
i

DIGITAL ARCHITECTURE OF

SORTING ALGORITHMS

BASED ON FPGA

A DISSERTATION

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF TECHNOLOGY (2018-2020)
IN

VLSI DESIGN & EMBEDDED SYSTEM
Submitted by:

GAURI SETHI

2K18/VLS/04

Under the supervision of

Ms. Kriti Suneja

Department of Electronics & Communication Engineering
Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road , Delhi -110042

AUGUST 2020

ii

Department of Electronics & Communication Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road , Delhi-110042

CANDIDATE’S DECLARATION

I, GAURI SETHI, Roll no 2K18/VLS/04, a student of Mtech VLSI DESIGN &

EMBEDDED SYSTEM, hereby declare that the project Dissertation titled “Digital

Architecture of Sorting Algorithms based on FPGA” which is submitted by me to the

Department of Electronics and Communication Engineering, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the degree of

Master of Technology, is original and not copied from any source without proper citation.

The work has not previously formed the basis for the award of any Degree, Diploma

Associateship, Fellowship or other similar title or recognition.

 Place: Delhi GAURI SETHI

 (2K18/VLS/04)

 Date: August, 2020

iii

Department of Electronics & Communication Engineering

Delhi Technological University

(Formerly Delhi College of Engineering)

Bawana Road , Delhi-110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “DIGITAL

ARCHITECTURE OF SORTING ALGORITHMS BASED ON FPGA”

which is submitted by GAURI SETHI, 2K18/VLS/04 of VLSI DESIGN ,

Delhi Technological University, Delhi in partial fulfillment of the

requirement for the award of the degree of Master of Technology is a bonafide

record of the project work carried out by the student under my supervision .

To the best of my knowledge the work has not been submitted in part or full

for any Degree or Diploma to this University or elsewhere.

 Place: Delhi Ms. KRITI SUNEJA

 Date: August, 2020 SUPERVISOR

iv

ABSTRACT

Due to the burgeoning demand of programmable logic density having fast

speed, high density and based on hardware description language (HDL), the

engineers are being empowered to implement within Field Programmable

Gate Array (FPGA) high performance digital functionality and various

complex circuits. Sorting algorithms have marked an epoch in the life of

computer engineers and the advancements related to these will only help in

adding tranquility to their lives while they are maneuvering large amounts of

data at a time.

This research encompasses the sorting algorithms covering all of their

facets from the history of the algorithms up to their implementation in the

software and also giving the details about the research that has been carried

out comrade in the hardware domain. I have implemented 6 sorting

algorithms in Verilog language i.e. Bubble sort, Merge sort, Insertion sort,

Selection sort, Radix sort and Count sort. Bubble sort has the easiest

hardware implementation as evident in the analysis carried whereas count

sort is limited by the largest number present in the array. All of these have

been compared on the basis of the three most important metrics which are

always considered in the design and implementation in VLSI field i.e. area,

timing and power.

Target device used for obtaining synthesis results is ZYNQ – 7000 FPGA,

which is increasingly becoming popular among the FPGA engineers due to

its advanced features that make it stand out among all boards in the presence

of an ARM cortex A9 chip which is the main reason for its usage as a system

on chip (SOC), having an integrated support for PCI Express also helps it to

v

persuade its dominance over other FPGAs known to us.

For simulations and synthesis, VIVADO 2019.1 has been used. The output

waveforms of all the six sorting algorithms have been plotted. They have

further been analyzed in terms of hardware utilization (number of slices,

which is comprised of Look Up Tables or LUTs and flip flops) , timing

(delay in ns) and power consumption (in mW).

vi

ACKNOWLEDGEMENT

A wise man once said “A journey of a thousand miles begins with a single

step”. So I would like to express my special thanks of gratitude to all the

individuals who have been patient with me whenever I have fumbled at any

step. Also this is a long journey that has took over an year to reach its

beautiful destination and I could only gather the courage to follow this road

map because of the support anchored by few people in this journey at all

times.

First of all I feel indebted to the Almighty God for giving me the strength

and the knowledge to have been able to explore this topic and for always

enlightening me with the correct path in life. Next to them are my parents

without whose support I would not be able to accomplish this task and saying

“Thanks” is a very small word for that. I feel obliged in availing this occasion

to have been able to express my deep sense of appreciation to Prof. N.S.

Raghava, HOD of the Electronics and Communication Engineering

Department, Delhi Technological University for bestowing me with the

opportunity to work on this project, motivating me and guiding me through

the numerous thick and thin I encountered during my research.

I would also like to express my deepest gratitude to my mentor, philosopher

and supervisor Ms. Kriti Suneja whose valuable guidance has armed me

with the results I have obtained and has acted as the golden lamp I was

empowered with in this path of darkness. Her dedication, keen interest, and

her timely suggestions filled with kindness which have always proven to be

quite beneficial for this project have helped me in achieving the desired

results and in turn helped me in realizing my potential. She has always

vii

supported me and respected my ideologies with full enthusiasm and zest that

have enabled me to complete this project. I am grateful to have been able to

complete my Master of Technology thesis work under her supervision and

to learn a lot of new things for enhancing my knowledge and skills within

this limited time frame.

I also feel indebted to the constant support catered to me by the entire staff

of the VLSI Laboratory, Delhi Technological University. I also consider this

as the suitable occasion to appreciate the co-operation showed by my friends

and colleagues to all my queries.

GAURI SETHI

 VLSI DESIGN & EMBEDDED SYSTEM

4th Semester

Delhi Technological University

(Formerly Delhi College of Engineering)

viii

TABLE OF CONTENTS

 CANDIDATE’S DECLARATION ii

 CERTIFICATE iii

 ABSTRACT iv

 ACKNOWLEDGEMENT vi-vii

 TABLE OF CONTENTS viii-ix

 LIST OF FIGURES x-xi

 LIST OF TABLES xii

 ABBREVIATIONS xiii-xv

 CHAPTER 1 INTRODUCTION

1.1 History & Classification of Sorting

Algorithms……………………………..

1.2 Types of Sorting Process ………………………

 1.3 Motivation……………………………..

 1.4 Organization of Report ……………………..

 1-9

 2-6

 7-8

 8

 9

 CHAPTER 2 LITERATURE REVIEW 10-14

 CHAPTER 3 SORTING ALGORITHMS

 3.1 Bubble Sort …………………………

 3.2 Merge Sort …………………………

 3.3 Insertion Sort …………………………

 3.4 Count Sort …………………………

 3.5 Radix Sort …………………………

 3.6 Selection Sort …………………………

 15-24

 17-18

 18-20

 20-22

 22

 23

 24

 CHAPTER 4 ZYNQ 7000 FPGA

 4.1 History………………….

 4.2 ZYNQ Design Flow………………..

 4.3 Processing System Unit…………..

 4.4 MIO Overview…………………….

 4.5 Programmable Logic Structure………

 25-38

 26-27

 27-28

 28-33

 34

 34-35

ix

 4.6 Distinctive Features…………………. 36-38

 CHAPTER 5 DESIGN METHODOLOGY 39-46

 CHAPTER 6 RESULT 47-51

 CHAPTER 7 CONCLUSION & FUTURE SCOPE 52

 APPENDIX 53

 REFERENCES 54

x

LIST OF FIGURES

Figure No Title of Figure Page No

1.1 Playing cards example
05

 1.2 Stable Algorithm on grades
06

3.1 Governing Principle of Merge Sort
20

3.2 Count Sort Example 22
3.3 Radix Sort Example 23
3.4 Selection Sort Example 24
4.1 Architecture of ZYNQ FPGA Chip 27

 4.2 ZYNQ Overall View 28
4.3 ZYNQ Design Flow Steps 30
4.4 Application Processing Unit (APU) 31
4.5 MIO Signal Routing 35
4.6 Module Block diagram of EMIO to PL 35
4.7 Structure of PL 36
4.8 ZYNQ 7000 FPGA board 38
5.1 Bubble Sort Flowchart 41
5.2 Merge Sort Flowchart 42
5.3 Insertion Sort Flowchart 43
5.4 Radix Sort Flowchart 44
5.5 Selection Sort Flowchart 45
6.1 Bubble Sort Simulation Waveform 47
6.2 Merge Sort Simulation Waveform 48
6.3 Insertion Sort Simulation Waveform 48
6.4 Selection Sort Simulation Waveform 49
6.5 Radix Sort Simulation Waveform 49
6.6 Count Sort Simulation Waveform 50

