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ABSTRACT 

Landslides are serious geological hazards that cause significant damage and casualties in 

India, creating a high need to identify landslide-prone areas and their associated causative 

factors, for efficient risk reduction strategies by authorities. This study aims at evaluating 

the effectiveness of four GIS-based statistical approaches namely, Frequency ratio (FR), 

Shannon Entropy (SE), Information Value (IV) and Weight-of-Evidence (WofE) for the 

landslide susceptibility mapping of a region in Kullu district, situated in the state of 

Himachal Pradesh, where a high surge in tourism and development since the past decade 

has been witnessed. The causative factors considered as input in this study are slope, 

aspect, curvature, lithology, distance to roads, distance to faults/lineaments, distance to 

drainage, land use/land cover and elevation. Since the existing landslide inventory maps 

from Geological Survey of India and past literatures do not cover the whole study area, 

an updated inventory has been prepared from visual interpretation of Google Earth 

Images (2001-2019) and use of a Scarp Identification and Contour Connection method 

(SICCM) ArcGIS toolbox. The compiled landslide inventory data was randomly divided 

into training (70%) and validation (30%) datasets. The correlation between past landslide 

locations and each landslide-influencing parameter has been carefully evaluated using the 

statistical models. Four landslide susceptibility maps resulted from this research work 

which were then validated and compared using the three different metrics namely, 

Landslide Density Index (LDI), Relative Landslide Density Index (Rindex) and Area Under 

Curve (AUC) of Receiver Operator Characteristics (ROC) to find out the most suitable 

methods for susceptibility mapping in this geographical extent. FR and SE depicted 

highest fitness and predictive ability respectively. The resultant maps can be useful for 

future land use planning and disaster mitigation measures. 
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CHAPTER 1  
INTRODUCTION 

1.1 Background and motivation of research 

Landslides are among the most-devastating natural disasters causing 

immense damage to life and property. The complex nature of landslide has made it a 

challenging subject of study involving different fields to work collaboratively for more 

efficient and holistic solutions formulation.  

India has witnessed a long history of disastrous events, most particularly 

landslides in the Himalayan and Ghats mountainous regions. The Himalayan orogeny is 

comparatively younger characterized by unstable geology and presence of major faults. 

Anthropogenic factors along with other triggering factors such as flash-floods, heavy 

rainfall, earthquakes among others, further aggravated the situation since the last decade. 

Himachal Pradesh, one of the 22 states vulnerable to landslide hazard in India, 

has been receiving an increasing number of tourists every year leading to an increase in 

developmental activities such as guest house construction, road widening/construction, 

hydro-power generation. These development works have definitely been a way of socio-

economic upliftment for rural mountain areas, but at the risk of further increasing the 

vulnerability of slopes in the form of un-scientific dumping of materials along drainage 

channels, un-engineered road cuts, etc. Despite the immense efforts by stakeholders in 

mapping landslides in the area, the influencing factors for slope failures in some areas 

have not well been evaluated nor have many susceptibility studies been conducted at this 

scale using four probabilistic approaches along the Parvati valley, situated in the district 

of Kullu. 

Risk assessment and mitigation of these disasters is possible only after a 

complete understanding of the causative factors, the methods employed and their relative 

accuracy as well as a detailed updated database of past landslide incidents for the study 

area. As a result, a comparative study on different approaches to landslide susceptibility 

mapping has been chosen for a better grasp on the present landslide scenario in this area. 
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1.2 Aims of research work 

This study aims at classifying a study area into different landslide 

susceptibility classes using four statistical methods and at analysing the direct 

relationships between the different selected landslide causative factors to landslide 

occurrences in a GIS environment. The goal of this investigation is to reveal the 

applicability of the different probabilistic methods in the mountainous region of Kullu.  

This work also sets sights on further fuelling the drive for more sustainable 

and ecologically sound development in the area by creating awareness of the contrasting 

effects of un-planned development on the vulnerability of slopes. 

1.3 Objectives 

The main research objectives formulated for this research work has been 

outlined as: 

• To have a more detailed insight on the study area, the surrounding landslide-prone 

areas, the causative factors considered by other authors and the different landslide 

susceptibility evaluation methods employed in India and other countries through 

peer-reviewed journals, conference papers and reports. 

• To generate an inventory for past landslides in the area from available sources and 

creation of a new incidence map to cater for landslides previously un-mapped or 

un-reported. 

• To create thematic maps for each landslide causative factor considered in this 

research using Geographic Information Systems (GIS) platform. 

• Usage of four bi-variate statistical approaches; Frequency Ratio (FR), Shannon 

Entropy (SE), Information Value (IV) and Weight-of-Evidence (WofE) to find 

out the level of correlation between the factors and 75% of occurrences and using 

these ratios to reclassify the thematic layers. 

• Creation of landslide susceptibility maps for the study area for the four different 

approaches and their classification into areas of low and high susceptibilities. 
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• Validation of prepared final maps using the testing (25%) datasets is to be carried 

out using the different metrics to assess both model fitness and predictive capacity 

of models. 

• This research is a product from months of consultation of peer-reviewed research 

papers, government reports and manuals on landslide-related studies in the Indian 

Himalayan region and around the world.  

The backbone of the study is the landslide incidence map, where each past 

slide has been carefully identified, examined and recorded, since the main assumption of 

the probabilistic approaches is that past landslides give valuable indication for future 

slides. This led to the creation of a new landslide incidence map that covers the whole 

research area for a better and updated representation of the real scenario along the Parvati 

valley of the Kullu district. 

1.4 Outline of thesis 

A brief description of the major chapters/parts with key points has been 

outlined below as the blueprint of this research work. 

CHAPTER 1: INTRODUCTION 

This opening chapter is an overview of the motivation and background of 

research carried out. The various objectives are here-in discussed as well as the outline of 

the thesis is presented as a summary. 

CHAPTER 2: LITERATURE REVIEW 

This chapter contains a compendium of various findings from past landslide-

related investigations as well as a brief introduction to various approaches adopted for 

landslide susceptibility mapping, both locally and globally. 

CHAPTER 3: RESEARCH AREA 
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This chapter gives a description of the various characteristics of the research 

area as well as the district it lies in. The description is not limited to the physical attributes 

only but incorporates the socio-economic aspects of the region. 

CHAPTER 4: METHODOLOGY AND DATABASE PREPARATION 

This chapter goes through the methodology adopted for this work, the 

acquisition process for all the data used and the preparation of thematic layers for further 

analysis, including the compilation of the landslide incidence map followed by its random 

splitting process into validation and testing datasets. 

CHAPTER 5: ADOPTED PROBABILISTIC APPROACHES: CONCEPT AND 

COMPUTATION RESULTS 

The chapter explains about the concepts behind the four GIS-based statistical 

methods (FR, SE, IV and WofE) employed for data analysis. The computation process 

using each approach for every category of the factor maps is presented and the direct 

relationships between the factors and past landslide events here-in discussed. 

CHAPTER 6: LANDSLIDE SUSCEPTIBILITY ANALYSIS: RESULTS AND 

DISCUSSIONS 

This chapter describes the processing of the final landslide susceptibility 

maps through data integration after reclassification of thematic maps. The validation and 

accuracy assessment for the four models have been presented and compared here-in. 

CHAPTER 7: CONCLUSION, LIMITATIONS AND RECOMMENDATIONS. 

This chapter concludes the research work and highlights the limitations, 

recommendations as well as future scope of work. 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Overview of research carried out 

The review of literature provides a summary of information gathered through 

consultation of various publications, articles, manuals, reports and tools employed by 

previous researchers and stakeholders, forming the basis of desk study in any 

investigation as well as devising appropriate problem-solving methodologies. 

The main reasons behind many scientists, researchers and other stakeholders 

mobilizing more and more time and resources in landslide-related studies are to evaluate, 

quantify and potentially reduce the immense socio-economic losses resulting from 

landslide events. This has led to an exponential increase in the number of publications 

nationally and internationally in the past decade whereby several methods have been 

explored, employed, compared and validated.  

However, the complex multi-facetted nature of these disastrous events makes 

it almost impossible to devise a general ‘reasonable’ solution, with some of the major 

hurdles being the selection of causative factors specific to an area, followed by selection 

of appropriate data analysing and predictive modelling techniques. These solutions are in 

turn highly dependent on other external factors such as data availability, location 

remoteness, etc. Landslide-related investigations in the form of susceptibility and hazard 

mapping, early warning systems, etc. are thereby being encouraged at all levels in 

countries facing losses from such disasters. Likewise, this investigation is a contribution 

to the ongoing efforts by other practitioners in better understanding landslide mechanisms 

in the Indian Himalayan region and attempting to delineate areas vulnerable to future 

slope failures through various methods. 

The final intent of this study is to prepare landslide susceptibility maps for 

the area investigated by employing and comparing different statistical methods as well as 

analyse the spatial relationships between different causative factors and past land sliding 

events. 
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2.2 Landslides: Definitions, types and causes 

One of the earliest definitions for landslides as proposed by Terzaghi [1] was 

the sudden outward or downslope movement of slope-forming materials (rock, sediments 

or residual soil) adjoining a slope due to the action of gravitation force. Numerous 

definitions have since then emerged in several books, articles, papers and theses due to 

the difficulty in formulating a global definition for such a complicated event. The 

different terminologies used to define the various landslide features, are outlined in Fig. 

2.1. 

 

Fig. 2.1 . Schematic diagram of a rotational landslide (Source: Landslide types and 
processes, USGS (2004)) 

Similarly, various detailed classification systems were developed over the 

years addressing all the types of mass wasting event as a result of different material and 

movement type, most of which are based on the Cruden and Varnes (1996) classification 

system [2]. A detailed classification as outlined by Lee and Jones [3], is given in Table 

2.1. 
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Table 2.1 Classification of landslides 

 

The classification of the causes of landslides as external and internal one has 

been done by Terzaghi [1]. He further explained the external causes as those attributed to 

shear stress increase (changes in slope material characteristics, pore water pressure, 

drawdown, etc.) at constant shear resistance while the internal causes as those attributed 

to shear resistance decrease at unaltered shear stress (weathering, creep, etc). Cruden and 

Varnes [2] further classified the landslide causes into geologic, anthropogenic and 

morphological and physical causes. Some of these factors have been selected on the basis 

of their availability as well as relevancy and have been used to assess their contribution 

to past land sliding events later in this study. 
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2.3 Remote sensing and Geographic Information System (GIS) 
applications 

The advent of Geographic Information System (GIS) and remote sensing 

techniques have brought to surface their wide range of applicability to different fields 

namely natural sciences, disaster management, urban planning and design, exploration 

programmes, etc. The relationship between GIS technologies and remote sensing 

techniques can be defined in three plausible ways as outlined by Wilkinson [4] : 

• The usage of remote sensing for data collection to be used in GIS platforms. 

• The usage of GIS datasets for improved data processing of products from remote 

sensing techniques. 

• The combined operation of GIS and remote sensing techniques for modelling 

purposes, etc. 

GIS and remote sensing have been applied and validated successfully by 

many researchers in many engineering studies; namely transportation analysis, site-

selection studies, potential zone mapping, mineral exploration programmes, change 

detection analysis and many more. However, only its relevancy and popularity amidst 

landslide-related studies has been reviewed in this study. 

The growth of geo-informatics users can be mostly attributed to the ease in 

data entry, handling and modelling using the various tools and resources available. GIS 

software packages nowadays come with specialised tools such as data conversion, spatial 

analyst, geoprocessing, overlaying, cartographic manipulation and image processing 

among others along with possibility of using external plug-ins/toolboxes by the use of 

python-based scripts. Availability of more flexible open-source software and better-

quality datasets made the usage of GIS and remote sensing indispensable to data 

scientists, coupled with the immense processing capacity of today’s hard-drives. 

Nonetheless, some researchers highlighted the misconceptions behind usage 

of GIS and its validity since the requirement of ‘experts’ in specific areas has reduced 

with its inception and that the focus was mostly shifting towards data scientists and 

statisticians for development of more robust models [5]. Some difficulties still 



9 
 

encountered by GIS users nowadays are unavailability of data freely, difficulty in data 

acquisition, powerful hardware requirement for the huge data handling ability, etc.   

Remote sensing techniques, through the usage of specialised sensors, have 

enabled several researchers detect, map and monitor objects or events without being 

physically present in the area under investigation. This has set the basis of many studies 

conducted in remote locations with hurdles like decreased personnel accessibility and 

increased cost of investigations/exploration. To be more specific, a detailed geotechnical 

exploration programme in mountainous/remote areas might have huge costs in the form 

of transportation of special testing apparatus due to inaccessibility, unpredictable climatic 

conditions hampering testing procedures, etc. 

The increased operability and accessibility of satellite products along with the 

immense data analysing techniques available to researchers has fuelled a growing body 

of literature in the field of GIS and remote sensing and this rapid evolution along with its 

extended grasp in many other streams has made it really difficult to keep track of the 

developments and breakthroughs.  

Remote sensing and GIS-based technologies have been gaining popularity 

amidst landslide researchers for the simple reason that they have a role to play at every 

link of landslide investigation and those links may be broadly categorized as: 

• Landslide detection 

• Landslide mapping 

• Landslide monitoring 

• Landslide prediction 

• Landslide mitigation 

• Landslide preparedness 

Some researchers [6] extracted several landslide inducing factors such as 

slope, lineaments, aspect, curvature, land cover and NDVI from satellite imagery and the 

mapping of landslide was carried out through aerial photograph interpretation. Frequency 

ratio and logistic regression models were used to formulate and validate the final landslide 
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susceptibility map. The difficulty in carrying out field surveys in mountainous areas and 

in predicting the time of land sliding events were highlighted by the authors. 

2.4 Landslide identification and mapping 

The basis of any landslide susceptibility/hazard/risk analysis is the process of 

identifying and mapping previous landslides in the form of landslide inventory/incidence 

maps, and the approaches for this process are diverse and still expanding. The main 

objective of this task is to gather as much information about past slope failures in order 

to properly assess and evaluate the possible underlying causative factors, to identify 

patterns/hotspots, to aid in predicting future slides with similar characteristics/causes [7]. 

A broad classification of the various types of landslide inventory maps has 

been presented by some researchers [8] as: 

1. Archival maps comprising of landslide information retrieved from newspapers, 

government archives and literatures. 

