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ABSTRACT 
 

Multipliers are the most vital part of any computational applications for real time data processing 

systems. Hence designers tries to make an efficient multiplier design on the basis of trade-off 

between the design constraints i.e. speed, power and area. In this project we realize tree 

multipliers (Wallace Tree and Dadda multiplier) and evaluate their performance using Verilog 

in Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. The Tree multiplier architectures 

are designed in three stages which are, partial product generation, their reduction and the final 

addition stages. Here in partial product reduction stage, for the reduction of partial products, m:n 

compressors are used. For the final addition stage different adder designs are used. The main 

objective of this work is to implement different designs of adders and use them in Tree multiplier 

to investigate the better design between Wallace tree and Dadda multiplier. After that 4:2 

compressor are used in reduction stage and implement different designs by using this reduction 

stage. A new design of tree multiplier is proposed and compare with other existing designs.
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CHAPTER 1 

Introduction 

1.1 Background 

Nowadays, there is tremendous demand for low-power, less area and high speed 

computational applications for real time data processing systems. These computational 

applications require sophisticated data acquisition systems and hardware implementing 

complex arithmetic operations, in particular fast adders and multipliers. The design 

constraints (area, power and delay) are the limiting factors for a design. Though, several 

options for adders and multipliers are available in literature, there is still scope to increase 

the performance of these arithmetic blocks. The multiplier may be realized simply by 

performing shift and add operations. Such multipliers are serial in nature, use smaller 

hardware and have slow response. Tree multipliers give faster response and primarily use 

three stages to compute the multiplication. These three stages are partial product 

generation, partial product reduction and final addition, Dadda [1] and Wallace [2] 

multipliers belong to the latter category.  In Partial Product Reduction Stage, Wallace Tree 

used “As soon as Add” strategy i.e. add as many partial products as possible to reduce the 

levels whereas Dadda Multiplier relies on “As late as Possible” strategy i.e. use minimum 

reduction essential at each level. Therefore, Dadda multiplier needs lesser additions as 

compare to Wallace Tree [1] leading to reduced half adders and full adders. However, the 

designing of Dadda Multiplier [1] is complex as compared to Wallace tree [1]. The levels 

of reduction are same in both multipliers. 

Researchers have proposed various realizations of Dadda multipliers [3-16]. Modified 

Booth Algorithm is used in the generation of partial products of Dadda multiplier [3] and 

the comparison with Modified Booth Wallace Multiplier shows that former has reduced 

area and better speed. The Carry Select Adder with binary excess 1 converter is used in 

[4] in reduction stage while decomposition logic is used in [5] wherein partial products 

are divided into smaller sub groups that are used as smaller multipliers and the collective 

outputs of these multipliers gives final results. Here, additional circuitry is needed for final 

accumulation leading to larger implementation area. A hybrid multiplier design founded 

on decomposition logic in reduction stage uses Dadda and Wallace algorithm for different 

sub groups [6]. An Efficient Charge Recovery Logic (ECRL) is used for implementation 



 

 

of full adders based Vedic-Dadda hybrid multiplier design [7]. Swing Restored 

Complementary Pass-transistor Logic (SR-CPL) and Dual Pass-Transistor Logic (DPL) 

are used in reduction and final stage [8]. A pipelined Dadda multiplier design with 

pipelined carry look ahead adder in final stage is presented in [9] which possesses less 

delay of each pipelined stage and less latency of entire multiplier.  

To reduce the partial products in reduction stage of tree multiplier, different types of m:n 

compressors can be used. Reduction stage consumes most of the power of multiplier, to 

reduce it compressors are used. Compressors can reduce delay of reduction stage also.  

 

A 4:2 compressor is one of the famous compressor used in Dadda multiplier. There are 

different implementation of compressor design i.e. XOR-XNOR based compressors, XOR 

and Mux based compressors, MUX based compressors etc.[ 17-19]. A fully Mux based 

4:2 compressors utilized in reduction stage of dada multiplier design demonstrate 89% 

improvement in PDP [10].  

A 8x8 Dadda multiplier design with high speed whch used 4:2 compressors in Dadda 

reduction stage is suggested in [11], exhibits less delay and power delay product (PDP). 

In [12] approximate 4:2 compressors were used in 32-bit Dadda multiplier depicts less 

power consumption and delay.  

Parallel prefix adders (PPAs) have less area than other addr designs like RCA and CLA. 

These adders faster in nature. Therefore researchers tried to improve the Dadda multiplier 

design by introducing parallel prefix adders namely BKA [13], Sklansky tree adder [14] 

and KSA [15] in final addition stage. In [15] different designs of dada multiplier are 

compared and it shows that design with KSA has highest speed and BKA has less power 

dissipation and area.  

A 16x16 Dadda multiplier design based on 4:2 compressors with KSA in final stage shows 

better speed as compare to other dadda multiplier designs [16].  

    

1.2 Objective  

The objective of this work is to realize tree multipliers using different elements in Partial 

Product Reduction and Final Addition stage and evaluate the performance.  

 

1.3 Organization 

The work in this thesis is organized in five chapters including this chapter. 

Chapter 2 comprises of discussion on various adders namely Ripple carry adder, carry 



 

 

look ahead adder, Brent-Kung and Kogge-Stone adders.  

Chapter 3 describes Wallace tree and Dadda multipliers. The performance of these 

multipliers is compared on the basis of adders employed in the final addition stage. The 

addition of partial products is performed using half and full adders for fairer comparison.  

Chapter 4 gives realization of Dadda multiplier which uses 4:2 compressors in the 

reduction stage. Subsequently a new realization is given that uses Brent-Kung adder in 

final addition stage. Its performance is compared with Dadda multipliers employing 

Ripple carry adder (RCA), Carry look ahead (CLA) adder, Kogge-Stone adder and Brent-

Kung adder) for final stage addition.  

Chapter 5 consists of the conclusion and the future scope of the work.  

All the simulations are carried out using Vivaldo software and performance is compared 

on the basis of number of Look Up Tables (LUTs) and slices used, power consumption, 

delay and Power Delay Product (PDP).   



 

 

CHAPTER-2 

Traditional Adders 

Adders are used in almost every processing task and unit such as in Arithmetic Logic Unit 

(ALU) in computers [22], ECC Processor Design [23], Communication System and many 

other applications.  

Various realizations of adders are available in literature which differ in the way carry is 

propagated among stages. In this chapter the Ripple Carry Adder (RCA) and Carry Look 

Ahead (CLA) adder are described first followed by Parallel Prefix Adders namely Brent-

Kung adder (BKA) and Kogge-Stone Adder (KSA). All the adders are implemented using 

Verilog in Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. The performance is 

measured in terms of the area, delay and power consumption of the synthesized design. 

 

2.1 Ripple Carry Adder 

A full adder adds two 1-bit numbers so to add N-bit numbers, full adders are to be 

cascaded in serial fashion. Therefore, there must be N number of full adders for N-bit 

parallel adder. The full adders are cascaded in a structured form so that the carry out of a 

full adder behaves as the carry in of the succeeding next most significant full adder. Thus 

carry out of full adder is rippled into the next stage and the adder so obtained is known as 

Ripple Carry adder.  An N-bit RCA is shown in Fig. 2.1 and the governing Boolean 

equations are given by (2.1) where Ai and Bi represent ith bit of the input numbers. Cini 

and Couti represent carry input to ith full adder. It may be noted that Cini+1 = Couti (i = 

0,..,N-2).    

