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Abstract 

 

Parkinson’s disease (PD) is an enervating, debilitating and lethal neurodegenerative disorder 

marked by deterioration of neurons which produces dopamine in the central nervous system. 

PD is accompanied by a constellation of lethal motor and non-motor symptoms which are 

observed when the disease is progressed at an advanced stage. Hence, there is a great necessity 

of novel blood-based biomarkers which can help in early detection of the disease and can serve 

as new therapeutic targets to impede the progression of disease. Herein, we performed blood-

based differential gene expression analysis of Parkinson’s samples and healthy samples to look 

for novel blood-based gene biomarkers and their target drugs. Herein firstly, we downloaded 

blood-based microarray gene expression omnibus (GEO) dataset to explore differentially 

expressed genes (DEGs) in PD samples compared to healthy control samples. We found 18 

DEGs between PD and healthy samples, most of which were novel genes for PD. Further, we 

validated these DEGs via machine learning algorithms using their expression signature as input 

features. Validation with algorithms such as Artificial neural networks, Decision trees, Random 

Forest, Linear discriminant analysis and kernel principal component analysis (PCA) models 

resulted in accuracy of 92.8%, 78.5%, 92.8%, 100%, 92.8% respectively. Moreover, using 

hierarchical clustering based unsupervised machine learning we found that PD and healthy 

samples were well differentiated in two separate clusters. Furthermore, we used LINCS L1000 

based drug repurposing search engine L1000CDS2, and CoDReS tool to look for exemplar 

repurposed drugs which can reverse the expression of our obtained genes, thereby we obtained 

several drugs with neuroprotective properties. In addition, we looked for novel transcription 

factors regulating the dysregulation of genes targeted by the shortlisted drugs. Further, using 

in silico tools we found various post translational modifications involved in drug-gene 

pathway. Lastly, we searched for common drugs with can target both PD pathogenesis and 

ageing.  

Keywords: Parkinson Disease, Differentially Expressed Genes, Machine Learning, Drug 

Repurposing, Therapeutic Targets 
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Figure i: Graphical abstract- Herein, firstly we acquired dataset from NCBI GEO, and then found out 

differentially expressed genes (DEGs) between Parkinson’s and healthy control samples. Further, we 

created myriad of machine learning models to see if these DEGs can classify between Parkinson’s and 

healthy samples. Thereafter, we used drug repositioning approach to find out drugs whichcan revert the 

expression levels of these DEGs, and looked for various post translational modifications in Drug-gene 

pathway.  
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1. Introduction  

Parkinson’s disease (PD) is very multifaceted, pernicious, debilitating neurodegenerative 

disorder (NDD) and a big burden globally. It is a result of progressive and chronic deterioration 

of dopamine producing neurons in the midbrain region of substantia nigra pars compacta [1]. 

In addition, pathogenic, toxic, intraneuronal aggregates known as Lewy bodies, mainly 

composed of α- synuclein proteins, are major histopathological trademark features of PD. PD 

is accompanied by a myriad of enervating motor symptoms like bradykinesia, tremors at rest, 

rigidity of muscles, postural instability which are a direct result of dopaminergic neurons 

dysfunction [2]. In addition, plethora of non-motor symptoms like sleeping problems, cognitive 

decline, depression, urinary disorder, hallucinations, obsessive compulsive disorders are also 

witnessed in PD [3,4]. The major issue with a NDD like PD is that it is diagnosed and its 

symptoms are visible only when the disease is already at an advanced stage, where around 70-

80% dopamine producing neurons have already been degenerated, with symptoms gradually 

exacerbating with time [5]. Therefore, there is a great desire and need to look for novel blood-

based biomarkers which can help in early detection and can also serve as potential novel 

therapeutic targets. The advantage with blood-based transcriptome is that it is non-invasive 

which can be easily obtained in a clinical setting and blood might contain a disease signature 

which can help in early detection. With the advent of microarray, RNA-SEQ technologies and 

with increasing genomic databases various gene expression-based biomarkers analysis is being 

performed nowadays. In addition, machine learning and other statistical tools are widely being 

used now for disease characterization as these tools can find out hidden patterns in the genomic 

data. For instance, one study used blood based gene expression data and performed machine 

learning based analysis for Alzheimer’s disease (AD) pathophysiology [6].  Likewise, D.H. 

Oh, et al. performed blood transcriptome analysis of young adults with autism spectrum 

disorder then used machine learning to find biomarkers related to autism spectrum disorder [7].  

Furthermore, it is imperative to find new target drugs for PD which can thwart the  progression 

of disease and alleviate the symptoms. Nowadays, drug repositioning is very popular cost and 

time efficient drug discovery strategy, where existing approved, experimental drugs can be 

used for novel purposes [8]. For instance, one study in PD used genome wide association 

studies (GWAS) data and performed drug repositioning analysis to report some new drugs for 

PD [9]. Herein, we used microarray-based blood transcriptome dataset, GSE72267, from the 

national center for biotechnology information (NCBI) gene expression omnibus (GEO) and 

found differentially expressed genes (DEGs) between PD samples and healthy control samples. 
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Furthermore, we used a variety of machine learning (ML) algorithms to see if these DEGs 

alongwith their expression signature can classify between PD samples and healthy control 

samples. We used artificial neural network (ANN), decision tree, random forest, kernel 

principal component analysis (PCA), linear discriminant analysis (LDA) to find a gene set 

which can differentiate between Parkinson’s sample and healthy samples, thus acting as 

biomarkers. Additionally, we used an unsupervised machine learning technique as well to see 

if PD and healthy control samples can form separate clusters based on their gene expression 

signatures. Furthermore, we used LINCS L1000 based drug repurposing search engine and 

CoDReS tool, to look for existing drugs which can revert the signature of these DEGs, thus 

serving as new target drugs for PD. Drug repurposing was followed by ADME analysis by 

SwissADME tool, to verify potential druggability of the shortlisted drugs. In addition, we used 

ChEA tool to identify novel transcription factors contributing to altered expression of genes 

targeted by the drugs in order to determine drug-gene pathway. Further, we used various in 

silico tools to find post translational modifications involved in drug-gene pathway. Lastly, we 

explored common drugs involved in both ageing and PD pathogenesis and we used molecular 

docking approach to look for binding sites of a shortlisted drug with HDAC6, as HDAC6 is 

known to promote protein aggregation in PD. 
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2. Literature review  

2.1 Neurodegenerative disorders: an overview  

Neurodegenerative disorders (NDDs) are disorders of the central nervous system which 

ultimately culminate in neuronal death, which can further result in death of the patient suffering 

from these disorders. Abnormal protein aggregation both intracellularly and extracellular in 

various regions of the central nervous system is one of the main causative factors of 

neurodegenerative disorders [10].  An abnormally folded protein has its hydrophobic core 

interacting with its outer hydrophilic milieu, which can lead to oligomer and fibril formations 

further culminating in bulk protein aggregates. Mutations, oxidative stress, post translational 

modifications, ubiquitin proteasome dysfunction, autophagy dysfunction are some of the 

causative factors which promote protein aggregation [11–13]. Interestingly, reactive oxygen 

species like superoxide anion also promotes formation of aggregated proteins [14]. This 

abnormal protein aggregation further activates immune response by microglia in central 

nervous leading to neuroinflammation due to cytokines release by microglia, culmination in 

neuronal death. Strikingly, it has been observed that these toxic aggregates can be travel from 

one neuron to another, hence, spreading their pathogenicity [15]. Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis (also known as Lou 

Gehrig's disease), frontotemporal dementia, multiple sclerosis, Lafora disease and 

spinocerebellar ataxias are some of the commonly observed NDDs globally. Till date, no 

medication has been developed which can thwart the progress of these brain disorders, most of 

the medicines can relieve the symptoms only.  