2. Geomorphological historical maps (the most widely adopted) compiling 

information about sliding incidents over a certain period of time with not much 

emphasis on the date of occurrences.  

3. Event-driven maps prepared from compiling slope failure incidents during and 

following an event (earthquake, rainfall, flood, dam-break, etc.). 

4. Multi-temporal maps are derived from interpretation of multiple datasets over a 

longer period of time, generally comprising of more than a single event. 

There is a need to distinguish between detection and classification of 

landslides, with the latter requiring higher resolution imagery for generation while the 

former relies on identifying scarred features left behind by landslide events through visual 

interpretation of optical imagery. 

Traditional landslide field mapping/delineation is not a given task with many 

difficulties arising. Some of them has been outlined as: 

i. Local perspective of expert not enough to perceive the whole extent of the slide 

under investigation 
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ii. Landslide boundaries may have been obscured by vegetation or debris. 

iii. Rapid remediation by local services may change landslide features such as 

removal of debris/flows without estimating the flow extent and volume. 

Advancements in the field of geomatics, geodetics and surveying brought 

forward various novel technologies and techniques to identify and map landslides. Some 

methods of mapping landslides that have been previously employed are: 

• Direct geomorphological mapping [9] 

• Visual interpretation of various aerial imageries [10] [6] 

• Remote sensing products interpretation (SAR images, multi-spectral 

images, etc.) [11] 

• Semi-automated methods of mapping techniques [12] 

Rabby and Li [13] utilized Google Earth software to identify and mapped 230 

landslides from 2001 to 2016 in the Chittagong area in Bangladesh and after field 

verification determined that the accuracy of the remotely mapped landslides varied 

between 69-88%. This indicates the potential of using very high-resolution (VHR) 

imagery in Google Earth to map landslides with reasonable accuracy. Other researchers 

[14] applied an integrated landslide mapping approach using Sentinel-1 satellite data, 

Google Earth VHR and field survey in Pahang, Malaysia, validated 20% of mapped 

events through field survey despite inaccessibility. 

A detailed review on the different remote sensing techniques adopted in 

nineteen recent studies was made by Zhao and Lu [15], explaining the usage of optical 

imagery, spaceborne/ground-based synthetic aperture radar (SAR) and light detection and 

ranging (LiDAR), field surveys along with monitoring techniques. 

The final landslide inventory map, used for landslide susceptibility analysis 

for the western part of Crete Island, was created by Psomiadis out of a combination of 

historical landslides information, events detected using Google Earth VHR and Sentinel-

2 data along with field mapping of recent slides [16]. 



12 
 

Semi-automated novel methods for landslide mapping such as the Scarp 

Identification and Contour Connection Method (SICCM), was developed and tested in 

western Oregon, USA [17] as an ArcGIS external python script toolbox to aid the mapper 

to automatically, semi-automatically or even manually map landslide scars (as polylines) 

along with the deposits in a separate algorithm; all of which is dependent on the spatial 

resolution of the input DEM from which factors such as slope and curvature layers were 

derived. 

Despite the diversity in satellite data available both freely and commercially, 

the difficulty in acquisition of particular earth observation datasets, the dependency on 

image processing and data handling capacity of the hardware, satellite data along with 

new geoprocessing tools are proving to be powerful landslide detection and monitoring 

gadgets. 

2.5 Methods for landslide susceptibility analysis in India 

India has been the focus of several disaster-related studies; among which, 

landslides form part of the most disastrous events that are still being investigated in the 

hilly and mountainous areas. The areas that have been broadly identified as landslide 

prone areas in the Indian peninsula are the 22 states and 2 union territories housing the 

North-eastern and North-western Himalayas, the Eastern and Western Ghats [18].  

The National Remote Sensing Center (NRSC) under the Indian Space 

Research Organisation (ISRO) and the Geological Survey of India (GSI), are the agencies 

designated for local and national landslide inventorying and susceptibility assessment 

using datasets from Indian satellites [19]. In an attempt towards disaster mitigation 

measures, the Building Materials and Technology Promotion Council (BMPTC) under 

the Ministry of Housing and Urban Affairs, Government of India (GOI) prepared a 

national as well as a state-wise vulnerability atlas for the natural disasters (cyclone, 

earthquake, flood and landslide) in India [20]. 

The North-western Himalayan region in question comprises mainly of the 

states of Jammu & Kashmir, Himachal Pradesh and Uttarakhand while the states of 

Assam, Arunachal Pradesh, Sikkim as well as North Bengal constitute the lower North-
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eastern Himalayan region. The reason for frequent happening of these catastrophic 

phenomena can be linked to other triggering events such as heavy rainfall (during the 

monsoon season), glacial lake outburst flood (GLOF) events, earthquakes, etc. The ever-

growing population in these regions along with ever-expanding tourism activities, led to 

an increase in road construction/widening and building construction, consequently 

bearing huge environmental impacts. 

Landslide susceptibility zonation, defined as the delineation process of an 

area based on its level of propensity to sliding events, is an important pre-hazard 

management tool [21] that has been applied across the world. 

A detailed review made by Lee [22], based on 776 articles from 1999 to 2018 

spanning across 65 countries, revealed that the most common research areas for landslide 

susceptibility mapping (found in 143 articles) were located in China (18.5%) with the 

second (89 articles) most common in India (11.5%). 

The Bureau of Indian Standard (BIS) published guidelines for the generation 

of landslide hazard zonation maps as IS 14496 (Part 2): 1998 which is an expert-based 

heuristic approach for factor weight assignment, used for map generation with scales up 

to 1:50,000. 

Van Westen et al. [19] presented four case studies from different parts of India 

(Uttarakhand, West Bengal, Tamil Nadu and Kerala) regarding usage of various methods 

for landslide mapping and susceptibility/hazard/risk evaluation depending on terrain 

characteristics and availability of data. This research collaboration resulted in the 

publishing of five PhD theses and over 20 journals. 

The most commonly adopted approaches to landslide susceptibility mapping 

can be broadly classified as per Fig. 2.2. 
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Fig. 2.2 Methods adopted for LSM 

 

2.6 Heuristic methods 

Heuristic approach, otherwise known as knowledge-driven, empirical or 

qualitative approach can be direct or indirect in nature. The direct method relies on the 

knowledge on experts for geomorphological mapping [23] while the indirect method 

constitutes expert-based procedures of weight assignment for landslide causative factors 

[24].  

A detailed geomorphological mapping was carried out for a part of eastern 

Cuba by Abella and Westen [25] to determine the different landslide causative factors 

and landforms. Then, a three-level heuristic expert-based model of weight assignment 

was applied for landslide hazard and risk assessment.  

These methods have been believed to introduce a high degree of subjectivity 

due to their reliance on expertise rather than reliance on data or process. Albeit, heuristic 

approaches have been the basis of many studies, guidelines and manuals despite their 

dependency on the expert’s knowledge.  
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The advent of GIS has brought about the opportunity of assigning expert-

based weights to factor maps/classes for the creation of LSM, giving rise to indirect 

methods. These indirect empirical approaches can be broadly classified [26] into: 

i. Boolean logic method 

ii. Fuzzy logic method 

iii. Multi-class overlay method 

iv. Spatial Multi-Criteria Evaluation (SMCE) method 

The research work of Panchal and Shrivastava [27] consisted of using the 

Analytical Hierarchy Process (AHP) to generate landslide susceptibility map for the 

whole district Kullu of Himachal Pradesh. Meena et al. [28] applied a hybrid SMCE 

method involving the integration of the AHP and Frequency Ratio (FR) approaches in a 

GIS environment, to delineate landslide susceptible areas in the entire Kullu district. The 

output results of the models demonstrated the superior accuracy rate of the hybrid SMCE 

(91.0%) over the FR (90.7%) and AHP (79.7%) approaches. 

Veerappan et al. [29] concluded that FR (81.57%) method had better 

prediction capability over heuristic AHP approach (67.80%) from comparing the 

prediction results of two landslide susceptibility models along a 52 km stretch of NH-58 

in the state of Uttarakhand. 

2.7 Probabilistic methods 

Probabilistic methods are also known as data-driven methods since they rely 

on past landslide information for future slide prediction. They can be largely grouped as: 

• Bi-variate approaches 

• Multi-variate approaches 

Both these approaches rely on the assumption that the combination of past 

landslide events and contributing factors will aid in predicting future slides under same 

conditions [30]. Bi-variate models focus on the relationship between each parameter class 

to past slope failure events [31] whereas multi-variate models account for the relative 

weight determination between the factors as well [32]. Since they do not rely on 
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knowledge of experts for any weight determination, they are less subjective in nature than 

qualitative methods. 

Some of the bi-variate approaches that have been adopted globally to map 

landslide susceptibility are: 

i. Frequency ratio (FR) 

ii. Certainty factor (CF) 

iii. Statistical Index (SI)/Information value (IV) 

iv. Weight of evidence (WofE) 

v. Evidence belief function (EBF) 

vi. Index of Entropy (IOE)/Shannon entropy (SE) 

Some of the multi-variate approaches are Logistic Regression Analysis, 

Multiple Regression Analysis, Discriminant Analysis, etc. Artificial Neural Network 

(ANN) models are non-linear data-driven models that require lesser training data but still 

give accurate results [33]. Probabilistic approaches and physically-based approaches are 

both termed as quantitative methods for landslide susceptibility mapping. A hybrid of 

qualitative and quantitative methods also has been employed and validated by several 

researchers. 

Logistic Regression, Frequency Ratio and Artificial Neural Network were the 

three most adopted approaches to landslide susceptibility mapping around the world as 

revealed in a detailed review of 776 articles carried out by Lee [22] for the year 1999-

2018. 

In recent studies, it is quite common to come across a comparison of two or 

more different landslide susceptibility models applied to the same geographical extent 

using two or more validation methods. The need for validation of output results of 

probabilistic models is the innate spatial variability in input data and uncertainty in data 

handling procedures, etc. 

Bi-variate approaches has been successfully applied and validated to the four 

most vulnerable mountainous regions of India. Sujatha et al. [34] evaluated LSM for the 
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Tevankarai watershed using Certainty Factor (CF) probabilistic method while Banshtu et 

al. [35] employed FR approach for landslide hazard zonation and Fuzzy Logic approach 

for risk estimation in the Kullu district. Other applied probabilistic models are the Index 

of Entropy (IoE) model that was applied to the Darjeeling area by Mondal and Mandal 

[36] and the Statistical Index (SI) model that was applied in part of the state of Himachal 

Pradesh by Kumar et al. [37]. Keeping in mind the immense literature present in India 

concerning landslide susceptibility mapping, it can be observed that recent research works 

are more oriented towards comparison of different models to opt for the most accurate 

one for a specific area before proceeding with more detailed analysis. 

The present study attempts at preparing and comparing four landslide 

susceptibility maps using the four probabilistic methods FR, SE, IV and WofE. The 

concepts behind each of these applied methods are presented in Chapter 5 Adopted 

Probabilistic Approaches: Concepts and Computation Results. 
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CHAPTER 3  
RESEARCH AREA 

The purpose of this chapter is to highlights the different characteristics of the 

study area as well as the district it lies within for a better understanding of the present 

scenario for selection of landslide causative factors. 

3.1 Himachal Pradesh (An Intro) 

One of the twelve states along the Indian Himalayan Region, stretching about 

2,500 kilometres, Himachal Pradesh (HP) is situated between the states of Uttarakhand 

(south-east), Punjab and Haryana (south and south-west) and Jammu & Kashmir (north 

and north-east) as depicted in Fig. 3.1. It has elevation ranging from 350 metres to nearly 

7,000 metres, through the Outer, Lesser and Greater Himalayas, defined broadly as the 

three-prevailing physio-graphic regions. 

 

Fig. 3.1 Himachal Pradesh map 
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The hilly and mountainous terrains experience variations in climate from hot, 

sub-humid tropical climate to cold due to the rise in altitude towards the easterly and 

northern direction. The coldest, driest and largest district are Kinnaur and Lahaul & Spiti, 

situated on the north-eastern end while the warmest and wettest districts are situated on 

the lower south-western end. The five rivers namely Beas, Ravi, Chenab, Sutlej and 

Yamuna form the main drainage network.  

Home to picturesque places like Khajjiar (known as ‘Mini-Switzerland’ of 

India) and Kasol (known as ‘Mini-Israel’ of India), the state of Himachal Pradesh is 

administratively divided into twelve districts which experience three seasons around the 

year namely rainy(monsoon), winter and summer. The winter season is known for 

snowfall and snow-clad peaks in the higher elevated places. 

The inherent fragility of the Himalayan mountain areas and unpredictability 

of its hydro-meteorological conditions coupled with rise in man-made activities, have 

made Himachal Pradesh even more vulnerable to disasters [38] like landslides, soil 

erosion, heavy rainfalls, floods, etc. 

3.2 District Kullu (A glance) 

Out of the twelve districts of Himachal Pradesh, Kullu was selected as a focus 

for this study due to the recent surge in tourism, rise in anthropogenic activities, change 

in crop pattern; ultimately increasing the area’s vulnerability to climate change. The 

district houses four tehsils (sub-divisions) Kullu, Manali, Nirmand and Banjar and two 

sub-tehsils Anni and Sainj as shown in Fig. 3.2. The main drainage networks are mostly 

fed by melting snow/glaciers and rainfall in the region and consist of the Beas, Parvati 

and Satluj rivers and other tributaries.  

Around 325 villages and 5 towns are connected and depend on a road network 

of approximately 1,900 km road length. Approaching Kullu through Bhuntar gives a 

traveller the option to choose between following the National Highway through the 

beautiful Beas valley to Manali as a popular honeymoon destination or one may choose 

to go for a more serene and peaceful trip along the lush Parvati valley. 
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Fig. 3.2 Kullu district map (Source: Census of India, 2011) 

 

3.3 Study area 

Before proceeding with the data preparation and processing part of this work, 

some aspects of the research area were explored to better understand the area’s 

vulnerability to natural disasters, which is of increasing concern to local authorities and 

residents. Specific characteristics of the study area can be found in next chapter of this 

thesis where the parameters that have been identified as potential landslide-inducing 

factors, have been prepared as thematic maps for better visualisation and analysis. 
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3.3.1 Administrative setting 

The research area investigated is located at the heart of the district of Kullu 

in the Kullu tehsil as in Fig. 3.3 and covers an area of around 1,000 km2 with elevation 

ranging from 1,050 to 4,900 metres. 