Si = Ai ⨁ Bi ⨁ Cini                                                                                                              (2.1) 

Couti  = Ai.Bi + Ai.Cini + Bi.Cini                                                                                (2.2) 

            An- 1     Bn-1        A2     B2          A1     B1    A0      B0 

  

         Cout             ..……..Cout      

 Cin 

 

      Sn-1             S2         S1                   S0 

Fig. 2.1 N-bit Ripple Carry Adder 

Ripple carry adder utilizes the lowest chip area if compare to other designs. It is a 

structured design hence designing for different word size is easy. It suffers from a very 

long propagation chain, that makes the worst case delay largest if compared with other 

implementations. So there is a trade-off between area and delay. The advantage, however, 
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is simplest design.  

A 32 bit RCA is implemented using Verilog in Vivado by selecting Zynq-7000 

xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown in Figs. 

2.2 and 2.3 respectively. The design uses 30 LUTs. The delay, power and PDP are found 

to be 13.4 ns, 0.243 W and 3.256 nJ respectively.   

 

Fig. 2.2  RTL Schematic of 32 bit RCA 



 

 

 

Fig. 2.3 Synthesized design of RCA 

2.2 Carry Look Ahead Adder 

Carry look ahead adder (CLA) is a parallel adder which has high speed than ripple carry 

adder. It reduces the propagation delay on the cost of hardware complexity. Hence it takes 

more area than RCA and also costlier. In carry look ahead adder, carries are generating 

early of time therefore delays produced in the computation process is less as compare to 

RCA.  

In carry look ahead adder the calculation process can also be presented in two level logic 

as shown in Fig. 2.4. Here two variables are define as carry Propagation (P) and 

Generation (G) for each bit. If P = 1, the Cout of present bit is the same as its Cin, while 

if P = 0, the Cout won't propagate its Cin, that mean Cout is independent of Cin. G = 1 

means the carry will be generated regardless of its Cin. The calculation can be formulated 

as follows: 

Pi = Ai ⨁Bi                    (2.3) 

Gi = Ai⨁Bi                    (2.4)  

Si = Pi⨁Gi                   (2.5)  

Ci+1 = Gi + (Pi⨁Ci)                   (2.6) 

Where Pi is a carry propagator and it is related with the propagation of carry from Ci to 



 

 

Ci+1. Gi is a carry generate which produces the carry when both Ai, Bi are one. Here Ci+1 

is the carry out for present addition.  

 

Fig. 2.4 Full Adder with Generate and Propagate signal 

Let’s assume that the Inputs are A0, B0, Cin, A1, B1, A2, B2, A3 and B3 the subsequent 

carries C1, C2 and C3 are computed using the generation and propagation signals as given 

below. 

C1 = G0 + P0.C0                      (2.7) 

C2 = G1 + P1.G0 + P1.P0.C0                                                                                       (2.8) 

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0                                                              (2.9) 

If a 4 bit CLA Generator is used then the Group Generate (G3:0) and Group Propagate 

(P3:0) can be expressed as given in equation 2.10 and 2.11. 

G3:0 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0                                                              (2.10) 

P3:0 = P3.P2.P1.P0                         (2.11) 

These carries are produced with help of a CLA Block. The generated carries are send to 

the relevant Full Adders. A 4 bit CLA is Shown in Fig. 2.5 



 

 

 

Fig. 2.5 4-bit Carry Look-Ahead Adder Block 

 

The propagation delay of a CLA design can be greatly reduced using the P and G 

computation network. Therefore, CLAs are the most natural approaches in high 

performance adders. Carry look ahead adder uses tree configuration topologies to 

formalize the representation of divide-and-conquer approach of adder design. Hence, 

multi-level CLA, which exploits parallel carry computation, is achievable.  

 

A 32 bit CLA is implemented using Verilog in Vivado by selecting Zynq-7000 

xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown in Figs. 

2.6 and 2.7 respectively. The design uses 68 LUTs and. The delay, power and PDP are 

found to be 8.852 ns, 0.249 W and 2.204 nJ respectively.   

 



 

 

 

Fig. 2.6 RTL Schematic of 32 bit CLA 

 

 

Fig. 2.7 Synthesized Design of 32 bit CLA 

 

 

 

 



 

 

2.3 Parallel Prefix Adder 

When the carry look ahead adders is design with more number of bits for example N > 16 

bits, critical delay becomes dominant in the adders due to the carry delay propagation 

through the blocks of look ahead increase. This increased delay can easily diminished by 

surpassing the blocks look ahead. Usually a multi stage tree of look ahead structures can 

be created in order to achieve a delay that is limited with log2N, where N is the number of 

bits. These multi stage structured adders are generally known as tree adders or multi stage 

look ahead adders or logarithmic adders or parallel prefix adders.   

There are many ways to build parallel prefix adders based on the number of wiring 

between the levels, number of the fan out from each gate, total logic gates involved and 

the number of levels of the logic. Parallel prefix adders (PPA) are mostly used in high 

performance computational circuits since these are faster adders. The two elementary tree 

adders are BKA and KSA.  

BKA [25] uses an optimum number of stages but it has disproportionate loading on all 

transitional stages. It uses less number of propagate and generate signals compared to 

KSA. Therefore the cost of complexity is less but the gate level of depth is high. It 

consumes less power but delay is more than KSA with high speed. 

The process of parallel prefix adder is done in three stages, which are: 

1. Pre processing  

2. Carry generation stage 

3. Post Computation 

Carry propagation and carry generation signals are processed in pre computation stage for 

each pair of input bits. In carry generation stage, carry signals are computed in parallel 

using the Group Generate and Group Propagate corresponding to each bit. In the final 

stage, sum bits are obtained from the computation of the carry bit and the propagate signal. 

These stages are shown in the fig. 2.8. 



 

 

 

Fig. 2.8  Stages of Parallel Prefix Adder 

The Parallel Prefix Adder calculate the prefixes of 2 bits in a group. Then these prefixes 

are used to compute the prefixes for a group of four bit and going on. To calculate the 

output carry signal of the specific bit stage these prefixes are used .  After the computation, 

carries are divided into small packages. These are known as processing components. The 

production of processing component is given by equations (2.12) and (2.13). 

Pi:k  =  Pi:j . Pj-1:k                         (2.12)       

Gi:k = Gi:j +Gj-1:k . Pi:j                         (2.13) 

In the alternate way, the equations (2.12) and (2.13) can be presented using a symbol “o” 

symbolized by Brent-Kung. The equation using “o” operation is given below: 

Gi:k : Pi:k =(G i:j,P i:j )o(Gj-1:k,Pj-1:k)                                                                  (2.14) 

In the final computation, Sum and final output carry are calculated. It is identical for all 

parallel prefix adders. The sum and final output carry equations are given in (2.15) and 

(2.16): 

Si =  Pi.Ci                                        (2.15)  

Ci+1 = (Pi .C0) + Gi                                                                (2.16) 

 

 

2.3.1 Brent-Kung adder 

The Brent Kung Adder calculate the prefixes of 2 bits in a group. Then these prefixes are 

used to compute the prefixes for a group of four bit then same calculates for 8 bits 

groupand going on. These calculated prefixes of Brent Kung adder are used to calculate 

the output carry signal of the specific bit stage. 