Alzheimer’s disease (AD) is the most widely prevailing NDD and a major reason of death 

globally. Short term memory loss, dementia, cognitive dysfunction, speaking problems are 

main symptoms of AD [16].  Extracellular aggregation of amyloid beta proteins forming 

plaques  and intraneuronal aggregates of tau proteins forming neurofibrillary tangles are 

considered to be main causative factors leading to AD pathogenesis [17]. Mutations in PSEN1 

and PSEN2 genes promote amyloid beta aggregation.  Further, abnormal cleavage of amyloid 

precursor protein: APP  driven by β and γ secretase is considered to be the main reason for 

oligomer and fibril formation of amyloid beta proteins [18]. Further, phosphorylation and 

hyperphosphorylation of tau proteins is one of the primary reasons of tau protein aggregation 

which further gives rise to neurofibrillary tangles.  
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Further, Parkinson’s disease (PD) is considered to be the second most commonly observed 

NDD, mainly affecting older population. Tremors during rest, slow movement or bradykinesia, 

postural instability, sleep disorder, cognitive decline are most commonly visible symptoms of 

PD [19]. Intraneuronal aggregates of lewy bodies composed and made up of α-synuclein 

protein is the main cause of neuronal death during PD [20]. During PD, dopamine engendering 

neurons in substantia nigra region of basal ganglia are damaged due to aggregated proteins. 

Hence, dopamine is not produced in sufficient amount during PD [21]. Dopamine is a 

neurotransmitter which controls voluntary movements, due to dopamine loss, there is no 

control over voluntary movements during PD. Mutations in SNCA, LRRK2, Parkin, PINK1 

genes are known to promote protein aggregation resulting in PD [22]. Levodopa is the most 

widely used medication and treatment for PD. Levodopa is a precursor of dopamine which 

easily penetrates the blood-brain barrier and can be further transformed into dopamine. 

Levodopa is usually given in conjugation with carbidopa so that levodopa is not converted into 

dopamine before it reaches the desired brain region [23]. Dopamine agonists are also used in 

some cases to treat PD patients. Monoamine oxidase inhibitors are another type of drugs given 

to PD patients [24]. In addition, deep brain stimulation is an invasive procedure which is used 

sometimes to relieve motor symptoms of PD. 

Further, amyotrophic lateral sclerosis (ALS) is another lethal NDD, famous scientist Stephen 

hawking died due to ALS. Unlike other NDDs, ALS is very fast progressing which can lead to 

death of the individual within 2-5 years of onset. ALS results due to degeneration and damage 

of both upper and lower motor neurons. Muscle atrophy and damage, paralysis, stiffness are 

the main symptoms of ALS [25]. Unlike other NDDs there is no cognitive decline in ALS. 

Aggregation of TDP-43 proteins in central nervous system is considered to be main causative 

factor of ALS [26]. Mutations in SOD1, and FUS genes are also known to be causative factors 

of ALS.  

Further, Huntington’s disease is another NDDs. Involuntary movements, abnormal walking, 

cognitive dysfunction are the main symptoms of Huntington’s disease [27]. Aggregation of 

mutant huntingtin is main causative factor responsible for Huntington’s disease. Expansion of 

CAG repeats coding for glutamine also causes Huntington’s disease. Spinocerebellar ataxia is 

another disease which results due to polyglutamine expansion [28]. Lafora disease is another 

NDD which results due to aggregation of glycogen in the brain [29]. In addition, 

Frontotemporal dementia is another NDD which is a result of TDP-43 aggregation.  
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2.2 Protein aggregation and Post Translational Modifications  

Mutations, oxidative stress, dysfunction of protein quality control system like ubiquitin-

proteasome system, molecular chaperones, autophagy-lysosome pathway and various post 

translational modifications are major factors responsible of intracellular and extracellular 

protein aggregation. Post translational modifications are biochemical enzymatic modifications 

of proteins with different moieties after they have been synthesized [30]. Further various post 

translational modifications (PTMs) also promote protein aggregation contributing to 

pathogenesis of NDDs. For instance, phosphorylation is adduction of phosphate group by 

various kinases on serine, threonine, tyrosine residues. S129 phosphorylation of α-synuclein 

potentiates aggregation of α-syunclein. Likewise, tau phosphorylation medicated by GSK3β at 

serine and threonine residues also potentiates tau towards aggregation [31].  Similarly, 

acetylation is attachment of acetyl moiety on lysine residues and, acetylation at K145 and K192 

in RRM domain site of TDP-43 protein increases susceptibility of TDP-43 towards aggregation  

[32]. GlcNAcylation and glycation of tau proteins also make them more susceptible towards 

aggregation in AD. Likewise, palmitoylation is covalent modification with 16 carbon fatty 

acids on cysteine residues and it has been observed that palmitoylation at C186 of amyloid 

precursor protein stimulated amyloid beta aggregation in AD [33]. Further, ADP ribosylation 

is covalent adduction of ADP-ribose group and ribosylation of TDP-43 also potentiates it 

towards aggregation leading to ALS [34]. Ubiquitination is covalent adduction of ubiquitin on 

lysine amino acid residues and ubiquitinated proteins are also found in aggregated lewy bodies, 

suggesting dysfunction of ubiquitin proteasome system resulting in aggregated proteins.  

Moreover, SUMOylation is another covalent adduction on lysine sites with small ubiquitin like 

modifier (SUMO) and it has been reported that SUMOylation of K75 residue of SOD1 also 

increases its propensity towards aggregation [35]. Further, nitration is addition of nitrate group 

and it has been reported that Y39 nitration of α-syunclein also increases its aggregation 

propensity [36].  Importantly, glycation is covalent addition of sugar moieties and  it has been 

observed that glycation of Aβ amplifies its neural toxicity and increases GSK3β activity which 

is known to promote tau hyperphosphorylation [37]. Moreover, nitrosylation is adduction of 

nitric oxide group and nitrosylation of PINK1 has been observed to impair its mitophagy 

activity promoting neuronal cell death [38]. Further, carbamylation is addition of isocyanic 

acid and it is another PTM which is known to potentiate tau aggregation leading to neuronal 

toxicity in AD [39]. Further, Glutathionylation is addition of glutathione on cysteine sites and 

one study observed that glutathionylation of C111 residues of SOD1 increases its susceptibility 
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to aggregate [40]. Additionally, glycosylation is covalent modification with carbohydrate 

group and glycosylation also promotes tau hyperphosphorylation leading to its  aggregation 

[41].  