 

Fig. 3.3 Location map of study area 

The two valleys in the study area are the Kullu valley along the Beas River 

and the Parvati/Manikaran valley along the Parvati River. The source of Parvati river is 

from Beli (about 4,100 m altitude) beyond the study area’s boundary but flows north-

westerly until Manikaran and takes a south-westerly course to meet the Beas river near 

Bhuntar. The tributaties of the Parbati river are Tosh Nala intersecting near the Barshaini 

hydro-electric dam project and Malana Nala finally joining near Jari hydro-electric dam 

project. 

Kullu is accessible by road through the national highway NH-3 or the major 

district roads Kullu-Nagar-Manali and Jia-Manikaran, and by air through the nearest 

airport in Bhuntar which is approximately 10 kilometres away. The rise in tourism and 
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development activities has made this area easily accessible with frequent bus and taxi 

services in the recent years. 

3.3.2 Tourism 

The study area covers part of the Kullu tehsil housing villages such as 

Bhuntar, Jari, Malana, Kasol, Manikaran, Tosh, Kalgha, etc which are far-flung villages 

from the main Kullu valley area as seen in Fig. 3.4. The concept of tourism changed over 

the last decades with more and more tourists, whether local or foreign, shifting towards 

exploring far-flung villages in search for serenity, inner-peace and minimalistic living 

rather than mainstream tourist attractions. 

 

Fig. 3.4 Research area 

The Parvati valley is also known for famous treks like Pin Parvati pass, 

Khirganga and Chanderkhani, taking one from lush green valley, through dense alpine 

forests, to snow-capped peaks. Geothermal activity due to presence of structural faults 

gave rise to hot springs in places notably Kullu, Kasol, Manikaran and Khirganga. In 

short, the area provides a combination of eco, adventure, and culture tourism with 
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accommodation facilities ranging from expensive hotels, cottages, homestays, guest 

houses and camping tent sites.  

The Parvati valley is becoming more and more famous and is facing a huge 

rise in development activities such as construction of guest houses, road widening and 

hydroelectric projects rise, all of which is adversely impacting the environment one way 

or another. 

3.3.3 Climate and rainfall 

Climatic conditions mainly depend on elevation, rainfall, moisture, 

temperature, etc. Kullu is found at the heart of Himachal Pradesh with climatic zones sub-

tropical monsoon without dry winter, with warm summer near the Manali area and 

moderate hot summer for the rest for the district.  

However, regionally, these climatic zones further subdivide into micro zones 

namely arid, semi-arid, glaciers and sub-tropical. The two predominant agro-ecological 

zones in this area are sub-temperate mid hills and wet-temperate high hills. The 

temperature falls to approximately -1.5°C in cold months of December-January and rises 

to approximately 37°C in the hot month of July. High altitude village areas like 

Khirganga, Malana and Tosh receive snowfall in the month of December-January, 

sometimes causing road blockages and economic disruptions.  

Rainfall is fairly well-distributed in the lower plains with an average annual 

rainfall of 1,405.7 mm and maximum recorded intensity during the monsoon season 

(July-August) as seen from Table 3.1. 

Table 3.1 Variation of average montly rainfall intensity for 2014-2018 (Source: IMD) 

 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
YEAR
2014 83.1 150.7 204.9 88.3 114.6 50 181 114.2 70.8 21.3 5.1 72.6
2015 110.8 212.2 195 113.3 47.1 91.6 235.8 108.9 62.2 15.3 26.5 34.9
2016 37.9 74.1 186.6 92.5 57.5 58.6 185.9 282.6 36.4 4.9 0 0.1
2017 186.8 77.6 106.9 109.2 96.5 146.1 218.9 106.2 106.4 1 19 44.9
2018 12.4 56.8 67.5 91.9 43.3 100.1 204.9 194.4 273.8 10.7 88 10.9

MONTH

Rainfall intensity (mm)
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The trends in the average monthly rainfall intensity (mm) for the year 2014-

2018 can be interpreted from Fig. 3.5 below. For the years 2014, 2015 and 2016, rainfall 

intensities were at peak during the first months of Feb and Mar as well as the mid-calendar 

months of July and August. The year 2016 experienced the highest downpour during the 

month of August compared to the two previous years that received maximum rainfall 

intensity during July. The anomalies observed for the year 2017 were the low rainfall 

intensity in the months February and March compared to previous year rainfall trends, 

and for the year 2018, the maximum rainfall intensity was in September compared to 

previous years which was in July. 

 

Fig. 3.5 Average monthly rainfall trend (2014-2018) (Source: IMD) 

Annual global rise in temperature has caused major irregularities in the Indian 

Himalayan climatic conditions with some resulting visible changes like reducing extent 

of snow cover, increasing extent of denuded land, and visible changes in crop pattern with 

respect to elevation and temperature [38]. All these climate-driven changes have made 

the research area more vulnerable to natural disasters. 

3.3.4 Physical characteristics 

The area can be hydro-geologically divided into unconsolidated sediments 

(porous formations) as valley and fluvial channel deposits and semi-consolidated to 

consolidated sediments (fissured formations of sedimentary, metamorphic and igneous 
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origin) forming the hill ranges [39]. This region falls under the landform classification of 

the Lesser Himalayan Hills which spans in other districts of HP such as Solan, Shimla, 

Kinnaur, Chamba and northern parts of Kangra.  

The major soil types, though very distinct in nature, in the district Kullu [35] 

can be identified as: 

• Coarse loamy 

• Fine loamy 

• Loamy skeletal 

• Sandy skeletal 

Characterized as having high to very high organic carbon content, these soils 

find their depth ranging from shallow to deep [40]. Some compiled soil data has been 

presented in Table 3.2 below. 

Table 3.2 Soil characteristics of the study area (Compiled from WRIS website) 

 

Geologically, metamorphic rocks are prevalent along the steep slopes while 

crystalline rocks occupy the valley areas. The geomorphic units in the district of Kullu  

have been categorized [41] as: 

• Active flood plain 

• Younger alluvial plain 

• River 

• Channel island 

• Piedmont slope 

• Dissected terrain: 

o Low 

Soil texture Sandy loam to clay loam 

Soil depth 50 - 100 cm 

Soil pH Acidic 

Soil colour Brown to dark brown 
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o Moderate 

o High 

• Glaciated terrain 

The rivers in the study region are perennial in nature; fed by melting 

snow/glaciers and rainfall. The major source of water is from springs and open wells for 

domestic and irrigation purposes, making the area also rich in both hydropower 

generation and ground water harnessing potential [39]. 

3.4 Hazard scenario in the region 

Some notable works by previous researchers in the district of Kullu have been 

mentioned below to better understand the types of disasters and their underlying 

causes/mechanisms affecting the region under investigation. 

Chandel [42] explored the different dimensions of disasters in Himachal 

Pradesh such as landslides, earthquakes, flash-flood and avalanches and the major causes 

for slope failures were found to be immature topography coupled with tectonically active 

structures; geologically weak and highly fractured. The rise in hydropower projects as 

well as other man-made related activities have contributed to more frequent mass 

movement occurrences in the area since the past decades. 

Sah and Mazari [43] conducted an in-depth analysis of the factors and 

mechanisms behind some major landslides in the Kullu area. Some past major slides and 

their extensive damage in the area have been critically analysed and some of the key 

factors responsible have been identified as being oversaturation of unconsolidated 

material due to high rain infiltration, seepage in slopes, and bank erosion owing to 

overflow conditions. Some landslide mitigation measures have also been suggested by 

the authors. 

Vaidya et al. [44] used change detection techniques using satellite imageries 

for 27 years to gather valuable information about the land use changes in the Kullu Valley. 

The land use classification was executed using Maximum Likelihood Classification 

algorithm and validation was carried out through field surveys. Surveying through 

questionnaires was done to identify underlying causes of land use changes in the area. 
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Results revealed changes in crop patterns, rise in anthropogenic activities and impact of 

climate change on crop growth among others, all pointing towards the increasing 

vulnerability of this region. 

The types of hazards affecting the lesser Himalayan region of the Kullu 

Valley such as soil erosion and landslides were discussed by Prasad et al. [45] and some 

of the underlying causes found were increasing population, human development on slopes 

and road construction. Several suggestions have been made with much emphasis on more 

ecologically and environmentally friendly development strategies. 

An in-depth analysis of the lithological, structural and terrain slope 

interactions using morpho-tectonic parameters and their relation to landslide occurrences 

in the Kullu area was carried out by Mishra et al. [46]. Mass movements were found to 

mostly occur in the southern and southwestern facing slopes and the rocks in the area 

were found to be affected by joint-sets and fractures, facilitating water infiltration and 

accelerating weathering. 

Meena and Nachappa [41] used the frequency-ratio approach to evaluate the 

impact of three DEMs of different spatial resolutions (ALOS-PALSAR 12.5 m, ASTER 

30 m, SRTM 90 m) on the quality and prediction accuracy of the prepared landslide 

susceptibility map. The chosen area of interest, Kullu district has been portrayed by the 

authors as being highly susceptible to mass movements due to its highly dissected 

topography and heavy rainfall presence. The 30 m resolution DEM was found best-suited 

for the Kullu district since it had the highest accuracy (0.910) compared to the 12.5 m 

(0.839) and the 90 m (0.824) resolution DEM. The study concluded that usage of higher 

resolution DEM data might not compulsorily have the most accurate results for an area. 

A field visit to the study area revealed some small slides along transportation 

corridors with presence of construction materials as well as sliding debris on the hard-

shoulder of these mountain roads making road users more and more susceptible. 

Moreover, un-scientific dumping of materials including construction and debris materials 

alongside road changes drainage pattern; even going to the extent of completely blocking 

road gully networks causing huge stresses on the slope-forming materials. Fig. 3.6 and 

Fig. 3.7 shows the different parts of the study area susceptible to mass movements.  
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(a) (b) 

(c) (d) 

Fig. 3.6 Transportation corridors susceptible to landslides (a) Road cuts along Kasol-
Manikaran road stretch (b) Steep road cut along a section of Bhuntar-Kasol road (c) 

over-hanging rock at-risk of falling over road users (d) rock debris on side of road along 
a stretch of Bhuntar-Kasol road 

 

 

  
Fig. 3.7   Sliding events observed during the site visit near Kasol, Manikaran and 

Barshaini
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CHAPTER 4  
METHODOLOGY AND DATABASE 

PREPARATION 

4.1 Methodology adopted 

The present research adopted a rather simple and straight-forward 

methodology to evaluate the applicability of four statistical methods (Frequency Ratio 

(FR), Shannon Entropy (SE), Information Value (IV) and Weight of Evidence (WofE)) 

to map landslide susceptibility in part of the Kullu tehsil of the Kullu district using a 

compiled landslide inventory from acquired historical data and newly mapped landslide 

using remote sensing and earth observation techniques. Fig. 4.1 gives an outline of the 

adopted methodology. 

 
Fig. 4.1 General research methodology 
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The main pillar for a data-driven landslide susceptibility evaluation model is 

a landslide incidence map depicting the past and most recent sliding events in the area. 

Inadequacy or incompleteness of landslide inventory may cause serious setbacks in terms 

of model fitness and may also influence the model’s prediction accuracy. Susceptibility 

analysis is incomplete without the identification and processing of the factors responsible 

for sliding events in the area under investigation. The review of literature allowed the 

author to carefully analyse, compare, evaluate and choose the proper sets of methods and 

causative factors most applicable to the region beforehand. The correlation between each 

factor and past sliding events can give an indication on the causality of landslides and to 

better understand the mechanisms of those slope failures. Fitness and accuracy evaluation 

are needed to validate the model from data-related uncertainties and errors. 

The adopted landslide susceptibility evaluation procedure can be classified 

as: 

a) Selection of landslide-inducing factors for the area 

b) Generation of thematic layers for the chosen factors 

c) Preparation of a new landslide incidence map 

d) Compilation of newly mapped and historical landslide data 

e) Application of the bi-variate probabilistic FR, SE, IV and WofE methods to 

calculate ratios for every factor classes and factor maps. 

f) Landslide Susceptibility Maps (LSM) creation and classification 

g) Model validation and comparison through: 

i. Landslide Density Index (LDI) evaluation 

ii. Area Under Curve (AUC) of ROC 

4.2 Data used 

The various data used for this research were collected from various 

departments/organisations and processed in a Geographic Information System (GIS) 

environment for further analysis. The main software used were ESRI ArcGIS platform, 

Microsoft Word and Microsoft Excel. The primary data required for statistical analysis 

were the landslide incidence map and thematic maps for the chosen causative factors. The 

underlying principle was to gather as much information available for the study area, both 
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for analysis and for better understanding of localised landslide scenarios. Nine landslide-

inducing parameters were therefore selected based on past literatures, author’s 

understanding of the region and data availability. These factors (Slope, lithology, aspect, 

elevation, curvature, roads, drainage, faults/lineaments, land use/land cover) were all 

assumed to have an association to past sliding activity, in turn contributing to prediction 

of future slides in the region. 

The data used and their respective sources are given in Table 4.1 below: 

Table 4.1 Data used and their various sources 

 

The Digital Elevation Model (DEM) acquired freely as CartoSAT-1 DEM 

from Indian Space Research Organisation (ISRO) is a raster file (TIFF) having 1 arc-

second (30 m) spatial resolution, which was used to derive several topographical factor 

maps such as slope, aspect, curvature and elevation for further processing. The 

preparation of the various thematic maps derived from the DEM as well as other sources 

were described in the sections below. 

4.3 DEM pre-processing 

The study area falls at the intersection of two DEM layers namely, ‘i43x’ and 

‘h43f’. The adopted technique was using the Data Management tool, ‘Mosaic To New 

Raster’ to merge the two raster datasets into one merged raster file. One of the advantages 

of using this tool is the availability of a ‘Mosaic Operator’ which allows the user to opt 

Data used Source 

CartoSAT-1 DEM 

(30m resolution) 

Bhuvan web-platform, Indian Space 

Research Organisation (ISRO), National 

Remote Sensing Centre (NRSC), 

Hyderabad 

Landsat-8 OLI/TRS images 

(Cloud cover <10%) 

Earth Explorer web-platform, United States 

Geological Survey (USGS) 

Road map Open Street Map website 

Faults/lineaments 
Bhukosh web-platform, Geological Survey 

of India (GSI) 
Lithology 

Historical landslide data 

 



32 
 

for the method of handling overlapping of raster datasets such as the First, Min, Max, 

Blend or Mean options for tackling overlapping cell values. Additionally, pixel type/cell 

size and number of bands can be optionally chosen based on the user’s criteria and the 

input data properties. 

