

REALIZATION OF TREE MULTIPLIERS

AND

THEIR PERFORMANCE EVALUATION

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF TECHNOLOGY
IN

VLSI DESIGN & EMBEDDED SYSTEMS

Submitted by:

RUPENDRA SINGH

2K18/VLS/14

Under the supervision of

Dr. NEETA PANDEY
Professor

ELECTRONICS & COMMUNICATION

ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

2018-2020

ELECTRONICS &COMMUNICATION

ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

 CANDIDATE’S DECLARATION

I, Rupendra Singh, Roll No. 2K18/VLS/14 student of M.Tech (VLSI & Embedded systems),

hereby declare that the work presented in this thesis designated “Realization of Tree

Multiplier and Their Performance Evaluation” is done by me and submitted to the

Department of Electronics and Communication Engineering, Delhi Technological University,

Delhi in fractional fulfillment of the prerequisite for the award of the degree of Master of

Technology.

This is an original research work and not copied from any source without acknowledge them

with proper citation and has not previously published anywhere for the award of any Degree,

Diploma Associate ship, Fellowship or other similar title or recognition.

Place: Delhi (Rupendra Singh)

Date:

ELECTRONICS & COMMUNICATION

ENGINEERING

 DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “Realization of Tree Multiplier and

Their Performance Evaluation” which is submitted by Rupendra Singh, 2K18/VLS/14, to

the Department of Electronics & Communication Engineering, Delhi Technological University,

Delhi in partial fulfillment of the prerequisite for the award of the degree of Master of

Technology, is a record of the project work carried out by the student under my supervision. To

the best of my knowledge this work has not been submitted in part or full for any Degree or

Diploma to this University or elsewhere.

Place: Delhi PROF. NEETA PANDEY

Date: Department of ECE

Delhi Technological University

ACKNOWLDEMENTS

It gives me immeasurable pleasure to express my deepest sense of gratitude and sincere

appreciation to my supervisor, Professor Neeta Pandey, who has the substance of a

intellect. She persuasively encouraged and guided me to be professional and do the work

in a proper manner. The objective of this project would not have been completed without

her persistent help. Her useful suggestions during this whole work and supportive

behavior are sincerely acknowledged.

I would like to acknowledge the support of my family and friends. They helped me a lot

directly and indirectly during this project work.

Date: RUPENDRA SINGH

 2K18/VLS/14

ABSTRACT

Multipliers are the most vital part of any computational applications for real time data processing

systems. Hence designers tries to make an efficient multiplier design on the basis of trade-off

between the design constraints i.e. speed, power and area. In this project we realize tree

multipliers (Wallace Tree and Dadda multiplier) and evaluate their performance using Verilog

in Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. The Tree multiplier architectures

are designed in three stages which are, partial product generation, their reduction and the final

addition stages. Here in partial product reduction stage, for the reduction of partial products, m:n

compressors are used. For the final addition stage different adder designs are used. The main

objective of this work is to implement different designs of adders and use them in Tree multiplier

to investigate the better design between Wallace tree and Dadda multiplier. After that 4:2

compressor are used in reduction stage and implement different designs by using this reduction

stage. A new design of tree multiplier is proposed and compare with other existing designs.

CONTENTS

Candidate's Declaration ... i

Certificate .. ii

Acknowledgement .. iii

Abstract ... iv

Content .. v

List of Figures ... vii

List of Tables ... ix

List of abbreviations .. x

CHAPTER 1 INTRODUCTION ... 1

1.1 Background …………………………………………………………………...1

1.2 Objective … ... 2

1.3 Organization ... 2

CHAPTER 2 Traditional Adders .. 4

2.1 Ripple Carry Adder .. 4

2.2 Carry Look Ahead Adder ... 6

2.3 Parallel Prefix Adder .. 10

2.3.1 Brent Kung Adder ... 12

2.3.2 Kogge Stone Adder .. 11

2.4 Comparison .. 17

2.5 Summary ... 17

CHAPTER 3 TRADITIONAL MULTIPLIERS 18

3.1 Wallace Tree Multiplier ... 18

3.1.1 Simulations.. 21

3.1.1.1 RTL Schematic ... 21

3.1.1.2 Synthesized Design ... 22

3.2 Dadda Multiplier .. 26

3.2.1 Simulations ... 28

3.2.1.1 RTL Schematic .. 28

3.2.1.2 Synthesized Design ... 29

3.3 Comparison ... 34

3.4 Summary ... 35

CHAPTER 4 PROPOSED DESIGN .. 36

4.1 Compressors ... 36

4.2 Dadda Reduction Stage .. 37

4.3 Simulation .. 40

4.3.1 Dadda Tree with RCA in final stage .. 41

4.3.2 Dadda Tree with CLA in final stage ... 42

4.3.3 Dadda Tree with Kogge Stone Adder in final stage 43

4.3.4 Dadda Tree with Brent Kung Adder in final stage 44

4.4 Comparison ... 46

4.5 Summary .. 47

CHAPTER 5 CONCLUSION ... 48

REFRENCES .. 49

LIST OF FIGURES

Fig 2.1 N-bit Ripple Carry Adder

Fig 2.2 RTL Schematic of 32 bit RCA

Fig. 2.3 Synthesized design of RCA

 Fig. 2.4 Full Adder with Generate and Propagate signal

Fig. 2.5 4-bit Carry Look-Ahead Adder Block

Fig: 2.6 RTL Schematic of 32 bit CLA

Fig. 2.7 Synthesized Design of 32 bit CLA

Fig.2.8 Parallel Prefix Adder Stages

Fig. 2.9 32-bit Brent-Kung Adder

Fig.2.10 RTL schematic of Brent-Kung Adder

Fig. 2.11 Synthesize design Brent-Kung Adder

Fig. 2.12 32- bit Kogge-Stone Adder (KSA)

Fig. 2.13 RTL Design of Kogge-Stone Adder

Fig. 2.14 Synthesize design of Kogge-Stone Adder

Fig. 3.1 16x16 Wallace tree multiplier reduction process

Fig. 3.2 RTL schematic of Wallace tree multiplier

Fig.3.3: Synthesized design of Wallace tree with RCA

Fig. 3.4 Synthesized design of Wallace tree with CLA

Fig. 3.5 Synthesized design of Wallace tree with KSA

Fig. 3.6 Synthesized design of Wallace tree with BKA

Fig. 3.7 16x16 bit Dadda multiplier design

Fig. 3.8 RTL schematic of Dadda multiplier

Fig. 3.9 Synthesized design of Dadda multiplier with RCA

Fig. 3.10 Synthesized design of Dadda multiplier with CLA

Fig. 3.11 Synthesized design of Dadda multiplier with KSA

Fig. 3.12 Synthesized design of Wallace tree with BKA

Fig. 4.1 4:2 Compressor

Fig. 4.2 Dot diagram of the 16*16 Dadda Multiplier reduction stage

Fig. 4.3 RTL Schematic of 16x16 Dadda multiplier with RCA

Fig. 4.4 Synthesized design of 16x16 Dadda multiplier with RCA

Fig. 4.5 RTL Schematic of 16x16 Dadda multiplier with CLA

Fig. 4.6 Synthesized Design of 16x16 Dadda multiplier with CLA

Fig. 4.7 RTL schematic of 16x16 Dadda multiplier with Kogge Stone adder

Fig. 4.8 Synthesized design of 16x16 Dadda multiplier with Kogge Stone adder

Fig. 4.9 RTL schematic of 16x16 Dadda multiplier with Brent Kung adder

Fig. 4.10 Synthesized design of 16x16 Dadda multiplier with Brent Kung adder

LIST OF TABLES

Table 2.1 Comparison Table of different adder designs

Table 3.1 Summary of different designs based on Wallace Tree Muliplier

Table 3.2 Summary of Dadda Multipliers implementations

Table 3.3 Combined Comparison Table

Table 4.1 Number of Stage, Height and Reduce Columns

Table 4.2 Dadda Multipliers with 4-2 Compressors

LIST OF ABBREVIATIONS

RCA – Ripple Carry Adder

CLA – Carry Look Ahead Adder

KSA – Kogge Stone Adder

BKA – Brent Kung Adder

PPA – Parallel Prefix Adder

PPs – Partial Products

CHAPTER 1

Introduction

1.1 Background

Nowadays, there is tremendous demand for low-power, less area and high speed

computational applications for real time data processing systems. These computational