 

 

After the computation, carries are divided into small packages. These are known as 

processing components. Now these generated carries are used to calculate the sum bit of 

that particular stage, for this computation Group Propagate is also used with these carries. 

Brent Kung adder has total 2log2N - 1 stages or levels. For example if an adder is designed 

for 32 bit, then the total number of stages are 9. Brent-Kung adder is a binary tree multi-

level topology, hence there are many similarities between traditional multi-level CLA and 

Brent-Kung adder. For example, the formation of P and G variables are all sent from 

lower-level network to higher level network in parallel instead of process them in 

sequence. Figure 2.9 shows the flowchart of 32 bit BKA. In BKA, P and G signals are 

forwarded to the next stage by using a PG operator. Each node in the fig. 2.9 represents a 

PG operator. The fanout of a Brent Kung adder is limited to 2. 

 

Fig. 2.9 32-bit Brent-Kung Adder [25] 

A 32 bit Brent-Kung adder is implemented using Verilog in Vivado by selecting Zynq-

7000 xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown 

in Figs. 2.10 and 2.11respectively. The design uses 51 LUTs. The delay, power and PDP 

are found to be 8.748ns, 0.248 W and 2.181 nJ respectively.   



 

 

 

Fig. 2.10 RTL Schematic of Brent-Kung adder 



 

 

 

Fig. 2.11 Synthesize design Brent-Kung adder 

2.3.2 Kogge Stone Adder 

Kogge Stone adder [26] is a logarithmic adder obtained from carry look ahead adder 

structure. It is one of the fastest parallel prefix adder. This parallel prefix adder has log2N  

stages, where N is the total number of bits delay though the carry path compared to N for 

the Ripple Carry Adder. 

The fan out of Kogge Stone adder is 2 at each stage. The log2N delay is achieved at higher 

cost.  Kogge Stone adder has more number of PG cells as compare to Brent Kung.  That 

mean means this tree has more PG cells. Hence the number of gates increase to a great 

amount. The power consumption of Kogge Stone adder is more as compare to other  adder 

designs. The KSA is widely used in high performance applications even at such high costs. 

 

 



 

 

 

Fig. 2.12 32 bit Kogge Stone Adder [26] 

 

A 32 bit KSA is implemented using Verilog in Vivado by selecting Zynq-7000 

xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown in Figs. 

2.13 and 2.14 respectively. The design uses 131 LUTs. The delay, power and PDP are 

found to be 8.736ns, 0.263W and 2.210 nJ respectively.   

 



 

 

 

Fig. 2.13 RTL Design of Kogge-Stone Adder 

 

 

Fig. 2.14 Synthesize design of Kogge-Stone Adder 

 



 

 

2.4 Comparison 

This section compares 32 bit RCA, CLA, Brent-Kung adder and KSA presented in section 

2.1, 2.2, 2.3.1 and 2.3.2 respectively. The results presented in these section are, based on 

Zynq-7000 xc7z014sclg484-1 FPGA, summarized in Table 2.1 on the basis of area (Look 

Up Tables (LUT) ), maximum delay, power and power delay product.  

Table-2.1 Comparison Table of different adder designs 

 LUT POWER(in watt) DELAY(in ns) PDP(in nJ) 

RCA 30 0.243 13.400 3.256 

CLA 68 0.249 8.852 2.204 

KSA  131 0.263 8.736 2.210 

BKA 51 0.248 8.748 2.181 

 

Following observations are made on the basis of data presented in Table 2.1. 

1. The number of LUTs are maximum in KSA and minimum in RCA. 

2. The delay is minimum for KSA and there is marginal difference between KSA and 

BKA in terms of delay. 

3. Brent-Kung adder has least power consumption among all designs.   

 

2.5 Summary: 

In this chapter, we learned about the different types of adders. Ripple Carry adder design 

utilizes the lowest chip area when compare to other designs as shown in Table 2.1. Ripple 

Carry adder has worst case delay in all design. Therefore it is only used in low speed and 

least area requirement applications. Carry look ahead adder reduces the propagation delay 

on the cost of LUTs as compare to RCA as shown in Table 2.1. BKA and KSA have many 

similarities with traditional multi-level CLA. For example, the formation of P and G 

variables are all sent from lower-level network to higher level network in parallel instead 

of process them in sequence.  KSA is the fastest adder among all designs as shown in 

Table 2.1. BKA will be using 2log2N - 1 stages. Hence it takes lesser area if compare with 

Kogge Stone adder and it has marginal difference in terms of speed. 

 

 

 

 

CHAPTER-3 

Traditional Multipliers 

There is tremendous demand of computational intensive application for real time data 



 

 

processing. These applications require sophisticated data acquisition systems and 

hardware implementing complex arithmetic operations, in particular fast adders and 

multipliers. Optimizing the design constraints (delay, area and power) of multiplier units 

can improve the whole system greatly. Though, several options for adders and multipliers 

are available in literature, there is still scope to improve the performance of these 

arithmetic blocks. In this chapter some traditional multiplier designs have been discussed 

and synthesized on Vivado 2019.2 for functional verification of designs. 

A multiplier may be realized simply by performing shift and add operations. This method 

includes calculating partial products, shifting these partial products to the left and then 

adding them in a organized way. The drawback of this procedure is to determine the partial 

products, as that includes multiplying a long number (multiplicand) by one digit (of the 

multiplier) at a time. Such multipliers are serial in nature, use smaller hardware and have 

slow response. Tree multipliers such as Wallace tree and Dadda multipliers have faster 

response time. 

 In this chapter, tree multipliers (Wallace tree and Dadda Multiplier) are implemented and 

the power, area and delay are computed. Both the multipliers use adders in the final 

computation therefore the adders discussed in chapter 2 are used and performance is 

observed. For fairer comparison, 3:2 compressors (full adder) and 2:2 compressors (half 

adder) in reduction stage of all multipliers.  

 

3.1 Wallace Tree Multiplier: 

Wallace tree multiplier was first introduced by Chris Wallace in 1964 as an easy and 

simple way of reducing the partial products by summing them in parallel using the tree 

structure of Carry Save Adders. Though Wallace tree requires more hardware component 

than shift and add multipliers, but it produces the results in far less time than shift and add 

multipliers. A carry save adder can add up to three values simultaneously. The output 

results of carry save adder is not a single result. Instead, the output results in a set of both 

a sum and carry bits. The carry-save adder is consists of a group of full adders, each of 

which adds its three input operands.  

