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Abstract 

 

The operation of robotic systems to perform complex tasks in dynamic environments has been 

a crucial area of control. Further, the technological advancements in autonomy, artificial 

intelligence and robotics have broad applications across society, bringing both opportunities 

and risks. Most of these opportunities are directly related to path tracking, speed control, 

maneuverability, and balancing control which are highly affected by the complexity and 

unpredictable dynamics of the surroundings. Besides, efficient path tracking and balancing 

control are particularly important for the robots, in order to achieve autonomy without any 

collision and disturbances. Consequently, the parameters of the mechanical and electronic 

components need to be monitored and optimized for performing multiple tasks and maintain 

the reliability of the system. In the view of these aspects, this research identified the 

combination of intelligent approaches and machine learning methods to achieve unprecedented 

path tracking and balancing control, continuous monitoring, and robustness by relying solely 

on onboard computing. The approaches are developed based on multiple control algorithms 

and are implemented with two-degree freedom operation of ball balancer and helicopter 

benchmark systems. 

The controllers are synthesized by first applying the theory of Feedback Linearization and then 

enhancing their robustness properties. A brief overview of the physical interpretation of the 

dynamic equations, which is important to the control system designer's understanding of the 

system, is given. This is followed by further mathematical descriptions of the robust techniques 

used to augment the basic control law. The research identified the difficulties associated with 

current control practices and the potential improvements achievable by using nonlinear control. 

Initially, an intelligent approach for ball balancer position control, and unmanned helicopter 

trajectory tracking using wavelet fuzzy and evolving type2 quantum fuzzy neural network are 

developed. The wavelet transform based fuzzy controller overcomes the drawbacks of 

transparent interpretation of choosing fuzzy rules with techniques available in the literature. 

Besides, the evolving type-2 quantum fuzzy neural network is targeted at developing self-

organizing and rule growing scenarios with quantum membership functions to overcome the 

effects of parametric uncertainties in the benchmark nonlinear system. Further, the 

development of probabilistic control approaches with randomized algorithms and stochastic 
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approximations are carried out to estimate the operation of the benchmark systems under 

random uncertainty conditions. Furthermore, the fault classification based reconfigurable 

control methods are developed by adapting wavelet transform, machine learning, and 

intelligent control approaches for both the systems. Finally, the reinforcement learning 

algorithm-based control approaches are adapted to develop model free controllers with linear 

quadratic regulator and neural network techniques to perform temporal feedback-based control 

and interleaved control respectively with the helicopter and ball balancer systems. The 

performance of all the developed controllers is validated through simulation studies and real-

time analysis for both the ball balancer and helicopter benchmark systems. 
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Chapter 1. INTRODUCTION 

1.1 OVERVIEW 

The approximation of underactuated, holonomic, and non-holonomic systems through 

automatic decision development and nonlinear control methods [1] is an issue that appears in 

many problems [2] and can be tackled through various approaches. The diversity and 

complexity of these systems have led researchers in the field to analyze the action of various 

controllers which are mainly focussed at achieving self-balancing control and steady-state 

operation. Conventionally, a series of scientific, industrial, and military applications motivated 

rigorous analysis and control design for these systems. On the other hand, theoretically 

challenging nature of analysis of the behavior of nonlinear dynamical systems attracted many 

mathematicians to study control systems. As a result, the efforts of engineers and scientists 

together led to creation of linear control, optimal control, adaptive control, and nonlinear 

control theories.  

For the past few decades, aerospace and robotics applications remained as some of the most 

influential sources of motivation for rigorous analysis and control of nonlinear systems. All 

along the way, advances achieved by researchers in these areas has mutually affected and 

enhanced each other. In light of these advancements, this chapter identifies the various aspects 

of nonlinear control theory associated with the nonlinear systems. 

1.2 BACKGROUND AND EXISTING CHALLENGES 

In this section, an overview of the past research on classes of nonlinear control systems and 

mechanical systems that are relevant to this work are presented. In this thesis, our main focus 

in is on control design for nonlinear systems that arise from control of an important and broad 

class of mechanical benchmark systems. It is identified that, most of these mechanical control 

systems have fewer actuators (i.e., controls) than configuration variables making the system 

underactuated. One of the main contributions of this thesis is explicit transformation of high-

order underactuated systems into cascade nonlinear systems by keeping the structural 

properties of the system intact. This transformation is performed using a global/semiglobal 

change of coordinates obtained from the Lagrangian of the system in closed-form. After 

applying this transformation, the control of the original high-order system is reduced to the 

control of lower-order nonlinear systems. This motivated the development of new control 
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design methods for both cascade nonlinear systems and different classes of nonlinear systems. 

As a result, the main body of this thesis involves the following topics: 

• Nonlinear control of cascade systems 

• Dynamics, Reduction, and Control of underactuated systems 

In the following sections, the state-of-the-art of research in each of the above topics is 

discussed. 

1.2.1 Nonlinear systems 

To describe the highly nonlinear systems, an evolution of control systems from linear systems 

to nonlinear systems is presented. Initially, the linear time-invariant control systems are 

expressed in the form 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥        (1.1) 

where 𝑥 ∈ ℝ𝑛, 𝑦 ∈ ℝ𝑚, 𝑢 ∈ ℝ𝑝. Questions regarding controllability, observability, 

stabilization, and tracking for this system using state or output feedback has been quite well-

understood for a long time. However, adding constraints or further specifications to the 

description of the system might make the control design for the system rather complicated. For 

example, if the system is controllable with bounded control inputs, is there any static or 

dynamic state feedback that asymptotically stabilizes the system? or what if 𝐴, 𝐵, 𝐶 are known 

up to an uncertainty (i.e. 𝐴 = 𝐴0 + Δ where 𝐴0 is known and Δ is unknown but norm-bounded). 

None of these problems can be addressed as simple as the control problems for the original 

linear system (1.1). One can observe that minor deviations from the standard problem of 

stabilization of a linear time invariant (LTI) control system and additional constraints make the 

system rather complex. As a further step, consider the following linear system in feedback 

connection with a memoryless nonlinearity  

𝑥̇ = 𝐴𝑥 + 𝐵𝑢,   𝑦 = 𝜙(𝐶𝑥)        (1.2) 

where 𝜙(0) = 0 and ∃𝑐2 > 𝑐1 ≥ 0: 𝑐1𝓏
2 ≤ 𝓏 ∙ 𝜙(𝓏) ≤ 𝑐2𝓏

2, ∀𝓏 ∈ ℝ. These systems are 

considered slightly nonlinear in nature. Further, the control design and analysis for systems in 

the form (1.2) with different types of nonlinearities led to absolute stability theory. An input- 

output stability approach or a frequency domain analysis are the dominant tools in dealing with 

slightly nonlinear systems. In the literature, this notion of feedback interconnection of a linear 

system and a nonlinearity was generalized to feedback of an LTI system and an uncertainty (or 

operator) that has bounded gain. This led to the development of robust stability theory [3] and 

integral quadratic constraints [4]. Though, these methods are successful in dealing with linear 
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systems, uncertain linear systems, and slightly nonlinear systems, they are not applicable to 

truly nonlinear systems (i.e., systems with nonlinear time evolution of the state) that do not 

include any basic linear parts. To be more precise, a modification of (1.2) as 

𝑥 = 𝜎(𝐴𝑥 + 𝐵𝑢),    𝑦 = 𝐶𝑥        (1.3) 

called a recurrent neural network with a saturation-type (i.e., sigmoidal) nonlinearity 𝜎, has no 

fundamental similarities in terms of controllability and observability to an LTI control system 

or a slightly nonlinear system. In addition, the linearity of the output does not simplify analysis 

of the system due to the fact that time-evolution of the system follows a nonlinear law. Dynamic 

neural networks are examples of highly nonlinear systems and the conditions for controllability 

(only the discrete-time case) and observability of these systems were introduced in [5], [6]. The 

analysis method employed in the preceding work was a rather involved time-domain analysis. 

Obviously, due to the fact that a frequency domain analysis can only deal with systems that 

have linear time-evolution of the state. 

A rather standard form for nonlinear systems affine in control in analogy to (1.1) is 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢,     𝑦 = ℎ(𝑥)       (1.4) 

where 𝑓, 𝑔, ℎ are nonlinear smooth functions. By a highly nonlinear system, a system is defined 

as 

𝑥̇ = 𝑓(𝑥, 𝑢),    𝑦 = ℎ(𝑥)        (1.5) 

where 𝑓 is a nonlinear function of (𝑥, 𝑢) (regardless of linearity or nonlinearity of ℎ(𝑥)) such 

that there exist' no invertible function (𝓏, 𝑣) = (𝑇1(𝑥), 𝑇2 (𝑥, 𝑢)) and matrices 𝐴, 𝐵 satisfying 

𝓏̇ = 𝐴𝓏 + 𝐵𝑣. A comprehensive local theory regarding controllability, observability, 

stabilization, tracking, and disturbance decoupling for nonlinear systems in (1.4) can be found 

in [7]. The main tools to address these control problems were differential-geometry and Lie 

theory that became very common in the literature. Though these methods were rather 

successful in local analysis of nonlinear systems affine in control they usually fail to work for 

a global analysis and nonlinear systems that are nonaffine in control. Moreover, lie algebraic 

conditions are not robust to uncertainties in 𝑓, 𝑔, ℎ.  

Further, the input-to-state stability theory [8], combines both absolute stability and robust 

stability theories in one for highly nonlinear systems in the general form (1.5). The main tools 

in this theory for robustness analysis to disturbances are control Lyapunov functions (CLF's). 

The problem is that in general it is not easy to construct CLF's for highly nonlinear systems. 

In many control applications, a global/semiglobal control design and analysis is required. In 

addition, after applying certain nonlinear coordinate transformation to the dynamics of 
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nonlinear systems affine in control, the transformed system or its subsystems could be 

nonlinear systems that are non-affine in control. This motivated us to consider 

global/semiglobal stabilization and analysis of highly nonlinear systems that arise from the 

study of underactuated mechanical systems and nonholonomic systems.  

1.2.2 Cascade nonlinear systems 

Cascade nonlinear systems arise in many control applications either naturally after some 

change of coordinates, or due to design of an output feedback or a dynamic state feedback. In 

general, they are in the following form 

𝓏̇ = 𝑓(𝓏, 𝜉)

𝜉̇ = 𝑔(𝜉, 𝑢)
          (1.6) 

The most well-known results for cascade systems are related to the nonlinear systems in strict 

feedback forms and feedforward forms. The backstepping procedure has proven to be 

successful for systems in strict feedback form [7], [9], [10]. Control of feedforward cascade 

nonlinear systems is also well-studied. The simplest example of a feedforward nonlinear 

system is a perturbed chain of integrators that can be stabilized using small nested saturations 

[11]. Then, more general classes of feedforward systems were either controlled using a 

nonlinear small-gain theorem [12] or construction of Lyapunov functions [13]. However, 

control of cascade nonlinear systems with nontriangular structures has proven to be rather 

problematic. This is due to a counterexample in [14] and existence of the peaking phenomenon 

[15]. Further, it turns out that if some coupling terms in the dynamics of cascade nonlinear 

systems satisfy appropriate growth conditions then it is possible to stabilize them using low-

gain or high-gain feedback laws [16], [17].  

1.2.3 Underactuated systems 

Underactuated mechanical systems are systems that have fewer control inputs than 

configuration variables. Underactuated systems appear in a broad range of applications 

including Robotics, Aerospace Systems, Marine Systems, Flexible Systems, Mobile Systems, 

and Locomotive Systems. The "under actuation" property of underactuated systems is due to 

the following four reasons: i) dynamics of the system (e.g. aircraft, spacecraft, helicopters, 

underwater vehicles, locomotive systems without wheels), ii) by design for reduction of the 

cost or some practical purposes (e.g. satellites with two thrusters and flexible-link robots), iii) 

actuator failure (e.g. in a surface vessel or aircraft), iv) imposed artificially to create complex 
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low-order nonlinear systems for the purpose of gaining insight in control of high-order 

underactuated systems (e.g. the Acrobot, the Pendubot, the Beam-and-Ball system, the Cart-

Pole system, the Rotating Pendulum, the TORA system). 

The main control methods applied to examples of inverted-pendulum type underactuated 

systems is based on swing-up of the pendulum from its downward position and then switching 

to a balancing controller that is designed using a linearization technique or gain scheduling to 

balance the pendulum [18]. This includes swing up control using energy-based methods [19] 

for the Acrobot (i.e. a two-link planar robot with an actuator at the elbow) [20], the Pendubot 

(i.e. a two-link planar robot with an actuator at the shoulder) [21], the cart-pole system [22] , a 

triple-link inverted pendulum [19], and the rotating pendulum [23]. The balancing controller 

for the Acrobot using spline functions can be found in [24]. Due to its complexity, the beam-

and-ball has been the focus of study among researchers with diverse interests. These methods 

include approximate feedback linearization methods by Hauser et al. [25], small nested 

saturations for stabilization of feedforward cascade nonlinear systems by Teel [11], and 

stabilization by output feedback as discussed in [26]. 

Moreover, stabilization of the beam-and-ball by construction of Lyapunov functions is 

addressed in [16]. Besides, global stabilization of the beam-and-ball system is achieved in [17]. 

Passivity-based method is mostly used for swing-up control design of underactuated systems 

with inverted-pendulums [19]. Moreover, a passivity-based approach was employed for a 

special example of a pendulum on a cart that was transformed to a cascade form [27]. The main 

drawback of these passivity-based methods is their narrow range of applications. In fact, it is 

identified that, no applications of energy-based methods in control of real-life underactuated 

systems in robotics, aerospace, and marine applications is known. 

The vertical take-off and landing (VTOL) aircraft is another example of an underactuated 

system that has been extensively used as a test-bed for different methods of trajectory tracking 

and configuration stabilization. This includes tracking for slightly non-minimum phase systems 

[28] and hybrid/switching based control methods [29]. Exponential stabilization of examples 

of underwater vehicles and surface vessels that are underactuated was achieved in [30] and [31] 

using appropriate coordinate transformations and analysis of a time-varying linear system. A 

similar type result for attitude control of an underactuated spacecraft is given in [32]. The role 

of second-order nonholonomic constrains in the necessity of the use of discontinuous 

stabilizing feedback laws for stabilization of underactuated systems is discussed in [33]. This 

is mainly based on the famous condition on stabilizability of nonlinear systems using time-

invariant continuously differentiable state feedbacks [34]. In addition to this issue, accessibility 
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of classes of underactuated mechanical systems has been recently addressed in [35]. This is 

based on a framework applied to analysis of controllability of nonholonomic systems [36] and 

a controllability theorem [37]. An example of a discontinuous stabilizing feedback for a system 

with an internal unactuated degree of freedom is given in [38]. 

Adaptive control [39] and sliding mode control techniques [40] have been also applied to 

underactuated mechanical systems for rather limited applications. Flexible-link robots are an 

important class of underactuated systems that are appropriate for space applications due to their 

lightweight and fast execution of commands. The Euler-Bernoulli model for a flexible arm is 

an infinite dimensional system [41]. A truncated modal analysis can be used to obtain a finite 

dimensional state-space model for flexible robots [41], [42]. Trajectory tracking for flexible 

robots is rather complicated and common measurements like the angle of rotation or the 

position of the tip, respectively, lead to a poor performance and non-minimum phase zero 

dynamics. In [43], a non-collocated minimum-phase output is proposed based on an analysis 

of the initial infinite dimensional model and then a finite-order compensator is designed for 

trajectory tracking. Here, a nonlinear non-collocated minimum-phase output for a flexible one-

link robot arm is obtained from a finite-order Euler-Lagrangian equations of the system. The 

method of controlled Lagrangians (i.e. applying a control input that preserves the Lagrangian 

structure of a mechanical system) has been applied to local stabilization of the cart-pole system 

and the rotating pendulum to an equilibrium manifold [44]. However, so far this method has 

been unable to stabilize the rotating pendulum or more general underactuated systems to an 

equilibrium point. In addition to more traditional methods, recently, hybrid and switching-

based control methods are finding their way in control of underactuated mechanical systems 

[44] and bipedal locomotion of walking robots [19]. In conclusion, apart from linearization-

based techniques, control of underactuated mechanical systems has been mainly along the line 

of stabilization. These include some special examples of cascade nonlinear systems and using 

energy-based methods combined with a supervisory-based switching control. The state-of-the-

art of research in control of underactuated systems is currently very far from our goal to find 

control design methods for broad classes of high-order underactuated systems that are effective 

for robotics and aerospace applications. 

1.3 MOTIVATION 

The description of highly nonlinear systems can be presented as an evolution of control systems 

from linear systems to nonlinear systems. Here, the questions regarding controllability, 
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observability, stabilization, and tracking for this system using state or output feedback has been 

quite well-understood for a long time. However, adding constraints or further specifications to 

the description of the system might make the control design for the system rather complicated. 

These complications mainly deal with the controllability with bounded control inputs, 

asymptotical stabilization of the system with any static or dynamic state feedback, and 

uncertainties in system parameters. None of these problems can be addressed as simple as the 

control problems for the original linear system. One can observe that minor deviations from 

the standard problem of stabilization of a linear time invariant (LTI) control system and 

additional constraints make the system rather complex.  

Further, the control design and analysis for systems with different types of nonlinearities led to 

absolute stability theory. An input- output stability approach or a frequency domain analysis 

are the dominant tools in dealing with slightly nonlinear systems. In the literature, this notion 

of feedback interconnection of a linear system and a nonlinearity was generalized to feedback 

of an LTI system and an uncertainty that has bounded gain. This led to the development of 

robust stability theory and integral quadratic constraints. Though, these methods are successful 

in dealing with linear systems, uncertain linear systems, and slightly nonlinear systems, they 

are not applicable to truly nonlinear systems that do not include any basic linear parts. In 

addition, the linearity of the output does not simplify analysis of the system due to the fact that 

time-evolution of the system follows a nonlinear law. Apart from the truly nonlinear systems, 

the cascade nonlinear systems arise in many control applications either naturally after some 

change of coordinates, or due to design of an output feedback or a dynamic state feedback. The 

most well-known results for cascade systems are related to nonlinear systems in triangular 

forms. Namely, nonlinear systems in strict feedback forms and feedforward forms. The 

backstepping procedure has proven to be successful for systems in strict feedback form. 

Besides, the control of feedforward cascade nonlinear systems is also well-studied. The 

simplest example of a feedforward nonlinear system is a perturbed chain of integrators that can 

be stabilized using small nested saturations. Then, more general classes of feedforward systems 

were either controlled using a nonlinear small-gain theorem or construction of Lyapunov 

functions. However, control of cascade nonlinear systems with nontriangular structures has 

proven to be rather problematic. This is due to the existence of the peaking phenomenon. 

Further, it turns out that if some coupling terms in the dynamics of cascade nonlinear systems 

satisfy appropriate growth conditions then it is possible to stabilize them using low-gain or 

high-gain feedback laws. 
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From the above observations it is identified that, apart from linearization-based techniques, 

control of underactuated mechanical systems has been mainly along the line of stabilization. 

These include some special examples of cascade nonlinear systems and using energy-based 

methods combined with a supervisory-based switching control. The state-of-the-art of research 

in control of nonlinear systems is currently very far from our goal to find control design 

methods for broad classes of that are effective for different robotic applications. These gaps 

can be highlighted as follows: 

• In many control applications, the response of the controller to sudden and transient 

variations in the behaviour of the system are merely addressed. 

• The collective effect of parametric, and random uncertainties on the sensitivity of the 

system operation is a major drawback in different linear and nonlinear controllers. 

• The effect of component and system failures on the operation of the conventional 

control approaches is not addressed deeply in the previous works.  

• The failure conditions in the nonlinear systems are mainly identified based on the 

threshold of different characteristics at the output of the system, and the effect of 

external disturbance, and classification of failures at various levels of the system is a 

major drawback.  

• The conventional control approaches lack in learning the system behavior for various 

operations it carries. This resulted in frequent tuning of the control actions for the 

system whenever there is a change in system operation. 

These drawbacks in the conventional control approaches especially while dealing with the 

nonlinear and underactuated systems motivated the development of different control strategies 

in this thesis. To discuss in brief, the wavelet fuzzy control and the evolving type 2 fuzzy 

control are developed to overcome the drawbacks of identifying sudden and transient variations 

in the system behaviour. These controllers learn the operating state of the system in an online 

mode and provides the corresponding control action from the precomputed and hypothetical 

control rules. Further, the probabilistic control algorithms are developed for handling the 

parametric and random uncertainties in the system operation. These algorithms are motivated 

at handling the uncertainties, improving the sensitivity of the system for various disturbances, 

and achieving efficient control action. Furthermore, the fault classification based 

reconfigurable control mechanisms are developed with a motivation to classify different failure 

conditions in a system and achieve suitable control action to compensate the failure mode. This 
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approach is developed in an offline mode and has advantages with accurate condition 

monitoring and fast identification of the faults. Finally, the reinforcement learning approaches 

are developed to learn the system behaviour while performing multiple tasks and adapt the 

necessary control action for any change in the system operation. All these control techniques 

are highly motivated at overcoming the drawbacks in the conventional control approaches 

mentioned earlier. 

1.4 OBJECTIVES 

The main focus in this research is on the control of two degree of freedom (2DoF) benchmark 

mechanical systems. This is motivated by broad applications of underactuated systems and 

theoretically challenging problems that they have to offer. The objectives of this research in 

achieving the control and stability of the benchmark systems is based on the defined motives 

for the research as follows: 

• Mathematical modelling of two degree of freedom (2DoF) ball balancer and 2DoF 

helicopter system. 

• Design, control and implementation of classical controlling techniques like 

proportional derivative, proportional integral derivative, and linear quadratic control, 

for 2DoF ball balancer and 2DoF helicopter system using Simulink. 

• Design, control and implementation of intelligent controlling techniques like fuzzy 

inference system, and adaptive neuro fuzzy inference system for 2DoF ball balancer 

and 2DoF helicopter system using Simulink. Further, develop wavelet fuzzy control, 

and evolving type 2 quantum fuzzy neural network for ball balancer and helicopter 

system. 

• Real-Time control of 2DoF ball balancer and helicopter system for defined intelligent 

and classical controller. 

• Validation and performance analysis of all types of control such as classical and 

intelligent controller for 2DoF ball balancer and helicopter system. Model the machine 

learning and reinforcement learning technique to validate the performance of ball 

balancer and helicopter system in the presence of various faults and operating 

conditions.   

• Formation of hybrid controllers like fuzzy-proportional integral derivative controller, 

linear quadratic regulator with fuzzy controller, neuro fuzzy controller, and 

implementation of optimization technique-based control for nonlinear systems. Design 
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of randomization and stochastic perturbation-based algorithms for uncertainties in 

nonlinear systems. 

1.5 METHODOLOGY OF THE RESEARCH WORK 

The main contribution in this research is to provide analytical tools that allows the translation 

and solves the tracking and balancing control problems of the benchmark robotic systems. To 

achieve this, initially, the mathematically modelling of both the systems are developed. 

Besides, the conventional control approaches associated with the modelling, operation, and 

control of these systems are analysed to formulate the problems and develop new control 

methods. Further, the following solutions are proposed to meet the control problem of a 

nonlinear, underactuated, and uncertain dynamics of the system: 

Solution I: Optimized intelligent control for 2DoF systems 

This solution develops an intelligent approach for ball balancer position control, and unmanned 

helicopter position tracking using wavelet transform based fuzzy controller and evolving type2 

quantum fuzzy neural network.  

• Wavelet Fuzzy Logic Controller 

The wavelet transform based fuzzy controller overcomes the drawbacks of transparent 

interpretation of choosing fuzzy rules with techniques available in the literature. Besides, the 

effect of parametric uncertainties on the operation of the controller and system are overcome 

by the signal processing abilities of the discrete wavelet transform. Further, the advantage of 

wavelet transforms while analysing the non-stationary signals provides an upper hand while 

developing a hybrid controller. 

• Evolving fuzzy based control system 

The evolving type-2 quantum fuzzy neural network is targeted at overcoming the drawbacks 

of conventional fuzzy systems and achieving path tracking with helicopter systems and position 

control for ball balancer system. The proposed approach overcomes the effects of parametric 

uncertainties in the benchmark nonlinear system with the help of a quantum rule growing 

scenario. Besides, the drawbacks of conventional control techniques with harmonic noises, and 

initializing weights for achieving trajectory tracking and position control are overcome by the 

automatic generation of the rules in a single pass learning mode.  

Solution II: Probabilistic algorithms for control of 2DoF systems 
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This solution provides a set of probabilistic control approaches with randomized algorithms 

and stochastic approximations for achieving trajectory tracking and position control 

respectively under parametric uncertainty conditions.  

• Randomized Algorithms  

The randomized algorithms are defined as an optimization technique where the actual system 

uncertainties initiate the randomization process while the deterministic decision parameters 

remain unconsidered. Usually, this randomness is generated in a system due to the involvement 

of stochastic uncertainties which produce various results for same input at different runs. This 

indicates a probabilistic property which defines the system as probably approximately correct 

(PAC). This approach is adapted to design a control algorithm with reference to randomization 

for gain matrix calculation and for closed-loop system analysis involving the unmanned 

helicopter for path tracking operation. 

• Simultaneous perturbation and stochastic approximation 

The simultaneous perturbation stochastic approximation (SPSA) algorithm is used for efficient 

estimation of unknown vectors based on small measurements for application with signal 

identification and adaptive control. Generally, the SPSA works on selected coefficients with 

two observations which generate estimations recursively in random directions at each iteration. 

Initially, the SPSA algorithms perturbs the current design parameter in random directions and 

measures the objective function of each observation. The measured observation is used to 

estimate the unknown vector which updates a new design parameter until the termination 

criterion is achieved. This provides an opportunity for achieving better convergence towards 

optimal solution for updating the design parameter. The motivation for using SPSA for 

adaptive control of a system with unknown but bounded disturbances is due to its easy to 

implement searching algorithm especially for the real-time control applications. Furthermore, 

the SPSA has advantages due to its iterative process which implies the idea of online learning 

with adaptability of new data and memory saving. The algorithm remains operational while 

accommodating the growing dimension of the estimated parameters and is resistant to arbitrary 

external noise at the point of input data. Besides, it exhibits less computation time due to small 

number of measurements and is capable of solving high dimensional optimization problems. 

The proposed approach is aimed at achieving a finite bound of residual between estimates and 

time-varying unknown parameters when observations are made under an unknown but bounded 

noise. This provides an intuitive tuning method for the PID controller, and achieves balancing 
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control for the closed loop ball balancer system by updating the adaptive parameters in real-

time. 

Solution III: Fault classification-based reconfigurable control for 2DoF Systems 

In this solution, a fault classification based reconfigurable control approach motivated at the 

operation of the benchmark systems by overcoming the failure modes in their components is 

developed. Initially, a fault classification-based controller capable of identifying the faults in 

the helicopter system is developed. This approach is based upon the previously trained data to 

achieve optimal performance by combining the classified output with an intelligent controller. 

The proposed approach adopts wavelet transforms and support vector data descriptor for 

efficient classification of the operating state of the helicopter. Further, the classified fault data 

is combined with the proposed neural integrated fuzzy controller to achieve the efficient 

operation of the helicopter in attitude and trajectory tracking. 

Similarly, the variation in operating characteristics of the ball balancer system for different 

faults and operating conditions in time and frequency domain are identified with support vector 

machines. Initially, these characteristics are processed with the help of discrete wavelet 

transform to extract various features in the signal and train them with a supervised machine 

learning technique to develop a fault classifier. The developed fault classifier continuously 

monitors the operating state of the vehicle and provides necessary information to the controller 

to achieve steady state operation. The controller operation here is achieved with the help of a 

wavelet fuzzy controller. 

Solution IV: Reinforcement learning with 2DoF systems 

This chapter establishes a useful baseline for trajectory tracking and balancing control with 

most fundamental problems in optimal control theory. The model free controllers are developed 

in linear and nonlinear environment using generalized learning algorithms, policy iteration (PI) 

and value iteration (VI). The PI and VI are implemented using various iterative and adaptive 

algorithms for solving the optimal control problem without a system model. To assess the 

performance of the developed model free controllers, real-time analysis is performed using 

benchmark control problems.  

• Learning algorithm-based linear model free control 

The learning algorithm learns the optimal function and control policy, based on the temporal 

difference error of value and policy iterations.  The policy iterations are used while stabilizing 

the control policy and the value iterations are used without stabilizing the control policy. The 
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main advantage with policy and value iteration is that, they work forward in time and are mostly 

suitable for real-time control. 

• Learning algorithm-based nonlinear model free control 

To approximate the optimal value of nonlinear affine discrete time system, the neural network 

approach is adapted as a generalized actor critic architecture for learning the optimal policy 

and optimal learning function. Further, to achieve model free operation of the neural network, 

an additional network is added which provides the information of the systems inner dynamics 

to the neural network. This process is known as interleaved learning process. 

1.6 CONCLUSION 

This chapter summarizes some of the correlated issues regarding the control of a nonlinear 

systems. Though, the control of nonlinear system is very well studied, there is very little known 

about control of underactuated systems with higher order constraints and uncertainties. In fact, 

based on the background, existing challenges, and motivation, the control of general nonlinear 

is currently considered as a major open problem. In this chapter, problems associated with 

control of nonlinear systems in the presence of constraints, uncertainties, and failure modes are 

defined. Further, a brief overview of the solutions provided to overcome these drawbacks are 

identified. This thesis comprises the contributions of methodology on intelligent control, 

randomised approaches, fault classification based reconfigurable control, and reinforcement 

learning methods for the nonlinear systems. 

1.7 OUTLINE 

This thesis is outlined as follows: 

Chapter 1 (this chapter) introduces the control of nonlinear and underactuated systems, along 

with the basics of nonlinear control theory. 

Chapter 2 provides a detailed idea of problem formulation in benchmark nonlinear systems 

with 2DoF helicopter and 2DoF ball balancer system. Initially, the mathematically modelling 

of both the systems are developed. Further, a detailed literature on linear quadratic regulator 

(LQR), proportional integral derivative (PID), sliding mode controller (SMC), model 

predictive controller (MPC), H-infinity controller, neural network controller, fuzzy systems, 

randomized algorithms, fault tolerant controllers, and other hybrid algorithms are identified for 
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both the helicopter and ball balancer systems. Furthermore, the neural integrated fuzzy 

inference system (NiF) approach is developed to analyse the operation, and control of the 

benchmark robotic systems for formulating the problems and developing new control methods.   

Chapter 3 develops two optimal intelligent approaches for ball balancer position control, and 

unmanned helicopter position tracking using wavelet transform based fuzzy controller and 

evolving type2 quantum fuzzy neural network.  

Chapter 4 analyses the parametric uncertainties in the helicopter and ball balancer systems by 

developing a set of probabilistic control approaches with randomized algorithms and stochastic 

approximations. 

Chapter 5 develops a fault classification based reconfigurable control approach motivated at 

the operation of the benchmark systems by overcoming the failure modes in their components. 

The wavelet transform approach is used to achieve data preparation for developing the fault 

classifier using machine learning algorithms. Further, intelligent control techniques are 

developed to achieve the reconfigurable control. 

Chapter 6 establishes a useful baseline for trajectory tracking of helicopter system by 

reinforcement learning based linear quadratic control, and balancing control of ball balancer 

system with reinforcement learning based neural network control. Both the approaches are 

dependent on the reinforcement learning to train with different trajectories for tracking and 

position control.   

Chapter 7 provides the concluding remarks for all the approaches and identifies the state 

possible directions of future research. 
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Chapter 2. LITERATURE REVIEW 

The control of autonomous robots to perform complex tasks in dynamic environments has been 

a crucial area of control. Most of these control aspects are directly related to position control, 

path planning, trajectory tracking and balancing control of vehicles, etc. This chapter provides 

a summary of the most fundamental and recent advances on the theories and methodologies for 

achieving the control aspects of two benchmark robotic systems. Initially, the trajectory 

tracking and attitude control are identified on a two degree of freedom (2DoF) helicopter model 

(twin rotor multi-input multi-output system), and later the position tracking and balancing 

control is observed with a 2DoF ball balancer system. Conventionally, a detailed overview of 

different position tracking and balancing control strategies was provided in [45], [46]. These 

state-of-the-art solutions followed two main approaches. The first one is referred to as cross-

coupling control [47]–[49], where the control loops of all machine axes are considered 

simultaneously, and the control objective is expressed as a contour-error regulation problem 

[50], [51]. In the second approach, called individual axis control, where each axis is handled 

separately. Here, the effects of the dynamics of other axes are treated as disturbances, and the 

control design reduces to that of individual axes [52]. Both the approached relied on adjusting 

either the operating parameters (pitch and yaw movement, plate angle, etc.) [53], [54]  or 

achieving position tracking [55], [56], such that the difference between measured and desired 

paths are sufficiently small and certain constraints are satisfied. Further, it is identified that 

both the approaches are dependent on each other while developing the control action. 

Moreover, while dealing with the individual axis control, apart from few exceptions (varying-

gain, intelligent, and stochastic approach-based control that accounts for unknown noises, and 

fault-tolerant controllers), the majority of nonlinear control techniques for the 2DoF systems 

do not utilize parameter estimation in the system dynamics. This could be overcome by 

adapting the use of nonlinear and adaptive control algorithms in individual axis control 

architectures because the problem of nonlinear position control for flexible axis is well 

explored. Indeed, several relevant studies that employ techniques from nonlinear control 

theory, have been reported in the literature regarding the position and balancing control. A 

detailed overview of these techniques for achieving different control aspects is discussed in 

further sections. 
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2.1 MODELLING OF 2 DOF HELICOPTER 

The helicopter test rig designed by Quanser [57] is used for replicating the behaviour of an 

unmanned helicopter in 2DoF motion. The main components of the test rig are actuator sensors, 

Q2-USB data acquisition (DAQ) card [58], and the power amplifier (VoltPAQ-X2) [59]. Two 

DC motors are used as yaw motor for actuating the back propeller and pitch motor for rotating 

the front propeller. The yaw motor is a Faulhaber series 2842 − 006𝐶 motor with 1.6 𝑜ℎ𝑚𝑠 

terminal resistance, and 0.0109 𝑁.𝑚/𝐴 torque constant [58]. Similarly, the pitch motor is a 

Pittman model 9234 with 0.83 𝑜ℎ𝑚𝑠 electrical resistance and 0.0182 𝑁.𝑚/𝐴 torque constant 

[60]. These motors are operated at a rated voltage of 12𝑉, 3𝐴 for pitch normal operation and 

12𝑉, 1𝐴 for yaw normal operation, and can be extended up to a peak voltage of ±24 𝑉, 5 𝐴 

for pitch and ±15 𝑉, 3𝐴 for yaw without damaging the motor. Further, the pitch and yaw 

propellers are mounted to the aluminium propelled shield and the motor shaft. The pitch 

propeller is a Graupner 20 𝑐𝑚 with a thrust force constant of 0.104 𝑁/𝑉, and the yaw propeller 

is a Graupner 15 𝑐𝑚 with a thrust force constant of 0.43 𝑁/𝑉  [57]. To measure the angular 

position of pitch and yaw angle, two encoders are used. The pitch encoder has a resolution of 

4096 counts per revolution, whereas the yaw encoder has a resolution of 8192 counts per 

revolution when operated in quadrature mode. This gives the effective position resolution of 

pitch and yaw axis which is about 0.0879 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 and 0.0439 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 respectively. These 

pitch and yaw encoders are directly connected with the DAQ board to provide necessary 

position feedback to control the helicopter. Further, the controller developed is interconnected 

with the test rig by performing data exchange between the simulated models and the helicopter 

setup. This is achieved by building the C code through the MATLAB and Quanser software. 

The developed C code is dumped into the hardware in the loop-application programming 

interface available with the VoltPAQ-X2 through immediate I/O which helps in controlling the 

test rig. The experimental setup of the Quanser 2DoF helicopter system used in this research is 

shown in Figure 2.1. 
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Figure 2.1. Experimental setup of a helicopter system [57] 

2.1.1 Mathematical Modelling 

To observe the operation and controllability, the main and tail rotors of the helicopter are 

modeled as shown in Figure 2.2.  

 

Figure 2.2. Free body diagram of 2DoF helicopter model with main and tail rotor [61] 

The main rotor generates the vertical thrust, enabling the model to pitch around the horizontal 

𝑋 and 𝑍 axes, and the tail rotor generates horizontal thrust, enabling the model to yaw around 

the vertical 𝑌 axis. These twin-rotor DC motors are operated by voltage input which returns 

torque 𝜏1 for main rotor and torque 𝜏2 for the tail rotor. These rotors are operated by voltage 

inputs which return torque 𝜏1 for main rotor and torque 𝜏2 for the tail rotor. To demonstrate the 

couplings between various subsystems of the helicopter system, a block diagram is 

demonstrated in Figure 2.3. The dotted lines indicate the cross-coupling between the two planes 

and the outputs of the mechanics block depict the pitch 𝜓 and yaw 𝜑 angles for both the vertical 
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and horizontal planes, respectively. Further, the mathematical modeling of the setup can be 

explained based on DC motor modeling considering the main and tail rotors, and mechanics 

modeling considering the horizontal and vertical planes. Conventionally, many researchers 

have well established the mathematical modeling for pitch and yaw rotor of the helicopter 

system. Hence, this research mainly focused on understanding the operation of pitch and yaw 

motors and evaluating them to ensure the desired control objective.  

 

Figure 2.3. Block diagram of couplings in the twin-rotor helicopter system [62] 

Since the twin-rotor, DC motors are operated by voltage inputs 𝑢1 and 𝑢2 which returns torque 

𝜏1 and 𝜏2 for main and tail rotors respectively, the mechanical and electrical characteristics of 

the motors can be approximated [63]–[66] with the differential equations as follows: 

A. For the main rotor and vertical movement: 

𝑑

𝑑𝑡
𝜓 = 𝜓̇          (2.1) 

𝑑

𝑑𝑡
𝜓̇ =

𝑎1

𝐼1
𝜏1
2 +

𝑏1

𝐼1
𝜏1 −

𝑀𝑔

𝐼1
𝑠𝑖𝑛𝜓̇ +

0.0326

2𝐼1
sin(2𝜓) (𝜑̇)2 −

𝐵1𝜓

𝐼1
𝜓̇ −

𝑘𝑔𝑦

𝐼1
𝑎1 cos(𝜓) 𝜑̇𝜏1

2 −

𝑘𝑔𝑦

𝐼1
𝑏1 cos(𝜓) 𝜑̇𝜏1         (2.2) 

𝑑

𝑑𝑡
𝜏1 = −

𝑇𝑚1

𝑇𝑚2
𝜏1 +

𝑘1

𝑇𝑚2
𝑢1        (2.3) 

B. For tail rotor and horizontal movement: 

𝑑

𝑑𝑡
𝜑 = 𝜑̇          (2.4) 

𝑑

𝑑𝑡
𝜑̇ =

𝑎2

𝐼2
𝜏2
2 +

𝑏2

𝐼2
𝜏2 −

𝐵1𝜑

𝐼2
𝜑̇ −

1.75

𝐼2
𝑘𝑐𝑎1𝜏1

2 −
1.75

𝐼2
𝑘𝑐𝑏1𝜏1    (2.5) 

𝑑

𝑑𝑡
𝜏2 = −

𝑇𝑡1

𝑇𝑡2
𝜏2 +

𝑘2

𝑇𝑡2
𝑢2        (2.6) 
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Where, 𝑎1, 𝑎2, 𝑏1, 𝑏2 are the static characteristics parameters, 𝐼1 and 𝐼2 are the moment of inertia 

of main and tail rotor, 𝑀𝑔 is the gravity momentum, 𝐵1𝜓 and 𝐵1𝜑 are friction momentum 

function parameters for main and tail motors, 𝑇𝑚1, 𝑇𝑚2, 𝑇𝑡1, 𝑇𝑡2 are denominator parameters for 

main and tail motors, 𝑘1 and 𝑘2 are the motor gains for main and tail rotors respectively, and 

𝑘𝑐 is the cross-reaction momentum gain. 

Now, the modeling of the helicopter can be expressed as a continuous-time linear system, 

which is given by: 

𝑥 ̇ = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

          (2.7) 

where 𝑥 ∈ 𝑅6 = [𝜓 𝜓̇ 𝜑 𝜑̇ 𝜏1 𝜏2]
𝑇 corresponds to the states, 𝑢 ∈ 𝑅2 = [

𝑢1
𝑢2
] is the 

control input, and 𝑦 ∈ 𝑅2 = [
𝜓
𝜑
] is the measured output. 

Further, the matrices 𝐴, 𝐵, 𝐶, and 𝐷 can be estimated by linearizing equations (2.1-2.6) as: 

𝐴 =

[
 
 
 
 
 
 
 
 
0 1 0 0 0 0

−
𝑀𝑔

𝐼1
−
𝐵1𝜓

𝐼1
0 0

𝑏1

𝐼1
0

0 0 0 1 0 0

0 0 0 −
𝐵1𝜓

𝐼2
−1.75𝑘𝑐

𝑏1

𝐼2
 

𝑏2

𝐼2

0 0 0 0 −
𝑇𝑚1

𝑇𝑚2
0

0 0 0 0 0 −
𝑇𝑡1

𝑇𝑡2]
 
 
 
 
 
 
 
 

, 𝐵 =

[
 
 
 
 
 
 
0 0
0 0
0 0
0 0
𝑘1

𝑇𝑚2
0

0
𝑘2

𝑇𝑡2]
 
 
 
 
 
 

, 𝐶 =

[
1 0 0 0 0 0
0 1 0 0 0 0

], 𝐷 = [
0 0
0 0

]  

To determine the relationship between input and output variables, a relative gain analysis is 

performed [67] which reveals a low interaction between the inputs and outputs of the vertical 

and horizontal systems. Hence, the differential equations are approximated to the states 

involved to achieve the corresponding outputs. 

C. For Pitch Model: 

Let 𝑢2 = 0, then the pitch variables 𝜓, 𝜓̇, and 𝜏1 can be represented into the state space as: 

 
𝑑

𝑑𝑡
𝜓 = 𝜓̇          (2.8) 
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𝑑

𝑑𝑡
𝜓̇ =

𝑎1

𝐼1
𝜏1
2 +

𝑏1

𝐼1
𝜏1 −

𝑀𝑔

𝐼1
𝑠𝑖𝑛𝜓̇ −

𝐵1𝜓

𝐼1
𝜓̇      (2.9) 

𝑑

𝑑𝑡
𝜏1 = −

𝑇𝑚1

𝑇𝑚2
𝜏1 +

𝑘1

𝑇𝑚2
𝑢1        (2.10) 

𝑥 = [

𝜓

𝜓̇
𝜏1

], 𝑢 = [
𝑢1
0
], 𝑦 = [𝜓] 

D. For Yaw Model: 

Let 𝑢1 = 0, then the yaw variables 𝜑, 𝜑̇, and 𝜏2 can be represented into the state space as: 

𝑑

𝑑𝑡
𝜑 = 𝜑̇          (2.11) 

𝑑

𝑑𝑡
𝜑̇ =

𝑎2

𝐼2
𝜏2
2 +

𝑏2

𝐼2
𝜏2 −

𝐵1𝜑

𝐼2
𝜑̇        (2.12) 

𝑑

𝑑𝑡
𝜏2 = −

𝑇𝑡1

𝑇𝑡2
𝜏2 +

𝑘2

𝑇𝑡2
𝑢2        (2.13) 

𝑥 = [

𝜑
𝜑̇
𝜏2
], 𝑢 = [

0
𝑢2
], 𝑦 = [𝜑] 

This representation of approximated state-space results in a linearized model and helps in 

formulating the control objective. 

2.1.2 Problem Formulation 

The trajectory tracking and attitude control are the main objectives while dealing with the 

closed-loop control of the 2DoF helicopter system. The closed-loop control of the pitch and 

yaw motor is developed as follows: 

A. Control of Pitch Subsystem: 

Considering the linearized pitch model in (2.8) -(2.10), the parameterized balance point 

concerning its input 𝑢1 = 𝑈1 is indicated as: 

𝜓 = Ψ(𝑈1) = arcsin [
𝑘1

𝑀𝑔𝑇𝑚1
(
𝑎1𝑘1

𝑇𝑚1
𝑈1
2 + 𝑏1𝑈1)]     (2.14) 

𝜓̇ = 0           (2.15) 
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𝜏1 = Τ1(𝑈1) =
𝑘1

𝑇𝑚1
         (2.16) 

Hence, the parameters of the linearized pitch model are given by: 

𝐴𝑃 =

[
 
 
 

0 1 0

−
𝑀𝑔

𝐼1
𝑐𝑜𝑠Ψ(𝑈1) −

𝐵1𝜓

𝐼1

2𝑎1

𝐼1
Τ1(𝑈1) +

𝑏1

𝐼1

0 0 −
𝑇𝑚1

𝑇𝑚2 ]
 
 
 
, 𝐵𝑃 = [

0
0
𝑘1

𝑇𝑚2

], 𝐶𝑃 = [1 0 0], 𝐷𝑃 = 0 

           (2.17) 

Let −
𝑀𝑔

𝐼1
𝑐𝑜𝑠Ψ(𝑈1) = 𝛼, −

𝐵1𝜓

𝐼1
= 𝛽, 

2𝑎1

𝐼1
Τ1(𝑈1) +

𝑏1

𝐼1
= 𝛾, −

𝑇𝑚1

𝑇𝑚2
= 𝜃, and 

𝑘1

𝑇𝑚2
= 𝛿 

Then, the model in (2.17) can be further expressed as: 

𝐺𝑈1(𝑠) =
𝛿𝛾

𝑠3−𝑠2(𝛽+𝜃)+𝑠(𝜃𝛽−𝛼)+𝜃𝛼
       (2.18) 

B. Control of Yaw Subsystem 

Considering the linearized yaw model in (2.11) -(2.13), the parameterized balance point 

concerning its input 𝑢2 = 𝑈2 is indicated as: 

𝜑 = Φ(𝑈2) = 0         (2.19) 

𝜑̇ = 0           (2.20) 

𝜏2 = Τ2(𝑈2) =
𝑘2

𝑇20
𝑈2         (2.21) 

Hence, the parameters of the linearized yaw model are given by: 

𝐴𝑌

[
 
 
 
0 1 0

0 −
𝐵1𝜑

𝐼2
(
2𝑎2

𝐼2
) (

𝑘2

𝑇𝑡1
𝑈2) +

𝑏2

𝐼2

0 0 −
𝑇𝑡1

𝑇𝑡2 ]
 
 
 

, 𝐵𝑌 = [

0
0
𝑘2

𝑇𝑡2

], 𝐶𝑌 = [1 0 0], 𝐷𝑌 = 0  (2.22) 

Let −
𝐵1𝜑

𝐼2
= 𝜁, (

2𝑎2

𝐼2
) (

𝑘2

𝑇𝑡1
𝑈2) +

𝑏2

𝐼2
= 𝜂, −

𝑇𝑡1

𝑇𝑡2
= 𝜆, and 

𝑘2

𝑇𝑡2
= 𝜌 

Then, the model in (22) can be further expressed as: 

𝐺𝑈2(𝑠) =
𝜌𝜂

𝑠3−𝑠2(𝜁+𝜆)+𝑠(𝜁𝜆)
        (2.23) 
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The generalized closed-loop representation for pitch and yaw motor control in a 2DoF 

helicopter is shown in Figure 2.4. 

 

Figure 2.4. Generalized closed-loop control of pitch and yaw motors of a 2DoF helicopter 

System 

2.2 REVIEW OF CONTROL TECHNIQUES FOR 2DOF HELICOPTER SYSTEM 

Considering the above-discussed control problem, the first step towards achieving a stable and 

reliable operation of the helicopter is to develop a controller for following a predefined 

trajectory [68]. Various controllers developed in the literature for achieving these operations 

are discussed as follows: 

Linear Quadratic Regulator: Linear quadratic regulator (LQR) is based on the receding 

horizon concept such that future outputs are predicted at every time step to minimize a global 

cost function [69]. For a helicopter system, the LQR control is developed linearization process 

[70] which provides a complete interpolation between a pair of operating points. But the 

limitations of the linearization model, when subjected to system stability, as it only guarantees 

the local asymptotic stability makes it incompetent for the system. 

 Further, LQR with an integrator has been considered to get optimum tracking of the helicopter 

[71]. This performed effectively to parametric uncertainties but limited robustness against 

unstructured uncertainty. Besides, in [72], and [73], the authors developed a linear quadratic 

gaussian (LQG) controller which results in a constant gain for a model with uncertainty, 

 pitch controller

Pitch 

Actuator
Pitch 

Integrator

Measured Pitch Position

2DOF 

Helicopter

Yaw 

ActuatorYaw 

Integrator

Measured Yaw Position

α

φ

Vmpi  

Vmya

+

+

+

+

-

-

Forward 

Control

 yaw controller
+

+

+

CASE.1.Without 

Integrator

CASE.2. With Integrator

Desired Yaw 

Position(φd)

Desired Pitch 

Position(αd)



23 

 

making it robust. But the problem while allocating the covariance matrices, which are intuitive 

and directly depend on the weighting functions, before optimizing the gains makes it difficult 

to rely on the controller. 

Back-Stepping Controller: The back-stepping approach presents a systematic method for 

designing a control system to stabilize a reference signal, by selecting an appropriate Lyapunov 

function. The design of the backstepping controller for helicopter systems [74] is progressed 

in the literature by developing a dual boundary conditional integral backstepping controller 

[75], and an integral backstepping controller [76]. This is achieved by deriving reference 

attitude angles to control the position, and by defining final inputs to the connect position and 

the attitude dynamics. Although backstepping control results in good dynamic performance, 

but its recursive design and repeated differentiation, limits its merits by increasing the system 

complexity and making it difficult to apply for multiple states controlling [77]. 

Proportional–Integral–Derivative controller: Proportional–Integral–Derivative (PID) 

controllers are implemented primarily to hold measured process value at a setpoint, or desired 

value. This is achieved by tuning the gains of PID controllers for adjusting the reactions to the 

setpoint changes and unmeasured disturbances such that the variability of control error is 

minimized. These tuning objectives are often conflicting, and engineers must balance the 

importance of the objectives based on cost, i.e. solve an optimization problem. In the control 

of helicopter systems, rotor controlling is achieved by auto-tuning of PID based on fractional-

order reference model [78]. Further, a cross-coupled PID is designed for tracking purposes 

[79]. It is observed that the PID control of high order systems however often leads to 

oscillations resulting in slower settling times [80]–[82]. Apart from the above, the attitude 

stabilization of quadrotor UAVs has been done by the PID controller [83]. The PID is enough 

to stabilize the aero vehicle but the limitation lies in the need of converting the multi-rotor 

system into to linearized model and the hypothesis regarding linearizing point becomes 

necessary in this situation. The PID is restricted to control around a fixed set point and unable 

to work efficiently when the system is highly nonlinear.  

Sliding Mode Controllers (SMCs): Sliding-mode methods were first introduced in [84] and 

were elaborated through specific controller and observer architectures in [85]. The basic 

principle in designs with sliding modes is the use of high-theoretically infinite-frequency 

switching terms in the control signals. The resulting control laws are discontinuous and apart 

from robust disturbance rejection, they can provide finite-time stabilization and tracking of a 
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reference signal, under certain disturbance boundedness conditions. Conventionally, the sliding 

mode control has been widely used with exceptional advantages such as invariance, precise 

path following, negligible vibrations, good precision, and excellent robustness even in the 

presence of variable load conditions. In [86], the authors developed a sliding mode control for 

trajectory tracking of UAVs. Besides, various SMC controlling techniques have been proposed 

for TRMS such as disturbance observer-based controller [87], [88], adaptive second-order 

sliding mode controller (ASMC) [89], [90], multivariable integral sliding mode [64] and 

terminal sliding mode controller [91], [92]. It is identified that terminal SMC provides 

excellence in reducing the turbulence on the other side of ASMC [87], [89] robust to 

disturbances but with satisfactory tracking capabilities and indulgence of the integral term in 

SMC improves trajectory tracking but stayed with residual error [64]. In another approach, 

parametric uncertainties and model error are dealt with sliding mode controller (SMC) for 

position control of 3 DoF helicopter [93] and gives asymptotic stability only. But when the 

SMC is combined with a backstepping controller, the fast convergence and global stability can 

be achieved simultaneously in the presence of uncertainties [94]. Apart from the above, basic 

sliding mode control (SMC) techniques were adapted for fault diagnosis, isolation, and control 

[95]. Further, the SMC has been advanced with a composite nonlinear feedback method where 

external disturbances cause the actuator saturation of helicopter [96]. 