applications require sophisticated data acquisition systems and hardware implementing

complex arithmetic operations, in particular fast adders and multipliers. The design

constraints (area, power and delay) are the limiting factors for a design. Though, several

options for adders and multipliers are available in literature, there is still scope to increase

the performance of these arithmetic blocks. The multiplier may be realized simply by

performing shift and add operations. Such multipliers are serial in nature, use smaller

hardware and have slow response. Tree multipliers give faster response and primarily use

three stages to compute the multiplication. These three stages are partial product

generation, partial product reduction and final addition, Dadda [1] and Wallace [2]

multipliers belong to the latter category. In Partial Product Reduction Stage, Wallace Tree

used “As soon as Add” strategy i.e. add as many partial products as possible to reduce the

levels whereas Dadda Multiplier relies on “As late as Possible” strategy i.e. use minimum

reduction essential at each level. Therefore, Dadda multiplier needs lesser additions as

compare to Wallace Tree [1] leading to reduced half adders and full adders. However, the

designing of Dadda Multiplier [1] is complex as compared to Wallace tree [1]. The levels

of reduction are same in both multipliers.

Researchers have proposed various realizations of Dadda multipliers [3-16]. Modified

Booth Algorithm is used in the generation of partial products of Dadda multiplier [3] and

the comparison with Modified Booth Wallace Multiplier shows that former has reduced

area and better speed. The Carry Select Adder with binary excess 1 converter is used in

[4] in reduction stage while decomposition logic is used in [5] wherein partial products

are divided into smaller sub groups that are used as smaller multipliers and the collective

outputs of these multipliers gives final results. Here, additional circuitry is needed for final

accumulation leading to larger implementation area. A hybrid multiplier design founded

on decomposition logic in reduction stage uses Dadda and Wallace algorithm for different

sub groups [6]. An Efficient Charge Recovery Logic (ECRL) is used for implementation

of full adders based Vedic-Dadda hybrid multiplier design [7]. Swing Restored

Complementary Pass-transistor Logic (SR-CPL) and Dual Pass-Transistor Logic (DPL)

are used in reduction and final stage [8]. A pipelined Dadda multiplier design with

pipelined carry look ahead adder in final stage is presented in [9] which possesses less

delay of each pipelined stage and less latency of entire multiplier.

To reduce the partial products in reduction stage of tree multiplier, different types of m:n

compressors can be used. Reduction stage consumes most of the power of multiplier, to

reduce it compressors are used. Compressors can reduce delay of reduction stage also.

A 4:2 compressor is one of the famous compressor used in Dadda multiplier. There are

different implementation of compressor design i.e. XOR-XNOR based compressors, XOR

and Mux based compressors, MUX based compressors etc.[17-19]. A fully Mux based

4:2 compressors utilized in reduction stage of dada multiplier design demonstrate 89%

improvement in PDP [10].

A 8x8 Dadda multiplier design with high speed whch used 4:2 compressors in Dadda

reduction stage is suggested in [11], exhibits less delay and power delay product (PDP).

In [12] approximate 4:2 compressors were used in 32-bit Dadda multiplier depicts less

power consumption and delay.

Parallel prefix adders (PPAs) have less area than other addr designs like RCA and CLA.

These adders faster in nature. Therefore researchers tried to improve the Dadda multiplier

design by introducing parallel prefix adders namely BKA [13], Sklansky tree adder [14]

and KSA [15] in final addition stage. In [15] different designs of dada multiplier are

compared and it shows that design with KSA has highest speed and BKA has less power

dissipation and area.

A 16x16 Dadda multiplier design based on 4:2 compressors with KSA in final stage shows

better speed as compare to other dadda multiplier designs [16].

1.2 Objective

The objective of this work is to realize tree multipliers using different elements in Partial

Product Reduction and Final Addition stage and evaluate the performance.

1.3 Organization

The work in this thesis is organized in five chapters including this chapter.

Chapter 2 comprises of discussion on various adders namely Ripple carry adder, carry

look ahead adder, Brent-Kung and Kogge-Stone adders.

Chapter 3 describes Wallace tree and Dadda multipliers. The performance of these

multipliers is compared on the basis of adders employed in the final addition stage. The

addition of partial products is performed using half and full adders for fairer comparison.

Chapter 4 gives realization of Dadda multiplier which uses 4:2 compressors in the

reduction stage. Subsequently a new realization is given that uses Brent-Kung adder in

final addition stage. Its performance is compared with Dadda multipliers employing

Ripple carry adder (RCA), Carry look ahead (CLA) adder, Kogge-Stone adder and Brent-

Kung adder) for final stage addition.

Chapter 5 consists of the conclusion and the future scope of the work.

All the simulations are carried out using Vivaldo software and performance is compared

on the basis of number of Look Up Tables (LUTs) and slices used, power consumption,

delay and Power Delay Product (PDP).

CHAPTER-2

Traditional Adders

Adders are used in almost every processing task and unit such as in Arithmetic Logic Unit

(ALU) in computers [22], ECC Processor Design [23], Communication System and many

other applications.

Various realizations of adders are available in literature which differ in the way carry is

propagated among stages. In this chapter the Ripple Carry Adder (RCA) and Carry Look

Ahead (CLA) adder are described first followed by Parallel Prefix Adders namely Brent-

Kung adder (BKA) and Kogge-Stone Adder (KSA). All the adders are implemented using

Verilog in Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. The performance is

measured in terms of the area, delay and power consumption of the synthesized design.

2.1 Ripple Carry Adder

A full adder adds two 1-bit numbers so to add N-bit numbers, full adders are to be

cascaded in serial fashion. Therefore, there must be N number of full adders for N-bit

parallel adder. The full adders are cascaded in a structured form so that the carry out of a

full adder behaves as the carry in of the succeeding next most significant full adder. Thus

carry out of full adder is rippled into the next stage and the adder so obtained is known as

Ripple Carry adder. An N-bit RCA is shown in Fig. 2.1 and the governing Boolean

equations are given by (2.1) where Ai and Bi represent ith bit of the input numbers. Cini

and Couti represent carry input to ith full adder. It may be noted that Cini+1 = Couti (i =

0,..,N-2).

Si = Ai ⨁ Bi ⨁ Cini (2.1)

Couti = Ai.Bi + Ai.Cini + Bi.Cini (2.2)

 An- 1 Bn-1 A2 B2 A1 B1 A0 B0

 Cout ..……..Cout

 Cin

 Sn-1 S2 S1 S0

Fig. 2.1 N-bit Ripple Carry Adder

Ripple carry adder utilizes the lowest chip area if compare to other designs. It is a

structured design hence designing for different word size is easy. It suffers from a very

long propagation chain, that makes the worst case delay largest if compared with other

implementations. So there is a trade-off between area and delay. The advantage, however,

Full

Adder

1

Full

Adder

2

Full

Adder

3

Full

Adder

n

is simplest design.