xi

6.7 Hardware Utilization of Sorting Algorithms
50

6.8 Delay in execution of Sorting

Algorithm
51

6.9 Power Consumption 51

xii

LIST OF TABLES

Table No Name of Table Page No

7.1 Analysis of Sorting

Algorithms

51

xiii

LIST OF ABBREVIATIONS

1. MIO - Multiplexed Input Output

2. FPGA - Field-Programmable Gate Array

3. LUT - Look-Up-Table

4. IOB - Input-Output-Block

5. DCM - Digital Clock Manager

6. IC - Integrated Circuit

7. SOC - System – On – Chip

8. DAC - Divide and Conquer

9. CPU - Central Processing Unit

10. GPU - Graphics Processing Unit

11. Gbps - Giga bits per second

12. PS - Processing System

13. PL - Programmable Logic

14. ASIC - Application Specific Integrated Circuit

15. IOP - Input Output Peripherals

16. BW - Bandwidth

17. Swre - Software

18. APU - Application Processing System

19. ADC - Analog to Digital Converter

xiv

20. AXI - Advances eXtensible Interface

21. HSTL - High speed transreceiver logic

22. ns - Nanosecond

23. FF - Flip Flop

24. MW - Milli Watt

25. GPIOB - General purpose Input output buffer

26. CAN - Controller Area Network

27. DMA - Direct Memory Access

28. RAM - Random Access Memory

29. ROM - Read – only – Memory

30. KB - Kilo byte

31. GHz - Giga Hertz

32. ARM - Advanced RISC Machines

33. PCIe - Peripheral Component Interconnect Express

34. FIFO - First-in-First Out

35. SPI - Serial Peripheral Interconnect

36. VFPU - Vector Floating Point Unit

37. MAC - Media access control address

38. USB - Universal Serial Bus

39. OTG - USB -on –the- go

40. UART - Universal asynchronous receiver transmitter

xv

41. PHY - Physical Layer

42. JTAG - Joint test action group

43. PLL - Phased Locked Loop

44. PCAP - Processor configuration access port

45. DDR - Double data rate

46. SDRAM - Synchronous Dynamic Random Access Memory

47. CMT - Clock Management Tiles

48. MCMM - Mixed-Mode Clock Manager

49. AES - Advanced Encryption standard

50. CLB - Configurable Logic Block

1

CHAPTER 1

 INTRODUCTION

In recent times, the field of digital systems has undergone a drastic change

with respect to its automization and functionality. Circuits are advancing

towards nano - metre design processes, thereby reducing their physical size

while growing in speed. Hence, large no of devices i.e. millions of transistors

are now implemented on the IC today. As we are aware of the fact that the

economic growth of any country is driven by the amount of oil reserves of

that country , similarly today’s digital economy is affected by the amount of

data present. Hence, Mathematician Clive Humby in 2006 coined the famous

quote “Data is the new oil” , which though recently has been highlighted

after an Economist published in 2017 a report titled “ The world’s most

valuable resource is no longer oil , but data”. There are many companies

which are banking on this concept and the much talked about pioneering

algorithms of Machine Learning is also based on this manipulation of data

wherein we can decode the hidden pattern in behavior by analyzing large

volumes of data [1].

Now for efficient arrangement of this data so that it can be accessed easily &

result in fast computations we are familiar with have certain sorting

algorithms that are frequently used. These algorithms help us in sorting our

data systematically and they can be classified according to the mechanisms

these work on, which thereby have their merits & demerits accordingly

depending on the applications they are being used in. The sorting

2

mechanisms usually determines the speed & performance of the system,

hence designing an algorithm that can process data fast and efficiently is the

need of the hour. When working with data objected for research purpose,

sorting is an often used technique that makes it easier to comprehend the

story the data is telling when we have used it for visualizing data in a form

we are familiar with. Without doubt, sorting is one of the most fundamental

algorithmic problem that was noticed from the pre medieval period of

computing. In fact, most of the computer science research was centered on

finding the best way to sort a set of data [2]. Having knowledge about sorting

algorithms is like learning keys of a musician, quite fascinating and

challenging at the same time.

Performance of any sorting algorithm depends on various factors like no. of

inputs, format of data, value of inputs, nature of machine etc. Sorting has lots

of applications like database search, management, research operations, signal

processing, scientific computing, robotics & artificial intelligence among

others. The sorting algorithms when implemented on software on a large

number of data inputs leads to an increase in their execution time and

complexity. As a result various implementations have been carried out to

improve their performance by tactfully using the advantage of the parallelism

of multicore processors [3]. In recent years, designers have scrutinized the

objective of designing hardware accelerators using field programmable gate

arrays (FPGAs) [4]–[8]. They have a lot of distinctive features like parallel

processing, high bandwidth, ease of programming, low latency among

others.

1.2 HISTORY & CLASSIFICATION OF SORTING

ALGORITHMS

3

The simplest algorithms of all was analyzed as early as in 1956. There exists

an underlying principle of Ω (n log n) comparison around which the nucleus

of comparison based algorithms revolves however the latter ones like

counting sort can perform much better [9].

 We can classify sorting algorithms as specified below:

• Computational complexity (worst, average and best behavior): This

can be carried out in terms of the size of the list (n). Good behavior

of the Algorithms is O(n log n) for typical serial sorting, while bad

behavior is O(n2) and with parallel sort in O(log2 n), Ideal behavior

for a serial sort is O(n), but in the average case it is neither feasible

nor possible . O (log n) can be conveniently specified in the optimal

parallel sorting cases. At least Ω(n log n) comparisons for majority

no. of inputs are required for comparison-based sorting

algorithms require [10].

• We also have to calculate computational complexity of swaps (for

"in-place" algorithms).

• Memory usage : In general a few sorting algorithms are "in-place",

that strictly needs only O(1) memory beyond the items being sorted;

sometimes additional memory of O(log(n)) is considered "in-place".

• Recursion: These algorithms can be either recursive or non-recursive,

while some may be both (e.g., merge sort). There are countable

algorithms that have properties of being both recursive & non-

recursive.

• Stability: Those algorithm which are able to sustain the relative order

of records with equal keys (i.e., values) are termed as stable sorting

algorithms

• Comparison sort: It examines the data with a comparison operator by

https://en.wikipedia.org/wiki/Big_omega_notation
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Best,_worst_and_average_case
https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Comparison_sort
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Memory_(computing)
https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Comparison_sort

4

simply comparing two elements and then analyzing the result

obtained.

• Serial or parallel mode of operation : Often we come across serial

algorithms only and seldom we face any parallel algorithms in our

day-to-day computer data processing applications.