From the above literature, the chattering problem of SMCs is a considered as a harmful 

phenomenon as it leads to low control accuracy, high wear of moving mechanical parts, and 

high heat losses in power circuits [97]. This is the most common phenomenon in SMCs, and it 

is difficult to attenuate and becomes unavoidable when subjected to discontinuous control. 

Model Predictive Control: Model Predictive Controller (MPC) makes use of a process model 

to obtain the control action by minimizing an objective function. This is based on the explicit 

use of a system model to predict the process output at a future time instant (horizon). Further, 

it calculates the control sequence minimizing an objective function by adapting a receding 

strategy. Here, at each instant, the horizon is displaced towards the future, which involves the 

application of the first control signal of the sequence at each step. The development of MPC 

for helicopter systems is discussed in [98], [99]. In [28], constrained output feedback based 

MPC approach is developed for TRMS by considering the state variables observed using an 

unscented Kalman filter. The approach adopted a nonlinear dynamic model of the system, 

which is developed by considering all possible effective elements of the system. Further, the 
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elements were adaptively linearized along the prediction horizon using a state-dependent state-

space representation. In other work, a model predictive control (MPC) uses online optimization 

within a predicted framework while taking advantage of the receding horizon with soft 

constraint [100] to provide an exact path tracking problem. In [29], a stable model predictive 

control approach is developed for constrained highly nonlinear TRMS. This research also 

adapted the same modeling technique mentioned in [28]. Besides, the MPC is developed for 

control of various helicopter applications in [101]–[103]. From the literature, it is identified 

that the disadvantage of MPC lies in its complex algorithm that needs a longer time than the 

other controller. Another major disadvantage of MPC is the model updating scheme which is 

dependent on the computational cost if the model is updated too frequently. To alleviate this 

disadvantage, one may try to decrease the model updating frequency, but this will deteriorate 

the system’s stability rapidly [104]. 

H-infinity Controller: The H-infinity (𝐻∞) control method is adapted in attitude control 

systems to reduce oscillations and regulate the rotational moments in the presence of 

unmodeled dynamics and parametric uncertainties [105]. This controller requires all the 

bounded functions of the system that are analytic in the right-half complex plane to define the 

weighting function. Further, the weighting functions are varied concerning plant real-time 

performance during attitude control [106] to achieve the desired and accurate model/state 

information of the system. In [107], the 𝐻2/𝐻∞ control is developed for the purpose of 

balancing and trajectory tracking of UAVs in the presence of disturbances and with very less 

response time. In [108], the H-infinity observer is developed to protect the TRMS from partial 

and complete failure that arises due to actuator and sensor faults. But the inability of the 𝐻2/𝐻∞ 

control technique to define weighting functions and its dependency on the trial-and-error 

method makes it an unpredictable control procedure. 

Neural Network Controllers: The use of neural networks for solving highly nonlinear control 

problems is widely seen in the literature [109]–[111]. The operation of neural networks 

involves many simple and similar processing elements at its inputs and outputs of its structure. 

The processing elements have internal parameters called weights which help in altering the 

behaviour of the whole network to achieve optimal output for the controller and its plant. 

Considering this advantage, various neural network-based control and estimation approaches 

for TRMS are discussed in [112], [113]. In [114], nonlinear flight control of the 2DoF 

helicopter using NN is developed using a backpropagation, feed-forward NN model. In [115], 
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an indirect adaptive neural network framework is chosen for developing an adaptive neural 

network controller for a simulated helicopter system. The controller is developed based on 

three interconnected neural networks called the observer, actor, and critic. The actor and critic 

networks rely on the observer network responsible for state estimation. In [116], a robust 

adaptive neural network (NN) control for helicopter systems using the implicit function 

theorem (IFT) and the mean value theorem (MVT) is developed for handling nonlinear 

nonaffine systems. This paper focused on single-input single-output (SISO) helicopter systems, 

which are exemplified by certain single-channel modes of operation, such as vertical flight and 

pitch regulation, and also by special conditions under which the multiple channels become 

decoupled.  

Fuzzy Systems: Fuzzy logic has evolved as one of the emerging information processing 

technologies, especially from the last few years. Rapid growth has been witnessed in the 

number and variety of applications of fuzzy logic. In [117], the input uncertainties of quadrotor 

UAVs are dealt using a fuzzy controller which minimizes the system error based on the inputs 

and the antecedent fuzzy sets of non-singleton fuzzy logic controllers (FLCs). This identified 

that the fuzzy logic controllers have robust performance due to the knowledge-based design. 

Besides, the mathematical model of the plant is not required and the controller can directly deal 

with all possible uncertainties [118]–[120]. In [121], and [122] the intelligent adaptive fuzzy 

controllers are developed to track the output of the multi-input multi-output system by 

approximating the error between actuator and sensor measurements during external 

disturbances. Further, the type 1 FLCs (T1FLC) are adapted in various fields, but their inability 

to perform while dealing with higher-order uncertainties is considered as a major drawback 

[123], [124]. In another kind, the type 2 FLCs (T2FLC) are more powerful and can cope up 

with higher-order uncertainties. Also, the increasing fuzzy sets have improved the degree of 

freedom for T2FLC to handle uncertainties conveniently [125], [126]. But the type reduction 

scenario made the general T2FLCs computationally intensive [127]–[129].  

Moreover, the advancements in artificial neural networks have widely improved the abilities 

of T2FLC due to their inherent learning ability and uniform approximation of nonlinear 

systems [130]–[132]. This resulted in the development of interval type 2 fuzzy neural networks 

(IT2FNN). The evolution of IT2FNN has been widely adopted in the field of control especially 

for path tracking problems in UAVs [133], [134]. But their drawbacks while calculating the 

correlation matrix burdens the computation process [135]. Besides, the drawbacks of 

https://www.sciencedirect.com/topics/neuroscience/neural-networks
https://www.sciencedirect.com/topics/neuroscience/neural-networks
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conventional membership functions and inadequacy to adapt to change in inputs raised the 

demand for innovation in the field of computation intelligence [136].  

Hybrid Controllers: Besides the different linear, nonlinear, and intelligent control strategies 

for different systems, the hybridization of controllers is widely discussed in the literature 

[137]–[139]. These techniques combined the advantages of two or more controllers to 

overcome the individual drawbacks of each controller. The use of optimization techniques like 

a genetic algorithm (GA) and particle swarm optimization (PSO) algorithms along with the 

non-linear controllers has been depicted in [140] and [141]. GA based PID has been designed 

to modify control parameters with performance index as a fitness function [80] [142] [143] and 

an augmented control scheme comprising robust PID-based deadbeat control [81]. Here the 

control parameters of PID are modified to avoid the tuning problem and give a precise value 

of control gain [143]. In [144], an assessment of various conventional control methods and 

intelligent control methods dependent on fuzzy logic and GA were implemented on the TRMS. 

Further in [145] SMC, hybridization through fuzzy has been carried out and compared with 

fuzzy sliding and fuzzy integral sliding controller. In [146], the fuzzy LQR controller is 

distributed parallelly for individual axis control of the system. Similarly, the gradient descent 

algorithm has been used in designing of the robust adaptive fuzzy controller (RAFC) [147]. 

The Lyapunov theory-based stability analysis for both the cases in [146] and [147] has 

identified that the LQR integration of fuzzy gives an asymptotical response to the system output 

while RAFC guaranteed complete close loop stability for TRMS. Further, Huaman et.al [148] 

explained the elimination of the chattering from the SMC when augmented by a fuzzy 

controller while achieving trajectory tracking for a quadrotor. Besides, the fuzzy-sliding hybrid 

controller[149], adaptive sliding [150], LMI based observer[151], the fuzzy controller using 

non-monotonic Lyapunov function [152] have been designed in the existence of disturbances 

and uncertainty in the helicopter to improve the performance. 

Randomized Algorithms: Advanced control techniques which depended upon randomization 

and probabilistic control are implemented in the literature to deal with parametric uncertainties 

and achieve the stability and performance requirements of nonlinear systems. For that matter, 

literature in [153]–[156] has been considered. Initially, these methods assumed that the 

parametric uncertainty affects the probabilistic nature of the system, and then a performance 

level has been provided to check its ability. Further, the mathematical model required to design 

these algorithm-based controls is obtained by numerical linearization of the full order nonlinear 
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system [157]. Since the explicit relationship between the state-space matrices and the uncertain 

parameters should be available all the time, the linearization process subjected to repetition at 

the time of variation in the uncertain parameters. These randomization-based control 

algorithms take less computational time and easy to implement [153] and at the same time 

robust boundary conditions are less conservative but at the cost of probability risk failure. This 

approach is not limited to control engineering but also explores the general engineering design, 

robust optimization where the environment directly affected by the uncertainty. Other than the 

analysis of the system, the probabilistic methodology reveals its maximum capacity concerning 

control frameworks.  

Besides, the controllers discussed above, many different controllers are adapted in the literature 

for modeling, estimation, and achieving tracking and balancing control for nonlinear systems. 

A quasi-linear parametric varying for modeling, identification, and control of the TRMS 

system is developed in [158]. In [159]–[161], the disturbance rejection controllers were 

developed for achieving turbulence compensation in small scale helicopters. In [162], various 

data-driven control techniques based on model-free adaptive control, model-free control, and 

virtual reference feedback tuning are developed for twin rotor aerodynamic systems. In [163], 

an adaptive controller is developed for asymptotical trajectory tracking with the help of gain 

scheduling techniques [164]. Lyapunov’s direct method [165], and Lyapunov’s function-based 

control [166] are developed for achieving trajectory tracking for helicopter systems. These 

techniques are capable of tracking path using image-based visual servo and integral barrier. 

This method ensures that the closed-loop stability is achieved without solving an ordinary 

differential equation. In [167] Tugrul et al. proposed a variance constrained method for defining 

the active and passive rotor morphing for helicopter blade motion control. Here, the 

optimization problem minimizes the control energy of the system.  As the blade modeling is 

considered with the flight dynamics, it is quite complex and time-consuming to define the exact 

bound variance. The major problem with the output variance constrained control is the variance 

inequality.  

Fault-based control: Apart from tracking and balancing control, and dealing with parametric 

uncertainties in the system, the fault-tolerant and fault detection-based control techniques are 

also available in the literature. These techniques are generally classified depending on their 

passive or active responses by fixed or reorganizable control methods [168]. The passive 

techniques are grounded exclusively on the use of robust and steady control, where possible 
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faults are treated as unknown signals (external disturbances) acting on the system dynamics. 

This can be identified with the idea of reliable control [169]. Generally, passive techniques do 

not require either on-line fault statistics from the fault-diagnosis technique or control 

reconfiguration [170], [171]. Several passive fault recognition and control techniques have 

been established based on robust control theories, e.g., multi-objective optimization, 

quantitative feedback theory method, H-infinity optimization, absolute stability theory, 

nonlinear regulation theory, etc. More details regarding these techniques can be obtained from 

[172], [173]. Since a passive technique system uses a controller designed off-line, based on the 

certain knowledge of the faults, it can handle very limited fault scenarios. 

Unlike passive systems, active techniques provide a system with fault-tolerant capability by 

equipping it with a mechanism to diagnose the faults. This helps the controller to choose the 

essential corrective action to uphold acceptable post-fault closed-loop performance. In the 

absence of faults, a baseline controller is used to ensure good stability and tracking 

performances. They also make usage of the supervision level data and reconfigure the 

controller to achieve the mandatory corrective actions. Compared with passive techniques, 

active techniques are applicable for a broader range of areas and thus has been a major concern 

[173][174]. Recently, several interesting fault detection and control approaches have been 

developed and verified using the sliding mode method for on-line control allocation to achieve 

robust performance [175], [176]. The virtual actuator approach is studied extensively for linear 

time-invariant systems [177]. It has been extended to a range of the nonlinear system, e.g., 

linear parameter varying systems [178], T-S fuzzy systems [179], piecewise affine systems 

[180], and Lipschitz nonlinear systems [181]. Many works have been published on fault 

estimation-based fault-tolerant control systems through state observers [90], unknown input 

observers [182], moving horizon estimation [183], and usage of quantized measurements for 

sliding mode observer synthesis of Markovian jump systems [184]. Fault-tolerant control is 

applied using linear parameter-varying models to adjust the plant failure to the minimal control 

rather than self-repair according to the fault that occurred [185]. 

The capability of a system to tolerate faults through control design, using either passive or 

active approaches, is essentially a structural property of the system itself. A system with 

insufficient redundancy cannot be made successfully tolerant to fault irrespective of the control 

approach used. Therefore, a tool is needed to check the fault-tolerance capability before 

designing the controller. The concept of control reconfigurability was first developed by [186] 
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for linear time-invariant systems. Later, the concept of coverage of fault-tolerant control was 

developed in [187] for analyzing the reliability of the controller. These two concepts have been 

further developed and used by many researchers as analysis and design tools for fault-tolerant 

control systems. The concept of control reconfigurability has been extended to bilinear systems 

by [188] and switched systems by [189]. Huang et al. [190] proposed a fault-tolerant placement 

strategy for phasor measurement units based on control reconfigurability. Yang et al. [191] 

studied the fault recoverability and fault-tolerant control for interconnected nonlinear systems. 

A comprehensive review of fault detection methods can be found in [192], [193]. Smith et al. 

examined the vibration data of the helicopter components and classified the faults accordingly 

using principal component analysis (PCA) [194]. The drawbacks with PCA is that it is difficult 

to evaluate the covariance matrix accurately and it also fails to capture the simplest invariance 

unless the information is explicitly provided to the training data [195]. Besides, the 

dimensionality reduction of PCA fails to reproduce the original behavior of the signal during 

the testing process due to the loss of information. Camerini et al. developed a vibration-based 

automated procedure using support vector data description to detect bearing and drive train 

faults of a helicopter [196]. The research adopted a one-class classification, which is solely 

developed for monitoring a particular fault in the system. The adapted algorithm generally 

requires a large number of samples and is resistant to training data. It also fails to represent the 

complete density distribution of the training and testing data. Further work for helicopter 

gearbox monitoring has been done using analog neural networks [197] and signal processing 

techniques including self-adaptive noise cancellation (SANC), discrete-random separation 

(DRS), cepstrum editing, kurtogram, envelope analysis and iterative envelope cancellation 

[198]. A detailed survey of fault tolerant control and fault detection, isolation and recovery for 

helicopter system during faults and various methods to increase the safety and reliability of the 

system are discussed in [199]. The above discussed fault classification, identification and 

detection techniques has major disadvantages with learning and modelling nonlinear complex 

systems which is very important for developing a fault classification algorithm. In addition, 

their demerits due to restrictions on input variables, heteroscedasticity, and low efficiency 

during testing process, identified the need to develop a new classification approach for the fault 

classification of helicopter systems. 

Besides, the performance of the helicopter is also affected when a fault occurs during real-time 

operation and makes the system unstable. So, to provide consistency,  and achieve operational 

safety for the helicopter operation, localization of fault and development of fault-tolerant 
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controllers became an essential and structural property [200]. Further, to control the failures in 

higher-order flight control actuators, a decentralized fault-tolerant control system has been 

designed in [201]. The partial and complete failure that arises from the actuator and sensor fault 

is assisted by the H-infinity observer in  [202]. Besides, with the advancement of sensor 

technology, the measurement the fault detection and isolation became more feasible [203]. But 

the action of external disturbances created huge errors from the measurements of sensor and 

actuator output and remains as a major concern. Some of these concerns were approximated 

by intelligent adaptive controllers [204]. A comprehensive review of fault detection methods 

can be found in [193].  

Apart from the widely available classifiers in the literature, the true structure of the fault data 

is observed to be hard for developing a complete model [205]. This resulted in ignoring the 

delicate details of the data. To overcome this and improve classification performance, a 

combination of classifiers is suggested by many researchers [206]. But these methods proved 

to be costly and lacked redundancy while dealing with delicate data and unknown faults.  

2.3 MODELLING OF 2DOF BALL BALANCER SYSTEMS 

The 2DoF ball balancer system comprises of a quadrangular metallic plate, fixed at the center 

through a gimble joint. The gimble joint has a two degree of rotational freedom to tilt in 2-

dimensional direction, x, and y-axis. A Faulhaber DC micromotor series 2338 motor [207] 

along with a potentiometer and tachometer is used for balancing the system in both the 

directions. The main objective of the system is to balance the ball without falling off the 

quadrangular metallic plate. The experimental setup of the 2DoF ball balancer as per the 

specifications developed by Quanser [208] is depicted by Figure 2.5. To explain the working 

of the setup, a workflow diagram is depicted in Figure 2.6. To begin with, a control signal 

related to the disposition of the plate is extracted and sustained to the data acquisition (DAQ) 

– Q2USB [208] board to observe the movement of the ball concerning voltage.  As soon as the 

signal is attained, it is sent to the controller, and its coordinates are captured through the camera 

and combined, and the output is forwarded to amplify the power using amplifier through the 

DAQ for further alteration. Finally, the output is processed to the hardware.  
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Figure 2.5. Laboratory setup of ball balancer system [208] 

    

Figure 2.6. Typical wiring diagram between different components of Quanser 2DoF ball 

balancer system [208] 

2.3.1 Mathematical Modelling of Ball Balancer Setup 

The typical representation of a ball and plate system is given in Figure 2.7(a). This is an 

underactuated system with access to four degrees of freedom (DoF) controlled by two 

actuators. Hence its operation is referred to as a 2DoF ball balancer. The other parts of the 

system consist of a digital camera that captures the images of X and Y coordinates for the ball 

movement on the plate. Further, a vision algorithm computes and reads the ball coordinates 

from the image and provides information to the controller [209] for adjusting the angle of the 

plate through the X and Y servo motors to make the ball track the time-varying reference. As 

the operation of the 2DoF ball balancer is dependent on the control of two rotary servo base 
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units and the arrangement of the plate is symmetrical to these servo devices, it is anticipated 

that both the device dynamics are same. Hence the 2DoF ball balancer can be modeled as two 

decoupled ball and beam systems [210]. The dynamics among the subsequent angle of the 

motor load gear 𝛽𝑙(𝑠) and motor input voltage 𝑉𝑚(𝑠) of SRV02-ET base unit are depicted by 

the transfer function 𝑊𝑠(𝑠). The ratio of dynamics of the ball position 𝐴(𝑠) to the load gear 

angle 𝛽𝑙(𝑠) is depicted with 𝑊𝑠𝑠(𝑠). Since the ball balancer coordinates have similar servo 

dynamics, the modelling of control through X direction is presented in this research. The X-

axis control of ball and plate system is presented in Figure 2.7(b). 

 

(a) A typical representation of ball and plate system  

 

(b) X-axis control of ball and plate system 

Figure 2.7. Schematic of 2DoF ball balancer system [211] 

The nonlinear motion of the 2DoF ball balancer is obtained from Qunaser 2DoF ball balancer 

model [66] as follows: 
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𝐴̈(𝑡) =
2𝑀𝑏𝑎𝑙𝑙𝑔𝛽𝑙𝑅𝑎𝑟𝑚𝑅𝑏𝑎𝑙𝑙

2

𝐿𝑝(𝑀𝑏𝑎𝑙𝑙𝑅𝑏𝑎𝑙𝑙
2 +𝑗𝑏𝑎𝑙𝑙)

        (2.24) 

𝛽̈𝑙(𝑡) =
(𝐾𝑚𝑢(𝑡)−𝛽̇(𝑡))

𝜏
         (2.25) 

where 𝑀𝑏𝑎𝑙𝑙 is the mass of the ball, 𝑗𝑏𝑎𝑙𝑙 is the moment of inertia of the ball, 𝑅𝑏𝑎𝑙𝑙 is the radius 

of the ball, 𝑅𝑎𝑟𝑚 is the distance between the servo motor and output gear shaft, 𝑔 is 

gravitational constant, 𝐿𝑝 is the length of the plate, 𝐾𝑚 is the motor speed constant and 𝜏 is the 

time constant of the motor. Detailed modeling of the 2DoF ball balancer system is discussed 

by the authors in their previous work [212]. 

For an input 𝛽𝑙 and output 𝐴, the transfer function for ball position control can be formulated 

as: 

𝑊𝑠𝑠(𝑠) =
𝐴(𝑠)

𝛽𝑙(𝑠)
=

𝐾𝑏

𝑠2
         (2.26) 

where, 𝐾𝑏 =
2𝑀𝑏𝑎𝑙𝑙𝑔𝛽𝑙𝑅𝑎𝑟𝑚𝑅𝑏𝑎𝑙𝑙

2

𝐿𝑝(𝑀𝑏𝑎𝑙𝑙𝑅𝑏𝑎𝑙𝑙
2 +𝑗𝑏𝑎𝑙𝑙)

. 

Further, the transfer function of the servo motor controlling the plate angle is given by: 

𝑊𝑠(𝑠) =
𝛽𝑙(𝑠)

𝑉𝑚(𝑠)
=

𝐾𝑔

𝑠(𝜏𝑠+1)
        (2.27) 

where, 𝐾𝑔 is the static gain.  

The overall transfer function of the cascaded connection between the servo motor and ball 

balancer module is given by: 

𝑊(𝑠) = 𝑊𝑠𝑠(𝑠)𝑊𝑠(𝑠) =
𝛽𝑙(𝑠)

𝑉𝑚(𝑠)
=

𝐾𝑔

𝑠3(𝜏𝑠+1)
      (2.28) 

The model parameters, 𝐾𝑔 and 𝜏 , of the servo unit under no load and in the high-gear 

configuration are 𝐾 = 1.53 𝑟𝑎𝑑/(𝑠) and 𝜏 = 0.0248 𝑠. 

Thus, representing the system in a state-space variable is given by: 
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[
 
 
 
 
𝐴̇(𝑡)

𝐴̈(𝑡)

𝛽̇𝑙(𝑡)

𝛽̈𝑙(𝑡)]
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0 1 0 0
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0 0 0 1

0 0 0 −
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+
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0
0
0
𝐾𝑚

𝜏 ]
 
 
 

𝑢(𝑡)     (2.29) 

2.3.2 Problem Formulation 

The open-loop block diagram of the 2DoF ball balancer is represented as a decoupled model 

where x-axis servo doesn’t affect the response of the y-axis as depicted in Figure 2.8.  

 

(a) x-axis servo  

 

(b) y-axis servo 

 

 (c) one dimensional representation 

Figure 2.8. Open-loop block diagram of 2DoF ball balancer system [208] 

Considering this, the controlling model for the x-axis of the SRV02 integrated with the ball 

balancer system is illustrated in Figure 2.9. The ball balancer block diagram explains the 

controlling in two loops. The first one for the SRV02 motor model and the second one is the 

1D ball balancer. The inner loop describes the SRV02 controller (𝑍𝑏(𝑠)) for position control 

of D.C. series motor and estimates the needed voltage to track the desired angle of the ball.  

 

Figure 2.9. General closed-loop block diagram for ball balancer system [208] 
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For any given controller, the difference between the desired position and real-time position of 

the ball in the ball balancer model defines the input for the controller. As per the system 

specification, the plate dimensions are 27.5cm length X 27.5cm width. These dimensions 

restrict the freedom of movement for the ball within a length of 13.75cm considering the ball 

is to be positioned at the center of the plate. But this length makes the ball move to the corners 

of the plate, and the target of the research is to stabilize the ball in the center. So, a range of 0-

6.875 cm has been taken to restrict the ball movement in the middle of the plate, and a reference 

of 3 cm has been chosen to keep the ball closer to the plate center. Hence, a 0.08 Hz square 

wave of amplitude 3 is considered as input for the system [66], [213].  The monitoring for the 

inner loop is done by controlling the SRV02 position by providing a proportional motor gain 

(KPG-14), and for outer loop control, the external controllers can be designed.  

2.4 REVIEW OF CONTROL TECHNIQUES FOR 2DOF BALL BALANCER SYSTEMS 

The above-discussed problem formulation for the position and balancing control identifies the 

approximation of underactuated nonlinear systems through automatic decision development 

and intelligent control methods [1]. This is an issue that appears in many problems [2] and can 

be tackled through various approaches. Further, the diversity and complexity of the ball 

balancer system have led researchers in the field to analyze the action of various linear, 

nonlinear, model-free, passivity, and intelligent controllers. These controllers are focussed at 

achieving self-balancing control and steady-state operation for various systems as follows: 

Linear Quadratic Regulator: The LQR problem is developed based on a dynamical system 

where the equation of state evolution is described as a linear function. This linear function 

depends on the current state and input of the system which is subjected to quadratic cost. The 

objective of the controller is to minimize the cost function of system variables. For ball and 

plate system control, an alternative synthesis methodology has been designed using repetitive 

and resonant controllers where energy minimization depends on linear quadratic regulator 

(LQR) theory [214]. The LQR control delivers simplicity in the programming and guarantees 

that the system converges to the origin asymptotically while following the desired trajectory 

[215]. Further, the motion planning methods using LQR and the discrete model predictive 

controller has been suggested for a ball-plate Mecanum robot system [216]. The infinite 

horizon discounted LQR [217] defines non-asymptotic bounds but this increases the sample 

complexity when compared to other model-free and model-based methods. The major 

drawback of LQR is that it requests a good knowledge about the state of the system which is 
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not feasible every time. Such as, when the noise is considered in the system, the transition of 

states becomes difficult due to deterministic assumption made for the transition of other states.  

Back-Stepping Controller: The back-stepping controller conducts a recursive procedure with 

the help of a Lyapunov function and follows a systematic design method for various nonlinear 

systems. The work by Kazim et. al represents a trajectory tracking control for ball and plate 

systems using robust backstepping control. The controller rejects bounded uncertainties with 

unknown periodicity [218]. It can guarantee global stability and improvement of tracking and 

transient performances. The limitation of the conventional backstepping controller is that it can 

apply only when the state model is in strict feedback form [219]. To avoid this problem, the 

backstepping controller is designed by combining it with 𝐻∞ tracking controller while dealing 

with external disturbances for a ball and plate system and shows the asymptotic closed-loop 

stability [220]. Some other control methods like adaptive fuzzy [221] or neural networks [222] 

have been combined with backstepping to solve this model inaccuracy problem. However, 

these methods require knowing full-state output information. 

Proportional–Integral–Derivative controller: There are numerous control strategies available 

in the literature for achieving self-balancing control with balancer systems but the PID 

controller is widely adapted in practical engineering applications. The proportional integral 

derivative (PID) controller which is nonlinear has been considered for one-to-one control of 

the ball on the plate system in classical control [223]. The reaction of PID is upgraded, when 

structured dependent on generalized Kalman-Yanukovych-Popov lemma (GKYPL) strategy, 

and contrasted a typical PID concerning the relentless state reaction [11]. The major advantages 

with the PID controller are its simple structure, high reliability, and good stability. But the key 

drawback while dealing with traditional PID controllers is their problem with parameter tuning. 

There are many techniques available in the literature to achieve the tuning of PID parameters. 

These techniques involve various intelligent techniques [12], self-tuning algorithms [13], 

genetic[227], and evolutionary algorithms [228]. 

The limitation of PID comes into the scenario when the system is subjected to parametric 

uncertainty and external disturbances. In practical application [16], [17], PID handles the 

uncertainty in a wide manner but limited to handle only constant parametric uncertainty and 

required an accurate system model for implementation purposes.  
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Sliding Mode Controllers: The sliding mode control is one of the most effective control 

methodologies in dealing with a large class of uncertain systems. The controller consists of a 

high-frequency switching term that completely compensates matched perturbation and 

provides both finite-time convergence and insensitivity concerning matched 

uncertainties/disturbances [231]. The sliding mode controller has been designed for achieving 

self-balancing control of the ball and plate system using the Stewart platform with rotary 

actuators [232]. An extension of sliding mode termed as an interpolating sliding mode observer 

is designed for balancing the system [233]. This observer incorporates multiple linear observers 

through interpolation of multiple estimates, which is treated as a type of adaptation. Besides, a 

fractional-order sliding mode controller (FOSMC) is applied to the problem of trajectory 

control of the ball while maintaining the non-linearity of the system to keep the minimum 

deviation between the simulated model and the actual system [234]. To achieve robustness 

while controlling, the sliding mode approach is considered as a reasonable solution [235]. But 

the switching surface behavior and chattering problem of the sliding mode controller makes it 

insensitive to external disturbances and parametric variations. The literature to overcome the 

chattering phenomenon of conventional SMC with enhanced efficiency has been widely 

discussed [236]-[237]. In [236] a memory-based sliding surface is proposed which is consists 

of not only the current state but also the delayed state. It is different from the conventional 

memoryless sliding surface, as here both robust and adaptive fuzzy sliding mode controllers 

solve the problem of switching surfaces and make the closed-loop control system 

asymptotically stable. With the improvement in sliding mode controller, it provides finite-time 

stability of the closed-loop system, but it is limited to the continuous-time system and may not 

apply for the discrete-time system.  

Model Predictive Control: The model predictive control algorithms are based on numerically 

solving of an optimization problem at each step, constrained optimization, and receding 

horizon control. In the MPC approach, the current control action is computed on-line rather 

than using a pre-computed, off-line, control law. The future state of the system is predicted 

with the help of MPC and generated control vector. The cost function is minimized for the 

vector over a predicted horizon during the constraint existence. System input is applied at any 

instant of time after generating the computed control vector and the rest of the value is 

discarded due to its inability to find the solution of violating input and output constraints. The 

model predictive controllers were also widely employed with ball balancer systems because of 

their advantages with time-varying reference [25]. The dynamic trajectory planning and control 



39 

 

for ball motion on the plate have been done using MPC which tracks periodic references and 

secure the system stability [239]. This method ensures that the closed-loop system converges 

asymptotically to the optimal admissible periodic trajectory while promising constraint 

satisfaction. In [238], model predictive control has been implemented on a  limited-

performance microcontroller and then applied on tracking control problem using a  laboratory-

built ball-and-plate system. In this method, MPC solves the quadratic programming problem 

as it creates difficulties in implementing MPC. To solve QP, the author converts quadratic 

structure into an equivalent nonnegative least-squares problem and develop the solver in a C-

program. The separation of the offline calculation from the online process diminishes the 

calculation time. Further, to handle the uncertainty of accurate bounds the H∞ combined with 

model predictive controller (MPC) and ensured the closed-loop performance under the explicit 

control law of MPC. The generated control law focuses on enhancing the utilization of given 

constraints with the help of the optimization of the receding horizon. This will improve the 

closed-loop disturbance attenuation level and is optimized towards the lower bound given by 

unconstrained H∞ control. The problem with this technique is that here MPC optimizes the H∞ 

performances for predefined trajectory but ignores the previous or history states to achieve 

closed-loop stability. This problem is explained by Hong Chen [240], as past states to define 

H∞ performance is finite. However, the drawback with these predictive controllers is the need 

for an accurate dynamic model, which implies high computational cost and considered 

uncertainties make the problem difficult to solve.  

H-infinity Controller: The H-infinity controller is a robust control method which is a part of 

control theory that deals with improbability in its approach to controller design. Robust control 

methods are designed to function in such a manner that the system parameter remains within 

some standard limits. These methods attempt to achieve robust performance or stability in the 

occurrence of bounded modeling errors. The controller is designed to minimize the worst-case 

effect of the disturbance on the output/error signal as measured by the L2 norm of the signals.  

In the modern control approach, H∞/H2 controllers have been designed to deal with 

uncertainty. These controllers are robust under the assumption that the uncertainties are norm-

bounded, and designed for the worst-case scenario [241]. The H∞/H2controllers are 

responsible to provide guaranteed stability but within the bounds due to the modeling error 

[242] or filtering error [243]. Testing the uncertainties within these bounds is unacceptable for 

various real-world applications [155], even if the problems are solvable. Further to find 
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accurate bounds for the uncertainties to be allowed in the system, a constraint handling based 

controller has been designed [244] for linear systems.  

Neural Network Controllers: The use of neural networks for solving highly nonlinear control 

problems is widely seen in the literature [245]-[246]. The operation of neural networks involves 

many simple and similar processing elements at its inputs and outputs of its structure. The 

processing elements have internal parameters called weights which help in altering the 

behavior of the whole network to achieve optimal output for the controller and its plant. For 

balancing purposes, a recurrent  neural  network is designed in such manner that input for the 

controller is differences of the ball’s consecutive positions[247]. The weights of the network 

are updated by node decoupled extended Kalman filter (NDEKF) algorithm. In another work, 

for ball and beam system feedforward neural network is designed with feedback linearization 

in [248]. The method ensures the exponentially global uniform ultimate bounded stability and 

rejects the disturbance without using any learning algorithms. Further hybridization of neural 

with the fuzzy controller has been done by the various researcher for balancing problems. The 

neural network with fuzzy has been proposed for nonlinear dynamic ball balancing on beam in 

[249]. An indirect adaptive control strategy is presented using hierarchical fuzzy CMAC 

neuronal networks [250]. The CMAC is an auto-associative feed-forward memory artificial 

neural network, which guarantees the stability by theoretical analysis and assures that all 

signals are bounded. The serious drawback with most neuro-fuzzy methods is that they do often 

furnish rules without a transparent interpretation. Because of this difficulty, they have not yet 

reached widespread acceptance in industrial applications, despite the good performance they 

offer with a reduced design effort. 

Fuzzy Logic Systems: Fuzzy control delivers a proper approach for demonstrating, controlling, 

and employing heuristic knowledge of humans to control any system. The main elements of 

the fuzzy controller are rule-base, inference mechanism, fuzzification interface, and 

defuzzification interface. Fundamentally, the fuzzy controller act as an artificial decision-

maker that works in a closed-loop system of real-time problem. It gathers plant output data 

y(t), compares it to the reference input r(t), and then decides what the plant input u(t) should 

be to ensure that the performance objectives will be met. A fuzzy controller with online learning 

control has been demonstrated to an open-loop unstable system [251] of the ball and plate 

system. The FLC learns from a conventional PD controller with a known tuning parameter. 

The extension of the controller has been done for online tuning of the fuzzy rule base. The rule 
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base of the proposed online fuzzy controller is empty at the start and as time goes by, the rules 

are generated and the rule -base is compiled. 

Besides, the self-balancing control, trajectory tracking and ball position control of the ball and 

plate system were achieved by various intelligent and hybrid controllers such as fuzzy [252]-

[253], fuzzy cerebellar model articulation controller [250], and particle swarm optimization 

based fuzzy-neural controller [254]. In another approach, the supervisory fuzzy controller has 

been proposed based on a single input rule module and visual servo control for trajectory 

tracking and motion control of the ball on the plate [255]. Another hybrid controller has been 

designed with a sliding mode controller tuned by the supervisory fuzzy for position control 

[236]. 

For the study on the multivariable and complex B&P system, a touchscreen, and a rotary 

pneumatic cylinder are used as a replacement for of a camera and step motor, correspondingly 

and controlling has been carried on fuzzy & state observer [253]. Fuzzy visual control of the 

Mamdani-type model has been applied to control the movement of a ball on the plate [256]. 

The problem with fuzzy control is to find proper fuzzification, de-fuzzification method, and 

fuzzy rules. So, neuro-fuzzy identifiers are proposed to solve this problem [257]. Complexed 

and metacognitive valued neuro-fuzzy systems are designed and studied over different control 

problems [258]. 

 Neuro-fuzzy system application has been reviewed in the student modeling system, unknown 

nonlinear system, electrical and electronics system, traffic control, image processing, and 

feature extraction, NFS enhancements and social sciences, technical diagnostics, and 

measurement [259]–[262]. A neural network with fuzzy has been proposed for nonlinear 

dynamic ball balancing on beam [247], [263]. Further, the cost control problem of the T-S 

fuzzy system is resolved by the type-2 fuzzy neural controller for the uncertain stochastic 

system. In this, a learning model has been designed based on type-2 fuzzy neural networks 

theory for the ball-beam system [264]. The robust stability of the closed-loop system is definite 

by the Lyapunov theorem, and all error signals are uniformly ultimately bounded. The major 

challenge to these intelligent techniques is the translation of the information contained 

implicitly in a collection of data points into linguistically interpretable rules. Conventionally, 

the neuro-fuzzy methods have been developed to overcome this issue.  
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Hybrid Controllers: The hybrid control techniques combined the advantages of two or more 

controllers to overcome the individual drawbacks of each controller. There are many 

techniques available in the literature to achieve the tuning of PID parameters and able to 

generate hybrid control action. The various optimization techniques like a genetic algorithm 

(GA), particle swarm optimization (PSO), and shuffled frog leaping algorithm (SFLA) 

algorithms along with the linear, non-linear controllers have been represented in [265]–[267]. 

In [268], a GPSO ( gaussian particle swarm optimization) is employed to dynamically perform 

nonlinear constraint optimization problem of ball and plate system. The GPSO is combined 

with NMPC (nonlinear model predictive control) through Taylor expansion and solve a 

quadratic programming problem with unknown parameters. In another work, the on-line 

training of the PIDNN controller has been done using improved  differential evolution particle 

swarm optimization (DEPSO)  algorithm for trajectory tracking of the ball and plate system 

[269]. The PSO algorithm is improvised using a DEPSO to train the weighting factors of the 

multi-layered feedforward neural network. In another approach, a hybrid GA based PIDNN 

controller has been designed where the weighting factor of multi-layered feedforward neural 

network is trained by the genetic algorithm [270]. For optimization of trajectory tracking of the 

ball on the plate, the genetic algorithm is hybridized with fuzzy [271]. The output membership 

functions of the fuzzy planning controller are optimized using a genetic algorithm. However, 

these techniques are focused on saving the better generations resulting in local optimum rather 

than the global optima. Further, the problems due to weight adjustment of the intelligent 

controllers, low memory, premature convergence, weak local search, and high computational 

efforts for genetic and other evolutionary algorithms has resulted in the need for an optimal 

multi-objective approach for solving combinatorial optimization problems [272], [273].   

Randomized Algorithms: The randomized algorithm uses a source of pseudo-random numbers 

with the input data to check the behavior of output data with different probability [274], [275]. 

Due to randomness in the behavior of the input side, the output will vary every time for the 

same input. As the random variable is involved at the initial stage so, even for a fixed input the 

algorithm will give different outputs every time. The desired output for the system will depend 

on the random choices neither input distribution nor on running time. To assess the system 

robustness the main concern is to deal with the maximum amount of uncertainty that a system 

can handle or tolerate, and a randomized algorithm is the best solution to this problem due to 

the involvement of uncertain random variables. 
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Further to deal with probabilistic constraints with random uncertainty, it is typically not 

possible to prevent failure in all possible cases. So, a simultaneous perturbation stochastic 

approximation (SPSA) algorithm which recursively generates estimates along random 

directions has been designed to deal with random uncertainty [276]–[279]. Conventionally, the 

stochastic approximation methods were used for statistical computations and later emerged as 

a separate field of control theory [280]. In the initial stage, these methods were proven for the 

minimization of stationary functionals [281]. Later, the drawbacks of the gradient and newton 

methods while dealing with time-varying functionals due to the known bounds of the Hessian 

matrix two times differentiable functionals resulted in the development of stochastic 

approximation algorithms [282]. But the issue of constant step size in stochastic approximation 

limited their applications to time-varying systems and tracking problems [280].  

In general, linear controllers offer a simple way of designing closed-loop control for balancing 

systems. Various linear controllers were available in the literature to solve the difficulties in 

balancing systems [283]–[285]. But the complicated nonlinear dynamics of underactuated 

systems affect the capability of providing a plausible solution and limits the generalized 

applications of control laws. These controllers face various drawbacks during the early stage 

of their development such as heavy effect on the speed of system response. To solve this 

problem various nonlinear techniques have been explored by researchers [286], [287].  For ball 

and beam system control passivity-based nonlinear controller has been designed [235] where 

the aim is to passivate the system with a storage function, which has a minimum at the desired 

balance point. This has a disadvantage with differential feedback as it cannot amplify the 

measurement noises. The ball can be positioned around a fixed plate area by controlling the 

motors in the electrical system. This control operation is performed by developing a feedback 

controller. Conventionally, exchanging controllers is developed depending on the non-straight 

examination of the ball and plate framework [288]. Simultaneously, depending upon the 

Lyapunov dependability hypothesis, the back-venturing controllers were developed to 

accomplish an explicit control law and achieved the control execution rapidly [289]. An 

inventive disturbance observer utilizing ADRC (Adaptive Disturbance Rejection Control) 

strategy is intended to maintain a strategic distance from destructive grating consequences for 

the plate for adjusting the ball [290]. Further, disturbance rejection controllers [291] and 

metaheuristic optimization algorithms [292] were illustrated on the ball and plate. Besides, the 

position of the ball can likewise be controlled through a machine vision framework. The picture 

handling algorithms for the same framework was linked and implemented on an FPGA (field-
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programmable gate array) appliance to encounter continuous requirements of the real-world 

[293]. B&P demonstrated by the computer-generated laboratory utilizing 3D java re-enactment 

pursues the predefined direction for the ball and accomplished point to point controllability 

[294]. The full state feedback input linearizing control law was built up and could control 

divergent rapports and additionally link among the co-ordinate axis [295] systems to achieve 

desired tracking performance. 

Fault-based control: Various fault-tolerant control techniques such as adaptive linear 

parameter varying [296], network-based filter [297], and parametric linear quadratic regulator 

[298], etc. have been implemented for achieving self-balancing control. In [297], an observer-

based fault detection filter is developed considering network models, along with a controller 

coordinated design. These network-based models are developed by subjecting the system to 

actuator faults and wave-induced disturbances. Further, Wang et al. [299] developed an event-

triggered fault detection filter considering the network environment. A similar framework of 

faults, as discussed in [297] were introduced to develop a residual model, and an integral-based 

event is introduced to save communication resources. Apart from the network-based models, 

intelligent collision avoidance maneuvers were studied by Campbell et al. [300]. The research 

identified the challenges posed by unmanned marine vehicles for achieving conformance with 

the navigation rules during marine traffic and automatic obstacle avoidance. A comprehensive 

review of fault detection using machine learning classifiers for unmanned vehicles can be found 

in [193]. From the widely available classifiers and developed fault classification mechanisms, 

it is observed that very delicate details of the data are neglected while classifying the fault. To 

overcome this and improve classification performance, the combination of classifiers is 

suggested by many researchers [206]. But these methods proved to be costly and lacked while 

dealing with delicate data and unknown faults. 

2.5 INTELLIGENT CONTROL OF 2DOF SYSTEMS 

In this section, the neural integrated fuzzy controller is considered as a baseline for analyzing 

the behavior of the system and to develop various optimal and hybrid control strategies. 

2.5.1 Neural-integrated-fuzzy controller 

A fuzzy inference system is a fuzzy model that maps inputs to outputs based on the concepts 

of fuzzy set theory, fuzzy if-then rules and fuzzy reasoning. While FIS systems have been 
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widely popular due to their use in numerous real-world control applications, they rely on two 

important factors, i.e. knowledge acquisition and human expertise which often pose a 

limitation. On the other hand, artificial neural networks provide a learning ability to systems 

by making them more adaptive. A neural integrated fuzzy (NiF) control combines the 

advantages of fuzzy inference system (FIS) and artificial neural networks into one single hybrid 

system. Conventionally, the fuzzy logic for the single axis control of robotic systems was 

achieved by designing the rules for the uncoupled motion between different actuator systems. 

Generally, the fuzzy inference schemes are divided into two models, Mamdani [301] and TSK 

(Takagi-Sugeno-Kang) [302]. In a Mamdani model, the fuzzy rules are synthesized by 

developing a set of linguistic control rules that are obtained from the multiple test conditions 

and experiences of human operators. Moreover, in the TSK-type fuzzy system, the consequent 

of each rule are the functions of input linguistic variables. Hence, the general adopted function 

of TSK-fuzzy can be interpreted as a linear combination of input variables and a constant term. 

This phenomenon of fuzzy is adapted in this research to develop the NiF controller. An initial 

fuzzy model along with its inputs are derived with the help of rules extracted from the input 

output data of the system that is being modelled are given as 

𝑅𝑢𝑙𝑒 𝑞: if 𝑥1(𝑡) is 𝐴𝑞1, … , and 𝑥𝑛(𝑡) is 𝐴𝑞𝑛 then 𝑦̂(𝑡 + 1) = 𝑏𝑞 + ∑ 𝑎𝑞𝑟𝑥𝑟(𝑡)𝑟  (2.30) 

where 𝑥 = [𝑋1, 𝑋2, … . , 𝑋𝑛]
𝑇𝜀 𝑋 is the vector of input variables & 𝐴𝑞1, 𝐴𝑞2, … , 𝐴𝑞𝑛 are fuzzy 

sets, 𝑞 = 1,2, … , 𝐾 represent the number of rules, and 𝑦̂ is the rule output. The final network 

output is a weight average of each rule’s output which is given as 

𝑦̂ =
∑ 𝜂𝑞(𝑥)𝑦𝑞̂
𝐾
𝑞=1

∑ 𝜂𝑞(𝑥)
𝐾
𝑞=1

         (2.31) 

where  𝜂𝑞(𝑥) is the degree of initiation of the 𝑞𝑡ℎ rule: 

𝜂𝑞(𝑥) = ∏ 𝛽𝐴𝑞𝑟(𝑥𝑗)
𝑛
𝑟=1         (2.32) 

where 𝛽𝐴𝑞𝑟(𝑥𝑗) is the membership function of the fuzzy set 𝐴𝑞𝑟 at the antecedent (input) of 𝑆𝑞.  

Further, the use of neural network fine tunes the rules of the initial fuzzy model to produce the 

final NiF model for controlling the plant.  
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2.5.2 Architecture of Neural integrated Fuzzy controller 

 

Figure 2.10. Schematic diagram of neural integrated fuzzy control 

Figure 2.10 shows a simple NiF architecture based on the fuzzy antecedent and a functional 

consequent of a Sugeno model. For simplicity of illustration, a two-input system is considered 

and the rules are stated as  

Rule 1: 𝑖𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑓1  =  𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

Rule 2: 𝑖𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑓2  =  𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

Rule k: 𝑖𝑓 𝑥 𝑖𝑠 𝐴𝑘 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵𝑘, 𝑡ℎ𝑒𝑛 𝑓𝑘  =  𝑝𝑘𝑥 + 𝑞𝑘𝑦 + 𝑟𝑘 

Here x and y are the crisp inputs to the nodes; 𝐴1, 𝐴2, 𝐴3, . . . and 𝐵1, 𝐵2, 𝐵3, … are the linguistic 

variables (small, medium, etc) associated with the inputs 𝑥 and 𝑦 respectively; 𝑓 corresponds 

to the weighted average which is calculated as: 

𝑓 =  
∑𝑤𝑖𝑓𝑖

∑𝑤𝑖
          (2.33) 

Let 𝑂𝑖
𝑘

 be the 𝑖𝑡ℎ node in the 𝑘𝑡ℎ layer. An adaptive node has been indicated by a square and 

the fixed node is given by a circle. Further, the five layers of the NiF architecture are detailed 

as  

Layer 1:  The first layer is the input layer with adaptive nodes. Also called as the input 

linguistic layer, it is responsible for the fuzzification of the crisp inputs. The output of each 

node 𝑖 is given by:  

𝑂𝑖
1 = 𝜇𝐴,𝑖(𝑥)          (2.34) 

Usually, µ𝐴𝑖(𝑥) is chosen to be a bell-shaped membership function with maximum equal to 1 

and minimum equal to 0. 

𝜇𝐴𝑖(𝑥) =
1

1+[(
𝑥−𝑐𝑖
𝑎𝑖

)
2

]

𝑏𝑖

 

         (2.35) 
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Layer 2: This layer is also called as the condition layer. The nodes in this layer are fixed and 

labelled as 𝛱. Their function is to multiply the incoming signals and output a product which 

acts as the firing strength of each rule.  

𝑂𝑖
2 = 𝑤𝑖 = 𝜇𝐴𝑖(𝑥) × 𝜇𝐵𝑖(𝑦) where i = 1,2, …     (2.36) 

Layer 3: This layer is also called as the rule layer. Each node in this layer is fixed and labelled 

as 𝑁. The function of each node in this layer is to normalize the values of the firing strength of 

the rules produced by the previous layer.  

𝑂𝑖
3 = 𝑤𝑖̅̅ ̅ =

𝑤𝑖

∑𝑤𝑖
         (2.37) 

Layer 4: Also called as the consequent layer, the nodes are adaptive in this layer. The output 

of each node is given by: 

𝑂𝑖
4 = 𝑤𝑖 ̅̅̅̅ 𝑓𝑖 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)       (2.38) 

Layer 5: The output linguistic layer, this layer produces a summation of all outputs from the 

previous layers to give a final output. It is responsible for the defuzzification of the outputs.   

𝑂𝑖
5 = ∑𝑤𝑖̅̅ ̅𝑓𝑖 = 

∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
         (2.39) 

The final output is calculated from 𝑓 = ∑ 𝑤̅𝑘𝑓𝑘𝑘 , and elaborated as 

𝑓 =
𝑊1

𝑊1+𝑊2+⋯+𝑊𝑘
𝑓1 +

𝑊2

𝑊1+𝑊2+⋯+𝑊𝑘
𝑓2 +⋯+

𝑊𝑘

𝑊1+𝑊2+⋯+𝑊𝑘
𝑓𝑘   (2.40) 

For the NiF implementation of the helicopter and ball balancer model, the design procedure 

completely depends on a data training method, calculating the input-output membership 

function, and rule base, to achieve optimum output. 

2.5.3 NiF controller for trajectory tracking of helicopter 

The development of the NiF model for helicopter system is achieved by measuring the error 

and change in error between the measured and reference pitch angles, and measured and 

reference yaw angles of the system. The data input selection was done by trial-and-error 

method, heuristically. Basically, NiF takes the initial fuzzy model generated by MATLAB 

functions and tunes it by means of a hybrid learning algorithm. At each iteration, an attempt is 

made to reduce the error measure, usually defined as the sum of the squared difference between 

pitch or yaw error and the rate of change of pitch error or yaw error. Training stops when either 

the predefined epoch number or error rate is obtained. When the values of the premise 

parameters are learned, the overall output can be expressed as a linear combination of the 

consequent parameters.  
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The input variables of the NiF are selected based on pre-processing of the original data and 

guidelines for input selection for NiF learning [303]. Real-world modelling problems usually 

involves tens (or even hundreds) of potential inputs and use them accordingly. Therefore, a 

heuristic way is needed to quickly determine the priorities of these potential inputs and use 

them accordingly. The rule bases of NiF are generated based on linear Sugeno fuzzy model 

using the hybrid algorithm. The MATLAB software is used to hypothesize a parameterized 

model (FIS). This is done using a subset of the predefined trajectory, normally referred to as 

training data. Then the other input/output data-subsets, normally referred to as checking data 

is used to train the model and mimic the training data by modifying the membership function 

parameters according to a chosen error criterion [304]. Further, to validate the model estimated 

by NiF, the input/output dataset is divided into checking and training data. 

