurement costs. Hereupon the scope of 

improvement in the negotiation process is realized by the decision-makers of procurement 

department. It has come out from the discussion with decision-makers of the buyer firm 

that computing the competitive target prices through our decision-support would 

remarkably help their team participating in the negotiation process. 

 

5.5 Comparison analysis 

The proposed (Price-BLP) model identifies the prices to which the buyer should 

target for negotiation to create a constructive competition among the suppliers. The 

comparison of the results at one side provides the buyer firm with benchmark prices for 

negotiation. On the other side, due to the proposed model so designed, these prices 

respect the supplier‟s reservation prices thereby safeguarding financial interests of 

suppliers. To further demonstrate the inherited benefits of our model we compare the 

results of the previous subsection with two cases: when either there is a price sweeping 

strategy played by a supplier, and when some suppliers attempt to make a cartel for price 

rigging. 

First, we consider a situation wherein the price-negotiation of the buyer with 

various suppliers results in final prices given in Table 5.33. This instance indicates that, 

while all the suppliers settle for the prices same as their competitive target prices (given 

in Table 5.11), the supplier 7 attempts to quote prices for products 2 and 3 much lower 

than what are corresponding estimates of competitive target prices. This abnormal quote 

of extraordinarily low prices in an oligopolistic-monopsony market is generally suspected 

as a plot of market-sweeping strategy. Prima facie such price offers are lucrative but 

eventually can result in a loss of business-relation with other suppliers thereby the buyer 

losing a potential to negotiate in future. We attempt to verify for this instance that 

whether the demand-order allocations in response to such an ambitious quote of prices by 

the supplier 7 can result in a market-sweep. 
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DL (j) 

supplier (k) product (𝑛𝑘) 1 2 3 4 5 

1 1 28700 25800 25950 28950 28599.92 

2 
2 5560 5560 5950 5560 5160 

3 5689.914 5850 5450 5050 4850 

3 1 32899.92 33000 31175 30300 29800 

4 4 89600 94200 93504.25 91000 90600 

5 
2 4750 4850 5000 5000 4650 

3 4695 4795 4945 5150 4595 

6 
1 24250 27550 24200 24350 24250 

4 92499.98 89800 89350 92050 93292.56 

7 

2 4500 4500 4800 4800 4400 

3 4000 4000 4200 4200 4000 

4 92707.78 92800 92875 96700 91500 

Table 5.33: Suppliers‟ prices 𝑝𝑘𝑛𝑘 𝑗  (INR per tonne) - Market sweeping strategy by supplier 7 for 

products 2 and 3 

 

For this verification we solve the lower level optimization problem (FDMP) of 

(Price-BLP) while considering the prices as parameters with values depicted in Table 

5.33. The demand-orders so obtained are listed in Table 5.34, which confirm the surmised 

affect to a large extent as in this case the supplier 2 loses his business with the buyer in 

full and supplier 3 in part. In this situation, on the bases of prior knowledge of 

competitive target prices, a buyer with a long-term strategic vision would be able to 

restrain from getting carried away with such artificially lower price quotes for ephemeral 

benefits. 

Further, we compare the results of our model with another illustrative scenario 

wherein suppliers 1, 3, and 6 adhere to same higher price for product 1 during the 

negotiation with the buyer, whereas other suppliers settle at competitive prices only. This 

instance is demonstrated through the prices given in Table 5.35. Prior knowledge of 

competitive target prices using the suggested model clearly indicates the possibility of a 

cartel, which may further be confirmed using appropriate statistical techniques (e.g., 

Padhi and Mohapatra [244]). The data analysis presented hereinafter in this context 

estimates the potential opportunity-loss to the buyer due to this cartel, in the situation of 

unavailability of a decision-support. This analysis counts further one more 

accomplishment of the suggested model.  
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DL(𝒋) 

  
1 2 3 4 5 

supplier 

(𝒌) 

product 

(𝑛𝑘) 

time period (t) time period (t) time period (t) time period (t) time period (t) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 1 0 0 0 0 125 100 75 50 50 0 25 25 0 0 0 0 0 0 0 0 