A 32 bit RCA is implemented using Verilog in Vivado by selecting Zynq-7000

xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown in Figs.

2.2 and 2.3 respectively. The design uses 30 LUTs. The delay, power and PDP are found

to be 13.4 ns, 0.243 W and 3.256 nJ respectively.

Fig. 2.2 RTL Schematic of 32 bit RCA

Fig. 2.3 Synthesized design of RCA

2.2 Carry Look Ahead Adder

Carry look ahead adder (CLA) is a parallel adder which has high speed than ripple carry

adder. It reduces the propagation delay on the cost of hardware complexity. Hence it takes

more area than RCA and also costlier. In carry look ahead adder, carries are generating

early of time therefore delays produced in the computation process is less as compare to

RCA.

In carry look ahead adder the calculation process can also be presented in two level logic

as shown in Fig. 2.4. Here two variables are define as carry Propagation (P) and

Generation (G) for each bit. If P = 1, the Cout of present bit is the same as its Cin, while

if P = 0, the Cout won't propagate its Cin, that mean Cout is independent of Cin. G = 1

means the carry will be generated regardless of its Cin. The calculation can be formulated

as follows:

Pi = Ai ⨁Bi (2.3)

Gi = Ai⨁Bi (2.4)

Si = Pi⨁Gi (2.5)

Ci+1 = Gi + (Pi⨁Ci) (2.6)

Where Pi is a carry propagator and it is related with the propagation of carry from Ci to

Ci+1. Gi is a carry generate which produces the carry when both Ai, Bi are one. Here Ci+1

is the carry out for present addition.

Fig. 2.4 Full Adder with Generate and Propagate signal

Let’s assume that the Inputs are A0, B0, Cin, A1, B1, A2, B2, A3 and B3 the subsequent

carries C1, C2 and C3 are computed using the generation and propagation signals as given

below.

C1 = G0 + P0.C0 (2.7)

C2 = G1 + P1.G0 + P1.P0.C0 (2.8)

C3 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.C0 (2.9)

If a 4 bit CLA Generator is used then the Group Generate (G3:0) and Group Propagate

(P3:0) can be expressed as given in equation 2.10 and 2.11.

G3:0 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 (2.10)

P3:0 = P3.P2.P1.P0 (2.11)

These carries are produced with help of a CLA Block. The generated carries are send to

the relevant Full Adders. A 4 bit CLA is Shown in Fig. 2.5

Fig. 2.5 4-bit Carry Look-Ahead Adder Block

The propagation delay of a CLA design can be greatly reduced using the P and G

computation network. Therefore, CLAs are the most natural approaches in high

performance adders. Carry look ahead adder uses tree configuration topologies to

formalize the representation of divide-and-conquer approach of adder design. Hence,

multi-level CLA, which exploits parallel carry computation, is achievable.

A 32 bit CLA is implemented using Verilog in Vivado by selecting Zynq-7000

xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown in Figs.

2.6 and 2.7 respectively. The design uses 68 LUTs and. The delay, power and PDP are

found to be 8.852 ns, 0.249 W and 2.204 nJ respectively.

Fig. 2.6 RTL Schematic of 32 bit CLA

Fig. 2.7 Synthesized Design of 32 bit CLA

2.3 Parallel Prefix Adder

When the carry look ahead adders is design with more number of bits for example N > 16

bits, critical delay becomes dominant in the adders due to the carry delay propagation

through the blocks of look ahead increase. This increased delay can easily diminished by

surpassing the blocks look ahead. Usually a multi stage tree of look ahead structures can

be created in order to achieve a delay that is limited with log2N, where N is the number of

bits. These multi stage structured adders are generally known as tree adders or multi stage

look ahead adders or logarithmic adders or parallel prefix adders.

There are many ways to build parallel prefix adders based on the number of wiring

between the levels, number of the fan out from each gate, total logic gates involved and

the number of levels of the logic. Parallel prefix adders (PPA) are mostly used in high

performance computational circuits since these are faster adders. The two elementary tree

adders are BKA and KSA.

BKA [25] uses an optimum number of stages but it has disproportionate loading on all

transitional stages. It uses less number of propagate and generate signals compared to

KSA. Therefore the cost of complexity is less but the gate level of depth is high. It

consumes less power but delay is more than KSA with high speed.

The process of parallel prefix adder is done in three stages, which are:

1. Pre processing

2. Carry generation stage

3. Post Computation

Carry propagation and carry generation signals are processed in pre computation stage for

each pair of input bits. In carry generation stage, carry signals are computed in parallel

using the Group Generate and Group Propagate corresponding to each bit. In the final

stage, sum bits are obtained from the computation of the carry bit and the propagate signal.

These stages are shown in the fig. 2.8.

Fig. 2.8 Stages of Parallel Prefix Adder

The Parallel Prefix Adder calculate the prefixes of 2 bits in a group. Then these prefixes

are used to compute the prefixes for a group of four bit and going on. To calculate the

output carry signal of the specific bit stage these prefixes are used . After the computation,

carries are divided into small packages. These are known as processing components. The

production of processing component is given by equations (2.12) and (2.13).

Pi:k = Pi:j . Pj-1:k (2.12)

Gi:k = Gi:j +Gj-1:k . Pi:j (2.13)

In the alternate way, the equations (2.12) and (2.13) can be presented using a symbol “o”

symbolized by Brent-Kung. The equation using “o” operation is given below:

Gi:k : Pi:k =(G i:j,P i:j)o(Gj-1:k,Pj-1:k) (2.14)

In the final computation, Sum and final output carry are calculated. It is identical for all

parallel prefix adders. The sum and final output carry equations are given in (2.15) and

(2.16):

Si = Pi.Ci (2.15)

Ci+1 = (Pi .C0) + Gi (2.16)

2.3.1 Brent-Kung adder

The Brent Kung Adder calculate the prefixes of 2 bits in a group. Then these prefixes are

used to compute the prefixes for a group of four bit then same calculates for 8 bits

groupand going on. These calculated prefixes of Brent Kung adder are used to calculate

the output carry signal of the specific bit stage.

After the computation, carries are divided into small packages. These are known as

processing components. Now these generated carries are used to calculate the sum bit of

that particular stage, for this computation Group Propagate is also used with these carries.

Brent Kung adder has total 2log2N - 1 stages or levels. For example if an adder is designed

for 32 bit, then the total number of stages are 9. Brent-Kung adder is a binary tree multi-

level topology, hence there are many similarities between traditional multi-level CLA and

Brent-Kung adder. For example, the formation of P and G variables are all sent from

lower-level network to higher level network in parallel instead of process them in

sequence. Figure 2.9 shows the flowchart of 32 bit BKA. In BKA, P and G signals are

forwarded to the next stage by using a PG operator. Each node in the fig. 2.9 represents a

PG operator. The fanout of a Brent Kung adder is limited to 2.

Fig. 2.9 32-bit Brent-Kung Adder [25]

A 32 bit Brent-Kung adder is implemented using Verilog in Vivado by selecting Zynq-

7000 xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown

in Figs. 2.10 and 2.11respectively. The design uses 51 LUTs. The delay, power and PDP

are found to be 8.748ns, 0.248 W and 2.181 nJ respectively.

Fig. 2.10 RTL Schematic of Brent-Kung adder

Fig. 2.11 Synthesize design Brent-Kung adder

2.3.2 Kogge Stone Adder

Kogge Stone adder [26] is a logarithmic adder obtained from carry look ahead adder

structure. It is one of the fastest parallel prefix adder. This parallel prefix adder has log2N

stages, where N is the total number of bits delay though the carry path compared to N for

the Ripple Carry Adder.