This ensures that the corresponding output datasets from the FIS model are similar and are 

fully representative of the network. Both the training and checking datasets are verified to 

check for the presence of noisy measurements in the dataset. Moreover, the training dataset 

checks the generalization capability of the resulting FIS, whereas the checking dataset is used 

to validate this FIS to observe any over-fitting concerns. Generally, over-fitting is accounted 

by comparing the training and checking errors. Ideally, both the errors must decrease at the 

same time throughout the training period. If they don’t, then this indicates over-fitting. But if 

the checking error begins increasing even at the first iteration, while the training error 

decreases, then the trained FIS has to be retrained because clearly, this membership function is 

not the best choice for modeling the entire dataset. In such cases, other membership function 

choices can be made or the size of the dataset can be increased. These errors computed are 

actually root mean squared error (RMSE) which is given by:  

𝑅𝑀𝑆𝐸 = √
𝛴𝑡=1
𝑛 (𝑦𝑡−𝑦̂𝑡)2

𝑛
        (2.41) 

where 𝑦̂𝑡 are the estimated values for times 𝑡 of the specific target 𝑦𝑡 for 𝑛 samples.  

The generalised representation for NiF controller implementation with the helicopter system is 

shown in Figure 2.11. The NiF controller is developed, first starting with the rules governing 

the uncoupled motion of pitch and yaw motors respectively. 
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Figure 2.11. Block diagram of NiF controller for helicopter system 

The pitch and derivative of pitch are the two inputs whose all possible combination within 

range is fed to train NiF.  Similarly, for yaw controller design, the yaw angle and its derivative 

are considered with the NiF controller. The universe of discourse is chosen to be [-0.35, 0.35] 

for pitch error and [-1 1] for pitch derivative error and the universe of discourse is chosen to be 

[-0.2, 0.2] for yaw error & yaw derivative error.  NiF is trained for 50 epochs for pitch and 

yaw, using a combination of least square and back-propagation gradient descent method. Seven 

linguistic variables (NB, NM, NL, Z, PL, PM & PB) are associated with each input, so the 

input space is partitioned into 49 fuzzy subspaces, each of which is governed by fuzzy if-then 

rules. Here these variables correspond to: NB- negatively big, NM- negatively medium, NL- 

negatively low, Z-zero, PL-positively low, PM- positively medium & PB- positively big. In 

association with fuzzy, neural network will have the following number of neurons in each layer: 

2 neurons are available in layer 1, 14 neurons are there in layer 2, the layers 3 and 4 have 49 

neurons each, and 1 neuron is available in the output layer. The arrangement of membership 

function for the inputs of NiF controller are given in Figure 2.12. 
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(c) Yaw angle error 

 

(d) Rate of change of yaw angle error 

Figure 2.12. NiF membership function of the Pitch and Yaw errors and their derivatives 

after training 

2.5.3.1 Simulation Analysis 

For a sine trajectory of amplitude 5, and frequency 0.8, the simulation analysis provides the 

pitch and yaw characteristics of the helicopter as shown in Figure 2.13. To assess the operation 

of the developed NiF controller, the simulation aspects are compared with the conventional 

fuzzy controller.  

 

(a) Pitch angle 

 

(b) Pitch velocity 

 

Pitch error membership function

Derivative of pitch error membership function

Yaw error membership function

Derivative of yaw error membership function

Pitch error membership function

Derivative of pitch error membership function

Yaw error membership function

Derivative of yaw error membership function
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(c) Yaw angle 

 

(d) Yaw velocity 

Figure 2.13. Pitch and yaw output with neural integrated fuzzy control of helicopter in 

Simulink 

From the results in Figure 2.13 it is identified that, with the action of the conventional fuzzy 

controller, the pitch angle suddenly increases to 9.7 degrees generating a huge movement in 

the vertical position of the helicopter. Further, it is varied between 7 degrees to 5 degress 

through the action of NiF controller. For horizontal motion, the angle variation by yaw is not 

sufficiently high during the conventional fuzzy control, which may cause a huge coupling 

misalignment between yaw and pitch motions.  The action of the NiF controller provides high 

initial gain which is necessary to uplift the thrust force for rotation of blades of the helicopter. 

To achieve proper coupling between the rotors, the pitch velocity is increased to 62 degrees/sec 

from 20 degrees/sec, and yaw velocity is reduced to 8.8 degrees/sec from 12.5 degrees/sec by 

the action of NiF controller. Further, the time response analysis and root mean square error are 

analysed for the implemented control actions for better understanding of the superiority of the 

developed approach. The corresponding results are shown in Tables 2.1 and 2.2 respectively. 

Table 2.1. Time response analysis for neural integrated fuzzy control of helicopter in 

Simulink 

Controller Pitch Response Yaw Response 

Settling time 

(𝑡𝑠) (sec) 

steady-state 

error (𝑒𝑠𝑠) (cm) 

settling time 

(𝑡𝑠) (sec) 

steady-state error 

(𝑒𝑠𝑠) (cm) 

Fuzzy 

Controller 

6.7 sec 0.99 cm 9.2 sec 9.82 cm 

NiF 

Controller 

5.1 sec 0.18 cm 6.2 sec 0.51 cm 
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Table 2.2. Root mean square error for neural integrated fuzzy control of helicopter in 

Simulink 

Controller Root mean square error 

Pitch angle (deg) yaw angle (deg) 

Fuzzy Controller 3.6816 deg 8.6938 deg 

NiF Controller 2.4160 deg 0.2991 deg 

 

2.5.3.2 Real-time analysis 

To analyse the action of the controller on the real-time operation of the helicopter system, the 

2DoF helicopter system discussed in the above section is considered. The implementation of 

the controller is achieved through the hardware in loop-application programming interface 

(HIL-API) with the Quanser helicopter setup. Initially, the simulated models are calibrated for 

code generation with MATLAB/Simulink and Quanser software. Further, a C code generated 

in using the MEX function and interpreted to the hardware using the RS232 interface with the 

DAQ board. To achieve the efficient operation of the developed controller and simultaneous 

action of the helicopter system for every rule fired by the fuzzy, Immediate input/output is 

adapted. This performs the hardware-in-the-loop-application programming interface (HIL-

API) operation of the developed controller with the real-time setup. The corresponding pitch 

and yaw characteristics for the real-time operation of the helicopter and their comparisons with 

fuzzy controller action are shown in Figure 2.14. 

 

(a) Pitch angle 
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(b) Pitch velocity 

 

(c) Yaw angle 

 

(d) Yaw velocity 

Figure 2.14. Pitch and yaw output with neural integrated fuzzy control of helicopter in real-

time 

From the results in Figure 2.14 it is identified that, the variation in oscillation with conventional 

fuzzy controller goes from 8 degrees to -12 degree, but the action of the NiF controller, reduces 

the oscillations to vary between 5 degree to -5 degree for pitch angle. For yaw angle, the 

oscillations with conventional fuzzy controller is 28 degree to -9.8 degrees, but with the action 

of the NiF controller, the oscillations are reduced from 15 degrees to -3 degrees. Further, the 

pitch and yaw motor provide the desired velocity from the controlled output of NiF controller. 

This clearly demonstrates the good performance and robustness property of the proposed 

controller in trajectory tracking operations in real-time as well. Further the time response 

analysis and root mean square error are calculated for the real-time operation of the helicopter 

with NiF and fuzzy controllers and the results are shown in Tables 2.3 and 2.4 respectively. 

Table 2.3. Time response analysis for neural integrated fuzzy control of helicopter in real-

time 

Controller Pitch Response Yaw Response 

Settling time 

(𝑡𝑠) (sec) 

Steady-state error 

(𝑒𝑠𝑠) (cm) 

Settling time 

(𝑡𝑠) (sec) 

Steady state error 

(𝑒𝑠𝑠) (cm) 

Fuzzy 

Controller 

8.47 sec 3.76 cm 19.93 sec 12.31 cm 

NiF Controller 6.77sec 1.18 cm 18.72 sec 7.61 cm 
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Table 2.4. Root mean square error for neural integrated fuzzy control of helicopter in real-

time 

Controller Root mean square error 

Pitch angle (deg) yaw angle (deg) 

Fuzzy Controller 6.3189 deg 13.2147 deg 

NiF Controller 3.1716 deg 7.1346 deg 

 

As per the responses available in the graph it has been observing that NiF controller has an 

appropriate response to the lowest error with the adequate time response and shows the 

excellent control on the axis without any oscillations. 

2.5.4 NiF controller for ball balancer system 

For the design of the NiF controller for the ball balancer system, the first step was to collect 

the relevant data that may be used for training. Training of the data to design  NiF controller 

for its desired behavior, the idea was to use a fuzzy controller substituting the NiF. The second 

step was to choose the input-output data set for training by hybrid optimization method. The 

ball position error e(t) and change in position error de(t)/dt are the two inputs whose all possible 

combination within each range is fed to train NiF. The control signal u(t) obtained from fuzzy 

control is fed as a target output. The universe of discourse is chosen to be [-0.2, 0.2] for both 

ball position error and change in position error and universe of discourse for the expected plate 

angle is [-30, 30]. Block diagram for NiF controller is shown in Figure 2.15. 

 
Figure 2.15. Block diagram for NiF controller for ball balancer operation 

 

The NiF controller is trained for 200 epochs, using a hybrid training algorithm which is a 

combination of least square and back-propagation gradient descent method. Consequently, 

membership function parameters of single-output, Sugeno type fuzzy inference system are 
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obtained. Seven linguistic variables (MF1, MF2, MF3, MF4, MF5, MF6 & MF7) are associated 

with each input, so the input space is partitioned into 49 fuzzy subspaces, each of which is 

governed by fuzzy if-then rules. The membership functions for both the inputs of the NiF 

controller for ball balancer control are shown Figure 2.16. 

 

 
(a) Ball position error 

 
(b) Rate of change of ball position error 

Figure 2.16. NiF membership function of the position error and position rate after training 

In association with fuzzy, the neural network will have the following number of neurons in 

each layer: 2 neurons in layer 1, 14 neurons in layer 2, 49 neurons in layers 3 and 4, and 1 

neuron in layer 5. 

2.5.4.1 Simulation analysis 

The simulation analysis of the developed NiF controller on ball balancer system is carried out 

by tracking the ball position around a square trajectory. The square trajectory is of 5 amplitude 

and 0.8 frequency. The results corresponding to the control action in simulation are shown in 

Figure 2.17. Further, to assess the superiority of the proposed approach on the ball balancer 

setup, the results are compared with a conventional fuzzy logic controller.  

 

(a) Plate angle 

 

(b) Ball position 
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Figure 2.17. Ball balancer output with neural intgerated fuzzy control in Simulink 

The focus is on the movement of the ball on the plate with less vibration in ball movement.  In 

Figure 2.17 (a) the Plate angle on the x-axis is 9.1 degree, which is the lowest plate angle as 

compared to fuzzy controller and hence the plate will not have oscillations and ball will move 

very slowly and steady within a short period of time. Hence the position of the ball from Figure 

2.17 (b) shows that variation in ball position while moving on the plate surface having the 

lowest settling time with NiF control. The time response analysis and root mean square error 

measurement for the action of the developed controller on the ball balancer system are 

discussed in tables 2.5 and 2.6 respectively. 

Table 2.5. Time response analysis for neural integrated fuzzy control of ball balancer in 

Simulink 

Controllers 
Peak Time  

(𝒕𝒑) (sec) 
Settling Time  

(𝒕𝒔) (sec) 

Peak Overshoot  

(𝑴𝒑) (%) 

Steady-state 

error (𝒆𝒔𝒔) (cm) 

Fuzzy 

controller 
0.3 𝑠𝑒𝑐  3.8 𝑠𝑒𝑐  13.5 %  0.000472𝑐𝑚  

NiF Controller 0.2 𝑠𝑒𝑐  2.51 𝑠𝑒𝑐  9.56𝑒 − 06 %  8.35e − 05 𝑐𝑚  

 

Table 2.6. Root mean square error for neural integrated fuzzy control of ball balancer in 

Simulink 

Controllers 
Root mean square error 

Position (cm) Angle (deg) 

Fuzzy controller 3.16189 cm 3.2178 deg 

NiF Controller 1.9358 cm 0.9163 deg 

 

Further, the training of data with NiF improves peak overshoot & steady-state-error and hence 

the position of the ball while moving on the plate surface having the better settling time. 

2.5.4.2 Real-time analysis 

The real-time implementation of the NiF controller action on the ball balancer setup is achieved 

by considering the 2DoF ball balancer system discussed in above sections. The controller is 

implemented with the real-time setup by performing the data exchange between the numerical 

simulation and the laboratory setup. Initially, the simulated models are calibrated for code 

generation with MATLAB/Simulink and Quanser software. Further, the generated code is 

interpreted to the hardware using the RS232 interface with the DAQ board. Outcomes from the 

implementation of these controllers to the hardware and simulation are verified based on the 
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momentary analysis. The action of NiF controller on real-time system and its comparison with 

the conventional fuzzy controller are shown in Figure 2.18. 

 

(a) Plate angle 

 

(b) Ball position 

Figure 2.18. Ball balancer output with neural integaretd fuzzy control in real-time 

From the results in Figure 2.18 (a) it is identified that the plate angle varies between +15 and 

−20 degrees. This made the ball movement smooth and stable for the NiF controller. Further, 

the scaling factor used for stabilizing the ball position around the predefined trajectory with 

less oscillations as shown in Figure 2.18 (b). The values of scaling factors for error, change in 

error and control output in case of NiF controller were 0.5, 110, and 4 respectively. Further, 

the time response analysis and root mean square error measurements for the applied control 

actions on the ball balancer system are discussed in tables 2.7 and 2.8 respectively.  

Table 2.7. Time response analysis for neural integrated fuzzy control of ball balancer in 

real-time 

Controllers 
Peak Time 

(𝒕𝒑) (sec) 

Peak Overshoot 

(𝑴𝒑) (%) 

Steady-

state error 

(𝒆𝒔𝒔) (cm) 

Fuzzy 

controller 
0.47 𝑠𝑒𝑐  36.8 %  3.68 𝑐𝑚  

NiF Controller 0.35 𝑠𝑒𝑐  4.16 %  1.08 𝑐𝑚  
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Table 2.8. Root mean square error for neural integrated fuzzy control of ball balancer in 

real-time 

Controllers 
Root mean square error  

Position (cm) Angle (deg) 

Fuzzy controller 5.9617 cm 4.1209 deg 

NiF Controller 3.6241 cm 2.7918 deg 

 

From the results it is identified that the response of NiF is best based on settling time, peak 

overshoot and steady-state-error. The hybrid algorithm-based controller implemented on ball 

balancer system proved to be more efficient in terms of various performance parameters when 

compared with conventional controllers. 

2.6 CONCLUSION 

In this chapter, the modelling and control of helicopter and ball balancer system along with the 

details of the literature and action of baseline intelligent control approaches are developed.  

From the literature, it is observed that the control aspects like position control, path planning, 

trajectory tracking and balancing control [305], [306] are necessary to perform complex tasks 

in dynamic environments. Moreover, it is identified that many efforts have been made to 

achieve them especially in the field of trajectory tracking, path planning [83], [93], [94], [105], 

and balancing control [307]–[309]. Although the afore-mentioned techniques facilitate robust 

position control with respect to model and parameter uncertainties, they mainly focus on the 

stability of the closed-loop dynamics without emphasizing the effects of system complexities, 

faults, or external disturbances for high-accuracy control. Hence, the integration of such 

designs into conventional architectures could provide solutions that ensure high performance 

in both normal conditions and in the presence of failure modes. Besides, from the development 

of NiF controller for both the helicopter and ball balancer systems, the problems with control 

action in the presence of parametric uncertainties are identified. This recognized the need for 

designing hybrid control approaches, randomized algorithms, fault classification-based control 

techniques, and reinforcement learning algorithms. 
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Chapter 3. OPTIMIZED INTELLIGENT CONTROL FOR 2DOF 

SYSTEMS 

3.1 WAVELET FUZZY BASED CONTROL SYSTEM 

The use of wavelets is widely accepted in the field of control theory especially to deal with 

uncertain systems [310], [311], due to their signal processing abilities and their advantage with 

hybridization of controllers [312]. Hence, the proposal of an intelligent wavelet controller for 

the control of nonlinear systems can be taken up as a giant opportunity for innovation purposes. 

The wavelet transforms (WT) investigate the input signals which extricate and distinguish the 

segments of the frequency signal in a different period and represents them to another frame. 

Further, this idea of signal sampling and reconstruction is relatively new for path tracking and 

stabilizing applications with zero oscillations. This concept is remarkably important in the field 

of robotics to understand the balancing mechanism of various applications.  

3.1.1 Wavelet Transform 

Any signal can easily be represented by WT using the execution of typical math series 

calculations. These signals are investigated in both the time and frequency domain[313], [314]. 

Furthermore, the WT can focus the energy of the processed signal into a finite number of 

coefficients and delivers the frequency-time localization of the signal [315]. The transformed 

signal is represented in mathematical form as 

𝑤𝑡(𝛽, 𝑠) =
1

𝑠
∫𝑥(𝑡)𝛿∗ [

𝑡−𝛽

𝑠
] 𝑑𝑡       (3.1) 

where, 𝑥(𝑡) is the given signal, 𝛽 is the translational parameter, 𝑠 is the scaling parameter, and 

s > 0 illustrates the size of the window, which describes the graded wavelet resolution 𝛿∗ [
𝑡−𝛽

𝑠
] 

in frequency-time domains. Further, these parameters decrease as the frequency increases and 

vice-versa. Moreover, the signal 𝑥(𝑡) after discretization using WT method are represented as 

𝑊𝑇𝑎,𝑏𝑥(𝑡) = ∫ 𝑥(𝑡)
∞

−∞
δ𝑎,𝑏
∗ (𝑡)𝑑(𝑡)       (3.2) 

where, 𝛿∗(𝑡) depicts the function of the wavelet, 𝑎 and 𝑏 represents the dilation and 

translational parameters, respectively. 

3.1.1.1 Signal Pre-processing 

Generally, the electrical and physical noises in a system restrict the clean signals and cause the 

operating system to draw various frequencies while processing the signal. The controller based 
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on WT can perform tremendously well when it comes to the discretization of such noisy signal 

into various bands of frequency. The wavelet decomposes the signal into different bands which 

is a major drawback in conventional filters, especially with Fourier transformations. Hence, the 

error signals are reconstructed in a better way with less loss of information. Here, the discrete 

wavelet transform (DWT) is used to select application dependent mother wavelet with scaling 

function and suitable wavelet function for removing noise. The signal is parameterized and 

expanded reliant on suitable wavelet function. This wavelet function decomposes and 

reconstructs the signal using dilated and shifted form of the wavelet function. Besides, wavelet 

function makes signal compact, orthogonal, linear in-phase, and with low approximation error, 

etc.[316]. This represents that the denoising should obtain modified wavelet coefficients which 

can depict the informative part of the signal. Hence, the minimal description length (MDL) 

data is used for the selection of the finest wavelet function [316]. While performing MDL, the 

wavelet denoising is considered as a model selection task, where the data model of the shortest 

description among all models is given by [316]: 

𝑀𝐷𝑙(𝑘, 𝑛) = 𝑚𝑖𝑛 {
3

2
𝑘 log𝑁 +

𝑁

2
log‖έ𝑛 − 𝜀𝑛

(𝑘)
‖
2

}     0 ≤ 𝑘 < 𝑁; 1 ≤ 𝑛 ≤ 𝑀 (3.3) 

Here 𝑘, 𝑛 denote the indices, integers 𝑁 and  𝑀 correspond to signal length and wavelet filters 

respectively, and έn is the wavelet vector. This wavelet vector and integer attained from the 

transformation of signal coefficients with the wavelet filter. Number of nonzero elements (k) 

in wavelet vector defined by 𝜀𝑛
(𝑘)
= 𝜃𝑘, έ𝑛. The value of k sets to largest one in  έn, while 

keeping other elements to zero and selects the optimized level using the MDL criterion [317].  

3.1.1.2 Decomposition and Reconstruction 

Wavelet basic function makes the DWT suitable for time response analysis, which causes 

minimum delay time as compared to other transform techniques as identified in [318]. The 

computational complexities of various WT techniques are depicted in Table 3.1 [318]. 

Table 3.1. The computational complexity of transform analysis  

Techniques Computational Time 

Stationary wavelet transform [319] 0.0154  

Hilbert–Huang transform [320] 0.2410  

Continuous wavelet transform [321] 0.2415  

Wigner Ville distribution [322] 0.0807  

Discrete wavelet transforms 0.0049  
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The computation time of different WT techniques defines the superiority of using the DWT. 

Hence, the DWT is adapted as a signal processing technique for denoising the signal. Low-

pass filter and high-pass filter are used in the cascaded form, one after another to realize the 

transformed signal, and further frequency dilation is performed by the down sampling method. 

The block diagram of a three-level discrete wavelet decomposition is shown in Figure 3.1. 

 

Figure 3.1. Three-level discrete wavelet decomposition 

The high-pass filter output is the detailed signal coefficients at the first level of decomposition 

denoted by 𝑝1. The output from the low pass filter is the approximation signal coefficients at 

the first level of decomposition is represented by 𝑚1. The coefficients 𝑚1 and 𝑝1 establish the 

decomposition at first level and mathematically denoted as [313], [315] 

𝑚1[𝑛] = ∑ 𝑔[𝑘]𝑥[𝑛 − 𝑘]𝑁−1
𝑘=0         (3.4) 

𝑝1[𝑛] = ∑ ℎ[𝑘]𝑥[𝑛 − 𝑘]𝑁−1
𝑘=0         (3.5) 

Where ℎ[𝑘] and 𝑔[𝑘] denote a finite set of coefficients that define the dilation and scaling 

functions respectively. At the first level of decomposition, this approximated coefficient 𝑚1 is 

delivered as input to both kinds of filters after the down-sampling of signals by two. Further, a 

2-level high pass and low pass filter produce an approximation and detailed coefficients of 

length N/2. The second and third level in decomposition can be obtained by the following 

equations: 

𝑚2[𝑛] = ∑ 𝑔[𝑘]𝑚1[2𝑛 − 𝑘]
𝑁/2−1
𝑘=0        (3.6) 

𝑝2[𝑛] = ∑ ℎ[𝑘]𝑝1[2𝑛 − 𝑘]
𝑁/2−1
𝑘=0        (3.7) 

𝑚3[𝑛] = ∑ 𝑔[𝑘]𝑚2[3𝑛 − 𝑘]
𝑁/3−1
𝑘=0        (3.8) 

𝑝3[𝑛] = ∑ ℎ[𝑘]𝑝3[3𝑛 − 𝑘]
𝑁/3−1
𝑘=0        (3.9) 

This process of filtration and down-sampling continues until the third level reached. Now, the 

denoising of signals can be stopped at the optimum level of decomposition. Once the noise is 

eliminated, and the modified coefficients are obtained, the signal quantization is performed to 

obtain a sampled signal truly digital and ready for control application. The difference between 
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the unquantized sample and the quantized output is called the quantization error. Once the 

signal is quantized, each input value of the quantization region is compared with the input value 

of a quantizer boundary, defined by the user [323]. The output depicts the zero-based index of 

the associated region.  The zero-based input index values are transformed into quantized output 

values by decoding the encoded signal. The decoded signal helps in setting the output data type 

parameter to perform decomposition and reconstruction. Further, the signal attains its original 

form by reconstruction process which converts the discrete signal into the continuous signal. 

The signal is reconstructed using the low pass and high pass finite impulse response filters from 

high-frequency sub-band and low-frequency sub-band to remove noise present in the signal.  

3.1.2 Wavelet Fuzzy Logic Controller 

The design method of wavelet fuzzy controller is motivated at overcoming the drawbacks of 

transparent interpretation of choosing rules with the conventional fuzzy controllers. To begin 

with the development of the wavelet fuzzy controller, consider a sample window whose length 

is chosen based on the rising and falling edge of the reference. Further, the DWT decomposes 

the observed signals into detailed and approximate frequency components. The expected 

control actions are formed to design a wavelet-based controller due to this property of WT. 

Further, the decomposed coefficient support to create the desired control signal for the wavelet-

based controller [324] which is expressed as: 

𝑢𝑤 = 𝑘𝑑1𝑒𝑑1 + 𝑘𝑑2𝑒𝑑2 +⋯+ 𝑘𝑑𝑁𝑒𝑑𝑁 + 𝑘𝑎𝑁𝑒𝑎𝑁     (3.10) 

Where 𝑒𝑑1 , 𝑒𝑑2 , … , 𝑒𝑑𝑁 are the detailed components and 𝑒𝑎𝑁 corresponds to the approximate 

components of the error signal, and 𝑘𝑑1 , 𝑘𝑑2 , … , 𝑘𝑑𝑁, and 𝑘𝑎𝑁 tunes to the medium and high-

frequency gains of the error signal [325]. 

Generally, the sensor noises associated with the servo units of robotic systems correspond to 

the high-frequency signals and the other external and internal disturbances associated with the 

signal are considered as the low-frequency signals. Therefore, the low-frequency gains 

associated with the error signal eliminate the low-frequency components and the high-

frequency gains compensate for the high-frequency components [326]. Further, the quantised 

error signal is provided as an input to both the fuzzy logic controller to achieve the ball position 

control as shown in Figure 3.2.  



63 

 

 

Figure 3.2. Three-level discrete wavelet transform based fuzzy logic controller 

Internally, the design of the fuzzy logic controller is achieved by identifying the range of the 

input and output control variables. The fuzzy logic controller has two inputs and each input is 

subjected to carry linguistic variables expressed as 𝑁𝐵-negative big, 𝑁𝑀-negative medium, 

𝑁𝑆-negative small, 𝑍𝑂-zero, 𝑃𝑆-positive small, 𝑃𝑀-positive medium, and 𝑃𝐵 − positive big. 

These input variables are normalized with a universe of discourse using different membership 

functions. Similarly, the output variables which correspond to the scaling gains are formulated 

using the linguistic variables discussed above. Further, the rules are formulated between the 

inputs and outputs. Moreover, the weighted average method [327] can be adapted to compute 

the aggregate of each rule for fast and optimized output.  

3.1.3 Stability Analysis 

The scaling gains of the fuzzy controller are determined and updated by the action of the 

wavelet transform. The stability of the proposed controller depends on the performance of the 

optimized fuzzy logic control algorithm. Hence, a passivity approach can be used to determine 

the absolute stability of the fuzzy controller. This approach is based on some general 

characteristics of the input-output mapping of the controller and the input-output dynamics of 

the controlled system [328]. The mapping between the input and output of the fuzzy logic can 

be in general described by: 

𝑢𝑘 =
∑ [(𝜇𝐸𝑖

(𝑒1)∩𝜇𝐸𝑗
(𝑒2)).𝑢𝑛(𝑖,𝑗)]𝑖,𝑗

∑ (𝜇𝐸𝑖
(𝑒1)∩𝜇𝐸𝑗

(𝑒2))𝑖,𝑗

       (3.11) 

where 𝑒1 corresponds to error 𝑒(𝑘) at time 𝑘, 𝑒2 corresponds to change in error 𝑑𝑒(𝑘) at time 

𝑘, 𝑢𝑘 represents the output of the fuzzy logic control, 𝐸𝑖, 𝐸𝑗 and 𝑢𝑛(𝑖,𝑗) are the linguistic 

variables of 𝑒1, 𝑒2 and 𝑢𝑘 respectively, and ∩ represents a fuzzy set intersection operator. 

Hence, the distinguishing characteristics of the fuzzy logic control in this work are: 
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1) In the fuzzy rule matrix, the control rules are antisymmetric about its off-diagonal (odd 

symmetry). 

2) The fuzzy table numerical values increase/decrease gradually from top to bottom in a 

column and left to right in a row (monotony). 

3) The central element of the rule table which corresponds to a control decision is usually zero 

and the elements surrounding the central area have small values. 

These properties of the fuzzy controller reflect the consistency of operator control action and 

reflect the general properties of the system. Further, the numerical implications to analyse the 

stability of the controller are given by: 

Consider 𝑒1 and 𝑒2 be two scalar inputs normalized to a range of [−𝐿, 𝐿]. Hence, 2𝑁 + 1 input 

fuzzy sets are uniformly defined within this range with linguistic names as 𝐸𝑖, 𝑖 =

−𝑁,… , −1,0,1, … , +𝑁. The properties of these input membership functions (MFs) are:    

1) The summation of the value of MFs is 1. 

∑ 𝜇𝐸𝑖(𝑒) = 1𝑁
𝑖=−𝑁          (3.12) 

2) For the value of input value exterior to the range [−𝐿, 𝐿], 

𝑒 > 𝐿 ⟹ 𝜇𝐸𝑁(𝑒) = 1 and

𝑒 < −𝐿 ⟹ 𝜇𝐸−𝑁(𝑒) = 1
        (3.13) 

3) The cover intervals 𝐸𝑖 and 𝐸−𝑖 which are symmetric about 0: 

0 ≤ 𝜇𝐸𝑖(−𝑒) ≤ 1         (3.14) 

4) Not more than two adjacent fuzzy sets are fired at a time for each input value with 

complimentary membership grades: 

if |𝑖 − 𝑗| > 1 ⟹ 𝜇𝐸𝑖(𝑒)𝜇𝐸𝑗(𝑒) = 0       (3.15) 

5) The inputs MFs fuzzy sets must be convex: 

𝜇𝐸𝑖[𝜆𝑒 + (1 − 𝜆)𝑒
′] ≥ min [𝜇𝐸𝑖(𝑒), 𝜇𝐸𝑗(𝑒

′)],    ∀𝑒 ≠ 𝑒′,   ∀𝜆 ∈ [0,1]  (3.16) 

Further, the fuzzy rule base for the scalar inputs and output 𝑢 is formed as: 

if 𝑒1 is 𝐸𝑖 and 𝑒2 is 𝐸𝑗 , then 𝑢 𝑖𝑠 𝑜𝑢𝑡𝑓(𝑖,𝑗) 

where 𝑓(𝑖, 𝑗) corresponds to a function whose value at 𝑖 and 𝑗 is an integer. This function relates 

the indices 𝑖 and 𝑗 of input fuzzy set to the index of output fuzzy set 𝑜𝑢𝑡𝑓(𝑖,𝑗) with center 𝑈𝑓(𝑖,𝑗). 

Hence with (2𝑁 + 1)2 fuzzy rules, the properties of the function 𝑓(𝑖, 𝑗) are given by: 

1) If any input condition is zero then the output must be zero: 

𝑓(0,0) = 0          (3.17) 

2) The control rules are odd symmetric about 0: 
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𝑓(𝑖, 𝑗) = −𝑓(−𝑖, −𝑗),   ∀𝑖, 𝑗        (3.18) 

3) For a constant input, the output is a convex function: 

𝑗. [𝑓(𝑖, 𝑗) − 𝑓(𝑖, 0)] ≥ 0,     ∀𝑖, 𝑗 ≥ 0       (3.19) 

𝑖. [𝑓(𝑖, 𝑗) − 𝑓(0, 𝑗)] ≥ 0,     ∀𝑖, 𝑗 ≥ 0       (3.20) 

The central value of output MF is related to a property given as: 

𝑈0 = 0,   𝑈𝑖 = −𝑈−𝑖 𝑎𝑛𝑑 𝑖 ≥ 𝑗 ⇒ 𝑈𝑖 ≥ 𝑈𝑗      (3.21) 

Moreover, the output 𝑢 of the scalar controller is estimated by centre average defuzzification 

using min operator as follows:  

𝑢 = Φ(𝑒1, 𝑒2) =
∑ 𝑈𝑓(𝑖,𝑗)∙min[𝜇𝐸𝑖

(𝑒1),𝜇𝐸𝑗(𝑒2)]𝑖,𝑗

∑ min[𝜇𝐸𝑖
(𝑒1),𝜇𝐸𝑗(𝑒2)]𝑖,𝑗

      (3.22) 

Besides, the properties of input-output nonlinear mapping described based on the continuous-

time Lipschitz function Φ(. , . ) are given as: 

• Property a: |Φ(𝑒1, 𝑒2)| ≤ 𝑢𝑀 and 𝑀 = max
𝑖,𝑗

𝑈𝑓(𝑖,𝑗) 

• Property b: Φ(0,0) = 0 defines the steady-state condition. 

• Property c: Φ(𝑒1, 𝑒2) = −Φ(−𝑒1, −𝑒2) defines the odd symmetry 

• Property d: Φ(𝑒1, 0) =⇒ 𝑒1 = 0 

• Property e: Φ(. , . ) corresponds to a sectorial function where for every scalar input there 

exists a solution 𝜆′, 𝛾′ > 0 given by: 

0 ≤ 𝑒1 ∙ [Φ(𝑒1, 𝑒2) − Φ(0, 𝑒2)] ≤ 𝜆′𝑒1
2      (3.23) 

0 ≤ 𝑒2 ∙ [Φ(𝑒1, 𝑒2) − Φ(𝑒1, 0)] ≤ 𝛾′𝑒2
2      (3.24) 

where 𝜆 and 𝛾 are constants. 

The proof for the above properties is detailed in [329].  

Hence, a continuous-time system with state vector 𝑥 ∈ 𝑅𝑛, input 𝑦(. ): 𝑅 → 𝑅, and output 

𝑢(. ): 𝑅 → 𝑅 is passive if there exists a real-valued storage function 𝑉(𝑥) which is continuous 

nonnegative with 𝑉(0) = 0 and supply rate 𝑊(𝑦(𝜏), 𝑢(𝜏)) = 𝑦(𝜏)𝑢(𝜏), to the extent that the 

subsequent dissipation inequality holds ∀𝑡 > 0, 𝑢 ∈ 𝑈, 𝑥(0) ∈ 𝑋: 

𝑉(𝑥(𝑡)) − 𝑉(𝑥(0)) ≤ ∫ 𝑊(𝑦(𝜏), 𝑢(𝜏))𝑑𝜏
𝑡

0
      (3.25) 

where 𝑢 is the control decision. 

If the supply rate is: 

𝑊(𝑦(𝜏), 𝑢(𝜏)) = 𝑦(𝜏), 𝑢(𝜏) − 𝜀𝑦(𝜏)2, 𝜀 > 0     (3.26) 

Here, the input is a strictly passive system. 

𝑊(𝑦(𝜏), 𝑢(𝜏)) = 𝑦(𝜏), 𝑢(𝜏) − 𝜀𝑢(𝜏)2, 𝜀 > 0     (3.27) 
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Here, the output is a strictly passive system. 

𝑊(𝑦(𝜏), 𝑢(𝜏)) = 𝑦(𝜏), 𝑢(𝜏) − 𝜀1𝑦(𝜏)
2 − 𝜀2𝑢(𝜏)

2;  𝜀1, 𝜀2 > 0   (3.28) 

Here, the input, and output are strictly passive systems. 

Proof: Consider the generalized representation of the continuous-time system driven by a fuzzy 

controller with state access: 

𝑥̇ = 𝑓(𝑥) + 𝐺(𝑥)𝑢         (3.29) 

𝜁 = ℎ(𝑥)          (3.30) 

𝑦̇ = 𝜁           (3.31) 

𝑢 = Φ(𝑒1, 𝑒2)          (3.32) 

𝑒(𝑡) = 𝑦𝑑 − 𝑦(𝑡)         (3.33) 

where 𝑥 ∈ 𝑋 ⊂ 𝑅𝑛, 𝜁 ∈ 𝑅, 𝑢 ∈ 𝑅, and 𝑓(𝑥): 𝑋 → 𝑅𝑛, 𝑓(0) = 0, 𝐺(𝑥): 𝑋 → 𝑅𝑛, ℎ(𝑥): 𝑋 → 𝑅, 

ℎ(0) = 0 are smooth functions, 𝑒1 corresponds to the error between measured and desired 

outputs 𝑦 and 𝑦𝑑 respectively, 𝑒2 is the rate of change of error 𝑒1, and Φ:𝑅 × 𝑅 → 𝑅 ∈ 𝐶1 

corresponds to the control function. A basic assumption is made regarding the complete 

reachability and zero-state detectability of the system by following the above properties as 

follows: 

𝑢(𝑡) = 0, and 𝜁(𝑡) = 0 ⇒ lim
𝑡→∞

𝑥(𝑡) = 0      (3.34) 

This assumption is obvious considering that the origin is an equilibrium point. Further, 

properties b and e lead to: 

0 ≤ 𝑒1 ∙ Φ(𝑒1, 0) ≤ 𝜆′𝑒1
2        (3.35) 

0 ≤ 𝑒2 ∙ Φ(0, 𝑒2) ≤ 𝛾′𝑒2
2        (3.36) 

Let 

Δ𝑒2(𝑒1, 𝑒2) = Φ(𝑒1, 𝑒2) − Φ(𝑒1, 0)       (3.37) 

Δ𝑒1(𝑒1, 𝑒2) = Φ(𝑒1, 𝑒2) − Φ(0, 𝑒2)       (3.38) 

This infers that  

0 ≤ 𝑒2 ∙ Δ𝑒2(𝑒1, 𝑒2) ≤ 𝛾
′𝑒2
2        (3.39) 

0 ≤ 𝑒1 ∙ Δ𝑒1(𝑒1, 𝑒2) ≤ 𝜆′𝑒1
2        (3.40) 

From the definition of passivity, the scalar control inputs result in  

∫ 𝑒2(𝜏) ∙ Φ(𝑒1(𝜏), 𝑒2(τ))𝑑𝜏
𝑡

0
= ∫ 𝑒1̇(𝜏) ∙ Φ(𝑒1(𝜏), 0)𝑑𝜏

𝑡

0
+ ∫ 𝑒2(𝜏) ∙ Δ𝑒2(𝑒1(𝜏), 𝑒2(τ))𝑑𝜏

𝑡

0
≥

𝑉[𝑒1(𝑡)] − 𝑉[𝑒1(0)]         (3.41) 

where 

𝑉[𝑒1(𝑡)] − 𝑉[𝑒1(0)] = ∫ 𝑒1̇(𝜏) ∙ Φ(𝑒1(𝜏), 0)𝑑𝜏
𝑡

0
= ∫ Φ(𝑒1, 0)𝑑𝑒1

𝑒1(𝑡)

𝑒1(0)
  (3.42) 
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This identifies that in a continuous domain the fuzzy controller is input-output passive stable. 

3.1.4 Wavelet Fuzzy Control of Helicopter system 

The performance of the developed wavelet fuzzy controller on the helicopter system is assessed 

by comparing its operation with the action of conventional fuzzy logic controller in 

MATLAB/Simulink and Quarc real-time control integration. The details of modelling for the 

Real-time setup considered in this research are provided in Chapter 2. The complete setup is 

operated with an intel i3 quad core CPU with 3.6 GHz clock speed. In this setup, the main rotor 

lift is responsible for change in pitch, and pulling forces of tail rotor are responsible for yaw 

angle movements. The objective is to decouple the two typical output channels such that the 

output responses follows a desired trajectory. From the dynamic model of the 2DoF helicopter 

system it has been identified that the pitch and yaw axes can be controlled by appropriately 

selecting the voltages of the pitch and yaw motors, respectively. Due to the linear dependency 

of each rule on the input variables, the developed wavelet approach is considered to be ideal 

for acting as an interpolating supervisor for the fuzzy controller. 

3.1.4.1 Simulation Analysis 

The wavelet fuzzy control of the helicopter model can be established by designing the 

controller for the uncoupled motion between the rotors of the horizontal and vertical axis. 

Further, a feedforward controller can be used to provide the pitch angle with the required gain. 

This forward control process allows a foremost signal to pass from the supply in the external 

control loop. This approach is directly related to the gain-based control. The compensation of 

output signal is achieved by feedforward control which includes the gravitational forces as 

well. These gravitational forces try to drag the pitch angle down due to gravity effect. Further, 

the huge variation in yaw and pitch error needed more control action when integrated with 

wavelet fuzzy controller. This variation continuously varies due to pitch and yaw setpoint 

difference, which further induced a large voltage that can saturate the power amplifier. The 

desired output can be disrupted due to this error mechanism and oscillations in system can 

reach to its extent. This condition can be avoided by adding pitch and yaw integrator with 

wavelet fuzzy. This integral anti-windup makes the saturation error negative when large 

voltage developed. The reset time divides this error and then sums at the integrator input. The 

complete block diagram is shown in Figures 3.3. 
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Figure 3.3. Wavelet fuzzy logic controller for helicopter control 

The Takagi-Sugeno type fuzzy inference system has been used for the pitch and yaw angle 

control purpose. Two different wavelet fuzzy controllers are used here for pitch and yaw angle 

control. First input is pitch error (e), and the other one is the pitch derivative error (𝑒̇) for pitch 

control and vice versa inputs are chosen for yaw control. Further, triangle membership function 

has been chosen for pitch error and derivative of pitch error while gaussian membership 

function has been selected for yaw error and derivative of yaw error. Seven linguistic variables 

have been chosen for every input variable named as 𝑁𝐵, 𝑁𝑀, 𝑁𝑆, 𝑍𝑂, 𝑃𝑆, 𝑃𝑀, and 𝑃𝐵. 

Starting with the rules governing the uncoupled motion and then providing appropriate gains 

to the system, the Simulink results of the helicopter system are shown in Figures 3.4. To assess 

the performance of the developed approach, the results are compared with the action of 

conventional Fuzzy logic controller developed for the same helicopter setup. 
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(c) yaw angle 

 
(d) yaw velocity 

Figure 3.4. Pitch and yaw output with wavelet fuzzy control of helicopter in Simulink  

In this simulation, the control objective is to maintain the system tracking the desired 

trajectories. From the Figure 3.4, the wavelet fuzzy control on the helicopter is efficiently able 

to track the desired reference trajectory. With the action of the conventional fuzzy controller, 

the pitch angle suddenly increases to 7.2 degrees. This generates a huge movement in the 

vertical position of the helicopter. Further, the pitch angle is diminished to 3.5 degree by 

controlling through wavelet fuzzy. Similarly, for horizontal motion, the angle variation by yaw 

is not sufficiently high during the conventional fuzzy control, which may cause a huge coupling 

misalignment between yaw and pitch motions. With the action of the wavelet fuzzy controller, 

necessary thrust force for rotation of blades of the helicopter is achieved by providing high 

initial gain. Further, to achieve proper coupling between the rotors, the pitch velocity is 

increased to 120 degrees/sec from 60 degrees/sec, and yaw velocity is varied from 12.6 

degrees/sec to 13.3 degrees/sec by the action of wavelet fuzzy controller. The pitch and yaw 

motor deliver necessary torque and cross torque from the controlled gain generated by the 

controller. It clearly demonstrates the good performance and robustness property of the 

proposed controller in path tracking operations. 

Further, the root mean square error (RMSE) has been calculated for the measured pitch angle 

with the reference sine wave trajectory as shown in Table 3.2 using Simulink. Besides, Table 

3.3 points out a comparative assessment of controller’s performance in terms of time response 

characteristics for pitch and yaw angle of helicopter system. 
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Table 3.2. Root mean square error for wavelet fuzzy control of helicopter in Simulink 

Controller Root mean square error 

Pitch angle (deg) Yaw angle (deg) 

Fuzzy Controller 3.7129 deg 7.1271 deg 

Wavelet Fuzzy  2.3117 deg 0.4735 deg 

 

Table 3.3. Time response analysis for wavelet fuzzy control of helicopter in Simulink 

Controller Pitch Response Yaw Response 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state 

error (𝑒
𝑠𝑠

) (cm) 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state 

error (𝑒𝑠𝑠) (cm) 

Fuzzy 

Controller 

5.3 sec 0.987 cm 7.17 sec 1.19 cm 

Wavelet Fuzzy 4.13 sec 0.176 cm 5.31 sec 0.47 cm 

 

From the observation of the time response analysis, settling time 𝑡𝑠 and steady-state error 𝑒𝑠𝑠 

are minimum in case of wavelet fuzzy which are 4.13sec and 0.176cm for pitch control & 

5.31sec and 0.47cm for yaw control.  

3.1.4.2 Real-time Analysis 

To analyse the action of the controller on the real-time operation of the helicopter system, the 

2DoF helicopter system discussed in Chapter 2 is considered. As explained in simulation, the 

main objective is to track the helicopter to desired trajectories. Due to strong cross-coupling 

effect, the deviations of pitch characteristics affect both pitch and yaw parameters and so pitch 

angle, pitch velocity, yaw angle, and yaw velocity affected. The corresponding pitch and yaw 

characteristics for the real-time operation of the helicopter are shown in Figure3.5. Similar to 

the simulation process, the performance of the developed approach is assessed and the results 

are compared with the action of conventional Fuzzy logic controller developed for the same 

helicopter setup. 

 

(a) Pitch angle 
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(b) Pitch velocity 

 
(c) Yaw angle 

 
(d) Yaw velocity 

Figure 3.5. Pitch and yaw output with wavelet fuzzy control of helicopter in real-time  

Further, from the results it can be identified that, for the action of the conventional controller 

on the system, high oscillation starts for pitch and yaw angle movement throughout the running 

conditions. Besides, the action of the wavelet fuzzy controller regulates the oscillations in pitch 

and yaw angle to the minimum value. Initially, the variation in oscillation with conventional 

fuzzy controller goes from 9.7 degrees to -4.3 degree, but with the action of the wavelet fuzzy 

controller, reduces the oscillations from 9.2 degree to -4.7 degree for pitch angle. For yaw 

angle, the oscillations with conventional fuzzy controller vary from 28 degree to -8.1 degrees, 

but with the action of the wavelet fuzzy controller, the oscillations are reduced from 20 degrees 

to -5.1 degrees. On the other side, with the conventional fuzzy controller, the pitch velocity is 

extremely low at the time of start and unable to give enough thrust to helicopter body and take 

time to settle the trajectory at the same time the yaw velocity should be low due to coupling 

effect. Further, while operating with the developed controller the yaw velocity is minimized to 

42 degree/sec. The pitch and yaw motor provide the desired velocity from the controlled output. 

It clearly demonstrates the good performance and robustness property of the proposed 

controller in trajectory tracking operations in real-time as well.  
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Further, the RMSE for both the controllers is provided in Table 3.4. Besides, the settling time 

(𝑡𝑠) and steady-state error (𝑒𝑠𝑠) are minimum in case of wavelet fuzzy controller which is 

6.87sec, 2.413cm for pitch control & 5.5sec, 6.143cm respectively for yaw control as shown 

in Table 3.5.  

Table 3.4. Root mean square error for wavelet fuzzy control of helicopter in real-time 

Controller Root mean square error 

Pitch angle (deg) Yaw angle (deg) 

Fuzzy Controller 5.812 deg 9.51 deg 

Wavelet Fuzzy 2.871 deg 6.381 deg 

 

  Table 3.5. Time response analysis for wavelet fuzzy control of helicopter in real-time 

Controller Pitch Response Yaw Response 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state 

error (𝑒
𝑠𝑠

) (cm) 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state 

error (𝑒𝑠𝑠) (cm) 

Fuzzy Controller 7.32 sec 3.763 cm 19.93 sec 12.31 cm 

Wavelet Fuzzy 6.87 sec 2.413 cm 5.5 sec 6.143 cm 

3.1.5 Wavelet Fuzzy Control of Ball Balancer system 

The performance of the developed wavelet fuzzy controller on the ball balancer system is 

assessed by comparing its operation with the action of conventional fuzzy controller in 

MATLAB/Simulink and Quarc real-time control integration. The complete setup is operated 

with an intel i3 quad core CPU with 3.6 GHz clock speed. As the plate arrangement is 

symmetrical to the two servo units, the control action on one unit affects the operation of the 

control action on the other unit operating them in a coupled environment. To begin with, the 

system is manually calibrated by adjusting the servo load gear at 0 degrees. Further, the camera 

is calibrated at an offset height of 40 and a width parameter of  100 to ensure the flycap view 

of plate and ball and to capture an image of size 440 × 440 [66]. Once the calibration is 

achieved, a square input signal is given to the setup with a frequency of 0.08Hz and an 

amplitude of 3. Further, a relative study of the fuzzy and wavelet fuzzy controllers has been 

done on Simulink and hardware for validation purposes. 
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Figure 3.6. Wavelet fuzzy control for plate angle and ball position control 

3.1.5.1 Simulation Analysis 

In Simulink process, the contribution of WT make setup vulnerable to stable as system turn out 

to be unstable, this is ensured by time-domain analysis as the involvement of signal 

reconstruction filter out the unwanted frequency component from the signal and decrease the 

existing fluctuations. In this experiment, the number of wavelet filters (𝑀) are considered 12 

due to the use three level decomposition and reconstruction, and the signal length (𝑁) is 1000 

which is the sampling length of signal for one cycle. The results of the ball position, servo 

angle, and voltage of the ball balancer system for the action of improved wavelet fuzzy and the 

conventional fuzzy are shown in Figure 3.7. The main concentration is on the ball movement 

on the plate having minimum oscillations. From Simulink analysis of wavelet fuzzy, Figure 

3.7(a), the plate angle of the x-axis is 2.7 degrees. This is less as compared to fuzzy with 

3.8degree and causes the plate stabilization, and hence ball movement will be slow down and 

remains steady. The ball position from Figure 3.7(b) illustrates that discrepancy in the position 

of the ball during movement on plate surface will have less settling time in wavelet fuzzy will 

balance the ball rapidly.  
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(b) Ball position 

Figure 3.7. Ball balancer output with wavelet fuzzy control in Simulink 

Table 3.6 shows the peak time, settling time, peak overshoot and steady-state error of wavelet 

fuzzy are 0.1sec, 2.42sec, 8.91e-06%, and 1.2e-06cm respectively which is less in comparison 

with fuzzy. As the peak time reduced, as well as the ball reaching time to its specified 

amplitude, minimized, reduction in settling time cause to balance the ball in less time as 

compared to fuzzy. As per the output waveform, it has been noticed that wavelet fuzzy control 

has a suitable response with the lowest error and overshoot carries the perfect ball balance on 

the plate without any vibrations. The RMSE value of the system output for wavelet fuzzy and 

fuzzy in terms of position and plate angle parameter using Simulink are shown in Table 3.7. 

Table 3.6. Time response analysis for wavelet fuzzy control of ball balancer in Simulink 

Controllers 
Peak Time 

(𝑡𝑝) (sec) 

Settling 

Time (𝑡𝑠) 

(sec) 

Peak Overshoot 

(𝑀𝑝) (%) 

Steady-state 

error (𝑒𝑠𝑠) 

(cm) 

Fuzzy controller 0.2𝑠𝑒𝑐 2.56𝑠𝑒𝑐 1.95%  0.0012𝑐𝑚 

Wavelet fuzzy 0.1𝑠𝑒𝑐 2.42𝑠𝑒𝑐 8.91𝑒 − 06 %  1.2𝑒 − 06 𝑐𝑚 

 

Table 3.7. Root mean square error for wavelet fuzzy control of ball balancer in Simulink 

Controller 
Root mean square error 

Position (cm)  Angle (deg) 

Fuzzy controller 2.1455 cm 3.3255 deg 

Wavelet fuzzy 1.7586 cm 0.5931 deg 

3.1.5.2 Real-time Results 

The experimental setup discussed in Chapter 2 is used to assess the performance of the 

developed controller in real-time. Further, the controller is implemented with the real-time 

setup by performing the data exchange between the numerical simulation and the laboratory 
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setup. Initially, the simulated models in section 3.1.4.1 are calibrated for code generation with 

MATLAB/Simulink and Quanser software. Further, a C code generated in using the MEX 

function and interpreted to the hardware using the RS232 interface with the DAQ board. To 

achieve the efficient operation of the developed controller and simultaneous action of the ball 

balancer system for every rule fired by the fuzzy, Immediate I/O is adapted. This performs the 

hardware-in-the-loop-application programming interface (HIL-API) operation of the 

developed controller with the real-time setup. The results of the controller implementation in 

real-time are measured based on the momentary investigation. As the HIL-API provides an 

external interface for handling error known as the message API. This facilitates the 

interpretation of errors returned by different blocks and other APIs' functions. With this 

interface, the error between the simulation output and hardware results can be interpreted, and 

the corresponding control action can be activated to minimize the error. Further, based on the 

controller implementation and experimental procedure adapted, the ball position, plate angle, 

and operating voltage of the servo mechanism are observed as shown in Figure 3.8. 