• Adaptability: Whether the running time of the computations are

affected by the pre-sortedness of the input or not is a deciding factor

that is employed while deciding the adaptability of any algorithm.

1.2.1 Stability

The repeated elements are sorted in the same order in which they appear

in the input in case of stable sort algorithms. Only some part of the data

is examined when we have the task of determining the sort order when

we are given the task of sorting some kind of data. For example, this can

be depicted easily by considering a simple card sorting i.e. while the suits

can be ignored, the cards need to be arranged by their rank. This increases

the probability of multi-varied accurately sorted variety of the same data

in the original list. The stable sorting algorithms works according to the

following procedure described here i.e it chooses one of these : if two

items on comparison have equal value, like the two 5 cards as shown in

fig 1.1 then we will preserve their relative order, so that if one card

appeared before the other in the input, then the same pattern will be

observed in the output also [11] .

The data values on which sorting operation is being performed can be

depicted as a record or sequence of values, but the fragment of the data

that is exclusively being called for sorting is referred to as the key. In the

card example, the key is the rank while the cards are denoted as a record

5

(rank, suit).

 Fig 1.1 Playing cards example [11]

When two elements that have equal value are indistinguishable, such as

for e.g. integers, or more briefly, stability is not questionable when the

entire element is the key in any data. Stability cannot become a major

concern when all keys differ from one another too [12].The sorting

algorithms that are stable include: Tim Sort , Merge Sort , Bubble Sort ,

Count Sort , Quad Sort , Library Sort, Odd – even Sort while Heap Sort ,

Selection Sort, Shell Sort , Quick Sort , Tree Sort , Cycle Sort is the list

of the unstable sorting algorithms.

Unstable sorting algorithms can also be made stable by specially

6

implementing them. One method of achieving this is to artificially

outstretch the key comparison, by making use of the original order of the

entries in the input list as a tie-breaker to decide the differentiation

between two objects with otherwise equal keys [9]. We may require

additional time and space by remembering this order.

One application for stable sorting algorithm is shown in fig 1.2 wherein

the grades obtained by the student in a class exam have been displayed

randomly [13]. When the teacher uses stable sorting algorithm on the

result, the grades are arranged according to a rule that is governed below.

The order in which students Earl , Fabian are Gill are arranged in the

input list is retained after arranged data is observed as output since it is a

stable sorting algorithm.

Fig 1.2 Stable Algorithm on grades [13]

1.3 TYPES OF SORTING PROCESS

There are two sorting procedures available while implementing

algorithms i.e. internal & external.

1.3.1 Internal Sorting

7

It can be described as any sorting procedure which works when the

data to be sorted is in small amount only as the entire data is stored

in the main memory of the computer [14]. But when we have to sort

large volumes of data, it may be necessary to hold on a block of data

in memory at a time, as it won’t be possible to accommodate all at

once. We require smaller storage media like hard disk for keeping

rest of the data. But as a consequence of the repeated access for any

operation i.e. reading or writing data, it becomes time-consuming.

Some common sorting algorithms are :

1. Insertion Sort

2. Bubble Sort

3. Selection Sort

4. Heap Sort

5. Radix Sort

6. Quick Sort

No access of external memory is required for execution of sorting

program. When the input size is small, it is then only used.

1.3.2 External Sorting

In this case the data that is to be arranged is present in large volumes

and hence stored in memory present outside the system memory like

disks [9]. While sorting, it will be pulled out in large chunks from

memory and hence we get the collected data all available to us

systematically.

8

1.4 MOTIVATION

Sorting is an integral part of every computer application. Usage of correct algorithm for

a large amount of data can result in saving large amount of power and time. The

execution of entire system is decided upon by the performance of the sorting algorithms

used. Sorting in C language had been implemented 2-3 decades ago, now we are

implementing sorting algorithms using Verilog language, which is a user friendly

language used for designing of digital systems. Another important deciding factor is that

how much data can be sorted by an algorithm implementation keeping an optimal

balance between hardware utilization, power and processing speed. Several algorithms

to undertake the sorting process are Selection sort, Merge sort, Insertion sort, Heap sort,

Radix sort, and Bubble sort. To sort large number of data we can make use of Heap sort,

Radix sort, and Merge sort, that are proven to be quite powerful [15]. Meanwhile the

Selection sort, Count sort , Insertion sort and Bubble sort are powerful for varied forms

of data. Analyzing the sorting algorithms on FPGA like ZYNQ -7000 can give

informative details about LUTs, FF and help us in analyzing their performance hence

forth , which can then be later incorporated in System on Chip designs for integrating

numerous applications.

1.5 ORGANIZATION OF REPORT

This dissertation is divided into 7 chapters. The 1st chapter gives an overview

of the sorting techniques adopted since a long time . All the research that has

been carried out centric on algorithms has been stated in 2nd chapter. While the

six types of sorting algorithms that I have implemented on hardware have been

formulated in chapter 3. Chapter 4 gives us a deep insight into the FPGA board

9

used in this thesis. The design methodology has been explained in chapter 5

while results, and conclusion are in chapter 6 and 7 respectively. Finally all the

sources of references that have helped in carrying out the thesis have been

mentioned as per format defined whereas the research paper has been cited in

the appendix.

10

CHAPTER 2

LITERATURE REVIEW

From decades we have been studying about sorting algorithms and scientists are involved

in their research; to improve their implementation and hence increase the speed of their

computation. Since 2009 E. Mansour et al [16] have addressed the aspect of software

optimization in this paper wherein to meet the underlying user requirements while

conserving maximum energy so that the software must be able to adapt itself . By

maintaining an optimal balance between energy consumption and processing speed they

have found out that for reducing energy consumption in a battery operated device like

mobile phone, Insertion sort is the best choice for this purpose. B. Englert et al in [8]

proposed the pipelined and optimal multiway Merge sort implementation as a basic block

in simplified 2D array with reconfigurable pipelined bus system. Similarly another

architecture for sorting exercise is depicted for Low power by P Y Chen in [6] which uses

a pointer –like design wherein power dissipation is reduced by minimizing slew. This

design of hardware accelerator is implemented in 90nm technology in which automatic

Routing & Placement step is done by Synopsys IC.

Many researchers have focused on software implementations of many sorting algorithms

as discussed in [17, 18] wherein comparison between Bubble sort & Selection sort and

Merge & Quick sort were implemented respectively. Sort is an algorithm which is used for

arranging all the elements in an ordered manner and in this paper, their performance is

compared relative to time & space complexity. Irfan Ali et al in [18] also describes the

memory usage of these algorithms by stating that the internal sorting algorithms only

consume primary memory for their usage while external algorithms makes use of both.

11

This research is also focused on the computational methods of both algorithms wherein

Merge sort is based on Divide and Conquer (DAC) methodology. Similarly in Quick sort

the list is divided into two unequal units where this works recursively and these are

implemented in Java programming language. A lower cost bubble sort is implemented in

[17] and the focus of research was also on finding a similar low cost selection sort. We also

find that the order of selection sort is nearly least than bubble sort.

Kazim Ali in [10] has shown a comparative study of various algorithms like Bubble sort,

Selection sort, Radix sort, Insertion sort , Merge sort, Quick sort , Count sort and Bucket

sort. The results of this analysis point to the fact that quick sort is a very stable algorithm

and is the best choice on which the user can count on. We can prefer Count sort , Bucket

sort or any linear algorithm when we have to arrange data like grades of students . An

experimental study carried out by You Yang in [19] suggests that for small records we can

either prefer insertion or selection sort while for large records Quick sort or our overall

performing algorithm Merge sort is preferred. While in worst case scenario merge sort

takes comparable time to quick sort. Importance of using multicore parallel processing over

sequential processing for bubble sort & linear search is shown by K Sujatha in [3].