The fan out of Kogge Stone adder is 2 at each stage. The log2N delay is achieved at higher

cost. Kogge Stone adder has more number of PG cells as compare to Brent Kung. That

mean means this tree has more PG cells. Hence the number of gates increase to a great

amount. The power consumption of Kogge Stone adder is more as compare to other adder

designs. The KSA is widely used in high performance applications even at such high costs.

Fig. 2.12 32 bit Kogge Stone Adder [26]

A 32 bit KSA is implemented using Verilog in Vivado by selecting Zynq-7000

xc7z014sclg484-1 FPGA. The RTL schematic and synthesized designs are shown in Figs.

2.13 and 2.14 respectively. The design uses 131 LUTs. The delay, power and PDP are

found to be 8.736ns, 0.263W and 2.210 nJ respectively.

Fig. 2.13 RTL Design of Kogge-Stone Adder

Fig. 2.14 Synthesize design of Kogge-Stone Adder

2.4 Comparison

This section compares 32 bit RCA, CLA, Brent-Kung adder and KSA presented in section

2.1, 2.2, 2.3.1 and 2.3.2 respectively. The results presented in these section are, based on

Zynq-7000 xc7z014sclg484-1 FPGA, summarized in Table 2.1 on the basis of area (Look

Up Tables (LUT)), maximum delay, power and power delay product.

Table-2.1 Comparison Table of different adder designs

 LUT POWER(in watt) DELAY(in ns) PDP(in nJ)

RCA 30 0.243 13.400 3.256

CLA 68 0.249 8.852 2.204

KSA 131 0.263 8.736 2.210

BKA 51 0.248 8.748 2.181

Following observations are made on the basis of data presented in Table 2.1.

1. The number of LUTs are maximum in KSA and minimum in RCA.

2. The delay is minimum for KSA and there is marginal difference between KSA and

BKA in terms of delay.

3. Brent-Kung adder has least power consumption among all designs.

2.5 Summary:

In this chapter, we learned about the different types of adders. Ripple Carry adder design

utilizes the lowest chip area when compare to other designs as shown in Table 2.1. Ripple

Carry adder has worst case delay in all design. Therefore it is only used in low speed and

least area requirement applications. Carry look ahead adder reduces the propagation delay

on the cost of LUTs as compare to RCA as shown in Table 2.1. BKA and KSA have many

similarities with traditional multi-level CLA. For example, the formation of P and G

variables are all sent from lower-level network to higher level network in parallel instead

of process them in sequence. KSA is the fastest adder among all designs as shown in

Table 2.1. BKA will be using 2log2N - 1 stages. Hence it takes lesser area if compare with

Kogge Stone adder and it has marginal difference in terms of speed.

CHAPTER-3

Traditional Multipliers

There is tremendous demand of computational intensive application for real time data

processing. These applications require sophisticated data acquisition systems and

hardware implementing complex arithmetic operations, in particular fast adders and

multipliers. Optimizing the design constraints (delay, area and power) of multiplier units

can improve the whole system greatly. Though, several options for adders and multipliers

are available in literature, there is still scope to improve the performance of these

arithmetic blocks. In this chapter some traditional multiplier designs have been discussed

and synthesized on Vivado 2019.2 for functional verification of designs.

A multiplier may be realized simply by performing shift and add operations. This method

includes calculating partial products, shifting these partial products to the left and then

adding them in a organized way. The drawback of this procedure is to determine the partial

products, as that includes multiplying a long number (multiplicand) by one digit (of the

multiplier) at a time. Such multipliers are serial in nature, use smaller hardware and have

slow response. Tree multipliers such as Wallace tree and Dadda multipliers have faster

response time.

 In this chapter, tree multipliers (Wallace tree and Dadda Multiplier) are implemented and

the power, area and delay are computed. Both the multipliers use adders in the final

computation therefore the adders discussed in chapter 2 are used and performance is

observed. For fairer comparison, 3:2 compressors (full adder) and 2:2 compressors (half

adder) in reduction stage of all multipliers.

3.1 Wallace Tree Multiplier:

Wallace tree multiplier was first introduced by Chris Wallace in 1964 as an easy and

simple way of reducing the partial products by summing them in parallel using the tree

structure of Carry Save Adders. Though Wallace tree requires more hardware component

than shift and add multipliers, but it produces the results in far less time than shift and add

multipliers. A carry save adder can add up to three values simultaneously. The output

results of carry save adder is not a single result. Instead, the output results in a set of both

a sum and carry bits. The carry-save adder is consists of a group of full adders, each of

which adds its three input operands.

In Partial Product Reduction Stage, Wallace Tree uses “As soon as Add” strategy. That

mean add as much partial product as possible to reduce the levels. Therefore it can be say

that Wallace tree multipliers use a log depth tree structure for the reduction stage. It is

faster, but asymmetrical in nature. Wallace tree operate on ease of layout structure for

speed.

Wallace tree multipliers are generally avoided in case of low power operations, since

excess of wiring is expected to consume additional power. The Wallace tree multiplier is

a high speed multiplier design. Wallace tree reduces the number of partial products arrays

to 2 arrays for the computation of final results. In Wallace tree multiplier basically partial

products are reduced with help of half adder, full adder and different compressors.

Wallace Multiplier is usually used where high speed operation is major requirement

The Wallace tree has three stages, named:

1. Partial Product Generation Stage

2. Partial Product Reduction Stage

3. Final Addition Stage

In the first stage partial products are the multiplication results of multiplicand and

multiplier. Here simple “And” gate operation is used in which each bit of multiplicand is

multiply by each bit of multiplier. In second stage partial products are reduced to two row

arrays by using Wallace tree algorithm. Wallace multiplier use more number of m:n

compressors at each level during the reduction stage to accomplish the required two rowed

matrix. Here only 3:2 and 2:2 compressors are used. In final addition stage different types

of Carry Propagating Adders are used i.e. Ripple Carry Adder, Carry Look Ahead Adder

etc.

The reduction procedure of Wallace multiplier is given by the following algorithm [28]:

Step-1 : First generate the partial products.

Step-2 : Move from left to right and check each column. If column height is less than or

equal to 2 , then no changes are made and repositioning to the next column. If column

height is greater than 2 then reduce by using half adder, full adder or both. When reached

to left most column then stop.

Step-3 : Go to the next stage.

Step-4 : Repeat Step-2 and Step-3 until 2 rows are left .

The reduction process of Wallace multiplier is shown in Fig. 3.1.

Fig. 3.1 16x16 Wallace tree multiplier reduction process [28]

Here Stage 0 is the partial product generation stage. These dots are the partial products.

From Stage 1 to 6, partial products are reduced according to Wallace tree algorithm.

3.1.1 Simulations

In this section four different Wallace tree designs are implemented using Verilog in

Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. The reduction stage is same in

all designs but for final stage addition, different adders i.e. RCA, CLA, BKA and KSA

are investigated.

3.1.1.1 RTL Schematic

The RTL schematic of Wallace tree multiplier is given in Fig. 3.2. This schematic is same

for all designs. Here S0 block is the partial product generation stage. Partial product

reduction stage is represented by S1 block. S2 block is the final stage addition. In all

designs S0 and S1 blocks are same. Only difference is at S2 block due to different adder

designs i.e. RCA, CLA etc.

Fig. 3.2 RTL schematic of Wallace tree multiplier

3.1.1.2 Synthesized Design:

In this subsection synthesized design for four implementations are put forward.