 

(a) Plate angle 

 

(b) Ball position 

Figure 3.8. Ball balancer output with wavelet fuzzy control in real-time 

From the results in Figure 3.8(a) it is observed that the plate stabilization angle of wavelet fuzzy 

is maintained between −70 to 250, whereas the fuzzy has a stabilization angle varying between 

−150 to +15. From Figure 3.8(b) it is observed that the wavelet fuzzy stabilizes the ball on 

the plate with zero oscillations even in the presence of external disturbances to achieve smooth 

operation. Further, the time response characteristics of the wavelet fuzzy and the fuzzy are 
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calculated for assessing the real-time operation of both the controllers and the corresponding 

results are shown in Table 3.8. The wavelet fuzzy response is observed to be better in terms of 

peak time, settling time, and peak overshoot, than the conventional fuzzy controller. Further, 

to support the performance assessment by the time response characteristics, the root mean 

square error (RMSE) is estimated for both the controllers in terms of position and plate angle 

parameter and tabulated in Table 3.9. 

Table 3.8. Time response analysis for wavelet fuzzy control of ball balancer in real-time 

Controllers Peak time 

(𝑡𝑝) (sec) 

Peak overshoot 

(𝑀𝑝) (%) 

Steady-state error 

(𝑒𝑠𝑠) (sec) 

Fuzzy controller 1.98 𝑠𝑒𝑐  23.4% 4.1 𝑐𝑚 

Wavelet fuzzy 

controller 

1.83 𝑠𝑒𝑐  20.9% 1.55 𝑐𝑚 

 

Table 3.9. Root mean square error for wavelet fuzzy control of ball balancer in real-time 

Controllers 
Root mean square error 

Position (cm) Angle (deg) 

Fuzzy controller 5.1894 cm 3.4049 deg 

Wavelet fuzzy controller 3.5680 cm 2.7517 deg 

This development of wavelet fuzzy controller for ball balancer system calibrates the controller 

based on the error and change in error for the plate angle and ball position, and the control 

action is achieved by balancing the plate angle.  

3.2 EVOLVING FUZZY BASED CONTROL SYSTEM 

The fuzzy based approaches are developed to achieve trajectory tracking and position control 

with the helicopter and ball balancer system respectively. This minimizes the system error 

based on the inputs and the antecedent fuzzy sets of nonsingleton fuzzy logic controllers. But 

the inability of these techniques to perform while dealing with higher order uncertainties is 

considered as a major drawback. In another kind, the type-2 fuzzy logic controller (T2FLC) 

was widely adapted to cope up with the higher order uncertainties. Besides, the increasing 

fuzzy sets has improved the degree of freedom for T2FLC to handle uncertainties conveniently 

[126]. But the type reduction scenario made the general T2FLCs computationally intensive. In 

light of these issues, this section develops an evolving type-2 quantum fuzzy neural network 

(eT2QFNN) targeted at overcoming the drawbacks of conventional fuzzy systems and 
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achieving trajectory tracking and position control with the helicopter and ball balancer system 

respectively. The eT2QFNN has the advantage of overcoming the effects of parametric 

uncertainties in the systems with the help of a quantum rule growing scenario. Besides, the 

drawbacks of conventional control techniques with harmonic noises, and initializing weights 

for achieving trajectory tracking are overcome by the automatic generation of the rules in a 

single pass learning mode. Moreover, the use of quantum membership functions (QMF) tackles 

the problem of inadequacy and noise in conventional membership functions of fuzzy sets. 

Further, two learning policies are encompassed with the proposed approach, i.e., growing 

scenario and parameter adjustment, to deal with the drawbacks of self-organizing process in 

conventional fuzzy techniques.  

3.2.1 Basic Control Scheme 

3.2.1.1 Proportional Derivative Controller 

The use of proportional derivative (PD) controller with the helicopter and ball balancer systems 

is widely seen in the literature due to their design advantages in regulating the elevation, travel 

angles, and plate angles. Besides, the PD controller can be operated as a nonlinear feed forward 

controller which compensates for the gravitational torque in these systems. These advantages 

can also be seen with a PID controller, but the operation of these systems with the risk of 

integrator windup gives a large error between the measured and desired pitch and yaw angles. 

This results in large output voltages by the integrator which saturates the amplifier. Further, by 

the time the measured output reaches the desired response, the integrator builds up large energy 

causing large overshoot and oscillations in the response. Besides, the PD controller holds 

responsibility for the asymptotic stability of the helicopter and accommodates type 2 fuzzy 

neural network (T2FNN) with enough time for online learning of the system dynamics. The 

generalized representation of PD law for the control of a particular rotor model is described as  

𝑦𝑃𝐷 = 𝐾𝑃𝑒 + 𝐾𝐷𝑒̇         (3.43) 

where 𝑒, 𝑒̇ corresponds to the feedback error and its time derivative respectively between the 

desired and measured pitch or yaw angle value, and 𝐾𝑃, 𝐾𝐷 correspond to the proportional and 

derivative gains of the PD controller respectively. Further, while operating the helicopter and 

ball balancer systems with the PD controller, the disadvantages due to high control signal, and 

increasing accumulated error are observed. Besides, the differentiator leads to noise 

amplification which effects the operation of these systems and deviates them from following 

the reference. To overcome these drawbacks, the advantages of self-learning techniques are 
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identified to be widely applicable. As a part of the self-learning process, the interval type 2 

fuzzy neural network (IT2FNN) techniques are adapted in this research. 

3.2.1.2 Type-2 Fuzzy Neural Network (T2FNN) 

The development of IT2FNN in this research adapts the antecedent type-2 and consequent crisp 

number (A2-C0) model [330]. The general structure of the A2-C0 fuzzy system for an 𝑖 𝑗𝑡ℎ 

rule with two inputs is given as 

𝐼𝑓 𝑥1 𝑖𝑠 𝐴̃1𝑖 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴̃2𝑗 , 𝑇ℎ𝑒𝑛 𝑦𝑁𝑁 = Ω𝑖𝑗  ∀𝑖 = 1,… , 𝐼 𝑎𝑛𝑑 𝑗 = 1,… , 𝐽  (3.44) 

where 𝑥1 and 𝑥2 corresponds to the input variables for the type-2 fuzzy, 𝐼 and 𝐽 correspond to 

the number of membership functions, 𝐴̃1𝑖, 𝐴̃2𝑗 are the fuzzy sets of IT2FNN and their 

corresponding membership functions are 𝜇1𝑖, 𝜇2𝑗, respectively. 𝑦𝑁𝑁 defines the output variable 

of the fuzzy neural network and Ω𝑖𝑗’s are the adaptive crisp values. Further, the upper and the 

lower membership functions of  𝜇1𝑖 are 𝜇̅1𝑖 and 𝜇1𝑖 and similarly for 𝜇2𝑗 are 𝜇̅2𝑗 and 𝜇2𝑗. The 

system output with IT2FNN can be written as [330] 

𝑦𝑁𝑁 = 𝑞
∑ ∑ 𝒲𝑖𝑗Ω𝑖𝑗

𝐼
𝑖=1

𝐽
𝑗=1

∑ ∑ 𝒲𝑖𝑗
𝐼
𝑖=1

𝐽
𝑗=1

+ (1 − 𝑞)
∑ ∑ 𝒲𝑖𝑗Ω𝑖𝑗

𝐼
𝑖=1

𝐽
𝑗=1

∑ ∑ 𝒲𝑖𝑗
𝐼
𝑖=1

𝐽
𝑗=1

     (3.45) 

where 𝒲𝑖𝑗 = 𝜇1𝑖𝜇2𝑗, 𝒲𝑖𝑗 = 𝜇̅1𝑖𝜇̅2𝑗, and 𝑞 reflects the weighting parameter which shares the 

contribution of the upper and the lower membership function. 

3.2.2 Evolving type-2 quantum fuzzy neural network architecture 

 

Figure 3.9. Architecture of evolving type-2 quantum fuzzy neural network [331] 
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In general, the most commonly used multi input single output IT2FLC structure has 𝐼 inputs 

(𝑥1 ∈ 𝑋1, … , 𝑥𝐼 ∈ 𝑋𝐼) and one output (𝑦 ∈ 𝑌) with 𝐾 term nodes for each input. Further, any 

given property of fuzzy can be expressed with multiple fuzzy characteristic functions. This 

provides a choice for the expert system designer, based on the understanding about the problem 

which may sometimes lead to certain cases which has vague predicates. This can happen either 

due to the limited knowledge about the modelling of real-time system or due to insufficiency 

related to rule formulation. Considering these aspects, an arena of quantum computation is 

introduced in this research through the quantum fuzzy sets. The quantum fuzzy sets are defined 

as a sense superpositions of various fuzzy sets which can be seen either as an extension of 

quantum properties, or quantum predicates. This provides an advantage for development of a 

quantum fuzzy neural network approach which overcomes the drawbacks in conventional 

fuzzy sets. The complete architecture of evolving type-2 quantum fuzzy neural network 

(eT2QFNN) is shown in Figure 3.9. The layer 1 corresponds to the input layer representing the 

input nodes or variables. In layer 2, the quantum membership functions are defined for 

expressing the input variables as the fuzzy linguistic variables by calculating the quantum 

membership values. The layer 3 corresponds to a rule layer and the nodes in layer 3 are the 

compensatory rule nodes which are equated with the number of compensatory fuzzy sets of 

each external linguistic input variable. The links before and after layer 3 represent the 

preconditions and consequences of the of the rules respectively. The layer 4 is an output 

processing layer whose nodes are a linear function of the input variables. Generally, these 

nodes are known as the consequent nodes. Further, the last layer corresponds to an output layer 

and the nodes are defined as output nodes which acts as a defuzzifier and are recommended by 

layers 3 and 4. The rule premise comprises of interval type-2 quantum membership function 

(IT2QMF) as an antecedent to conventional IT2FNN and variable crisp numbers as the 

resultant part. For 𝐾 term nodes, the fuzzy rules are expressed as follows: 

𝑅𝑗: 𝐼𝑓 𝑥1 𝑖𝑠 𝑄̃1𝑗 𝑎𝑛𝑑 𝑥𝑖  𝑖𝑠 𝑄̃𝑖𝐾, 𝑇ℎ𝑒𝑛 𝑦𝑗 = 𝑋𝑒𝛺̃𝑗     (3.46) 

where 𝑥𝑖 is the 𝑖𝑡ℎ input, 𝑄̃𝑖𝑗 = [𝑄̅𝑖𝑗, 𝑄𝑖𝑗] is the set of upper and lower linguistic terms of 

quantum membership functions (QMFs), 𝑦𝑗 is the regression output in 𝑗𝑡ℎ rule, and 𝛺̃𝑗 =

[𝛺𝑗 , 𝛺𝑗] is the set of upper and lower weight parameters defined as 𝛺̃𝑗 ∈ ℜ
2(𝐼+1). Here, the 

QMF is extended in to IT2FLC structure with uncertain jump functions for identifying 

uncertainties in the inputs and achieve efficient control. The output of IT2QMF for 𝑖𝑡ℎ input 

and 𝑗𝑡ℎ rule is given as: 
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𝑄̃𝑖𝑗(𝑥𝑖𝑗 , 𝛽,𝑚𝑖𝑗, 𝜃̃𝑖𝑗) =
1

𝑛𝑠
∑ [(

1

1+exp(−𝛽𝑥𝑖−𝑚𝑖𝑗+|𝜃̃𝑖𝑗
𝑟 |)
)𝑈(𝑥𝑖̇, −∞,𝑚𝑖𝑗) +

𝑛𝑠
𝑟=1

(
exp(−𝛽(𝑥𝑖−𝑚𝑖𝑗−|𝜃̃𝑖𝑗

𝑟 |))

1+exp(−𝛽(𝑥𝑖−𝑚𝑗−|𝜃̃𝑖𝑗
𝑟 |))

)𝑈(𝑥𝑖̇, 𝑚𝑖𝑗, ∞)]      (3.47) 

where 𝑚𝑖𝑗 is the mean of 𝑖𝑡ℎ input in 𝑗𝑡ℎ rule, 𝛽 is the slope factor, 𝜃̃𝑖𝑗 = [𝜃𝑖𝑗, 𝜃𝑖𝑗] is the 

uncertain jump position set defined as 𝜃̃𝑖𝑗 ∈ ℜ
2×𝐼×𝑛𝑠×𝐾, and 𝑛𝑠 defines the number of grades. 

For any case, if the upper jump position (𝜃𝑖𝑗 = [𝜃1𝑗
1
…𝜃1𝑗

𝑛𝑠
; … ; 𝜃𝐼𝑗

1
…𝜃𝐼𝑗

𝑛𝑠
]) is greater than the 

lower jump position (𝜃𝑖𝑗 = [𝜃1𝑗
1 …𝜃1𝑗

𝑛𝑠; 𝜃𝐼𝑗
1 …𝜃𝐼𝑗

𝑛𝑠]), which defines as 𝜃𝑖𝑗 > 𝜃𝑖𝑗, the output of 

IT2QMF in eq. (3.47) leads to IT2 inference scheme producing footprint of uncertainties (FOU) 

[332]. Further, the union function 𝑈 with 𝑈(𝑥; 𝑎, 𝑏) = {
1, if 𝑎 ≤ 𝑥𝑖 < 𝑏
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 implies that 𝑥𝑖̇, 𝑚𝑖𝑗, ∞ 

have the properties of commutativity, associativity, monotonic, and continuous [333]. 

 

Figure 3.10. Interval type-2 quantum membership functions with 3 grades 

Figure 3.10 depicts the IT2QMF with 3 grades depicting the FOU. A detailed operation of each 

layer in evolving type-2 quantum fuzzy neural network is discussed in detail as follows: 

Layer 1 (Input layer): The input signals are fed into this layer where the data is directly 

propagated into the next layer without performing any computation. For an 𝑛𝑡ℎ observation, 

the input 𝑥𝑖 is defined as 𝑋𝑛 ∈ ℜ
1×𝐼 and the output is defined as: 

𝑢𝑖 = 𝑥𝑖          (3.48) 

Layer 2 (Quantum layer): In this layer, the fuzzification process is performed. The QMFs 

calculate the degree of membership for 𝑋𝑛 in each rule. The total number of rules initially 

defined are denoted as 𝐾. The outputs of the quantum layer are mathematically obtained as: 
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𝑄𝑖𝑗 = 𝑄̃𝑖𝑗(𝑥𝑖, 𝛽,𝑚𝑖𝑗 , 𝜃𝑖𝑗)        (3.49) 

𝑄𝑖𝑗 = 𝑄̃𝑖𝑗(𝑥𝑖 , 𝛽,𝑚𝑖𝑗, 𝜃𝑖𝑗)        (3.50) 

Layer 3 (Rule layer): This layer calculates the spatial firing strength by combining the 

membership degrees of 𝑗𝑡ℎ rule which is given as follows: 

𝑅̃𝑗 = [𝑅𝑗 , 𝑅𝑗]          (3.51) 

where 𝑅̃𝑗 is the spatial firing strength, 𝑅𝑗 =[𝑅1…𝑅𝐾] is the set upper firing strength, and 𝑅𝑗 =

[𝑅1…𝑅𝐾] is the set of lower firing strength. The product T-norm is adapted with the IT2QMF 

as given in (3.52) and (3.53) for performing this operation. 

𝑅𝑗 = Π𝑖=1
𝐼 𝑄𝑖𝑗          (3.52) 

𝑅𝑗 = Π𝑖=1
𝐼 𝑄𝑖𝑗          (3.53) 

Layer 4 (Output processing layer): The upper and lower crisp outputs, i.e. 𝑦𝑟 and 𝑦𝑙 

respectively are calculated in this layer. The type reduction process is carried out by employing 

design factors [𝑞𝑟 , 𝑞𝑙] for converting IT2 variables in to type 1 variable. The design factors 

control the upper and lower membership function proportion in such a way that 𝑞𝑟 > 𝑞𝑙. This 

process of type reduction requires lesser epochs when compared to conventional type reduction 

techniques [334]. Here, the decoupled extended Kalman filter [334] is used to adjust the design 

factor such that the upper and lower crisp outputs keep adapting to the changes in the inputs. 

The upper and lower crisp outputs are calculated as: 

𝑦𝑟 =
(1−𝑞𝑟)∑ 𝑅𝑗𝛺𝑗𝑥𝑒

𝑇𝐾
𝑗=1 +𝑞𝑟∑ 𝑅𝑗𝛺𝑗𝑥𝑒

𝑇𝐾
𝑗=1

∑ (𝑅𝑗+𝑅𝑗)
𝐾
𝑗=1

       (3.54) 

𝑦𝑙 =
(1−𝑞𝑙)∑ 𝑅𝑗𝛺𝑗𝑥𝑒

𝑇𝐾
𝑗=1 +𝑞𝑙∑ 𝑅𝑗𝛺𝑗𝑥𝑒

𝑇𝐾
𝑗=1

∑ (𝑅𝑗+𝑅𝑗)
𝐾
𝑗=1

       (3.55) 

where 𝛺𝑗 = [𝑤𝑖𝑗, … , 𝑤(𝐼+1)𝑗] is the weight parameter of upper layer for 𝑗𝑡ℎ rule,  𝛺𝑗 =

[𝑤𝑖𝑗, … , 𝑤(𝐼+1)𝑗] is the weight parameter of lower layer for 𝑗𝑡ℎ rule, and 𝑥𝑒 = [1, 𝑥1, … , 𝑥𝐼] is 

the extended input vector. The 1 in extended input prevents untypical gradient [335] and 

intercepts the rule consequent. 

Layer 5 (Output layer): This layer calculates the crisp output of the network by summing the 

upper and lower crisp outputs obtained at the output processing layer as follows: 

𝑦𝑁𝑁 = 𝑦𝑟 + 𝑦𝑙          (3.56) 
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3.2.2.1 Learning algorithm 

The eT2QFNN works on an online learning policy presented in algorithm 1. The learning 

mechanism consists of two scenarios, the rule growing criteria and the parameter update 

scenario. These scenarios are executed for every iteration. 

3.2.2.1.1 Growing Criterion 

Initially, the learning process has an empty rule base and the network structure keeps on 

updating as the input data changes. This eT2QFNN automatically evolves its fuzzy rules by 

forming a hypothetical rule from a newly obtained data sample. The hypothetically formed 

rules needs to be significantly evolved before adding it to the network structure. For a 𝑗𝑡ℎ rule, 

the significance is evaluated using 𝐿2 − 𝑛𝑜𝑟𝑚 weighted by input density function 𝑝(𝑥) as 

follows: 

𝐸𝑠𝑖𝑔(𝑗) = ‖𝜔𝑗‖(∫ exp(−
2‖𝑋−𝑚𝑗‖

2

𝜎𝑗
2 )𝑝(𝑋)𝑑𝑋

 

𝑅𝐼
)

1/2

     (3.57) 

From (3.57) it can be identified that the significance of the new rule is greatly dependent on 

𝑝(𝑋), but this is hard to calculate in priori for practical problems as the data distribution is 

unknown. To overcome this a Gaussian mixture model (GMM) is formulated by Chellappa et 

al. [336]. This approximates the complex changes in data as 

𝑝̂(𝑋) = ∑ 𝛼ℎ𝒩(𝑋; 𝑣ℎ , Σℎ)
𝐻
ℎ=1        (3.58) 

where 𝐻 is the number of mixture model, 𝛼ℎ is the mixing coefficient, 𝒩(𝑋; 𝑣ℎ , Σℎ) =

exp(−(𝑋 − 𝑣ℎ)
𝑇𝛴ℎ

−1(𝑋 − 𝑣ℎ)) is the Gaussian function of 𝑋 with 𝑣ℎ ∈ ℜ
𝐼 as mean vector 

and Σℎ ∈ ℜ
𝐼×𝐼 as variance matrix. 

Further, the 𝑗𝑡ℎ rule significance is estimated by substituting (3.58) to (3.57) and solving the 

standard operations to yield the following result: 

𝐸̂𝑠𝑖𝑔(𝑗) = ‖𝜔𝑗‖ (𝜋
𝐼

2 det(Σ𝑗)
1

2𝑁𝑗𝐴
𝑇)
1/2

      (3.59) 

where Σ𝑗 = 𝑑𝑖𝑎𝑔(𝜎1,𝑗
2 , … , 𝜎𝐼𝑗

2 ) is the positive definite weighting matrix, 𝐴 = [𝛼1, … , 𝛼𝐻] is the 

GMM mixing coefficients vector and 𝑁𝑗 is further represented as: 

𝑁𝑗 = [𝒩 (𝑚𝑗 − 𝑣1; 0,
Σ𝑗

2
+ Σ1) ,𝒩 (𝑚𝑗 − 𝑣2; 0,

Σ𝑗

2
+ Σ2) , … ,𝒩 (𝑚𝑗 − 𝑣𝐻; 0,

Σ𝑗

2
+ Σ𝐻)] (3.60) 

Here, 𝑚𝑗 = [𝑚1,𝑗, … ,𝑚𝐼,𝑗] is the mean vector of 𝑗𝑡ℎ rule. 

Further, to improve the estimating accuracy of the IT2QMF, the interval type-2 Gaussian 

membership functions (IT2GMF) are adapted as follows: 
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𝑄̃𝑖,𝑗(𝑥𝑖 , 𝛽, 𝑚𝑖,𝑗, 𝜃̃𝑖,𝑗) ≈ 𝜇𝑖,𝑗 = exp (−
(𝑥𝑖−𝑚𝑖,𝑗)

2

𝜎̃𝑖,𝑗
)     (3.61) 

𝜎̃𝑖,𝑗 = [𝜎𝑖,𝑗 , 𝜎𝑖,𝑗]

𝜎𝑖,𝑗 = min𝜃𝑖,𝑗 ; 𝜎𝑖,𝑗 = min𝜃𝑖,𝑗
       (3.62) 

 

Figure 3.11. Comparison of interval type-2 quantum membership functions and Gaussian 

membership functions 

In this process, both the means of IT2GMF and IT2QMF are defined equal and the minimum 

value of 𝜃̃𝑖,𝑗 is used to define the width of upper and lower IT2GMF. The illustration of 

IT2GMF in estimating the significance of IT2QMF is given in Figure 3.11. By following the 

above discussed criteria, it can be observed that the IT2GMF fits within the area of IT2QMF 

resulting in good approximation for IT2QMF. 

By applying the modified IT2QMF estimation, the rule significance can be estimated using 

(3.63) and the design factor given by: 

𝐸̂𝑗 = |𝐸̂𝑗,𝑟| + |𝐸̂𝑗,𝑙|         (3.63) 

This adds the hypothetical rule as a new rule 𝑅𝐾+1 to the network if it contributes over the 

existing rules. The rule growing criteria is mathematically given as: 

𝐸𝐾+1 ≥ 𝜌∑ 𝐸𝑗
𝐾
𝑗=1          (3.64) 

where 𝜌 ∈ (0,1], is a vigilance parameter [337]. 

3.2.2.1.2 Parameter Update 

The process of adding a hypothetical rule to a network structure is based of two strategies. 1) 

If the hypothetical rule satisfies the conditions of network structure. This process is call 

initialization of fuzzy rule. 2) If the hypothetical rule doesn’t satisfy the conditions of network 



84 

 

structure. Here, the parameters of the network are adjusting according to the change in input 

data. This strategy is winning rule update strategy. A detailed overview of these strategies is 

given as follows: 

A. Initializing Fuzzy Rules: 

The growing criterion in the previous section estimated the significance of a hypothetical rule 

according to the change in input data. For a data at 𝑛𝑡ℎ time step 𝑋𝑛, a new mean is assigned 

to IT2QMF as 

𝑚𝐾+1 = 𝑋𝑛          (3.65) 

This resulted in a new jump position which is achieved by distance-based formulation given in 

[331] as: 

𝜃𝑖,𝐾+1 =
1

(
𝑛𝑠+1

2
)
∙ 𝑟 ∙ 𝜎𝑖,𝐾+1,

𝜃𝑖,𝐾+1 =
1

(
𝑛𝑠+1

2
)
∙ 𝑟 ∙ 𝜎𝑖,𝐾+1

        (3.66) 

But, the application of mixed mean of GMM 𝑣 modified the distance, and the new distance is 

given as: 

𝜎𝑖,𝐾+1 = |𝑋𝑛 − 𝑣|, 𝜎𝑖,𝐾+1 = 𝛿1 ∙ 𝜎𝑖,𝐾+1

𝑣 = ∑ 𝛼ℎ ∙ 𝑣ℎ
𝐻
ℎ=1

      (3.67) 

The updated jump positions are given as follows: 

𝜃𝑖,1 =
1

(
𝑛𝑠+1

2
)
∙ 𝑟 ∙ 𝜎𝑖,1,

𝜃𝑖,1 =
1

(
𝑛𝑠+1

2
)
∙ 𝑟 ∙ 𝜎𝑖,1

         (3.68) 

As the GMM approximates the mean and variance for complex changes in inputs, the 

eT2QFNN uses the diagonal positive definite matrix of mixed variance as follows: 

𝜎𝑖,1 = 𝜎̂𝑖, 𝜎𝑖,1 = 𝛿1𝜎𝑖,1

Σ̂ = ∑ Σℎ ∙ 𝑣ℎ, Σ̂ = 𝑑𝑖𝑎𝑔(𝜎̂1
2, … , 𝜎̂𝐼

2)𝐻
ℎ=1

      (3.69) 

where, 𝛿1 creates the footprint of uncertainty (FOU). 

Here, the consequent rule parameters of the hypothetical rule are like the winning rule as given 

by (3.70). The process of obtaining winning rule is discussed in further sections. Finally, as per 

(3.64) if the hypothetical rule satisfies the condition of the network structure, a new rule 𝑅𝐾+1is 

added and its covariance matrix is formulated as in (3.71). Further, to accommodate new rules, 

the covariance matrix needs to be adjusted [338], which is achieved by multiplying (
𝐾2+1

𝐾2
) 

with the covariance matrices of other rules as given in (3.72).  

𝛺̃𝐾+1 = 𝛺̃𝑗𝑤          (3.70) 
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𝑃𝐾+1(𝑛) = 𝐼𝑍×𝑍         (3.71) 

𝑃𝑗(𝑛) = (
𝐾2+1

𝐾2
)𝑃𝑗(𝑛 − 1)        (3.72) 

B. Winning rule Update: 

If the hypothetical rules don’t satisfy the conditions of network in (3.64), the performance of 

eT2QFNN needs to be maintained by adjusting the network parameters according to the 

changes in input data. This is achieved by formulating a winning rule which is dependent on 

the highest spatial firing strength. The spatial firing strength assesses the satisfaction rate of 

the rule antecedent part according to changes in the input data. The mathematical formulation 

for winning rule update is given as follows: 

𝑗𝑤 = arg max
𝑗=1,…,𝐾

𝑃̂(𝑅𝑗|𝑋)        (3.73) 

𝑅̃𝑗 = (𝑅𝑗 + 𝑅𝑗) 2⁄          (3.74) 

Previously, the decoupled extended Kalman filter is used to adjust the design factor such that 

the upper and lower crisp outputs keep adapting to the changes in the inputs. This helps in 

grouping the local parameters which results in formation of a block diagonal covariance matrix 

𝑃(𝑛) (3.75).  

𝑷̃(𝒏) =

[
 
 
 
 
𝑷𝟏(𝒏) … 𝟎 … 𝟎
⋮ ⋱   ⋮
𝟎  𝑷𝒋(𝒏)  𝟎

⋮   ⋱ ⋮
𝟎 … 𝟎 … 𝑷𝑲(𝒏)]

 
 
 
 

      (3.75) 

For every time step, only one bock covariance matrix is updated i.e., 𝑃𝑗𝑤(𝑛). This property of 

localizing parameters enhances the efficiency by maintaining the robustness of the system. 

Remaining mathematics corresponding to decoupled extended Kalman filter are given in 

(3.76)- (3.78). 

𝐺𝑗𝑤(𝑛) = 𝑃𝑗𝑤(𝑛 − 1)𝐻𝑗𝑤(𝑛)[𝜂𝐼𝑀×𝑀 + 𝐻𝑘𝑤
𝑇 (𝑛)𝑃𝑗𝑤(𝑛 − 1)𝐻𝑗𝑤(𝑛)]

−1
  (3.76) 

𝑃𝑗𝑤(𝑛) = [𝐼𝑍×𝑍 − 𝐺𝑗𝑤(𝑛)𝐻𝑗𝑤
𝑇 (𝑛)]𝑃𝑗𝑤(𝑛 − 1)      (3.77) 

𝜃⃗𝑗𝑤(𝑛) = 𝜃⃗𝑗𝑤(𝑛 − 1) + 𝐺𝑗𝑤(𝑛)[𝑡(𝑛) − 𝑦(𝑛)]     (3.78) 

where, 𝐺𝑗𝑤(𝑛) is the Kalman gain matrix, 𝐻𝑘𝑤 is the Jacobian matrix [339], 𝜃⃗𝑗𝑤(𝑛) is the 

parameter vector at 𝑛𝑡ℎ iteration. 

Algorithm 3.1: eT2QFNN Learning Policy 

Define: inputs-𝑋𝑛 = [𝑥1, … , 𝑥𝐼]
𝑇, outputs-𝑇𝑛 = [𝑡1, … , 𝑡𝑀]

𝑇, and 𝑛𝑠 

\\Learning Policy\\ 

\\Phase 1:Growing Mechanism\\ 

file://///Learning
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𝐈𝐟 𝐾 = 0 𝐭𝐡𝐞𝐧  

Begin first rule using (3.65), (3.68), and (3.69) 

else 

The existing IT2QMF is approximated using (3.61) 

Begin hypothetical rule 𝑅𝐾+1 using (3.54-3.56), (3.59) 

𝐟𝐨𝐫 𝑗 = 1 𝐭𝐨 𝐾 + 1  

Calculate the rule significance 𝐸̂𝑗 using (3.63) 

𝐞𝐧𝐝 𝐟𝐨𝐫  

𝐈𝐟 𝐸𝐾+1 ≥ 𝜌∑ 𝐸𝑗
𝐾
𝑗=1  𝐭𝐡𝐞𝐧  

𝐾 = 𝐾 + 1  

𝐞𝐧𝐝 𝐢𝐟  

𝐞𝐧𝐝 𝐢𝐟  

\\Phase 2: Parameter Adjustment \\ 

𝐈𝐟 𝐾(𝑛) = 𝐾(𝑛 − 1) 𝐭𝐡𝐞𝐧  

Determine the spatial firing using (3.52) and (3.53) 

Identify the winning rule 𝑗𝑤 using (3.73) 

Perform decoupled extended Kalman filter on 𝑹𝑗𝑤  using (3.76) and (3.78) 

Update covariance matrix according to the winning rule using (3.77) 

else 

Check the consequent weight 𝛺̃𝐾+1 of new rule using (3.70)  

Calculate the covariance matrix using (3.71) 

𝐟𝐨𝐫 𝑗 = 1 𝐭𝐨 𝐾 − 1 𝐝𝐨  

𝑃𝑗(𝑛) = 𝑃𝑗(𝑛 − 1) (
𝐾2+1

𝐾2
)  

𝐞𝐧𝐝 𝐟𝐨𝐫  

𝐞𝐧𝐝 𝐢𝐟  

3.2.2.2 Adaptive law 

To compensate the nonlinearity of the robotic systems operating with the PD controller, the 

eT2QFNN developed in Section 3.2.2 is trained with a nonlinear regulator. In this research, a 

sliding theory-based adaption law is equipped to develop a sliding surface 𝑠𝑃(𝑒, 𝑒̇) as 

𝑠𝑝(𝑒, 𝑒̇) = 𝑒̇ + 𝜒𝑒, 𝜒 > 0        (3.79) 

The design process of the control structured is summarized with a theorem as follows: 

Theorem: The consequent part parameters of the eT2QFNN with the adaptation laws are 

chosen as: 

ℱ̇(𝑡) = −𝐾𝐷𝒫(𝑡)𝒲̃(𝑡)𝑠𝑝(𝑡), ℱ(0) = ℱ0 ∈ 𝑅
𝑛𝑥1     (3.80) 

where 𝑃(𝑡) is recursively updated as 

𝒫̇(𝑡) = −𝒫(𝑡)𝒲̃(𝑡)𝒲̃𝑇(𝑡)𝒫(𝑡), 𝒫(0) = 𝒫0 ∈ 𝑅
𝑛×𝑛    (3.81) 
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In a compact set where the system under control is of second-order, the sliding theory-based 

adaption law guarantees the stability of the learning process. 

Proof: The proof of the above state is initiated by identifying the control signals associated 

with the systems. The output of the PD controller from (3.43) is given as 

𝑦𝑃𝐷(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐷𝑒̇(𝑡)        (3.82) 

and can be rewritten as follows: 

𝑦𝑃𝐷(𝑡) = 𝐾𝐷 (𝑒̇(𝑡) +
𝐾𝑃

𝐾𝐷
𝑒(𝑡))       (3.83) 

Further, the overall control action is defined by 

𝑌 = −𝑦𝑁𝑁(𝑡) + 𝑦𝑃𝐷(𝑡)        (3.84) 

The representation of the plant model with sliding surface in (3.79) is given by 

𝑠𝑃(𝑡) = 𝑒̇(𝑡) + 𝜒𝑒(𝑡)         (3.85) 

where 𝜒 =
𝐾𝑃

𝐾𝐷
. Considering (3.82) and (3.85), the control output of PD is defined as 

𝑦𝑃𝐷(𝑡) = 𝐾𝐷𝑠𝑃(𝑡)         (3.86) 

Furthermore, the control output of eT2QFNN from (3.56) is summarized as 

𝑦𝑁𝑁(𝑡) = (1 − 𝑞𝑟)∑ 𝑅̃𝑗Ω̅𝑗
𝐾
𝑗=1 + (1 − 𝑞𝑙)∑ 𝑅̃𝑗Ω𝑗

𝐾
𝑗=1     (3.87) 

and rewritten as  

𝑦𝑁𝑁(𝑡) = ∑ (((1 − 𝑞𝑟)𝑅̃𝑗Ω̅𝑗) + ((1 − 𝑞𝑙)𝑅̃𝑗Ω𝑗))
𝐾
𝑗=1     (3.88) 

Further, 𝒲̃(𝑡) and ℱ(𝑡) as defined as 

𝒲̃(𝑡) = [(1 − 𝑞𝑟)𝑅̃1(𝑡) + (1 − 𝑞1)𝑅̃𝑗(𝑡) … (1 − 𝑞𝑟)𝑅̃𝐾(𝑡) + (1 − 𝑞𝑙)𝑅̃𝐾(𝑡)]
𝑇

 (3.89) 

and 

ℱ(𝑡) = [Ω̅1 +Ω1… Ω̅𝐾 + Ω𝐾]
𝑇
       (3.90) 

From (3.89) and (3.90), (3.88) can be summarized as  

𝑦𝑁𝑁(𝑡) = ℱ𝑇(𝑡)𝒲̃(𝑡)        (3.91) 

Hence, the cost function with the adaption law can be defined as 

𝒥(𝑡) = ∫ 𝑠𝑃
2𝑡

0
(𝜏)𝑑𝜏         (3.92) 

=
1

𝐾𝐷
2 ∫ (𝑦(𝜏) + 𝑦𝑁𝑁(𝜏))

2𝑡

0
𝑑𝜏        (3.93) 

= ∫ (𝑦(𝜏) + ℱ𝑇(𝑡)𝒲̃(𝜏))
2

𝑑𝜏
𝑡

0
       (3.94) 

Considering the formulations in [340], the gradient of cost function 𝒥 concerning ℱ is derived 

as 
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∇ℱ𝒥(𝑡) = 0          (3.95) 

⟹ ∫ 𝒲̃(𝜏)𝑦(𝜏)𝑑𝜏 + ℱ(𝑡) ∫ 𝒲̃(𝜏)𝒲̃𝑇(𝜏)𝑑𝜏
𝑡

0
= 0

𝑡

0
     (3.96) 

⟹ℱ(𝑡) = − [∫ 𝒲̃(𝜏)𝒲̃𝑇(𝜏)𝑑𝜏
𝑡

0
]
−1

∫ 𝒲̃(𝜏)𝑦(𝜏)𝑑𝜏
𝑡

0
    (3.97) 

Further, 𝒫 is defined as 

𝒫(𝑡) = [∫ 𝒲̃(𝜏)𝒲̃𝑇(𝜏)𝑑𝜏
𝑡

0
]
−1

       (3.98) 

⇒ 𝒫−1(𝑡)ℱ(𝑡) = −∫ 𝒲̃(𝜏)𝑦(𝜏)𝑑𝜏
𝑡

0
       (3.99) 

⇒ 𝒫−1(𝑡) = ∫ 𝒲̃(𝜏)𝒲̃𝑇(𝜏)𝑑𝜏
𝑡

0
        (3.100) 

⇒ 𝒫−1(𝑡)𝒫(𝑡)𝒫−1(𝑡) = −𝒲̃(𝑡)𝒲̃𝑇(𝑡)      (3.101) 

⇒ 𝒫̇(𝑡) = −𝒫(𝑡)𝒲̃(𝑡)𝒲̃𝑇(𝑡)𝒫(𝑡)       (3.102) 

From (3.102), it is observed that 𝒫̇(𝑡) is negative definite and the 𝒫(𝑡) ∈ ℓ∞ decreases over 

time. By performing time derivative of (3.99) and by adapting the algebraic manipulations, the 

consequent part parameters of the controller are obtained as 

ℱ̇(𝑡) = 𝒫̇(𝑡)𝒫−1(𝑡)ℱ(𝑡) − 𝒫(𝑡)𝒲̃(𝑡)𝑦(𝑡) 

= −𝒫(𝑡)𝒲̃(𝑡)𝒲̃𝑇(𝑡)ℱ(𝑡) − 𝒫(𝑡)𝒲̃(𝑡)𝑦(𝑡) 

= −𝒫(𝑡)𝒲̃(𝑡)𝑦 (𝒲̃𝑇(𝑡)ℱ(𝑡) + 𝑦(𝑡)) 

= −𝐾𝐷𝒫(𝑡)𝒲̃(𝑡)𝑠𝑃(𝑡)        (3.103) 

3.2.3 Stability analysis 

The developed controller is adapted along conventional PD controller which is initially defined 

in (3.43). As the eT2QFNN is an approximator of general function, there exists ℱ∗ such that: 

𝑦(𝑡) = ℱ∗𝑇𝒲̃(𝑡)         (3.104) 

Defining ℱ̃(𝑡) as  

ℱ̃(𝑡) = ℱ(𝑡) − ℱ∗         (3.105) 

and 

𝑠𝑃(𝑡) = ℱ̃𝑇(𝑡)𝒲̃(𝑡)         (3.106) 

it is identified that, for the inputs to the fuzzy system 𝑒(𝑡) and 𝑒̇(𝑡), the approximation of 

general function is a second order one. 

Lemma:  

𝑑 (𝒫−1ℱ̃(𝑡))

𝑑𝑡
= 𝒫̇−1(𝑡)ℱ̃(𝑡) + 𝒫−1(𝑡)ℱ̇̃(𝑡) 
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= −𝒫−1(𝑡)𝒫̇(𝑡)𝒫−1(𝑡)ℱ̃(𝑡) + 𝒫−1(𝑡)ℱ̇̃(𝑡) 

= 𝒲̃(𝑡)𝒲̃𝑇(𝑡)ℱ̃(𝑡) − 𝒲̃(𝑡)𝑠𝑃(𝑡) 

= 𝒲̃(𝑡)𝑠𝑃(𝑡) − 𝒲̃(𝑡)𝑠𝑃(𝑡) 

= 0           (3.107) 

This indicates 𝒫−1(𝑡)ℱ̃(𝑡) doesn’t change over the time and hence 𝒫−1(𝑡)ℱ̃(𝑡) =

𝒫−1(0)ℱ̃(0), ∀𝑡 > 0. 

lim
𝑡→∞

ℱ̃(𝑡) = lim
𝑡→∞

𝒫(𝑡)𝒫−1(0)ℱ̃(0)       (3.108) 

Since 𝒫(𝑡) is decreasing and ℱ̃(𝑡) ∈ ℓ∞, ℱ(𝑡) ∈ ℓ∞. Considering the following Lyapunov 

function: 

𝑉 =
1

2
ℱ̃𝑇(𝑡)𝒫−1ℱ̃(𝑡)         (3.109) 

𝑉 = ℱ̃𝑇(𝑡)𝒫−1ℱ̇̃(𝑡) +
1

2
ℱ̃𝑇(𝑡)𝒫̇−1ℱ̃(𝑡) 

= ℱ̃𝑇(𝑡)𝒲̃(𝑡)𝑠𝑃(𝑡) −
1

2
ℱ̃𝑇(𝑡)𝒫−1(𝑡)𝒲(𝑡)𝒲𝑇(𝑡)ℱ̃(𝑡) 

= 𝑠𝑃
2(𝑡) −

1

2
𝑠𝑃
2(𝑡) 

=
1

2
𝑠𝑃
2(𝑡)          (3.110) 

To perform the stability analysis of the developed controller, some assumptions needs to be 

considered. 

Assumption 1. The inputs of eT2FNN and their derivatives are bounded [341], [342]. 

|𝑒(𝑡)| ≤ 𝐵𝑒 , |𝑒̇(𝑡)| ≤ 𝐵𝑒̇   ∀𝑡        (3.111) 

where 𝐵𝑒 and 𝐵̇𝑒 are positive scalars. 

This assumption with the adaptive law guarantees that the center of the quantum membership 

function 𝒸, standard deviation 𝜎 of the membership functions which is considered to be an 

interval, and the adaptive crisp values Ω𝑖𝑗 are bounded as: 

𝐵𝜎 ≤ ‖𝜎1‖ ≤ 𝐵̅𝜎, 𝐵𝜎 ≤ ‖𝜎2‖ ≤ 𝐵̅𝜎 , ‖𝒸1‖ ≤ 𝐵𝒸, ‖𝒸2‖ ≤ 𝐵𝒸  

𝐵𝜎 ≤ ‖𝜎1‖ ≤ 𝐵̅𝜎 , 𝐵𝜎 ≤ ‖𝜎2‖ ≤ 𝐵̅𝜎, ‖𝒸1‖ ≤ 𝐵𝒸, ‖𝒸2‖ ≤ 𝐵𝒸‖Ω𝑖𝑗‖ ≤ 𝐵Ω  

where 𝐵𝜎, 𝐵̅𝜎, 𝐵𝒸, and 𝐵Ω are positive scalars. 

Assumption 2. The outputs of the eT2FNN controller are bounded [341], [342]. 

|𝑦𝑁𝑁(𝑡)| ≤ 𝐵𝑦, |𝑦̇𝑁𝑁(𝑡)| ≤ 𝐵̇𝑦, ∀𝑡       (3.112) 

|𝑦𝑃𝐷(𝑡)| ≤ 𝐵𝑦, |𝑦̇𝑃𝐷(𝑡)| ≤ 𝐵̇𝑦, ∀𝑡       (3.113) 

|𝑦(𝑡)| ≤ 𝐵𝑦, |𝑦̇(𝑡)| ≤ 𝐵̇𝑦, ∀𝑡        (3.114) 
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where 𝑦 and 𝑦̇ are known positive constants. 

In assumptions 1 and 2, the inputs and outputs of the eT2QFNN are bounded as the learning 

rate considered in this research is adaptive and does not need to be known a priori. This is an 

obvious superiority of the current approach with respect to conventional type 2 fuzzy neural 

network and interval type 2 fuzzy logic control approaches in which the upper bounds of the 

states of the system should be known a priori in order to choose an appropriate value for the 

learning rate. 

Further, it is well known that the sliding surface suffers from high-frequency oscillations in the 

control input, which are called chattering. The following are the two common methods used to 

eliminate chattering: 

1) using a saturation function to replace the signum function; 

2) inserting a boundary layer so that an equivalent control replaces the corrective one when the 

system is inside this layer. 

Assumption 3. An inequality is considered for positive design parameters [343]. Generally, all 

the feasible design parameters may have equality as well as inequality constraints which can 

be referred as feasible region. As the problem under consideration in this research is trajectory 

tracking and position control, i.e., to move the system precisely by the eT2QFNN controller to 

perform the desired operation, it must be treated as an equality constraint. A feasible design 

must satisfy precisely all equality constraints. But, the experiments on control of two degree of 

freedom operation of the systems has shown that force feedback sometimes produces an 

undesirable chattering behaviour, where the plant repeatedly makes and breaks contact with 

the constraint surface. This behaviour is an example of a limit cycle, and is likely caused by 

the nonlinearity in the system dynamics introduced by the unilateral (i.e., inequality) constraint. 

Further, it is identified that the feasible region with respect to an inequality constraint is much 

larger than that with respect to the same constraint expressed as equality. Hence to scale these 

inequality constraints by a positive constant, the assumption 3 is made. This assumption shrinks 

the inequality of the feasible region, and the number of possible designs that can optimize the 

cost function is reduced improving the time of convergence for optimal solution, and achieving 

stability.  

Σ > 𝑦̇           (3.115) 

Considered that the system inputs and the controller actions are bounded to positive constants, 

the Lyapunov function candidate in (3.110) is solved as 

𝑉 =
1

2𝐾𝐷
2 𝑦𝑃𝐷

2           (3.116) 
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By applying differentiation, the (3.116) is formulated as: 

𝑉̇ =
1

𝐾𝐷
2 𝑦𝑃𝐷𝑦̇𝑃𝐷 =

1

𝐾𝐷
2 𝑦𝑃𝐷(𝑦̇ + 𝑦̇𝑁𝑁)       (3.117) 

This guarantees the conditions 𝑉 > 0 and 𝑉̇ < 0. For an arbitrary initial condition 𝑒(0) ≠ 0, 

the output 𝑦𝑃𝐷(𝑡) and the error 𝑒(𝑡) will approach zero within finite time 𝑡𝑓. Therefore, from 

Lyapunov stability theorem [344], the closed loop system achieves global stability, when the 

controller closely tracks the desired trajectory. This also achieves guaranteed position 

convergence and minimized tracking error. 

3.2.4 Evolving Fuzzy Control for Helicopter system 

In this section, the eT2QFNN method is evaluated for the 2DoF helicopter system with 

coupling among output channels. The trajectory of 2DoF helicopter has been defined by pitch 

angle and yaw angle movements. The main rotor lift is responsible for change in pitch and 

pulling forces of tail rotor are responsible for yaw angle movements. The objective is to 

decouple the two typical output channels such that the output responses follows a desired 

trajectory. From the dynamic model of the 2DoF helicopter system it has been identified that 

the pitch and yaw axes can be controlled by appropriately selecting the voltages of the pitch 

and yaw motors, respectively. Due to the linear dependency of each rule on the input variables, 

the developed controller is considered to be ideal for acting as an interpolating supervisor for 

the PD controller. From the block diagram in Figure 3.12, desired and measured pitch and yaw 

position caused to generate an error which is further applied to fuzzy input. Here, the pitch 

error 𝑒𝑝(𝑡) = 𝛼𝑑 − 𝛼, derivative of pitch error is 𝑒̇𝑝(𝑡), yaw error is 𝑒𝑦(𝑡) = 𝜑𝑑 −𝜑, and 

derivative of yaw error is 𝑒̇𝑦(𝑡). Since the principle idea of developing the eT2QFNN is based 

on QMF with uncertain jump positions, the controller benefits from flexible rule formulation 

with nine initial rules. Further these initial membership functions are designed in a closed 

interval with universe of discourse lying between [-0.2, 0.2]. This range is further evolved 

during finding optimal position. Apart from the rules and universe of discourse, the vigilance 

parameter for performing rule growing mechanism is set at 0.65 for simplicity, and the FOU is 

created at 0.7. At the initial instant, two control rules are added at 𝑒𝑝(𝑡) and 𝑒𝑦(𝑡) 

corresponding to the criterion discussed in the algorithm. Further, the rule growing process 

inherently develops the rules based on the heuristic motion of the helicopter system.  
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Figure 3.12. Evolving type 2 fuzzy neural network controller for helicopter control 

3.2.4.1 Simulation Results 

The response of pitch and yaw motion of the 2DoF helicopter with eT2QFNN controller is 

analyzed using Simulink/MATLAB software. The reference trajectory of amplitude 5 is 

considered for pitch and yaw path tracking assessment. To replicate the behavior of disturbance 

conditions during the simulation process, an automated white gaussian noise of 20db is 

considered along with the inputs driving the system.   To assess the superiority of the developed 

controller, the results obtained are compared with conventional IT2FLC applied with the same 

setup. The corresponding results are shown in Figure 3.13.  
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(b) Pitch velocity 

 

(c) Yaw angle 

 

(d) Yaw velocity 

Figure 3.13. Pitch and yaw output with evolving type 2 quantum fuzzy neural network 

control of helicopter in Simulink 

From Figure 3.13, it is observed that, the pitch angle for eT2QFNN in Figure 3.13(a) reach an 

angle of −5.10 at 0.91 sec for the first negative step. The control action is so strong that it can 

uplift the body within 0.4 sec and able to hover very fast. The helicopter body is at rest position 

and tilted at -40 degree and so pitch motor required strong thrust at the start to uplift the body. 

Due to strong control action at 0.4 sec the pitch velocity in Figure 3.13(b) reaches to its highest 

value of 159 degree/sec and will be able to generate enough force as per requirement. The pitch 

voltage also stops varying after reaching its stable state and gives no oscillations. The yaw 

angle in Figure 3.13(c) for eT2QFNN controller reaches to its trajectory of angle −4.80 at 

0.6sec. To maintain the coupling between pitch and yaw rotor, the pitch velocity is 

comparatively less, and the yaw propeller are rotating with yaw velocity as shown in Figure 

3.13(d). The variation is observed to be around -41degree/sec at 0.2 sec. When compared to 

the conventional IT2FLC, the proposed controller depicted fast response to variation in 

trajectory with less settling time.  

Further, the root mean square error (RMSE) has been calculated for the measured pitch angle 

with the reference sine wave trajectory as shown in Table 3.10 using Simulink. Besides, Table 

3.11 points out a comparative assessment of controller’s performance in terms of time response 

characteristics for pitch and yaw angle of helicopter system. 
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Table 3.10. Root mean square error for evolving type 2 quantum fuzzy neural network 

control of helicopter in Simulink 

Controller Root mean square error 

Pitch angle (deg) yaw angle (deg) 

IT2FLC 2.8167 deg 4.9176 deg 

eT2QFNN 2.1987 deg 0.1976 deg 

 

Table 3.11. Time response analysis for evolving type 2 quantum fuzzy neural network 

control of helicopter in Simulink 

Controller Pitch Response Yaw Response 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state 

error (𝑒
𝑠𝑠

) (cm) 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state 

error (𝑒
𝑠𝑠

) (cm) 

IT2FLC 6.15 sec 0.81 cm 7.92 sec 6.93 cm 

eT2QFNN 0.56 sec 0.13 cm 0.61 sec 0.27 cm 

 

From the observation of the time response analysis, settling time 𝑡𝑠 and steady-state error 𝑒𝑠𝑠 

are minimum in case of wavelet fuzzy which are 0.56 sec and 0.13 cm for pitch control & 0.61 

sec and 0.27 cm for yaw control. Further, the action of the developed controller is tested in 

laboratory on a 2DoF helicopter test rig. 