In Partial Product Reduction Stage, Wallace Tree uses “As soon as Add” strategy. That 

mean add as much partial product as possible to reduce the levels. Therefore it can be say 

that Wallace tree multipliers use a log depth tree structure for the reduction stage. It is 

faster, but asymmetrical in nature. Wallace tree operate on ease of layout structure for 

speed.  

Wallace tree multipliers are generally avoided in case of low power operations, since 



 

 

excess of wiring is expected to consume additional power. The Wallace tree multiplier is 

a high speed multiplier design. Wallace tree reduces the number of partial products arrays 

to 2 arrays for the computation of final results. In Wallace tree multiplier basically partial 

products are reduced with help of half adder, full adder and different compressors. 

Wallace Multiplier is usually used where high speed operation is major requirement 

The Wallace tree has three stages, named:  

1. Partial Product Generation Stage  

2. Partial Product Reduction Stage  

3. Final Addition Stage 

In the first stage partial products are the multiplication results of multiplicand and 

multiplier. Here simple “And” gate operation is used in which each bit of multiplicand is 

multiply by each bit of multiplier. In second stage partial products are reduced to two row 

arrays by using Wallace tree algorithm. Wallace multiplier use more number of m:n 

compressors at each level during the reduction stage to accomplish the required two rowed 

matrix. Here only 3:2 and 2:2 compressors are used. In final addition stage different types 

of Carry Propagating Adders are used i.e. Ripple Carry Adder, Carry Look Ahead Adder 

etc.  

The reduction procedure of Wallace multiplier is given by the following algorithm [28]: 

Step-1 : First generate the partial products. 

Step-2 : Move from left to right and check each column. If column height is less than or 

equal to 2 , then no changes are made and repositioning to the next column. If column 

height is greater than 2 then reduce by using half adder, full adder or both. When reached 

to left most column then stop.  

Step-3 : Go to the next stage.  

Step-4 : Repeat Step-2 and Step-3 until 2 rows are left . 

The reduction process of Wallace multiplier is shown in Fig. 3.1. 



 

 

 

Fig. 3.1 16x16 Wallace tree multiplier reduction process [28] 

Here Stage 0 is the partial product generation stage. These dots are the partial products. 

From Stage 1 to 6, partial products are reduced according to Wallace tree algorithm. 

 

3.1.1 Simulations 

In this section four different Wallace tree designs are implemented using Verilog in 

Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. The reduction stage is same in 



 

 

all designs but for final stage addition, different adders i.e. RCA, CLA, BKA and KSA  

are investigated.  

3.1.1.1 RTL Schematic 

The RTL schematic of Wallace tree multiplier is given in Fig. 3.2. This schematic is same 

for all designs. Here S0 block is the partial product generation stage. Partial product 

reduction stage is represented by S1 block. S2 block is the final stage addition. In all 

designs S0 and S1 blocks are same. Only difference is at S2 block due to different adder 

designs i.e. RCA, CLA etc.  

 

 

Fig. 3.2 RTL schematic of Wallace tree multiplier 

 

 

3.1.1.2 Synthesized Design: 

In this subsection synthesized design for four implementations are put forward. 

Wallace tree with RCA in final stage: 

In Fig. 3.3 a synthesized design of Wallace tree with RCA is given. The design uses 394 

LUTs and 109 slices. The delay of design is 36.093 ns and the power consumption is 0.28 

W. Power delay product (PDP) of the design  is found to be 10.11 nJ .   



 

 

  

Fig. 3.3 Synthesized design of Wallace tree with RCA 

Wallace tree with CLA in final stage: 

Synthesized design of Wallace tree with CLA is shown in fig. 3.4. In this design 394 LUTs 

and 109 slices are used. The delay, power and PDP are found to be 31.442 ns, 0.289 W 

and 8.835 nJ respectively.   



 

 

 

Fig. 3.4 Synthesized design of Wallace tree with CLA 

 

Wallace tree with KSA in final stage: 

Figure 3.5 shows synthesized design of Wallace tree with Kogge-Stone Adder. The design 

uses 511 LUTs and 411 slices. The delay of design is 22.060 ns and the power 

consumption is 0.293 W. Power delay product (PDP) of the design is found to be 6.463 

nJ.   

 



 

 

 

Fig. 3.5 Synthesized design of Wallace tree with Kogge Stone Adder 

Wallace tree with BKA in final stage: 

Synthesized design of Wallace tree with Brent Kung adder is shown in fig. 3.6. In this 

design 375 LUTs and 109 slices are used. The delay, power and PDP are found to be 

29.577 ns, 0.275 W and 8.133 nJ respectively.   

 

 



 

 

 

Fig. 3.6 Synthesized design of Wallace tree with Brent Kung adder 

All designs are functionally verified using simulation on Vivado 2019.2 and selecting 

Zynq-7000 xc7z014sclg484-1 FPGA. The designs are compared in terms of area (Look 

Up Tables (LUT), maximum delay, power and power delay product. The findings are 

summarized in Tables-3.1.  

Table 3.1 Summary of different designs based on Wallace Tree Muliplier  

Final Adder LUTs Slices POWER 

(in Watt) 

Delay(in ns) PDP(nJ) 

RCA 394 109 0.28 36.083 10.11 

CLA 411 124 0.289 31.442 8.835 

KSA 511 141 0.293 22.060 6.463 

BKA 375 109 0.275 29.577 8.133 

 

Following are the observations on the basis of Table 3.1. 

1. The delay is minimum for design with Kogge-Stone Adder among all designs. 

However, it uses larger area in terms of LUTs and Slices. 

2. The designs with RCA and Brent Kung adder use same number of slices, but the delay 

is minimum for the later one. 

3. The Wallace tree design with Brent Kung adder has least power consumption among 

all designs.   

4. There is only marginal difference between the delay of multiplier design with BKA and 

the design with KSA. 

 

3.2 Dadda Multiplier: 

Dadda Multiplier is one of the well-known column compression multiplier was first 



 

 

presented by Dadda in 1965 [3].  The functionality of Dadda Multiplier is similar to 

Wallace Tree Multiplier but Dadda multiplier is marginally faster in nature. Dadda 

multiplier has less number of components than Wallace tree. In Dadda multiplier, partial 

products are represented in dots. These partial products are organized in a tree form, which 

is demonstrated in Fig. 3.7. The sixteen rows are restructured and then partial product 

reduction is done with the help of parallel m:n compressors. In Fig. 3.7, 3:2 and 2:2 

compressors are exploited. A full adder is the realization of a 3:2 compressor which 

receives 3 inputs and produce 2 outputs. Similarly a half adder is the implementation of 

2:2 compressor. 

Dadda multipliers use least number of m:n compressors at each level during the reduction 

stage to accomplish the required two rowed matrix. The reduction procedure of Dadda 

multiplier is given by the Dadda algorithm [20] : 

1. d1 = 2 and dj+1 = [1.5*dj]. Here dj is the maximum height sequence of the matrix for 

the jth stage. The initial value of j is taken as the maximum such that dj < min (b1, b2). 

Here b1 and b2 are the number of bits of multiplier and multiplicand. 

2. Now reduce the height of those columns which  is greater than the dj or which will 

have more height than dj as they receive carries from m-n compressors of previous 

columns. 