Wallace tree with RCA in final stage:

In Fig. 3.3 a synthesized design of Wallace tree with RCA is given. The design uses 394

LUTs and 109 slices. The delay of design is 36.093 ns and the power consumption is 0.28

W. Power delay product (PDP) of the design is found to be 10.11 nJ .

Fig. 3.3 Synthesized design of Wallace tree with RCA

Wallace tree with CLA in final stage:

Synthesized design of Wallace tree with CLA is shown in fig. 3.4. In this design 394 LUTs

and 109 slices are used. The delay, power and PDP are found to be 31.442 ns, 0.289 W

and 8.835 nJ respectively.

Fig. 3.4 Synthesized design of Wallace tree with CLA

Wallace tree with KSA in final stage:

Figure 3.5 shows synthesized design of Wallace tree with Kogge-Stone Adder. The design

uses 511 LUTs and 411 slices. The delay of design is 22.060 ns and the power

consumption is 0.293 W. Power delay product (PDP) of the design is found to be 6.463

nJ.

Fig. 3.5 Synthesized design of Wallace tree with Kogge Stone Adder

Wallace tree with BKA in final stage:

Synthesized design of Wallace tree with Brent Kung adder is shown in fig. 3.6. In this

design 375 LUTs and 109 slices are used. The delay, power and PDP are found to be

29.577 ns, 0.275 W and 8.133 nJ respectively.

Fig. 3.6 Synthesized design of Wallace tree with Brent Kung adder

All designs are functionally verified using simulation on Vivado 2019.2 and selecting

Zynq-7000 xc7z014sclg484-1 FPGA. The designs are compared in terms of area (Look

Up Tables (LUT), maximum delay, power and power delay product. The findings are

summarized in Tables-3.1.

Table 3.1 Summary of different designs based on Wallace Tree Muliplier

Final Adder LUTs Slices POWER

(in Watt)

Delay(in ns) PDP(nJ)

RCA 394 109 0.28 36.083 10.11

CLA 411 124 0.289 31.442 8.835

KSA 511 141 0.293 22.060 6.463

BKA 375 109 0.275 29.577 8.133

Following are the observations on the basis of Table 3.1.

1. The delay is minimum for design with Kogge-Stone Adder among all designs.

However, it uses larger area in terms of LUTs and Slices.

2. The designs with RCA and Brent Kung adder use same number of slices, but the delay

is minimum for the later one.

3. The Wallace tree design with Brent Kung adder has least power consumption among

all designs.

4. There is only marginal difference between the delay of multiplier design with BKA and

the design with KSA.

3.2 Dadda Multiplier:

Dadda Multiplier is one of the well-known column compression multiplier was first

presented by Dadda in 1965 [3]. The functionality of Dadda Multiplier is similar to

Wallace Tree Multiplier but Dadda multiplier is marginally faster in nature. Dadda

multiplier has less number of components than Wallace tree. In Dadda multiplier, partial

products are represented in dots. These partial products are organized in a tree form, which

is demonstrated in Fig. 3.7. The sixteen rows are restructured and then partial product

reduction is done with the help of parallel m:n compressors. In Fig. 3.7, 3:2 and 2:2

compressors are exploited. A full adder is the realization of a 3:2 compressor which

receives 3 inputs and produce 2 outputs. Similarly a half adder is the implementation of

2:2 compressor.

Dadda multipliers use least number of m:n compressors at each level during the reduction

stage to accomplish the required two rowed matrix. The reduction procedure of Dadda

multiplier is given by the Dadda algorithm [20] :

1. d1 = 2 and dj+1 = [1.5*dj]. Here dj is the maximum height sequence of the matrix for

the jth stage. The initial value of j is taken as the maximum such that dj < min (b1, b2).

Here b1 and b2 are the number of bits of multiplier and multiplicand.

2. Now reduce the height of those columns which is greater than the dj or which will

have more height than dj as they receive carries from m-n compressors of previous

columns.

3. Let j = j-1 and repeat step 2 until the only 2 rows are left.

 In final stage partial products are reduced in two-rowed arrays. To get the final multiplier

output these two-rowed arrays are added using carry propagation adder [20]. The dot

diagram shown in Fig. 3.7 shows this algorithm realization for an 16-bit Dadda multiplier.

Here six reduction levels are necessary. In fig. 3.7 dots joint by a Rectangle indicates a

full adder. In the same way, two dots combination specifies a half adder.

 In first level dj height is taken as 6, and the columns which have more height than dj are

reduced.. Arrow shows the carry transfer to the next column. Same process is repeated

until two rowed matrix left.

Fig. 3.7 16x16 bit Dadda multiplier design [29]

The reduction process of 16x16 Dadda multiplier is explained below.

Step-1 : First find out the out the jth stage at which we get the maximum height. In case of

16x16 multiplier maximum height that can be achieved is 13 at the stage 6. Hence j=6 is

taken as initial stage.

Step-2 : Move from left to right and check each column. If column height is less than or

equal to 13, then no changes are made and repositioning to the next column. If column

height is greater than 13 then reduce it to 13 by using half adder, full adder or both. When

reached to left most column then stop.

Step-3 : Go to the next stage which is decreased by one i.e. ji+1 = ji-1.

Step-4 : Repeat Step-2 and Step-3 until j=1 .

3.2.1 Simulation:

Here four different Dadda multiplier designs are implemented using Verilog in Vivado by

selecting Zynq-7000 xc7z014sclg484-1 FPGA. The partial product generation and

reduction stages are same in all four designs. For final stage addition, different adders i.e.

RCA, CLA, BKA and KSA are investigated.

The RTL schematic and synthesized designs are given in following sections..

3.2.1.1 RTL Schematic

The RTL schematic of Dadda multiplier is given in fig. 3.8. The RTL Schematic block is

same for all designs. Here S0 block is the partial product generation stage. Partial product

reduction stage is represented by S1 block. S2 block is the final stage addition. In all

designs S0 and S1 blocks are same. Only difference is at S2 block due to different adder

designs i.e. RCA, CLA etc.

Fig. 3.8 RTL schematic of Dadda multiplier

3.1.1.2 Synthesized Designs:

In this subsection synthesized design of four implementations is given.

Dadda tree with RCA in final stage :

In Fig. 3.9 a synthesized design of Dadda tree with RCA is given. The design uses 347

LUTs and 106 slices. The delay of design is 24.726 ns and the power consumption is 0.277

W. Power delay product (PDP) of the design is found to be 6.85 nJ .

Fig. 3.9 Synthesized design of Dadda multiplier with RCA

Dadda multiplier with CLA in final stage :

Synthesized design of Dadda multiplier with CLA is shown in fig. 3.10. In this design 386

LUTs and 144 slices are used. The delay, power and PDP are found to be 22.176 ns, 0.281

W and 6.231 nJ respectively.

Fig. 3.10 Synthesized design of Dadda multiplier with CLA

Dadda tree with KSA in final stage:

In fig. 3.11 a synthesized design of Dadda multiplier with KSA is given. The design uses

413 LUTs and 121 slices. The delay of design is 20.366 ns and the power consumption is

0.283 W. Power delay product (PDP) of the design is found to be 6.046 nJ .

Fig. 3.11 Synthesized design of Dadda multiplier with Kogge Stone adder

Dadda tree with Brent Kung adder in final stage:

Synthesized design of Dadda multiplier with BKA is shown in fig. 3.12. In this design

344 LUTs and 98 slices are used. The delay, power and PDP are found to be 21.098 ns,

0.274 W and 8.133 nJ respectively.

Fig. 3.12 Synthesized design of Wallace tree with Brent Kung adder

All designs are functionally verified using simulation on Vivado 2019.2 and selecting

Zynq-7000 xc7z014sclg484-1 FPGA. The designs are compared in terms of area(Look

Up Tables (LUT)),maximum delay, power and power delay product. The findings are

summarized in Tables 3.2.