Efficient usage of CPU is carried out in multicore utilization where code is working on

more than one core of a single CPU chip while being simulated. Another comparison

between numerous algorithms have been carried out in [14] where quick sort scores the

maximum in terms of performance .We come to know about the fact that efficiency of any

sorting algorithm depends on its usage as shown by [20] where a review analysis of sorting

algorithms is carried out. Bitonic sort was implemented by the latest technique in [12] on

hardware in a special cubic tree network where in the timing was greatly optimized.

A. Srivastava et al [4] way back in 2005 came face to face with the fact that to accelerate

sorting we employ parallel Bitonic sorting networks for hardware implementation. Also

12

the well- known and widely used merge sort algorithm due to lack of parallelism in final

stage suffers from low throughput resulting in trivial memory usage & low latency. A

hybrid design was proposed wherein streaming permutation network (SPN) was used to

realize all interconnection patterns or final stages in merge sort are replaced with ‘folded’

Bitonic merge networks and synthesized on Xilinx Virtex -7 FPGA board. This gives us

very good throughput i.e. close to 10 Gbps and lower latency design. On the same route ,

S. Mashimo et al in [7] have proposed a high performance hardware merge sorter whose

performance is compared to CPU & GPU. We have become aware of the truth that

performance of the sorter is directly proportional to frequency, hence frequency drops with

no of outputs that can be output every cycle. This criterion need to be carefully taken care

of while implementing merge sort.

Another hardware sorter for the merge sort was proposed by W. Song in [5]. This

implementation covered the parallel hardware design by utilizing 32 port parallel mere-

tree which merges sequences at the rate of 32 numbers per cycle on Virtex-7 FPGA board.

This implementation helped us in reducing the sorting time by around 160 times compared

with sequential sorters. A novel method of discarding where the number of total registers

used on Stratix III Altera FPGA were greatly used by F. A. Alquaied et al in [21] in which

a new data item is inserted by using a constant clock rate mechanism . This synthesis and

implementation was done in VHDL language for the RADAR applications.

Though it gave us energy efficient solution but the data dependency of the partition

algorithm in software cannot be accounted here. Another hardware sorting unit having the

potential to sort large amounts of data i.e. GB’s of data in linear time complexity was put

into practice on Virtex-5 in research carried out in [22]. Analysis predicted to the usage of

a FIFO- based Merge sorter & tree-based merge sorter at a very low cost . This optimized

sorter demonstrated that almost half the FPGA resources can be saved by using partial run-

time configuration. A throughput of 2GBps for problems related to FPGA memory was

13

achievable by this method in 2011. High performance parallel Merge sort & Radix sort for

many core GPUs are studied by N Satish et al in [23]. It makes use of the fact that binary

representation of keys is directly manipulated by radix sort and only a comparison function

of keys is required in merge sort. Keys are referred to the data elements that need to be

sorted .This method is highly efficient and the radix sort is 4 times faster than the GPU sort

, being 23% faster on average than the CPU routines and is depicted on several NVIDIA

GPU’s like GTX 280 , 8800 Ultra among others.

The earlier implementations of sorting algorithms on FPGA were carried out by many

researchers. One of them is implemented in [15] by A. Lipu on Spartan -6 FPGA by using

the Xilinx-ISE software . This implementation was shown to be 10 times more rapid when

compared with the sequential implementation for 20 data inputs and the hardware

accelerator showed much better performance when tested on same constraints as that of the

general purpose processor after studying sorting algorithms for several decades.

As we know when the delay of sorting unit decreases, its speed will increase exponentially.

Magesh et al have tried to exploit this in [2] by proposing a scheme of sorting which divides

the execution stage into 3 segments by using register delay. Combinational circuit with

pipelined registers are used giving 64ns delay and a utilization of 179 slices area on Spartan

– 6 whose clock speed is 400 MHz. The sorting units was composed of the compare –swap

unit , comparator and two multiplexers to select the outputs . Efficient parallel

implementation of the bubble sort and bitonic sort are synthesized in Verilog HDL

language using the Xilinx – ISE software and using 6 clock cycles to obtain the output.

Y. B. Jmaa et al [24] recently in 2019 have implemented numerous sorting algorithms on

ZYNQ 7000 FPGA i.e Bubble sort , Insertion sort , Selection sort, Quick sort , Heap sort ,

14

Shell Sort , Merge Sort and Tim Sort . They have analyzed the results for different data

length and have concluded that Selection Sort gives us the fastest computation results for

less than 64 bits. The research was focused in suggesting the usage of the sorting algorithms

extensively for embedded system field like the avionics system. My aim was to simulate

the behavior of elements for intelligent transportation system. Even High level synthesis

was carried out and the design was optimized by using pipeline and loop unroll pragma

whose unroll factor was 2. Whenever big applications where sorting of large no of elements

is to be carried out then using a FPGA for sorting algorithms is a very attractive and cheap

on pocket solution which can be extensively used now-a- days.

15

CHAPTER – 3

SORTING ALGORITHMS

The term sorting has been into practice since the word searching was quickly noticed by

humans .Basically whatever things we have in our daily life ,we have to arrange them in a

particular order so that they can be accessed quickly and also not look like a pile of shabbily

placed things; for example roll numbers in a merit list, contact numbers in a telephone and

books in a bookshelf so that the required book can be picked up quickly and help us in

reducing our time for searching them; are among few of the examples that we encounter

on a daily basis [17]. So basically sorting can be ‘‘termed as any process that makes

searching easier by arranging the data in a particular sequence’’.

Now if we're discussing about the example of arranging cards in a deck, our first step would

be to first check each & every card and then put the card in the particular deck of that color

and so on [13]. But if you are going to follow this iterative procedure, then our computer

will consume a very long time for sorting the data that is present in its memory, which is

quite time-consuming and exhaustive. So our computers make use of the sorting algorithms

to arrange the data in a particular sequence so that the power is optimized and it doesn't

take us longer durations of time. In few algorithms the numbers to be searched are placed

distant and their variability is also deeply affected by the sorting procedures we employ.

From the times, the computer has come into existence, scientists are in the interminable

research and appetence of a sorting algorithm that can work efficiently in terms of area,

16

power and time. On the same pretext my research focuses on 6 sorting algorithms that have

been implemented in hardware but have varied results for the area, delay and power

efficiency. As tabulated in [19], merge sort is a potential candidate that scores well in all

of these three domains, hardware results are no different from the behavior shown in the

software.

The two criterion on which the designer or the scientist has to focus on while deciding on

the usage of sorting algorithms are specified as :

1) Time taken to sort the data

 2) Memory space required to do so

 Though sorting algorithms can also get categorized depending upon their space, time

complexity and on the area requirements.

 When we have the task of sorting any type of data arranged in list, array etc. then some

time is taken when we try to juxtapose one element to another element on the list and after

that only we can swap or exchange these elements [14]. This type of sorting is called

comparison based sorting. Algorithm and property for every sorting algorithm known to

us varies a lot because every algorithm takes varied time and disparate memory allocation

technique depending upon the data bits / words we are sorting etc.