3.2.4.2 Real-time Results 

To analyse the action of the controller on the real-time operation of the helicopter system, the 

hardware in loop-application programming interface (HIL-API) associated with the Quanser 

helicopter setup is used. Initially, the simulated models in section 3.2.4.1 are calibrated for code 

generation with MATLAB/Simulink and Quanser software. Further, a C code generated in 

using the MEX function and interpreted to the hardware using the RS232 interface with the 

DAQ board. To achieve the efficient operation of the developed controller and simultaneous 

action of the helicopter system for every rule fired by the eT2QFNN for PD controller, 

Immediate I/O is adapted. This performs the hardware-in-the-loop-application programming 

interface (HIL-API) operation of the developed controller with the real-time setup. The 

corresponding pitch and yaw characteristics for the real-time operation of the helicopter are 

shown in Figure 3.14. Similar to the simulation process, the performance of the developed 

approach is assessed and the results are compared with the action of conventional interval type 

2 fuzzy logic controller developed for the same helicopter setup. 
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(a) Pitch angle 

 

(b) Pitch velocity 

 

(c) Yaw angle 

 

(d) Yaw velocity 

Figure 3.14. Pitch and yaw output with evolving type 2 quantum fuzzy neural network 

control of helicopter in real-time 

Figure 3.14 shows output response of the pitch angle movement, yaw angle movement, pitch 

velocity, and yaw velocity for developed controller on square trajectory. To assess the 

superiority of the developed controller, the action of IT2FLC on the same setup is carried out 

and the results obtained are compared. The pitch angle due to action of eT2QFNN in Figure 

3.14(a) reaches an angle of −5.10 at 𝑡 = 1.5 𝑠𝑒𝑐 for the first time and touches the reference 
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trajectory. Further it settles to the angle of −4.90 at 𝑡 = 5.41 𝑠𝑒𝑐 and stabilizes the system. 

The pitch velocity due to action of eT2QFNN in Figure 3.14(b) reaches to its highest value of 

69 degree/sec at 𝑡 = 0.8 𝑠𝑒𝑐. The velocity reduces to 69 degree/sec in real-time as no 

disturbances were considered in simulation. Similarly, the yaw angle variation due to action of 

eT2QFNN in Figure 3.14(c) settles at trajectory of angle −5.80 at 𝑡 = 5.6 𝑠𝑒𝑐 and maintains 

the constant trajectory. As mentioned earlier, to keep the proper coupling between pitch and 

yaw rotor, the pitch velocity is comparatively less than the yaw velocity depicted in Figure 

3.14(d). The yaw velocity goes up to 18.6 degree/sec at t=0.6 sec. In a similar observation, the 

IT2FLC underperformed while controlling both the pitch and yaw motors.  

Further, the RMSE for both the controllers is provided in Table 3.12. Besides, the settling time 

(𝑡𝑠) and steady-state error (𝑒𝑠𝑠) are minimum in case of eT2QFNN controller which is 6.75 

sec, 5.97 cm for pitch control & 5.1 sec, 3.17 cm respectively for yaw control as shown in 

Table 3.13.  

Table 3.12. Root mean square error for evolving type 2 quantum fuzzy neural network 

control of helicopter in real-time 

Controller Root mean square error 

Pitch angle (deg) Yaw angle (deg) 

IT2FLC 7.6516 deg 13.2168 deg 

eT2QFNN 3.1698 deg 4.1689 deg 

 

  Table 3.13. Time response analysis for evolving type 2 quantum fuzzy neural network 

control of helicopter in real-time 

Controller Pitch Response Yaw Response 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state error 

(𝑒
𝑠𝑠

) (cm) 

Settling time 

(𝑡
𝑠
) (sec) 

Steady-state 

error (𝑒
𝑠𝑠

) (cm) 

IT2FLC 7.23 sec 8.73 cm 9.72 sec 13.35 cm 

eT2QFNN 6.75 sec 5.97 cm 5.1 sec 3.17 cm 

 

The comparison between action of both the controllers on the test rig depicted that IT2FLC has 

large settling time, and high oscillations, whereas the proposed controller depicted fast 

response to variation in trajectory with less settling time. 
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3.2.5 Evolving Fuzzy Control for Ball Balancer System 

The numerical simulation of the 2DoF ball balancer model is developed using MATLAB/ 

Simulink software. Since the arrangement of the plate on the two servo units is symmetrical, 

the action of the controller on one servo unit has an impact on the action of the controller on 

the other servo unit. This operates them in a coupled environment irrespective of the aspect 

that both the controllers are designed in a decoupled environment. 

 

Figure 3.15. Evolving type 2 fuzzy neural network control for ball balancer system 

3.2.5.1 Simulation Analysis 

Initially, the system is operated to control the position of the ball on a plate in a square 

trajectory. This is achieved by controlling the ball balancer with eT2QFNN by providing a 

square input signal with a frequency of 0.08Hz and amplitude of 3 as the reference trajectory. 

The eT2QFNN operates by measuring the error between the desired and measured ball position 

to optimize the values of the PD controller. The results obtained are then compared with the 

action of the classical IT2FLC control on the same simulation, operating for the same trajectory 

to assess the performance of the eT2QFNN controller. The results of the ball position, servo 

angle, and voltage of the ball balancer system for the action of eT2QFNN controller and the 

IT2FLC controller are shown in Figure 3.16.  
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(b) Plate angle 

Figure 3.16. Ball balancer output with evolving type 2 quantum fuzzy neural network 

control in Simulink 

Figure 3.16 (a) shows the results of the position of the ball on the x-axis for both IT2FLC and 

the eT2QFNN control. The results identify that the ball position settles around 2.1 sec at 5 cm 

with the action of eT2QFNN controller. In this case, the eT2QFNN has a minimum final 

position and reaches the desired value in very less time. Further, in Figure 3.16(b), the servo 

angle response of the ball on the x-axis shows that variation in the control angle is provided by 

the servo motor. The minimum control angle defines the accuracy of a controller in achieving 

balancing control for the ball balancer system. In this case, the eT2QFNN has less control angle 

when compared with the IT2FLC. This will move the plate very slowly while balancing the 

ball and helps in achieving a stable response for the system. Hence, the eT2QFNN has better 

performance when compared with the IT2FLC control. Further, to assess the performance of 

the eT2QFNN controller, the time domain specifications are calculated and the results are 

shown in Table 3.14. From the result, it is observed that the peak overshoot of IT2FC is 13.5%, 

which causes huge oscillations and made the ball difficult to balance on the plate. On the other 

side as per the results observed in the graph, it’s observed that eT2QFNN has a fine response 

to peak overshoot 0.827% and shows the excellent balance of ball on the plate without any 

oscillation. 

Table 3.14. Time response analysis for evolving type 2 quantum fuzzy neural network 

control of ball balancer in Simulink 

Controllers Peak time 

(𝑡𝑝) (sec) 

Settling time 

(𝑡𝑠) (sec) 

Peak overshoot 

(𝑀𝑝) (%) 

Steady-state 

error (𝑒𝑠𝑠) (cm) 

IT2FLC  0.  19𝑠𝑒𝑐  2.8 𝑠𝑒𝑐  13.5%  0.00472 𝑐𝑚  

eT2QFNN 0.14 𝑠𝑒𝑐  2.2 𝑠𝑒𝑐  0.827%  0.000648 𝑐𝑚  

Further, the RMSE value of IT2FLC and eT2QFNN control actions on the operation of ball 

balancer for square trajectory are calculated in terms of position and plate angle parameter. The 

results are tabulated as shown in Table 3.15. 
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Table 3.15. Root mean square error for evolving type 2 quantum fuzzy neural network 

control of ball balancer in Simulink 

Controllers 
Root mean square error 

Position (cm) Angle (deg) 

IT2FLC  2.1455 cm 3.3255 deg 

eT2QFNN 1.7586 cm 0.5931 deg 

3.2.5.2 Experimental Analysis 

The hardware study is initiated with the same parameters as in the simulation analysis. Further, 

the developed eT2QFNN controller and the IT2FLC are implemented on the same setup, and 

the output responses of each controller are identified. The ball position, plate angle, and 

operating voltage of the servo mechanism are observed as shown in Figure 3.17. 

 
(a) Ball position 

 
(b) Plate angle 

Figure 3.17. Ball balancer output with evolving type 2 quantum fuzzy neural network 

control in real-time 

From the results in Figure 3.17 (a) it is observed that the eT2QFNN provides stabilized 

operation for the ball balancer system by balancing the ball on the plate with almost zero 

oscillation. The results in Figure 3.17 (b) show that the plate stabilization angle of eT2QFNN 

is maintained between 15 to 20 degrees, whereas the IT2FLC has a stabilization angle varying 

between −30 to 35 degree. This identifies that the eT2QFNN has smooth operation even in 

the presence of external disturbances that affect the movement of the ball during real-time 

experiments. Besides, the time-domain characteristics of the eT2QFNN and the IT2FLC are 
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calculated to assess their operation in the real-time experiment. As of Table 3.16, the response 

of eT2QFNN is better than the IT2FLC for peak time, settling time, and peak overshoot.  

Table 3.16. Time response analysis for evolving type 2 quantum fuzzy neural network 

control of ball balancer in real-time 

Controllers Peak time 

(𝑡𝑝) (sec) 

Peak overshoot 

(𝑀𝑝) (%) 

Steady-state 

error (𝑒𝑠𝑠) (cm) 

IT2FLC  1.37 𝑠𝑒𝑐  22.9%  1.151 𝑐𝑚  

eT2QFNN 0.89 𝑠𝑒𝑐  12.4%  0.487 𝑐𝑚  

 

Similarly, the RMSE value for the action of IT2FLC and eT2QFNN controller on the operation 

of real-time ball balancer setup for square trajectory are calculated in terms of position and 

plate angle parameter. The results are tabulated as shown in Table 3.17. 

Table 3.17. Root mean square error for evolving type 2 quantum fuzzy neural network 

control of ball balancer in real-time 

Controllers 
Root mean square error 

Position (cm) Angle (deg) 

IT2FLC 5.1894 cm 3.4049 deg 

eT2QFNN 3.5680 cm 2.7517 deg 

3.3 CONCLUSION 

In this chapter, the control of benchmark systems is achieved through hybrid and evolving 

intelligent control approaches. Initially, the wavelet fuzzy control is developed for helicopter 

and ball balancer systems. The advantage of wavelet transforms while analysing the non-

stationary signals provides an upper hand while developing the controller. Besides, the wavelet 

transforms investigate the input signals which extricates and distinguish the segments of the 

frequency signal in a different period and represent them to another frame. Moreover, the use 

of discrete wavelet transforms denoises the signal by decomposing and reconstructing the 

signal using dilated and shifted forms. This helps in tuning the weights of fuzzy logic controller 

rules after signal reconstruction to achieve required control with the robotic system. This 

overcomes the drawbacks of transparent interpretation of choosing fuzzy rules, achieved 

position, balancing control, and improved transient response compared to conventional 

techniques. 

Similarly, the evolving type2 quantum fuzzy neural network control scheme is developed for 

achieving balancing and attitude tracking control in ball balancer and helicopter systems 

respectively. The controller generated the required rules through rule growing mechanism and 
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parameter adjustment learning scenario. Further, a sliding surface based adaptive law is 

equipped to compensate the nonlinearity of the systems operating with eT2QFNN and PD 

controller. Simulation and experimental analysis are conducted with the developed approaches 

and modelled plants for offline path tracking for a predefined trajectory with the systems. The 

corresponding results are compared with the IT2FLC technique which depicted the robustness 

of the proposed approach. 
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Chapter 4. PROBABLISTIC ALGORITHMS FOR CONTROL OF 

2DOF SYSTEMS 

The effect of unknown disturbances during the control of non-holonomic systems have been 

the subject of research due to their usefulness in various applications. As a result, the modeling 

and control of these systems is dealt in a theoretical way by achieving steady state operation 

through a feedback control loop. From the literature it is observed that the conventional process 

of controlling 2DoF systems while considering the parametric uncertainties lacked in the areas 

of selecting the bias and balancing the prognostic variables. The discussions depict that the 

uncertainty in the system played a big role, and it is necessary to bring a solution to this 

problem. For that matter, approximation and relaxation methods have been proposed 

considering their conservative nature. Besides, to overcome the above-mentioned drawbacks, 

and achieve the stability and performance requirements, advanced control techniques which 

depend upon probabilistic control and randomization are being implemented in this area of 

research [153], [345], [346]. Initially, these methods have assumed that the parametric 

uncertainty affects the system in a probabilistic pattern and then the performance level has been 

provided to check its ability. Further, the mathematical model required to design these 

algorithm-based controls is obtained by numerical linearization of the full order nonlinear 

system [157]. Since, the explicit relationship between the state- space matrices and the 

uncertain parameters should be available all the time, linearization process subjected to 

repetition at the time of variation in the uncertain parameters is adapted. Considering these 

aspects, this chapter proposes an optimized probabilistic control approach to design a control 

algorithm with reference to randomization for gain matrix calculation and for closed-loop 

system analysis as well [347].These probabilistic control algorithms take less computational 

time and easy to implement [153] and at the same time have robust boundary conditions and 

are less conservative at the cost of probability risk failure. This approach is not only limited to 

control engineering but also explores the general engineering design, robust optimization 

where the environment is directly affected by the uncertainty. Other than analysis of system, 

the probabilistic methodology reveals its maximum capacity with respects to control 

frameworks.  
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4.1 RANDOMIZED PROBABILISTIC ALGORITHM BASED CONTROL 

DEVELOPMENT FOR 2DOF HELICOPTER SYSTEM 

4.1.1 Randomized Algorithms  

The randomized algorithms are defined as an optimization technique where the actual system 

uncertainties initiate the randomization process while the deterministic decision parameters 

remain unconsidered. Usually, this randomness is generated in a system due to the involvement 

of stochastic uncertainties which produce various results for same input at different runs. This 

indicates a probabilistic property which defines the system as probably approximately correct 

(PAC). The generalized model representing different uncertainty sources that may affect the 

operation of a dynamic system is shown in Figure 4.1.  This standard approach is frequently 

used in modern control theory and is termed as the 𝑀 − Δ model. 

 

Figure 4.1. Generalized M-Δ model for uncertainty representation 

Where, 𝑀 ∈ ℛℋ∞
𝑐,𝑟

 space with real coefficients 𝑐, 𝑟 and corresponds to the transfer matrix of 

the system. This includes the extended part of the system which consist of reference signals, 

disturbances, and noise (𝑤), along with a controller which represents tracking errors, and 

controlled signals (𝑧). Further, Δ ∈ ℛℋ∞
𝑟Δ,𝑐Δ

 corresponds to all the time invariant uncertainties 

affecting the system also known as a random matrix supported by a structured set 𝛽𝔻. 

Considering the 𝑀 − Δ configuration, the measurable performance function analysis is defined 

by  

𝐽(Δ):𝔻 → ℝ          (4.1) 

The above function considers various performance requirements at an associated level 𝛾 with 

a structured uncertainty set 𝔻. Further, this configuration along with random uncertainty can 

be used to verify the probabilistic performance of the system in both the normal operation and 

worst-case operation. These scenarios are defined as follows: 

Probabilistic performance verification: Consider a random matrix Δ with density 𝑓Δ(Δ ) 

supported by 𝛽𝔻  for verification of probabilistic performance under normal operation using 

randomized algorithms. The assigned probability levels are given by 𝜖 ∈ (0, 1), 𝛿 ∈ (0,1). For 
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any given performance function 𝐽(Δ):𝔻 → ℝ at an associated level 𝛾, the randomized 

algorithm provides an estimate 𝑝̂𝑁(𝛾) of probability performance with least probability of 1 −

𝛿 that is within 𝜖 from 𝑝(𝛾). This is known as the probability of violation.  

𝑝(𝛾) = 𝑃𝑅{𝐽(Δ) ≤ 𝛾}         (4.2) 

Further, the estimate should be constructed considering a finite number 𝑁 of Δ ∈ 𝛽𝔻 random 

samples.  

Probabilistic worst-case performance: Similar to the probabilistic performance verification, 

the probabilistic worst-case performance also follows the same conditions. Further, for any 

given performance function 𝐽(Δ):𝔻 → ℝ at an associated level 𝛾, the randomized algorithm 

provides a performance level 𝛾𝑁 ≤ sup
Δ∈𝛽𝔻

𝐽(Δ) with least probability of 1 − 𝛿 such that 

𝑃𝑅{𝐽(Δ) ≤ 𝛾𝑁} ≥ 1 − 𝜖        (4.3) 

Further, the performance level 𝛾𝑁 should be constructed considering a finite number 𝑁 of Δ ∈

𝛽𝔻 random samples.  

4.1.2 Randomized Algorithm for Probabilistic Controller Synthesis 

For a fixed plant 𝐺(𝑠), the controller 𝐾(𝑠, 𝜃) is designed to synthesize the interconnection as 

shown in Figure 4.2. Here, the system stability and performance are achieved in the presence 

of uncertainty, and 𝜃 ∈ ℝ𝑛𝜃 corresponds to the design parameter vector. The terms 𝑢 and 𝑦 

correspond to the inputs and outputs of the plant respectively. 

 

Figure 4.2. Controller design for a fixed plant 

Generally, the randomized algorithms are based on interplay of deterministic optimization and 

random sampling in design parameter and uncertainty space respectively. Considering the 

performance function in (4.1), the constraints of design and performance of uncertain systems 

can be rewritten in the form of inequality as 

𝐽(Δ, 𝜃) ≤ 𝛾          (4.4) 
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where the performance function for design 𝐽(Δ, 𝜃):𝔻 × ℝ𝑛𝜃 → ℝ is scalar valued. Therefore, 

for a fixed controller parameter 𝜃, the condition in (4.1) is considered as a special case of (4.4). 

Hence the probability of violation and reliability of the design can be defined as follows: 

Probability of violation and reliability: Consider the accuracy 𝜖 ∈ (0,1) and performance level 

𝛾 > 0. Given 𝜃 ∈ ℝ𝑛𝜃, the probability of violation for the design is given by  

𝑉(𝜃) =̇ 𝑃𝑅{𝐽(Δ, 𝜃) > 𝛾}        (4.5) 

Probability of violation: From the above conditions, the reliability of design 𝜃 is  

𝑅(𝜃) =̇ 1 − 𝑉(𝜃)         (4.6) 

For 𝜃 to be probabilistic and reliable, 𝑉(𝜃) ≤ 𝜖, or equivalent to 𝑅(𝜃) ≥ 1 − 𝜖 for a given 

accuracy 𝜖 ∈ (0,1). 

4.1.2.1 Managing Uncertainty  

A transfer function, linear matrix inequalities (LMI) or polynomial is referred as uncertain 

object if it reliant on complex and structured set of uncertain parameters. The uncertain 

parameters are considered as random variables for analysis of uncertain system through 

probabilistic methods. The uncertain transfer function of the system is based on its complexed 

uncertain parameters with the given variant distribution of randomness. The uncertainties 

involved in the system is defined separately with its structure. Once the helicopter system is 

linearized, and the uncertainty has been added to the model through its various parameters, the 

randomized algorithm is used to generate a large number of random samples in order to analyse 

and synthesize the system process. The uncertainty presented in the system has been handled 

in two ways. Firstly, a series of uncertainties is generated by a randomized algorithm. This 

uncertainty series is blend of vector, scalar, and matrices with predefined distributions in 

MATLAB. In the next approach, every uncertain parameter is defined in m-file as per system 

design parameters while adapting its composition rules. This m-file tracks a basic structure of 

user function. After describing the user function file, the necessary randomized algorithm 

comes into the action calling as per argument defined in the user function file. This method is 

quite easy to implement and provides fast speed on execution and usability. 

4.1.2.2 System design reliant on a randomized algorithm 

The purpose of the probabilistic method is not only examining, create and performance 

verification of the system but also handle the synthesis and design of a robust controller for the 

system. With this advancement, the randomized algorithm creates a wide application in the 
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field of control as well. A randomized algorithm is an example of this approach where 

designing the controller has been done based on random sampling in the presence of 

uncertainty, and deterministic convex optimization. 

Consider a design vector variable  𝜃 ∈ Θ ⊆ ℝ𝑛𝜃, and ∆∈ 𝔻 for the uncertain parameter of a 

system. The performance function for the fixed parameter, performance objective with 

inequality specification for desired performance level have already been explained in detail in 

the above section and, further will be used for optimal probabilistic feasible control design. 

Now for simplification all, design and performance constraints are expressed in terms of design 

inequality, 𝑓(∆, 𝜃) ≤ 0 where scaler valued function for design parameter is denoted by 

𝑓(∆, 𝜃):𝔻 ×  Θ → ℝ. For determination of 𝜃, in a manner with 𝐽(∆, 𝜃) ≤ 𝛾, the function will 

be 

𝑓(∆, 𝜃) =  𝐽(∆, 𝜃) –  𝛾          (4.7) 

A system is a robust probabilistic design only if the design vector 𝜃 follows the inequality 

𝑓(∆, 𝜃) ≤ 0 for every ∆ randomness. The probability level is defined as 𝑝 ∗∈ (0,1). The 

minimal probability followed by a randomized algorithm is 1-δ and design parameter 𝜃𝑝𝑟 ∈  Θ 

in the following way:  

𝑃𝑟𝑜𝑏{∆∈ 𝔻: 𝑓(∆, 𝜃𝑝𝑟) < 0} ≥ 𝑝 ∗       (4.8) 

where 𝜃𝑝𝑟 corresponds to the design parameter reliant on a fixed number 𝑁 for random samples 

of ∆. 

4.1.2.3 Design of sequential randomized algorithm  

Given the probability level 𝑝 ∗∈ (0,1), the minimal probability (1 − 𝛿) followed by the design 

parameter 𝜃𝑝𝑟 ∈  Θ and the randomized algorithm is given by 

𝑃𝑟𝑜𝑏{∆∈ 𝔻: 𝑓(∆, 𝜃𝑝𝑟) < 0} ≥ 𝑝 ∗       (4.9) 

and derived using Algorithm 4.1 as follows: 

Algorithm 4.1: Robust probabilistic design with randomised algorithm [151] 

Step 1: Initialize the algorithm by setting 𝑘 = 0 and considering that 𝜃0 ∈ Θ. 

Step 2: Calculate the sample size function 𝑁(𝑘), such that 

𝑁(𝑘) = [
log10

П2(𝑘+1)2

6𝛿

log10
1

𝑝∗

]                                                                     (4.10) 

Step 3: Assess the probabilistic vision, 

for 𝑖 = 0 to 𝑁(𝑘) 
Generate a random vector sample Δ(𝑖) with uniform distribution 

if 

𝑓(Δ(𝑖), 𝜃𝑘) > 0, set Δ𝑘 = Δ
(𝑖) and go to next step 

else if 
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𝑓(Δ(𝑖), 𝜃𝑘) < 0, return to initialization. 

end. 

Step 4: Construct a new candidate solution by updating 𝜃𝑘+1 

Step 5: Set 𝑘 = 𝑘 + 1 and continue from Step 2. 

There are two possible outcomes of this algorithm which completely dependent on probabilistic 

vision. If probabilistic vision is returning to its true value, then 𝜃𝑘 is able to pass feasibility test 

on 𝑁(𝑘) trails. Here 𝜃𝑘 is defined as a feasible solution of the probabilistic approach. For 

sample size function 𝑁(𝑘) shown in equation (4.10) with probability greater than 1 − 𝛿, the 

final solution will be 𝜃𝑝𝑟 as per equation (4.9). Further, the ‘For’ loop breaks at 𝑖 < 𝑁(𝑘) in 

the probabilistic oracle only if oracle fails to return at its final solution along with phenomena 

violation ∆𝑘: 𝑓 (𝜃𝑘 , ∆𝑘) > 0 . Then the parameter solution 𝜃𝑘 such that 

𝜃𝑘+1 = 𝑎𝑙𝑔(𝜃𝑘, ∆𝑘)         (4.11) 

where  𝑎𝑙𝑔 corresponds either to the gradient expressed as ellipsoid or to a cutting plane 

probabilistic algorithm. For the implementation of the algorithm the function gradient (𝑓) with 

respect to θ for fixed uncertainty. For further consideration, robust feasibility elaborated by 

LMI in the following manner: 

Estimate θ in a way that 𝐹(𝑗)(∆, 𝜃)  ≼ 0 with 𝑗 = 1, … ,𝑚, and ∀∆∈ 𝔻, where  

𝐹(𝑗)(∆, 𝜃) = 𝐹0
(𝑗)
(∆) + ∑ 𝜃𝑖𝐹𝑖

(𝑗)
(∆)𝑛

𝑖=1 ,      (4.12) 

and 𝐹𝑖
(𝑗)
(∆), 𝑖 = 0, . . . . , 𝑛 are symmetric in nature with order of 𝑚 ×𝑚 real matrices. These 

matrices are dependent on uncertainty vector ∆∈ 𝔻 in a nonlinear way. Further, its simplified 

as 

𝑓(∆, 𝜃) = max
𝑗
 ⋋𝑚𝑎𝑥 (𝐹

(𝑗)(∆, 𝜃))       (4.13) 

Here, the randomized algorithm is collaborated with the LMI because of its easy handling of 

sub gradient of the function as shown in equation (4.13), and computation becomes simple. 

This can be depicted by sub gradient of 𝑓(∆, 𝜃) =⋋𝑚𝑎𝑥 (𝐹(∆, 𝜃)) at 𝜃 = 𝜃𝑘 such that 

𝑔∆𝜃𝑘 = [𝜉𝑚𝑎𝑥
𝑇 𝐹1(∆)𝜉𝑚𝑎𝑥. . . 𝜉𝑚𝑎𝑥

𝑇 𝐹𝑛(∆)𝜉𝑚𝑎𝑥]
𝑇.     (4.14) 

where 𝜉𝑚𝑎𝑥 denotes the eigen vector, and 𝐹(∆, 𝜃𝑘) corresponds to the largest eigen value. This 

approach eliminates the manual calculations of the gradient. 

4.1.3 Reachability Analysis 

Consider a state space representation 𝐴 characterized for a continuous dynamical system by 

the means of a differential equation 𝑎̇ = 𝑓(𝑎, 𝑢). For any given set 𝐴0 ⊂ 𝐴, 𝑢 corresponds to 

a set of admissible input signals, and all the uncertainties and potential disturbances between 
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𝑎0 ∈ 𝐴0 may affect the system operation. Hence, to estimate the change in system performance 

along with the action of the controller, it is necessary to compute the effects of these 

uncertainties and disturbances. Further, these implications can be used to identify the 

effectiveness of system operation for every acceptable disturbance. Here, the accurate 

operation indicates that, either the terrible subsets of 𝐴 have been avoided, or the complex 

chronological aspects have been possibly increased. Moreover, this helps in identifying the 

robustness of the system against multiple disturbances especially for the conditions where the 

parameter estimates are unknown. Traditionally, this process of analysing performance and 

robustness of the system were adapted with discrete-continuous time systems and were later 

involved with systems adhering to state variables. Further, it is identified that, to observe the 

accurate operation of the system under uncertainties and disturbances, every individual model 

adapts one input parameter along with an initial condition. Ideally, this process is repeated for 

all the values in the uncertainty set and for all the possible disturbances experienced by the 

system during its operation. This indicates the less feasibility of the approach for application 

with systems involving large uncertainty data sets or disturbances. In light of the above 

disadvantages, new methods with simplified procedure and which are capable of handling large 

disturbances needs to be adapted.  

Further, it is identified that the reachability analysis [348], [349] is capable of handling 

uncertainties and large disturbances in simulations using the breadth first approach. This 

approach simulates the conventional process of identifying the robustness of the system against 

multiple disturbances by considering a continuous loop of the sample set (elements of 

uncertainty set or large disturbances) [350]. This eliminates the waiting time for starting a new 

test and improves the confidence in the estimations provided by the approach. Besides, the set-

based approach also includes the information corresponding to the transient behaviour system 

apart from the stationary behaviour information in the conventional approaches. 

 In this research, the reachability analysis is carried out with the help of ellipsoidal method 

[351] on two different operating scenarios of the unmanned helicopter. These scenarios deal 

with the open loop and closed loop operation of the unmanned helicopter with uncertainties 

and disturbances using the developed controller. Further, to implement the reachability analysis 

with the ellipsoidal method, the ellipsoidal calculus is calculated for both the scenarios. The 

adapted ellipsoidal method for reachability analysis has advantages with, linear time space, and 

the quadratic state space. Moreover, this method represents the linear and nonlinear systems as 

reach sets based on the internal and external ellipsoids respectively. This estimates the open 
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loop and closed loop reach sets for verifying the performance, robustness, and safety of the 

system.  

4.1.4 Numerical Simulation 

For the analysis of probabilistic method based on a randomized algorithm, the two degree of 

freedom (DoF) helicopter has been considered in the experiment. This helicopter system is not 

fixed but the parameters like a moment of inertia of pitch and yaw, the mass of the system have 

been considered as uncertain parameters. Further, the system is driven by a white gaussian 

noise along with the disturbances, and error generated with response to the reference signals. 

Here, the sequential randomized algorithm makes available a controller that stabilizes the 

uncertain system with prespecified probability. From a randomized algorithm with a 

probabilistic approach, a gain matrix is generated which represents a unique state-feedback 

controller. The block diagram of the probabilistic controller developed for the control of the  

helicopter system is shown in Figure 4.3. The feedforward control is integrated with a 

randomized algorithm based probabilistic controller (RABPC) for providing necessary gain to 

the pitch.  

 

Figure 4.3. Probabilistic Control for Helicopter System. 

For a probabilistic solution of the approximate Lyapunov inequalities, a non-deterministic 

model is adapted. This defines the system uncertainty which can be further used define the 

performance index for identifying the required gain matrix. For a standard quadratic cost 

function [352], the performance index is given as  

𝐽 = ∫ 𝑥𝑇(𝑡)𝑆𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡)𝑑𝑡
∞

0
       (4.15) 

Where 𝑆, 𝑅 - weighting matrices and 𝑆 = 𝑆𝑇 > 0, and 𝑅 = 𝑅𝑇 > 0. The state feedback law is  
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𝑈(𝑡) = −𝑅−1𝐵𝑇𝑃−1𝑥(𝑡)        (4.16) 

Here, 𝑃 = 𝑃𝑇 > 0 provides guaranteed stability with a common solution to the Lyapunov 

inequalities 

𝐴(∆)𝑃 + 𝑃𝐴(∆)𝑇 − 2𝐵(∆)𝑅−1𝐵(∆)𝑇 < 0, 𝑃 = 𝑃𝑇 > 0,                ∀ ∆∈ 𝔻  (4.17) 

Further, the effect of structured nonlinear uncertainty ∆∈ 𝔻 on the state matrices A (∆) and B 

(∆) is identified to estimate the solution for an infinite set of Lyapunov inequalities. Here the 

randomized algorithm-based sub gradient iteration is initiated. This sequential approach [153] 

involves two stages, checking the feasibility and uncertainty by a random vector sample ∆𝑘∈

𝔻, and defining the single Lyapunov inequality for each step by Δ𝑘 using the sub gradient 

update. Further, the controller gain synthesis using a randomized algorithm for probabilistic 

robust controller design is calculated using Algorithm 4.2. 

Algorithm 4.2: Controller gain synthesis with with randomised algorithm [153] 

Step 1: Initialize the process by defining maximum number of iterations to 

𝑁𝑚𝑎𝑥, 𝑘 = 0, and by choosing a symmetrical initial condition 𝑃1 =
𝑃0 > 0 

Step 2: Initiate the probabilistic approach, 

for 𝑘 = 1 to 𝑁𝑚𝑎𝑥 

Generate a random vector sample ∆𝑘∈ 𝔻 with uniform distribution 

for 

𝑃 = 𝑝𝑘,  

if 𝐴(∆)𝑃 + 𝑃𝐴(∆)𝑇 − 2𝐵(∆)𝑅−1𝐵(∆)𝑇 ≥ 0, set Δ𝑘 = Δ(𝑖) and go to 

step 3 

else if 

𝐴(∆)𝑃 + 𝑃𝐴(∆)𝑇 − 2𝐵(∆)𝑅−1𝐵(∆)𝑇 ≤ 0, return 𝑃𝑅𝑎𝑛𝑑 = 𝑃
𝑘, 

𝐾𝑅𝑎𝑛𝑑 = −𝑅−1𝐵𝑇𝑃𝑅𝑎𝑛𝑑
−1  and exit. 

end 

end. 

Step 3: A new candidate solution 𝑃𝑘+1 is obtained according to sub gradient 

update based on  𝑃𝑘 and ∆𝑘. 

Step 4: Iterate the steps by setting 𝑘 = 𝑘 + 1 and continue from Step 2. 

This achieves the Lyapunov solution based on random algorithm, such that for the helicopter 

system with integrator 

𝑃𝑅𝑎𝑛𝑑,𝑖 =

[
 
 
 
 
 
289.2741 0 0 0 0 0

0 226.9569 0 0 0 0
0 0 172.731 0 0 0
0 0 0 283.6118 0 0
0 0 0 0 50.0000 0
0 0 0 0 0 50.0000]

 
 
 
 
 

 (4.19) 

Further, the gain matrix of the controller for operating the 2DoF helicopter system is 

KRand,i =

[
22.1V/rad 2.08V/rad 10.4V. s/rad 1.66V. s/rad 7.04V/(rad. s) 0.696V/(rad. s)
−2.3V/rad 22.2V/rad −0.569V. s/rad 14.4V. s/rad −0.696V/(rad. s) 7.04V/(rad. s)

](4.20) 
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4.1.4.1 Simulation Results and discussion 

To assess the operation of the developed RABPC, the controller gain matrices obtained in the 

above section for unmanned helicopter operating are considered. The simulation analysis is 

carried out by considering a square trajectory to identify the effectiveness of the developed 

controller. It is observed that a simulation model of the helicopter system responded efficiently 

to RABPC controller. The results of the numerical simulation for the helicopter following the 

square trajectory are shown in Figure 4.4 (a-d).  

 
(a) Pitch angle 

 
(b) Pitch velocity 

 
(c) Yaw angle 

 
(d) Yaw velocity 

Figure 4.4. Pitch and yaw output with randomised algorithm based probabilistic control of 

helicopter in Simulink 
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The superiority of the developed RABPC is identified by comparing the results with the 

simulation results of the LQR controller implemented on the same system following same 

trajectory. The results in the figures identify the pitch and yaw responses based on angle, 

velocity, and voltage characteristics for RABPC and LQR controllers acting on helicopter 

system. For the helicopter system tracking the sine trajectory with RABPC, the pitch angle 

trajectory reaches -2.5 degree at 2.3 secs and settles with the desired trajectory before 7 𝑠ecs. 

Similarly, the yaw angle reaches 2.2 degrees at 0.4 secs and settles with the trajectory within 

7 𝑠. Further, the pitch and yaw velocity are maintained at sufficient level for balancing the 

helicopter while following the desired trajectory. Besides, less transients in motor operating 

voltages are observed which identifies the effectiveness and steady state tracking of the 

helicopter. For the same scenario identified with the LQR controller, the system underperforms 

resulting in deviation from the path, oscillations, and high voltage transients. From the 

observations it is identified that, the developed RABPC controller outperforms the classical 

controller in all the characteristics. Further, the root mean square error has been calculated for 

the pitch and yaw angle of the helicopter system tracking the square trajectories under both 

RABPC and LQR controllers is shown in Table 4.1. Besides, a comparative assessment for the 

performance of pitch and yaw control by both the controllers on the simulated conditions of 

the helicopter system are shown in Table 4.2. 

Table 4.1. Root mean square error for randomised algorithm based probabilistic control of 

helicopter in Simulink 

Controller Root mean square error 

Pitch (deg) Yaw (deg) 

LQR 3.9165 deg 1.9217 deg 

RABPC 3.1489 deg 1.6114 deg 

 

Table 4.2. Time response analysis for randomised algorithm based probabilistic control of 

helicopter in Simulink 

Controller Pitch Yaw 

Settling time 

(𝑡𝑠) (sec) 

Steady state 

error (𝑒𝑠𝑠) (cm) 

Settling time 

(𝑡𝑠) (sec) 

Steady state 

error (𝑒𝑠𝑠) (cm) 

LQR 6.3 sec −0.522 cm 8.32 sec 1.38 cm 

RABPC 6.1 sec 0.000209 cm 4.68 sec 0.452 cm 

From the observation of the time response characteristics the average settling time, and steady-

state error are minimum in case of RABPC which are 6.1 𝑠, and 0.000209 𝑐𝑚 for pitch control, 

and 4.68 𝑠, and 0.452 𝑐𝑚 for yaw control tracking the square trajectory.  
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4.1.4.2 Results of reachability analysis 

To test the robustness of the developed trajectory tracking approach, the reachability analysis 

for the nonlinear systems discussed in section 4.1.3 is performed. Initially, the testing 

phenomenon is achieved for open loop and closed loop system by defining the RABPC control 

bounds as per the ellipsoidal calculus for the helicopter system. Further, the system is 

linearized, and the time interval is defined for the obtaining the reach tube sets. Based on the 

initial conditions, the directions required for randomizing the uncertainties and initializing the 

reach set are specified. For a specified reach set, the orthogonal basis of subspace (𝑥1, 𝑥2) are 

defined such that the projection of the reach set is obtained as shown in the Figure 4.5 and 4.6.  

 
(a) Ellipsoidal reach tube projection on subspace t∈ [0,4]  

 
(b) Reach approximation at time t=4 sec for open loop system 

Figure 4.5. Reachability analysis for 2DoF helicopter system with LQR controller  
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(a) Ellipsoidal reach tube projection on subspace t∈ [0,4] 

 
(b) Reach approximation at time t=4 sec for open loop system 

Figure 4.6. Reachability analysis for 2DoF helicopter system with RABPC controller  

In Figure 4.5, the reachability set corresponding to the state space representation of the open 

loop system is identified. Figure 4.5(a) corresponds to whole ellipsoidal reach tube projection 

on subspace 𝑡 ∈ [0, 4], and Figure 4.5(b) corresponds to reach approximation at time t=4 sec. 

Further, the reachability set corresponding to the state space equation after applying RABPC 

is given in Figure 4.6. The Figure 4.6(a) corresponds to whole ellipsoidal reach tube projection 

on subspace 𝑡 ∈ [0, 4], and the Figure 4.6(b) corresponds to reach approximation at time t=4 

sec. Further, it is identified that for every step 𝑘 the control law steers the state of the system 

to the centre point of the ellipsoidal reach set. The closer the linearized system gets to the centre 

point, the smaller is the linearization error. In Figure 4.5(a), (b) the system is observed to be 

reaching the centre with large linearization error due to multiple disturbances, but in Figure 

4.6(a), (b), the RABPC steers the system towards the centre point of ellipsoid reach set with 

less linearization error. This depicts the robustness of the developed controller on the nonlinear 

system. The over-approximated reachable set is contained in the target set 𝑇 after 230-time 

steps and terminates in 463.0367 secs. The absolute and relative tolerance of the systems 

before and after the application of RABPC is observed to be 1𝑒 − 05 and 1𝑒 − 06 respectively. 
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4.1.5 Real-time Experiment 

The experimental system of 2 DoF helicopter system discussed in Chapter 2 is adapted with 

the controllers designed in Simulation. The interconnection between the real-time helicopter 

and the simulated controller is achieved with QUARC/MATLAB integration. The control 

algorithms have been implemented using MATLAB 2015b. To evaluate the performance of 

the controller’s outline, the tracking control of RABPC is compared with the classical LQR.  

 
(a) Pitch angle 

 
(b) Pitch velocity 

 
(c) Yaw angle 

 
(d) Yaw velocity 

Figure 4.7. Pitch and yaw output with randomised algorithm based probabilistic control of 

helicopter in real-time 
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The results in the Figures 4.7 identify the pitch and yaw responses based on angle, velocity, 

and voltage characteristics for RABPC and LQR controllers acting on the real-time operating 

helicopter system with and without integrator following sine and square trajectories. For the 

helicopter system tracking the square trajectory with RABPC, the pitch angle trajectory reaches 

-5.1 degrees at 1.3 secs and follows the desired trajectory before 7 𝑠.Similarly, the yaw angle 

reaches 4.8 degrees at 0.9 secs and settles along the desired trajectory within 6 𝑠. Further, the 

pitch and yaw velocity are maintained at sufficient level for balancing the helicopter while 

following the desired trajectory. For the same scenario realised with the LQR controller, the 

system underperforms resulting in deviation from the path, oscillations, and high voltage 

transients. From the observations it is identified that, the developed RABPC controller 

outperforms the classical controller in all the characteristics. Further, the root mean square error 

has been calculated for the helicopter system tracking the square trajectory as shown in Table 

4.3. Besides, a comparative assessment for the performance of pitch and yaw control by both 

the controllers on the simulated conditions of the helicopter system are shown in Table 4.4. 

Table 4.3. Root mean square error for randomised algorithm based probabilistic control of 

helicopter in real-time 

Controller Root mean square error 

Pitch (deg) Yaw (deg) 

LQR 7.3214 deg 5.3146 deg 

RABPC 6.7695 deg 4.9175 deg 

 

Table 4.4. Time response analysis for randomised algorithm based probabilistic control of 

helicopter in real-time 

Controller Pitch Yaw 

Settling time 

(𝑡𝑠) (sec) 

Steady state 

error (𝑒𝑠𝑠) (cm) 

Settling time 

(𝑡𝑠) (sec) 

Steady state 

error (𝑒𝑠𝑠) (cm) 

LQR 8.31 sec 4.91 cm 10.06 sec 4.31 cm 

RABPC 6.89 sec 1.61 cm 5.81 sec 3.91 cm 

 

From the observation of the time response characteristics the average settling time, and steady-

state error, are minimum with 6.89 sec, and 1.61 𝑐𝑚 for pitch control and 5.81 sec, and 

3.91 𝑐𝑚 for yaw control with RABPC acting on helicopter tracking the square trajectory. From 

the results, it has been observed that the response generated by the RABPC restricts the 

variations to the smaller range when compare to classical LQR controller, and stabilizes the 

model efficiently.  
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4.2 SIMULTANEOUS PERTURBATION AND STOCHASTIC APPROXIMATION-BASED 

CONTROL SYSTEM FOR BALL BALANCER SYSTEM 

To improve the performance of a closed loop system, achieve online tuning, and deal with 

random uncertainties, a simultaneous perturbation stochastic approximation (SPSA) algorithm 

which recursively generates and estimates along random directions has been designed [276], 

[277], [353], [354]. Conventionally, the stochastic approximation methods were used for 

statistical computations and later emerged as a separate field of control theory [355]. In the 

initial stage, these methods were proven for minimization of stationary functionals [281]. Later, 

the drawbacks of the gradient and newton methods while dealing with time-varying functionals 

due to the known bounds resulted in the development of stochastic approximation algorithms 

[282]. But the issue of constant step size in stochastic approximation limited their applications 

to time-varying systems, tracking and position control problems [356], [357]. Further, these 

drawbacks are overcome by developing a distributed asynchronous stochastic approximation 

algorithm [358]. Apart from the development, the constant step size stochastic approximation 

method has been used in the presence of arbitrary noises and stochastic disturbances with multi-

agent systems under dynamic state changes [359]. Considering the flexibility and advantages 

of SPSA, this chapter develops an adaptive control strategy for solving the problem of 

balancing control in a closed loop system with unknown but bounded disturbances. The 

proposed approach is aimed at achieving a finite bound of residual between estimates and time-

varying unknown parameters when observations are made under an unknown but bounded 

noise. This provides an intuitive tuning method for the various controllers, and achieves 

balancing control for the closed loop system by updating the adaptive parameters in real-time. 

4.2.1 Simultaneous Perturbation Stochastic Approximation 

4.2.1.1 Problem statement 

Initially, a typical closed loop system is described for formulating a task that can be 

characteristically solved by SPSA. The closed loop system consists of a plant and a controller. 

A sequence of uncertainties expressed as 𝑤𝑛 and 𝑣𝑛 are considered, where 𝑤𝑛 corresponds to 

indeterministic behavior of internal system and 𝑣𝑛 is an external noise combined with the 

measured output of the system. This optimization problem can be further divided in to online, 

offline and stochastic classes [360]. In the offline class, the approach is classical whereas for 
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the online class, a new function is measured for every iteration. This resulted in the need for 

calculating the average of all the generated cost functions which makes the system complex. 

Further, the stochastic approach involves one function and it is measurable with noise. Hence, 

in this research the stochastic approach is considered, where the function 𝐹(𝑥,𝑤) is optimized 

and measured with noise. 

Consider 𝐹(𝑥,𝑤):ℝ𝑞 ×ℝ𝑝 → ℝ1 is differentiable by an argument function (𝑥1, 𝑥2, … ) at 

every instant 𝑛 = 1,2,3…. The value of optimization function with additive noise 𝑣𝑛 is given 

as: 

𝑦𝑛 = 𝐹(𝑥𝑛, 𝑤𝑛) + 𝑣𝑛          (4.21) 

where 𝑤𝑛 ∈ ℝ
𝑝 corresponds to a sequence of uncontrollable random values with equal but 

unknown distribution 𝑃𝑤(∙).  

The problem in hand is to construct a sequence of estimates {𝜃𝑛} of an unknown vector 𝜃 using 

observations 𝑦1, 𝑦2, 𝑦3…𝑦𝑛. for minimize an average cost type function 𝑓(𝑥) given as 

𝑓(𝑥) = ∫ 𝐹(𝑥,𝑤)𝑃𝑤(𝑑𝑤)
 

ℝ𝑃
         (4.22) 

Usually, a simple model of observation is considered for the problem of minimization function 

𝑓(. ) as given in (4.23) which is easily suitable for the proposed scheme. 

𝑦𝑛 = 𝑓(𝑥𝑛) + 𝑣𝑛         (4.23) 

But to accommodate the sequence of uncertainties with the cost type function, the complicated 

model of minimizing is given as  

𝑦𝑛 = 𝑤𝑛𝑓(𝑥𝑛) + 𝑣𝑛          (4.24) 

for a general model with 𝐹(𝑥,𝑤) = 𝑤𝑓(𝑥) [361]. 

Typically, for any condition in this complicated model, if the distribution 𝑃𝑤(∙) is unknown, 

the problem lies outside the scope of a classical optimization theory. Further, this condition can 

be overcome by measuring the function 𝐹(𝑥𝑛, 𝑤𝑛) with an additive random zero mean 

disturbance 𝑣𝑛 ∈ ℝ which is independent and identically distributed. Hence, by adding an 

additional component 𝑣 to the vector 𝑤 which forms 𝑤̅ = (
𝑤
𝑣
), the measured function can be 

rewritten as: 

𝐹̅(𝑥, 𝑤̅) = 𝐹(𝑥, 𝑤) + 𝑣         (4.25) 

This forms a new observation scheme with an additive disturbance which involves an unknown 

distribution 𝑃𝑤,𝑣(. ) instead of 𝑃𝑤(. ). Further, if the noise added with the measurement doesn’t 

have any significant statistical properties, the complexity of the problem cannot be simplified. 

Hence from the above considerations the problem formulation can be simplified using the 

inputs 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛 and observations 𝑦1, 𝑦2, 𝑦3, … , 𝑦𝑛.  
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4.2.1.2 SPSA Algorithm 

The SPSA algorithm is used for efficient estimation of unknown vectors based on small 

measurements for application with signal identification and adaptive control. Generally, the 

SPSA works on selected coefficients [362] with two observations which generate estimations 

recursively in random directions at each iteration. The flow process of SPSA for optimal design 

parameter is shown in Figure 4.8.  

 

Figure 4.8. Flow process of parameter estimation with simultaneous perturbation and 

stochastic approximation [277] 

Initially, the SPSA algorithms perturbs the current design parameter in random directions and 

measures the objective function of each observation. The measured observation is used to 

estimate the unknown vector which updates a new design parameter until the termination 

criterion is achieved. This provides an opportunity for achieving better convergence towards 

optimal solution for updating the design parameter. The motivation for using SPSA for 

adaptive control of a system with unknown but bounded disturbances is due to its easy to 

implement searching algorithm especially for the real-time control applications. Furthermore, 

the SPSA has advantages due to its iterative process which implies the idea of online learning 

SPSA coefficients
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with adaptability of new data and memory saving. The algorithm remains operational while 

accommodating the growing dimension of the estimated parameters and is resistant to arbitrary 

external noise at the point of input data. Besides, it exhibits less computation time due to small 

number of measurements and is capable of solving high dimensional optimization problems. 

The simultaneous perturbations for building the estimates of unknown vector 𝜃 are denoted as: 

∆𝑛∈ ℝ
𝑞           (4.26) 

Generally, the simultaneous perturbation vector is generated using the Monte Carlo approach 

which provides a two-dimensional random perturbation vector Δ𝑛. Besides, a zero mean 

probability distribution is used to generate the components of Δ𝑛 independently. The common 

choice for all the components of Δ𝑛 is the use of ±1 Bernoulli distribution with 
1

2
 probability 

for every ±1 outcome.   

In addition, two sets of sequence of positive numbers {𝛼𝑛} and {𝛽𝑛}, where {𝛼𝑛}, {𝛽𝑛} → 0 and 

a fixed initial vector 𝜃0 ∈ ℝ
𝑞 are defined. Three different scenarios are considered for 

estimating {𝜃𝑛} and constructing the sequence of points for measurements {𝑥𝑛} as follows: 

Case 1: Estimating using one observation. 

{
𝑥𝑛 = 𝜃𝑛−1 + 𝛽𝑛∆𝑛, 𝑦𝑛 = 𝐹(𝑥𝑛, 𝑤𝑛) + 𝑣𝑛,

𝜃𝑛 = 𝜃𝑛−1 −
𝛼𝑛

𝛽𝑛
𝒦𝑛(∆𝑛)𝑦𝑛,                          

        (4.27) 

Case 2&3: Estimating using two observations on each iteration. 

{
𝑥2𝑛 = 𝜃𝑛−1 + 𝛽𝑛∆𝑛, 𝑥2𝑛−1 = 𝜃𝑛−1 − 𝛽𝑛∆𝑛,

𝜃𝑛 = 𝜃𝑛−1 −
𝛼𝑛

2𝛽𝑛
𝒦𝑛(∆𝑛)(𝑦2𝑛 − 𝑦2𝑛−1),    

      (4.28) 

{
𝑥2𝑛 = 𝜃𝑛−1 + 𝛽𝑛∆𝑛, 𝑥2𝑛−1 = 𝜃𝑛−1,     

𝜃𝑛 = 𝜃𝑛−1 −
𝛼𝑛

𝛽𝑛
𝒦𝑛(∆𝑛)(𝑦2𝑛 − 𝑦2𝑛−1),

       (4.29) 

From all the three cases, it can be observed that a kernel function 𝒦𝑛(∙): ℝ
𝑞 → ℝ𝑞 is used to 

satisfy the simultaneous perturbation distribution 𝑃𝑛(∙). This condition is denoted as: 

∫𝒦𝑛(𝑥)𝑃𝑛(𝑑𝑥) = 0, ∫𝒦𝑛(𝑥)𝑥
𝑇𝑃𝑛(𝑑𝑥) = 𝐼,      (4.30) 

 where, 𝐼 → 𝐼𝑞×𝑞 is a unit matrix. 