The next step consisted of generating a shape file for the study area which 

could be in turn used to clip the DEM to the required extent. The area was mapped on 

Google Earth Pro software and exported as a Keyhole Markup Language (KML) file and 

later converted to the required shapefile (SHP) format in ArcMap using the Conversion 

tools. The shapefile is then imported for the clipping procedure. 

‘Extract by mask’ tool was used to clip the shapefile extent to the processed 

DEM. This process preserves the ‘NoData’ values if any, and care should be taken as to 

that the two files are in the same geographically projected coordinated systems which in 

this case was the Universal Transverse Mercator (UTM) projection with spheroid WGS 

84 North Zone 43. 

4.4 DEM derivatives 

A digital elevation model is usually created from known cell elevation points 

for terrain relief variation representation, for derivation of several topographical factors 

explaining those variations and for elevation-related calculations/operations. Some 

popularly DEM derived relief-defining factors are slope, aspect and curvature which have 

been considered for analysis by various researchers as landslide inducing factors [47]. 

4.4.1 Slope 

A slope map depicts the inclination angles of prevalent slopes in an area and 

directly relates to slope instability [48]. A rise in slope angle will generally result in a 

decrease in stability of slopes. Slope steepness is expressed in percent rise or degrees and 

has some effect on surface runoff [10]. The slope factor map was derived from the 

CartoSAT-1 DEM using spatial analyst surface tool of the GIS software. The resulting 

map was reclassified using the reclassifying tool into five distinct categories namely, 0° 

- 14°, 15° - 24°, 25° - 33°, 34° - 45° and > 45° as in Fig. 4.2. 
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Fig. 4.2 Slope map 

4.4.2 Aspect 

The directions of slopes are calculated and classified from the DEM 

clockwise starting North at 0° back to North at 360° using the spatial analyst aspect tool 

in the GIS software. The flat areas have no aspect since they have negligible (< 5°) slopes 

and they are denoted by grey cells having value -1 as in Fig. 4.3. 

 

Fig. 4.3 Aspect map 
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The orientation that a slope faces, has an impact on many processes along that 

particular slope; most importantly, the amount of sunlight, rainfall and wind exposure 

which in turn affects vegetation type, vegetation growth and soil moisture index among 

others [49]. 

4.4.3 Curvature 

The curvature map was derived from the DEM using the spatial analyst 

curvature tool to determine the degree of convexity/concavity/recti-linearity of surfaces, 

defined as the geometries of a sloping face [10] which in turn influences the 

acceleration/deceleration rate of surficial flows. 

The resulting map has three distinct classes with negative values (< -0.05) for 

convex surfaces, positive values (> 0.05) for concave surfaces and near zero values (-0.05 

– 0.05) for rectilinear surfaces as in Fig. 4.4. 

 

Fig. 4.4 Profile curvature map 

The reason for concavity/convexity being attributed to higher landslide 

occurrences is the simple reason that rainfall infiltration takes longer, thereby having a 

more profound effect on slope instability [50]. 
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4.4.4 Elevation 

For the preparation of elevation map, contour lines were first generated from 

the DEM which were then used to create Triangulated Irregular Networks (TIN) through 

triangulation of vertices by employing 3D analyst conversion tools in the GIS platform 

before being reclassified into the final elevation raster layer. The four classes of the raster 

were 1,050 – 2,000 m, 2,000 – 3,000 m, 3,000 – 4,000 m and 4,000 – 4,900 m as in Fig. 

4.5. 

 

Fig. 4.5 Elevation map 

Upon viewing of the elevation classes and the villages/towns in the area, it 

can be noticed that most human settlement are restricted to lesser elevated areas (< 4,000 

m). Also, the all-year presence of snow/glaciers, lesser vegetation extent, unavailability 

of fertile land and harsh climatic conditions discouraged human intervention in the most 

elevated class (> 4,000 m). 

Though the elevation factor does not directly contribute to slope instability 

occurrences, it does affect other processes and factors such as vegetation type, soil 

moisture, rainfall intensity, temperature, wind exposure, etc which in turn can be related 

to mass movements. 
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4.4.5 Distance to drainage 

Drainage has been identified as being a factor responsible for mass 

movements due to toe under-cutting and bank erosion in overflow conditions [43]. Most 

of the road network in the area is concentrated along the main rivers/streams in the area, 

turning transportation corridors along the mountainous areas of Himachal Pradesh into 

landslide hotspots. The influence of the drainage on slope instability must hence be 

evaluated in terms of their closeness to past slope failure events.  

The river/stream networks in the area were derived from the DEM using the 

hydrology tools in the GIS platform. The basis of this toolset is to model waterflow across 

a surface and comprises of several tools that can be collectively utilized to determine river 

networks in an area as well as delineating watersheds. Flow direction tool is used to 

determine water outflow orientation from individual cells of the DEM, followed by filling 

of imperfections using Fill tool after their identification using Sink tool for appropriate 

mapping process. This output is then processed using Flow Accumulation tool before 

determining the stream networks in the study area by using the Stream Order tool by 

selecting the appropriate threshold value and ordering method as in Fig 4.6. 

 

Fig. 4.6 Distance to drainage map 
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4.5 Other prepared thematic layers 

The following thematic layers were extracted using data from other sources. 

They were also chosen to evaluate their relationship to slope instability in the region. 

4.5.1 Distance to roads 

Himachal Pradesh has witnessed several slope failures along road corridors 

since most of the roads in hilly/mountainous terrains need to be built by face cutting, 

blasting methods, etc. Several factors complicate the process of road construction and 

widening such as presence of steep gradients along road alignment, geological structure 

anomalies, presence of faults, presence of drainage sources. The very action of altering a 

slope profile de-stabilises both the stable slopes and slopes on the verge of failure in the 

area. Additionally, changing of drainage patterns due to road construction is one issue 

which cause future slope instabilities in neighbouring areas since the changed pattern now 

affects another area maybe un-exposed to such drainage patterns [34]. Therefore, the 

influence of distance to roads to landslide occurrences needed to be investigated.  

 

Fig. 4.7 Distance to road map 

The major roads in the area consist of national highway, major district roads 

and local distributary roads. The road shape file was downloaded from the Open Streets 

Map website and verified before rasterizing into 30 m cell resolution and reclassified with 
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200 metres buffering intervals resulting into six categories namely 0 – 200 m, 200 – 400 

m, 400 – 600 m, 600 – 800 m, 800 – 1,000 m and >1,000 m as in Fig. 4.7. 

4.5.2 Distance to faults/lineaments 

The inhomogeneities and discontinuities encountered in faulted and fractured 

regions might reduce the stability and strength of slopes, and as a result, increase the 

likeliness of having landslide events in those neighbourhoods [51]. The relationship 

between these structural elements and landslide distribution needs to be assessed to find 

out whether this geo-mechanical relationship increases the vulnerability of slopes. 

 

Fig. 4.8 Distance to faults/lineaments map 

The shape files for faults and lineaments were individually obtained from 

Bhukosh web-platform of the Geological Survey of India (GSI) and later merged into one 

shape file containing both structural discontinuities since this study considered assessing 

both their influence on mass movements. The buffer tool of the GIS platform was used to 

delineate the area into 200 metres intervals from faults and lineaments and the resulting 

layer was rasterized in 30 m cell resolution. Reclassification of this layer gave six sub-

categories namely 0 – 200 m, 200 – 400 m, 400 – 600 m, 600 – 800 m, 800 – 1,000 m 

and > 1,000 m as shown in Fig. 4.8. 
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4.5.3 Lithology 

The difference in structure, strength, composition and plasticity potential of 

each litho-stratigraphic units [37] is the main reason behind evaluating the relationship 

between the various lithological components in a study area and past land sliding events. 

The lithology shape file was acquired from the Bhukosh web-platform of the 

Geological Survey of India (GSI), extracted to fit the study area, rasterized and resampled 

to 30 m cell resolution featuring a total of thirteen units as shown in Fig. 4.9. 

 

Fig. 4.9 Lithology map 

4.5.4 Land Use/Land Cover (LULC) 

Land use/land cover (LULC) is basically used to depict the various natural 

land surface types along with the various anthropogenic uses of these land types [44]. For 

the purpose of preparing the LULC map, Landsat 8 Operational Land Imager 

(OLI)/Thermal Infrared Sensor (TRS) images taken in October 2017 with cloud cover 

less than 10% were acquired from the Earth Explorer web-platform of the United States 

Geological Survey (USGS) Earth Explorer. Landsat 8 images are multi-band raster files, 

comprising of nine bands, the various combinations of which, result in visualizing 

relevant information (vegetation analysis, hydrological and settlement analysis among 

others) according to user’s requirements and can be classified mainly by either supervised 
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or unsupervised classification. The main difference between the two classification 

methods is the absence/presence of the analyst’s intervention in providing spectral 

signatures. 

Firstly, training of samples using the ‘Training sample manager tool’ from 

the Image Classification toolbar was necessary in case of supervised classification, as was 

chosen in this case; involving selection of areas with specific reflectance values as 

training samples to be later merged and used for better delineation of the different land 

uses by the algorithm chosen. The interactive supervised classification tool was used to 

check classification result for each category. An average of 10-15 samples were selected, 

analysed using scatterplots for distinct patterns, merged for each category and saved as 

signature files which was then fed into the Maximum Likelihood Supervised 

Classification algorithm for final map production. The five resulting classes of the LULC 

are Built-up area, Agricultural Land, Barren Land, Forest (Evergreen, Deciduous), 

Snow/Glaciers and Water bodies as depicted in Fig. 4.10 below. 

 

Fig. 4.10 Land Use/Land Cover (LULC) map 
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4.6 Landslide Inventory map 

The basis of any landslide susceptibility/hazard/risk analysis is the process of 

identifying and mapping previous landslides in the form of landslide inventory/incidence 

maps, and the approaches for this process are diverse and still expanding. For the purpose 

of this study, a compilation of both historical incidence map and a newly created 

inventory has been carried out for a better depiction of the actual landslide distribution in 

the area. A detailed breakdown of these processes has been presented in the following 

sections. 

4.6.1 Historical landslide incidence map 

The historical data for past sliding events for the state of Himachal Pradesh 

was acquired from Geological Survey of India (GSI) as polygon shape file, which was 

later clipped to cover the Area of Interest (AOI). The compiled data contains detailed 

information about past slides such as geographical coordinates, sliding dates, types of 

slide, land use/land cover associations, etc. Five main types of slides mapped in the region 

before were rotational, translational, falls, topples and debris flows. The adopted 

methodology in this study does not account for specific types of slide occurrences in the 

area and their specific causes, but rather encloses all landslide types in one group to be 

analysed with the inducing factors using the frequency ratio approach. However, the types 

of sliding events and their characteristics gave insight behind mechanisms of past events 

and the selection of causative factors for susceptibility analysis in this region specifically. 

4.6.2 Landslide Mapping 

The basic mapping of landslide scars in the study area was done through 

visual interpretation of high-resolution satellite imageries from Google Earth Pro 

software for the years 2002-2019. The idea behind creating a new inventory was the lack 

of historical data in the Parvati valley side, instead, clustering of data was observed 

around the Kullu-Bhuntar area. The Parvati valley has been victim of an increasing 

number of slope failure incidents, especially in the road corridors and riverbanks, with 

many of those events unreported or unmapped. Identification and mapping of landslide 

scars through visual interpretation of Google Earth historical images is done through 
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mainly identification of change in vegetation cover, presence of debris material and other 

scarped features [52].  

Landslide scars can be rapidly lost or obscured with time due to several 

reasons such as excess vegetation veiling the scarred features, rapid remediation works 

after an event, etc. Use of the Scarp Identification and Contour Connection Method 

(SICCM) toolbox extension of the GIS platform was done to aid in semi-automatically 

delineating some obscured landslide scarred features [17] before proceeding with final 

mapping as landslide polygons in Google Earth Pro software.  

The module uses as input the area’s high-resolution DEM and progresses into 

creating hill-shade, slope, resampled DEM, stream order and other factor maps with 

chosen cell size for better demarcation and interpretation of scarps. The tool has also been 

a great aid in identifying rocky outcrops and to delineate non-scarps from scarped 

features. Unavailability of higher resolution DEM limits the user in generating better and 

more accurate results. Hence, this method was employed as an indication of potential 

landslide sites where the scarped features were not clearly delineated due to vegetation 

and quick remediation works after slide event by local authoririties. 

The final mapping of landslide polygons on Google Earth pro was done using 

the polygon drawing tool and the mapping was done as such, as to cover the head, toe 

and the lateral extent (spread) of every landslide event to ensure proper analysis as shown 

below in in Fig. 4.11 and Fig. 4.12 for the identification and mapping of two landslide 

incidents near Tosh and Manikaran respectively. Landslide mapping process is time 

consuming and requires usage of other tools from the Google Earth Pro software such as 

consultation of multi-temporal images, usage of sun exposure settings among others for 

better image interpretation and contrasting purposes. 

The polygons were then exported as a Keyhole Markup Language (KML) 

file, converted to shape file (SHP) in the GIS environment before resampling them to a 

30 x 30 m cell resolution for overlaying process. 
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(a) (b) 

(c) (d) 

 

Fig. 4.11 Landslide identification and mapping near Tosh (a) before slide (11.2010) (b) 
landslide initiation (06.2014) (c) Identification of sliding (09.2017) (d) Final mapping of 

landslide features carried out in Google Earth Pro 
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(a) (b) 

(c) 

 

Fig. 4.12 Landslide identification and mapping near Manikaran (a) before slide event 
(06.2014) (b) identification of landslide (10.2017) (c) final mapping of landslide 

features (head,side scarps and debris run-out) 

 

The 30 x 30 m cell resolution was the adopted cell size for all thematic map 

layers generation as well as the landslide incidence data for statistical and overlaying 

analysis. The total number of mapped landslides were 47 whereas the acquired historical 

landslide data contained 164 mapped polygons, resulting in a total of 211 total polygons 

for the study area as in Fig. 4.11. 
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Fig. 4.13 Compiled landslide inventory map 

4.6.3 Random splitting of samples 

Random splitting of past landslide samples was carried out mainly because of 

missing multi-temporal incidence data. The geostatistical analyst tool of the GIS platform 

was used to randomly split the 211 samples into 70% (147 nos.) as training samples and 

30% (64 nos.) as validating samples as shown in Fig. 4.12.  