2.3 Signal transduction pathways involved in neuroprotection and neurodegeneration 

Various different signal transduction pathways also regulate the process of PTMs resulting to 

neuroprotection or further promoting neurodegeneration. Different transduction pathways like 

Akt, Wnt, AMPK, MAPK are involved in this process. For instance, activated AKT pathway 

inhibits GSK3β. Inhibition of GSK3β can reduce tau phosphorylation as it is one of the main 

kinases promoting tau phosphorylation. Sulfhydration of AKT at C77 inhibits its activity, due 

to which AKT can’t thwart GSK3β through phosphorylation, thus promoting tau 

hyperphosphorylation [42]. Further, ataxin-1 phosphorylation at S776 by AKT promotes 

docking of ataxin-1 with the protein  named 14-3-3, and the interalinkage of 14-3-3 protein 

with ataxin, increases aggregation of ataxin in Spinocerebellar ataxia [43]. Additionally, it has 

been reported that overexpressing DJ-1 protein led to phosphorylation on T308 residue of 

AKT, which prevented mitochondrial dysfunction in PD model [44]. Further, activation of β 

catenin in wnt pathway, also inhibits GSK3β activity, thus preventing tau 

hyperphosphorylation in AD. Another study reported that inhibition of β catenin increased the 

activity of GSK3β, which in turn promoted tau hyperphosphorylation [45]. In addition, it was 

observed that DKK1 protein inhibits wnt signal cascade, resulting in no β catenin activation, 

culminating in tau hyperphosphorylation [46]. Further, it was reported that AMPK pathway 

reduced tau acetylation by increasing the expression of deacetylates SIRT1 [47]. Further, 

MAPK pathways are also involved in NDDs. For instance, Moreover, a study pointed out that 

α-synuclein promotes activation of p38 MAPK cascade, which is further involved in 

phosphorylation of PARKIN at residue S131, this contributes to mitochondria dysfunction in 

PD [48]. In addition, ER stress can activate JNK3, and it has been observed that 

phosphorylation of APP by JNK3 at T668 stimulates Aβ aggregation [49]. 

2.4 Crosstalk between ageing and neurodegeneration  

Further, ageing is considered another major factor which increases risk towards NDDs. 

Mitochondrial dysfunction, oxidative stress, telomere shortening, cellular senescence or cell 

cycle arrest, epigenetic changes like DNA methylation, demethylation and histone acetylation, 

deacetylation are some of the common processes involved in both aging and 

neurodegeneration. Thus, linking both aging and neurodegeneration. There are various drugs 
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Further, various post translational modifications are also observed regulating the process of 

aging. One study reported that protein’s O-GlcNAcylation decreased in the hippocampus of 

aging mouse which co-related with cognitive decline and increase protein O-GlcNAcylation 

restored cognitive functions [50]. Similarly, increase in phosphorylation, nitration of α-

synuclein was observed in basal ganglia-substantia niagra of aging squirrel monkeys [51]. 

Further, S-Nitrosylation of Parkin was observed with aging, which impairs its mitophagy 

activity [52]. Additionally, increased succinylation of mitochondrial proteins with age, has 

been observed in Drosophila melanogaster and C.elegans [53]. Further, sialylation of proteins 

also decreases with age in hippocampus with potentiates neuronal dysfunction and cognitive 

decline [54]. Further, one study pointed out that S-Sulfhydration of proteins also decreases with 

age in rat  model [55].  Moreover, it was reported that palmitoylation of NMDAR proteins 

increases with age in the frontal cortex of mice model which correlated with synaptic and 

cognitive defects [56]. Interestingly, age related protein carbonylation due to increased 

oxidative stress has also been observed in aged mice model. It has to be noted that protein 

carbonylation is a precursor of various protein aggregates [57]. Moreover, Advanced glycation 

and glycosylation end products are also observed in skin with increasing age [58].  

2.5 Artificial Intelligence and Machine learning: an overview 

ML is the science of teaching computers how to learn, act and give output without being 

explicitly programmed. In this era of digitalization various Machine learning is widely being 

used now in the area of healthcare, drug design and development, genomics, proteomics. ML 

comes under the branch of artificial intelligence. Artificial intelligence (AI) is science which 

allows computers to think, act and behave like humans do. All machine learning algorithms are 

considered to be subset of AI [59]. Alan Turing is considered as the father of AI. Deep learning 

is another term which is widely being used now. Deep learning algorithms try to emulate the 

behaviour and functioning of human brain [60]. A myriad of AI, ML and deep learning 

algorithms are widely being used now in the area of drug design, healthcare, medical 

informatics etc. Graphics processing units (GPUs) are best suited to handle larger AI and/or 

ML algorithms. Nvidia’s CUDA framework allows user to use AI algorithms through GPUs. 

Only issue with machine learning algorithms is that sometimes they might suffer with 

overfitting of data when a large amount of data is being used in order to train them. 

Supervised learning, unsupervised learning are the two main types of ML models. In supervised 

ML technique we feed input to the system and its desirable output, in order to teach and 
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supervise the model. The model then analyses the input-output relationship, so that whenever 

a fresh unknown input is applied to the system, the system can give the correct output [61]. 

Support vector machines, decision trees, artificial neural network, logistic regression, naïve 

bayes are some of the most popular supervised learning techniques. Whereas in unsupervised 

learning we only give an input to the system and don’t give its expected output. The system is 

allowed to itself analyse the hidden patterns, structures in the data and the come at a conclusion 

[62]. Amazon, Netflix, stock market predictions use unsupervised learning techniques. K -

means clustering and hierarchical clustering, are two types of unsupervised learning 

techniques. Artificial neural network is a simple ML algorithm which emulates the function of 

human brain. There is an input layer followed by a hidden layer followed by an output layer. 

Moreover, deep learning on the other hand uses a combination of neural networks for higher 

efficiency. In reinforcement learning there is an agent and a reward, and agent improves its 

performance in order to achieve maximum reward [63]. Python and R programming are the 

two main programming techniques use to write machine learning scripts and create machine 

learning models.  

2.6 Big data in drug design and development  

Big data means datasets that are so big and gigantic that they cannot be analysed, processed by 

conventional, traditional software tools and devices [64]. Due to increasing use of different 

types of sequencing, RNA-seq, microarray and other in silico, in vitro techniques a huge 

amount of biological data is being produces nowadays. Thus, increasing the amount of big data 

related to genomics, proteomics, transcriptomics. RNA-seq is used to obtain mRNA 

expression, this technique can give us dysregulated genes in different conditions. Likewise, 

microarray technique can also give us differentially expressed genes between diseased state 

and a normal healthy state. NCBI GEO is a databank which contains  data obtained from 

plethora of microarray and RNA-seq experiments [65]. R programming is one the most widely 

used tool to analyse expression levels from NCBI GEO datasets. ArrayExpress is another big 

source of gene expression data obtained from microarray experiments [66]. In addition, TCGA 

is a big databank of gene expression data related to a myriad varied of cancer [67].  Further, 

analysis genome wide association studies (GWAS) datasets can give us target genes in a 

plethora of diseased conditions.  NHGRI-EBI GWAS Catalog is a major databank containing 

GWAS data [68]. GWAS central is another big data repository of GWAS data [69].  
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Further, sequencing data can also be used to obtain target genes implicated in different diseased 

conditions. Sequence read archives is a databank which contains data endangered from various 

sequencing experiments [70]. Many times, literature survey and data mining can also help in 

obtaining target genes or proteins and PubMed is the biggest source of different biological 

published scientific literatures [71].  