The general form of 𝒦𝑛(∙) in the situation of uniform testing perturbation is formulated in a 

special case by Polyak et al. [363] corresponding to (4.27) and Spall et al. [354] corresponding 

to (4.28). This makes an assumption about the centralization and independency of the observed 

noise. This special case defines the rule for distribution of trail perturbation with kernel 𝒦𝑛(∙) 

and finite inverse moments as follows: 
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𝒦𝑛(∆𝑛) =

(

 
 
 
 

1

∆𝑛
(1)

1

∆𝑛
(2)

⋮
1

∆𝑛
(𝑞))

 
 
 
 

          (4.31) 

Considering the same kernel 𝒦𝑛(∙), a new scenario is developed as per (4.29) with constraints 

on trail simultaneous perturbation distribution [364]. In this paper, the sequence of estimates is 

constructed from (4.27) by formulating kernel 𝒦𝑛(∆𝑛) = ∆𝑛 with a projection which is given 

as 

{
𝑥𝑛 = 𝜃𝑛−1 + 𝛽𝑛∆𝑛, 𝑦𝑛 = 𝐹(𝑥𝑛, 𝑤𝑛) + 𝑣𝑛,

𝜃𝑛 = 𝒫Θn(𝜃̂𝑛−1 −
𝛼𝑛

𝛽𝑛
𝒦𝑛(∆𝑛)𝑦𝑛),               

       (4.32) 

where 𝒫Θn corresponds to projecting operators on bounded closed convex subsets Θ𝑛 ⊂ ℝ
𝑞, 

which contain 𝜃 and starts from 𝑛 ≥ 1. The bounded subsets Θ𝑛 can extend up to infinity if the 

𝜃 is not known, and for any case if Θ: 𝜃 ∈ Θ is known, then the bounded set Θ𝑛 = Θ. For some 

specific cases, the bounded subsets Θ𝑛 can construct a decreasing sequence. 

4.2.1.3 Conditions for estimation  

Further, the estimates are constructed using different scenarios as follows: 

Let 𝐸{∙} be an expectation, ‖∙‖, ‖∙‖𝜌 and (∙,∙) be a norm in 𝑙𝜌 space and scalar product in ℝ𝑞 

for Euclidean norm with 𝜌 ∈ (1, 2] which is a general set, and ℱ𝑛−1, derived from a set of 

random values (𝜃0, 𝜃1, … , 𝜃𝑛−1) for a σ-algebra of probabilistic events. The estimates are 

constructed using the predefined scenarios (4.28) and (4.29) as: 

𝑤̅𝑛 = (
𝑤2𝑛
𝑤2𝑛−1

) , 𝑣̅𝑛 = 𝜅(𝑣2𝑛 − 𝑣2𝑛−1),       (4.33) 

𝜅 = {
1

2
 for (5)

1 for (6)
         (4.34) 

𝐹𝑤 = max
𝑥∈ℝ𝑞

𝐸𝑤′{𝐸𝑤′′{𝜅
𝜌|𝐹(𝑥, 𝑤′) − 𝐹(𝑥,𝑤′′)|𝜌}},      (4.35) 

Similarly, while constructing the estimates using (4.32) 

𝑣̅𝑛 = 𝑣𝑛, 𝑤̅𝑛 = 𝑤𝑛, 𝐹𝑤 = 𝐸𝑤{|𝐹(𝜃, 𝑤)|
𝜌}.      (4.36) 

Further, the assumptions required to find the optimal vector 𝜃 are formulated [365] by 

considering a function as follows: 

𝑉(𝑥) = ‖𝑥 − 𝜃‖𝜌
𝜌
= ∑ |𝑥(𝑖) − 𝜃(𝑖)|

𝜌
,𝑞

𝑖=1        (4.37) 

Assumption 1: A unique minimum and (4.38) are considered for the function 𝑓(𝑥) along with 

a constant 𝜇 > 0 [366].  
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(∇𝑉(𝑥), ∇𝑓(𝑥)) ≥ 𝜇𝑉(𝑥), ∀ 𝑥 ∈ ℝ𝑞        (4.38) 

Assumption 2: For all the non-deterministic behaviors of the system, the gradients of the 

function 𝐹(∙, 𝑤) must satisfy the condition in (4.39) with a constant 𝑀 > 0. 

‖∇𝑥𝐹(𝑥,𝑤) − ∇𝑥𝐹(𝑦, 𝑤)‖𝜌 ≤ 𝑀‖𝑥 − 𝑦‖𝜌, ∀𝑥, 𝑦 ∈ ℝ
𝑞     (4.39) 

Assumption 3: A local condition is considered from the Lebesgue integration [367], where, 

∇𝑥𝐹(𝑥,∙): ∀𝑥 ∃ (∃ is there exists), neighbourhood 𝑈𝑥: ∀𝑥
′ ∈ 𝑈𝑥 ∃, and function Φ𝑥(∙):ℝ

𝑝 →

ℝ, 𝐸𝑤{Φ𝑥(𝑤)} < ∞: |∇𝑥𝐹(𝑥
′, 𝑤)| ≤ Φ𝑥(𝑤)for all of 𝑤. 

Assumption 4: For kernel 𝒦𝑛(∙) and simultaneous perturbation distribution 𝑃𝑛(∙), 𝑛 = 1,2, … 

satisfies the conditions as: 

𝐾̅ = 𝐹𝑤 sup
𝑛=1,2,…

∫‖𝒦𝑛(𝑥)‖𝜌
𝜌
𝑃𝑛(𝑑𝑥) < ∞,       (4.40) 

𝐾̃ = sup
𝑛=1,2….

∫‖𝒦𝑛(𝑥)‖𝜌‖𝑥‖𝜌‖𝑥‖ 𝜌

𝜌−1
𝑃𝑛(𝑑𝑥) < ∞.      (4.41) 

Assumption 5: For every value of 𝑛 > 1 

𝜉𝑛 = ‖𝐸{𝒦𝑛(Δ𝑛)𝑣̅𝑛|ℱ𝑛−1}‖𝜌
𝜌
≤ 𝐶Δ𝑣𝛽𝑛

2, 𝐸{‖𝒦𝑛(Δ𝑛)𝑣̅𝑛‖𝜌
𝜌
} ≤ 𝜎𝑛

𝜌
.    (4.42) 

Similarly, for 𝜌 = 2 the assumptions 1 and 2 can be formulated as: 

Assumption 1′: The function 𝑓(∙) is strictly convex. 

〈𝑥 − 𝜃, ∇𝑓(𝑥)〉 ≥ 𝜇‖𝑥 − 𝜃‖2, ∀𝑥 ∈ ℝ𝑞.      (4.43) 

Assumption 2′: For all the indeterministic behaviors of the system, the gradients of the function 

𝐹(∙, 𝑤): ∀𝑥, 𝜃 ∈ ℝ𝑞 are satisfied by Lipschitz condition [368]: 

‖∇𝑥𝐹(𝑥,𝑤) − ∇𝑥𝐹(𝑦, 𝑤)‖ ≤ 𝑀‖𝑥 − 𝜃‖.      (4.44) 

4.2.1.4 Convergence of Estimates 

Further, the convergence of sequence of estimates at a point 𝜃 is given in the following sense:  

Note 1: For a linear regression model, the problem of estimating parameters with observations 

in (4.24) and when 𝜃𝑛 = 𝜃 correspond to the minimization of average risk functional. 

𝑓(𝑥) =
1

2
(𝑥 − 𝜃)𝑇(𝑥 − 𝜃).        (4.45) 

Note 2: Even though the scenarios in (4.28) and (4.29) are similar, the usage of (4.29) for real-

time systems during arbitrary noise in observations is better. This is because of the repetitive 

moment of a vector 2𝑛 − 1 in the system of scenario (4.28) restricts the independency of noise 

𝑣2𝑛 from trail perturbation ∆𝑛. Where as in (4.29) the vector of trail perturbation ∆𝑛 and noise 

𝑣2𝑛 simultaneously enter the system allowing them to hope on their independency. 
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Note 3: For generalization of conditions for convergence of scenarios in (4.28), (4.29), and 

(4.32), sequence of positive numbers {𝛼𝑛} and {𝛽𝑛}  can be measured randomly, and σ-algebra 

ℱ𝑛 can be measured relatively. This is necessary for instances where quality of the estimation 

is being assessed. Depending upon the quality of the estimation, the speed of sequence 

convergence is either lowered to zero or expanded to a bigger value.  

Note 4: For generalization of the properties of noise, i.e., the existence of 𝜌 ∈ (1,2]-values for 

𝑤, indicates that the SPSA algorithms can be used for all sorts of adaptive control. 

4.2.1.5 Estimation Evaluation 

Since the system is designed for unknown but bounded disturbance case, its behavior under 

relatively high noise level needs to be evaluated. Besides, the concept of estimation evaluation 

tests whether the estimated parameter is correct for the corresponding dynamics of the system. 

The following steps outline the estimation evaluation process: 

Step 1: When a new estimation 𝜃𝑛𝑛𝑒𝑤 is obtained, discretize the estimated system and set its 

initial value at a certain time point 𝑘0. 

Step 2: Analyze the estimated system over an input from [𝑘0 to (𝑘0 + 𝐿𝑇𝑠)], where 𝐿 is a 

positive integer indicating the length of evaluation and 𝑇𝑠 is the sampling time. The resulted 

output is denoted as 𝑦𝑒(𝑘), the evaluation output. 

Step 3: Compare the simulation output with measurements 𝑥𝑛(𝑘) along the same time 

sequence. This can be done by calculating their difference as 

Δ(𝜃𝑛𝑛𝑒𝑤) =
1

𝐿−𝐿′
√∑ [𝑦𝑒(𝑘) − 𝑥𝑛(𝑘)]2

𝑘0+𝐿𝑇𝑠
𝑘=𝑘0+𝐿′

     (4.46) 

Here it should be noted that the simulation starts from 𝑘0 + 𝐿
′ instead of 𝑘0, where 𝐿′ is the 

positive integer number. This eliminates the influence of the noisy initial value. Further, the 

value of 𝐿′ is to be selected long enough such that the impact of initial value can be neglected. 

Step 4: For the condition where the previously or old estimated value is less than the newly 

estimated value, i.e., 𝛼Δ(𝜃𝑛𝑛𝑒𝑤) > Δ(𝜃𝑛𝑜𝑙𝑑), the 𝜃𝑛𝑛𝑒𝑤 is considered to be invalid or at least 

worse than the 𝜃𝑛𝑜𝑙𝑑. Here, the new estimation is abandoned and the old estimation is used. 

For an otherwise condition where 𝜃𝑛𝑜𝑙𝑑 is greater than 𝜃𝑛𝑛𝑒𝑤, the new estimation is valid and 

considered as a better estimation for updating the system. In this condition, the 𝛼 associated 
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with the new estimation is a constant positive real number which controls the standard of 

selection. If the value of 𝛼 ≥ 1, it indicates strict selection and the only estimation leading to 

smaller Δ(𝜃𝑛𝑛𝑒𝑤) is accepted. Moreover, all the estimations are accepted if 𝛼 = 0. A perfect 

estimation should lead to Δ(𝜃𝑛𝑛𝑒𝑤) = 0.  

Further, to test the action of SPSA based adaptive control, a balancing problem is considered 

in closed loop with a proportional integral derivative control. The system description and 

implementation of developed approach are discussed in further sections. 

4.2.2 Stability Analysis 

The stability analysis for the developed adaptive control loop is discussed here. Considering 

the linear matrix inequality-based stability analysis which adapts 𝜎 −modification for single 

input single output system, the expansion for multi-input multi output systems is analyzed. The 

arbitrary disturbance perturbation is not considered in this condition of closed loop stability 

analysis with adaptive control. Hence, a simplified state space representation of the 2DoF ball 

balancer system is considered as 

𝑥𝑑(𝑡) = 𝐴𝑝𝑥(𝑡) + 𝐵𝑝𝑢(𝑡).        (4.47) 

Let 𝐴𝑝′ and 𝐵𝑝′ be represented as: 

𝐴′ = 𝐸𝑝
−1𝐴𝑝,          (4.48) 

𝐵′ = 𝐸𝑝
−1𝐵𝑝,          (4.49) 

Where 𝐸𝑃
−1 = [

𝐼 0
0 0

] [369] and the controller gain 𝐾𝑃𝐼𝐷 is divided as an integration gain which 

is given by 

𝐾𝑃𝐼𝐷𝑟 ∈ ℝ2×2,          (4.50) 

and state gain 

𝐾𝑃𝐼𝐷𝑥 ∈ ℝ2×4,          (4.51) 

where 𝐾𝑃𝐼𝐷 = [𝐾𝑃𝐼𝐷𝑟 , 𝐾𝑃𝐼𝐷𝑥] 

The actual plant model is given as. 

𝑥̇𝑑𝑝 = 𝐴′𝑥𝑑𝑝 + 𝐵′(𝑢 +𝑊
𝑇𝜙(𝑥))

𝑦𝑑 = 𝑐𝑝𝑥𝑑𝑝
,       (4.52) 

where, 𝑊(𝑡) = [𝑊1(𝑡) 𝑊2(𝑡)] ∈ ℝ4×2 is a matrix of uncertainties and 𝜙(𝑥) ∈ ℝ4×1 is a 

smooth basis function set. 𝑊𝑇(𝑡)𝜙(𝑥) is a matched uncertainty. Input for the actual plant 

model is defined as: 
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𝑢 = 𝑢𝑛𝑜𝑚 − 𝑢𝑎𝑑
𝑢𝑛𝑜𝑚 = −𝐾𝑃𝐼𝐷𝑥𝑥 + 𝐾𝑃𝐼𝐷𝑟 ∫(𝑟(𝑡) − 𝑦)𝑑𝑡

𝑢𝑎𝑑 = 𝑊̂(𝑡)
𝑇𝜙(𝑥)

,      (4.53) 

where, 𝑢𝑛𝑜𝑚 is the nominal input for reference model, 𝑢𝑎𝑑 is the adaptive signal, and 𝑟(𝑡) is 

step reference. 

The 𝑢𝑎𝑑 acts as a function for cancelling matched uncertainty by estimating the uncertainty 

matrix 𝑊(𝑡) with 𝑊̂ = [𝑊̂1 𝑊̂
2
] ∈ ℝ4×2. Further, a reference model corresponding to (4.52) 

which generates an ideal output given by: 

𝑥̇𝑑𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚 ∫(𝑟(𝑡) − 𝑦)𝑑𝑡,       (4.54) 

where, 𝐴𝑚 = 𝐴′ − 𝐵′𝐾𝑃𝐼𝐷𝑥, and 𝐵𝑚 = 𝐵′𝐾𝑃𝐼𝐷𝑟. 

Consider 𝑒 = 𝑥𝑑𝑚 − 𝑥𝑑 as the tracking error, and 𝑊̃(𝑡) = 𝑊̂(𝑡) −𝑊(𝑡) (𝑊̃1(𝑡) = 𝑊̂1(𝑡) −

𝑊1(𝑡), 𝑊̃2(𝑡) = 𝑊̂2(𝑡) −𝑊2(𝑡)) is the estimation error. Finally, deviation of actual plant from 

reference model is obtained as: 

𝑒̇ = 𝐴𝑚𝑒 + 𝐵
′𝑊̃(𝑡)𝑇𝜙(𝑥)         (4.55) 

Let 𝐵1 and 𝐵2 equal to 𝐵′ as [𝐵1 𝐵2], and from 𝐵1, 𝐵2,𝑊1(𝑡) and 𝑊2(𝑡), (4.55) can be 

described as: 

𝑒̇ = 𝐴𝑚𝑒 + 𝐵1𝑊̃1(𝑡)
𝑇𝜙(𝑥) + 𝐵2𝑊̃2(𝑡)

𝑇𝜙(𝑥).     (4.56) 

where, 𝑊1(𝑡) and 𝑊2(𝑡) can be updated using the adaptive control system with 

𝜎 −modification. 

𝑊̇̂1 = −𝛾𝜙(𝑥)𝑒
𝑇𝑃𝐵1 − 𝜎𝑊̂1

𝑊̇̂2 = −𝛾𝜙(𝑥)𝑒
𝑇𝑃𝐵2 − 𝜎𝑊̂2

        (4.57) 

where, the adaptive gain is denoted as 𝛾, (𝛾 > 0 ∈ ℝ) and the 𝜎 −modification gain is given 

by 𝜎. Further, the values of 𝑃 > 0 satisfies the Lyapunov (4.58) for the values of 𝑄 > 0. 

𝑃𝐴𝑚 + 𝐴𝑚
𝑇 𝑃 + 𝑄 = 0.        (4.58) 

Further, the values of 𝛾 and 𝜎 which satisfy the linear matric inequalities are used for assessing 

the stability of the system. 

4.2.3 Simulation 

In this section, numerical simulations are developed with the SPSA-PID controller for a closed 

loop operation of the modelled 2DoF ball balancer system. To begin with, the movement of 

ball on the plate and the variation in plate balancing angle with reference to 𝑋 and 𝑌 axis are 

measured as plant responses. As the plate angle is adjusted to balance the ball without falling 
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off its surface, the position of the ball varies accordingly.  Since the closed loop control of ball 

and plate system is being realized by a PID control system, the basic block representation of 

the closed loop system is depicted in Figure 4.9.  

 

Figure 4.9. Closed loop control of ball balancer system 

The closed loop representation deals with a reference 𝑟(𝑡), controlled input 𝑢(𝑡), uncertainties 

𝑑(𝑡), and measurement 𝑦(𝑡). The controller 𝐾(𝑠) for a plant 𝐺(𝑠) is given by: 

𝐾𝑃𝐼𝐷(𝑠) =

[
 
 
 
ℎ11(𝑠) ℎ12(𝑠)
ℎ21(𝑠) ℎ22(𝑠)

⋯
ℎ1𝑗(𝑠)

ℎ2𝑗(𝑠)

⋮ ⋱ ⋮
ℎ𝑖1(𝑠) ℎ𝑖2(𝑠) ⋯ ℎ𝑖𝑗(𝑠)]

 
 
 

      (4.59) 

For a PID controller, the element ℎ𝑖𝑗(𝑠) is given by: 

ℎ𝑖𝑗(𝑠) = 𝑃𝑖𝑗 (1 +
1

𝐼𝑖𝑗(𝑠)
+
𝐷𝑖𝑗(𝑠)

𝐷𝑖𝑗

𝑁𝑖𝑗
(𝑠)
)       (4.60) 

Here, the terms 𝑃𝑖𝑗 , 𝐼𝑖𝑗 and 𝐷𝑖𝑗 correspond to the proportional gain, integral and derivative time 

of the PID controller and 𝑁𝑖𝑗 is the filter coefficient. 

In order to assess the performance of the closed loop system depicted in Figure 4.9, the 

performance index is given by: 

𝑒̂𝑖 ≔ ∫ |𝑟𝑖(𝑡) − 𝑦𝑖(𝑡)|
2𝑡𝑓

𝑡0
𝑑𝑡

𝑢̂𝑖 ≔ ∫ |𝑢𝑖(𝑡)
2|𝑑𝑡

𝑡𝑓
𝑡0

        (4.61) 

Where, 𝑟𝑖(𝑡), 𝑦𝑖(𝑡), and 𝑢𝑖(𝑡) indicate the 𝑖𝑡ℎ elements of vectors 𝑟(𝑡), 𝑦(𝑡), and 𝑢(𝑡) 

respectively, 𝑡0 ∈ {0} defines a union of positive set of real numbers (ℝ+) and 𝑡𝑓 ∈ ℝ+ which 

corresponds to the time interval or time period of performance evaluation. Hence the 

optimization problem of the closed loop control is defined as: 

𝐽(𝑃, 𝐼, 𝐷, 𝑁) = ∑ 𝑤1𝑖
𝑝
𝑖=1 𝑒̂𝑖 + ∑ 𝑤2𝑖

𝑞
𝑖=1 𝑢̂𝑖 ,      (4.62) 
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where 𝑃 ≔ [𝑃11, 𝑃12, … , 𝑃𝑖𝑗]
Τ
, 𝐼 ≔ [𝐼11, 𝐼12, … , 𝐼𝑖𝑗]

Τ
, 𝐷 ≔ [𝐷11, 𝐷12, … , 𝐷𝑖𝑗]

Τ
, and 𝑁 ≔

[𝑁11, 𝑁12, … , 𝑁𝑖𝑗]
Τ

. The weighting coefficients 𝑤1𝑖𝑎𝑛𝑑 𝑤2𝑖 ∈ ℝ, and 𝑝 and 𝑞 corresponds to 

the dimensions 𝑢(𝑡) and 𝑦(𝑡) respectively. Theoretically, the performance index of the 

controller is defined by the sum of ball position error and the controlled input energy.  Hence, 

the problem formulation for the system considered in Figure 4.9 is to find a controller 𝐾𝑃𝐼𝐷(𝑠) 

by minimizing the optimization problem with respect to the values of 𝑃, 𝐼, 𝐷, and 𝑁 by 

considering the controlled input and measurement data. The implementation of SPSA with the 

closed loop control of ball balancer system is shown in Figure 4.10. 

 

Figure 4.10. Overall structure of ball balancer system with SPSA algorithm and 

estimation evaluation for optimal PID controller 

The steps for implementing the developed controller with the ball balancer system are 

discussed in algorithm 4.3 as follows: 

Algorithm 4.3: Implementation of the developed SPSA-PID controller 

Step 1: The error between the measured and desired position is obtained and 

provided as input to both PID controller and the SPSA algorithm. 

Step 2: The SPSA algorithm is initialized with the selected coefficients. Here 

the counter index 𝑛 is initially set to 0, unknown parameter vector 

𝜃0 ∈ ℝ
2, and the positive coefficient 𝛼 > 0. 

Step 3: The iterations are initiated: 𝑛 → 𝑛 + 1 

Step 4: The simultaneous perturbation vector is generated using Monte Carlo 

and Bernoulli ±1 distribution. 

Step 5: Estimate the observations. 

Step 6: Evaluate the estimated observation by measuring the distance 

between old estimate and new estimate. 

Step 7: If the new estimation is valid, proceed to step 8, or continue with the 

old estimate and parallelly start estimating the new observation in the 

next iteration.  

Step 8: Update the design parameters to achieve the optimum PID values. 
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Step 9: Terminate the process. 
 

Based on the estimated design parameter, the optimal gains for PID are obtained, such that the 

controller output varies the plate angle efficiently to balance the ball even in the presence of 

disturbances. The gain value calculation for the PID controller is obtained as follows:  

𝐾𝑃𝐼𝐷(𝑠) = [
ℎ11(𝑠) ℎ12(𝑠)

ℎ21(𝑠) ℎ22(𝑠)
]        (4.63) 

Further, to compensate the complexity and minimize the number of iterations for identifying 

the optimal values, it is considered that some of the gain values of PID has equal attributes as 

follows: 𝐼12 = 𝐼11, 𝐷12 = 𝐷11, 𝑁12 = 𝑁11, 𝐼21 = 𝐼22, 𝐷21 = 𝐷22, and 𝑁21 = 𝑁22.  

The resultant parameters are calculated by minimizing the objective function 𝐽 for values of 

𝑝 = 2, 𝑞 = 2, 𝑤11 = 10, 𝑤12 = 1000, 𝑤2𝑖 = 1 (𝑖 = 1,2), 𝑡0 = 0 and 𝑡𝑓 = 20. 

The response of the 2DoF ball balancer system has been assessed by implementing SPSA-PID 

method to control the ball position on plate. For analysis purpose a comparative result between 

conventional PID and SPSA-PID has been shown in Figure 4.11(a) and 4.11(b). 

 
(a) Ball position 

 
(b) Plate angle 

Figure 4.11. Ball balancer output with SPSA-PID control in Simulink 

From the Figure 4.11(a), the ball position on plate settled at 2.4 sec without any oscillations 

and follows the reference square trajectory of amplitude 5. On the other side, the PID takes 

4.12 sec to settle with large overshoot as compare to SPSA-PID and takes more time to follow 

the trajectory. It also has been analysed from the Figure 4.11(b), the plate angle between 5.8 

degrees and −11.2 degrees and resulted in less oscillation when controlled with SPSA-PID 

while PID varies between 18.30 and −31.70. So, the variation in angle movement is also less 

in SPSA-PID. Further, it is identified that the amplitude of voltage is also small in case of 
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SPSA-PID and even small voltage is enough to track and able to balance the ball on the plate. 

Besides, the time response characteristics of the plate angle output for both the controllers are 

calculated to estimate the superiority of the proposed approach.  Table 4.5 shows the peak time, 

settling time, peak overshoot and steady-state error of SPSA-PID controller are 0.15 sec, 2.43 

sec, 7.32e-06%, and 1.3e-06cm respectively which is less in comparison with PID. As the peak 

time reduces, the reaching time of the ball to its specified amplitude is minimized. As per the 

output waveform, it has been noticed that SPSA-PID control has a suitable response with the 

lowest error and overshoot which carries the perfect ball balance on the plate. 

Table 4.5. Time response analysis for SPSA-PID control of ball balancer in Simulink 

Controller 
Peak Time 

(𝑡𝑝) (sec) 
Settling Time 

(𝑡𝑠) (sec) 

Peak Overshoot 

(𝑀𝑝) (%) 

Steady-state error 

(𝑒𝑠𝑠) (cm) 

PID 0.18𝑠𝑒𝑐 3.62𝑠𝑒𝑐  1.76%  0.0049𝑐𝑚  
SPSA-PID 0.15𝑠𝑒𝑐 2.43𝑠𝑒𝑐  7.32𝑒 − 06 %   1.3𝑒 − 06 𝑐𝑚  

4.2.4 Real-Time Results 

The data exchange between the simulated models and the ball balancer setup is achieved by 

providing a whole suite of functions which use the features of supported data acquisition 

hardware from the C language. These functions configure the hardware and perform both 

synchronous and asynchronous I/O in various forms. The configuration functions provided by 

the Hardware-in-the-Loop - Application Programming Interface (HIL API) gives the ability to 

open a hardware-in-the-loop card and configure it. The simplest I/O functions of the HIL API 

allows single samples to be read or written immediately from the data acquisition card. This 

form of I/O is called "immediate I/O" and is supported by the Immediate I/O functions of the 

HIL API. This form of I/O is mainly useful for controlling the system with simulated outputs 

with various controllers. 

As it was mentioned, the HIL API tasks are focused on the acquisition of ball position and D.C. 

motor positioning. The whole algorithm of ball positioning and control law may be easily 

implemented and changed in real-time in the running computer simulation, using graphical 

user interface (GUI). This user-friendly way of operation is ensured by a very simple, but 

effective data exchange protocol of HIL API- C programming function reference. 

Further, the ball balancer system is controlled by applying SPSA-PID using MATLAB and for 

further interfacing with hardware, a Quarc HIL software has been used. 
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(a) Ball position 

 
(b) Plate angle 

 

Figure 4.12. Ball balancer output with SPSA-PID control in real-time 

Figure 4.12(a), and 4.12(b) show the ball position, and plate angle of the ball balancer system. 

The square input signal has been given to the setup with the frequency of 0.08Hz and amplitude 

of 5. From the Figure 4.12(a), the ball position follows the reference trajectory with fewer 

oscillations which make the system stable and ball moving speed will be slow down. While in 

PID number of oscillations are more and it settles for the trajectory with more variation in ball 

movement. Subsequently, angle variation in Figure 4.12(b) is between 18 degrees and −23 

degrees which made the movement of the ball stable and smooth for the SPSA-PID controller. 

From the result it is identified that, as the freedom of movement of angle increase, the ball 

movement will also increase and causes for instability. Further, the step response 

characteristics of the ball position are calculated to assess the superiority of the developed 

approach over the classical approach. As of the Table 4.6, the response of improved SPSA-PID 

is better based on the peak time, settling time and peak overshoot.  

Table 4.6. Time response analysis for SPSA-PID control of ball balancer in real-time 

Controllers Peak time 

(𝑡𝑝) (sec) 

Peak overshoot 

(𝑀𝑝) (%) 

Steady state error 

(𝑒𝑠𝑠) (cm) 

PID 1.47 sec 22.9% 1.151 cm 

SPSA-PID 0.9 sec 12.4% 0.487 cm 

 

The results proved the effectiveness of adaptive controller using SPSA for position tracking 

and balancing control of balancer systems. 
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4.3 CONCLUSION 

The analysis of parametric uncertainties in the helicopter and ball balancer systems is done by 

developing a set of probabilistic control approaches with randomized algorithms and stochastic 

approximations. Both the control actions provided strong control action when the plant is 

subjected to parametric uncertainty. The randomised algorithm measures the probability over 

a sample space of uncertain data and generated the independent and identically distributed 

random variables to avoid worst case behaviour with probabilistic performance verification. 

Further, it minimized the violation of probability to achieve optimal solution of the recasted 

problem. The developed algorithm is tested with helicopter motion control when subjected to 

parametric uncertainty. Similarly, the balancing problem of ball balancers is addressed with 

the help of SPSA-PID controller. The developed controller overcomes the problem of standard 

PID gain adjustment when applied for position control of a 2 DoF ball balancer system.  
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Chapter 5. FAULT CLASSIFICATION-BASED 

RECONFIGURABLE CONTROL FOR 2DOF SYSTEMS 

In this chapter a fault classification based reconfigurable control approach motivated at the 

operation of the benchmark systems by overcoming the failure modes in their components is 

developed. Initially, a fault classification-based controller capable of identifying the faults in 

the helicopter system is developed. Further, the classified fault data is combined with the 

proposed neural integrated fuzzy controller to achieve the efficient operation of the helicopter 

in attitude and trajectory tracking. Similarly, the variation in operating characteristics of the 

ball balancer system for different faults and operating conditions in time and frequency domain 

are identified with support vector machines. The controller operation here is achieved with the 

help of a wavelet fuzzy controller. 

5.1 FAULT CLASSIFICATION-BASED CONTROL FOR HELICOPTER SYSTEM 

In the present-day scenario, helicopter systems are a viable mode of transportation for multiple 

applications due to their easy take off, and landing at uneven and small places. In most of these 

applications, the major control objective is to follow a predefined trajectory without deviating 

from the path [370]. Generally, the unmanned helicopter systems are nonlinear due to the 

coupling between pitch and yaw motion and were prone to various internal failures and external 

disturbances, making the control objective a difficult task. Hence, to overcome these 

conditions, and achieve optimal path tracking, several controllers have been designed in the 

literature. Besides, the various failure mechanisms that occur during the real-time operation of 

the helicopter affects the performance of the system making it unstable. So, to achieve 

operational safety, and provide consistency in operation, the localization of fault and 

development of fault-tolerant controllers (FTCs) became an essential and structural property 

[200].  

Although, the literature discussed the issues of actuator faults [201], [202], [371], [372], sensor 

and measurement unit failures [203], effect of uncertainties on attitude tracking and control 

[373]–[375], and use of machine learning approaches for fault classification [193], [205], [206]  

individually, the simultaneous control of all these factor with an individual FTC scheme has 

not been explicitly addressed. In light of the above issues, this section develops a fault 

classification-based control approach capable of identifying the actuator faults in the system 
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and achieve optimal performance by combining the classified output with an intelligent 

controller. The major aspects of this section contribute towards: 

• Development of an efficient fault classification approach using the pitch and yaw motor 

data measured with encoders in the presence of actuator, coupling, and external factor 

influence based failures. 

• Design of an intelligent control approach to achieve attitude tracking of the unmanned 

helicopter with reference to position error and system operating state (classified state). 

• Numerical simulation studies and real-time experiments are carried with the nonlinear 

system considering the effect of various disturbances under motor failures to validate the 

developed approach. 

These objectives are achieved by adapting wavelet transforms (WTs) and support vector data 

descriptor (SVDD) for efficient classification of the operating state of the helicopter. Further, 

the classified state of the system is combined with the proposed neural integrated fuzzy (NiF) 

controller to achieve the attitude stabilization and trajectory tracking of unmanned helicopters. 

5.1.1.1 Feature extraction using wavelet transform 

All the measurements corresponding to various operating states of the system can be 

represented in time or frequency domain and has a set of features which can differentiate 

between the states. Generally, this data can be analysed using various transform techniques in 

multiple spectral domain methods. In this paper the wavelet transforms which has the capability 

of representing the data both in time and frequency domain is adapted [376].  The scale 𝑎 and 

location 𝑏 of a wavelet function are defined as: 

Ψ𝑎,𝑏(𝑡) =
1

√𝑎
Ψ(

𝑡−𝑎

𝑏
)         (5.1) 

For discrete values 𝑎 and 𝑏, the logarithmic discretization of the wavelet function can be written 

as: 

Ψ𝑚,𝑛(𝑡) =
1

√𝑎0
𝑚Ψ(

𝑡−𝑛𝑏0𝑎0
𝑚

𝑎0
𝑚 )        (5.2) 

Where, 𝑚, 𝑛 ∈ ℤ: are the discrete dilation and translation parameters respectively, and 𝑎𝑜 and 

𝑏𝑜are the fixed dilation and translation step parameters.  

Setting 𝑎𝑜 = 2 & 𝑏𝑜 = 1 in (5.2), forms a dyadic grid arrangement for both the dilation and 

translation steps as follows: 

Ψ𝑚,𝑛(𝑡) =
1

√2𝑚
Ψ(

𝑡−𝑛2𝑚

2𝑚
)        (5.3) 

Where, 𝛹0,0(𝑡) = 𝛹(𝑡) is known as the mother wavelet function. 
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This dyadic grid arrangement lends itself to the construction of an orthonormal wavelet basis 

in the 𝐿2(ℝ)  space, that is, a set of vectors which are perpendicular to each other and can 

completely define a signal 𝑥(𝑡). 

The discrete wavelet transforms (DWT) of a signal 𝑥(𝑡) using dyadic arrangement in (5.3) is 

given by: 

𝑇𝑚,𝑛 = ∑ 𝑥(𝑡)𝑁−1
𝑡=0

1

√2𝑚
Ψ(

𝑡−𝑛2𝑚

2𝑚
) ≔< 𝑥,Ψ𝑚,𝑛 >     (5.4) 

Where, 𝑁 is the length of the discrete signal 𝑥(𝑡), 𝑇𝑚,𝑛 is the wavelet (or detail) coefficients, 

that is, the discrete wavelet transforms values for a scale-location grid of index m, n. 

Similarly, the reconstruction of the original signal 𝑥(𝑡) through the wavelet coefficients 𝑇𝑚,𝑛, 

using the inverse discrete wavelet transform is given by: 

𝑥(𝑡) = ∑ ∑ 𝑇𝑚,𝑛
2𝑀−1
𝑛=0

𝑀
𝑚=1 Ψ𝑚,𝑛(𝑡)       (5.5) 

Where, 𝑀 =
ln(𝑁)

ln (2)
: is the number of iterations that can be computed. Further, (5.4) and (5.5) 

can be summarized as follow: 

Decomposition process:  

𝑥(𝑡) → < 𝑥,Ψ𝑚,𝑛 >→ 𝑇𝑚,𝑛        (5.6) 

Reconstruction process:  

𝑥′(𝑡) ←  ∑ ∑ < 𝑥,Ψ𝑚,𝑛 >
2𝑀−1
𝑛=0 Ψ𝑚,𝑛(𝑡) ← 𝑇𝑚,𝑛

𝑀
𝑚=1      (5.7) 

Analogous to the process of obtaining wavelet coefficients 𝑇𝑚,𝑛 (5.4), the signal 𝑥(𝑡) can 

convolve to obtain the approximation coefficients 𝑆𝑚,𝑛 at all the scale-location indices 𝑚, 𝑛 as  

𝑆𝑚,𝑛 = ∑ 𝑥(𝑡)
1

√2𝑚
∅(

𝑡−𝑛2𝑚

2𝑚
) ≔< 𝑥, ∅𝑚,𝑛 > 

2𝑀−1
𝑡=0      (5.8) 

Where, 𝑆𝑚,𝑛 is the approximation coefficient for a scale-location grid of index 𝑚, 𝑛.  

In general, during the decomposition process the energy feature of the signal is extracted. The 

energy of the wavelet coefficients at the detailed 𝑔𝑑𝑗 and the approximations 𝑔𝑎𝑗 of the 𝑗𝑡ℎ 

decomposition level can be calculated using (5.9) and (5.10): 

𝑔𝑎𝑗 = ∑ |𝑆𝑚,𝑛𝑗(𝑥(𝑡))|
2

𝑡          (5.9) 

𝑔𝑑𝑗 = ∑ |𝑇𝑚,𝑛𝑗(𝑥(𝑡))|
2

𝑡          (5.10) 

Further, the reconstruction process is carried out as depicted in (5.7). 

As the signal is reconstructed, various features corresponding to the denoised or reconstructed 

signal are extracted. The mathematical formulations for various features like mean, standard 
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deviation, skewness, kurtosis, peak to peak distance, total harmonic distortion, signal to noise 

ratio, power and entropy of a signal are derived as discussed in [377].  

5.1.2 Support vector data descriptor classifier 

Every failure condition of an unmanned helicopter system has a specific impact on its pitch 

and yaw characteristics. These characteristics when subjected to time and frequency domain 

analysis provide different features that are the major source of data for training a classifier. 

Generally, the characterization of such data is affected by the operation of the system at extreme 

conditions for a very short duration. Training a classifier with such uncertain data will result in 

misclassification especially during the testing stages. Considering these conditions, the SVDD 

[378], [379] algorithm which is a class of support vector machines (SVMs) is adapted. The 

SVDD obtains a boundary around the uncertain data (feature matrix) by computing a 

hypersphere. This deals with the targeted objects to achieve minimum outlier acceptance by 

minimizing the sphere volume. 

Consider a signal 𝑖 with a set of 𝑑 real-valued measurements. This provides a feature vector Χ 

for the signal 𝑖, such that Χ𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑑), 𝑥𝑖,𝑗 ∈ ℝ. This indicates that, any given signal 

can be represented as a single point in the feature space 𝜒. Further, let 𝑓(X;𝑤) be a model 

defined for a hypersphere, where w is the weight vector. Here all the training samples 𝜒𝑡𝑟 of 

the feature space are available in the sphere. This indicates that the empirical error for the 

training or sample data is 0. Hence, concerning the classical support vector classifiers (SVCs), 

the structural error is defined as: 

𝜀𝑠𝑡𝑟𝑢𝑐𝑡(𝑅, 𝑎) = 𝑅2         (5.11) 

Further, considering different constraints this structural error is minimized as 

||Χ𝑖 − 𝑎||
2
≤ 𝑅2,       ∀𝑖        (5.12) 

Here, to achieve a robust classifier and allow the outliers possibility in the training set, the 

distance from the centre of the sphere ′𝑎′ to the objects 𝑋𝑖 should not be strictly smaller than 

𝑅2. This indicates that the empirical error does not have to be 0. Further, in any case, if an 

object Χ𝑖 lies at a distance 𝜉𝑖 > 0 outside the area of the sphere, that object is rejected by the 

description. Hence, the error is contributed both by the empirical and structural errors. To 

overcome this, the slack variables 𝜉, 𝜉𝑖 ≥ 0, ∀𝑖 are introduced and the minimization problem 

changes into: 

𝜀(𝑅, 𝑎, 𝜉) = 𝑅2 + 𝒞∑ 𝜉𝑖𝑖         (5.13) 

With a constraint that almost all the objects are within the sphere 
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||Χ𝑖 − 𝑎||
2
≤ 𝑅2 + 𝜉𝑖,       𝜉𝑖 ≥ 0,      ∀𝑖      (5.14) 

Where the tradeoff between the volume of the description and the errors is provided by 𝒞. 

Further, a Lagrangian multiplier (𝐿) is used in mapping the constraints in (5.13) with (5.14) as 

[380] 

𝐿(𝑅, 𝑎, 𝜉, 𝛼, 𝛾) = 𝑅2 + 𝒞∑ 𝜉𝑖𝑖 −∑ 𝛼𝑖𝑖 {𝑅2 + 𝜉𝑖 − (Χi. Χi − 2𝑎. Χi + 𝑎. 𝑎)} − ∑ 𝛾𝑖𝜉𝑖𝑖 . 

           (5.15) 

Where, 𝛼𝑖 and 𝛾𝑖 correspond to the Lagrangian multipliers defined for each signal Χ𝑖. Further, 

the 𝐿 is minimized about 𝑅, 𝑎, and 𝜉 and maximized about 𝛼 and 𝛾. This is achieved by adding 

an extra constraint for 𝛼 and by setting the partial derivatives to 0. This further limit the signal 

influence on the final output and provides the final error as 

𝐿 = ∑ 𝛼𝑖(Χ𝑖. Χ𝑖) − ∑ 𝛼𝑖𝛼𝑗(Χ𝑖. Χ𝑗)𝑖𝑗𝑖        𝑤𝑖𝑡ℎ  0 ≤ 𝛼𝑖 ≤ 𝒞,     ∀𝑖   (5.16) 

Here the expression for the center of the hypersphere is calculated. Further, a new test is 

elaborated for an object 𝑧 that lies within or exactly on the radius accepted by the description 

as 

||𝑧 − 𝑎||
2
= (𝑧. 𝑧) − 2∑ 𝛼𝑖(𝑧. Χ𝑖)𝑖 + ∑ 𝛼𝑖𝛼𝑗(Χ𝑖 . Χ𝑗)𝑖𝑗 ≤ 𝑅2   (5.17) 

𝑅2 = (Χ𝑘. Χ𝑘) − 2∑ 𝛼𝑖(Χ𝑖. Χ𝑘) + ∑ 𝛼𝑖𝛼𝑗(Χ𝑖. Χ𝑗)𝑖𝑗𝑖      (5.18) 

Where, Χ𝑘 ∈ 0 ≤ 𝛼𝑖 ≤ 𝐶 (set of support vectors with Lagrange multipliers). 

Further, this classification process can be given by: 

𝑓𝑆𝑉𝐷𝐷(𝑧; 𝛼, 𝑅)
= 𝐼 (||𝑧 − 𝑎||

2
≤ 𝑅2)

= 𝐼 ((𝑧. 𝑧) − 2∑ 𝛼𝑖(𝑧. Χ𝑖) + ∑ 𝛼𝑖𝛼𝑗(Χ𝑖 . Χ𝑗) ≤ 𝑅
2

𝑖𝑗𝑖 )
   (5.19) 

Where 𝐼 is the identification factor given by 

𝐼(𝒪) = {
1   𝑖𝑓 𝒪 𝑖𝑠 𝑡𝑟𝑢𝑒
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (5.20) 

Further, it is identified that the rigidness of the hypersphere in defining the data boundary, 

cannot fit the data as expected. But, to achieve a better fit, the data can be mapped in to a new 

dimension between the actual boundary of the data and the hypersphere model. Considering 

this scenario, a mapping Φ is developed to improve the data fitting as 

Χ∗ = Φ(Χ)          (5.21) 

By applying this mapping to equations (5.16) and (5.19), the corresponding error is given by: 

𝐿 = ∑ 𝛼𝑖Φ(Χ𝑖).Φ(Χ𝑖) − ∑ 𝛼𝑖𝛼𝑗Φ(Χ𝑖). Φ(Χ𝑗)𝑖𝑗𝑖      (5.22) 

and 

𝑓𝑆𝑉𝐷𝐷(𝑧; 𝛼, 𝑅) = 𝐼(Φ(𝑧).Φ(𝑧) − 2∑ 𝛼𝑖Φ(𝑧).Φ(Χ𝑖) + ∑ 𝛼𝑖𝛼𝑗Φ(Χ𝑖) . Φ(Χ𝑗) ≤ 𝑅2𝑖𝑗𝑖 ) 

           (5.23) 



137 

 

From the equations, it can be observed that all the mapping Φ(Χ) can only occur with inner 

products in other mappings. Considering this, a new function with two new input variables can 

be defined as follows: 

𝐾(Χ𝑖, Χ𝑗) = Φ(Χ𝑖).Φ(Χ𝑗)        (5.24) 

Where, 𝐾(Χ𝑖, 𝑋𝑗) corresponds to a Mercer kernel function representing the inner product of 

two functions. This modifies 𝐿 as  

𝐿 = ∑ 𝛼𝑖𝐾(Χ𝑖 , Χ𝑗) − ∑ 𝛼𝑖𝛼𝑗𝑖𝑗 𝐾(Χ𝑖 , Χ𝑗)𝑖       (5.25) 

and 

𝑓𝑆𝑉𝐷𝐷(𝑧; 𝛼, 𝑅) = 𝐼(𝐾(𝑧, 𝑧) − 2∑ 𝛼𝑖𝐾(𝑧, Χ𝑖) + ∑ 𝛼𝑖𝛼𝑗𝐾(Χ𝑖, Χ𝑗) ≤ 𝑅2𝑖𝑗𝑖 )  (5.26) 

Further, to achieve efficient kernel operation, the authors in [381] proposed a kernel trick that 

replaces the mapping Φ(Χ). This trick is mainly used in the case of non-linearly separable data 

while classifying with the SVMs. Besides the kernel trick, several other kernels like Gaussian, 

linear, polynomial, and radial basis function are also used with the SVCs in the literature [382]. 

In this research, the Gaussian kernel [383] is used due to its advantages with independency, 

data positioning, and distance formulation. Mathematically, Gaussian kernel is given as 

𝐾(Χ𝑖, Χ𝑗) = exp(−
||𝛸𝑖−𝛸𝑗||

2

𝑠2
)       (5.27) 

where 𝑠 is the width of the Gaussian kernel. 

Hence, based on the developments observed for the SVDD, the classifier is used to train the 

operating and fault states of the unmanned helicopter in the further sections. 

5.1.3 Classifier training 

5.1.3.1 Data Generation 

The helicopter model discussed in Chapter 2 is simulated using MATLAB/Simulink software 

to identify the normal operation and different motor faults in an unmanned helicopter system. 

To generate the training data the helicopter model is simulated under normal operating 

conditions with a conventional PID controller as discussed in [384]. Further, the motor faults 

are injected in the system as discussed in Table 5.1. 

Table 5.1. Simulated conditions on helicopter system for generating data for developing 

fault classifier 

Simulation condition Component effected Fault class 

The helicopter is controlled by a conventional 

PID controller to follow the desired trajectory.  

N/A Normal 

operation 
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Pitch motor voltage drop resulting in thrust 

torque altering the position of the helicopter 

from the desired trajectory 

Pitch actuator  

 

 

 

 

 

 

 

Motor fault 

Failure of pitch motor as the voltage exceeds the 

threshold resulting in the abrupt shutdown of the 

helicopter.  

Effect of transients in yaw motor voltage on the 

cross torque thrust of pitch motor failing the 

coupling. 

Yaw motor voltage drop resulting in thrust 

torque altering the speed of yaw motor and 

displacing the position of the helicopter from the 

desired trajectory 

Yaw actuator 

Failure of yaw motor as the voltage exceeds the 

threshold failing the rotational control for the 

helicopter.  

Effect of transients in pitch motor voltage on the 

cross torque thrust of yaw motor failing the 

coupling and rotational control. 

 

To begin with, the system is operated to follow a sine trajectory by providing an input signal 

of amplitude 5 and frequency 0.05Hz. Here, the trajectory tracking control objective is 

achieved with a classical PID controller [384]. During this operation, the pitch velocity, pitch 

angle, yaw velocity, and yaw angle of the helicopter are measured for two cycles as a time 

series data. Further, the faults discussed in Table 5.1 are simulated by varying the pitch and 

yaw motor voltages. With the action of each fault condition, the variations in pitch velocity, 

pitch angle, yaw velocity, and yaw angle are measured for two cycles as a time series data. The 

sample of time series representation of pitch and yaw characteristics under normal and fault 

conditions are shown in Figure 5.1.  

From Figure 5.1, it is identified that the variation in motor operating voltage to inject the fault 

affects the measured output characteristics of the helicopter. The pitch angle depicts a transient 

variation up to 9.7degrees during the high voltage fault. This resulted in a huge variation in the 

vertical movement of the helicopter. Similarly, the low voltage fault effect on the yaw motor 

fails the motor to achieve a significant yaw angle which resulted in huge misalignment at the 

pitch and yaw coupling. These deviations when compared with the characteristics of desired 

trajectories and normal operations showed a huge variation. Further, these variations are used 

to develop the classifier by extracting the relevant information. 
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(a) Pitch angle 

 
(b) Pitch velocity 

 
(c) Yaw angle 

 
(d) Yaw velocity 

Figure 5.1. Output characteristics of helicopter system for normal and failure conditions 

5.1.3.2 Feature extraction from helicopter fault data 

As the fault threshold may vary considering the operation of the helicopter, the feature 

extraction aids in developing an efficient classifier using the simulated condition data. 

Conventionally, many feature extraction techniques for extracting features of 1-dimensional 

signals are discussed in the literature [385]. Out of these techniques, the WT proved its 

efficiency due to its advantages with time and frequency representation of signals and the 

adoption of mother wavelets while using DWT [386].  
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From the pattern of the signals observed during normal and motor faults, the ‘Daubechies-5 

(db5)’ mother wavelet is chosen, with five-level decomposition and reconstruction [387]. 

During this process, the detailed and approximate coefficients of the signal are calculated and 

the corresponding energy feature (𝐸) is obtained as follows:  

𝐸 = √[∑
𝑎𝑏𝑠2(𝑑𝑚(𝑖))

𝑁
𝑖=𝑁
𝑖=1 ]        (5.28) 

where 𝑁 corresponds to the number of wavelet coefficients for each power cycle, and 𝑑𝑚(𝑖) 

corresponds to a detailed coefficient at each level of decomposition with 𝑙 ∈ 1,2,3,4,5. 

In addition to the above feature, the entropy (𝐻(𝑅𝑠)) is calculated using (5.29) to assess the 

robustness of the selected wavelet and support the energy feature during the training process. 

𝐻(𝑅𝑠) = −∑ 𝑝(𝑅𝑠) log10 𝑝(𝑅𝑠)
𝑁
𝑖=1        (5.29) 

Where 𝑅𝑠 represents the reconstructed form of the original signal, and 𝑝(𝑅𝑠) is given by the 

probability of the reconstructed signal. 

The features form a matrix along with their corresponding classes for normal and motor fault 

operation. This accommodates a matrix of 2000 × 2 samples for normal operation and a matrix 

of 3000 × 2 (six sets of 500 × 2 samples) for motor faults. The forms a matrix of feature 

vectors with 5000 samples for each feature. Further, the training process is carried out for the 

data by setting the width for Lagrangian multiplier 𝐿 to 0.8 such that 0 ≤ 𝛼𝑖 ≤ 0.8, and the 

kernel width is set to 1/16 by calculating the value of the kernel matrix using (5.27). The 

decision boundary range is calculated based on the total sample length and number of training 

samples. This sets the training data grid range, and estimates the bias term 𝜌. Here, based on 

the boundary conditions set, the classifiers trains and tests the corresponding data. The results 

for classifier training and testing are shown in Figure 5.2. 

 
(a) Contour of rho (bias term)  

 
(b) Decision boundary 
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(c) Training data 

 
(d) Training and testing data 

Figure 5.2. Parameter selection and decision boundary formation for training and testing 

process of the helicopter system fault classifier 

Figure 5.2(a) depicts the contour plot while estimating the bias term for defining the region of 

the training data. From the contour, it can be defined that the data fits in the classifier without 

excluding any outliers or the delicate details of the data. To get a clear picture of the contour, 

the grid lines are used as depicted in Figure 5.2(b) to get an exact representation of the 

hypersphere. In Figure 5.2(c), the training data is scattered in the hyperplane and it is observed 

that the data is trained to lie within the support vectors. Further, in Figure 5.2(d), the behavior 

of the classifier with the testing data is depicted. The classifier results are shown in Figure 5.3.  

 
(a) truly and falsely trained samples  

 
(b) truly and falsely trained 

samples for normal and motor 

fault class  

 
(c) positive prediction value 

and false detection rate  

 
(d) true positive rate and false negative rate 

Figure 5.3. Confusion matrix of various faults and trained fault classes of helicopter 

system classifier 

The truly and falsely classified samples of normal operating state, pitch actuator fault, and yaw 

actuator fault are shown in Figure 5.3(a). The normal operating condition has 1972 truly 
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classified samples and 28 falsely classified samples, while pitch actuator fault has 1499 truly 

classified and 1 falsely classified sample. Similarly, yaw actuator fault has 1492 truly classified 

and 38 falsely classified samples. Further, the truly and falsely classified of the fault sampled 

under normal and motor fault classes are shown in Figure 5.3(b). The positive prediction value 

and false detection rate along with true positive rate and false negative rate are shown in Figure 

5.3(c) and 5.3(d) respectively. Collectively, the overall training accuracy is identified as 98.6%. 