 

Fig. 4.14 Training and testing datasets 
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Ground truthing of newly mapped landslide locations were not carried out 

due to location remoteness and travel limitation. However, images of some recent 

landslide events along and around the road corridors were taken during a recent trip to 

the study area. Many slides were noticed along the road corridor between Manirakan and 

Barshaini, and with recent rise in tourism in the area, the region is only like to become 

more and more vulnerable to slope failures. 



47 
 

CHAPTER 5  
ADOPTED PROBABILITY APPROACHES: 

CONCEPTS AND COMPUTATION RESULTS 

5.1 Concepts behind adopted probabilistic methods 

One of the key components of this research work involved the usage of 

different statistical methods along with past landslide incidence dataset to evaluate the 

area’s propensity to land sliding with nine selected influencing parameters. The algorithm 

and data analysis procedures of all the four models differ from one another; a deeper 

insight of which, enable the user to extract valuable information between variables 

involved and to establish relevant relationships between the causes and effect of 

landslides. The final part of this work consisted of using these established relationships 

to better explore the underlying mechanisms behind the different factors responsible for 

slope instability as well as to better predict these disastrous events. 

For this purpose, the concepts behind the four adopted quantitative methods 

have been presented in the sections below. 

5.1.1 Frequency Ratio (FR) concept 

The FR method is an observation-driven bi-variate probabilistic approach that 

is directly based on the association of past data to considered factors for weight 

evaluation. This method has been effectively employed and validated by several 

researchers directly associating past landslide data to selected causative factors [50]. 

Their high dependency on past landslide data for accurate predictive capability made 

them less popular in areas having poor landslide data, or few past landslide events data. 

Nevertheless, it remains one of the simplest and most popular data-driven 

approaches adopted widely in landslide susceptibility mapping and has been successfully 

put into practice, compared with other models and validated by various researchers [29] 

[30] [35] [37] [41] [53]. 
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Bi-variate approaches such as FR do not account for the relative weights 

between causative factors unlike multi-variate approaches but rely on direct spatial 

association of each factor to landslide occurrences [21]. 

The FR values were computed using the Equation 5.1. 

 

(5.1) 

Following this calculation, the factor maps were reclassified using the 

resulting FR values for data integration purposes as outlined in Chapter 6. The final 

landslide susceptibility index (LSI) for this approach was computed through the Raster 

Calculator tool using Equation 5.2. 

 
(5.2) 

5.1.2 Shannon Entropy (SE) 

Originally developed based on the Boltzmann principle for statistical 

thermodynamic entropy evaluation, Shannon further developed an entropy model for 

information theory application [54]. It can be used for imbalance, disorderliness and 

uncertainty quantification of landslide events [48]  which due to their complex nature, 

can be taken as entropy values under factor classes [55]. 

This method has been used and validated in several landslide susceptibility 

analyses for weight calculation [51] [56] [36] using the following equations.  
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𝑃𝑃𝑖𝑖𝑖𝑖 in Equation 5.3 represents the frequency ratio value for each class whereas 

�𝑃𝑃𝑖𝑖𝑖𝑖� in Equation 5.4 denotes the probability density for each class. 

 
(5.3) 

 
(5.4) 

𝐻𝐻𝑗𝑗 and 𝐻𝐻𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 represent the entropy values for each class with 𝑛𝑛𝑗𝑗 denoting the 

number of classes in each selected parameter. 

 

(5.5) 

 
(5.6) 

The information coefficient, defined by 𝐼𝐼𝑗𝑗, is then determined using Equation 5.7. 

 
(5.7) 

The final weight indexes, 𝑊𝑊𝑗𝑗 for each of the nine parameters were calculated 

as per Equation 5.8. 
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(5.8) 

The final landslide susceptibility index (LSI) for this approach was computed 

through the Raster Calculator tool using Equation 5.9. 

 

5.1.3 Information Value (IV) 

The Statistical Index or Information Value method also known as the InfoVal 

approach is a widely adopted Bayes conditional probability model applied by many 

researchers like Singh et al. [55], Kumar et al. [37], Versain  [57], Sharma and Mahajan 

[58], in landslide susceptibility mapping studies. 

It can be defined as the natural logarithm of the ratio of landslide occurrence 

in a particular class to the ratio of landslide occurrences in the whole study area [59]. 

Equation 5.12 is used to evaluate the information values as the natural logarithm of the 

ratio of conditional probability (computed as per Equation 5.10) to prior probabilities 

(computed as per Equation 5.11). 

 

𝑊𝑊𝑗𝑗 =  𝐼𝐼𝑗𝑗 × 𝑃𝑃𝑗𝑗  

 

(5.9) 

 

𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝑆𝑆 =  �𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

+ 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 /𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 

 
(5.10) 

  

 
(5.11) 

  

 
(5.12) 

 

𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  
𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝐼𝐼𝐼𝐼 =  log𝑒𝑒 �
𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

� 
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Positive information values (IV > 0) indicate high correlation to landslide 

occurrences while negative information values (IV < 0) indicate the contrary. The final 

landslide susceptibility index (LSI) for this approach was eventually computed through 

the Raster Calculator tool using Equation 5.13. 

 

5.1.4 Weight of Evidence (WofE) 

Originally developed as a Bayesian conditional probability model for medical 

diagnosis, the Weight of Evidence (WofE) method found its way to spatial applications 

like mineral potential mapping [60], [61]. This approach has been applied and validated 

by several researchers in mapping landslide susceptibility as well [62]- [63], [12]. 

The positive and negative weights for each influencing factor are evaluated 

based on the presence (𝑆𝑆) or absence (𝑆𝑆̅) of landslide events as per Equations 5.14 and 

5.15 respectively with the presence or absence of factor class denoted as 𝐵𝐵 and 𝐵𝐵� . 

 

After re-writting the equations in terms of pixel contributions, the Equations 

5.16 and 5.17 were used for weights evaluation. 

 

 
(5.13) 

 

𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼 =  �𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐼𝐼𝐼𝐼𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
+ 𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐼𝐼𝐼𝐼𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 /𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 

 
(5.14) 

 
(5.15) 

 

𝑊𝑊𝑖𝑖
+ =  log𝑒𝑒 �

𝑃𝑃(𝐵𝐵|𝑆𝑆)
𝑃𝑃(𝐵𝐵|𝑆𝑆̅)

� 

𝑊𝑊𝑖𝑖
− =  log𝑒𝑒 �

𝑃𝑃(𝐵𝐵�|𝑆𝑆)
𝑃𝑃(𝐵𝐵�|𝑆𝑆̅)

� 
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Where, 

𝑁𝑁𝑝𝑝1 = number of pixels with landslides in the factor class 

𝑁𝑁𝑝𝑝2 = number of pixels with landslides outside factor class 

𝑁𝑁𝑝𝑝3 = number of pixels without landslides in the factor class 

𝑁𝑁𝑝𝑝4 =number of pixels without landslides outside factor class 

The significance of the calculated positive and negative weights can be 

further evaluated by their variances S2(W+) and S2(W-) using the Equations 5.18 and 5.19 

respectively. 

 

The degree of correlation between each factor class and slide events is better 

represented by the contrast values, C which is computed as per Equation 5.20. 

 

 

(5.16) 

 

(5.17) 

 

𝑊𝑊𝑖𝑖
+ =  log𝑒𝑒

⎣
⎢
⎢
⎢
⎡�

𝑁𝑁𝑝𝑝1
𝑁𝑁𝑝𝑝1 + 𝑁𝑁𝑝𝑝2

�

�
𝑁𝑁𝑝𝑝3

𝑁𝑁𝑝𝑝3 + 𝑁𝑁𝑝𝑝4
�
⎦
⎥
⎥
⎥
⎤
 

𝑊𝑊𝑖𝑖
− =  log𝑒𝑒

⎣
⎢
⎢
⎢
⎡�

𝑁𝑁𝑝𝑝2
𝑁𝑁𝑝𝑝1 + 𝑁𝑁𝑝𝑝2

�

�
𝑁𝑁𝑝𝑝4

𝑁𝑁𝑝𝑝3 + 𝑁𝑁𝑝𝑝4
�
⎦
⎥
⎥
⎥
⎤
 

 
(5.18) 

 
(5.19) 

 

𝑠𝑠2(𝑊𝑊+) =  
1

𝑁𝑁{𝐵𝐵⋂𝑆𝑆} +  
1

𝑁𝑁{𝐵𝐵⋂𝑆𝑆̅}
 

𝑠𝑠2(𝑊𝑊−) =  
1

𝑁𝑁{𝐵𝐵� ⋂𝑆𝑆}
+  

1
𝑁𝑁{𝐵𝐵� ⋂𝑆𝑆̅}

 

 (5.20) 
 

𝐶𝐶 =  𝑊𝑊+ −  𝑊𝑊− 
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While zero values obtained for C denote zero or unidentified correlation with 

any slide events, positive and negative contrast values signify favourable and 

unfavourable spatial correlations respectively [64]. The standard deviation for the 

calculated contrast values can be evaluated from the variances of the obtained weights 

using the Equation 5.21 below. 

 

The studentized contrast value, Cs is finally calculated as a ratio of a contrast 

value (C) to its respective standard deviation S(C) as per Equation 5.23 [34]. 

 

It is used as a means to signify the relative certainty of the obtained posterior 

probability [65]. The final landslide susceptibility index (LSI) for this approach was 

computed through the Raster Calculator tool using Equation 5.23. 

 

5.2 Computation results 

The computation of weight values for every class of every factor map gives 

an insight about the landslide distribution and about the degree of correlation of each class 

to landslide occurrences. The results from the Frequency Ratio (FR), Shannon Entropy 

(SE), Information Value (IV) and Weight-of-Evidence (WofE) probabilistic methods 

have been presented in tabular form as Table 5.1 to Table 5.4 respectively below. The 

variation in these weights was then interpreted in graphical formats in the upcoming 

sections of this chapter. 

 
(5.21) 

 

𝑠𝑠(𝐶𝐶) =  �𝑠𝑠2(𝑊𝑊+) + 𝑠𝑠2(𝑊𝑊−) 

 
(5.22) 

 

𝐶𝐶𝑠𝑠 =  
𝐶𝐶

𝑠𝑠(𝐶𝐶) 

 
(5.23) 

 

𝐿𝐿𝐿𝐿𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =  �𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
+ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐶𝐶𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 /𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 
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Table 5.1 FR computation results 

 

Land Use Land Cover Class pixels % Class pixels Landslide pixels % Landslide pixels FR
Built up 146846 0.14516 23400 0.17687 1.21842
Forest 308834 0.3053 9900 0.07483 0.24511

Water Body 4629 0.00458 900 0.0068 1.48662
Snow/Glaciers 123809 0.12239 1800 0.01361 0.11116
Barren Land 203861 0.20153 15300 0.11565 0.57385

Agricultural Land/Grass 223609 0.22105 81000 0.61224 2.76974
Slope (°) Class pixels % Class pixels Landslide pixels % Landslide pixels FR

0 – 14 137223 0.12973 5400 0.04082 0.31462
15 – 24 261701 0.24741 18900 0.14286 0.57741
25 – 33 321808 0.30424 44100 0.33333 1.09564
34 – 45 241211 0.22804 49500 0.37415 1.64071

> 45 95810 0.09058 14400 0.10884 1.20164
Aspect Class pixels % Class pixels Landslide pixels % Landslide pixels FR

Flat 87 0.00008 0 0 0
North 64632 0.06111 8100 0.06122 1.00184

Northeast 125781 0.11893 17100 0.12925 1.08678
East 132831 0.1256 20700 0.15646 1.24576

Southeast 121512 0.11489 19800 0.14966 1.30259
South 121435 0.1153 29700 0.22449 1.94696

Southwest 156412 0.11482 14400 0.10884 0.94794
West 156412 0.14789 14400 0.10884 0.73596

Northwest 146739 0.13875 4500 0.03401 0.24515
North 66228 0.06262 3600 0.02721 0.43453

Profile Curvature Class pixels % Class pixels Landslide pixels % Landslide pixels FR
Convex 113351 0.10555 16200 0.12245 1.16009

Flat 669252 0.6232 72900 0.55102 0.88418
Concave 291289 0.27125 43200 0.32653 1.20382

Distance to road (m) Class pixels % Class pixels Landslide pixels % Landslide pixels FR
0 – 200 138618 0.13702 67500 0.5102 3.72347

200 – 400 87959 0.08695 6300 0.04762 0.54768
400 – 600 71444 0.07062 3600 0.02721 0.3853
600 – 800 59745 0.05906 5400 0.04082 0.69112

800 – 1,000 54078 0.05346 11700 0.08844 1.65435
> 1,000 599789 0.59289 37800 0.28571 0.4819

Distance to faults/lineaments (m) Class pixels % Class pixels Landslide pixels % Landslide pixels FR
0 – 200 95610 0.09451 8100 0.06122 0.64781

200 – 400 87818 0.08681 12600 0.09524 1.09711
400 – 600 82262 0.08132 9900 0.07483 0.92024
600 – 800 72002 0.07117 4500 0.03401 0.47789

800 – 1,000 68400 0.06761 11700 0.08844 1.30796
> 1,000 605541 0.59858 85500 0.64626 1.07966

Distance to drainage (m) Class pixels % Class pixels Landslide pixels % Landslide pixels FR
0 – 100 82554 0.0861 15300 0.11565 1.41715

100 – 200 69486 0.06869 18900 0.14286 2.07983
200 – 300 74861 0.074 7200 0.05442 0.73543
300 – 400 61776 0.06107 8100 0.06122 1.0026