3. Let j = j-1 and repeat step 2 until the only 2 rows are left.  

  In final stage partial products are reduced in two-rowed arrays. To get the final multiplier 

output these two-rowed arrays are added using carry propagation adder [20]. The dot 

diagram shown in Fig. 3.7 shows this algorithm realization for an 16-bit Dadda multiplier. 

Here six reduction levels are necessary. In fig. 3.7 dots joint by a Rectangle indicates a 

full adder. In the same way, two dots combination specifies a half adder. 

  In first level dj height is taken as 6, and the columns which have more height than dj are 

reduced.. Arrow shows the carry transfer to the next column. Same process is repeated 

until two rowed matrix left.  



 

 

 

Fig. 3.7 16x16 bit Dadda multiplier design [29] 

The reduction process of 16x16 Dadda multiplier is explained below.   

Step-1 : First find out the out the jth stage at which we get the maximum height. In case of 



 

 

16x16 multiplier maximum   height that can be achieved is 13 at the stage 6. Hence j=6 is 

taken as initial stage. 

Step-2 : Move from left to right and check each column. If column height is less than or 

equal to 13, then no changes are made and repositioning to the next column. If column 

height is greater than 13 then reduce it to 13 by using half adder, full adder or both. When 

reached to left most column then stop.  

Step-3 : Go to the next stage which is decreased by one i.e. ji+1 = ji-1.  

Step-4 : Repeat Step-2 and Step-3 until j=1 . 

3.2.1 Simulation: 

Here four different Dadda multiplier designs are implemented using Verilog in Vivado by 

selecting Zynq-7000 xc7z014sclg484-1 FPGA. The partial product generation and 

reduction stages are same in all four designs. For final stage addition, different adders i.e. 

RCA, CLA, BKA and KSA are investigated.  

The RTL schematic and synthesized designs are given in following sections.. 

3.2.1.1 RTL Schematic 

The RTL schematic of Dadda multiplier is given in fig. 3.8. The RTL Schematic block is 

same for all designs. Here S0 block is the partial product generation stage. Partial product 

reduction stage is represented by S1 block. S2 block is the final stage addition. In all 

designs S0 and S1 blocks are same. Only difference is at S2 block due to different adder 

designs i.e. RCA, CLA etc.  



 

 

 

Fig. 3.8 RTL schematic of Dadda multiplier 

3.1.1.2 Synthesized Designs: 

In this subsection synthesized design of four implementations is given. 

Dadda tree with RCA in final stage : 

In Fig.  3.9 a synthesized design of Dadda tree with RCA is given. The design uses 347 

LUTs and 106 slices. The delay of design is 24.726 ns and the power consumption is 0.277 

W. Power delay product (PDP) of the design is found to be 6.85 nJ .   

 

 



 

 

 

Fig. 3.9 Synthesized design of Dadda multiplier with RCA 

 

Dadda multiplier with CLA in final stage : 

Synthesized design of Dadda multiplier with CLA is shown in fig. 3.10. In this design 386 

LUTs and 144 slices are used. The delay, power and PDP are found to be 22.176 ns, 0.281 

W and 6.231 nJ respectively.   



 

 

 

Fig. 3.10 Synthesized design of Dadda multiplier with CLA 

 

Dadda tree with KSA in final stage: 

In fig. 3.11 a synthesized design of Dadda multiplier with KSA is given. The design uses 

413 LUTs and 121 slices. The delay of design is 20.366 ns and the power consumption is 

0.283 W. Power delay product (PDP) of the design is found to be 6.046 nJ .   

 



 

 

 

Fig. 3.11 Synthesized design of Dadda multiplier with Kogge Stone adder 

Dadda tree with Brent Kung adder in final stage: 

Synthesized design of Dadda multiplier with BKA is shown in fig. 3.12. In this design 

344 LUTs and 98 slices are used. The delay, power and PDP are found to be 21.098 ns, 

0.274 W and 8.133 nJ respectively.   

 



 

 

 

Fig. 3.12 Synthesized design of Wallace tree with Brent Kung adder 

All designs are functionally verified using simulation on Vivado 2019.2 and selecting 

Zynq-7000 xc7z014sclg484-1 FPGA. The designs are compared in terms of area(Look 

Up Tables (LUT) ),maximum delay, power and power delay product. The findings are 

summarized in Tables 3.2.  

Following are the observations made on the basis of Table 3.2. 

1. The delay is minimum for design with Kogge-Stone adder among all designs. However, 

it uses larger area. 

3. The designs with RCA and Brent Kung adder have lesser area when compare to other 

designs, but the delay is minimum for the later one. 

4. The Dadda multiplier design with Brent Kung adder has least power consumption 

among all designs.   

5. There is only marginal difference between the delay of multiplier design with BKA and 

the design with KSA. 

 

 



 

 

Table 3.2 Summary of Dadda Multipliers implementations 

Final Stage 

Adder  

LUT Slice POWER

(in 

Watt) 

Maximum 

Delay (in 

ns) 

Power-Delay 

Product (nJ) 

Ripple 

Carry  

Adder 

347 106 0.277 24.726 6.85 

Carry Look 

Ahead 

Adder  

386 144 0.281 22.176 6.231 

Kogge Stone 

Adder 

413 121 0.283 20.366 6.046 

Brent-Kung 

Adder  

344 98 0.274 21.098 6.054 

 

 

 3.3 Comparison: 

   All designs are functionally verified using simulation on Vivado 2019.2 and selecting 

Zynq-7000 xc7z014sclg484-1 FPGA. For fairer comparison, full adders and half adders 

are used in reduction stage of all designs. For final stage additions we are using one of the 

adder which are discussed in chapter-2 i.e. RCA , CLA, KSA and BKA.  

The results of Tables 3.1 and 3.2 are combined and presented in Table 3.3 to find out a 

better design. Following observations are made on the basis of data presented in Table 

3.3. 

1. The number of LUTs and slices increase in Wallace Tree designs than their counterpart 

employing Dadda multiplier. 

2. The delay is minimum for Dadda multiplier design and Kogge-Stone adder among all 

designs. However, it uses larger area. 

3. The Dadda multiplier design with Brent Kung adder in final stage has least power 

consumption among all designs.   

5. There is only marginal difference between the delay of Dadda multiplier design with 

BKA and the design with KSA. 

 

Table-3.3 Combined Comparison Table 

 

 

Wallace 

Tree 

Multiplier 

Final 

Adder 

LUT Slice POWER 

(in Watt) 

Delay(in 

ns) 

PDP(nJ) 

RCA 394 109 0.28 36.083 10.11 

CLA 411 124 0.293 31.442 8.835 

KSA 511 141 0.281 22.060 6.463 

BKA 375 109 0.276 29.577 8.133 



 

 

 

 

Dadda 

Multiplier 

RCA 
347 106 0.281 24.726 6.85 

CLA 
386 144 0.283 22.176 6.231 

KSA 
413 121 0.277 21.366 6.046 

BKA 
344 98 0.274 22.098 6.054 

 

Simulation result shows Dadda multiplier designs are better in terms of all design 

constraints as shown in Table-3.3. 