Following are the observations made on the basis of Table 3.2.

1. The delay is minimum for design with Kogge-Stone adder among all designs. However,

it uses larger area.

3. The designs with RCA and Brent Kung adder have lesser area when compare to other

designs, but the delay is minimum for the later one.

4. The Dadda multiplier design with Brent Kung adder has least power consumption

among all designs.

5. There is only marginal difference between the delay of multiplier design with BKA and

the design with KSA.

Table 3.2 Summary of Dadda Multipliers implementations

Final Stage

Adder

LUT Slice POWER

(in

Watt)

Maximum

Delay (in

ns)

Power-Delay

Product (nJ)

Ripple

Carry

Adder

347 106 0.277 24.726 6.85

Carry Look

Ahead

Adder

386 144 0.281 22.176 6.231

Kogge Stone

Adder

413 121 0.283 20.366 6.046

Brent-Kung

Adder

344 98 0.274 21.098 6.054

 3.3 Comparison:

 All designs are functionally verified using simulation on Vivado 2019.2 and selecting

Zynq-7000 xc7z014sclg484-1 FPGA. For fairer comparison, full adders and half adders

are used in reduction stage of all designs. For final stage additions we are using one of the

adder which are discussed in chapter-2 i.e. RCA , CLA, KSA and BKA.

The results of Tables 3.1 and 3.2 are combined and presented in Table 3.3 to find out a

better design. Following observations are made on the basis of data presented in Table

3.3.

1. The number of LUTs and slices increase in Wallace Tree designs than their counterpart

employing Dadda multiplier.

2. The delay is minimum for Dadda multiplier design and Kogge-Stone adder among all

designs. However, it uses larger area.

3. The Dadda multiplier design with Brent Kung adder in final stage has least power

consumption among all designs.

5. There is only marginal difference between the delay of Dadda multiplier design with

BKA and the design with KSA.

Table-3.3 Combined Comparison Table

Wallace

Tree

Multiplier

Final

Adder

LUT Slice POWER

(in Watt)

Delay(in

ns)

PDP(nJ)

RCA 394 109 0.28 36.083 10.11

CLA 411 124 0.293 31.442 8.835

KSA 511 141 0.281 22.060 6.463

BKA 375 109 0.276 29.577 8.133

Dadda

Multiplier

RCA
347 106 0.281 24.726 6.85

CLA
386 144 0.283 22.176 6.231

KSA
413 121 0.277 21.366 6.046

BKA
344 98 0.274 22.098 6.054

Simulation result shows Dadda multiplier designs are better in terms of all design

constraints as shown in Table-3.3.

3.4 Summary:

In this chapter, we learned about the reduction process of Wallace tree and Dadda tree

multiplier. All the designs are simulated on Vivado 2019.2. Dadda algorithm follows add

as less partial product as possible in reduction stage described in section 3.2.The

functionality of Dadda Multiplier is similar to Wallace Tree Multiplier but Dadda

multiplier is marginally faster in nature and it has less number of components than Wallace

tree as depicted in Table 3.3. From the simulation results, it is clear that Dadda multiplier

designs take less area and faster when compare with Wallace tree multiplier designs.

CHAPTER 4

Proposed Design

In chapter 2 and 3, different types of adder and multipliers are presented. It was found that

Dadda multiplier designs are better in terms of area, power and delay as compare to

Wallace tree multiplier. In Wallace tree and Dadda multiplier designs, full adders and half

adders were used in chapter 3 for fairer comparison. In literature, Dadda multiplier makes

use of different types of compressors like 4:2,5:2 etc. in reduction stage. As per the survey,

it is indicated that 4:2 compressors along with full adders and half adders is not

investigated in conjunction with Brent-Kung adder.

In this chapter, a Dadda multiplier is implemented using 4:2 compressors along with full

adders and half adders in reduction stage and Brent- Kung adder in final stage. This design

is then compared with other available design that use same reduction stage but different

adder designs for final addition.

4.1 Compressors

Compressors are widely used in multipliers for adding partial product terms to reduce the

number of operands. A parallel m:n compressor has m inputs and produce n outputs which

compress the m values to n. There are different types of compressors like 3:2, 4:2, 5:2 etc.

The 3:2 compressor is widely used as a full adder. In 4:2 compressors there are five inputs

in which one input is the carry from previous stage [18]. Three outputs are Sum, Cout and

Carry. In multiplier when we add many partial products then to reduce the number of

operations it is convenient to use 4:2 compressors instead of 3:2 compressors. In Fig. 4.1,

a 4:2 compressor is designed from the combinational circuit which consists of two 3:2

compressors [19] . Here Cout is calculated from X1, X2 and X3 only.

 X1 X2 X3 X4

 Cin

 S’

 Cout

 Sum Carry

 Fig. 4.1 4:2 Compressor

Full Adder 1 takes three inputs X1, X2 and X3 and produced two outputs i.e. S’ and Cout

[25]. The governing equations of Full Adder 1 are :

 Full Adder

111111

 Full Adder 2

S’=X1⨁X2⨁X3 (4.1)

Cout = X1.X2 + X2.X3 + X3.X1 = (X1⨁X2)*X3 + X1.X2 (4.2)

In Full Adder 2, there are three inputs and two outputs i.e. S’, X4, Ci and Sum, Carry. The

governing equations are:

Sum = S’⨁X4⨁Ci = X1⨁X2⨁X3⨁X4⨁Ci (4.3)

Carry = (X4⨁Ci).S’+X4.Ci= (X4⨁Ci).(X1⨁X2⨁X3)+X4.Ci (4.4)

4.2 Dadda Reduction Stage

 In Dadda multiplier, partial products are represented in dots. These partial products are

organized in a tree form, which is demonstrated in Fig. 4.2 for a 16x16 multiplier. The

sixteen rows are restructured and then partial product reduction is done with the help of

parallel m:n compressors. In Fig.4.2, 4:2, 3:2 and 2:2 compressors are exploited.

The dot diagram of Fig.4.2 shows this algorithm realization for an 16-bit Dadda multiplier.

Here six reduction levels are necessary. Four dots combined by a rectangle indicates that

uses 4:2 compressor to compress these dots. The arrow from a dot to 4:2 compressor

designates that a carry generated in previous stage is used as an input carry (Cin) into the

same 4:2 compressor. Similarly 3 dots joint by a Rectangle indicates a full adder. In the

same way, two dots combination specifies a half adder.

In first level dj height is taken as 6, and the columns which have more height than dj are

reduced.. Arrow shows the carry transfer to the next column. Same process is repeated

until two rowed matrix left. The reduction process of 16x16 Dadda multiplier is explained

below.

Step-1: First find out the out the jth stage at which we get the maximum height. In case of

16x16 multiplier maximum height that can be achieved is 13 at the stage 6. Hence j=6 is

taken as initial stage.

Step-2: Move from left to right and check each column. If column height is less than or

equal to 13, then no changes are made and repositioning to the next column. If column

height is greater than 13 then reduce it to 13 by using half adder, full adder or both. When

reached to left most column then stop.

Step-3: Go to the next stage which is decreased by one i.e. ji+1 = ji-1.

Step-4: Repeat Step-2 and Step-3 until j=1 .

The reduction process of 16x16 Dada multiplier is tabulated in Table 4.1.