2 
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 200 100 120 30 

4 4 50 75 75 50 0 0 0 0 0 0 0 0 60 60 80 0 65 40 20 60 

5 
2 0 0 0 0 0 0 0 0 50 29 33 0 50 46 22 0 0 0 0 0 

3 105 55 25 0 0 0 0 0 0 0 0 0 0 0 0 0 130 130 90 0 

6 
1 150 75 100 75 0 0 0 0 25 75 25 25 75 50 75 50 0 0 0 50 

4 0 0 0 0 25 25 50 25 75 75 50 0 0 0 0 0 0 0 0 0 

7 

2 75 75 75 75 75 75 75 50 25 21 42 25 25 29 28 25 100 100 80 50 

3 20 70 75 50 100 75 75 75 100 75 50 50 80 80 100 15 0 0 0 90 

4 0 0 0 0 25 50 25 0 0 0 0 0 0 0 0 0 15 40 60 0 

Table 5.34: Buyer‟s demand order allocation 𝑦𝑘𝑛𝑘 𝑗𝑡  (number of tons to be purchased) - Market sweeping strategy of supplier 7  
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If the final prices, given in Table 5.35, become an outcome of price negotiation 

with an uninformed buyer, it would incur a total procurement cost of INR 176,184,900 

(through demand allocation given in Table 5.36), against INR 166,871,150 corresponding 

to the oligopolistic-competitive prices listed in Table 5.11 (as obtained using the proposed 

model). This would result in an additional cost of INR 9,313,750, which is 5.58% higher 

than the procurement cost against the competitive prices. Whereas the total profits of each 

supplier in both the situations discussed above are listed in the Table 5.37 to demonstrate 

an escalation in individual profit of suppliers 1, 3, and 6 with rest of suppliers remaining 

unaffected. This profit making price adherence by these three suppliers therefore indicates 

a possibility of a cartel and not just coincidence. 

 

 

 
DL (𝒋) 

supplier (𝒌) product (𝑛𝑘) 1 2 3 4 5 

1 1 32899.92 33000 31175 30300 29800 

2 
2 5560 5560 5950 5560 5160 

3 5689.914 5850 5450 5050 4850 

3 1 32899.92 33000 31175 30300 29800 

4 4 89600 94200 93504.25 91000 90600 

5 
2 4750 4850 5000 5000 4650 

3 4695 4795 4945 5150 4595 

6 
1 32899.92 33000 31175 30300 29800 

4 92499.98 89800 89350 92050 93292.56 

7 

2 6250 6499.984 6824.942 6800 6100 

3 6350 6599.426 6925 6882.551 6200 

4 92707.78 92800 92875 96700 91500 

Table 5.35: Suppliers‟ prices 𝑝𝑘𝑛𝑘 𝑗  (INR per tonne) - Possible cartel by suppliers 1, 3, and 6 for 

product 1 
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DL (j) 

  
1 2 3 4 5 

supplier 

(𝒌) 

product 

(𝑛𝑘) 

time period (t) time period (t) time period (t) time period (t) time period (t) 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

1 1 40 16 21 14 34 20 17 11 22 17 13 11 22 12 17 11 50 20 24 15 

2 
2 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0 0 100 100 80 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 80 80 100 15 105 55 0 0 

3 1 52 28 33 24 43 37 25 17 26 28 17 17 26 18 25 17 70 37 39 26 

4 4 50 75 75 50 0 0 0 0 0 0 0 0 60 60 80 0 65 40 20 60 

5 
2 75 75 75 75 75 75 75 50 75 50 75 25 50 75 50 25 0 0 0 50 

3 125 125 100 50 100 75 75 75 100 75 50 50 0 0 0 0 25 75 90 90 

6 
1 58 31 46 36 48 43 33 22 28 31 20 22 28 20 33 22 80 43 57 39 

4 0 0 0 0 25 25 50 25 75 75 50 0 0 0 0 0 0 0 0 0 

7 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 25 50 25 0 0 0 0 0 0 0 0 0 15 40 60 0 

Table 5.36: Buyer‟s demand allocation 𝑦𝑘𝑛𝑘 𝑗𝑡  (number of tonnes to be purchased) – possible cartel 

 

 suppliers (𝑘) 

profit against 1 2 3 4 5 6 7 

cartel prices in Table 5.35 42,36,125 7,25,950 29,26,200 51,43,500 10,40,500 97,90,375 17,84,500 

competitive prices in Table 5.11 21,15,000 7,25,950 10,35,000 51,43,500 10,40,500 48,13,750 17,84,500 

Table 5.37: Comparison of profits of suppliers resulting from competitive prices and from cartel prices 
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The above comparison indicates the worthiness of our proposed model for a buyer 

to assess competitive target prices prior to a price negotiation with suppliers. 