Further, the same input data is trained with different conventional classification techniques to 

identify the superiority of the developed classifier. The corresponding results are discussed in 

Table 5.2. 

Table 5.2. Comparison of classification parameters for helicopter system fault classifiers 

Parameters Model Type 

Preset SVDD SVM K-Nearest Neighbor  

Network 

Structure 

2 predictors- 2 

responses 

2 predictors- 2 

responses 

2 predictors- 2 

responses 

Feature matrix 5000 × 2 5000 × 2 5000 × 2 

Kernel Gaussian  Fine Gaussian  Coarse K-NN 

Accuracy 98.6% 88.6% 81.4% 

5.1.4 Fault-tolerant control 

The process of developing a fault classification algorithm for unmanned helicopters 

considering various faults and operating conditions was discussed earlier. Further, the system 

needs to be controlled using a fault-based control method where the complete system stability 

and desirable performance is maintained even in the case of external disturbance. Considering 

this, the classified fault information and the error data have been provided as inputs to the 

neural integrated fuzzy (NiF) controller.  

The NiF controller can be expressed by a single structure that combines the learning capability 

of artificial neural networks and the inference ability of the fuzzy controller. In the proposed 

fault tolerant control (FTC), the NiF learns about the state of the system from the data provided 

by the classifier, and the rule base is trained using the least square estimates and gradient 

descent method.  

5.1.4.1 Neural integrated Fuzzy Architecture 

The hybrid algorithm develops a new fuzzy inference that has four inputs and one output and 

trained with the Sugeno fuzzy model. This model is chosen to train the controller to adapt to 

the linear dependency of each rule on the input variables. A detailed overview of NiF 
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architecture along with the Sugeno fuzzy model learning algorithms are detailed in [388]. The 

architecture of four-input-single output NiF is shown in Figure 5.4.  

 

Figure 5.4. Schematic diagram of neural network for neural integrated fuzzy control of 

helicopter system 

The inputs 𝑐1 and 𝑐2 correspond to the normal operating class and motor fault class, and inputs 

𝑒 and 𝑑𝑒 corresponds to the error and change in the error of the measured signal. The terms 

𝑁𝑖, 𝑀𝑖, 𝐴𝑗 , and 𝐵𝑗 (𝑖, 𝑗 = 1, 2, … , 𝑛) in layer 1 corresponds to fuzzy membership functions of 

inputs 𝑐1, 𝑐2, 𝑒, and 𝑑𝑒  respectively. The nodes in layer 2 which are labeled as 𝜋 act as any T-

norm operator providing a weighted output 𝑤𝑘 (𝑘 = 1, 2, … , 𝑛). Further, the output of the third 

layer labeled as 𝑁 is calculated as 𝑤̅𝑘 = 𝑤𝑘/ ∑ 𝑤𝑘𝑘 . Finally, the linear functions 𝑓𝑘 (𝑘 =

1, 2, … , 𝑛) at the fourth layer act as inputs for representing the ‘then’ part of the fuzzy rules 

(𝑓𝑘 = 𝑝𝑘𝑥 + 𝑞𝑘𝑦 + 𝑟𝑘). The terms 𝑝𝑘, 𝑞𝑘 and 𝑟𝑘 are constant coefficients to be determined, 

and x and y are the inputs being processed. The final output is calculated from 𝑓 = ∑ 𝑤̅𝑘𝑓𝑘𝑘 . 

Combining all the aspects, rules are formulated as follows: 

𝑅𝑢𝑙𝑒 1 𝑖𝑓 𝑐1 𝑖𝑠 𝑁1, 𝑐2 𝑖𝑠 𝑀1, 𝑒 𝑖𝑠 𝐴1 &  𝑑𝑒 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑅𝑢𝑙𝑒 2 𝑖𝑓 𝑐1 𝑖𝑠 𝑁2, 𝑐2 𝑖𝑠 𝑀2, 𝑒 𝑖𝑠 𝐴2 &  𝑑𝑒 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

𝑅𝑢𝑙𝑒 𝑘 𝑖𝑓 𝑐1 𝑖𝑠 𝑁𝑘, 𝑐2 𝑖𝑠 𝑀𝑘, 𝑒 𝑖𝑠 𝐴𝑘  &  𝑑𝑒 𝑖𝑠 𝐵𝑘, 𝑡ℎ𝑒𝑛 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓𝑘 = 𝑝𝑘𝑥 + 𝑞𝑘𝑦 + 𝑟𝑘 

The output 𝑓 can be elaborated as: 

𝑓 =
𝑊1

𝑊1+𝑊2+⋯+𝑊𝑘
𝑓1 +

𝑊2

𝑊1+𝑊2+⋯+𝑊𝑘
𝑓2 +⋯+

𝑊𝑘

𝑊1+𝑊2+⋯+𝑊𝑘
𝑓𝑘   (5.30) 

For the NiF implementation of the helicopter model, the design procedure completely depends 

on a data training method, calculating the input-output membership function, and rule base, to 

achieve optimum output. The block diagram of the NiF controller implemented with the plant 
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is shown in Figure 5.5. From the block diagram, it can be identified that the desired and faulty 

pitch and yaw position are compared with their reference values to generate an error which is 

further combined with the operating state classified by the classifier to apply as inputs for the 

controller. Where faulty pitch error 𝑒𝑝(𝑡) = 𝜓 − 𝜓𝑑, a derivative of faulty pitch 𝑑𝑒𝑝(𝑡), faulty 

yaw error 𝑒𝑦(𝑡) = 𝜑 − 𝜑𝑑, a derivative of faulty yaw is 𝑑𝑒𝑦(𝑡). Here,  𝜓 and 𝜑 are the pitch 

and yaw angles of the helicopter, and 𝜓𝑑 and 𝜑𝑑 are the desired pitch and yaw angles, 

respectively. 

 

Figure 5.5. Implementation of neural integrated fuzzy control with the helicopter system 

5.1.5 Experimental testing 

To test the developed control approach, the helicopter test rig discussed in Chapter 2 is 

considered in the laboratory environment. Further, the controller developed is interconnected 

with the test rig by performing data exchange between the simulated models and the helicopter 

setup. This is achieved by building the C code through the MATLAB and Quanser software. 

The flow diagram for software-hardware integration with the proposed FTC scheme is shown 

in Figure 5.6.  

The performance of the proposed controller is assessed by testing it with the helicopter test rig. 

A motor fault is created on the system and tested with the classifier to identify the operating 

state of the helicopter. The classified operating state is further combined with the developed 

NiF controller to operate with the precomputed rule base. The results of the testing and control 

process are discussed as follows. 
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The pitch and derivative of the pitch are the two inputs for controller design, and all possible 

combination of that lies in the range of pitch data is fed for the training of NiF. For the yaw 

controller design, the same approach is applied. The target output in this scenario is the control 

signal 𝑢(𝑡), which obtained from fuzzy control. Further, the universe of discourse is chosen by 

testing different thresholds in the simulation for maintaining the pitch and yaw characteristics 

to track the trajectory even in the presence of fault [389].  The universe of discourse is ranged 

between [0 1] for both the fault classes, [−0.2, 0.2] for yaw error & yaw derivative, 

[−0.35, 0.35] for pitch error, and [−1 1] for pitch derivative.  

 

Figure 5.6. General scheme of fault-tolerant controller for helicopter system 

The data of classes, yaw, and pitch are trained by a hybrid training algorithm and a Sugeno 

type fuzzy model with single output has been obtained after training. Each output membership 

function parameter is associated with the seven different linguistic variables expressed as NB, 

NM, NL, Z, PL, PM, & PB. These seven-input spaces are further portioned into the 49 fuzzy 

subspaces. The complete fuzzy subspace follows the if-then rules set. The various factors 

considered for developing the NiF controller are listed in Table 5.3. 

Table 5.3. Parameters of NiF controller for helicopter system 
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Parameter Values 

Yaw control scaling factor 𝑀𝑒𝑦(𝑡) = 𝑁𝑒̇𝑦(𝑡) = 35  

Yaw output scaling factor  𝑂𝑢𝑦(𝑡) = 0.7   

Pitch control scaling factor 𝑀𝑒𝑝(𝑡) = 20,𝑁𝑒̇𝑝(𝑡) = 7  

Pitch output scaling factor 𝑂𝑢𝑝(𝑡) =  0.7 

Coefficient of learning for pitch 𝜂𝑝 =  5.75352𝑒
−6

 

Root mean square error for pitch 𝑃𝑟𝑚𝑠𝑒 = 0.000006  
Coefficient of learning for yaw 𝜂𝑦 =  6.95252𝑒

−6 

Root mean square error for yaw 𝑌𝑟𝑚𝑠𝑒 = 0.000006  

The main objective is to achieve path tracking of a fault effected helicopter by observing a 

predefined trajectory. A motor fault is injected which creates variation in pitch and yaw motion. 

This affects the pitch angle, yaw angle, pitch velocity, and yaw velocity. Initially, when the 

fault occurs, a huge number of oscillations is observed on the helicopter body during its run 

time. These high oscillations are due to the relatively strong force that lifts the helicopter body 

at the starting time. As the fault is removed, a more stable and oscillation free-response is 

achieved by the system. 

 
(a) Pitch angle 

 
(b) Pitch velocity 

 
(c) Yaw angle 
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(d) Yaw velocity 

Figure 5.7. Pitch and yaw actuator response of helicopter during fault and after fault 

removal conditions in real-time  

From Figure 5.7, it is observed that the pitch angle depicted huge initial oscillations ranging 

between 5 degrees to −12 degrees during the fault. As the fault is removed, the initial 

oscillations are minimized and range between −1 degree to −6 degree for pitch angle. 

Similarly, the yaw angle depicted huge initial oscillations ranging from 28 degrees to 12 

degrees during the fault, and after the fault is removed, these oscillations are ranged between 

15 degrees to 13 degrees. Further, due to low pitch velocity, the necessary thrust is unable to 

generate by the pitch motor and fails to move in the vertical direction to follow a predefined 

trajectory. The coupling phenomena demands to minimize the yaw velocity, but motor fault 

raises it to the max 48 degree/sec. This is improved by implementing the NiF controller which 

removes the fault from the system and generates the necessary control action.  

5.2 FAULT CLASSIFICATION-BASED CONTROL FOR BALL BALANCER SYSTEMS 

In this section, a fault classification and control algorithm has been explored for reliable 

operation of ball balancer systems. The developed approach identifies the variation in operating 

characteristics of the ball balancer for different faults and operating conditions in time and 

frequency domain and achieves the control operation with the help of a wavelet fuzzy 

controller. Conventionally, fault tolerant control schemes such as adaptive linear parameter 

varying [296], network-based filter [297] and parametric linear quadratic regulator [298], etc 

have been implemented on ball balancer applications. The main drawback of these techniques 

is their inability to detect and adapt for multiple faults and operating conditions. To overcome 

this, the need to classify the operation of the system is very much required. Hence fault 

classification techniques come into the scenario for developing an efficient fault classification-

based control.  
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5.2.1 Problem formulation in ball balancer system 

Ball balancer systems are subjected to disturbances as they hold movement of freedom for their 

rigid body motion with two actuator control inputs. This presents some nonlinear dynamics to 

the ball balancer system, which includes translational and rotational movements in X, Y and 

Z-directions. The translational movements are expressed as surge, sway, and heave in X, Y, Z 

direction respectively and roll, pitch,  and yaw respectively for rotational dynamics [390]. The 

schematic diagram for motion of ball balancer in X, Y, Z directions is shown in Figure 5.8. 

 

Figure 5.8. Three axial dynamics of ball balancer system representing the translational 

and rotational movements in XYZ plane 

Generally, the main objective of a controller in the ball balancer system is to perform set point 

tracking under various disturbances such as variation in actuator operation, overloading, and 

other disturbances. Due to these conditions, there is huge possibility for faults in the ball 

balancer systems which further effect the dynamics of the system. In addition, the faults due to 

external and internal scenarios create a large amount of energy loss for the system. The main 

reason of internal faults are sensor failure [391], actuator failure [298] and for the external 

faults, the environmental conditions [392] are responsible. The sensor failure distorts the data 

used in ball position control by affecting the control decision which initiates after timely 

identification of environmental effects and neutralize them simultaneously. Apart from the 

above, while dealing with balancing control, robustness play important role under faulty 

conditions by keeping the dynamics of the system constant [297]. Hence, for achieving steady 

operation with the ball balancer system, the identification of faults is necessary. Once a fault is 

identified, the controller must be capable of operating the system by riding through the fault or 

indicating the action of preliminary measures to avoid further damage. To achieve this, two 

steps are adapted while developing the fault classifier prior to the reconfigurable control 

development. In step 1, the wavelet transform discussed in section 5.1.1 is used for extracting 
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features of different fault conditions in ball balancer systems. Further, in step 2, the support 

vector machine is adapted as discussed further to develop the fault classification approach. 

5.2.2 Support Vector Machine Classifier 

 The main idea of support vector machine (SVM) classifier is to map the input vectors (features) 

into a high dimensional feature space through predefined non-linear mapping. In case of 

classification in the created high dimensional space, a linear decision surface is constructed 

with special properties that ensure a high generalization ability of SVM [393].  

In general, for a linearly separable input data, the SVM algorithm searches for the optimal 

hyperplane in the unchanged feature space of the input data. However, in any case if the input 

data is linearly non-separable, the SVM maps the input data in to the higher dimensional feature 

space using a kernel function. The used kernel function must satisfy Mercer’s theorem [394] 

and correspond to an inner product in the constructed high dimensional feature space. One of 

the advantages of SVM is its universality researcher’s assumptions and problem domain. 

Another advantage of SVM algorithm is its effectiveness in the high dimensional feature 

spaces. 

Generally, SVM is widely used in many problem domains and often outperforms other machine 

learning algorithms. The core of SVM lies within the different kernels, which are used for 

separating support vectors from the rest of the training data. The time complexity of SVM is 

𝑂(max(𝑛, 𝑑) ∗ min(𝑛, 𝑑)2) according to [395] where n is number of samples and d is number 

of features. 

5.2.2.1  Data Preparation 

The ball balancer system discussed in chapter 2 has been considered for achieving fault 

classification and control analysis. As per the system specifications, the plate dimensions are 

27.5𝑐𝑚 in length and 27.5𝑐𝑚 in width. These dimensions restrict the freedom of movement 

for the ball within a length of 13.75𝑐𝑚 considering the ball is to be positioned at the centre of 

the plate. But this length makes the ball to move to the corners of the plate, and the target of 

the research is to stabilize the ball on the centre. So, a range of 0-6.875 cm has been taken to 

restrict the ball movement in middle of plate and reference of 3 cm has been chosen to keep 

the ball closer to plate centre. To test the operation of the setup, a 0.08 Hz square wave of 

amplitude 3 is considered as input for the system [213]. Further, from the internal and external 

factors that affect the ball balancer operation, the experimental analysis is carried out by 
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simulating 3 critical faults. The corresponding results are depicted in Figure 5.9 and their 

description and effects are detailed in Table 5.4. 

Table 5.4. Sample data analysed in 2DoF ball balancer for developing the fault classifier 

Component Corresponding 

Ball balancer 

parameter 

Fault Type Description 

Normal Operation 

(Ball Position-NO-D_X, 

Plate Angle- NO-T_X, 

Voltage- NO-V_X) 

--- No Fault The system is 

operating under 

normal test 

condition 

Motor failure 

(Ball Position-RF-D_X, 

Plate Angle- RF-T_X, 

Voltage- RF-V_X) 

Actuator failure 

for translation 

motion of ball on 

plate 

Gains of 

servo units 

are 

increased 

Sudden change in 

motor inertia 

Plate Deformation 

(Ball Position-PL-D_X, 

Plate Angle- PL-T_X, 

Voltage- PL-V_X) 

Ball balancer 

plate mechanical 

deformation 

Plate 

distortion or 

twist 

Reduced or 

deformations in 

plate length 

Plate Overloading 

(Ball Position-OL-D_X, 

Plate Angle- OL-T_X, 

Voltage- OL-V_X) 

Plate overloading Loading 

with balls of 

different 

mass 

Increased load 

and failure of 

motor operation 

 

 
(a) Ball position 

 
(b) Plate angle 
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(c) Operating voltage 

Figure 5.9. Different faults and operating states of ball balancer system  

From Figure 5.9, it can be observed that, the ball position follows the trajectory in normal 

operation and very unbalanced during remaining conditions (Figure 5.9. (a)). During 

overloading conditions, the plate angle will move slowly because of heavy ball, which takes 

more time to stabilize. Due to which ball movement will be unpredictable and it will show huge 

variation of 4 degree at 4sec and -29 degree at 13.5 sec respectively from Figure 5.9. (b) and 

cause in unstable operation. During length deformation fault condition, the plate will fluctuate 

due to external disturbance on plate and will subjected to rapid variation in ball position from 

Figure 5.9(a). During rotor failure the voltage will drop to extremely low value lying between 

1.8volts to -1.2 volts from Figure 5.9(c) which results in to huge oscillations between 2 to 12 

seconds from Figure 5.9(a). 

5.2.2.2 Feature Extraction and Classification: 

In data analysis and data mining, the original data always requires some pre-processing before 

making further assumptions and applying machine learning algorithms. Initially, the data 

corresponding to various faults and operating conditions of the ball balancer system are 

extracted by performing multiple experiments on the laboratory setup of 2DoF ball balancer 

system. This data plays a major role in developing the fault classification algorithm.  

In the next step, the extracted data is subjected to pre-processing for eliminating the noise, and 

extracting the features of the signal by adapting discrete wavelet transform as discussed in 

Section 5.2.2.1. The high pass and low pass filters of discrete wavelet transform perform 

decomposition and reconstruction of the data for eliminating the noise, and provide the energy 

feature of the signal. Apart from the energy feature, the reconstructed signals contain different 

simple and advanced statistical features which can help in developing the classification 

algorithm. In this research different features like entropy, power, peaks, harmonics, noise ratio, 

skewness and kurtosis of the signals are extracted as discussed in [377].  
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The extracted features are tabulated to form a feature matrix of 11385 ∗ 8 dimensionality, with 

11385 features of all the samples of different classes (faults and operating conditions) and 8 is 

the types of features extracted from the plant operating and fault data. For developing a 

classifier with the SVM, the features of different classes are categorized as predictors and the 

classes are categorized as responses. Before subjecting the feature data for training with SVM, 

a 10-fold cross validation is specified to estimate the testing efficiency of the developed model 

with new data. The cross validation is performed by, 1) resampling or shuffling a limited data 

sample, 2) splitting the data into 10 folds, 3) testing each fold with the training set, and 4) 

summarize the testing or estimation efficiency using evaluated data of each fold.   

5.2.2.3 Classifier Results 

Initially the tabulated feature data is scattered in to a feature space where all the samples 

corresponding to each class can be observed between any two features as shown in Figure 

5.10(a). Since the feature data obtained from the experiment is nonlinear in nature and SVM 

only deals with a linear data, a gaussian kernel is chosen to map the non-linear data in to a high 

dimensional feature space. The gaussian kernel has no prior knowledge of the data being 

handled and can handle multiple classes which is an advantage for developing the classifier 

with non-linear data. As the data is mapped into high dimensional feature space and trained 

with the SVM, the feature plane offers an insight of truly predicted samples and falsely 

predicted sampled between two features as shown in Figure 5.10(b). From the figure it can be 

identified that, the cross marked (x) samples are falsely classified and the remaining are truly 

classified samples. 

 
(a) Training feature data of different 

classes between two features  

 
(b) Misclassified feature data of 

different classes between two features 

Figure 5.10. Feature space between peak and power features of ball balancer operating 

conditions 

Considering the misclassified features while training the features of different classes, a 

confusion matrix is plotted to identify the truly and falsely classified data. This confusion 

matrix allots the samples under four different categories of true positive (TP), false positive 
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(FP), true negative (TN) and false negative (FN). Further, the confusion matrix also aids in 

estimating the accuracy of the developed model as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
        (5.31) 

The confusion matrix for the trained classifier is shown in Figure 5.11. The truly and falsely 

classified samples are arranged against their respective classes in an axis of true class to the 

positive predicted class. The samples along the green diagonal depict the truly classified 

samples (in %) and the misclassified samples are arranged above and below the diagonal where 

the samples above the diagonal correspond to false positive and the samples below the diagonal 

are false negative.  

 

Figure 5.11. Confusion plot for prediction rate of the ball balancer fault classifier 

From the feature matrix of size 11385 ∗ 8, 98.6% samples are truly classified for all the 

classified and the 1.4% samples are falsely classified. This brings the training accuracy of the 

classifier to 98.6%. Here, the classifier accuracy only reports the correct responses which is 

good in case of balanced datasets. But while dealing with real world signals i.e., imbalanced 

data, the classification accuracy needs to be supported with other metrics to justify the 
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classification process. Hence the area under the curve (AUC) receiver operating characteristics 

(ROC) are plotted for the trained model.  

 

Figure 5.12. Receiver operating characteristics – Area under the curve for ball balancer 

fault classifier 

Figure 5.12. depicts the ROC curve which is a graphical representation of relationship between 

recall and (1 – specificity), indicated as false positive rates on y-axes and true positive rates on 

x-axes, and illustrate the performance of the classifier. The maximum performance is achieved 

at point [0, 1]. ROC-AUC (Area Under the Curve) is a numerical estimation of classifier’s 

quality in case of using ROC curve. Here the ROC AUC is equal to 0.9 which depicts that the 

accuracy of the classifier in developing the classification algorithm is very high. Table 5.5 

compares the efficiency of the developed classification algorithm with conventional 

classification algorithms. 

Table 5.5. Comparison of classification parameters for ball balancer fault classifiers 

Model Type Parameters 

Preset Support Vector Machine K-Nearest Neighbour 

Kernel Function Fine Gaussian Fine Gaussian 

Kernel Scale Automatic Automatic 

Accuracy 98.6% 81.4% 

Prediction Speed ~18000 observations/sec ~8909 observations/sec 

Training Time 9.909 sec 18.62 sec 

Testing Time 20msecs 3secs 

From the results, it is observed that the classifier efficiently trains the feature data to develop 

the fault classifier for the ball balancer system.  

5.2.2.4 Fault Identification: 

For a ball balancer system which is operating under various factors and conditions, there are 

many potential faults that can impact its performance. In most of the cases, the possibility for 
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multiple faults to affect the operation of the system needs to be considered. For identifying or 

validating the presence of a classified fault in the system, a set of residual generators are 

computed. These residual generators act as a function of actuator and sensor data which is zero 

for an ideal or fault-free condition. Since, the performance of fault detection or classification 

is complicated by different measurement noises and model uncertainties. Any change in the 

output of residual generator needs to be evaluated initially either by thresholding or with a test 

quantity. In order to monitor different parts of the system and generate various fault subsets, 

multiple residual generators can be considered. In case of untrained or unknown faults, it is 

necessary to identify the likelihood that an unknown fault has occurred. 

By adapting this fault identification process, the ability of the classifier, for identifying the 

operating state of the system during unknown, untrained or multiple faults occurring 

simultaneously or in a sequence can be improved. 

5.2.3 Fault based control process 

 

Figure 5.13. Discrete wavelet transform based reconfigurable fuzzy controller for ball 

balancer system 

In order to accommodate the system control for better operation during degradation and fault 

conditions, a fault tolerant control method is developed to maintain system stability and achieve 

desired performance. To achieve this, a wavelet transform based fuzzy logic controller is 

developed for controlling the system by adhering to the condition of the system. The schematic 

of the wavelet fuzzy based position controller is shown in Figure 5.13.  

The difference between the desired position and real-time position of the ball in the ball 

balancer model defines the input for the controller. The input of the system is a square wave 

with amplitude 3, and the input signal frequency is 0.08Hz. The monitoring for the inner loop 

is done by controlling the SRV02 position by providing a servo proportional gain (𝐾𝑃𝐺,𝑆𝑒𝑟𝑣𝑜-

14), and for outer loop control, wavelet based fuzzy controller has been designed. 
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5.2.4 Real-Time Results 

To assess the performance of the proposed controller with the developed fault classification 

algorithm, three different sets of unclassified fault data related to motor fault, plate deformation 

and overloading are tested with the classifier individually. The classification efficiency of the 

developed classifier, when tested with different faults are depicted in Table 5.6. 

Table 5.6. Testing efficiency of the classifier for different faults in ball balancer system 

Fault Type Classifier Training 

Efficiency 

Testing 

Efficiency 

Motor Fault 98.6% 99% 

Plate Deformation 98.6% 99% 

Over Loading 98.6% 82% 

From the Table 5.6, it can be noted that, the classifier efficiently classifies the motor fault and 

plate deformation fault due to the variation of output signals from the normal operation. 

Whereas, while testing with the over loading fault, it can be observed that the classifier 

efficiency reduces as the output of the system during overloading has some similarities with 

the normal operation as the system tries to balance the ball.    

Further, the action of motor fault is adapted for testing the operation of the control action. 

Initially, the system is operated to replicate the behaviour of motor fault by varying the actuator 

gains of the servo units. The plate angle, ball position, and system operating voltage are 

measured as shown in Figure 5.14 (During fault waveforms) and their corresponding features 

are extracted to test with the trained classifier. The output from the classifier identifies the 

current operating mode of the system. Once the fault mode is identified by the classifier, the 

output corresponding to the operating mode is sent to the controller to select the corresponding 

response of the controller from the pre-computed rule base. Further, the precomputed rules of 

the fuzzy controller act according to the classified fault to enhance the performance of the 

system by adjusting the weights of rules to reinstate the actuator gain values.  

Results from the execution of these controllers to Simulink and real-time are checked 

dependent on the momentary investigation. Table 5.7 shows, the output of DWT-FLC, which 

is minimum in comparison with FLC on real-time results. Table 5.8 shows the root mean square 

value of DWT-FLC and FLC in terms of position and plate angle parameter using in real-time. 

Figure. 5.14(a), 5.14(b) and 5.14(c) show the plate angle, ball position and servo motor voltage. 

Angle variation is between 27 degrees and -14 degrees, made the movement of the ball stable 

and smooth for the DWT-FLC controller. Subsequently, by observing the real-time result of 

ball position from Figure 5.14(b), DWT-FLC is closer to reference with fewer oscillations 
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which make the system more stable then FLC as it settles for that trajectory which is away from 

the reference. However, DWT-FLC settled for the trajectory that almost equal to the desired 

one with excellent performance.  Fuzzy logic controller provides a way of handling imprecision 

and nonlinearity while dealing with the position control error for the ball balancer system. 

Similarly, the DWT-FLC compares the position error with predefined wavelet amplitude and 

then reconstructs the signal to process it for the logical and analytical controlling. 

Table 5.7. Time response analysis for reconfigurable control of ball balancer system 

Controllers Peak Time 

(𝑡𝑝) (sec) 

Settling Time 

(𝑡𝑠) (sec) 

Peak Overshoot 

(𝑀𝑝) (%) 

Steady state error 

(𝑒𝑠𝑠) (cm) 

FLC 12.5sec 13.1sec 23.4% 4.1cm 

DWT-FLC 3.07sec 4.07sec 20.9% 1.55cm 

Table 5.8. Root mean square error for reconfigurable control of ball balancer system 

Controller Root mean square error 

Position (cm) Angle (deg) 

FLC 5.1894 cm 3.4049 deg 

DWT-FLC 3.5680 cm 2.7517 deg 

 
(a) Plate angle 

 
(b) Ball position 
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(c) Operating voltage 

Figure 5.14. Response of ball balancer during fault and after fault removal conditions in 

real-time 

In order to evaluate the action of the controller during the fault, the position error of the ball 

movement on the plate with respect to the reference signal is measured. The position error of 

the system is calculated by finding the error between measured signal data and reference signal 

data, which is further subjected to piecewise function using cure fitting tool of the MATLAB. 

The steady state tracking error of the proposed control strategy is observed to be 1.55 cm. From 

the results, it is observed that the developed fault classification approach efficiently classifies 

the operating state of the system and controls it to achieve steady state operation. The ability 

of discrete wavelet transforms to identify the features for different faults and operating 

conditions and the supervised learning of the classifier proved to efficiently develop a fault 

classifier with better training and testing efficiencies. Further the fault identified is efficiently 

controlled with the help of wavelet fuzzy controller with less settling time, improve steady state 

error, position error and low angle variation.   

5.3 CONCLUSION 

This chapter develops a condition monitoring approach for helicopter and ball balancer system 

without the need for additional sensors. The developed approach localizes the faults to 

component level based on the classified fault and operating state of the plant. Further, the 

identified faults are validated based on residual generators. Besides, the developed intelligent 

fault tolerant control approach based on the identified fault and measured system 

characteristics, helps in improving the performance and safety of system. This achieves robust 

and stable operation even in the presence of faults. 
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Chapter 6. REINFORCEMENT LEARNING WITH 2DOF 

SYSTEMS 

The operation of robotic systems to perform complex tasks in dynamic environments has been 

a crucial area of control. Most of these control aspects are directly related to position control, 

path planning, trajectory tracking and balancing control of vehicles, etc. [305], [306]. 

Conventionally, many efforts have been made to achieve the control of autonomous robots, 

especially in the field of trajectory tracking, path planning [83], [93], [94], [105] and balancing 

control [307]–[309]. Recently, reinforcement learning (RL) based algorithm has been widely 

used to deal with these complicated control problems. In this chapter, a useful baseline is 

established for trajectory tracking and balancing control with most fundamental problems in 

optimal control theory. Further model free controllers are developed in linear and nonlinear 

environment using generalized learning algorithms, policy iteration (PI) and value iteration 

(VI). The PI and VI are implemented using various iterative and adaptive algorithms for solving 

the optimal control problem without a system model. To assess the performance of the 

developed model free controllers, real-time analysis is performed using benchmark control 

problems.  

6.1 REINFORCEMENT LEARNING ALGORITHMS 

The most general form of reinforcement learning (RL) is 𝑄-learning, which uses action values 

(𝑄 − 𝑣𝑎𝑙𝑢𝑒𝑠) to improve the behavior of learning iteratively [396]. These 𝑄 − 𝑣𝑎𝑙𝑢𝑒𝑠 involve 

states and actions of a learning process 𝑄(𝑆, 𝐴) to estimate the performance of action 𝐴 to state 

𝑆. This estimation is computed iteratively by using a temporal difference update rule. Further, 

to learn a function according to the action, the RL agents have two types of policies, on policy 

and off policy. In on policy, the learning process is dependent on the current action derived 

from the current policy, whereas in off policy, the learning process is dependent on the action 

derived from a different policy. The 𝑄-learning process refers to the off-policy technique by 

adapting a greedy approach to learn the 𝑄 − 𝑣𝑎𝑙𝑢𝑒𝑠. In addition to the 𝑄-learning, the SARSA 

algorithm [397], which abbreviates for State Action Reward State Action, refers to on Policy 

technique to learn the 𝑄 − 𝑣𝑎𝑙𝑢𝑒𝑠. 
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6.2 LEARNING ALGORITHM-BASED LINEAR MODEL FREE CONTROL 

The generalized expression for linear discrete time systems in time invariant state space is 

given by (6.1) as in [398] as: 

{
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘
𝑢𝑘 = 𝐾𝑥𝑘 + 𝜖𝑘
𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘

         (6.1) 

where 𝑥𝑘 ∈ ℝ
𝑛𝑥 corresponds to state at time 𝑘, with 𝑛𝑥 corresponding to number of states, 

𝑢𝑘 ∈ ℝ
𝑛𝑢 corresponds to control input at time 𝑘, with 𝑛𝑢 corresponding to number of inputs, 

𝑦𝑘 ∈ ℝ
𝑛𝑦  corresponds to controlled output at time 𝑘, with 𝑛𝑦 corresponding to number of 

outputs, 𝐴 ∈ ℝ𝑛𝑥×𝑛𝑥 corresponds to state matrix, 𝐵 ∈ ℝ𝑛𝑥×𝑛𝑢 corresponds to input matrix, 𝐶 ∈

ℝ𝑛𝑦×𝑛𝑥 corresponds to output matrix, 𝐷 ∈ ℝ𝑛𝑦×𝑛𝑢 corresponds to feedthrough matrix, and 𝜖𝑘 

is the control noise. 

Considering that the optimal gain of the system (6.1) is solved by a linear quadratic regulator 

(LQR), which minimizes the quadratic cost function. The expression for minimizing cost 

function is given by: 

𝑉ℎ(𝑥𝑘) = ∑ 𝛾𝑖𝑘−𝑘𝑟(𝑥𝑖𝑘 , 𝑢𝑖𝑘),
∞
𝑖𝑘=𝑘

       (6.2) 

where 𝛾 corresponds to the discounting factor, 𝑖 indicates the number of step cost functions, 

and 𝑟(𝑥𝑖𝑘 , 𝑢𝑖𝑘) corresponds to one step cost which is given as: 

 𝑟(𝑥𝑖𝑘 , 𝑢𝑖𝑘) = 𝑥𝑖𝑘
𝑇 𝑄𝑥𝑖𝑘 + 𝑢𝑖𝑘

𝑇 𝑅𝑢𝑖𝑘 ,       (6.3) 

where 𝑄 ∈ ℝ𝑛×𝑛 and 𝑅 ∈ ℝ𝑚×𝑚 correspond to user defined state and control weighting matrix 

respectively. 

The optimal gain (𝐾∗), minimizing the quadratic cost function with 𝛾 = 1 is given in [398]–

[400] as 

𝐾∗ = (𝑅 + 𝐵𝑇𝑋𝐵)−1𝐵𝑇𝑋𝐴        (6.4) 

where 𝑋 corresponds to the solution of discrete time Algebra Riccati equation (ARE) which is 

given as: 

𝑋 = 𝐴𝑇𝑋𝐴 − 𝐴𝑇𝑋𝐵(𝑅 + 𝐵𝑇𝑋𝐵)−1𝐵𝑇𝑋𝐴 + 𝑄.     (6.5) 

To solve (6.5), the knowledge regarding full dynamics of the system are necessary. 

Relentlessly, RL techniques proved to solve it using state, outputs and control actions without 

the need for system dynamics [399], [400]. 
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6.2.1 Learning algorithm with state measurements 

The model free solution of (6.6) is derived from [399] by expressing the quadratic cost function 

(6.2) as follows: 

𝑉ℎ(𝑥𝑘) = 𝑟(𝑥𝑘, ℎ(𝑥𝑘)) + 𝛾𝑉ℎ(𝑥𝑘+1), 𝑉ℎ(0) = 0     (6.6) 

where 𝑉ℎ(𝑥𝑘) is value function, and 𝑟(𝑥𝑘, ℎ(𝑥𝑘)) corresponds to one step cost as per (6.3) with 

𝑖𝑘 = 𝑘, and ℎ(𝑥𝑘) = 𝑢𝑘. This is known as Bellman equation. The optimal value and optimal 

policy are given as: 

{

𝑉∗(𝑥𝑘) = min
ℎ(∙)

(𝑟(𝑥𝑘, ℎ(𝑥𝑘)) + 𝛾𝑉
∗(𝑥𝑘+1))

ℎ∗(𝑥𝑘) = arg min
𝑢𝑘

(𝑟(𝑥𝑘, ℎ(𝑥𝑘)) + 𝛾𝑉
∗(𝑥𝑘+1))

     (6.7) 

Using value function, the learning function as derived in [401] is given by: 

𝑄∗(𝑥𝑘, ℎ(𝑥𝑘)) = 𝑟(𝑥𝑘, ℎ(𝑥𝑘)) + 𝛾𝑉
∗(𝑥𝑘+1).     (6.8)  

From (6.7) and (6.8), (6.7) can be expressed as: 

{

𝑉∗(𝑥𝑘) = min
ℎ(∙)

(𝑄∗(𝑥𝑘 , ℎ(𝑥𝑘)))

ℎ∗(𝑥𝑘) = arg min
𝑢𝑘

(𝑄∗(𝑥𝑘, ℎ(𝑥𝑘)))
       (6.9) 

From the Bellman equation, the general learning equation (𝑄𝑠) is derived as: 

𝑄𝑠(𝑥𝑘 , ℎ(𝑥𝑘)) = 𝑉ℎ(𝑥𝑘).        (6.10) 

From (6.6) and (6.10): 

𝑄𝑠(𝑥𝑘, 𝑢𝑘) = 𝑟(𝑥𝑘 , 𝑢𝑘) + 𝛾𝑄𝑠(𝑥𝑘+1, ℎ(𝑥𝑘+1)).     (6.11) 

For an LQR controller, the learning equation is derived in [399], [400] as: 

𝑄𝑠(𝑥𝑘, 𝑢𝑘) = 𝑧𝑘
𝑇𝑆𝑧𝑘 = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑧𝑘+1

𝑇 𝑆𝑧𝑘+1,     (6.12) 

where 𝑧𝑘 ∈ ℝ
𝑛𝑧, 𝑛𝑧 = 𝑛𝑢 + 𝑛𝑥 is 

𝑧𝑘 = [
𝑥𝑘

ℎ(𝑥𝑘)
],          (6.13) 

The symmetric positive definite quadratic kernel matrix 𝑆 is given as: 

𝑆 = [
𝐴𝑇𝑋𝐴 + 𝑄 𝐴𝑇𝑋𝐵

𝐵𝑇𝑋𝐴 𝐵𝑇𝑋𝐵 + 𝑅
] = [

𝑆𝑥𝑥 𝑆𝑥𝑢
𝑆𝑢𝑥 𝑆𝑢𝑢

] = [

𝑠11 𝑠12 ⋯ 𝑠1𝑙
𝑠21 𝑠22 … 𝑠2𝑙
⋮ ⋮ ⋱ ⋮
𝑠𝑙1 𝑠𝑙2 … 𝑠𝑙𝑙

]  (6.14) 
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where 𝑆 ∈ ℝ𝑛𝑧×𝑛𝑧, 𝑆𝑥𝑥 ∈ ℝ
𝑛𝑥×𝑛𝑥, 𝑆𝑥𝑢 ∈ 𝑆𝑢𝑥

𝑇 ∈ ℝ𝑛𝑥×𝑢, 𝑆𝑢𝑢 ∈ ℝ
𝑛𝑢×𝑛𝑢, and 𝑠 are the elements 

of 𝑆, which is learned without a system model and solution of ARE 𝑋. Further, the LQR 

learning equation is given as: 

𝑊𝑇𝜙(𝑧𝑘) = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑊
𝑇𝜙(𝑧𝑘+1),      (6.15) 

where 𝑊 ∈ ℝ(𝑛𝑧(𝑛𝑧+1)/2)×1 corresponds to the upper triangular terms of 𝑆 matrix, and 𝜙(𝑧𝑘) ∈

ℝ(𝑛𝑧(𝑛𝑧+1)/2)×1 corresponds to quadratic basis function. Here 𝑊 ∈ ℝ(𝑛𝑧(𝑛𝑧+1)/2)×1 is a vector 

given by: 

𝑊 = [𝑠11, 2𝑠12, … ,2𝑠1𝑛𝑧 , 𝑠22, … , 2𝑠2𝑛𝑧 , 𝑠33, … , 2𝑠3𝑛𝑧 , … , 𝑠𝑛𝑧𝑛𝑧]
𝑇
,   (6.16) 

and 𝜙(𝑧𝑘) ∈ ℝ
(𝑛𝑧(𝑛𝑧+1)/2)×1 in the case of LQR is a vector of quadratic terms of 𝑧𝑘 given by: 

𝜙(𝑧𝑘) = 𝑧𝑘⊗ 𝑧𝑘 = [𝑧𝑘1
2 , 𝑧𝑘1𝑧𝑘2 , … , 𝑧𝑘1𝑧𝑘𝑛𝑧 , 𝑧𝑘2

2 , 𝑧𝑘2 , 𝑧𝑘3 , … , 𝑧𝑘2𝑧𝑘𝑛𝑧 , … , 𝑧𝑘𝑛𝑧
2 ]

𝑇

 (6.17) 

where 𝑧𝑘𝑛𝑧  is the 𝑛𝑧
𝑡ℎ element of 𝑧𝑘. 

If the optimal policy is minimized without any constraints, it yields: 

𝜕𝑄𝑠(𝑥𝑘,𝑢𝑘)

𝜕𝑢𝑘
= 0          (6.18) 

Hence the complete solution for the above equation is presented by combining (6.11) to (6.13) 

as follows: 

𝑢𝑘 = ℎ(𝑥𝑘) = −𝑆𝑢𝑢
−1𝑆𝑢𝑥𝑥𝑘.        (6.19) 

This defines the solution for optimal LQR gain without system model by using measured states 

and control inputs. 

6.2.2 Learning algorithm with feedback measurements 

In the case of partially observable linear systems, the learning algorithm is derived in [400]. 

Initially, the state 𝑥𝑘 is given by: 

𝑥𝑘 = [𝑀𝑢 𝑀𝑦]𝑥̅𝑘         (6.20) 

Where 𝑀𝑢 and 𝑀𝑦 are the metrices with measured control and output values which are defined 

in the further equations, and 𝑥̅𝑘 is a vector dependent on previous controls and outputs which 

is given by: 

𝑥̅𝑘 = [
𝑢̅𝑘
𝑦̅𝑘
],          (6.21) 
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with 𝑢̅𝑘 corresponding to control vector and 𝑦̅𝑘 is the output vector given in (6.22) and (6.23) 

respectively: 

𝑢̅𝑘 = [𝑢𝑘−1 𝑢𝑘−2 … 𝑢𝑘−𝑛]𝑇       (6.22) 

𝑦̅𝑘 = [𝑦𝑘−1 𝑦𝑘−2 … 𝑦𝑘−𝑛]𝑇       (6.23) 

Further, the observability index 𝑛 is selected as 𝑛 ≤ 𝑛𝑥, with 𝑛𝑥 corresponding to number of 

states as the upper bound. With observability index 𝑛, the matrices 𝑀𝑢 and 𝑀𝑦 are derived 

from [400]as 

𝑀𝑢 = 𝑈𝑛 −𝑀𝑦𝑇𝑛,         (6.24) 

𝑀𝑦 = 𝐴
𝑛(𝑉𝑛

𝑇𝑉𝑛)
−1𝑉𝑛

𝑇         (6.25) 

where 𝑈𝑛 is the controllability matrix, 𝑇𝑛 is the Toeplitz matrix, and 𝑉𝑛 is the observability 

matrix which are given by: 

𝑈𝑛 = [𝐵 𝐴𝐵 … 𝐴𝑛−1𝐵]         (6.26) 

𝑇𝑛 =

[
 
 
 
 
0 𝐶𝐵 𝐶𝐴𝐵 … 𝐶𝐴𝑛−2𝐵
0 0 𝐶𝐵 … 𝐶𝐴𝑛−3𝐵
⋮ ⋮ ⋱ ⋱ ⋮
0 … … 0 𝐶𝐵
0 0 0 0 0 ]

 
 
 
 

       (6.27) 

𝑉𝑛 = [(𝐶𝐴𝑛−1)𝑇 … (𝐶𝐴)𝑇 𝐶𝑇]𝑇       (6.28) 

In addition to the upper bound of the observability index, the lower bound is given by 𝑛𝑘 ≤ 𝑛, 

in such a way that the rank(𝑉𝑛) < 𝑛𝑥 for 𝑛 < 𝑛𝑘, and rank(𝑉𝑛) = 𝑛 for 𝑛 ≥ 𝑛𝑘. Therefore, 

the upper and lower bounds of the observability index are given by 𝑛𝑘 ≤ 𝑛 ≤ 𝑛𝑥. 

The optimal policy for learning algorithm based on output feedback is obtained by denoting 𝑥𝑘 

in (6.9) with respect to (6.20) as follows: 

𝑢𝑘 = 𝐾∗𝑥𝑘 = 𝐾∗[𝑀𝑢 𝑀𝑦]𝑥̅𝑘       (6.29) 

Further, the state weighting parameter of LQR is given by: 

𝑄 = 𝐶𝑇𝑄𝑦𝐶,          (6.30) 

where 𝑄𝑦 corresponds to weighting parameter of output. Here, the learning algorithm uses the 

knowledge of state 𝑥̅𝑘 and output 𝑦𝑘 instead of full state 𝑥𝑘, which gives two forms of learning 

algorithm as follows: 

𝑄𝑠(𝑥̅𝑘, 𝑢𝑘) = 𝑧𝑘̅
𝑇𝑇𝑧𝑘̅ = 𝑟(𝑦𝑘, 𝑢𝑘) + 𝛾𝑧𝑘̅+1

𝑇 𝑧𝑘̅+1,     (6.31) 

𝑊𝑇𝜙(𝑧𝑘̅) = 𝑟(𝑦𝑘, 𝑢𝑘) + 𝛾𝑊
𝑇𝜙(𝑧𝑘̅+1)      (6.32) 
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where 𝑧𝑘̅ ∈ ℝ
𝑛𝑧̅ , 𝑛𝑧̅ = 𝑛(𝑛𝑢 + 𝑛𝑦) + 𝑛𝑢, is derived with a new state 𝑥̅𝑘 from (6.31) as follows: 

𝑧𝑘̅ = [
𝑥̅𝑘
𝑢𝑘
]          (6.33) 

and 𝑟(𝑦𝑘, 𝑢𝑘) is the new one step cost which is given by: 

𝑟(𝑦𝑘, 𝑢𝑘) = 𝑦𝑘
𝑇𝑄𝑦𝑦𝑘 + 𝑢𝑘

𝑇𝑅𝑢𝑘       (6.34) 

and the symmetrical matrix 𝑇  is given by: 

𝑇 = [

𝑇𝑢𝑢 𝑇𝑢𝑦̅ 𝑇𝑢𝑢
𝑇𝑦̅𝑢 𝑇𝑦̅𝑦̅ 𝑇𝑦̅𝑢
𝑇𝑢𝑢 𝑇𝑢𝑦̅ 𝑇𝑢𝑢

]        (6.35) 

where 𝑇𝑢𝑢 ∈ ℝ
𝑛×𝑛, 𝑇𝑢𝑦̅ = 𝑇𝑦̅𝑢

𝑇 ∈ ℝ𝑛×𝑛, 𝑇𝑢𝑢 = 𝑇𝑢𝑢
𝑇 ∈ ℝ𝑛×𝑛𝑢 , 𝑇𝑦̅𝑦̅ ∈ ℝ

𝑛×𝑛, 𝑇𝑦̅𝑢 = 𝑇𝑢𝑦̅
𝑇 ∈

ℝ𝑛×𝑛𝑦 , and 𝑇𝑢𝑢 ∈ ℝ
𝑛𝑢×𝑛𝑢 correspond to elements of matrix 𝑇.  

Hence, the new policy is given by: 

𝑢𝑘 = ℎ(𝑥̅𝑘) = −(𝑇𝑢𝑢)
−1[𝑇𝑢𝑢 𝑇𝑢𝑦̅]𝑥̅𝑘 .      (6.36) 

which results in an optimal control solution without considering the full state measurements. 

6.2.3 LQR learning algorithm with temporal difference 

In this section, the learning algorithm learns the optimal function and control policy, based on 

the temporal difference error of value and policy iterations. Generally, the policy iterations are 

used while stabilizing the control policy and the value iterations are used without stabilizing 

the control policy. The temporal difference error is expressed as: 

𝑒 = 𝑄𝑠(𝑥𝑘, 𝑢𝑘) − 𝑟(𝑥𝑘, 𝑢𝑘) − 𝑄𝑠(𝑥𝑘+1, 𝑢𝑘+1).     (6.37) 

The learning function 𝑄𝑠(𝑥𝑘, 𝑢𝑘) and control policy 𝑢𝑘 are iterated by policy and value 

iterations, such that, 𝑒 converges close to 𝑧𝑒𝑟𝑜. The main advantage with policy and value 

iteration is that, they work forward in time and are mostly suitable for real-time control. As the 

value iteration doesn’t contribute for stable control at each iteration, it is generally adapted for 

safe offline operation of unstable systems. Further, the updating steps of policy and value 

iterations are given in algorithm 6.1 and 6.2. The first step of these algorithms deals with policy 

evaluation for updating the learning function. For linear conditions, this process is carried out 

with different techniques like least square, recursive least squares, and stochastic gradient 

descent. All these methods can be on policy method as in algorithm 6.1 or off policy methods 

as in algorithm 6.2. 
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Algorithm 6.1: On policy recursive algorithm [402] 

Step: 1 Initialize: 𝑊̂0 and 𝐾̂0  
Step: 2 𝑘 = 0, 𝑗 = 0  

Step: 3 Collecting data: Measure 𝑥𝑘 , 𝑢𝑘, and 𝑥𝑘+1 and calculate 𝑢𝑘+1 using current 

policy. 

Step: 4 Value Update: update the kernel matrix 𝑆̂𝑗+1 or weight 𝑊̂𝑗+1 

Step: 5 if convergence happens? 

Policy Update: update the current policy using the converged kernel matrix 𝑆̂𝑗+1 and 

go to step 6. 

else 

update 𝑘 = 𝑘 + 1 

Step: 6 if convergence happens? 

The optimal control is found 

else 

update 𝑗 = 𝑗 + 1 and 𝑘 = 𝑘 + 1 and go to step 3. 

Further, while performing the on-policy batch algorithm, a few modifications are made to the 

step 3 as follows: 

Step: 3 Collecting a batch of data: 𝑘0 = 𝑘. Measure 𝑥𝑘, 𝑢𝑘, and 𝑥𝑘+1 and calculate 𝑢𝑘+1 using 

the current policy. Repeat for each 𝑘 = 𝑘 + 1 until 𝑘 = 𝑘0 +𝑀, where 𝑀 is batch size.  

Algorithm 6.2: Off policy algorithm [403], [404] 

Step: 1 Initialize: 𝑊̂0 and 𝐾̂0. Collect data using a behavior policy. 

Step: 2 𝑗 = 0 

Step: 3 Collecting a batch of data: Measure 𝑥𝑘, 𝑢𝑘, and 𝑥𝑘+1 and calculate 𝑢𝑘+1 

using the current policy. 

Step: 4 Value Update: update the kernel matrix 𝑆̂𝑗+1 or weight 𝑊̂𝑗+1 

Step: 5 Policy Update: update the current policy using the converged kernel matrix 

𝑆̂𝑗+1. 

Step: 6 if convergence happens? 

The optimal control is found 

else 

update 𝑗 = 𝑗 + 1 and go to step 3. 

This algorithm is known as interleaved learning algorithm as the value update is performed 

only once unlike algorithm 6.1.  

6.2.3.1 Policy Iterations: 

The policy iteration equation for linear systems can be obtained either by following algorithm 

6.1 or 6.2. To derive the PI, a stabilizing gain is needed as in [405], which can be obtained with 

some initial knowledge of the system. The algorithm is initialized at 𝑗 = 0 and the initial kernel 

matrix 𝑆̂0 is chosen randomly. The PI value update is given as: 

𝑄𝑗+1(𝑥𝑘, 𝑢𝑘) = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑄𝑗+1 (𝑥𝑘+1, ℎ𝑗(𝑥𝑘+1))    (6.38) 
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This results in temporal difference error and policy update which are given as (6.39) and (6.40) 

respectively: 

𝑒𝑗 = 𝑄𝑗+1(𝑥𝑘, 𝑢𝑘) − 𝑟(𝑥𝑘, 𝑢𝑘) − 𝑄𝑗+1(𝑥𝑘+1, 𝑢𝑘+1)     (6.39) 

ℎ𝑗+1(𝑥𝑘) = arg min
𝑢𝑘

(𝑄𝑗+1(𝑥𝑘, 𝑢𝑘))       (6.40) 

Further, by combining (6.39) with (6.12) or (6.15), the PI algorithm for LQR is derived. The 

value update using kernel matrix 𝑆̂𝑗+1 is given by: 

𝑧𝑘
𝑇𝑆̂𝑗+1𝑧𝑘 − 𝛾𝑧𝑘+1

𝑇 𝑆̂𝑗+1𝑧𝑘+1 = 𝑟(𝑥𝑘, 𝑢𝑘)      (6.41) 

Similarly, the valued update using weighting matrix 𝑊̂𝑗+1 is given by: 

𝑊̂𝑗+1
𝑇 φk = 𝜇𝑘,          (6.42) 

where the data vector 𝜇𝑘 is given by: 

𝜇𝑘 = 𝑟(𝑥𝑘, 𝑢𝑘)         (6.43) 

and the regression vector φk is given by: 

φ𝑘 = 𝜙(𝑧𝑘) − 𝛾𝜙(𝑧𝑘+1)        (6.44) 

Considering (6.41) or (6.42), the kernel or the weighing matrices are approximated while 

performing the value update. Further, the learning function is updated either by least square 

algorithm the recursive least square algorithm until the matrix converges. If the weighting 

matrix is used for policy update, it needs to be unpacked into kernel matrix from (6.14) and 

(6.16). The updated policy results in a new value update and the process is repeated until the 

convergence of weights is achieved i.e., ‖𝑊̂𝑗+1 − 𝑊̂𝑗‖ ≤ 𝜀𝑗 , where 𝜀𝑗 is a small constant. 