> 400 722956 0.71464 82800 0.62585 0.87575
Elevation (m) Class pixels % Class pixels Landslide pixels % Landslide pixels FR
1,050 – 2,000 264717 0.2603 101700 0.76871 0.83979
2,000 – 3,000 430533 0.42335 28800 0.21769 0.14622
3,000 – 4,000 281431 0.27674 1800 0.01361 0.05916
4,000 – 4,900 40277 0.03961 0 0 0

Lithology Class pixels % Class pixels Landslide pixels % Landslide pixels FR
SCHIST AND QUARTZITE 159066 0.15724 8100 0.06122 0.38938

CARBONACEOUS SLATE, PHYLLITE, LIMESTONE, QUARTZITE 74580 0.07372 1800 0.01361 0.18455
CARBONACEOUS SLATE, PHYLLITE, QUARTZITE 13122 0.01297 0 0 0

DIAMICTITE, SHALE, SLATE, SANDSTONE, LIMESTONE 4463 0.00441 0 0 0
SILLIMANITE - KYANIE BEARING SCHIST, QUARTZITE 204013 0.20167 60300 0.45578 2.26007
WHITE-GREEN QUARTZITE, PHYLLITE, BASIC FLOWS 197575 0.1953 18900 0.14286 0.73146

STREAKY AND BANDED GNEISS 23534 0.02326 3600 0.02721 1.16969
PHYLLITE, QUARTZITE WITH BASIC FLOWS 13721 0.01356 0 0 0

SCHIST, GNEISS, MIGMATITE, QUARTZITE, MARBLE 116964 0.11562 2700 0.02041 0.17651
SCHIST, PHYLLITE, QUARTZITE 57587 0.05692 4500 0.03401 0.59752

SLATE, PHYLLITE, QUARTZARENITE, LIMESTONE, METABASICS 87693 0.08668 28800 0.21769 2.51125
GRANITOID, GNEISS, MIGMATITE 5695 0.00563 0 0 0

GRAVEL, PEBBLE, SAND, SILT AND CLAY 53620 0.053 3600 0.02721 0.51338
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Table 5.2 SE computation results 
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Table 5.3 SE computation results (continued) 
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Table 5.3 IV computation results 
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Table 5.3 IV computation results (continued) 
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Table 5.4 WofE computation results 
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Table 5.4 WofE computation results (continued) 
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5.3 Spatial relationships interpretation 

The relationship between each class of each causative factor to landslide 

occurrence gives an insight on the mechanisms of the slides in the research area. Despite 

the extensive literature available on the different underlying causes of slope failures, these 

cause-effect relationships vary according to the study area’s characteristics, different 

types of failures prevalent as well as the other external triggering factors involved.  

Therefore, it is an important aspect of any landslide susceptibility studies to 

try to understand the implication/effect that the selected causative factors have on past 

slope failures. This interpretation can be done from the results obtained from the four 

different probabilistic methods FR, SE, IV and WofE. The different weights assigned to 

every parameter through the different methods enabled the author to better figure out the 

patterns behind the past slides in the region as well as compare the observations with 

other susceptibility studies for similarity or contrast. 

This interpretation will in turn help in choosing more reliable factors to 

describe mass movement mechanisms in the study region to build more robust models in 

the future. 

5.3.1 Frequency Ratio (FR) and Information Value (IV) results 

Despite being different methods altogether, the results from the frequency 

ratio model show a rather similar pattern to that from the information value model. 

Therefore, the idea of presenting and discussing about the results from these two models 

simultaneously was found relevant for a better perception. 

5.3.1.1 Effect of slope 

The variations in the results for the slope factor from the FR and IV methods 

have been presented in Fig. 5.1 and 5.2 respectively below. In terms of percentage class 

pixel distribution of the slope angle classes, the 25° – 33° category occupies most of the 

study area with a percentage of around 30% followed by the 15° – 24° and 34° – 45° 

categories occupying 25% and 23% respectively. The 0° – 14° class occupies the lower 
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valley areas and riverbeds (≈13%) whereas the steepest slopes (> 45°) class occupies the 

least area (≈9%) as seen in Table 5.1 above. 

 

Fig. 5.1 FR variation in slope factor 

For the percentage landslide distribution as seen from Fig. 5.1 above, the 

highest was in the category 34° – 45° followed by the categories 25° – 33°, 15° – 24°, > 

45° with the least being in the 0° – 14° class. The FR distribution followed the same 

pattern as that of the landslide distribution with the highest being in the 34° – 45° slope 

class. Also, an increasing trend in both prospects and FR values is observed with the 

increasing order of slope classes ending with a decline in the last category (> 45°). 

 

Fig. 5.2 IV variation in slope factor 
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The information values and percentage landslide distribution for the slope 

classes, as seen from Fig. 5.2, show a similar pattern to that of the FR method; an 

increasing trend in the first four slope categories ending with a decline in the last class (> 

45°). However, as seen from Table 5.3, negative informative values were found in the 0° 

– 14° and 15° – 24° slope classes thereby expressing contrasting correlation to landslide 

occurrences as compared to the other slope classes having positive information values. 

This increasing trend in slope was already predicted since slopes become 

more and more unstable with increasing slope angle. However, the extent of soil cover 

also decreases with increasing soil angle, and the presence of mature stable topography 

also increases, explaining the decrease in both landslide occurrences and FR/IV value. 

The ‘34° - 45°’ class contributed to both the maximum percentage of landslide 

distribution and FR/IV value. 

5.3.1.2 Effect of aspect 

The variations in the results for the aspect factor from the FR and IV methods 

have been presented in Fig. 5.3 and 5.4 respectively below. In terms of area coverage of 

the different slope orientation classes, the contribution of every class is almost equal (≈11-

15%) except for flat surfaces with an almost insignificant contribution in the hilly and 

mountainous region investigated. 

 

Fig. 5.3 FR variation in aspect factor 
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In terms of slope orientations, it can be deduced from the observed trend in 

Fig. 5.3 that the southern, south-eastern, eastern and north-eastern aspects contributed to 

more landslide pixels than all the other categories. Least affected by mass movements 

were the western, northern, north-western orientations. One confirmation of the 

credibility of the input data was the observed zero FR value obtained in flat slopes (no 

orientation) in the area which experienced zero slope failures. 

 

Fig. 5.4 IV variation in aspect factor 

A similar trend was observed for the variation of the information values of 

the slope orientation classes as seen from Fig. 5.4 above. Positive information values were 

found in the southern, south-eastern, eastern and north-eastern aspects as seen from Table 

5.3 justifying their positive contribution to landslide occurrences in the study area. The 

contrary can be said for the south-western, western, northern and north-western 

orientations which had negative information values denoting contrasting correlation to 

sliding. Another justification for the IV method can be seen for the flat orientations which 

has zero IV hence denoting no correlation with landslide occurrences. 

5.3.1.3 Effect of curvature 

The variations in the results for the aspect factor from the FR and IV methods 

have been presented in Fig. 5.5 and 5.6 respectively below. 
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Fig. 5.5 FR variation in profile curvature factor 

The percentage class pixel distribution of the area’s profile curvature as seen 

from Table 5.1 shows a domination of recti-linear/flat surfaces which are the most 

occurring profile curvature type in the region with highest class pixel distribution (≈62%), 

followed by concave (≈27%) and convex surfaces (≈11%). The percentage landslide 

distribution shows a similar pattern to the percentage class pixel distribution in the 

respective surfaces.  

However, the FR values computed shows higher correlation for concave and 

convex surfaces with FR > 1 respectively compared to rectilinear surfaces with FR<1 as 

seen from Fig. 5.5 above. 

 

Fig. 5.6 IV variation in profile curvature factor 
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A similar trend is again observed for the variation of information values in 

the different curvature types as seen from Fig. 5.6 below. Similar to the FR results, 

concave faces showed better correlation to landslide occurrences with higher IV 

compared to convex faces while the recti-linear faces had negative IV, thereby signifying 

adverse correlation to slope failures. 

5.3.1.4 Effect of elevation 

The analysis results for the FR and IV variation in elevation parameter is 

presented in Fig 5.7 and 5.8 respectively. The percentage class pixel distribution of the 

area’s elevation as processed from Table 5.1 shows that the maximum area of the research 

region lies in the 2,000 – 3,000 metres class followed by an almost equal contribution of 

areas in 1,050 – 2,000 metres and 3,000 – 4,900 metres with the least being in the 4,000 

– 4,900 metres elevation category which is restricted to a hostile environment 

characterised by snow/glaciers all year round with bare human intervention. 

 

Fig. 5.7 FR variation in elevation factor 

Most villages/towns in the study area are restricted to a maximum altitude of 

3,000 metres, with Malana (≈2,800 metres) and Khirganga (≈2,960 metres) being the 

highest places. Though elevation does affect many land processes and activities, the main 

contribution in this study, is believed to be presence of human settlement and activities. 

As seen from Fig. 5.7, the highest correlation to landslide occurrences was found in the 
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first two categories (1,050 – 2,000 and 2,000 – 3,000 metres) with the highest being in 

the least elevated area, implying the possibility of other factors such as the presence of 

most agricultural/grass land and road networks in this class. The lowest correlation was 

observed in the most elevated areas which is mostly characterised by mature topography 

and presence of snow/glaciers nearly all year round. To summarise, a decrease in both 

landslide distribution and FR value is observed with increasing altitude in the study 

region. 

 

Fig. 5.8 IV variation in elevation factor 

The variation of IV in the different elevation classes, as seen from Fig. 5.8 

below, follow a declining trend similar to that of the FR variation in the first three classes. 

The information value of only the lowest elevated class signifying a positive correlation 

to landslide occurrences while negative correlation is observed in the next two elevation 

classes. The highest elevated category (4,000 – 4,900 m) has zero information value 

implying zero correlation to past slope failures in the area. 

5.3.1.5 Effect of distance to drainage 

From Table 5.1, it can be inferred that the percentage class pixel contribution 

of each buffered zone of 200 metres intervals from the drainage networks in the area 

shows an almost equal distribution with the highest being in the last zone (> 400 m) since 
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it encompasses the rest of the study area’s pixels (≈71%). The variation for the FR and 

IV variation in the distance to drainage parameter is presented in Fig. 5.9 and Fig. 5.10 

respectively. 

 

Fig. 5.9 FR variation in distance to drainage factor 

As observed in Fig. 5.9, the first two categories (0 – 100 and 100 – 200 

metres) depicted the highest correlations to landslide occurrences with the highest FR 

value being in the 100 – 200 metres class. However, since the last category englobes the 

rest of the area’s pixel, it had the highest percentage of landslide pixel distribution but 

showed lesser contribution (FR <1) in terms of correlation to mass movements compared 

to the first two classes (FR >1). 

Referring to Fig. 5.10, a similar pattern in the IV variation can be observed as 

that of the variation in FR values. The only two classes showing positive contribution to 

occurrences of landslides are the 0 – 100 and 100 – 200 metres categories with positive 

IV values. the remaining classes demonstrated little significance to landslide occurrence. 

It can be therefore concluded that distance to drainage do play a role in slope instability 

in the region. 
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Fig. 5.10 IV variation in distance to drainage factor 

5.3.1.6 Effect of distance to roads 

The buffered zones of 200 metres from the road network shows an almost 

equal contribution of class pixels between the 200 – 400, 400 – 600, 600 – 800 and 800 

– 1,000 metres categories as seen from Table 5.1. The most significant contributors are 

the 0 – 200 metres class covering approximately 14%, and the > 1,000 metres class 

covering approximately 59% of the area. The variation of FR and IV for the distance to 

roads parameter has been outlined in Fig. 5.11 and 5.12 respectively. 

 

Fig. 5.11 FR variation in distance to roads factor 
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The distance to road map overlayed with compiled landslide distribution data 

in the area gave insight on the effect of road construction and widening in the region. The 

increase in slope instability due to road-related activities can be justified with the highest 

landslide distribution and highest FR value (3.72347) obtained in the first buffered zone 

from the road networks (0 – 200 m) as seen from Fig. 5.11. A decreasing trend in both 

percentage landslide and FR was observed in the next two classes, then again, a rise in 

landslide distribution and FR in the 800 – 1,000 metres class, which might be better 

justified by the other causative factors chosen. The decline in FR value for the ‘> 1000m’ 

category can be justified by the huge percentage class pixel contribution of this class 

which englobes the rest of the study area. 

 

Fig. 5.12 IV variation for distance to roads factor 

The variation in the information values was found similar to that of the 

frequency ratio model with the only two classes showing correlation to landslide 

occurrences being the first (0 – 200 m) with the most positive IV (1.3147) and the fifth 

(800 – 1,000 m) category with the second most positive IV (0.5034). 

5.3.1.7 Effect of lithology 

The three predominating lithostratigraphic units in the region in terms of pixel 

contribution are the ‘Sillimanite-Kyanie bearing Schist, Quartzite’, ‘White-green 

Quartzite Phyllite, Basic flows’ and ‘Schist and quartzite’ respectively with a contribution 
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of more than 15% as seen from Table 5.1. The variation in FR and IV for the effect of 

lithology on landslide occurrences can be observed in Fig. 5.13 and 5.14 respectively. 

 

Fig. 5.13 FR variation in lithology factor 

The three litho-stratigraphic units ‘Sillimanite-kyanie bearing schist, 

quartzite’, ‘white-green quartzite, phyllite, basic flows’ and ‘slate, phyllite, quartzarenite, 

limestone, metabasics’ had the highest landslide distribution and FR values, including the 

‘streaky and banded gneiss’ lithologic unit that also showed high correlation to slope 

instability (FR > 1) as seen from Fig. 5.13 above. Positive information values (IV >0) 

were observed in the same three lithologic groups confirming their relationship with past 

landslides in the region as seen from Fig. 5.14 below. 

The categories that had no landslide occurrences, hence zero FR and 

Information values (IV=0), thereby depicting no correlation were the ‘carbonaceous slate, 

phyllite, quartzite’, ‘diamicite, shale, slate, sandstone, limestone’, ‘phyllite, quartzite with 

basic flows’ and ‘granitoid, gneiss, migmatite’ lithologic groups. 
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Fig. 5.14 IV variation in lithology factor 

5.3.1.8 Effect of distance to faults/lineaments 

As seen from Table 5.1, a similar trend was observed as that of the distance 

to drainage map in terms of an almost equal percentage class distribution in the first four 

classes and with the highest contributor being the >1,000 metres class (≈60%) englobing 

most of the study area. 