3.1 BUBBLE SORT

It is one of the easiest algorithm to implement, requires very less time in developing and

its realization but has a weak performance when a lot of large numbers are to be sorted. The

17

basic principle utilized in bubble sort is to compare two consecutive numbers from leftmost

to rightmost and swap these numbers if the underlying condition is met [15]. It is one of

the classical algorithms which is now rarely used and is registered in the bygone lanes of

the computer science student textbooks. Its basic procedure in layman terms can be

expressed as, to repeatedly iterate through the entire list and then after comparing the two

items at a time, we would be swapping them if the items present in the list are in the wrong

order [16]. The worst - case time complexity is O(𝑛2) and the memory complexity is

depicted by O (𝓃).Therefore for smaller number of inputs bubble sort is the easiest to

derive benefits from ,by using parallelization techniques it enacts as a feasible solution

even for mid - range numbers . This performs M comparison and switching events in the

first round when the input size is M and its running time is O (𝓃 log 𝑛). The procedure that

is adopted while arranging numbers is depicted in fig 3.1. Initially we have an unsorted

array of numbers [5, 1 , 4 , 2 ,8].

Fig 3.1 Bubble Sort example [15]

18

3.2 MERGE SORT

It is a comparison based sorting algorithm based on the basic “divide – and – conquer rule”

which is a paradigm based on multi-branched recursion [25]. It belongs to the class of

comparison based sorting algorithms, its implementations result in stable sort i.e. the equal

elements have the same order in the input and in output. Its working is based on the age

old tradition of Divide and Rule that was adopted by Britishers when they came to India.

Its three basic steps are :

1. Divide: Dissolving the big problem into various atomic sub- problems; facilitating a

deeper understanding of the data elements.

2. Conquer: Conquer the sub-problems by calling them recursively, they get solved.

3. Combine: Solve all the sub problems, hence find the problem solution swiftly.

Fig 3.2 Procedure of Merge Sort Algorithm [19]

19

The basic procedure of Merge sort algorithm referenced from [19] is shown in fig 3.2.

Robert Greene once said , “ Defeat them in detail : Look at the parts and determine how to

control the individual parts, create dissension and leverage it”. The same rule was followed

by John Von Neumann while inventing this popular algorithm. It can be explained as

follows: At first the algorithm will begin with splitting the list/array of data into two smaller

units, after that the comparison of the elements will be carried out with the adjacent list and

then the two pieces or the units of data are sorted and set recursively thereafter,

consequently it will merge and sort all other elements of the list and hence the list gets

sorted at quite a fast pace [18]. Theoretically, merge sort will perform repeated operations

to split the disordered list into n elements sub-units and thereby comparing each and every

element of the list with the single element observed as sorted. Its processing speed is very

fast and is therefore quite efficient for a large amount of data. It gives a comparison of each

element index, chooses smallest element, separates it out in two arrays and finally the two

sorted arrays are merged to give us the final result [24]. It’s time complexity is denoted as:

O (𝓃 log 𝑛). Whenever the worst case scenario appears, the merge sort works as the most

competitive alternative to vote for and it’s execution capabilities have been shown in

research carried in [19] too.

3.3 Divide & Conquer (DAC) Algorithm

This is depicted below [25] as used in software and it should be used only when similar

sub-problems are not evaluated several times continuously. Also the example of sorting

algorithm referenced from [15] has illustrated the step – by – step procedure used for

arranging the numbers [9, 10, 6, 4, 5, 7, 19, 11] in fig 3.3. This strategy is employed in

numerous applications like Closest Pair of Points, Strassen's Multiplication,

Karatsuba Algorithm, Cooley-Tukey Algorithm, Quick Sort, Binary Search etc. Also it’s

most recognizable advantage is that, it enhances the programmer with skills that can be

utilized for solving difficult mathematical problems like the Tower of Hanoi very easily.

20

DAC(a, i, j)

{

 if(small(a, i, j))

 return(Solution(a, i, j))

 else

 m = divide(a, i, j) // f1(n)

 b = DAC(a, i, mid) // T(n/2)

 c = DAC(a, mid+1, j) // T(n/2)

 d = combine(b, c) // f2(n)

 return(d)

}

Fig 3.3 Example of Merge Sort [18]

21

3.3 INSERTION SORT

It is an ingenious algorithm belonging to the family of comparison based sorting algorithms

and is a particular example of an incremental algorithm that is; it builds the sorted sequence

by considering one number at a time i.e slowly and steadily. In the sorting procedures, we

can identify all the data that are placed from positions 1 to N and they are later on inserted

into the proper position after the comparison of the individual elements is done . Also n-1

passes are required for sorting these data that will later define the sorting time. We can

even briefly explain this algorithm by considering the example of the card player who is

arranging the cards being dealt to him. The player picks up the card and then insert them

into the required position, also at each and every step we place the item onto its specified

place [14].

We need (N-1) comparisons (at most) to insert the last element while sorting is carried out,

so lets calculate the time complexity as follows :

We will calculate the number of comparisons of an array of N elements:

0 comparisons are required to insert the first element

1 comparison is required to insert the second element

2 comparisons are required to insert the third element

...

We therefore require (N-1) comparisons (at most) to insert the last element in the array

Summing it all we get,

1 + 2 + 3 + ... + (N-1) = O (𝑛2).

Hence O (𝑛2) is the time complexity depicted by Insertion Sort Algorithm. Insertion Sort

can further be explained by considering a simple example referenced from [20].

22

Initially we have an unsorted list of numbers [85, 12, 59, 45, 72, 51] , the step by step

procedure of arranging them is depicted below in fig 3.4

Fig 3.4 Insertion Sort example [20]

3.4 COUNT SORT

Used for sorting the range of numbers from 1 to k where k is the smallest value. The basic

notion behind this algorithm is to determine the rank of each elements and the rank of the

element is the number of elements which are less than or equal to that number [10]. Once

that has been determined, we will copy the numbers to the final array .The counting sort

algorithm takes O (n + k) time for its processing and hence that is termed as its time

complexity.

23

It is asymptotically faster than several comparison based algorithms like merge sort, quick

sort etc. It only works better when the restricted inputs are used in array. When the range

of potential values is large, then a lot of space is required i.e. depicted by its space

complexity given as O (n) [28].

Fig 3.5 Count Sort example [28]

3.5 RADIX SORT

It is a non-comparative type sorting algorithm i.e. comparisons are avoided by creating &

distributing elements into buckets according to their radix. Even though it is not an in –

place algorithm, it is stable in nature [3]. The sorting procedure is:

• Initially sort the most significant digit i.e. MSB bit, then the next most significant

digit and continue this procedure

• Finally when you have sorted all the bits sort the least significant digit.

Count sort is a linear time sorting algorithm and therefore it cannot be used for elements

that have a very big range like 1 to 𝑁2 , as its worst case is even terrible when

24

compared with majority of the comparison based sorting algorithm ; hence it is seldom

used . Therefore to sort an array in real-time we make use of Radix sort, i.e. for sorting

elements ranging from 1 to 𝑛2. It can be explained with the help of fig 3.6 referenced

from work done in [23]. The numbers used in this example are [326 , 453, 608 , 835,

751, 435, 704, 690].

Fig 3.6 Radix Sort example [23]

25

3.6 SELECTION SORT

Though it cannot be implemented as a stable algorithm but still it is similar to the bubble

sort algorithm, in the manner that it can be used efficiently for small number of elements

however, is inefficient when the task of sorting a large number of elements arises; as its

complexity is quite high i.e. it has a time complexity of O (𝑛2) [24] . Its name is derived

from the fact that it works by selecting a minimum of elements in each step of the sort and

the most important step is to pick the minimum value at index 0. It is an in- place sorting

algorithm and therefore is a simple algorithm that can be used for analysis of data. It

basically selects from an unsorted list the smallest element in each iteration and marks it in

the unsorted list as the first element i.e. at the MSB position of the list / array of input

numbers.