For any case, only if the measured outputs are known, (6.41) or (6.42) are replaced with 

equations derived from (6.31) or (6.32) as follows: 

{
 
 

 
 𝑧𝑘̅

𝑇𝑇̂𝑗+1𝑧𝑘̅ − 𝛾𝑧𝑘̅+1
𝑇 𝑇̂𝑗+1𝑧𝑘̅+1 = 𝑟(𝑥𝑘, 𝑢𝑘)

𝑊̂𝑗+1
𝑇 φk = 𝜇𝑘,

𝜇𝑘 = 𝑟(𝑥𝑘, 𝑢𝑘)

φ𝑘 = 𝜙(𝑧𝑘̅) − 𝛾𝜙(𝑧𝑘̅+1)

        (6.45) 

Further, an exploration noise 𝜖𝑘 is introduced with the control input to safeguard persistence 

of excitation condition, to get linearly independent data, and to achieve convergence of kernel 

matrix. This exploration can either be a sum of sine waves at different frequencies or a simple 

Gaussian noise. In addition, the bias from the solution can be removed by adjusting the 
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discounting factor 𝛾 around 0 < 𝛾 < 1. For a value of 𝛾 < 1, results in a finite quadratic cost 

function, but doesn’t guarantee the stability of closed loop system. 

6.2.3.2 Value Iteration: 

The value iteration algorithm follows the similar procedure of the policy iteration algorithms, 

except for the case that no stabilizing policy is required and the value update step is changed. 

The updated value in VI algorithm is given by: 

𝑄𝑗+1(𝑥𝑘, 𝑢𝑘) = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑄𝑗 (𝑥𝑘+1, ℎ𝑗(𝑥𝑘+1))     (6.46) 

This results in temporal difference error: 

𝑒𝑗 = 𝑄𝑗+1(𝑥𝑘, 𝑢𝑘) − 𝑟(𝑥𝑘, 𝑢𝑘) − 𝑄𝑗(𝑥𝑘+1, 𝑢𝑘+1)     (6.47) 

Therefore (6.31) is updated and the value update using kernel matrix is given by: 

𝑧𝑘
𝑇𝑆̂𝑗+1𝑧𝑘 = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑧𝑘+1

𝑇 𝑆̂𝑗𝑧𝑘+1      (6.48) 

and the data and regression vectors (6.43) and (6.44) in (6.42) are updated as: 

φ𝑘 = 𝜙(𝑧𝑘)          (6.49) 

𝜇𝑘 = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑊̂𝑗
𝑇𝜙(𝑧𝑘+1),       (6.50) 

where the kernel matrix 𝑆̂𝑗 and weighting matrix 𝑊̂𝑗 are from previous iteration 𝑗. 

For the case, where the full states are not known, (6.45) is updated as in [406]: 

{
 
 

 
 
𝑧𝑘̅
𝑇𝑇̂𝑗+1𝑧𝑘̅ = 𝑟(𝑥𝑘 , 𝑢𝑘) + 𝛾𝑧𝑘̅+1

𝑇 𝑇̂𝑗+1𝑧𝑘̅+1

𝑊̂𝑗+1
𝑇 φk = 𝜇𝑘,

𝜇𝑘 = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑊̂𝑗
𝑇𝜙(𝑧𝑘̅+1)

φ𝑘 = 𝜙(𝑧𝑘̅)

        (6.51) 

Further, to ensure signal exploration, an exploration noise 𝜖𝑘 is introduced with the control 

input. 

6.2.3.2.1 Batch Least Square Weight value update 

The batch least square algorithm is used for calculating the value update of policy and value 

iteration by updating the weight matrix as per (6.42). This fits the weight matrix in such a way 

that the temporal difference error becomes small. When VI is used, the weight matrix is 

calculated based on previous iterations. Further, the updated weight for a batch algorithm is 

modified as 𝑊̂𝑗+1
𝑇 Φ = 𝑌, with Φ and 𝑌 corresponding to regression and data matrix 
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respectively which are formed from regression and data vector φk and 𝜇𝑘 respectively as [407], 

[408]: 

Φ ∈ ℝ(𝑛𝑧(𝑛𝑧+1)/2)×𝑀 = [φk, φk+1, … , φk+M]      (6.52) 

𝑌 ∈ ℝ(𝑛𝑧(𝑛𝑧+1)/2)×1 = [𝜇𝑘, 𝜇𝑘+1, … , 𝜇𝑘+𝑀]
𝑇      (6.53) 

where 𝑀 ≥ 𝑛𝑧(𝑛𝑧 + 1)/2 corresponds to the batch size.  

These matrices are generated by choosing the data and regression vectors from (6.43, 6.44), 

(6.49-6.50), and (6.45) or (6.51) depending on known number of full states, and algorithm used. 

When the full states are known, these vectors use 𝑥𝑘, 𝑢𝑘 , 𝑥𝑘+1 and 𝑢𝑘+1 which are calculated 

from (6.19). For the case if only measured outputs are known, each data point of the vector 𝑥̅𝑘 

and 𝑥̅𝑘+1 are obtained from (6.21-6.23) and 𝑢𝑘+1 is obtained from (6.26). 

The updated least squares solve the one step weight update as follows: 

𝑊̂𝑗+1 = (ΦΦ𝑇)−1Φ𝑌.         (6.54) 

The inverse operation is performed only if the exploration noise is added to the control input 

so that the rank(Φ) = 𝑛𝑧(𝑛𝑧 + 1)/2. Finally, the elements of weighting matrix are unpacked 

in to an updated kernel matrix.  

6.2.3.2.2 Batch least squares kernel matrix value update 

The batch least square algorithm is used for calculating the value update of policy and value 

iteration by updating the kernel matrix without a basis function as per (6.41) or (6.48). When 

VI is used, the previously updated kernel matrix (𝑆̂𝑗) is calculated based on previous iterations. 

Since this is a batch value update, the temporal difference error at step 𝑗 in (6.39) and (6.47) 

are updated for PI (6.55, 6.56) and VI (6.57, 6.58) as: 

𝑒𝐿𝑆,𝑗 = 𝑍𝑘
𝑇𝑆̂𝑗+1𝑍𝑘 −Ψ𝑘 − 𝛾𝑍𝑘+1

𝑇 𝑆̂𝑗+1𝑍𝑘+1      (6.55) 

Ψ𝑘 = 𝑋𝑘
𝑇𝑄𝑋𝑘 + 𝑈𝑘

𝑇𝑅𝑈𝑘.        (6.56) 

𝑒𝐿𝑆,𝑗 = 𝑍𝑘
𝑇𝑆̂𝑗+1𝑍𝑘 −Ψ𝑘 .        (6.57) 

Ψ𝑘 = 𝑋𝑘
𝑇𝑄𝑋𝑘 + 𝑈𝑘

𝑇𝑅𝑈𝑘 + 𝛾𝑍𝑘+1
𝑇 𝑆̂𝑗𝑍𝑘+1      (6.58) 

At each time 𝑘 in batch size 𝑀 ≥ 𝑛𝑧(𝑛𝑧 + 1)/2, the states and control are measured, 𝑧𝑘 and 

𝑧𝑘+1 are obtained from (6.13) and 𝑢𝑘+1 is obtained from (6.19) and the data is collected to 

matrices 𝑋𝑘 ∈ ℝ
𝑛𝑥×𝑀, 𝑍𝑘 ∈ ℝ

𝑛𝑧×𝑀, 𝑍𝑘+1 ∈ ℝ
𝑛𝑧×𝑀, and 𝑈𝑘 ∈ ℝ

𝑛𝑢×𝑀 as follows: 

𝑋𝑘 = [𝑥𝑘 , 𝑥𝑘+1, … , 𝑥𝑘+𝑀]        (6.59) 

𝑈𝑘 = [𝑢𝑘 , 𝑢𝑘+1, … , 𝑢𝑘+𝑀]        (6.60) 
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𝑍𝑘 = [𝑧𝑘, 𝑧𝑘+1, … , 𝑧𝑘+𝑀], 𝑍𝑘+1 = [𝑧𝑘+1, 𝑧𝑘+2, … , 𝑧𝑘+𝑀+1]    (6.61) 

For the case where only the output measurements are available, the vectors 𝑥̅𝑘 and 𝑥̅𝑘+1are 

calculated from (6.21), 𝑢𝑘+1 is obtained from (6.36) and 𝑧𝑘̅ and 𝑧𝑘̅+1 are obtained from (6.33). 

Further, the equivalent elements in batch matrices (6.59-6.61) are replaced with vectors 𝑥̅𝑘 and 

𝑧𝑘̅, which fits the kernel matrix with least squares. The batch equation for VI of (6.47) is given 

by: 

𝑍𝑘
𝑇𝑆̂𝑗+1𝑍𝑘 = Ψ𝑘,         (6.62) 

where Ψ𝑘 is obtained from (6.58). Further, the above equation is derived as: 

Φ𝑆̂𝑗+1 = 𝑌          (6.63) 

{
𝑌 = Ψ𝑘𝑍𝑘

𝑇(𝑍𝑘𝑍𝑘
𝑇)−1

Φ = 𝑍𝑘
𝑇          (6.64) 

For 𝑌 to exist, the matrix 𝑍𝑘𝑍𝑘
𝑇 should be invertible. This is possible only for rank(𝑍𝑘) = 𝑛𝑧. 

This condition is achieved by adding the exploration noise to the control. As the kernel matrix 

is symmetric, the batch policy iteration of (6.41) is given as follows: 

𝑍𝑘
𝑇𝑆̂𝑗+1𝑍𝑘 − √𝛾𝑍𝑘+1

𝑇 𝑆̂𝑗+1√𝛾𝑍𝑘+1 = (𝑍𝑘
𝑇 − √𝛾𝑍𝑘+1

𝑇 )𝑆̂𝑗+1(𝑍𝑘
𝑇 + √𝛾𝑍𝑘+1) = Ψ𝑘 (6.65) 

The least square matrices 𝑌 and Φ are updated as: 

{
𝑌 = Ψ𝑘(𝑍𝑘

𝑇 + √𝛾𝑍𝑘+1)
𝑇((𝑍𝑘

𝑇 + √𝛾𝑍𝑘+1)(𝑍𝑘
𝑇 + √𝛾𝑍𝑘+1)

𝑇)
−1

Φ = (𝑍𝑘
𝑇 − √𝛾𝑍𝑘+1

𝑇 )
   (6.66) 

Similar to condition of (6.64), for 𝑌 to exist, the matrix (𝑍𝑘
𝑇 + √𝛾𝑍𝑘+1)(𝑍𝑘

𝑇 + √𝛾𝑍𝑘+1)
𝑇 

should be invertible. This is possible only for rank(𝑍𝑘
𝑇 + √𝛾𝑍𝑘+1) = 𝑛𝑧. 

Further, the updated kernel matrix is obtained with lease squares as follows: 

𝑆̂𝑗+1 = (Φ
𝑇Φ)−1Φ𝑇𝑌,        (6.67) 

where (Φ𝑇Φ) is invertible, if rank(Φ) = 𝑛𝑧.  

From the above conditions, it is observed that, while using VI, the rank(Φ) = rank(𝑍𝑘
𝑇) =

rank(𝑍𝑘). This satisfies all the rank conditions simultaneously. But in the case of PI, the rank 

conditions are not equal and should be separately satisfied. 

In case of nonlinear least squares, the value update is calculated by forming an objective to find 

a kernel matrix that minimizes the mean square error. 
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min
𝑆̂𝑗+1

(
1

2
𝑒𝐿𝑆,𝑗
𝑇 𝑒𝐿𝑆,𝑗)         (6.68) 

Equation (6.55) or (6.57) are used to solve unknown kernel matrix, where an initial guess 𝑆̂0 is 

iterated until minimum mean square error is achieved. 

6.2.3.2.3 Recursive Least square value update 

The recursive least square algorithm is used for calculating the value update of policy and value 

iteration by iterating the new weighting matrix 𝑊̂𝑗+1,𝑖 at each time step until it converges and 

the values of 𝑊̂𝑗+1,∞ is updated. To perform this, the value of covariance matrix 𝑃0 is initially 

chosen as: 

𝑃0 = 𝛿𝐼          (6.69) 

where 𝛿 corresponds to a large scalar value as given in [398]. For initialization, index 𝑖 = 0 

and 𝑊̂𝑗+1,0=𝑊̂𝑗. 

If the full states are known, the vectors 𝑥𝑘 , 𝑢𝑘, 𝑥𝑘+1 are measured and 𝑢𝑘+1 is calculated from 

(6.29). Otherwise, the vectors 𝑥̅𝑘 and 𝑥̅𝑘+1 are obtained from (6.21) and 𝑢𝑘+1 is obtained from 

(6.36). Similarly, the regression and data vectors are obtained from (6.43, 6.44), (6.49, 6.50), 

and (6.45) or (6.51) depending on the algorithm chosen. 

For a step update of the weight 𝑊̂𝑗+1,𝑖, the update matric 𝐿𝑖+1 is obtained as follows: 

𝐿𝑖+1 = 𝜆
−1𝑃𝑖φ𝑘(𝑎

−1 + 𝜆−1φ𝑘
𝑇𝑃𝑖φ𝑘)

−1,       (6.70) 

where 𝜆 corresponds to discounting factor of recursive least squares and 𝑃𝑖 corresponds to 

covariance matrix at 𝑖𝑡ℎ iteration. For a regular least square, the value of discounting factor 

𝜆 = 1 and 𝑎 = 1, but in the case of exponentially weighted recursive least squares, 0 < 𝜆 < 1 

and 𝑎 = 1 − 𝜆. The updated weight and covariance matrices are obtained from (6.71) and 

(6.72) respectively as follows: 

𝑊̂𝑗+1,𝑖+1 = 𝑊̂𝑗+1,𝑖 + 𝐿𝑖+1(𝜇𝑘 − φ𝑘
𝑇𝑊̂𝑗+1,𝑖)      (6.71) 

𝑃𝑖+1 = 𝜆
−1(𝐼 − 𝐿𝑖+1φ𝑘

𝑇)𝑃𝑖        (6.72) 

For increment in time 𝑘 + 1 and iteration 𝑖 + 1, the new measurements are obtained with the 

current policy. Further, the one step updates of (6.70-6.72) are repeated for new data, until the 

convergence is achieved, such that ‖𝑊̂𝑗+1,𝑖+1 − 𝑊̂𝑗+1,𝑖‖ ≤ 𝜀𝑖. 

6.2.3.2.4 Stochastic Gradient Descent based value update 
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The stochastic gradient descent algorithm is used for calculating the value update of policy and 

value iteration by fitting the linear models with small batches of data. As time 𝑘 increases, the 

weight 𝑊̂𝑗+1,𝑖 is trained till the convergence is achieved. The value update for one step is 

initialized with 𝑖 = 0 and 𝑊̂0 = 𝑊̂𝑗. 

If the full states are known, the vectors 𝑥𝑘 , 𝑢𝑘, 𝑥𝑘+1 are measured and 𝑢𝑘+1 is calculated from 

(6.19). Otherwise, the vectors 𝑥̅𝑘 and 𝑥̅𝑘+1 are obtained from (6.21) and 𝑢𝑘+1 is obtained from 

(6.36). Similarly, the regression and data vectors are obtained from (6.43, 6.44), (6.49, 6.50), 

and (6.45) or (6.51). The temporal difference error is obtained from (6.39) and (6.47) as 

follows: 

𝑒𝑠𝑔𝑑,𝑖 = 𝑊̂𝑗+1,𝑖
𝑇 φ𝑘 − 𝜇𝑘        (6.73) 

The minimized mean square error is obtained from [409] as: 

𝐸𝑠𝑔𝑑,𝑖 =
1

2
𝑒𝑠𝑔𝑑,𝑖
𝑇 𝑒𝑠𝑔𝑑,𝑖         (6.74) 

and its gradient 
𝜕𝐸𝑠𝑔𝑑

𝜕𝑊̂𝑗+1,𝑖
 is obtained using a chain rule. For PI, this is given as: 

𝜕𝐸𝑠𝑔𝑑

𝜕𝑊̂𝑗+1,𝑖
=

𝜕𝐸𝑠𝑔𝑑

𝜕𝑒𝑠𝑔𝑑,𝑖

𝜕𝑒𝑠𝑔𝑑,𝑖

𝜕𝑊̂𝑗+1,𝑖
= (𝜙(𝑧𝑘) − 𝛾𝜙(𝑧𝑘+1))𝑒𝑠𝑔𝑑,𝑖

𝑇      (6.75) 

and for VI, it is given as: 

 
𝜕𝐸𝑠𝑔𝑑

𝜕𝑊̂𝑗+1,𝑖
= 𝜙(𝑧𝑘)𝑒𝑠𝑔𝑑,𝑖

𝑇          (6.76) 

Further, the one step weight updated in obtained as follows: 

𝑊̂𝑗+1,𝑖+1 = 𝑊̂𝑗+1,𝑖 − 𝛼𝑠𝑔𝑑
𝜕𝐸𝑠𝑔𝑑

𝜕𝑊̂𝑗+1,𝑖
       (6.77) 

where 𝛼𝑠𝑔𝑑 corresponds to learning rate, which is constant.   

For increment in time 𝑘 + 1 and iteration 𝑖 + 1, the new measurements are obtained with the 

current policy. Further, the one step updates of (6.77) are repeated for new data, until the 

convergence is achieved, such that ‖𝑊̂𝑗+1,𝑖+1 − 𝑊̂𝑗+1,𝑖‖ ≤ 𝜀𝑖. 

6.2.4 Linear model free control for trajectory tracking of helicopter system 

The problem of trajectory tracking in unmanned vehicles is realized by modelling the working 

phenomenon of the helicopter considering the pitch and yaw motion as shown in Chapter 2. 

Considering the pitch and yaw motor differential equations, the state, input, and output vectors 
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can represent the two-degree motion of helicopter as a continuous time linear system. Further, 

to achieve control development for the unmanned helicopter, the continuous time linear system 

is expressed as a linear discrete time system in time invariant state space. The developed model-

free control is implemented for achieving trajectory tracking in unmanned helicopters using 

output feedback version of on-policy approach. The selected algorithm is implemented with 

the theoretical system model of unmanned helicopter for generating data required for learning 

the algorithm. The data in this experiment corresponds to various trajectories that define the 

states of the helicopter are obtained from the simulated model. The response of the helicopter 

pitch and yaw motors for various trajectories are shown in Figure 6.1. 

 
(a) Pitch angle 

 
(b) Pitch velocity 

 
(c) Yaw angle 



173 

 

 
(d) Yaw velocity 

Figure 6.1. Response of helicopter pitch and yaw motor operation for different trajectories  

Initially, a reference point is developed to implement output feedback version of the algorithm. 

Further, the developed controller is modelled for a real-time system using Quanser two degree 

of freedom helicopter [57]. The learning process is associated with a linear control 

implemented in the system. The trajectory of unmanned helicopter has been defined by pitch 

angle and yaw angle movements. The main rotor lift is responsible for change in pitch, and 

pulling forces of tail rotor are responsible yaw angle movements. The objective is to decouple 

the two typical output channels such that the output responses follows a desired trajectory. 

From the dynamic model of the unmanned helicopter system it has been identified that, pitch 

and yaw axes can be controlled by appropriately selecting the voltages of the pitch and yaw 

motors respectively. Further the of error of both the pitch and yaw angles are computed by 

comparing them with the reference developed. The simulations are performed using both full 

state and output measurements of the model, but the real-time implementation of the developed 

algorithms is carried out only using output measurements as all the state measurements are not 

available for real-time system. The recursive least square based value update for PI and VI 

algorithms is implemented as on-policy method. The response of pitch and yaw motion of the 

unmanned helicopter with RL based LQR controller and LQR is analyzed. A sine reference 

trajectory with amplitude 5 is considered for assessing the pitch and yaw path tracking. The 

corresponding results are shown in Figure 6.2.  

 
(a) Pitch angle 
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(b) Pitch velocity 

 
(c) Yaw angle 

 
(d) Yaw velocity 

Figure 6.2. Pitch and yaw output with reinforcement learning-linear quadratic regulator 

control of helicopter in real-time for sine trajectory  

The results depict the tracking response of helicopter with reinforcement learning based state 

feedback controller on simulation and real-time system with reference to the desired trajectory 

for pitch angle movement (Figure 6.2(a)), pitch velocity (Figure 6.2(b)), yaw angle movement 

(Figure 6.2(c)), and yaw velocity (Figure 6.2(d)). The control objective of the work is to track 

desired trajectory with minimum settling time. The pitch angle trajectory reaches 4.8 degrees 

at 1.2 secs and settles with the desired trajectory around 4 secs, and the yaw angle reaches 13.2 

degrees at 0.8 secs and settles with the desired trajectory within 6 secs. The initial pitch velocity 

is reduced to 27.2 deg/sec at 0.5 secs when subjected to real-time environments which is 

sufficient enough for pitch rise, and the yaw velocity operates at 29 deg/ sec around 0.5 secs 

due to cross coupling effect. 
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Table 6.1. Root mean square error for reinforcement learning-linear quadratic regulator 

control of helicopter in real-time 

Controller Root mean square error 

Pitch angle (deg) yaw angle (deg) 

LQR 7.4012 deg 5.4324 deg 

RL-LQR 6.8636 deg 4.9981 deg 

 

Table 6.2. Time response analysis for reinforcement learning-linear quadratic regulator 

control of helicopter in real-time 

 

Controller 

Pitch Control Response Yaw Control Response 

Settling time 

(𝑡𝑠) (sec) 

Steady state 

error (𝑒𝑠𝑠) (cm) 

Settling time 

(𝑡𝑠) (sec) 

Steady state 

error (𝑒𝑠𝑠) (cm) 

LQR 5.07 sec 3.19 cm 17.86 sec 5.15 cm 

RL-LQR 4.67 sec 1.7 cm 5.02 sec 3.22 cm 

The root mean square error for the controller action on real-time system is shown in Table 6.1. 

The settling time (𝑡𝑠), and steady-state error (𝑒𝑠𝑠) are minimum in case of RL-LQR which are 

4.67sec, and 1.7cm for pitch control, and 5.02sec, and 3.22cm respectively for yaw control as 

shown in Table 6.2. As the behavior policy of the real-time controller is calculated with the 

discrete linear model of the system, the learning algorithm converges quickly to settle the 

helicopter motion with respect to the defined trajectory.  

6.3 LEARNING ALGORITHM-BASED NONLINEAR MODEL FREE CONTROL 

The generalized expression for nonlinear affine discrete time system is given by: 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)𝑢𝑘

𝑦𝑘 = 𝑐(𝑥𝑘)
        (6.78) 

where 𝑓(𝑥𝑘) corresponds to inner dynamics, 𝑔(𝑥𝑘) corresponds to input dynamics, and 𝑐(𝑥𝑘) 

corresponds to output dynamics of the system. 

As discusses in 6.1.1, the optimal control for the system in (6.78) is achieved by minimizing 

the performance index of the system as given by: 

𝑉ℎ(𝑥𝑘) = ∑ 𝑟(𝑥𝑘, 𝑢𝑘)
∞
𝑘=0         (6.79) 

where 𝑟(𝑥𝑘, 𝑢𝑘) is given in (6.3), with 𝑖𝑘 = 𝑘. Further, with discounting factor 𝛾 = 1, the 

optimal value function in (6.7) can be solved analytically for (6.78) as: 
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𝑢𝑘
∗ = −

1

2
𝑅−1𝑔(𝑥𝑘)

𝑇 𝜕𝑉
∗(𝑥𝑘+1)

𝜕𝑥𝑘+1
       (6.80) 

From (6.8) and (6.9), the learning algorithm for nonlinear system in (6.7) and (6.80) is given 

as: 

{
𝑄∗(𝑥𝑘, 𝑢𝑘) = 𝑟(𝑥𝑘, 𝑢𝑘) + 𝛾𝑄

∗(𝑥𝑘+1, 𝑢𝑘+1
∗ )

𝑢𝑘
∗ = −

𝛾

2
𝑅−1𝑔(𝑥𝑘)

𝑇 𝜕𝑄
∗(𝑥𝑘+1,𝑢𝑘+1

∗ )

𝜕𝑥𝑘+1

      (6.81) 

To approximate the optimal value function, the neural network approach is adapted with the 

generalized actor critic architecture as shown in Figure 6.3 [410] for learning the optimal policy 

(actor) and optimal learning function (critic). Further, to achieve model free operation of the 

neural network, an additional network is added which provides the information of the system 

inner dynamics to the neural network. This additional network is commonly used with value 

function approximation and is known as identification network [411]. 

 

Figure 6.3. Actor-Critic architecture 

6.3.1 Interleaved Learning with state measurements 

In the interleaved learning process, a batch of neural network is fitted with the learning method 

to achieve optimal control for nonlinear affine discrete time system [404]. The equations in 

(6.81) are solved approximately by simultaneously updating three different networks. This 

process aims at minimizing the learning for the networks by minimizing the mean square error 

(MSE) 𝐸𝑛𝑤(𝑘) as follows: 

𝐸𝑛𝑤,𝑗(𝑘) =
1

2
𝑒𝑛𝑤,𝑗
𝑇 (𝑘)𝑒𝑛𝑤,𝑗(𝑘)       (6.82) 

where 𝑒𝑛𝑤(𝑘) corresponds to network estimation error, and 𝑒𝑛𝑤
𝑇 (𝑘) is the transpose of network 

estimation error at time instant 𝑘 which is minimized using gradient descent method to update 

the weighted matrix 𝑊̂𝑛𝑤,𝑗+1 of the network. The updated weight in an iteration 𝑗 is given by: 

𝑊̂𝑛𝑤,𝑗+1 = 𝑊̂𝑛𝑤,𝑗 − 𝛼𝑛𝑤
𝜕𝐸𝑛𝑤,𝑗(𝑘)

𝜕𝑊̂𝑛𝑤,𝑗(𝑘)
,       (6.83) 

Critic: update Q-

value (learning) 

function

Actor: update 

control policy
System

Control 

action
System 

output
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where 𝛼𝑛𝑤 corresponds to the learning rate of the network and 
𝜕𝐸𝑛𝑤,𝑗(𝑘)

𝜕𝑊̂𝑛𝑤,𝑗(𝑘)
 corresponds to gradient 

of mean square error (MSE). 

The learned weights along with an activation function 𝜎(𝑧) are used to estimate the output of 

each network. In this research, the tanh  function is chosen as the activation function for each 

network as follows: 

[𝜎(𝑧)]𝑖𝑛𝑤 = tanh(𝑧) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
       (6.84) 

where 𝑖𝑛𝑤 is one neuron, and its derivative is given by: 

[𝜎̇(𝑧)]𝑖𝑛𝑤 = 1 − tanh
2(𝑧)        (6.85) 

The interleaved learning process uses a training data set to learn the optimal policy. This 

training data set is collected by performing several experiments within the control region using 

stabilizing behavior policy with additional exploration noise. The experiments are repeated 

starting at the same initial time for 𝑛𝑠𝑒𝑡𝑠 times until 𝑁 time steps. The learning process is 

divided into 𝑁 sample sets such that each learning step forms its own batch size of 𝑛𝑠𝑒𝑡𝑠 at time 

step 𝑘. The algorithm for interleaved learning process is given as follows: 

Algorithm 6.3: Interleaved learning procedure [404] 

Step: 1 Collect data: repeat the same learning step 𝑛𝑠𝑒𝑡 times for 𝑁 time steps. 

Divide the data into 𝑁 sample sets so that 𝑘 = 1, 𝑘 = 2,… , 𝑘 = 𝑁 are formed 

from their own sample set. 

Step: 2 Set 𝑘 = 0 and initialize the network weights 𝑊̂𝑚, 𝑊̂𝑎, and 𝑊̂𝑐 
Step: 3 Update the model network weight 𝑊̂𝑚 for each 𝑘 until convergence. 

Step: 4 𝑘 = 0, 𝑗 = 0. 

Step: 5 Update the actor and critic weights 𝑊̂𝑎, and 𝑊̂𝑐 
Step: 6 if convergence happens? 

update 𝑘 = 𝑘 + 1, 𝑗 = 0 and go to step 5 

else 

update 𝑗 = 𝑗 + 1 and go to step 5. 

Step: 7 If 𝑘 = 𝑁, stop.  

 

As the interleaved learning process is a value iteration-based method, the initial weights need 

not be stabilizing. Hence, the weights of three networks are randomly initialized. From the 

algorithm it is observed that, the weights of identification networks are learned using all the 

data, hence, the time index is initialized only at 𝑘 = 0 without involving the iteration 𝑗. The 

output of identification network 𝑥̂𝑘+1is given by [412]: 

𝑥̂𝑘+1 = 𝑊̂𝑚
𝑇𝜎 (𝑣𝑚

𝑇 [
𝑥𝑘
𝑢𝑘
])        (6.86) 
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Where 𝑣𝑚 is the weight matrix of hidden layer of constant identification network. The 

identification network estimates the input dynamics 𝑔̂(𝑥𝑘) using (6.78) with gradient 𝑥̂(𝑘 + 1) 

in terms of 𝑢𝑘 such that: 

𝜕𝑥̂𝑘+1

𝜕𝑢𝑘
= 𝑔̂(𝑥𝑘)          (6.87) 

The estimation error of identification network is given by: 

𝑒𝑚(𝑘) = 𝑥̂𝑘+1 − 𝑥𝑘+1         (6.88) 

The MSE of identification network is calculated from (6.82) with 𝑛𝑤 = 𝑚, and its gradient 

𝜕𝐸𝑚(𝑘)

𝜕𝑊̂𝑚(𝑘)
 is given as: 

𝜕𝐸𝑚(𝑘)

𝜕𝑊̂𝑚(𝑘)
= 𝜎 (𝑣𝑥

𝑇 [
𝑥𝑘
𝑢𝑘
]) 𝑒𝑚

𝑇 (𝑘)        (6.89) 

The weight of updated identification network with gradient descent update is given as: 

𝑊̂𝑚(𝑘 + 1) = 𝑊̂𝑚(𝑘) − 𝛼𝑚
𝜕𝐸𝑚(𝑘)

𝜕𝑊̂𝑚(𝑘)
       (6.90) 

The equations (6.86-6.90) are repeated for each 𝑘 till the estimation error ‖𝑒𝑥(𝑘)‖ ≤ 𝜀𝑚.  

Once the identification network converges, the actor critic networks are updated as shown in 

algorithm 6.3. Initially, the time index is initialized at 𝑘 = 0, and for each time 𝑘, the learning 

function is initialized at 𝑗 = 0 as 𝑄0(∙) = 0. The initial target policy 𝑢0(𝑥𝑘) is obtained as 

follows: 

𝑢𝑜(𝑥𝑘) = argmin
𝑢𝑘
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘 + 𝑄0(∙)).     (6.91) 

The learning function is iterated with increasing index 𝑗 till the convergence is achieved for 

each time 𝑘. The temporal difference error is given as: 

𝑒𝑐,𝑗+1(𝑘) = 𝑄̂𝑗+1 (𝑥𝑘 , 𝑢̂𝑗(𝑥𝑘)) − 𝑄𝑗+1 (𝑥𝑘 , 𝑢̂𝑗(𝑥𝑘)) = 𝑄̂𝑗+1 (𝑥𝑘, 𝑢̂𝑗(𝑥𝑘)) − 𝑟 (𝑥𝑘, 𝑢̂𝑗(𝑥𝑘)) −

𝑄̂𝑗 (𝑥(𝑘+1),𝑗, 𝑢̂𝑗(𝑥𝑘)),         (6.92) 

where the output of critic network is given by: 

𝑄̂𝑗+1 (𝑥𝑘 , 𝑢̂𝑗(𝑥𝑘)) = 𝑊̂𝑐,𝑗+1
𝑇 (𝑘)𝜎 (𝑣𝑐

𝑇 [
𝑥𝑘

𝑢̂𝑗(𝑥𝑘)
])     (6.93) 

𝑄̂𝑗 (𝑥(𝑘+1),𝑗, 𝑢̂𝑗(𝑥(𝑘+1),𝑗)) = 𝑊̂𝑐,𝑗
𝑇 (𝑘)𝜎 (𝑣𝑐

𝑇 [
𝑥(𝑘+1),𝑗

𝑢̂𝑗(𝑥(𝑘+1),𝑗)
])    (6.94) 

𝑥(𝑘+1),𝑗 = 𝑥𝑘+1 − 𝑔̂(𝑥𝑘) (𝑢𝑘 − 𝑢̂𝑗(𝑥𝑘))      (6.95) 
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Where 𝑣𝑐 is the weight matrix of hidden layer of constant critic network, and 𝑢̂𝑗(𝑥𝑘) and 

𝑢̂𝑗(𝑥(𝑘+1),𝑗) are the outputs of actor network. The MSE of critic network is calculated from 

(6.82) with 𝑛𝑤 = 𝑐, and its gradient 
𝜕𝐸𝑐,𝑗(𝑘)

𝜕𝑊̂𝑐,𝑗(𝑘)
 is given as: 

𝜕𝐸𝑐,𝑗(𝑘)

𝜕𝑊̂𝑐,𝑗(𝑘)
= 𝜎 (𝑣𝑐

𝑇 [
𝑥𝑘

𝑢̂𝑗(𝑥𝑘)
]) 𝑒𝑐,𝑗

𝑇 (𝑘)       (6.96) 

Further, the outputs of the actor network that estimate the control policy are given as: 

𝑢̂𝑗(𝑥𝑘) = 𝑊̂𝑎,𝑗
𝑇 𝜎(𝑣𝑎

𝑇𝑥𝑘)        (6.97) 

𝑢̂𝑗(𝑥(𝑘+1),𝑗) = 𝑊̂𝑎,𝑗
𝑇 𝜎(𝑣𝑎

𝑇𝑥(𝑘+1),𝑗)       (6.98) 

where 𝑣𝑎 is the weight matrix of hidden layer of constant actor network. The estimation error 

for actor network is given by: 

𝑒𝑎,𝑗(𝑘) = 𝑢̂𝑗(𝑥𝑘) − 𝑢𝑗(𝑥𝑘)        (6.99) 

where the target policy 𝑢𝑗(𝑥𝑘) is given by: 

𝑢𝑗(𝑥𝑘) = −
𝛾

2
𝑅−1𝑔̂(𝑥𝑘)

𝑇
𝜕𝑄̂𝑗(𝑥(𝑘+1),𝑗,𝑢𝑗(𝑥(𝑘+1),𝑗))

𝜕(𝑥(𝑘+1),𝑗)
     (6.100) 

The MSE of critic network is calculated from (6.82) with 𝑛𝑤 = 𝑎, and its gradient 
𝜕𝐸𝑎,𝑗(𝑘)

𝜕𝑊̂𝑎,𝑗(𝑘)
 is 

given as: 

𝜕𝐸𝑎,𝑗(𝑘)

𝜕𝑊̂𝑎,𝑗(𝑘)
= 𝜎(𝑣𝑎

𝑇𝑥𝑘)𝑒𝑎,𝑗
𝑇 (𝑘)        (6.101) 

Further, the process in (6.91-6.101) is repeated as discussed in algorithm 6.3 by increasing 

index 𝑗 until ‖𝑄̂𝑗 (𝑥𝑘 , 𝑢̂𝑗−1(𝑘)) − 𝑄̂𝑗+1 (𝑥𝑘, 𝑢̂𝑗(𝑘))‖ ≤ 𝜀𝑗. Once the convergence is achieved, 

the optimal control policy at time 𝑘 is saved and the interleaved iterations are repeated from 

𝑗 = 0 for each 𝑘 until all the networks are converged.  

6.3.2 Nonlinear model free control for ball balancer system 

The problem of balancing control in robotic systems is realized by modelling a ball balancer 

system. To achieve nonlinear control for the ball balancer system, the neural network approach 

is adapted as shown in Figure 6.4.  
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Figure 6.4. Reinforcement learning-neural network architecture for ball position and plate 

angle control of ball balancer system 

In this experiment, three possible trajectories for ball balancer system are learned by the 

network. The neural network formed a structure of 3-10-6, where 3 is the input operation for 

the corresponding desired trajectory, 10 is the number hidden layers selected by the action of 

the critic function, and 6 corresponds to the control variables obtained for each hidden layer 

and critic function evolution feedback.  Further, the interleaved learning function is adapted 

using full state data as discussed in Section 6.2.1. Initially, the nonlinear system measurements 

are obtained by simulating the model discussed above using stabilizing behavior policy. The 

system is learned with different balancing situations by varying the position of the ball with 

respect to different trajectories as shown in Figure 6.5. To ensure that the system is being 

operated within the affine control region without unbalancing, an exploratory noise i.e., random 

perturbations in the motor output are added. 
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(b) Plate angle 

Figure 6.5. Response of ball balancer for ball movement in different trajectories 

The simulation results in the Figure 6.5 display the data corresponding to ball position and 

plate angle for various trajectories. The x- axis SRV02 unit is responsible for x axis plate 

movement and y-axis SRV02 unit responsible for y axis plate movement. Due this movement 

of plate, the ball placed on plate will move accordingly and try to balance without falling off. 

Further, the real-time implementation of developed interleaved learning function is achieved 

with the help of Qunaser ball balancer system. The data exchange between the simulated 

models and the ball balancer setup is achieved by providing a whole suite of functions which 

use the features of supported data acquisition hardware from the C language. These functions 

configure the hardware and perform both synchronous and asynchronous I/O in various forms. 

The configuration functions provided by the Hardware-in-the-Loop - Application 

Programming Interface (HIL API) gives the ability to open a hardware-in-the-loop card and 

configure it. By using larger exploration noise, the performance of the ball balancer system for 

achieving balancing control is observed under square trajectory using RL-neural network (NN) 

controller and compared with the conventional NN controller. The ball position and plate angle 

for real-time operation of ball balancer system with non-linear model free control are shown in 

Figure 6.6. 

 
(a) Ball position 
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(b) Plate angle 

Figure 6.6. Ball balancer output with reinforcement learning-neural network controller in 

real-time 

 

Figure 6.6(a), and 6.6(b) show the ball position, and plate angle of real-time ball balancer setup 

operating with developed nonlinear model free controller under square trajectory. The square 

input signal has been given to the setup with the frequency of 0.08Hz and amplitude of 5 cm. 

From the Figure 6.6(a), the ball position follows the reference trajectory with fewer oscillations 

which make the system stable and ball movement will be slow down. Subsequently, the plate 

angle variation in Figure 6.6(b) is initially between +5 degrees and −12.5 degrees and after 

the falling edge of the reference trajectory the plate angle varies between −180 to +180 due 

to the movement of the ball to stabilize around the trajectory. In both the cases, the response of 

RL-NN is better compared with the NN controller. Further, the step response characteristics of 

the ball position are calculated to assess the superiority of the developed approach over the 

classical approach. As of the Table 6.3, the response of improved RL-NN is better based on 

the peak time, settling time and peak overshoot.  

Table 6.3. Time response analysis for reinforcement learning-neural network control of 

ball balancer in real-time 

Controllers Peak time 

(𝑡𝑝) (sec) 

Peak overshoot 

(𝑀𝑝) (%) 

Steady state error 

(𝑒𝑠𝑠) (cm) 

NN 0.37 sec 22.9% 1.151 cm 

RL-NN 0.1 sec 12.4% 0.487 cm 

 

The results proved the effectiveness of model free controller using reinforcement learning for 

trajectory tracking and balancing control in linear and nonlinear systems. 
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6.4 CONCLUSION 

In this chapter, a least square temporal difference learning algorithm, and interleaved learning 

algorithm are adapted for developing a model free controller for robotic applications. The Q-

function of reinforcement learning was utilized with the learning algorithm and a model free 

state feedback controller is developed by establishing LQR and NN controllers as a baseline 

controller. Further, the classical least square policy iteration technique is used to establish the 

boundary conditions for complexities incurred by the learning algorithm. The developed model 

free controller is tested for trajectory tracking and balancing control of robotic systems. The 

controller generates the required action by learning the various states of the system through 

simulation.  
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Chapter 7. CONCLUSION AND FUTURE SCOPE OF WORK 

7.1 INTRODUCTION 

In this chapter, the concluding remarks for various control approaches developed in the thesis 

are provided based on the observed simulation and real-time results. Initially, the problems 

associated with the mechanical systems were identified by modelling the benchmark systems 

of an aerial vehicle and robotic balancer. Further, the identified problems are solved with 

various approaches of the nonlinear control theory. The development of controllers is mainly 

focussed at achieving path tracking, and position control for the benchmark systems by 

overcoming the disadvantages due to uncertainty and failure modes. A detailed conclusion of 

the work discussed in Chapter 1 to 6 are given in further sections. 

7.2 MAIN CONTRIBUTIONS OF THE WORK 

The summary of this thesis is as follows: 

In chapter 1, an introduction for the control of nonlinear systems, along with the basics 

nonlinear control theory is provided. The motivation for improvements in nonlinear control 

theory s identified and the required objectives are formulated. Further, the major contributions 

of the thesis are highlighted and the remaining chapters are outlined. 

In chapter 2, some background on 2DoF helicopter and ball balancer benchmark systems and 

basic notions in their mechanics are given. Further, a detailed literature review bearing the 

linearization controller, sliding mode, model predictive, stochastic, intelligent, randomized, 

and learning algorithm-based control approaches is provided. From the review it is identified 

that, the linear controllers offer a simple way of designing closed loop control for these systems. 

But the complicated nonlinear dynamics of benchmark systems effect the capability of 

providing a plausible solution and limits the generalized applications of control laws. In 

addition, linearization of the nonlinear systems is also carried which heavily effected the speed 

of system response. This motivated for the development of several nonlinear control techniques 

to deal with the problems in underactuated systems. Lots of nonlinear controllers like 

Lagrangians, lambda method, and back stepping controller, have been evolved in the last few 

years. These controllers faced some drawbacks during the early stage of their development with 
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the limitations of lambda method in dealing with external load and back stepping controllers 

lagging due to additional feedback.  

These issues in the conventional nonlinear techniques were overcome by carrying out feedback 

linearization, and partial feedback linearization for the mechanical systems. These methods 

transformed the nonlinear system into an equivalent linear system by cancelling the 

nonlinearities through a feedback control. However, the problem with lack of robustness is 

considered as a major drawback while adapting the procedure of feedback linearization 

approach and the partial feedback linearization. In order to achieve robustness while 

controlling, sliding mode approach is considered as a reasonable solution. But the switching 

surface behaviour of sliding mode controller makes it insensitive to external disturbances and 

parameter variations. Another approach in the line of nonlinear controllers for the benchmark 

systems is the passivity-based control approach. This aims at passivating the system with a 

storage function, which has a minimum at the desired balance point. This has a disadvantage 

with differential feedback as it cannot amplify the measurement noises. Considering all the 

drawbacks and disadvantages, the basic control schemes of fuzzy and neural integrated fuzzy 

are developed for the helicopter and ball balancer systems. The results identified the action of 

the control techniques and highlighted their drawbacks due to effect of external disturbances, 

parametric uncertainties, and faults on the plant operation. In light of these drawbacks, various 

intelligent, probabilistic, and learning algorithms are developed in Chapter 3 to 6. 

In chapter 3, the control of benchmark systems is achieved through intelligent control 

approaches. Initially, a three-level discrete wavelet transform based fuzzy controller for 

achieving trajectory tracking with helicopter, and self-balancing control with a ball balancer 

system is developed. The dynamics of the systems were studied, and the control aspects are 

identified. As per the drawbacks of conventional control techniques observed from the 

literature, the novel wavelet optimized fuzzy technique is developed. Since the acquired signals 

in both the systems are prone to noise due to various external disturbances, the discrete wavelet 

transform is used as a filter for denoising the signal by adapting the minimum description length 

criterion. Further, the denoised signal and the modified wavelet coefficients of the signal are 

processed for a fuzzy controller, where the weights of the fuzzy are tuned by the wavelet 

transform. The pitch and yaw angles of the helicopter, and the plate angle and ball position 

control of the ball balancer system for DWT based fuzzy and fuzzy control techniques are 

analysed depending on Simulink and real-time responses. The Simulink and hardware output 
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performances are assessed through RMSE, and time response analysis. The DWT based fuzzy 

controller improves the system response by reducing settling time, peak time, steady-state-

error, root mean square error, and peak overshoot. 

Further, the eT2QFNN control scheme is developed for achieving attitude tracking control, and 

position control in unmanned helicopters, and ball balancer system respectively. The control 

action is developed by achieving a parallel structure controller with the conventional PD 

controller and the eT2QFNN scheme are developed to achieve the attitude tracking. Both pitch 

motor and yaw motor of the helicopter are individually controlled by operating the controller 

with a feedback error. Similarly, the X and Y axis actuators are controlled by the developed 

controller for the ball balancer system for the measured ball position. The controller generated 

the required rules through rule growing mechanism and parameter adjustment learning 

scenario. Further, a sliding surface based adaptive law is equipped to compensate the 

nonlinearity of the benchmark systems operating with eT2QFNN and PD controller. The 

stability of the developed approach is assessed using the Lyapunov stability method. Besides, 

Simulation and experimental analysis are conducted with the developed approach and the 

corresponding results are compared with the conventional interval type-2 fuzzy logic control 

technique with Gaussian membership function which depicted the robustness of the proposed 

approach in achieving attitude tracking.  

In chapter 4, the control of benchmark systems is achieved through probabilistic control 

approaches. Here, a randomized algorithm based probabilistic approach is developed for 

parametric uncertainties in unmanned helicopter systems. The approach is developed 

considering the stochastic characterization of bounded uncertainty with white Gaussian noise 

and parametric disturbance. Further, it is assumed that the plant dynamics are exactly known 

for developing the controller. This provided a new paradigm for gain synthesizing the 

controller which solved the problem of trajectory tracking for unmanned helicopters. Further, 

the operation of the developed controller is tested with the 2DoF helicopter benchmark system 

by operating it to follow a predefined trajectory. To assess the robustness of the controller 

operating under uncertainties, the reachability analysis is developed considering the reach tubes 

and reach sets of the ellipsoidal method. The results identified the efficiency of the proposed 

approach with time domain characteristics for both simulation and real-time experiments. 

Moreover, the developed controller has better response and provide less error with the adequate 

time response when compared to conventional control techniques. 
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Similarly, a simultaneous perturbation stochastic approximation approach for unknown but 

bounded disturbances in a typical closed loop system is developed for position and balancing 

control of the ball balancer system. The developed approach achieved adaptive control by 

constructing a sequence of estimates and formulating an optimization problem. To enhance the 

performance of the developed controller, additional generalizations and convergence 

conditions are mentioned. Stability analysis is carried out considering the linear matrix 

inequalities and Lyapunov stability. Further, the developed approach is assessed with a closed 

loop balancing control problem with 2DoF ball balancer system and PID controller. The 

developed method minimizes the optimization problem to achieve the gain values of the PID 

controller. The simulation and, real-time experiments have been conducted for balancing 

control using the developed adaptive controller. The results depicted improved tracking 

response of the SPSA-PID over conventional PID. The PID gains optimized using SPSA 

provide better control when compared to conventional control approach in terms of tracking 

response under random uncertainties. 

In chapter 5, the control of benchmark systems is achieved through fault classification based 

reconfigurable control approach. This chapter developed a support vector data description-

based classification approach for identifying the motor faults during the operation of unmanned 

helicopters. Further, the classified faults are trained with a neural integrated fuzzy controller to 

enhance the trajectory tracking capabilities of the helicopter. Initially, the numerical simulation 

of the helicopter was modeled to operate in normal and with pitch and yaw motor failures. 

These failures showed an effect on the output characteristics of the helicopter. To analyze these 

effects, the energy and entropy features of all the characteristics are extracted using wavelet 

transform-based feature extraction process. The extracted features form a non-linear feature 

vector which are mapped into a high dimensional feature space using the Gaussian kernel-

based support vector data descriptor. The developed classifier showed 98.6% training and 

98.96% testing accuracy and had better performance when compared to the conventional 

approaches applied on the same data set. Further, to control the system during a fault, a neural 

integrated fuzzy controller is developed by combining the learning capability of artificial neural 

networks and the inference ability of the fuzzy controller. The developed controller depicted 

efficient path tracking with less settling time.  

Similar to the fault classification-based control approach developed for the 2DoF helicopter, 

an SVM-wavelet fuzzy based controller is developed with the 2DoF ball balancer system for 
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achieving their steady state operation. The fault classification algorithm is developed by 

simulating all the possible faults and operating scenarios, extracting their features using 

discrete wavelet transform, and by training the features   with support vector machine classifier. 

Further, to achieve steady state operation of the vehicle in the case of faults, a wavelet based 

fuzzy controller is developed. This accommodates the operation of the system as per the fault 

or condition of the system. The developed controller when implemented with the laboratory 

setup for defined set of faults depicted high precision and accuracy in solving the problem of 

position tracking and balancing of the ball with less settling time, improved steady state error, 

position error and low angle variation.  

In chapter 6, a least square temporal difference learning algorithm is adapted for developing a 

model free controller for the benchmark systems. The Q-function of reinforcement learning 

was utilized with the learning algorithm and a model free state feedback controller is developed 

by establishing linear quadratic regulator as a baseline controller. The classical least square 

policy iteration technique is used to establish the boundary conditions for complexities incurred 

by the learning algorithm. The developed model free controller is tested for trajectory tracking 

and balancing control of 2DoF helicopter, and ball balancer benchmark systems respectively.  

In both the cases, the controller generates the required action by learning the various states of 

the system through simulation. The performance of the developed controllers is assessed with 

the real-time experimental analysis. The step response characteristics adhere to the superiority 

of the developed approach. 

7.3 FUTURE SCOPE OF WORK 

This section provides potential future directions of research in continuation of this work. 

For the trajectory tracking approach with both intelligent and probabilistic controller, the 

research can be extended to improve the tracking efficiency with steady state performance and 

multiple degrees of freedom. Besides, the operation of underactuated systems in strong and 

weak fields that involve zero dynamics can be a possible extension for the research. 

Furthermore, migration strategy-based algorithms like biogeography-based optimization 

(BBO), biologically inspired mechanisms like bacteria foraging algorithm (BFA), population 

based evolutionary methods like invasive weed optimization-based algorithm (IWO), and other 

metaheuristic approaches like Jaya algorithm and teaching-learning-based optimization 

(TLBO) can be implement with the nonlinear systems. 
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In learning algorithm-based control approaches, the work can be extended for increased 

number of faults by developing an advanced fault-tolerant control process. These control 

approaches can be further developed with the effects of bounded control inputs, and inevitable 

parametric uncertainties.  

Apart from the above, the reliability analysis of components in the mechanical systems and the 

effect of various control approaches on their end of life and remaining useful life can be 

suggested as a future analysis for possible extension to some of the learning approaches. 
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