 

Fig. 5.15 FR variation in distance to faults/lineaments factor 
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For better interpretation of the results from this parameter, it has been studied 

along with the lithology map since the last two categories (800 – 1,000 and > 1,000 

metres) of the fault buffer map are mostly covered by the three litho-stratigraphic units 

(‘Sillimanite-kyanie bearing schist’, quartzite; ‘white-green quartzite, phyllite, basic 

flows’ and ‘slate, phyllite, quartzarenite, limestone, metabasics’) that had the highest 

landslide distribution thereby contributing to the high FR value obtained for these two 

categories as seen above in Fig. 5.15. Additionally, the presence of ‘streaky and banded 

gneiss’ lithologic units in the 200-400 m ‘distance to faults/lineaments’ range shows the 

higher correlation value to landslide events. 

 

Fig. 5.16 IV variation in distance to faults/lineaments factor 

The same process of referring to the lithological units has been repeated for 

studying the variation of information values in this parameter. However, the variation of 

information values for lithology has been considered instead of the FR variation. From 

Fig. 5.16 above, it can be inferred that the same three classes (200 – 400, 800 – 1,000 and 

> 1,000 m) that had highest FR, depicted positive information values (IV>0), implying 

positive influence on slope instability. However, among the lithological units present in 

the last two classes (800 – 1,000 and > 1,000 m), more specifically, the ‘white-green 

quartzite, phyllite, basic flows’ had shown negative influence on land sliding as seen 

above from Fig. 5.14. 
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5.3.1.9 Effect of land use/land cover (LULC) 

As noted above from Table 5.1, the most predominant land use/land cover 

classes in the region are forested areas (≈30%), followed by agricultural (≈22%), barren 

land (≈20%) and built-up areas (≈14%) respectively. Snow/glaciers and water bodies 

constituted the least prevalent land use/land cover classes in terms of area coverage. 

 

Fig. 5.17 FR variation in land use/land cover factor 

The land use/land cover types having the highest landslide distribution are the 

Agricultural Land/Grass, Built-up and Barren Land as observed in Fig. 5.17 above. 

Agricultural Land/Grass Land contributed to the most landslide occurrences and FR value 

than any other class. Some of the possible reasons are deforestation practices to create 

agricultural areas over the years, change in agricultural crop patterns, drainage pattern 

changes in the cultivated region or increasing human intervention. While water bodies, 

mainly present as rivers/streams in the study area, show high correlation to landslide 

occurrences as shown by the FR value due to plausible causes such as bank toe erosion, 

lowest correlation was observed in the Forest and Snow/Glaciers categories. 

The reason for low occurrences in forested areas is probably due to the root 

strength contribution of evergreen, deciduous pine trees which holds the soil firmly 

together, decreasing the probability of slope failures. The region of low landslide 
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distribution in the Snow/Glaciers class is most certainly due to lesser human intervention 

coupled with lesser extent of soil cover, but also remoteness of the region and presence 

of nearly all year snow/glaciers make landslide mapping an arduous task, explaining the 

lack of landslide data as well. 

 

Fig. 5.18 IV variation in land use/land cover factor 

The same tendency from the FR variation was noted in the variation of the 

information values, as seen from Fig. 5.18, with the three classes (Built-up, Water Body 

and Agricultural Land/Grass) showing positive association (IV>0) to landslide incidence 

in the study area. The rest of the classes portrayed negative association. 

5.3.2 Weight-of-Evidence (WofE) results 

The positive, negative and contrast weights computed through the Weight of 

Evidence probabilistic method for every parameter class along with their variances have 

been outlined in Table 5.4 above. The contribution of each class to landslide incidence 

has been evaluated in the sections below on the basis of the computed weights. 
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5.3.2.1 Effect of slope 

The variation of positive (W+) and contrast (C) weights, as noticed in Fig. 

5.19, resembles the variation in the information value (IV) of the slope factor seen from 

Fig. 5.2 above. The negative values of both W+ and C in the 0° – 14° and 15° – 24° slope 

classes correspond to the negative information values obtained earlier, thereby expressing 

contrasting association to landslide occurrences. 

The other slope classes showed positive connection to slope instability with 

positive W+ and C weights. The 34° – 45° category was found to be the most susceptible 

class with the most negative W- and most positive W+ and C values, tallying with the 

results from FR and IV models. 

 

Fig. 5.19 WofE weights variation in slope factor 

5.3.2.2 Effect of aspect 

As seen from Fig. 5.20, negative W+ and C values were obtained in the 

northern, north-western, western and south-western slope orientations depicting negative 

association while negative W+ and C values were achieved in the south, south-eastern, 

eastern and north-eastern slope aspects symbolising affirmative correlation to landslide 

incidences. The same interpretations were made from the results obtained in the 

frequency ratio and information value models. The reverse positive and negative values 

of W- compared to W+ values in each class confirm the above-made observation. 
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Fig. 5.20 WofE weights variation in aspect factor 

5.3.2.3 Effect of curvature 

Both concave and convex surfaces show positive correlation to land sliding 

in the area with the highest positive weight (W+) and contrast (C) values compared to 

flat/linear surfaces (having negative W+ and C values as well as positive W- value) despite 

having the highest percentage landslide pixel contribution as observed from Fig. 5.21. 

Concave surfaces, as confirmed by the FR and IV methods previously, is found to share 

the most significant association to slide occurrences. 

 

Fig. 5.21 WofE weights variation in curvature factor 
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5.3.2.4 Effect of elevation 

It can be deduced from Fig. 5.22 that only the first elevation class (1,050 - 

2,000) showed significant correlation with landslide occurrences with the class having 

the highest and only positive W+ and C values compared to the two following classes 

(2,000 - 3,000 and 3,000 - 4,000) which had increasingly negative W+ and C values. It is 

to be noted that the first class also recorded the highest W- value confirming its strong 

influence. 

The last category had less human intervention and lesser soil cover with 

snow/glaciers present almost all year round and therefore, was the least affected with zero 

W+ value. 

 

Fig. 5.22 WofE weights variation in elevation factor 

5.3.2.5 Effect of distance to drainage 

Only the first two categories within a 200m buffer distance from river 

networks demonstrated correlation to slope instability in the region due to their high 

contrast (C) values as well as positive weights (W+), as seen from Fig. 5.23. This 

relationship between drainage and landslide happenings has been confirmed by several 

researchers. 
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Fig. 5.23 WofE weights variation in distance to drainage factor 

5.3.2.6 Effect of distance to roads 

For the distance to roads parameter, only the first category was identified as 

the highest contributor to instability of slope faces in this region with the most positive 

W+ and C values. The decreasing weight (W+) and contrast (C) values in the next two 

categories signify a decrease in the probability of occurrences as one goes further away 

from the road networks in the area. The 800 – 1,000 metres category also received positive 

weights, the reasons behind which could better be explained by other factors in this class. 

 

Fig. 5.24 WofE weights variation in distance to roads factor 
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5.3.2.7 Effect of lithology 

The three lithologic groups 'Sillimanite-kyanie bearing schist, quartzite', 

'Slate, phyllite, quartzarenite, limestone, metabasics' and 'streaky and banded gneiss' had 

the highest positive weights (W+) as well as the highest contrast (C) values. 

 

Fig. 5.25 WofE weights variation in lithology factor 

The negative W+ and C values in five categories as seen from Fig. 5.25 

(reading from top to bottom; the first, fourth, fifth, eighth, twelfth and thirteenth lithologic 

groups) depict their contrasting association to slope instability. To conclude, the second, 

sixth, tenth and eleventh litho-stratigraphic units demonstrated zero correlation, since 

they had zero W+ value. 

5.3.2.8 Effect of distance to faults/lineaments 

As seen from the distance to faults/lineaments WofE weights distribution in 

Fig. 5.26 below, the closest buffered zone (0 – 200m) as well as the third and fourth ones 

showed negative contribution in terms of negative weight (W+) and contrast (C) values. 

On the opposite hand, the second (200 – 400m) class and the last two classes (800 – 

1,000m and > 1,000m) demonstrated positive correlation to slope instability. The last and 
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largest buffered zone (> 1,000 m) even had the most negative W- value validating its 

strong association. 

 

Fig. 5.26 WofE weights variation in distance to faults/lineaments factor 

It is to be noted that the same pattern has been previously observed in the FR 

and IV variation of the same parameter. 

5.3.2.9 Effect of land use/land cover 

For the purpose of investigating the contribution of the different land use/land 

cover classes, Fig. 5.27 was consulted. It can be hence observed that the three classes 

having highest landslide occurrences as well as being the most significant contributors of 

positive weight (W+) and contrast (C) values were Agricultural Land/Grass, Water body 

followed by Built-up area. Besides, the high negative W- value in the Agricultural 

Land/Grass category further supplemented its strong association to instability in the area. 

Snow/Glaciers and Forested areas had the highest negative contrast (C) values 

confirming their negative relationship with landslide happenings in the region as observed 

previously from the results of the FR and IV methods. This contrasting relationship of 

forested areas was further validated by the noted positive W- value. 
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Fig. 5.27 WofE weights variation in land use/land cover factor 

5.3.3 Shannon Entropy (SE) results 

The factors that had the highest computed weights were Elevation (0.46), 

Lithologic group (0.39), Distance to roads (0.26) and Land Use/Land Cover (0.22) 

respectively signifying their strong association to past landslide occurrences in the area.  

 

Fig. 5.28 Shannon Entropy (Wj) variation for all parameters 
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However, Profile curvature and Distance to faults/lineaments gained 

negligible weights according to Shannon's entropy method results while Slope, Aspect 

and Distance to drainage factors gained small weights signifying little contribution to 

slope instability in the area. 
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CHAPTER 6  
LANDSLIDE SUSCEPTIBILITY ANALYSIS: 

RESULTS AND DISCUSSIONS 

6.1 Landslide Susceptibility Map (LSM) Generation and 
classification 

For the generation of the final susceptibility maps for each adopted model, 

the integration of the nine weighted conditioning factors needs to be carried out. This 

process involved using the Raster Calculator tool in a GIS environment to overlay the 

classified thematic maps as per user’s requirements to compute Landslide Susceptibility 

Index (LSI) values, which is then classified into different susceptibility zones for the 

study. The classification algorithm adopted for the preparation of the final maps was 

Natural Jenks Break algorithm which was found to have a better representation of the 

landslide distribution for each susceptibility class. 

6.1.1 FR 

The weight calculation and interpretation phases are followed by 

reclassification of each parameter map as per their computed frequency ratio values. 

Landslide Susceptibility Index (LSIFR) for the FR model was computed as per Equation 

6.1 by overlaying the classified parameter maps. 

 

This evaluation was carried out through the Raster Calculator tool. The 

computed LSIFR values were then re-classified into five susceptibility classes (Very Low, 

Low, Moderate, High and Very High) as shown below in Fig. 6.1. The classification of 

the LSM has been done using the Natural Jenks Break algorithm, which was found to be 

the best classification algorithm for this study. 

 
(6.1) 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝐹𝐹 =  �𝐹𝐹𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆  +  𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐹𝐹𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  +  𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 +  𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  +  𝐹𝐹𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

+ 𝐹𝐹𝐹𝐹𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  +  𝐹𝐹𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 +  𝐹𝐹𝐹𝐹𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 /𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 
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Fig. 6.1 Landslide Susceptibility Map for Frequency Ratio (FR) model 

6.1.2 SE 

The weights resulting from the SE model were used in combination with the 

re-classified thematic layers from the FR model for the evaluation of LSI as per Equation 

6.2. 

 

The resulting Landslide Susceptibility Indexes (LSISE) were reclassified into 

five susceptibility classes (Very Low, Low, Moderate, High and Very High) using 

Natural Jenks Break algorithm as shown in Fig. 6.2. 

 

(6.2) 

 

𝐿𝐿𝐿𝐿𝐼𝐼𝑆𝑆𝑆𝑆 =  �𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

+ 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

+ 𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑊𝑊𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 /𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 



86 
 

 

Fig. 6.2 Landslide Susceptibility Map (LSM) for Shannon Entropy (SE) model 

6.1.3 IV 

The integration of the nine thematic layers reclassified as per their evaluated 

Information Values was carried out as per Equation 6.3 for the computation of Landslide 

Susceptibility Indexes (LSI). 

 

The final Landslide Susceptibility Map (LSMIV) was prepared by re-

classifying the computed susceptibility indexes into five susceptibility classes namely, 

Very Low, Low, Moderate, High and Very High as shown in Fig. 6.3. 

 
(6.3) 

 

𝐿𝐿𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼 =  �𝐼𝐼𝐼𝐼𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐼𝐼𝐼𝐼𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐼𝐼𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐼𝐼𝐼𝐼𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
+ 𝐼𝐼𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐼𝐼𝐼𝐼𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 /𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 
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Fig. 6.3 Landslide Susceptibility Map (LSM) for Information Value (IV) model 

6.1.4 WofE 

After carefully analysing the different weights and contrast values calculated 

using the WofE approach, the contrast values, C were used to re-classify every class of 

the nine prepared parameter maps. The final integration was then carried out using 

Equation 6.4 for the LSIWofE evaluation. 

 

The resulting layer was reclassified using Jenks Break algorithm into five 

susceptibility classes as depicted below in Fig. 6.4. 

 
(6.4) 

 

𝐿𝐿𝐿𝐿𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =  �𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝐶𝐶𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐶𝐶𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
+ 𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐶𝐶𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 /𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 � 
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Fig. 6.4 Landslide Susceptibility Map (LSM) for Weight of Evidence (WofE) model 

6.2 Validation results 

The validation procedure is considered one of the essential constituents of any 

predictive modelling studies [66], providing scientific significance to the obtained 

statistical results. Several researchers have developed various validation approaches 

ranging from simple, straight-forward to complex ones [67]. 

How the validation results can be interpreted and what they truly assess are 

the two main concerns of the researcher. For this study, three different approaches have 

been adopted to carry out this task namely: 

• Landslide Density Index (LDI) 
• Relative Landslide Density (R) Variation 
• Area Under the Curve (AUC) of the Receiver Operator Characteristics (ROC). 

For the testing component of this study, the past landslide inventory dataset 

which was previously randomly sampled into training datasets (75%), used for model 
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fitness evaluation and testing datasets (25%), used for predictive capability evaluation of 

the models. 