Further, protein data bank (PDB) consists of data of different 3D protein structures. PDB also 

contains DNA and RNA structural data [72]. PDB can be used to analyse binding of ligand, 

small molecule with target genes/proteins. Covid 3CL protease on PDB has widely been used 

to analyse various drugs related to covid [73]. PDB is the most popular databank for molecular 

docking in conjugation with different machine learning algorithms. Swiss-prot and uniprot are 

databases which contains all the information related to different protein structures  

Further, there are various chemical databases available in order to obtain different small 

molecules and ligands related to target gene, protein of interest. Pubchem, ChEMBL, 

DrugBank, BindingDB, zinc database, LINCS L1000CDS2, are some big chemical databases 

available to public use in order to obtain small molecules and ligands related to target protein 

[74–77]. These databases were very widely used during current covid situation in order to 

ascertain the viability of different drugs for covid treatment. There are various post translational 

modifications database available for public use. DEEP- PLA is a database which contains 

acetylation data on lysine sites by various acetylases and HDACs [78]. dbPTM also contains a 

lot of PTM data on different proteins [79]. PMLD database is also used to get the information 

of PTMs on different lysine residues.   

2.7 Transformation of traditional drug development using artificial intelligence based 

tools 

AI-ML based algorithms can indeed transform the whole landscape of drug design and 

development. Various algorithms and tools have been devised which has increased the 

efficiency of drug design and development. For instance, AlphaFold is an AI based tool which 

can ascertain 3D structure of  different protein based on their input amino acid sequences [80]. 

Likewise, RGN: recurrent geometric network, is another deep learning based tool which can 

ascertain and predict protein’s three dimensional structure using amino acid sequence as an 

input [81]. Further, SchNOrb is a deep learning driven tool which can predict arrangement of 

atoms and orbitals in a molecule, which can indeed help in the process of drug design [82]. 

Further, DriverML is a machine learning based tool which can help in obtaining genes 
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implicated in pathogenesis of different types of cancer [83]. Further, AI and ML based tools 

have accelerated the process of denovo drug design as well. For instance, MolAIcal is an AI 

driven tool to design 3D drugs in protein binding pockets [84].  Moreover, ReLeaSE is a deep 

reinforcement learning driven tool for de novo synthesis of drugs 

Further, various text mining and natural language processing driven tools are also being used 

in the area of biological sciences. For instance, STRING is a text mining based tool which is 

used in order to obtain protein-protein interactions [85]. STITCH is another text mining based 

databank which gives us a relationship between proteins and different chemicals [86]. 

DisGeNET also uses text mining and gives us information related to gene and disease 

association [87]. Moreover, AI/ML based tools are also being used for synthesis planning of 

drugs as well. Further, synthesis planning determines the best synthesis route for the novel 

drug.  Like, Chematica uses decision trees in order to determine best retrosynthesis pathway 

[88]. Further, AiZynthFinder uses neural networks for synthesis planning [89]. ICSYNTH also 

uses AI based algorithms in order to determine most optimum synthesis planning route. 

Further, AI based algorithms have also accelerated the process of docking based virtual 

screening as well.  

Moreover, various AI based algorithms have been devised to ascertain the optimum drug 

dosage. For instance, CURATE.AI uses AI based algorithms to determine optimum drug 

dosage. In addition, comboFM uses factorization machines in order to determine the best drug 

dosage. In addition, AI-ML based algorithms are also being used in order to predict bioactivity 

as well. For instance, WDL-RF is a random forest drive approach in order to find out bioactive 

ligands for G-protein coupled receptors (GPCRs) [90]. In addition, pairwiseMKL is a kernel 

based approach in order to determine bioactivity of ligands [91]. Likewise, DeepMalaria is 

another deep learning based tool in order to find out compounds with inhibitory activity 

towards plasmodium falciparum responsible for causing malaria [92].  

2.8 Drug development and drug repurposing  

The biggest and the utmost challenge facing the field of NDDs is their drug design and 

development. As till date, no medicine has been found out which can revert and slow down the 

progression of these NDDs. Most of the drugs which are being used can only temporarily 

relieve the symptoms. The prolonged use to these drugs gives rise to debilitating side effects. 

Hence, there is always a need for new class of drugs which can help in the treatment of these 

disorders. Drug repurposing approach is one the most popular approaches for exploring new 
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drugs as in drug repurposing approach existing approved, experimental drugs for one disease 

can be used for another disease [93]. Designing and developing novel drugs from scratch is a 

time and cost consuming process. Most importantly, a novel drug has to follow a complex 

process of animal model testing, clinical trial stage 1, clinical trial stage 2, clinical 3 stage then 

lastly FDA/drug controller approval. So many drugs fail in clinical trials itself whereas many 

drugs fail to get approval to hit the market. Thus, resulting in wastage of time and money. In 

this regard, drug repurposing approach can aid and augment the process of drug development 

as in drug repurposing many drugs are already under experiment or have hit the market. Drug 

repurposing approach has been used in the field of NDDs as well, especially in the context of 

PTMs. For instance, a study reported that telmisartan, a drug used for the treatment of 

hypertension, can reduce tau phosphorylation [94]. Another study reported that, metformin, a 

drug for treating diabetes, can protect against advanced glycation end products induced 

neurotoxicity, by activating AMPK pathway [95]. In addition, curcumin, the major component 

of turmeric which is a popular Indian household spice, was observed to reduce tau 

phosphorylation in an AD model [96]. Additionally, resveratrol, an anti-oxidant has been 

reported to inhibit tau phosphorylation and toxicity [97]. Resveratrol has been shown to protect 

against advanced glycation end products toxicity as well [98]. Hence, we can see that drug 

repurposing can indeed aid and augment the whole process of drug development. Figure 1 on 

page 12, shows different novel and repurposed drugs which can target PTMs driven 

neurodegeneration.  

Further, various AI and ML tools are also being employed for in silico drug repurposing. For 

instance, deepDR is a deep learning driven tool for in silico drug repurposing. It has been used 

to find repurposed drugs for NDDs [99]. Likewise, iDrug is another AI algorithm driven tool 

for computational drug repurposing [100].  In addition, BiFusion is a convolutional neural 

network driven tool for computational drug repositioning. Moreover, Drugbank, PubChem, 

ChEMBL database driven tools are being used for drug repurposing with the help of virtual 

screening in conjugation with machine learning. Moreover, many researchers are using in silico 

drug repurposing approach in the field of NDDs as well. A study used scientific literature data 

mining approach in conjugation with ML algorithms in order to obtain repurposed drugs for 

PD [101]. Likewise, P. Chatterjee et al. used  epigenetics driven protein- protein interaction 

networks in order to find out epigenetics drugs associated with PD [102]. 
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Figure 1: Different novel and repurposed drugs being used to target post translational modifications 

induced neurotoxicity. Figure taken from our published paper in Elseiver Ageing Research Reviews, titled 

“Post-translational modifications: Regulators of neurodegenerative proteinopathies”.  
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3. Methodology 

3.1. Data acquisition 

In this study, we used and downloaded publicly available blood-based microarray dataset, 

GSE72267, deposited by Calligaris et al., from NCBI GEO. This microarray study was 

performed on the Affymetrix human genome array. Herein, we used 21 PD patient samples 

and 19 matched healthy control samples from GSE72267, to avoid class imbalance and make 

sure that our analysis doesn’t get biased with PD data in the dataset. 