Table-4.1 Number of Stage, Height and Reduce Columns

Level Stage

j

dj Reduced

Columns (ci)

1 6 13 C13-18

2 5 9 C9-22

3 4 6 C6-25

4 3 4 C4-27

5 2 3 C3-28

6 1 2 C2-29

In first level, stage j=6 is taken and with every addition in level, decrease the stage j by

one. If height of column is less than or equal to dj (Ci dj), no action required and move

to column Ci+1. In other cases if

1. dj- Ci =1, compress it with the help of half adder and move to column Ci+1.

2. dj- Ci =2, compress it with the help of full adder and move to column Ci+1.

3. dj- Ci >2, compress it with the help of 4-2 compressors, half adders and full adders

till Ci dj then move to column Ci+1.

In this process place the sum at the bottom of column Ci and place Cout and Carry at the

top of column Ci+1.

Fig. 4.2 Dot diagram of the 16*16 Dadda Multiplier reduction stage [9]

 In the Fig. 4.2, 3 dots combined by a diagonal line indicates that a full adder is used to

compress these dots. In the same way, two dots joined by a diagonal line specifies a half

adder. In first level dj height is taken as 6, and the columns which have more height than

dj are reduced. Arrow shows the carry transfer to the next column. Same process is

repeated until two rowed matrix left.

4.3 Simulations

In this section four different Dadda designs are implemented using Verilog in Vivado by

selecting Zynq-7000 xc7z014sclg484-1 FPGA. The reduction stage is same in all designs

but for final stage addition, different adders i.e. RCA, CLA, BKA and KSA are

investigated.

Here four different Dadda tree multipliers are designed. The reduction stage is same in all

designs but for final stage addition, four different adders i.e. RCA , CLA , BKA and KSA

are used. The RTL designs and synthesized designs are given in the following subsections.

4.3.1 Dadda tree with RCA in final stage

In Figs. 4.3 and 4.4 RTL schematic and synthesized design of Dadda tree with RCA are

given. The design uses 347 LUTs and 118 slices. The delay of design is 22.880 ns and the

power consumption is 0.245 W. Power delay product (PDP) of the design is found to be

5.61 nJ.

Fig. 4.3 The RTL Schematic of 16x16 Dadda multiplier with RCA

Fig. 4.4 Synthesized design of 16x16 Dadda multiplier with RCA

4.3.2 Dadda tree with CLA in final stage

RTL schematic and synthesized design of Dadda multiplier with CLA are shown in Figs.

4.5 and 4.6. In this design 435 LUTs and 128 slices are used. The delay, power and PDP

are found to be 18.415 ns, 0.248 W and 4.566 nJ respectively.

Fig. 4.5 RTL Schematic of 16x16 Dadda multiplier with CLA

Fig. 4.6 Synthesized Design of 16x16 Dadda multiplier with CLA

4.3.3 Dadda tree with KSA in final stage

In Figs. 4.7 and 4.8 RTL schematic and synthesized design of Dadda multiplier with KSA

is given. The design uses 452 LUTs and 131 slices. The delay of design is 17.575 ns and

the power consumption is 0.251 W. Power delay product (PDP) of the design is found to

be 4.411 nJ .

Fig. 4.7 RTL schematic of 16x16 Dadda multiplier with KSA

Fig. 4.8 Synthesized design of 16x16 Dadda multiplier with KSA

4.3.4 Dadda tree with BKA in final stage (Proposed Design)

RTL schematic and synthesized design of Dadda multiplier with BKA is shown in Figs.

4.9 and 4.10 respectively. In this design 402 LUTs and 118 slices are used. The delay,

power and PDP are found to be 17.928 ns, 0.242 W and 4.338 nJ respectively.

Fig. 4.9 RTL schematic of 16x16 Dadda multiplier with BKA

Fig. 4.10 Synthesized design of 16x16 Dadda multiplier with BKA

4.4 Comparison

 The proposed design is functionally verified using simulation on VIVADO 2019.2 and

selecting Zynq-7000 xc7z014sclg484-1 FPGA. For fairer comparison, Dadda multiplier

is also implemented using RCA , CLA and KSA with and without 4:2 compressors. The

designs are compared in terms of Look Up Tables (LUT) and Slices used; maximum

delay, power and power delay product. The findings are summarized in Table 4.2.

Following are the observations:

1. The delay is minimum for design with 4:2 compressors and Kogge Stone adder among

all designs. However, it uses larger area.

2. The designs with RCA and Brent Kung adder with compressors use same number of

slices, but the delay is minimum for the later one.

3. The proposed design has least power consumption among all designs.

4. There is only marginal difference between the delay of proposed design and the design

with 4:2 compressors and Kogge Stone adder.

5. When three faster designs are compared i.e. 4:2 compressors with CLA, Kogge Stone

adder and Brent Kung adder (proposed) it is observed that number of LUTs are minimum

in proposed design. Therefore proposed design takes less area.

Table 4.2 Dadda Multipliers with 4-2 Compressors

Final Stage

Adder

LUT Slice POWER

(in Watt)

Maximum

Delay(in ns)

Power-Delay

Product (nJ)

Ripple Carry

Adder

382 118 0.245 22.880 5.61

Carry Look

Ahead Adder

435 128 0.248 18.415 4.566

Kogge Stone

Adder [16]

452 131 0.251 17.575 4.411

Brent-Kung

Adder

(Proposed)

402 118 0.242 17.928 4.338

4.5 Summary

In this chapter, Dadda tree multiplier implementations with 4:2 compressors along with

3:2 and 2:2 compressors in reduction stage described. A new implementation of Dadda

multiplier has been proposed in which 4:2 compressors are used in reduction stage and

Brent Kung adder is used in final stage. Simulation results show that the proposed design

has low power consumption among the designs employing RCA , CLA and KSA with and

without 4:2 compressors. Dadda multiplier design with Kogge Stone adder has the high

speed. Dadda multiplier design with RCA has less area than other designs.

CHAPTER-5

Conclusion

 In this thesis different adders and multiplier designs are implemented using Verilog in

Vivado by selecting Zynq-7000 xc7z014sclg484-1 FPGA. We learned about the different

types of adders in chapter-2. We find out that Ripple Carry adder design utilizes the lowest

chip area on the cost of speed and KSA is the fastest on the cost of area. Brent Kung adder

takes lesser area if compare with Kogge Stone adder and it has marginal difference in

terms of speed.

In chapter-3, the reduction process of Wallace tree and Dadda tree multiplier are studied.

We find out that the functionality of Dadda Multiplier is similar to Wallace Tree Multiplier

but Dadda multiplier is marginally faster in nature and it has less number of components

than Wallace tree as depicted in Table 3.3.

A new Dadda multiplier design is proposed in chapter-4. The result shows 4:2

compressors improve the performance of Dadda multiplier and if parallel prefix adder is

used in final stage then the designs have better power-delay product. The observation of

Tables 3.3 and 4.2 show that the proposed design which is the combination of 4:2

compressors, full adder and half adder in reduction stage and the Brent-Kung adder in

final stage has low power dissipation as compare to other designs. It consumes less area

(Luts and slices) than the other faster designs consist of CLA and Kogge-Stone adder in

final stage with compressors in reduction stage.

 The proposed design has slightly more delay as compared with [16]. Therefore if Cost,

Area and power is concern than proposed Dadda Multiplier design is a better choice. In

future work further compressors like 5:2, 7:2 etc. can be used with or without including

4:2 compressors in reduction stage and different parallel prefix adders in final stage.

References

[1] L. Dadda, "Some schemes for parallel multipliers," in Alta Frequenza, Vol. 34, pp.

349-356, May, 1965.

[2] C. S. Wallace, "A suggestion for a fast multiplier," in IEEE Trans. Electronic

Computers, Vol. 13, pp. 14-17, Feb., 1964.