The working procedure can be explained as follows :

• The initial step begins from 0 index position of the array, i.e. the first element; we

find the smallest element in the array, and replace it with the element in the first

position.

• After that we move on to the element present on the second position, and then look

within the subarray for the presence of smallest element, starting from index 1, till

the last index.

• Third step involves replacing the element at the second position in the original

array, or we can say the MSB position bit of the subarray, with the second smallest

element.

• Above step is repeated, until the entire array is sorted [10].

The step – by – step procedure of the data elements [29, 72, 98, 13, 87, 66, 52, 51, 36]

to be sorted is represented in fig 3.7

26

Fig 3.7 Selection Sort example [10]

27

CHAPTER – 4

ZYNQ 7000 FPGA FAMILY

This FPGA family has a System - On -Chip (SOC) type architecture that encapsulates a

dual core ARM Cortex A9 microprocessor chip and 28nm Programmable Logic in a single

device. The A9 chip is also the heart of the Processing System (PS) and makes this FPGA

the ideal choice to be used as an SOC. It also includes an on-chip boot Read only Memory

(ROM), external memory interfaces of 16 to 32 bits and a few peripheral interconnect

interfaces. While providing solutions to ASIC and system-on-chip users a fully

programmable alternative, it facilitates a flexible platform to launch new solution. This acts

as a highly integrated and our optimized alternative idle for computationally extensive and

performance demanding applications. This FPGA architecture's primary focus is on

automative applications and its members consists of these Z-7010 Z-7020 Z-7030 devices

[29].

The ZYNQ 7000 is optimised for maximum design flexibility and performance per

watt. To enable highly differentiated designs the dual core arm cortex A9 processor

integrated with 7 series Programmable Logic (up to 6.6 M logic cell and 12.5 GB per

second trans- receiver) for a wide range of embedded applications. These SOCs are cost

optimized entry point with ARM single Core processor acquaintance with 28nm Artix 7

based Programmable Logic. The system on chips are an ideal candidate for a numerous

applications in the motor control field and vision engineering. The Programmable Logic

embedded in these are connected to a system with over 3,000 interconnects providing 100

GB/s of I/O bandwidth, beyond of a multi-chip solution. This family contains up to 10

28

devices to be chosen from that may be single or dual core, hence allowing a scalable

platform for the consumer. FPGAs are the ideal candidates for implementing sorting

algorithms due to their unparalleled features like parallelism, low latency , high bandwidth

, faster processing speed , in-built processor core availability among others [24]. This

family provides the flexibility and scalability of an FPGA while facilitating the

performance and ease that is typically associated with ASIC and ASSPs.

The Zynq-7000 SoC devices are able to provide numerous applications including:

• Automotive driver assistance : lane departure , blind spot detection

• Wireless applications, Reliable ethernet

• Embedded prototyping

• IP and smart camera

• LTE radio and baseband

• Medical diagnostics and imaging

• Software acceleration for DSP functionality

• Time domain reflectometer

The ZYNQ conveniently maps the s/wre and custom logic in the PL and PS respectively

and enables realization of unique and differentiated system functions. Its major blocks are:

• Processing System (PS)

• Application processor unit (APU)

• Memory interfaces

• I/O peripherals (IOP)

• Interconnect

29

• Programmable Logic (PL)

Fig 4.1 Architecture of ZYNQ FPGA chip [29]

4.1 HISTORY

 It is an all programmable system on chip that is embodied by two hard processors, ADC

block Programmable Logic (PL) and a lot more components embedded in one Silicon chip

only. Before the innovation of the ZYNQ came into practice, the processes were coupled

with a FPGA which made the communication between the Processing System & the

Programmable Logic quite intricate and its layout difficult for the engineers to understand.

The advanced extensible interface (AXI) standard is used as a means of interfacing across

30

different elements present on the ZYNQ architecture which thereby accounts for the high

bandwidth and low latency present in connections. A soft core processor such as

Microblaze was being used by the users before the ARM processor was implemented inside

the ZYNQ device; as its heart. The upper hand provided by the Microblaze till date, is the

flexibility of the processor instances within a design. On the other hand ZYNQ delivers

significant performance enhancement with the encompassing of the hard processor in the

ZYNQ [30]. Also the cost to market and the physical size gets reduced by simplifying the

system to a single chip.

Figure 4.2 ZYNQ overall view [30]

4.2 ZYNQ DESIGN FLOW

This design flow has some steps that are recurrent to a regular FPGA. We start the design

cycle by first defining the requirements and specifications of the system, next the different

tasks are assigned to implement in either the PL or PS which is called task partitioning.

Because the overall performance of the system will depend on the task or function being

assigned for implementation, so this stage is most important in the technology node be it

31

hardware or software. Next step is the testing of the hardware and software

development. We need to now identify the functional blocks related to the Programmable

Logic in order to attain the design characteristics and also to congregate them as IPs and

for facilitating the connections between all of these IPs, all the steps are hence governed

with respect to the functionality of the Programmable Logic (PL). The software activity

includes to run on the PS, the code that is developed [30]. To wrap the design, system

integration and testing is needed. Figure 4.3 gives design cycle briefly.

4.3 PROCESSING SYSTEM UNIT

It comprises of four major blocks which are the Application Processing Unit (APU), the

memory interfacing, interconnect and the input output (I/O) peripherals.

4.3.1 Application Processing Unit (APU)

Two Cortex A9 processor units are present in it along with NEON Unit, Memory

management unit, floating point unit ,L1 caches. Additionally L2 cache and Snoop

controls are also present in it.

• NEON : the implementation of the single instruction multiple data in the ARM

processor is provided by this unit that acts as a catalyst to the DSP and the media

algorithms

• FPU: the floating point unit operations are managed by this unit

• Level 1 Cache : storing the instructions and the data separately we have a data and

instruction cache

• MMU: the virtual memory gets translated to the physical memory address by this

unit.

32

• Snoop control unit (SCU) : its main task is to create interfaces among the

processors 4 –way set associative L1 and L2 cache.

• L2 cache: to check the current updated value of a variable , cache is shared

between two processors

Fig 4.3 ZYNQ Design Flow Steps [30]

33

4.3.2 General Interrupt Controller (GIC)

Consists of two main components :

• Three watch dog timers (WDT) (one per CPU and one system WDT)

• Two triple timers/counters (TTC)

Figure 4.4 Application Processing Unit Structure [29]

4.3.3 Dynamic Memory Interfaces

Multi-protocol memory controller can be configured to provide 16 bit or 32 bit byte

accesses using a single rank configuration of 8 bit ,16 bit or 32 bit to a 1 GB

address space [29]. It incorporates it’s own set of dedicated IOS and hence speed of up

to 1333 MB per second for the DDR 3 is supported. 4 AXI slave ports are featured for

this purpose namely as :

34

• via the L2 cache controller : a 64-bit port is dedicated for low latency

• for the PL access: two 64- bit ports are designated

• all other AXI Masters share: one 64-bit port via the central interconnect

4.3.4 Static Memory Interfaces

It supports static external memory such as :

• 8 bit data bus upto 64-MB

• 8 bit parallel NOR flash up to 64- MB

• NAND flash support with 1-bit ECC

4.3.5 I/O Peripherals (IOP)

The data communication peripherals are present within the IOP unit. Its features are;

• Ethernet MAC peripherals : Tri Mode

• Supports an external PHY interface

• High speed and full speed mode in host, devices by presence of two USB 2.0 OTG

peripherals having 12 endpoints

• Makes use of the 32 bit AHB slave and AHB DMA master interfaces

• Two full CAN (Controller Area Network) bus interface controllers that has

automotive applications

• Three peripheral chip select signals accompanied by 2 full duplex SPI ports

• Two UARTS

35

• Up to 118 GPIO bits

4.3.6 Interconnect

A multilayered ARM AMBA AXI interconnect is used to connect the APU, memory

interface unit and the IOP to each other and also to the PL .This interconnection supports

multiple simultaneous transactions of the master and slave ; it’s a non - blocking type. And

is therefore designed with latency sensitive masters which have the shortest path to the

memory and the bandwidth critical Masters having highest throughput with the slaves

through which they have to communicate [29]. The traffic generated by the CPU, DMA

controller can be regulated by means of a block known as the quality of service (QoS)

present in the interconnect .