3.4   Summary: 

In this chapter, we learned about the reduction process of Wallace tree and Dadda tree 

multiplier. All the designs are simulated on Vivado 2019.2. Dadda algorithm follows add 

as less partial product as possible in reduction stage described in section 3.2.The 

functionality of Dadda Multiplier is similar to Wallace Tree Multiplier but Dadda 

multiplier is marginally faster in nature and it has less number of components than Wallace 

tree as depicted in Table 3.3. From the simulation results, it is clear that Dadda multiplier 

designs take less area and faster when compare with Wallace tree multiplier designs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 4 

Proposed Design 

In chapter 2 and 3, different types of adder and multipliers are presented. It was found that 

Dadda multiplier designs are better in terms of area, power and delay as compare to 

Wallace tree multiplier. In Wallace tree and Dadda multiplier designs, full adders and half 

adders were used in chapter 3 for fairer comparison. In literature, Dadda multiplier makes 

use of different types of compressors like 4:2,5:2 etc. in reduction stage. As per the survey, 

it is indicated that 4:2 compressors along with full adders and half adders is not 

investigated in conjunction with Brent-Kung adder.  

In this chapter, a Dadda multiplier is implemented using 4:2 compressors along with full 

adders and half adders in reduction stage and Brent- Kung adder in final stage. This design 

is then compared with other available design that use same reduction stage but different 

adder designs for final addition.  

 

4.1 Compressors 

Compressors are widely used in multipliers for adding partial product terms to reduce the 

number of operands. A parallel m:n compressor has m inputs and produce n outputs which 

compress the m values to n. There are different types of compressors like 3:2, 4:2, 5:2 etc. 

The 3:2 compressor is widely used as a full adder. In 4:2 compressors there are five inputs 

in which one input is the carry from previous stage [18]. Three outputs are Sum, Cout and 

Carry. In multiplier when we add many partial products then to reduce the number of 

operations it is convenient to use 4:2 compressors instead of 3:2 compressors. In Fig. 4.1, 

a 4:2 compressor is designed from the combinational circuit which consists of two 3:2 

compressors [19] . Here Cout is calculated from X1, X2 and X3 only.  

                                             X1    X2    X3     X4  

 

 

   

                     Cin  

         S’  

                       Cout 

 

 

                                       Sum       Carry           

    Fig. 4.1 4:2 Compressor 

Full Adder 1 takes three inputs X1, X2 and X3 and produced two outputs i.e. S’ and Cout 

[25]. The governing equations of Full Adder 1 are : 

 Full Adder  

111111 

 Full Adder 2 



 

 

S’=X1⨁X2⨁X3                                                                               (4.1)                                                                          

Cout = X1.X2 + X2.X3 + X3.X1 = (X1⨁X2)*X3 + X1.X2                            (4.2) 

In Full Adder 2, there are three inputs and two outputs i.e. S’, X4, Ci and Sum, Carry. The 

governing equations are: 

Sum = S’⨁X4⨁Ci = X1⨁X2⨁X3⨁X4⨁Ci                                      (4.3) 

Carry = (X4⨁Ci).S’+X4.Ci= (X4⨁Ci).( X1⨁X2⨁X3)+X4.Ci               (4.4) 

 

4.2 Dadda Reduction Stage 

 In Dadda multiplier, partial products are represented in dots. These partial products are 

organized in a tree form, which is demonstrated in Fig. 4.2 for a 16x16 multiplier. The 

sixteen rows are restructured and then partial product reduction is done with the help of 

parallel m:n compressors. In Fig.4.2, 4:2, 3:2 and 2:2 compressors are exploited.  

The dot diagram of Fig.4.2 shows this algorithm realization for an 16-bit Dadda multiplier. 

Here six reduction levels are necessary. Four dots combined by a rectangle indicates that 

uses 4:2 compressor to compress these dots. The arrow from a dot to 4:2 compressor 

designates that a carry generated in previous stage is used as an input carry (Cin) into the 

same 4:2 compressor. Similarly 3 dots joint by a Rectangle indicates a full adder. In the 

same way, two dots combination specifies a half adder. 

In first level dj height is taken as 6, and the columns which have more height than dj are 

reduced.. Arrow shows the carry transfer to the next column. Same process is repeated 

until two rowed matrix left. The reduction process of 16x16 Dadda multiplier is explained 

below.   

Step-1: First find out the out the jth stage at which we get the maximum height. In case of 

16x16 multiplier maximum   height that can be achieved is 13 at the stage 6. Hence j=6 is 

taken as initial stage. 

Step-2: Move from left to right and check each column. If column height is less than or 

equal to 13, then no changes are made and repositioning to the next column. If column 

height is greater than 13 then reduce it to 13 by using half adder, full adder or both. When 

reached to left most column then stop.  

Step-3: Go to the next stage which is decreased by one i.e. ji+1 = ji-1.  

Step-4: Repeat Step-2 and Step-3 until j=1 . 

The reduction process of 16x16 Dada multiplier is tabulated in Table 4.1. 

 

 



 

 

Table-4.1 Number of Stage, Height and Reduce Columns 

Level Stage 

j 

dj Reduced 

Columns (ci) 

1 6 13 C13-18 

2 5 9 C9-22 

3 4 6 C6-25 

4 3 4 C4-27 

5 2 3 C3-28 

6 1 2 C2-29 

 

In first level, stage j=6 is taken and with every addition in level, decrease the stage j by 

one. If height of column is less than or equal to dj (Ci  dj), no action required and move 

to column Ci+1. In other cases if  

1. dj- Ci =1, compress it with the help of half adder and move to column Ci+1. 

2. dj- Ci =2, compress it with the help of full adder and move to column Ci+1. 

3. dj- Ci >2, compress it with the help of 4-2 compressors, half adders and full adders 

till Ci  dj then move to column Ci+1. 

In this process place the sum at the bottom of column Ci  and place Cout and Carry at the 

top of column Ci+1. 

   

 



 

 

 

 

 



 

 

 

 

 

 

Fig. 4.2 Dot diagram of the 16*16 Dadda Multiplier reduction stage [9] 

   In the Fig. 4.2, 3 dots combined by a diagonal line indicates that a full adder is used to 

compress these dots. In the same way, two dots joined by a diagonal line specifies a half 

adder. In first level dj height is taken as 6, and the columns which have more height than 

dj are reduced. Arrow shows the carry transfer to the next column. Same process is 

repeated until two rowed matrix left. 

 

4.3 Simulations 

In this section four different Dadda designs are implemented using Verilog in Vivado by 

selecting Zynq-7000 xc7z014sclg484-1 FPGA. The reduction stage is same in all designs 

but for final stage addition, different adders i.e. RCA, CLA, BKA and KSA are 

investigated.  

Here four different Dadda tree multipliers are designed. The reduction stage is same in all 

designs but for final stage addition, four different adders i.e. RCA , CLA , BKA and KSA 

are used. The RTL designs and synthesized designs are given in the following subsections.  