[3] Dod, Shiwani, “Modified Booth Dadda Multiplier Using Carry Look Ahead Adder

Design and Implementation,” in International Journal of Computer Science & Engineering

Technology (IJCSET), ISSN : 2229-3345, Vol. 7, No. 3, March 2016.

[4] M. Munawar et al., "Low Power and High Speed Dadda Multiplier using Carry Select

Adder with Binary to Excess-1 Converter," in 2020 International Conference on Emerging

Trends in Smart Technologies (ICETST), Karachi, Pakistan, 2020, pp. 1-4, doi:

10.1109/ICETST49965.2020.9080739.

[5] Palaniappan, Ramanathan, Vanathi, P.T. Agarwal and S. kumar, “High Speed

Multiplier Design Using Decomposition Logic,” in Serbian Journal of Electrical

Engineering, 2009

[6] P. Anitha and P. Ramanathan, "A new hybrid multiplieusing Dadda and Wallace

method", in 2014 International Conference on Electronics and Communication Systems

(ICECS), Coimbatore, 2014, pp. 1-4, doi: 10.1109/ECS.2014.6892623.

[7] H. V. R. Aradhya, H. R. Madan, M. S. Suraj, M. T. Mahadikar, R. Muniraj and M.

Moiz, "Design and performance comparison of adiabatic 8-bit multipliers," 2016 IEEE

Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER),

Mangalore, 2016, pp. 141-147, doi: 10.1109/DISCOVER.2016.7806237.

[8] P. Samundiswary and K. Anitha,” Design and Analysis of CMOS Based DADDA

Multiplier,” in IJCEM International Journal of Computational Engineering &

Management, Vol. 16 Issue 6, November 2013

[9] D. G. Crawley and G. A. J. Amaratunga, "8*8 bit pipelined Dadda multiplier in

CMOS," in IEE Proceedings G - Electronic Circuits and Systems, vol. 135, no. 6, pp. 231-

240, Dec. 1988, doi: 10.1049/ip-g-1.1988.0033.

 [10] P. Gupta, A. Gupta and A. Asati, ” Ultra Low Power MUX Based Compressors for

Wallace and Dadda Multipliers in Sub-threshold Regime,” American Journal of

Engineering and Applied Sciences Volume 8, Issue 4,Pages 702-716,2015

[11] P.N.V.K. Hasini, T. K. Murthy, "A Novel high-speed transistorized 8x8 Multiplier

using 4-2 Compressors," in International Journal of Engineering Research and General

Science Volume 3, Issue 2, Part 2, March-April, 2015 ISSN 2091-2730

[12] O. Akbari, M. Kamal, A. A. Kusha and M. Pedram, "Dual-Quality 4:2 Compressors

for Utilizing in Dynamic Accuracy Configurable Multipliers," in IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1352-1361, April 2017,

doi: 10.1109/TVLSI.2016.2643003.

[13] S. Ravi, G. S. Nair, R. Narayan and H. M. Kittur,” Low Power and Efficient Dadda

Multiplier,” in Research Journal of Applied Sciences, Engineering and Technology 9(1):

53-57, 2015

[14] T. Arunachalam and S. Kirubaveni, "Analysis of high speed multipliers," 2013

International Conference on Communication and Signal Processing, Melmaruvathur,

2013, pp. 211-214, doi: 10.1109/iccsp.2013.6577045.

[15] B. Kumar, Potipireddi and A. Asati,” Automated HDL generation of two's

complement Dadda multiplier with Parallel Prefix Adders,” in International Journal of

Advanced Research in Electrical, Electronics and Instrumentation Engineering Vol. 2,

Issue 6, June 2013

[16] M. A. Kumar, A. Sudhakar and J. V. Suman, “Design and Implementation of

Compressor based 32-bit Multipliers for MAC Architecture,” in International Journal of

Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-

8 Issue-9, July 2019.

[17] A. Najafi, B. M. Nezhad and A. Najafi, "Low-power and high-speed 4-2 compressor,"

2013 36th International Convention on Information and Communication Technology,

Electronics and Microelectronics (MIPRO), Opatija, 2013, pp. 66-69.

[18] S. Kumar and M. Kumar, "4-2 Compressor Design with New XOR-XNOR Module,"

2014 Fourth International Conference on Advanced Computing & Communication

Technologies, Rohtak, 2014, pp. 106-111, doi: 10.1109/ACCT.2014.36.

[19] D. Kumar and M. Kumar, "Modified 4-2 compressor using improved multiplexer for

low power applications," 2016 International Conference on Advances in Computing,

Communications and Informatics (ICACCI), Jaipur, 2016, pp. 236-242, doi:

10.1109/ICACCI.2016.7732053.

[20] Swartzlander, "Merged Arithmetic," in IEEE Transactions on Computers, vol. C-29,

no. 10, pp. 946-950, Oct. 1980, doi: 10.1109/TC.1980.1675482.

[21] A. Raju, R. Patnaik, R. K. Babu and P. Mahato, "Parallel prefix adders-A comparative

study for fastest response," 2016 International Conference on Communication and

Electronics Systems (ICCES), Coimbatore, 2016, pp. 1-6, doi:

10.1109/CESYS.2016.7889974.

[22] V. Kanimozhi and G. Shankar , "Design and implementation of Arithmetic Logic

Unit (ALU) using modified novel bit adder in QCA," 2015 International Conference on

Innovations in Information, Embedded and Communication Systems (ICIIECS),

Coimbatore, 2015, pp. 1-6.

[23] H. Marzouqi, M. Qutayri, K. Salah, D. Schinianakis and T. Stouraitis, "A High-

Speed FPGA Implementation of an RSD-Based ECC Processor," in IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, pp. 151-164, Jan. 2016.

[24] U. Penchalaiah and S. K. VG, "Design of High-Speed and Energy-Efficient Parallel

Prefix Kogge Stone Adder," 2018 IEEE International Conference on System,

Computation, Automation and Networking (ICSCA), Pondicherry, 2018, pp. 1-7.

[25] Daphni, Samraj, Grace and Kasinadar, “Design and Analysis of 32-bit Parallel Prefix

Adders for Low Power VLSI Applications,” in Advances in Science, Technology and

Engineering Systems Journal, 2019.

[26] C. H. Chang, J. Gu and M. Zhang, "Ultra low-voltage low-power CMOS 4-2 and 5-

2 compressors for fast arithmetic circuits," in IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 51, no. 10, pp. 1985-1997, Oct. 2004.

[27] M. Nagamatsu, S. Tanaka, J. Mori, K. Hirano, T. Noguchi and K. Hatanaka, "A 15-

ns 32*32-b CMOS multiplier with an improved parallel structure," in IEEE Journal of

Solid-State Circuits, vol. 25, no. 2, pp. 494-497, April 1990.

[28] G. C. Ram, D. S. Rani, R. Balasaikesava and K. B. Sindhuri, "Design of delay

efficient modified 16 bit Wallace multiplier," 2016 IEEE International Conference on

Recent Trends in Electronics, Information & Communication Technology (RTEICT),

Bangalore, 2016, pp. 1887-1891, doi: 10.1109/RTEICT.2016.7808163.

[29] S. S. Sinthura, A. Begum, B. Amala, A. Vimala and V. V. Aparna, "Implemenation

and Analysis of Different 32-Bit Multipliers on Aspects of Power, Speed and Area," 2018

2nd International Conference on Trends in Electronics and Informatics (ICOEI),

Tirunelveli, 2018, pp. 312-317, doi: 10.1109/ICOEI.2018.8553859.