6.2.1 Landslide Density Index (LDI) 

The Landslide Density Index (LDI), used to evaluate the quality of the 

produced landslide susceptibility map [68] is computed for each susceptibility class of 

every model as per Equation 6.5. 

 

The computed indexes for each class of all four models has been presented in 

Table 6.1 below. 

Table 6.1 Computed LDI values for all models 

 

 
(6.5) 

 

𝐿𝐿𝐿𝐿𝐿𝐿 =  
% 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

% 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

Models
Susceptibility 

classes
Class 
pixels

% Class 
pixels

Landslide 
pixels

% Landslide 
pixels LDI

Very Low 335136 0.3319 4500 0.0781 0.24
Low 300859 0.2980 9000 0.1563 0.52

Moderate 183862 0.1821 6300 0.1094 0.60
High 136632 0.1353 16200 0.2813 2.08

Very High 53205 0.0527 21600 0.3750 7.12
Very Low 439917 0.4355 8100 0.0612 0.14

Low 256934 0.2544 14400 0.1088 0.43
Moderate 152711 0.1512 16200 0.1224 0.81

High 136129 0.1348 43200 0.3265 2.42
Very High 24360 0.0241 50400 0.3810 15.80
Very Low 142075 0.1407 0 0.0000 0.00

Low 252239 0.2498 2700 0.0204 0.08
Moderate 253994 0.2515 15300 0.1156 0.46

High 212441 0.2104 20700 0.1565 0.74
Very High 149073 0.1476 93600 0.7075 4.79
Very Low 179612 0.1779 0 0.0000 0.00

Low 294914 0.2920 9000 0.0680 0.23
Moderate 229213 0.2270 11700 0.0884 0.39

High 166412 0.1648 22500 0.1701 1.03
Very High 139671 0.1383 89100 0.6735 4.87

FR

SE

IV

WofE
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From Table 6.1, it can be observed that approximately 18% of the study area 

fall under High to Very High susceptibility zones as per the FR model containing 

approximately 65% of the past landslides. As for the SE model, 16% of the study area 

fall under High to Very High susceptibility zones explaining about 70% of the past slides. 

The High to Very High susceptibility zones of the final landslide 

susceptibility map generated through the IV method occupied approximately 17% of the 

study area containing over about 86% of slides while the two highest susceptible zones 

of the WofE model received about 84% of past landslides in approximately 30% of the 

study area. 

A clear picture of the variation of the LDI for each model in each susceptible 

zone can be seen in Fig. 6.5 below. 

 

Fig. 6.5 LDI variation for all models 

6.2.2 Relative Landslide Density Index (Rindex) variation 

The landslide density indexes computed in the previous section do not give 

an idea about the ratio of landslide distribution compared to the other susceptibility 

classes, rather give an idea about the variation of landslide distribution for each class 

separately.  
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Another indicative test for the goodness of fit is through the derivation of the 

Relative landslide density index (Rindex) [69] as per Equation 6.6. 

 

Where, 

𝑛𝑛𝑖𝑖 = Landslide pixels in each susceptibility class 

𝑁𝑁𝑖𝑖 = Class pixels in each susceptibility class 

The computation of Rindex values for the four adopted probabilistic models 

has been outlined in Table 6.2. 

Table 6.2 Computed Rindex values for all four models 

 

 

(6.6) 

 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
𝑛𝑛𝑖𝑖

𝑁𝑁𝑖𝑖�

∑𝑛𝑛𝑖𝑖 𝑁𝑁𝑖𝑖�
 

Models Susceptibility 
classes

Class 
pixels

% Class 
pixels

Landslide 
pixels

% 
Landslide 

pixels
ni/Ni Rindex

Very Low 335136 0.3319 4500 0.0781 0.01 2.23
Low 300859 0.2980 9000 0.1563 0.03 4.97

Moderate 183862 0.1821 6300 0.1094 0.03 5.69
High 136632 0.1353 16200 0.2813 0.12 19.69

Very High 53205 0.0527 21600 0.3750 0.41 67.42
Very Low 439917 0.4355 8100 0.0612 0.02 0.72

Low 256934 0.2544 14400 0.1088 0.06 2.18
Moderate 152711 0.1512 16200 0.1224 0.11 4.13

High 136129 0.1348 43200 0.3265 0.32 12.36
Very High 24360 0.0241 50400 0.3810 2.07 80.60
Very Low 142075 0.1407 0 0.0000 0.00 0.00

Low 252239 0.2498 2700 0.0204 0.01 1.34
Moderate 253994 0.2515 15300 0.1156 0.06 7.57

High 212441 0.2104 20700 0.1565 0.10 12.24
Very High 149073 0.1476 93600 0.7075 0.63 78.85
Very Low 179612 0.1779 0 0.0000 0.00 0.00

Low 294914 0.2920 9000 0.0680 0.03 3.57
Moderate 229213 0.2270 11700 0.0884 0.05 5.97

High 166412 0.1648 22500 0.1701 0.14 15.82
Very High 139671 0.1383 89100 0.6735 0.64 74.64

FR

SE

IV

WofE
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The variation of Rindex for all the models can be clearly seen from Fig. 6.6 below. 

 

Fig. 6.6 Rindex variation for all models 

The landslide susceptibility map (LSM) for the SE model had the highest 

Rindex values for the Very High susceptibility zone (≈81%) followed by the IV (≈79%), 

WofE (≈75%) and FR (≈68%) models respectively. The combined Rindex values for the 

two highest susceptible classes also were highest for the SE model (≈92%) followed by 

IV (≈91%), WofE (≈90%) and FR (≈87%) models respectively. It can thus be speculated 

that the Shannon Entropy based LSM had the highest model fitness among the other 

models from the results of this metric. 

6.2.3 Area Under the Curve (AUC) of Receiver Operator 
Characteristics (ROC) curve 

Originally developed for performance evaluation of radar receivers, the 

Receiver Operator Characteristics (ROC) analysis is a cut-off independent accuracy 

metric that has been successfully applied to many fields for quality and predictive 

capability evaluation [26].  

The ROC curve is a plot of True Positive Rate (TPR) against False Positive 

Rate (FPR) determined from Equation 6.7 and 6.8 respectively, and the area under ROC 
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curve (AUC) is used as a performance evaluation metric with an AUC=1 being a perfect 

fit and an AUC=0.5 being referred to as a random fit [48]. 

 

 

Where, 

TP & TN = pixels correctly classified as slide and not-slide 

FP & FN = pixels in-correctly classified as slide and not-slide 

For this purpose, the compiled landslide inventory was randomly split into 

training (75%) and validation (25%) datasets with the former used to generate the Success 

Rate Curve (SRC) while the latter used to generate the Prediction Rate Curve (PRC). 

SRC gives a measure of model fitness between the prepared landslide 

susceptibility map and the training datasets while the PRC gives an indication of the 

predictive ability of the model using the validation datasets [66], which was not 

previously used in the modelling procedure. This is one of the main reasons that many 

researchers reported higher AUC values obtained by the SRC than the PRC. 

The different success rate and prediction rate curves for the four adopted 

models can be seen in Fig. 6.7 and 6.8 respectively. 

 
(6.7) 

 
(6.8) 

 

𝑇𝑇𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝐹𝐹𝐹𝐹)) 

𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 (𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐹𝐹𝐹𝐹)) 
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Fig. 6.7 Success rate curves for the FR, SE, IV and WofE models 

 

Fig. 6.8 Prediction rate curves for the FR, SE, IV and WofE models 
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The results from ROC analysis of all the models have been summarised in 

Table 6.3 below. 

Table 6.3 Summary of ROC results for FR, SE, IV and WofE models 

 

It can be clearly observed that the Frequency Ratio (FR) model depicted the 

highest model fitness (87.3%) accuracy followed by the Shannon Entropy (86.9%), 

Information Value (86.3%) and the Weight-of-Evidence (85.4%) models respectively. 

This high fitness accuracy of the FR approach in hilly and mountainous areas has been 

noticed by several other researchers. 

In case of the prediction accuracy, the prediction rate curve from the Shannon 

Entropy (SE) model showed highest accuracy (80.9%) followed by Weight-of Evidence 

(80.4%), Frequency Ratio (80.3%) and the Information Value (80.1%) models 

respectively.  

It can be inferred from the validation results that the Frequency Ratio model 

had the highest fitness accuracy (87.3%) while the Shannon Entropy model had the 

highest prediction accuracy (80.9%). However, the results of all the four models were 

found to be reasonably accurate, thereby, confirming the applicability of probabilistic 

methods for modelling landslide susceptibility in the study area. 
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CHAPTER 7  
CONCLUSION, LIMITATION AND 

RECOMMENDATION 

This research work has made use of four probabilistic approaches for 

landslide susceptibility zonation of a portion of the Kullu tehsil in order to find out the 

most accurate and reliable model for the study area. This chapter outlines the conclusion 

reached by the researcher along with a listing of some major limitations of the study. This 

work ends with recommendations made by the author for future scopes of study in the 

area. 

7.1 Conclusion 

The main objectives of this research work have been met and the various 

research questions asked in the beginning have been answered by the author. Landslide 

susceptibility mapping is one of the most important tools available to disaster experts 

today to aid in delineating the region’s susceptibility to slope failures, and in turn avoiding 

huge cost of field investigation as well as providing the local authorities with prepared 

susceptibility maps for better and more detailed landslide management and mitigation 

works. 

Landslides are such complex events that despite much advancement, no 

‘unique’ or ‘unified’ or ‘definite’ solution exists. All this progress is being made with the 

sole purpose of better understanding the mechanisms of slope failures, the different 

processes linked directly or indirectly to those failures as well as evaluating different 

methods to more accurate map landslide susceptibility. 

This research work has made use of probabilistic methods to map the regions 

susceptible to landslides in part of the Kullu tehsil of Himachal Pradesh, a region 

characterised by high rise in tourism and development activities since the past decade. A 

careful study of literature and articles about the characteristics of the study area and about 

the methods employed previously, four probabilistic methods were selected for landslide 

susceptibility evaluation namely, Frequency Ratio (FR), Shannon Entropy (SE), 
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Information Value (IV) and Weight-of-Evidence (WofE). A comparison between the 

application of these four models for this study area had not been performed previously. 

A total of 47 mapped landslide polygons along with 164 acquired ones 

constituted the compiled landslide inventory of 211 slide polygons which was then 

randomly separated into training (75% = 147 nos.) and testing (25% = 64 nos.) datasets. 

This work delved into understanding the relevancy and importance of the nine 

selected causative factors and their classes to landslide occurrences for the area namely, 

slope, aspect, lithology, land use/land cover, distance to roads, distance to drainage, 

distance to faults/lineaments, elevation and profile curvature using the four methods. The 

nine parameters were also selected based on data availability and reliability. 

The four landslide susceptibility maps resulting from the four probabilistic 

models were validated based on their fitness accuracy and predictive capability using 

different methods. All the four models passed with reasonable fitness accuracy (> 85%) 

and predictive accuracy (>80%) as per the ROC analysis. However, the Frequency Ratio 

model depicted highest fitness accuracy (87.3%) and the Shannon Entropy model 

depicted highest predictive accuracy (80.9%) while the Weight-of-Evidence model had 

the lowest fitness (85.4%) accuracy, and the Information Value model had the lowest 

predictive accuracy (80.1%). 

The final landslide susceptibility maps were generated based on probabilistic 

analysis, hence involving very less subjectivity compared to expert-based methods. This 

concludes that the models developed in this study can be successfully applied to other 

mountainous regions having similar conditions, bearing in mind their fitness and 

prediction accuracy as depicted by the validation results of this study. 

7.2 Limitations 

Some of the limitations outlined in this study are: 

• Due to travel restriction/limitation, field visits could not be carried out for detailed 

geotechnical tests nor for field verification of mapped areas. However, the cost of 
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geotechnical testing in the hilly and mountainous areas of the Parvati valley would 

cost a fortune. 

• The restriction for higher resolution data is one of the main constraints for this 

study. LiDAR data could have been the best data for mapping landslide due to 

their higher resolution compared to other satellite datasets. However, LiDAR-

based surveys are expensive to conduct, difficult to acquire and require specialised 

equipment.  

• GIS-based landslide studies rely on association of different factors to landslide 

occurrences in an area. The more input data available for the model would result 

in better selection of data for landslide studies. The inaccessibility of the terrain 

in the area is one of the reasons for lesser availability of accurate data. 

• After consultation of temporal landslide studies, the importance of triggering 

factors such as rainfall and earthquake have been highlighted by several authors. 

However, this study did not include multi-temporal factors due to unavailability 

of data. 

• This work incorporated only bi-variate statistical approaches for landslide 

susceptibility analysis. However, landslide are multi-variate complex problems 

and the inter-relationship between selected factors and landslide occurrences can 

be evaluated to bring out any inter-dependency or any underlying collinearity. 

7.3 Recommendations and future scope of study 

Some of the suggestions made by the author have been presented below: 

• One of the main components of any landslide susceptibility study is the landslide 

inventory which is used both for modelling and validation. Hence, an updated 

landslide inventory is imperative for an accurate representation of the real 

scenario. This entails building and consolidating a database for recording all local 

landslide occurrences, even the smallest ones both by local authorities and by 

local residents. 

• As an extension of the methods in practice for landslide susceptibility mapping in 

the Kullu area, models like the Artificial Neural Network (ANN), Support Vector 

Machine (SVM), Multiple Logistic Regression and other machine learning 
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algorithms can be applied to find out the most applicable landslide susceptibility 

modelling approach. 

• Only nine landslide causative factors have been considered in this research work 

based on data availability. Other researchers may investigate in the effects and 

relevancy of other causative factors such as the Normalised Difference Vegetation 

Index (NDVI), Stream Power Index (SPI), Sediment Transport Index (STI), 

relative relief, soil type, soil depth, agricultural crop patterns, etc. to occurrence 

of landslides in the study area. 

• The usage of better resolution DEM is recommended for better landslide 

identification and mapping as well as derivation of more accurate DEM-related 

parameters such as slope, aspect and curvature. 

• Multi-temporal aspects such as the effect of rainfall and earthquake intensities on 

landslide occurrences have not been considered in this study. Multi-temporal 

landslide inventories can be prepared for better validation purposes as well as 

accurate representation of landslide distribution for multi-temporal studies. 
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