4.3.1 Dadda tree with RCA in final stage  

In Figs. 4.3 and 4.4 RTL schematic and synthesized design of Dadda tree with RCA are 

given. The design uses 347 LUTs and 118 slices. The delay of design is 22.880 ns and the 

power consumption is 0.245 W. Power delay product (PDP) of the design is found to be 



 

 

5.61 nJ.   

 

Fig. 4.3 The RTL Schematic of 16x16 Dadda multiplier with RCA 

 

Fig. 4.4 Synthesized design of 16x16 Dadda multiplier with RCA 

4.3.2 Dadda tree with CLA in final stage 

RTL schematic and synthesized design of Dadda multiplier with CLA are shown in Figs. 

4.5 and 4.6. In this design 435 LUTs and 128 slices are used. The delay, power and PDP 

are found to be 18.415 ns, 0.248 W and 4.566 nJ respectively.   



 

 

 

Fig. 4.5 RTL Schematic of 16x16 Dadda multiplier with CLA 

 

Fig. 4.6 Synthesized Design of 16x16 Dadda multiplier with CLA 

4.3.3 Dadda tree with KSA in final stage 

In Figs. 4.7 and 4.8 RTL schematic and synthesized design of Dadda multiplier with KSA 

is given. The design uses 452 LUTs and 131 slices. The delay of design is 17.575 ns and 

the power consumption is 0.251 W. Power delay product (PDP) of the design is found to 

be 4.411 nJ .   



 

 

 

Fig. 4.7 RTL schematic of 16x16 Dadda multiplier with KSA 

 

Fig. 4.8 Synthesized design of 16x16 Dadda multiplier with KSA 

4.3.4 Dadda tree with BKA in final stage (Proposed Design) 

RTL schematic and synthesized design of Dadda multiplier with BKA is shown in Figs. 

4.9 and 4.10 respectively. In this design 402 LUTs and 118 slices are used. The delay, 

power and PDP are found to be 17.928 ns, 0.242 W and 4.338 nJ respectively.   



 

 

 

Fig. 4.9 RTL schematic of 16x16 Dadda multiplier with BKA 

 



 

 

 

Fig. 4.10 Synthesized design of 16x16 Dadda multiplier with BKA 

 

4.4 Comparison 

 The proposed design is functionally verified using simulation on VIVADO 2019.2 and 

selecting Zynq-7000 xc7z014sclg484-1 FPGA. For fairer comparison, Dadda multiplier 

is also implemented using RCA , CLA and KSA with and without 4:2 compressors. The 

designs are compared in terms of Look Up Tables (LUT) and Slices used; maximum 

delay, power and power delay product. The findings are summarized in Table 4.2. 

Following are the observations: 

1. The delay is minimum for design with 4:2 compressors and Kogge Stone adder among 

all designs. However, it uses larger area. 

2. The designs with RCA and Brent Kung adder with compressors use same number of 

slices, but the delay is minimum for the later one. 

3. The proposed design has least power consumption among all designs.   

4. There is only marginal difference between the delay of proposed design and the design 

with 4:2 compressors and Kogge Stone adder. 

5. When three faster designs are compared i.e. 4:2 compressors with CLA, Kogge Stone 

adder and Brent Kung adder (proposed) it is observed that number of LUTs are minimum 

in proposed design. Therefore proposed design takes less area. 

 



 

 

Table 4.2 Dadda Multipliers with 4-2 Compressors 

Final Stage 

Adder  

LUT Slice POWER 

(in Watt) 

Maximum 

Delay(in ns) 

Power-Delay 

Product (nJ) 

Ripple Carry 

Adder  

382 118 0.245 22.880 5.61 

Carry Look 

Ahead Adder 

435 128 0.248 18.415 4.566 

Kogge Stone 

Adder [16] 

452 131 0.251 17.575 4.411 

Brent-Kung 

Adder 

(Proposed) 

402 118 0.242 17.928 4.338 

 

4.5 Summary 

In this chapter, Dadda tree multiplier implementations with 4:2 compressors along with 

3:2 and 2:2 compressors in reduction stage described. A new implementation of  Dadda 

multiplier has been proposed in which 4:2 compressors are used in reduction stage and 

Brent Kung adder is used in final stage. Simulation results show that the proposed design 

has low power consumption among the designs employing RCA , CLA and KSA with and 

without 4:2 compressors. Dadda multiplier design with Kogge Stone adder has the high 

speed. Dadda multiplier design with RCA has less area than other designs. 

 

 

  



 

 

CHAPTER-5 

Conclusion 

   In this thesis different adders and multiplier designs are implemented using Verilog in 

Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. We learned about the different 

types of adders in chapter-2. We find out that Ripple Carry adder design utilizes the lowest 

chip area on the cost of speed and KSA is the fastest on the cost of area. Brent Kung adder 

takes lesser area if compare with Kogge Stone adder and it has marginal difference in 

terms of speed. 

In chapter-3, the reduction process of Wallace tree and Dadda tree multiplier are studied. 

We find out that the functionality of Dadda Multiplier is similar to Wallace Tree Multiplier 

but Dadda multiplier is marginally faster in nature and it has less number of components 

than Wallace tree as depicted in Table 3.3. 

A new Dadda multiplier design is proposed in chapter-4. The result shows 4:2 

compressors improve the performance of Dadda multiplier and if parallel prefix adder is 

used in final stage then the designs have better power-delay product. The observation of 

Tables 3.3 and 4.2 show that the proposed design which is the combination of 4:2 

compressors, full adder and half adder in reduction stage and the Brent-Kung adder in 

final stage has low power dissipation as compare to other designs. It consumes less area 

(Luts and slices) than the other faster designs consist of CLA and Kogge-Stone adder in 

final stage with compressors in reduction stage. 

   The proposed design has slightly more delay as compared with [16]. Therefore if Cost, 

Area and power is concern than proposed Dadda Multiplier design is a better choice. In 

future work further compressors like 5:2, 7:2 etc. can be used with or without including 

4:2 compressors in reduction stage and different parallel prefix adders in final stage. 

 

 

 

 

 

 

 

 

 

 

 



 

 

References 

[1] L. Dadda, "Some schemes for parallel multipliers," in Alta Frequenza, Vol. 34, pp. 

349-356, May, 1965. 

[2] C. S. Wallace, "A suggestion for a fast multiplier," in IEEE Trans. Electronic 

Computers, Vol. 13, pp. 14-17, Feb., 1964. 

[3] Dod, Shiwani, “Modified Booth Dadda Multiplier Using Carry Look Ahead Adder 

Design and Implementation,” in International Journal of Computer Science & Engineering 

Technology (IJCSET), ISSN : 2229-3345, Vol. 7, No. 3, March 2016.  

[4] M. Munawar et al., "Low Power and High Speed Dadda Multiplier using Carry Select 

Adder with Binary to Excess-1 Converter," in 2020 International Conference on Emerging 

Trends in Smart Technologies (ICETST), Karachi, Pakistan, 2020, pp. 1-4, doi: 

10.1109/ICETST49965.2020.9080739. 