 

5.6 Managerial implications 

Negotiations handled transparently using this decision support system will portray 

the buyer‟s intention of creating constructive competition and non-indulgence into 

opportunistic discrimination with the motive of minimizing procurement cost. Similarly it 

will ensure that the suppliers arrive at a settlement price for supply which have adequate 

margin of safety with regard to their profitability. Thus the use of developed decision 

support will ensure that there is no opportunistic discrimination from the buyer using his 

bargaining power as a single buyer and similarly the suppliers too cannot reap enormous 

surplus profits defying the competition. Hence, this model helps to arrive at that 

satisficing point of demand and supply which will be logically beneficial for both buyers 

and sellers. Further, the knowledge of competitive target prices enables the buyer to rule 

out any undue influence from suppliers‟ side. 

In all, the decision support system developed for our study will help in creating 

healthy entrepreneurial platform in which the business interests of the buyer and sellers 

are protected. Eventually, in such a business relationship with the suppliers inculcates a 

support behaviour in them which proves to be helpful in combating sudden unforeseen 

contingency situations in the future. The use of this decision support system can help 

even in reducing the lengthy negotiation and communication time span as the target 

prices ascertained by the model can be used as a consensus base prices for fixing the deal. 

Utilizing the proposed framework for ascertaining competitive target prices prior 

to negotiation further enables the buyer to  

 surmise and accordingly intervene in case if any supplier attempts to adopt any 

market-sweeping techniques through abnormal low prices during the negotiation, 

 identify the possibility of any cartel formation by the suppliers and take 

safeguarding measures through alternative channels of sourcing.  

In the event of any market sweeping technique or cartel formation, the buyer with 

prior knowledge of competitive target prices will come to know about this at its inception 
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and counter strategies can be formulated at the right time without causing any damage to 

the operational efficiencies of the buyer‟s organization. 

The proposed model can be appropriately used by any buyer firm which is 

concerned for minimizing the total procurement costs by creating a healthy competition 

among its suppliers through a non-cooperative game for their price quotes. The scope of 

application of our model is listed below. 

1. The model can be used by government authorities for assessment of competitive 

prices for the tenders invited for the purchase of required material. An indication can 

be obtained about the existing suppliers for any possible cartels, as these practices are 

prevalently found among those supplying products to government organizations. 

2. In case of the setup of strategic business units by the suppliers dealing in multiple 

products, our model is capable of catering such a scenario due to consideration of 

transportation cost as product dependent. 

3. This model can be used by non-trading and non-manufacturing organizations like 

Universities, hospitals which procure a sizable proportion of purchases locally. 

4. The situation of suppliers having multiple PCs can also be catered through simple 

extension of our model by merely introducing additional index for the PCs. 

 

5.7 Conclusions 

This work addresses the problem of ascertaining competitive target prices for the 

buyer of an oligopolistic-monopsony market to negotiate with suppliers in line with a 

balanced approach of safeguarding the financial interests of each supply-chain partner. 

The problem is mathematically formulated as a multi-leader-single-follower bilinear BLP 

problem, featuring suppliers as leaders and the buyer as a follower, as it fits naturally to 

the problem. Annexing suppliers‟ operational planning with the bilevel game problem of 

price-setting enables the buyer to assess the capacities of suppliers for fulfilling the 

demand-orders. Motivated by lack of solution methodologies to handle large-scale 

instances, a GA-based methodology is proposed to solve a general multi-leader-single-

follower BLP problem with bilinear objectives and linear constraints. Further, a 

modification to the proposed algorithm is suggested to solve the game problem having a 
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specific bilevel structure, as present in our proposed model. The model is illustrated by a 

study on an FMCG manufacturing firm‟s procurement setup having similar concerns. 

Comparison of computational results with the firm‟s current configuration and test 

situations demonstrate the efficacy and prominence of the suggested model. 

An interesting future research direction is to solve the discussed problem with a 

condition on the quantities of products as integers only. Another challenging potential 

problem can be addressed for the case of differential pricing. Similar problems may be 

studied for other market setups, for example, where multiple buyers also compete to fulfil 

their demands-orders. 
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Summary and Scope of Work in Future 

 

 
 

 

Summary 

In this thesis, we have studied strategic planning and decision-making problems in 

the purview of bilevel programming framework. Our main focus in this research work has 

been on cohesively considering pricing and operational planning issues for suggesting a 

better approach of handling strategic issues. Some of complex strategic issues of planning 

and decision-making of Railways and business organization managing supply chain are 

addressed by modelling the action and reaction setup. 