3.2. Differentially expressed Genes 

We used Limma package in R programming language to obtain DEGs between PD samples 

and healthy control samples, as it is very efficient package for differential gene expression 

analysis [103]. Firstly, we downloaded .CEL files from GSE72267 containing desired PD and 

control samples. Then, .CEL files were imported in R studio using read.celfiles function. 

Furthermore, exprs function was used to find expression values of the probes and 

normalizeQuantiles function was used to normalize the data (figure 2). Then finally, lmFit, 

eBayes, toptable functions were used to obtained DEGs between PD samples and healthy 

control samples. Moreover, to obtain a set of significant DEGs, we shortlisted obtained DEGs 

on the basis of adj.p.value < 0.05, to lower the false positives.  
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Figure 2: Pre and post normalization of Parkinson’s and control samples obtained from GSE72267. 

normalizeQuantiles function in R studio was used to normalize the data 

3.3. Machine learning 

Next our aim was to employ different ML algorithms to look for a transcriptomic signature 

which can differentiate between PD samples and control samples, thus acting as biomarkers. 

Herein, we used both supervised and unsupervised machine learning techniques which were 

created using R studio. For supervised machine learning analysis firstly, we created a dataframe 

of 18 DEGs alongwith their expression signatures for PD and control samples (figure 3). Then 

using caTools and sample.split function we randomly partitioned our dataset into training data 

and testing data. Out of 40 PD and control samples, 26 samples randomly went into training 

set and 14 samples were randomly assigned into testset. Training dataset labelled with 18 DEGs 
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signature was employed to train different ML models. Herein, for supervised ML models we 

used ANN, random forest, decision tree, LDA and kernel PCA. 

 

Figure 3: Gene expression values of differentially expressed genes (DEGs) for Parkinson’s and control 

samples. We used exprs function in R studio to obtain these values embedded in the dataset. Y-axis 

represents their expression values.  

Further, ANN, is an ML technique which mimics the neural network of human brain, where 

billions of neurons work in tandem with each other to process different types of information. 

Basically, ANN is composed of three layers of neurons working in tandem with each other. 

The input layer which takes the input, followed by multiple hidden layers where input data is 

processed, which is fed to the final output layer which gives classification result [104]. Here, 

we created neural network by using neuralnet function from neuralnet library  [105]. 

 Afterwards, we used decision tree machine learning algorithm. Decision tress are flowchart 

type algorithms where data is repeatedly partitioned by the algorithm based on different 

frameworks and conditions. Decision trees are made up of two most important entities decision 
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nodes and leaf nodes. Decision nodes, which have many branches, are used to split data based 

on certain set of guidelines and leaf nodes are the final output or result [106]. Here, we created 

decision tree model by using rpart function from the rpart library [107]. Further, we used 

random forest algorithms for classification. Random forest is an upgraded version of decision 

trees and it is essentially made up of myriad of decision trees, based on the idea that all these 

different decision trees when combined, can give more accurate classification result compared 

to a single decision tree. In random forest different decision trees are trained in different ways 

and the final classification output  is selected by determining most common consensus output 

of all the decision trees in the algorithm [108]. Herein, we created random forest model by 

using randomforest function from the randomforest library in R studio. 

In addition, we used dimensionality reduction techniques like LDA and Kernel PCA also.  LDA 

and kernel PCA are supervised learning-based dimensionality reduction techniques. The main 

aim of dimensional reduction techniques is to extract the most optimum features from a dataset 

and exclude all the redundant features without any loss of information. We created LDA model 

by using lda function from MASS library and Kernel PCA model by using kpca function from 

kernlab library [109].  After creating all these models from 18 DEG expression signature, test 

dataset was used to validate the machine learning models to see if these DEGs expression 

signature can successfully classify between PD samples and healthy samples. 

Furthermore, we used unsupervised machine learning model as well for the analysis of obtained 

DEGs. In unsupervised machine learning we don’t train the model with  labelled training 

dataset instead here the machine learning model works on its own to search for previously 

unmapped hidden structures and patterns in the given input dataset [62] Herein, for 

unsupervised machine learning, we used 18 DEGs expression signatures of all 40 PD and 

healthy control samples as input data, to look for patterns in this dataset. We used hierarchical 

clustering based unsupervised machine learning to find patterns. Hierarchical clustering model 

was created by using hclust function then cutree function was used to create clusters. 

3.4. Drug repurposing 

We decided to use LINCS L1000 based search engine known as L1000CDS2 

(https://maayanlab.cloud/L1000CDS2/#/index), to look for drugs which can reverse the 

expression of obtained DEGs [76].  Our aim was to shortlist mainly those drugs which have 

been reported for some neuroprotective properties, using literature survey. L1000CDS2, is a 

LINCS 1000 based publicly available search engine which takes upregulated and 

https://maayanlab.cloud/L1000CDS2/#/index
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downregulated genes as input then look for drugs which can reverse the signature of these 

genes, based on data collected from various cell line experiments. In addition, we used 

DrugBank to look for antagonists for those genes which didn’t get any significant result from 

L1000CDS2 search engine. Further we used publicly available web based tool CoDReS 

(http://bioinformatics.cing.ac.cy/codres/) to find structurally and functionally active drugs 

from the list of shortlisted drugs. CoDReS, which stands for composite drug reranking scoring, 

is publicly available tool to rank drugs, it uses clustering algorithms to suggest most structurally 

and functionally promising drugs from an input list of drugs, for a particular disease, based on 

data collected from different sources like DrugBank, BindingDB, ChEMBL among others 

[110]. 

3.5 ADME analysis  

The shortlisted drugs were further put through  ADME analysis using publicly available online 

tool swissADME (http://www.swissadme.ch/), to ascertain their drug-likeness, lipophilicity, 

solubility and other physio-chemical properties [111]. ADME stands for adsorption, 

distribution, metabolism, excretion and it is performed in early stages of drug design and 

development, with an aim to eliminate those drugs which do not exhibit drug like properties.  

3.6 Transcription factor regulatory network  

Transcription factors (TFs) are a class of  proteins which regulate gene expression by binding 

and/or unbinding near coding regions of DNA. Hence it is important to determine TFs which 

are responsible for altered expression during diseased conditions. Herein, we decided to look 

for TFs responsible for dysregulation genes targeted by shortlisted drugs, especially those drugs 

which were targeting PTM ezymes, in order to determine gene-drug pathway. Herein, we used 

NetworkAnalyst (https://www.networkanalyst.ca/) tool in order to determine TF-gene 

regulatory network. We shortlisted only those TFs having a degree of 3, that is, at least 3 genes 

were regulated by them. 