4.3.7 PS External Interfaces

They cannot be assigned as PL Pins and are hence designed specifically for the purpose of

interfacing They interfaces are encompassed by :

• Clock, reset, boot mode, and voltage reference

• 32-bit or 16-bit DDR2/DDR3/DDR3L/LPDDR2 memories

4.4 MIO (MULTIPLEXED INPUT – OUTPUT) OVERVIEW

 There are up to 54 MIO present for multiplexing access to PS pins that can be used by the

static memory interface and the PS interfaces, which can be mapped with the different

peripheral pins at all steps of interfacing framework [29]. The signal routing of the MIO

block has been shown below in fig 4.5. If greater than 54 are required then we need to route

this through the PL to the input output associated I/O with the PL and are therefore referred

to as the extendable multiplex input output (EMIO). MIO_PIN_[53:0] configuration

36

registers located in the SCLR registers set is controlled by the signal routed through the

MIO block [29] . We can program any one of the total pins present on the MIO pins to the

reference clock of an external CAN controller . A typical module block diagram of EMIO

to PL has been shown in fig 4.6.

Fig 4.5 MIO Signal Routing [29]

4.5 PROGRAMMABLE LOGIC STRUCTURE

It is comprised of configurable logic blocks (CLBs) which are housed by slices like any

other FPGA we are familiar with. Any slice contains a combination of 8 flip flops +

4 LUTs and is accompanied by a switch matrix, also there are DSP slices and Block

RAMs as well. Figure 4.7 shows the structure of the Programmable Logic. Its main

components are:

• Slice: It is embodied by resources for implementing the combinatorial and the

sequential circuits of the design.

37

• Look-up-table (LUT) : For implementing a logic function of inputs upto 6 or more

RAM and ROM shift registers are used.

Fig 4.6 Module block diagram of EMIO to PL [30]

• Flip Flop (FF) : Usually employed for implementation of 1 bit register with a reset

functionality.

• Switch Matrix : The connections among different parts present within the

combinational logic blocks as well as with other CLB and other parts of the

programming logic structure.

38

Figure 4.7 Structure of the PL [30]

4.6 DISTINCTIVE FEATURES

The key features of the ZYNQ 7000 are:

• 1 GHz CPU Frequency

• GPIO has four 32-bit banks

• All programmable SOC

• Level 1 cache : 32 KB each

• Level 2 Cache : 512 KB

• Upto 118 GPIO bits

• Over 85k logic cells

• 256 KB on chip memory (RAM) with byte parity support

• ARM v7 architecture with Trust – Zone security

• 100 Gb/s of I/O bandwidth

• 8 channel DMA ; 4 channel dedicated specifically to PL

39

• 8 LUTs + 16 FF per CLB

• Two 12 bit ADCs (XADC)

• 36 KB Block RAM

• 25 bit pre-adder, 18 x 25 signed multiply

• 1.2 V to 3.3 V I/O capability

• ARM Cortex A9 Microprocessor chip

• PCIe supports upto 8 lanes, Gen2 speed

• 4 AXI ports : configurable as 32 or 64- bit interfaces

• 1KB deep FIFO ; 32 word buffer for read acceptance

• 16 Interrupts available

• Upto 220 transreceivers for enhanced capability

Figure 4.8 ZYNQ 7000 FPGA board [31]

40

• 1-bit , 2 bit , quad SPI , or two-quad SPI

• Single & Double Precision Vector Floating Point Unit (VFPU)

• Scatter-gather DMA capability

• Two USB 2.0 OTG peripherals

• 8-bit PHY external interface

• 1 Mb/s high Speed UART’s

• XADC , JTAG interfaces

• Processor configuration access port (PCAP) for facilitating chip security

• PS boot image authentication

• 8 Clock Management Tiles (CMT)

• CMT has Mixed – Mode Clock Manager (MMCM) & PLL

• Memory controllers like USB, Gigabit, Ethernet, SD-SDIO

• AES & SHA 256b Decryption present for secure boot

41

CHAPTER 5

DESIGN METHODOLOGY

While implementing all the algorithms in Verilog Hardware language we have considered

five 16 bit vector inputs denoted as [15:0] in1,in2, in3,in4 ,in5 ; corresponding to which

we get five 16 bit outputs as [15:0] out1, out2,out3,out4,out5 . A 16 bit array of [1:5] size

is also used to store the inputs. Five data registers each of 16 bits denoted as data1, data2,

data3, data4, data5 have also been used while implementing all the algorithms. The input

values are sent to the data registers sequentially using blocking assignment statements.

The procedure carried out in these algorithms have been formulated in flowcharts that have

been depicted in below figures. This shows the algorithm that I have followed while

studying their behavior on hardware using Verilog HDL language. Five inputs of 16 bits

have been denoted as in 1 , in 2 , in 3, in4 , in5 [15:0]

42

 Fig 5.1 Bubble Sort Flowchart

43

Fig 5.2 Merge Sort Flowchart

44

Fig 5.3 Insertion Sort Flowchart

45
Fig 5.4 Radix Sort Flow

46

Fig 5.5 Selection Sort Flowchart

47

CHAPTER 6

RESULTS

The sorting algorithms have been simulated and synthesized on the VIVADO 2019.1

software and have been implemented on ZYNQ 7000 FPGA board. The simulation

waveforms observed have been shown below. We have taken the following numbers as

input :

In1 = 50 In2 = 20

In3 = 15 In4 = 42

In5 = 06

6.1 BUBBLE SORT

Fig 6.1 Bubble Sort Simulation Waveform

48

6.2 MERGE SORT

Fig 6.2 Merge Sort Simulation Waveform

6.3 INSERTION SORT

Fig 6.3 Insertion Sort Simulation Waveform

49

6.4 SELECTION SORT

Fig 6.4 Selection Sort Simulation Waveform

6.5 RADIX SORT

Fig 6.5 Radix Sort Simulation Waveform

50

6.6 COUNT SORT

Fig 6.6 Count Sort Simulation Waveform

6.7 PERFORMANCE ANALYSIS OF ALGORITHMS IN

TERMS OF AREA , POWER AND TIMING

Fig 6.7 Hardware Utilization of Sorting Algorithms

0

200

400

600

800

1000

1200

1400

Bubble
Sort

Merge
Sort

Insertion
Sort

Count
Sort

Radix
Sort

Selection
Sort

Hardware Utilization (LUTs)

51

Fig 6.8 Representing delay in execution of sorting algorithms

Fig 6.9 Power consumption

From the above three graphs it is evident that In terms of area,

insertion sort scores the best and in terms of timing Radix Sort is the best

choice while selection sort is the most power efficient algorithm. So while

deciding the algorithm there is a tradeoff between area, power & timing.