[5] Palaniappan, Ramanathan, Vanathi, P.T.  Agarwal and S. kumar, “High Speed 

Multiplier Design Using Decomposition Logic,” in Serbian Journal of Electrical 

Engineering, 2009  

[6] P. Anitha and P. Ramanathan, "A new hybrid multiplieusing Dadda and Wallace 

method", in 2014 International Conference on Electronics and Communication Systems 

(ICECS), Coimbatore, 2014, pp. 1-4, doi: 10.1109/ECS.2014.6892623. 

[7] H. V. R. Aradhya, H. R. Madan, M. S. Suraj, M. T. Mahadikar, R. Muniraj and M. 

Moiz, "Design and performance comparison of adiabatic 8-bit multipliers," 2016 IEEE 

Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), 

Mangalore, 2016, pp. 141-147, doi: 10.1109/DISCOVER.2016.7806237. 

[8] P. Samundiswary and K. Anitha,” Design and Analysis of CMOS Based DADDA 

Multiplier,” in IJCEM International Journal of Computational Engineering & 

Management, Vol. 16 Issue 6, November 2013 

[9] D. G. Crawley and G. A. J. Amaratunga, "8*8 bit pipelined Dadda multiplier in 

CMOS," in IEE Proceedings G - Electronic Circuits and Systems, vol. 135, no. 6, pp. 231-

240, Dec. 1988, doi: 10.1049/ip-g-1.1988.0033. 

 [10] P. Gupta, A. Gupta and A. Asati, ” Ultra Low Power MUX Based Compressors for 

Wallace and Dadda Multipliers in Sub-threshold Regime,” American Journal of 

Engineering and Applied Sciences Volume 8, Issue 4,Pages 702-716,2015 

[11] P.N.V.K. Hasini, T. K. Murthy, "A Novel high-speed transistorized 8x8 Multiplier 

using 4-2 Compressors," in International Journal of Engineering Research and General 

Science Volume 3, Issue 2, Part 2, March-April, 2015 ISSN 2091-2730 

[12] O. Akbari, M. Kamal, A. A. Kusha and M. Pedram, "Dual-Quality 4:2 Compressors 



 

 

for Utilizing in Dynamic Accuracy Configurable Multipliers," in IEEE Transactions on 

Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1352-1361, April 2017, 

doi: 10.1109/TVLSI.2016.2643003. 

[13] S. Ravi, G. S. Nair, R. Narayan and H. M. Kittur,” Low Power and Efficient Dadda 

Multiplier,” in Research Journal of Applied Sciences, Engineering and Technology 9(1): 

53-57, 2015 

[14] T. Arunachalam and S. Kirubaveni, "Analysis of high speed multipliers," 2013 

International Conference on Communication and Signal Processing, Melmaruvathur, 

2013, pp. 211-214, doi: 10.1109/iccsp.2013.6577045. 

[15] B. Kumar, Potipireddi  and A. Asati,” Automated HDL generation of two's 

complement Dadda multiplier with Parallel Prefix Adders,” in International Journal of 

Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2, 

Issue 6, June 2013 

[16] M. A. Kumar, A. Sudhakar and J. V. Suman, “Design and Implementation of 

Compressor based 32-bit Multipliers for MAC Architecture,” in International Journal of 

Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-

8 Issue-9, July 2019. 

[17] A. Najafi, B. M. Nezhad and A. Najafi, "Low-power and high-speed 4-2 compressor," 

2013 36th International Convention on Information and Communication Technology, 

Electronics and Microelectronics (MIPRO), Opatija, 2013, pp. 66-69. 

[18] S. Kumar and M. Kumar, "4-2 Compressor Design with New XOR-XNOR Module," 

2014 Fourth International Conference on Advanced Computing & Communication 

Technologies, Rohtak, 2014, pp. 106-111, doi: 10.1109/ACCT.2014.36. 

[19] D. Kumar and M. Kumar, "Modified 4-2 compressor using improved multiplexer for 

low power applications," 2016 International Conference on Advances in Computing, 

Communications and Informatics (ICACCI), Jaipur, 2016, pp. 236-242, doi: 

10.1109/ICACCI.2016.7732053. 

[20] Swartzlander, "Merged Arithmetic," in IEEE Transactions on Computers, vol. C-29, 

no. 10, pp. 946-950, Oct. 1980, doi: 10.1109/TC.1980.1675482. 

[21] A. Raju, R. Patnaik, R. K. Babu and P. Mahato, "Parallel prefix adders-A comparative 

study for fastest response," 2016 International Conference on Communication and 

Electronics Systems (ICCES), Coimbatore, 2016, pp. 1-6, doi: 

10.1109/CESYS.2016.7889974. 

[22] V. Kanimozhi and G. Shankar , "Design and implementation of Arithmetic Logic 

Unit (ALU) using modified novel bit adder in QCA," 2015 International Conference on 



 

 

Innovations in Information, Embedded and Communication Systems (ICIIECS), 

Coimbatore, 2015, pp. 1-6. 

[23] H. Marzouqi, M. Qutayri, K. Salah, D. Schinianakis and T. Stouraitis, "A High-

Speed FPGA Implementation of an RSD-Based ECC Processor," in IEEE Transactions 

on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 151-164, Jan. 2016. 

[24] U. Penchalaiah and S. K. VG, "Design of High-Speed and Energy-Efficient Parallel 

Prefix Kogge Stone Adder," 2018 IEEE International Conference on System, 

Computation, Automation and Networking (ICSCA), Pondicherry, 2018, pp. 1-7. 

[25] Daphni, Samraj, Grace and Kasinadar, “Design and Analysis of 32-bit Parallel Prefix 

Adders for Low Power VLSI Applications,” in Advances in Science, Technology and 

Engineering Systems Journal, 2019. 

[26] C. H. Chang, J. Gu and M. Zhang, "Ultra low-voltage low-power CMOS 4-2 and 5-

2 compressors for fast arithmetic circuits," in IEEE Transactions on Circuits and Systems 

I: Regular Papers, vol. 51, no. 10, pp. 1985-1997, Oct. 2004. 

[27] M. Nagamatsu, S. Tanaka, J. Mori, K. Hirano, T. Noguchi and K. Hatanaka, "A 15-

ns 32*32-b CMOS multiplier with an improved parallel structure," in IEEE Journal of 

Solid-State Circuits, vol. 25, no. 2, pp. 494-497, April 1990. 

[28] G. C. Ram, D. S. Rani, R. Balasaikesava and K. B. Sindhuri, "Design of delay 

efficient modified 16 bit Wallace multiplier," 2016 IEEE International Conference on 

Recent Trends in Electronics, Information & Communication Technology (RTEICT), 

Bangalore, 2016, pp. 1887-1891, doi: 10.1109/RTEICT.2016.7808163. 

[29] S. S. Sinthura, A. Begum, B. Amala, A. Vimala and V. V. Aparna, "Implemenation 

and Analysis of Different 32-Bit Multipliers on Aspects of Power, Speed and Area," 2018 

2nd International Conference on Trends in Electronics and Informatics (ICOEI), 

Tirunelveli, 2018, pp. 312-317, doi: 10.1109/ICOEI.2018.8553859. 

 

 

 
 