3.7 Post-translational modification analysis  

 Further, we decided to explore different post translational modifications (PTMs) on the 

shortlisted TFs, as some of the shortlisted drugs are inhibitors of various PTM enzymes. The 

shortlisted drugs can act on those PTM enzymes. We used different computational PTM tools 

like Deep-PLA (http://deeppla.cancerbio.info/) [112], PLMD (http://plmd.biocuckoo.org/) , 

and GPS (http://gps.biocuckoo.org/online.php) . We shortlisted PTMs on only those enzymes 

who showed good high threshold score and low false discovery rate. 

http://bioinformatics.cing.ac.cy/codres/
http://www.swissadme.ch/
https://www.networkanalyst.ca/
http://deeppla.cancerbio.info/
http://plmd.biocuckoo.org/
http://gps.biocuckoo.org/online.php
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3.8 Common drug involved in Parkinson’s and ageing  

We decided to look for common drugs which can be used to target both PD and ageing. We 

downloaded GSE106940 dataset from NCBI GEO. This dataset contains gene expression data 

obtained from tissues of 5 young and 5 old samples. Then we decided to look for differentially 

expressed genes between young and old samples, to see which genes are dysregulated during 

ageing. Lastly, our aim was to look for drugs, with the help of LINCS L1000CDS2, which can 

target these dysregulated genes, and see if there is any common drug which can be used for 

both PD and ageing.  

3.9 Molecular docking 

Lastly, we looked for docking between shortlisted HDAC inhibitor and HDAC6, as HDAC6 

has recently been implicated in promoting protein aggregation in PD model, and see their 

binding affinity. Molecular docking was performed using Pymol and online available tool CB-

Dock (http://clab.labshare.cn/cb-dock/php/). 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://clab.labshare.cn/cb-dock/php/


19 | P a g e  
 

4. Results 

4.1 Differential gene expression analysis 

Using Limma package in R programming we obtained 18 significant DEGs, with adj.p.value 

< 0.05. From these 18 DEGs 8 were upregulated and 10 were downregulated in PD conditions. 

Further, volcanoplot function was used to obtain volcano plot of the shortlisted DEGs (figure 

4). Further, we used DAVID (https://david.ncifcrf.gov/conversion.jsp)  tool to annotate our raw 

affy gene IDs, with their official gene name and function (Table 1). Out of these 18 DEGs, 

FGF9 and NUBPL have previously been implicated in PD. 

 

Table 1: Obtained differentially expressed genes. We got 8 upregulated and 10 downregulated 

genes 

Affymetrix ID adj.P.Val logFC Gene id Gene Name 

214454_at 0.008264 0.425736 ADAMTS2 
ADAM metallopeptidase with trombospondin type 2 

motif 1 

211886_s_at 0.008264 0.338014 TBX5 T-Box Transcription factor 5 

222292_at 0.008264 -0.52801 CD40 CD40 molecule 

212650_at 0.013411 -0.62785 EHBP1 EH domain binding protein 1 

209715_at 0.023147 -0.50568 CBX5 chromobox 5 

216949_s_at 0.03 0.337489 PKD1 Polycystin 1 

206526_at 0.03 0.398937 RIBC2 RIB43A domain with coiled coils 2 

207445_s_at 0.034967 -0.68645 CCR9 C-C motif chemokine receptor 9 

216352_x_at 0.034967 0.358624 PCDHGA3 protocadherin gamma subfamily A, 3 

211721_s_at 0.034967 -0.66767 ZNF551 Zinc finger protein 551 

220894_x_at 0.034967 0.413379 PRDM12 PR/SET domain 12 

206404_at 0.034967 -0.47345 FGF9 Fibroblast growth factor 9 

211142_x_at 0.037017 0.34131 HLA-DOA Major histocompatibility complex, Class II, DOA 

210961_s_at 0.041502 0.337381 ADRA1D Adrenoceptor alpha 1D 

222141_at 0.044918 -0.4025 KLHL22 Kelch like family member 22 

219941_at 0.044918 -0.50213 TMEM19 Transmembrane protein 19 

220176_at 0.045747 -0.3836 NUBPL Nucleotide binding protein 

215726_s_at 0.049254 -0.3402 CYB5A Cytochrome b5 type A 

 

https://david.ncifcrf.gov/conversion.jsp
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Figure 4: Volcano plot of DEGs, obtained through volcanoplot function in R programming,  blue color 

signifies downregulated genes whereas genes in red color signifies upregulated genes in PD conditions. 

4.2 Biomarker validation by Machine learning analysis 

Using expression signatures of 18 DEGs we trained and created machine learning models. 

Further, test data was used to check and validate whether differential gene expression signature 

can classify between PD samples and healthy samples. Validation with test data set gave us 

very good results, our machine learning models successfully differentiated between PD 

samples and healthy samples, proving that gene expression signatures can be used as 

biomarkers and these genes can serve as therapeutic targets. 

Using ANN model (figure 5) on test dataset, the model successfully classified PD and healthy 

samples in the test dataset with 92.8% accuracy. Moreover, with ANN model with achieved 

sensitivity of 100% , specificity of 85.7%. Furthermore, we used PRROC package to plot AUC 

curve for ANN model(figure 6) [113].  
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Figure 5: Artificial neural network (ANN) created through neuralnet function in R studio, using DEGs 

expression signature as input feature 

Figure 6: ROC curve for ANN model created using PRROC package in R studio. With ANN model we got 
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Area Under ROC curve (AUC) of .928, which signifies that our accuracy obtained was 92.8% with ANN 

model. Further with ANN model we got sensitivity of 100%, specificity of 85.7%. 

 

Further, using decision tree model on test dataset, we got accuracy of 78.5%, sensitivity of 

71.4%, specificity of 85.7%. In addition, random forest model which is an upgraded version of 

decision trees gave us accuracy of 92.8%, specificity of 85.7%, sensitivity of 100%. ROCit 

package was used to get ROC curve of decision tree and random forest model (figure 7A and 

figure 7B respectively). Moreover, we also used dimensionality reduction techniques like 

LDA and logarithmic regression-based Kernel PCA. Interestingly, using test dataset on LDA 

model we got accuracy of 97%, specificity of 100% and even sensitivity of 100%. Whereas 

with kernel PCA we again got accuracy of 92.8%, specificity of 85.7%, sensitivity of 100%. 

ROCit package was used to plot ROC curve for LDA model and Kernal PCA model as well. 

Table 2 shows accuracy, sensitivity and specificity for different machine learning model we 

have used.  

We created unsupervised machine learning using hierarchical clustering. Herein, 18 differential 

gene expression signatures were used to create clusters of all 40 samples. Using hierarchical 

cluster model on gene expression signatures, we found that PD samples and healthy samples 

were well discriminated and formed well separated clusters. We got clusters of PD and healthy 

controls with accuracy of 90%, thus providing further evidence that these gene expression 

signatures can indeed differentiate PD and healthy samples.  In addition, we used clusplot 

function in R studio, to visualize the clusters of PD and healthy samples (figure 8)  
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Figure 7a: ROC curve for decision tree model using ROCit package in R studio. In decision tree model we 

got 78.5% accuracy, sensitivity of 71.4%, specificity of 85.7%. Figure 7b: ROC curve for random forest 

model obtained using ROCit package in R studio. With random forest model we got accuracy of 92.8%, 

specificity of 85.7%, sensitivity of 100%. 
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Figure 8:  Unsupervised machine learning clusters of PD and controls samples using hierarchical 

clustering. Clusplot function in R studio was used to create these clusters. Herein, gene expression 

signatures of 18 DEGs were used to analyze 40 PD and control samples through hierarchical clustering. 