The development of solution methodology for solving each of the addressed 

problems modelled in bilevel programming framework is another field of contribution of 

our research work. This part of our research contribution opens a door for developing 

metaheuristic-based algorithms for solving those variants of bilevel programming 

problems for which either a methodology is not available in literature or theoretically 

suggested direct methods are incapable of handling large scale instances of such problem. 

With necessary groundwork presented in first two chapters, in Chapter 3 we have 

analyzed a decision-making problem of Railways to cohesively plan for running special 

trains on some routes along with a pricing strategy. The formulation of the model is so 

designed to handle the competitive response of other transport service providers plying on 

such routes. Thereby the model is formulated as a mixed integer single-leader-multi-

follower bilevel programming problem. A GA-based solution methodology is proposed 

for solving the addressed problem. A detailed computational study of Indian Railways is 

presented in this context with comparison analysis demonstrating the consequences of 

ignoring the competition into modelling.  
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In Chapter 4, a strategic planning problem of a small-scale supplier is addressed. 

In the study presented in this chapter, a decision-support is developed to identify target 

prices for negotiation of such a supplier with a quality seeking buyer. The problem is 

addressed for maximizing the profit of the supplier through a successful penetration into 

the market engendered by the buyer and some existing suppliers with their known fixed 

prices for same products. The model is formulated in a bilevel programming framework 

involving integer and binary variables at both levels and bi-objective programming 

problem at follower‟s level. Due to absence of a solution methodology for solving such a 

bilevel programming problem, we have proposed a GA-based approach. An illustrative 

case study of an appropriate supplier firm is presented to demonstrate an implementation 

of the proposed algorithm for computations of the relevant problem fitting the modelled 

framework. 

Further, Chapter 5 deals with the game theoretic mechanism of a variant of bilevel 

programming framework which involves multiple leaders and a single follower. A 

strategic problem of identifying target prices for negotiation of a buyer with multiple 

suppliers is addressed in the presented study. For this purpose, a mathematical model is 

formulated as a multi-leader-single-follower BLP problem. Our second major 

contribution presented in this chapter is to develop a GA-based solution methodology for 

handling large-scale instances of multi-leader-single-follower bilevel programming 

problem with bilinear objective functions at both levels. An appropriate case study of an 

Indian firm from FMCG sector is presented with computational analysis performed 

through an implementation of the proposed algorithm. 

In a nut shell, the research work compiled in this thesis includes contributions in 

both the areas of optimization. The first one being application of BLP into managerial 

decision-making through modelling. Whereas, the second being algorithmic development 

for solving optimization problem, particularly in BLP framework. 

 

Scope of work in future 

The research work complied in this thesis is merely an initiation of the possible 

research work in this area. There are enormous opportunities for research waiting in terms 
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addressing strategic planning problems which require incorporating reactions of other 

decision-makers while taking decisions on important issues. Developing solution 

methodologies capable of handling large-scale instances of variants of bilevel 

programming problems is identified as another direction of future research. 

Although the results of computational experiments of case studies support the 

success and creditability of solution methodologies proposed in this work, still there is a 

room for increased success in terms of computational efficiency. One such possibility lies 

in designing a parallel genetic algorithm for the considered class of bilevel programming 

problems. Future work may also include developing other artificially intelligent 

techniques. The robustness issue of designed models, especially discovering how the 

small changes in the input parameters can affect the overall solution found as a result of 

optimization, can be studied in future.  

In case of planning problem discussed for Railways, the uncertainty in the total 

demand, availability of rolling-stock and costs can be modeled as stochastic or fuzzy 

variables to design a more robust operational planning for the railways. Pricing strategies 

to be handled in a setup of differential pricing are another set of challenging problems, 

which can be addressed in future using the bilevel programming framework. One of our 

research work on studying the decision behaviour of sole supplier receiving contingent 

demand from multiple buyers [245] is noteworthy for incrementing further to develop a 

negotiation mechanism. 
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Appendix 
 

 

Some results on convexity 

Result A.1: Let 𝑓 𝑥  is a convex decreasing function in 𝑥 defined as 

𝑓 𝑥 = 𝛿
𝑒 𝑎−𝑏𝑥  

 1 + 𝐾 + 𝑒 𝑎−𝑏𝑥   
       ∀ 𝑥 ∈  ℝ+ 

where, 𝛿, 𝑎, 𝑏, 𝐾 are positive constants. Let 𝑥0 and 𝑦0 be fixed positive constants. 