0

10

20

30

40

50

60

Timing (ns)

0

0.05

0.1

0.15

0.2

0.25

Bubble
Sort

Merge
Sort

Insertion
Sort

Count
Sort

Radix
Sort

Selection
Sort

Power Consumption (watt)

52

CHAPTER 7

CONCLUSION & FUTURE SCOPE

All the algorithms have been implemented in VIVADO 2019.1 , written in Verilog HDL

language . We have arrived at the conclusion from table 7.1 that while Insertion sort

algorithms has the least hardware utilization or LUT consumed , Bubble sort being the

simplest algorithm also has less amount of hardware utilization. Radix sort gives us the

result in the least time and is considered to be the fastest while merge sort also does

computation at a comparable rate only. Count sort on the other hand, being dependent on

the value of the largest element on the array, hence is the slowest of all. Also Merge Sort

is an overall good algorithm which can be preferred for varied amount of applications. I

will be implementing an application of sorting algorithm like an algorithm of Machine

Learning for proving its credibility in hardware oriented examples

Table 7.1 Analysis of Sorting Algorithms

Sorting Algorithm LUT Flip Flops Total
Delay

(ns)

Net Delay

(ns)
Power
(Watt)

Bubble Sort 332

160

32.213 25.579 0.183

Merge Sort 444

160 21.107 18.003 0.212

Insertion Sort 260

160 29.209 23.435 0.165

Count Sort 1153

144 53.374 43.020 0.147

Radix Sort 458

160 17.417 15.031 0.172

Selection Sort 633

160 28.090 22.601 0.137

53

APPENDIX

My paper Id was : 539

54

REFERENCES

1. S. Jacobs and C. P. Bean, “Fine particles, thin films and exchange anisotropy,” in

Magnetism, vol. III G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp.

271–350

2. V. Magesh, S. Megavarnan, A. Pragadish and S. Saravanan ,“FPGA

Implementation of Sorting Algorithm”, International Journal for Technological

Research in Engineering, vol. 5, 2018

3. K. Sujatha, P. V. N. Rao, A. A. Rao, V. G. Sastry, V. Praneeta and R. K. Bharat, “

Multicore parallel processing concepts for effective sorting and searching” ,

International Conference Signal Processing Communication Engineering System,

pp. 162–166, 2015

4. A. Srivastava, R. Chen, V. K. Prasanna, and C. Chelmis, “A hybrid design for high

performance large-scale sorting on FPGA”, International Conference on

Reconfigurable Computing FPGA’s, pp.1–6, 2015

5. W. Song, D. Koch, M. Luján and J. Garside, “Parallel hardware merge sorter”,

Annual International Symposium Field-Program Custom Computing Machines

(FCCM), pp. 95–102, 2016

6. S. H. Lin, P. Y. Chen and Y. N. Lin, “Hardware design of low-power high-

throughput sorting unit” , Transaction Computing, vol. 66, pp. 1383–1395, 2017

7. S. Mashimo, T. V. Chu and K. Kise, “High-performance hardware merge sorter”,

International Symp. Field-Program. Custom Computation, pp. 1–8, 2017.

8. B. Englert, M. He, X. Wu and Q. U. Zheng , “Optimal sorting algorithms for a

simplified 2D array with reconfigurable pipelined bus system” ,IEEE Trans.

Parallel Distribution System , vol. 21, pp. 303– 312, 2010

9. www.en.wikipedia.org/sorting

10. Kazim , “A comparative study of well known sorting algorithms”, International

Journal of Advanced Research in Computer Science, vol. 8, 2017

www.researchgate.net/sortingalgorithm

http://www.en.wikipedia.org/sorting

55

11. www.stackoverflow.com

12. S. W. Al-Haj Baddar and B. A. Mahafzah, “Bitonic sort on a chained cubic tree

interconnection network,” J. Parallel Distrib. Comput., vol. 74, no. 1, pp. 1744–

1761, Jan. 2014

13. www.studytonight.com/data-structures/introduction-to-sorting

14. Pandey, K. Kumar, R .K. Bunkar, and K. K. Raghuvanshi. "A Comparative Study

of Different Types of comparison Based Sorting Algorithms in Data

Structure." International Journal of Advanced Research in Computer Science and

Software Engineering Volume 4, Issue 2, February 2014

15. Lipu, A. Rahman, R. Amin, N. I. Mondal and A. I. Mamun, “Exploiting parallelism

for faster implementation of Bubble sort algorithm using FPGA”, International

Conference on Electrical, Computer & Telecommunication Engineering

(ICECTE), pp. 1-4, 2016

16. Bunse, Christian, H. Höpfner, S. R. Choudhury, and E. Mansour, "Choosing the"

Best Sorting Algorithm for Optimal Energy Consumption", In ICSOFT (2), pp.

199-206. 2009

17. Edjlal, Ramin, A Edjlal, and T. Moradi, "A sort implementation comparing with

bubble sort and selection sort", 3rd International Conference on Computer Research

and Development, vol. 4, pp. 380-381. IEEE, 2011

18. I. Ali , H. N. Lashari, “Performance comparison between merge and quick sort

algorithm in data structures”, International Journal of Advanced Computer Science

and Applications, January 2018

19. Y. Yang, P. Yu and Y.Gan, Y, “Experimental study on the five sort algorithms”,

Second International Conference on Mechanic Automation and Control

Engineering, pp. 1314-1317, 2011

20. Kocher and N. Aggarwal, “Analysis and Review of Sorting Algorithms”,

International Journal of Scientific Engineering and Research (IJSER) ,vol. 2 ,2014

21. F. A. Alquaied, A. I. Almudaifer, M. A. AlShaya, “A Novel High-Speed Parallel

Sorting Algorithm Based on FPGA”, Saudi International Electronics,

Communications & Photonics Conference (SIECPC) , 2013

http://www.stackoverflow.com/
http://www.studytonight.com/data-structures/introduction-to-sorting

56

22. Norollah, Amin, D. Derafshi, H. Beitollahi, and M. Fazeli. "RTHS: A Low-Cost

High-Performance Real-Time Hardware Sorter, Using a Multidimensional Sorting

Algorithm." IEEE Transactions on Very Large Scale Integration (VLSI) Systems ,

May (2019).

23. N. Satish, M. Harris , M. Garland, “Designing Efficient Sorting Algorithms for

Manycore GPUs”, IEEE International Symposium on Parallel & Distributed

Processing , 2009

24. Y. B. Jmaa, R. B. Atitallah, D. Duvivier and M.B. Jemaa, “A comparative study of

sorting algorithm with FPGA Acceleration by High Level Synthesis”, IEEE

conference on computation systems, vol.23, pp. 213-230. ISSN 1405-5546, 2019

25. www.geeksforgeeks.com/sorting

26. www.interviewcake.com/concept/java/counting-sort

27. D. Koch , J. Torresen , “FPGA Sort: A High Performance Sorting Architecture

Exploiting Run-time Reconfiguration on FPGAs for Large Problem Sorting”, In

Proceedings of the IEEE International Conference on Application-Specific

Systems, Architectures, and Processors (ASAP), page 299

28. www.researchgate.net/sortingalgorithm

29. Xilinx Datasheet: www.xilinx.com/zynq7000-Pkg-Pinout

30. www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture

31. www.store.digilentic.com

http://www.geeksforgeeks.com/sorting
http://www.interviewcake.com/concept/java/counting-sort
http://www.researchgate.net/sortingalgorithm
http://www.xilinx.com/zynq7000-Pkg-Pinout
http://www.aldec.com/en/company/blog/144--introduction-to-ZYNQ-architecture
http://www.store.digilentic.com/