PD and control samples were clustered in two separate clusters with 90% accuracy 

 

Table 2: Machine learning analysis results for different machine learning models 

 

 

 

 

 

4.3 Novel drug hits through drug repurposing 

Using L1000CDS2 search engine we found those drugs which can reverse the expression of 

these obtained DEGs. Further using literature survey, we shortlisted those drugs which have 

been reported to exhibit some neuroprotective properties (table 3). ADRA1D was one of the 

upregulated genes in our result, but it didn’t show any significant result from L1000CDS2 

Machine Learning model Accuracy Sensitivity  Specificity  

Artificial Neural Network 92.8% 100% 85.7% 

Random Forest  92.8% 100% 85.7% 

Decision trees 78.5% 71.4% 85.7% 

Linear Discriminant Analysis 97% 100% 100% 

Kernel PCA 92.8% 100% 85.7% 
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search engine, so we used DrugBank to look for its antagonist and selected those antagonists 

with some neuroprotective properties. Using L1000CDS2 search engine we shortlisted several 

immunosupressants, HDAC inhibitors, CDK inhibitors, anti-inflammatory corticosteroids, 

tyrosine kinase inhibitor, calcium blockers, alpha blocker, K+ATP channel opening vasodilator 

with neuroprotective properties. 

Table 3: Shortlisted drugs obtained from L1000CDS2 tool  

Drug Name Target gene Drug function 

Sirolimus   FGF9 Immunosupressant 

Mitoxantrone   FGF9 Immunosupressant 

Mycophenolate Mofetil   FGF9 immunosupressant 

Tamoxifen Citrate   FGF9 Estrogen receptor modulator 

Roscovitine   CYB5A CDK inhibitor 

Alvocidib   EHBP1 CDK inhibitor 

Vorinostat   FGF9, CYB5A HDAC inhibitor 

Scriptaid   FGF9, CYB5A HDAC inhibitor 

HDAC6 inhibitor ISOX   FGF9 HDAC6 inhibitor 

Etinostat   EHBP1 Benzamide HDAC inhibitor 

Pracinostat   EHBP1 HDAC inhibitor 

Cilnidipine   CD40 Calcium channel blocker 

Nicardipine   ADRA1D Calcium channel blocker 

Afatinib   ZNF551 Tyrosine kinase inhibitor 

Rosuvastatin   CBX5 HMG-CoA reductase inhibitor 

Dexamethasone   CYB5A Anti-inflammatory 

corticosteroid 

Betamethasone   CYB5A Anti-inflammatory 

corticosteroid 

Gugglesterone   CYB5A Phytosterol 

Estradiol Valrate   CD40 Estrogen receptor agonist 

Terazosin   ADRA1D Alpha blocker 

Levcromakalim   CD40 K+ATP channel opening 

vasodilator 

 

Further, we used CoDReS tool and uploaded the shortlisted drugs to get structurally and 

functionally favorable drugs for PD treatment. Using its clustering algorithm CoDRes tool gave 

dexamethasone, sirolimus, afatinib, nicardipine, scriptaid, rosuvastatin as the most promising 

drugs which are worth further investigation for PD treatment.  Previously, it has been shown 

that dexamethasone protects against neuroinflammation by inhibiting nox-2 dependent 

overproduction of reactive oxygen species (ROS) [114]. Likewise, it has been shown that 

sirolimus can protect against cognitive dysfunction in mice model of PD, by inhibition of 

mTORC1 [115]. Further afatinib is a tyrosine kinase inhibitor used of treatment of lung 

carcinoma. Interestingly, it has been reported that afatinib can protect against 

neuroinflammation by thwarting oxygen/glucose deprivation (OGD) driven activation of  
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astrocytes  and inflammasome [116]. Additionally, it has been observed that Rosuvastatin , a 

statin drug targeting CBX5 gene, protects against rotenone induced toxicity in PD models, by 

enhancing autophagy [117]. Scriptaid is an HDAC inhibitor, which was observed to have a 

protective effect in traumatic brain injury by promoting AKT pathway activation and thwarting 

AKT inhibition by PTEN [118].  Nicardipine is antagonist of ADRA1D and it has been 

reported that nicarpidine can protect brain during hypertension induced cognitive damage 

[119]. Hence, we can see that all these six drugs exhibit neuroprotective properties and are 

worth further investigation for PD treatment.  

4.4 ADME analysis of shortlisted drugs 

The proposed drug from CoDReS tool, dexamethasone, sirolimus, afatinib, nicardipine, 

scriptaid, rosuvastatin, vorinostat were analyzed through swissADME in order to ascertain their 

physiochemical properties, pharmacokinetics and drug likeness. Of all the shortlisted drugs 

only sirolimus showed one violation of Lipinski rule for druglikeness, which was its molecular 

weight > 500 g/mol. All other drugs didn’t show any violation for druglikeness. The result 

obtained is shown in the table 4. 

Table 4: ADME analysis of exemplar drugs suggested by CoDReS tool  

Drug 
Molecular 

weight 

Druglikeness 

(Lipinski 

Rule) 

GI 

absorption 

CYP1A

2 

inhibito

r 

CYP2C19 

inhibitor 

CYP2C9 

inhibitor 

CYP2D6 

inhibitor 

Dexamethasone 
392.46 

g/mol 
Yes High No No No No 

Sirolimus 
914.17 

g/mol 
No Low No No No No 

Afatinib 
485.94 

g/mol 
Yes High No Yes Yes Yes 

Nicardipine 
479.52 

g/mol 
Yes High No Yes Yes Yes 

Scriptaid 
326.35 

g/mol 
Yes High No No No No 

Rosuvastatin 
481.54 

g/mol 
Yes Low No No No No 

Vorinostat 
264.32 

g/mol 
Yes High No No No No 

 

4.5 Transcription factors- gene regulatory network 

We decided to look for TFs responsible for dysregulation of genes targeted by the shortlisted 

drugs, in order to determine drug-gene pathway. Only TFs targeting regulating atleast 3 genes 

were shortlisted. We used Chea TF database present in NetworkAnalyst tool to obtain the TF-
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gene network (figure 9). Obtained TFs is shown in table 5. SIN3B, SPI1, BMI1 were TFs 

regulating both FGF9, CYB5A. Whereas HNF4A, FLI1, Sox2 were TFs regulating ZNF551. 

In addition, POU5F1 and MTF2 were TFs regulating FGF9 only.  

 

Figure 9: Transcription factor-gene interaction network obtained from chea database in NetworkAnalyst 

tool 
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Table 5: Transcription factors regulating genes targeted by shortlisted drugs, along with their 

description and implicated biological process 

Transcription Factor Overlapping genes Description 

SIN3B FGF9, CYB5A SIN3 Transcription Regulator Family Member B 

BMI-1 FGF9, CYB5A BMI1 Polycomb Ring Finger Oncogene 

SPI-1 FGF9, CYB5A Spi-1 Proto-Oncogene 

POU5F1 FGF9 POU Domain, Class 5, Transcription Factor 1 

MTF2 FGF9 Metal-Response Element-Binding Transcription Factor 2 

HNF4A ZNF551 Hepatocyte Nuclear Factor 4 Alpha 

Sox2 ZNF551 SRY-Box Transcription Factor 2 

FLI1 ZNF551 Fli-1 Proto-Oncogene 

 

4.6 PTMs on Transcription factors 

Further, we decided to look for PTMs on shortlisted TFs. As most of our shortlisted drugs are 

HDAC and kinase inhibitors, we decided to look for HDAC sites on lysine residues and 

phosphorylation sites on serine/threonine, tyrosine residues. Vorinostat and Scriptaid are 

HDAC inhibitors upregulating FGF9, CYB5A expression. SIN3B, BMI-1, SPI-1 were the TFs 

regulating both FGF9, CYB5A. We used Deep-PLA tool to look for HDAC sites on these TFs. 