Then, 

(a) the constrained bilinear optimization problem (A.1)  

 

 

            (A.1) 

 

 

 

is equivalent to the optimization problem (A.2) 

 

 

          (A.2) 

 

 

 

 

(b) the objective function 𝑥𝑓 𝑥  of optimization problem (A.2) is a strictly quasi-

concave function. 

Proof: (a) As the given function 𝑓 𝑥  is non-negative decreasing function with 

lim𝑥→∞ 𝑓 𝑥 = 0, therefore for the case of non-redundancy of constraints of optimization 

                             max
𝑥,𝑦

 𝑥𝑦 

         s.t.  𝑥 ≥ 𝑥0, 

               𝑦 ≤ 𝑓 𝑥 , 

              0 ≤ 𝑦 ≤ 𝑦0 

                             max
𝑥,𝑦

 𝑥𝑦 

         s.t.  𝑥 ≥ 𝑥0, 

               𝑦 ≤ 𝑓 𝑥 , 

              0 ≤ 𝑦 ≤ 𝑦0; 
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problem (A.1) bounding the variable y from above, the curve 𝑦 = 𝑓 𝑥  intersects the line 

𝑦 = 𝑦0 at some point (say, 𝐴) in the first quadrant of 𝑥-𝑦 plane. Let 𝑥  be the ordinate of 

the point of intersection 𝐴 of the line 𝑦 = 𝑦0 and the curve 𝑦 = 𝑓 𝑥 . In any of the two 

cases, when 0 < 𝑥0 < 𝑥  or 𝑥0 ≥ 𝑥 , the optimal solution of problem (A.1) is attained at 

some point 𝐵 𝑥, 𝑓 𝑥   on the curve 𝑦 = 𝑓 𝑥  with 𝑓 𝑥 ≤ 𝑦0 and 𝑥 ≥ 𝑥0. The two 

situations are depicted in Figure A.1. Therefore, the optimization problem (A.1) is 

equivalent to solving the optimization problem (A.2). 

 

 

Figure A.1: Cases when problem (A.1) attains its optimal solution 

 

(b) As 𝑓 𝑥  is convex non-negative decreasing function on ℝ+, therefore 𝑥𝑓 𝑥  is a 

strictly quasi-concave function by Result A.2 (proved below). 

 

Figure A.2: Objective function of optimization problem (A.2) 

 

Result A.2: For a non-negative decreasing convex function defined on ℝ+, the function 

𝑥𝑓 𝑥  is strictly quasi-concave. 
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Proof: For a given non-negative decreasing convex function 𝑓 𝑥  defined on ℝ+, let us 

define 𝑔 𝑥 = 𝑥𝑓 𝑥  ∀ 𝑥 ∈ ℝ+. Let 𝑎, 𝑏 ∈ ℝ+, 𝑎 ≠ 𝑏 and 𝜆 ∈  0, 1 . Without loss of 

generality, let us consider 𝑎 < 𝑏. Consider, 

     𝑔  1 − 𝜆 𝑎 + 𝜆𝑏 =   1 − 𝜆 𝑎 + 𝜆𝑏  𝑓  1 − 𝜆 𝑎 + 𝜆𝑏  

   ≥   1 − 𝜆 𝑎 + 𝜆𝑏  𝑓 𝑏       (as 𝑓 𝑥  is a decreasing function)  

   =  1 − 𝜆 𝑎 𝑓 𝑏 + 𝜆𝑏 𝑓 𝑏  

   =  1 − 𝜆 𝑎 𝑓 𝑏 + 𝜆 𝑔 𝑏  

   = 𝜆 𝑔 𝑏 +  1 − 𝜆  𝑎 𝑓 𝑏 − 𝑏 𝑓 𝑏 + 𝑏 𝑓 𝑏   

   = 𝑔 𝑏 +  1 − 𝜆  𝑎 − 𝑏 𝑓 𝑏  

   > 𝑔 𝑏          (as 𝑎 < 𝑏 and 𝑓 𝑏 ≥ 0) 

   > min 𝑔 𝑎 , 𝑔 𝑏  . 

This proves that, 

𝑔  1 − 𝜆 𝑎 + 𝜆𝑏 > min 𝑔 𝑎 , 𝑔 𝑏   ∀𝑎, 𝑏 ∈ ℝ+, 𝑎 ≠ 𝑏, 𝜆 ∈  0, 1 . 

Therefore, 𝑔 𝑥 = 𝑥 𝑓 𝑥  is a strictly quasi-concave function. 
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