We shortlisted only those sites which showed high threshold and FPR less than 1%. Only 

SIN3B and BMI-1 showed HDAC active sites with high threshold and low FDR. HDAC1 

interacts with SIN3B on K797 site (figure 10a), whereas HDAC6 interacts with BMI-1 on 

K314 (figure 10b). Further, Sirolimus is an mTOR inhibitor which is a serine/threonine kinase. 

Sirolimus upregulates FGF9 gene, and POU5F1, MTF2 are TFs regulating FGF9 only. Using 

GPS tool for phosphorylation, we found that MTF2 showed good score for phosphorylation by 

mTOR at T24. Likewise, afatinib is a tyrosine kinase upregulating ZNF551. Using, same GPS 

tool, TF HNF4A showed good score for getting phosphorylated by Janus kinase: JAK, at Y286. 

Figure 11 and 12 shows the proposed Drug-gene pathway. 
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Figure 10a: HDAC PTM sites on SIN3B found using Deep-Pla tool. Figure 10b: HDAC PTM sites 

on BMI-1 found using Deep-pla tool. 
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    Figure 11: Drug gene pathway for vorinostat and scriptaid 
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Figure 12a: Drug gene pathway for sirolimus. Figure 12b: Drug gene pathway for afatinib 

 



32 | P a g e  
 

4.7 Common drug involved in ageing and neurodegeneration 

We found the DEGs between old and young samples, with the aim of finding any common 

drug from the above shortlisted drug. DEGs were shortlisted based on adjusted p value being 

less  0.05 (table 6). We looked for the functions of shortlisted genes. Then we used LINCS 

L1000CDS2 to look for the drug targeting TLK1 as it was involved in telomere shortening, 

very characteristic feature of ageing and neurodegeneration. Strikingly, we found out that 

vorinistat is a drug which ameliorates the dysregulation of TLK1. Vorinostat is also one of the 

shortlisted drugs. Hence, Vorinostat is a drug which can ameliorate both PD and ageing.  

Table 6: Differentially expressed genes between ageing and young samples 

ID adj.P.Val P.Value logFC Symbol  Function 

1554089_s_at 0.048 1.97E-06 -0.848 SBDSP1 Long non-coding RNA 

1554595_at 0.048 4.69E-06 0.93 SYMPK mRNA splicing 

214495_at 0.048 6.67E-06 2.452 CACNG2 Voltage-gated ion channel activity 

222966_at 0.048 6.55E-06 2.74 TLK1 Chromatin remodelling 

 

4.8 Docking of vorinostat with HDAC6 to prevent α-synuclein aggregation 

Recently it researchers found out that HDAC6 promotes α-synuclein toxicity and aggregation 

in Parkinson’s rat model and inhibition of HDAC6 thwarts α-synuclein aggregation by 

increasing its acetylation status and promoting its recognition by proteasome system. Hence, 

we decided to check whether vorinostat shows good binding with HDAC6 via molecular 

docking approach. Docking result through CB Dock showed good binding score. A10, V9, 

P63, L8 residues take part in binding of receptor with ligand as shown in the figure 13. 
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Figure 13: Docking result of vorinostat with HDAC6 obtained with the help of PyMol and CB Dock tool. A10, 

V9, P63, L8 residues are involved in binding of receptor with ligand as shown. 
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5. Discussion and conclusion 

NDDs are a big burden on society, especially on ageing population. Most of the drug being 

used for NDD treatment can only relieve the symptoms but can’t stop their progress. There is 

a big necessity to explore drugs which can somewhat impede and thwart the progress of the 

disease. In this regard, AI and/or ML driven techniques are widely being used now for disease 

characterization because of their extraordinary ability to find hidden and convoluted 

relationship among different biomedical datasets. Microarray techniques are able to find out 

dysregulated mRNAs within the genome in different diseased conditions. Herein, our main aim 

was to find a blood transcriptomic gene set which can identify between PD samples and healthy 

samples, using different ML algorithms. Herein, we downloaded microarray blood 

transcriptome dataset from NCBI GEO and used it to find differentially expressed genes 

between PD patient samples and healthy control samples. Further using supervised, 

unsupervised ML models we evaluated whether these DEGs and their expression level can 

differentiate PD samples from healthy samples. Moreover, using different ML algorithms on 

test dataset, our DEGs successfully differentiated PD samples from healthy samples. Hence, 

according to our analysis the expression level of these 18 DEGs can act as biomarker and help 

in identification of PD patients. Furthermore, these DEGs can even serve as potential 

therapeutic target in PD. Out of 18 DEGs, two DEGs have previously been reported for  PD 

pathogenesis, like, FGF9 has been observed to be downregulated during MPP+ induced 

neurotoxicity in PD model and it was observed here that upregulation of FGF9 can protect 

against neuronal cell death [120]. Likewise, loss of function mutation of NUBPL has been 

linked to PD [121].  

Further, using L1NC data based L1000CDS2 search engine we found drugs which can turn-

around the expression of obtained differentially expressed genes. Afterwards, using published 

literature survey, we shortlisted only those drugs which have been reported for their 

neuroprotective properties. The shortlisted drugs were submitted CoDReS tool to obtain most 

promising set of drugs which are worth further investigation for PD treatment. Dexamethasone, 

sirolimus, afatinib, scriptaid, rosuvastatin, nicardipine, vorinostat were the most biologically 

promising drug suggested by CoDReS tool. All these drugs have been reported for their 

neuroprotective properties. Only dexamethasone showed one violation of lipnski rule for 

druglikeness during ADME analysis, remaining drugs didn’t show any violation for 

druglikeness. Further, we used ChEA tool to obtained top TFs which regulate the expression 

of these DEGs targeted by the drugs. Most of the obtained TFs were implicated in nervous 
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system related biological processes. In addition, we found PTMs on carious sites of these TFs, 

with potential involvement in drug-gene pathway. We also found common drug which can be 

used for treating both ageing and Parkinson’s symptoms.  

In summary, our analysis provides further evidence dysregulation of mRNA in blood can lead 

to diseased conditions in the brain. We identified a blood transcriptomic set capable of 

identifying Pd patients from healthy controls. In addition, using drug repurposing approach we 

found some new drugs which can deaccelerate progress of PD. Moreover, ML analysis will 

further benefit from a bigger dataset and overall results can be confirmed with wet-lab 

experiments. Although in silico tools have given us a plethora of target genes, proteins and 

drugs which can interact with those targets, very few drugs have actually made it for public use 

during different disorders. In silico tools have big potential and they are expected to get more 

accurate in near future, but their validity remains a big issue as of now, which will have to be 

worked upon.  
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