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ABSTRACT 
 

 

Increasing use of Tunnels for underground roadways, metro rail or railways makes it an 

important area for study. Construction of tunnels through the rock or soil mass would require 

the determination of induced stresses and deformation resulting from in situ stress conditions. 

This thesis involves study of the theoretical solutions provided by various researchers related 

to stress and deformation around a circular tunnel and a comparison among them 

simultaneously for stresses and strains keeping certain parameters constant around the tunnel. 

This has been carried out in two steps. First step involves casting and model testing in the 

laboratory to evaluate stress and strain induced in the model under uniaxial loading. This has 

already been carried out by Kumar, P. and the final readings of that model test have been 

adopted directly for further analysis. The salient features of this experiment are, experimental 

model of circular tunnel casted using Perspex box specially designed to act as a mould. 

Plaster of Paris was used as the casting material to simulate weathered rock mass. Strain 

gauges were attached at the tunnel periphery at specific intervals. Second step involves 

comparing the various solutions given by researchers using ultimate load as the input from 

the model testing and computing stresses and corresponding strain values analytically 

considering the plane stress and plane strain condition for stresses and strains respectively. 

Deformation profiles, stress vs strain curves for different solutions were obtained for further 

study and conclusions were drawn.  
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CHAPTER 1 
 

 
 

1.1 Introduction  

 
The use of tunnels for various commute and other purposes like Railways, Metro rails and 

sewage transport is surmounting exponentially as the surface land is nearing its saturation 

limit. Construction of massive concrete structures will soon cover the land to its maximum 

capacity. Due to this growing concern for the near future, tunnels are of importance. To 

facilitate the construction of tunnels, one must possess a fair idea about the causes of stress 

generation, mode of transmission, soil-structure interaction i.e. Soil/Rock and tunnel lining 

interaction, the deformations due to the loads at various locations, the modes of failure and 

many other important aspects. The primary source of stresses exerted at the tunnel periphery 

is due to the vertical overburden pressure and lateral pressure is exerted due to the at rest 

condition of the adjoining rock mass. It can be stated that the vertical overburden pressure 

may be due to the soil existing over the underground space and the surcharge applied at the 

ground level in the vicinity of the tunnel periphery within the influence zone.  

 

Tunnels are predominantly subjected to 3 types of loads which needs to be taken into account 

while designing the lining material and while accounting for permissible settlement as per 

guidelines. Loads acting are mainly classified into:  

• Static Load resulting due to overburden mass of soil / rock 

• Dynamic load generated due to movement of metro rail or heavy machinery  

• Impact loads due to earthquakes and blasting 
 

These loads tend to induce Bending moment, Shear force and Normal forces in the tunnel 

lining material which may be tensile or compressive in nature. The nature of these induced 

forces depends purely on the geometry and stresses acting at the tunnel periphery. Another 

important aspect for tunnel designers is deformation. Deformation may be radial or 

circumferential in nature. It must be kept in mind that the net deformation of the tunnel 

periphery must be within the permissible limits of ground movement. Excess deformations 

may lead to accidents and even settlements of super structure in some cases and ultimately 

collapse of structures. Hence, the estimation of stresses and deformations plays an important 

role in understanding the behavior of these induced forces.  These induced stresses can be 

used further for plotting the stress paths which would indicate the state of rock / soil mass 
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with respect to the Mohr’s failure envelope. This would aid in locating critical stress points 

along the periphery of the tunnel which needs special attention.  

 

Another aspect is to assess the stability of tunnels. Stability of tunnels mainly depends upon 

the relative position of tunnel and construction procedure adopted. For determination of 

stresses, various theoretical formulations have been proposed over the past years to determine 

the stresses and deformation in a tunnel. It is to be noted that within the scope of this study, 

the adjoining mass around the tunnel periphery is assumed to be weathered rock mass and the 

term ‘soil’ is used interchangeably with rock mass unless specifically mentioned otherwise. 

Though the extensive use of analytical solutions is no longer a usual preference due to the 

emergence of computers and numerical codes which are faster, more efficient and accurate. 

Still analytical solutions have their relevance as they serve as a reference benchmark for the 

results of numerical analysis. Moreover, they are useful in identifying problem variables and 

can provide some simple results which can be applied effortlessly. 

 

 

1.2 Objectives of Thesis 

        

1. To understand the stress pattern around the tunnel periphery caused due to the 

overhead loading using analytical approach.  

2. To understand the deformation pattern around the tunnel periphery due to overhead 

loading using analytical approach. 

3. Comparative study among the different solutions for both stresses and deformations in 

case of circular tunnel to observe the similarities and differences. 

4. Graphical representation of the stresses and strains and analysis of graphs.  

 
1.3 Methodology adopted 

 
Tunneling is inherently a 3-D problem and hence, must be ideally modeled as such. However, 

the approach of plane strain wherein, the a 3D problem is conveniently reduced to a 2D 

problem by assuming ϵ3 = 0 i.e. strain along z axis (longitudinal) is neglected, is assumed 

for this study as it reduces a complex 3D problem to a set of simple equation, which are 

easier to handle. The thesis is completed in the following steps: 
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1) Review of existing theories for the analysis of tunnels in order to choose the most 

appropriate solution within the scope of this study.  

2) Obtaining the stress and displacement magnitudes along with their nature using 

various analytical solutions.  

3) Study the results from Step 2 and understand the differences and their causes.  
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CHAPTER 2 
 

 

 
2.1  Literature Review  
 

The analysis over tunnels can be broadly classified into physical or experimental, numerical 

and analytical. Construction of a tunnel primarily involves choosing a suitable method for 

each individual project as every project is unique. The choice of this method depends on the 

traits of the project. It should also cater to the purpose for which the tunnel is being made 

efficiently and should make use of the useful space above and under the ground while 

minimizing the negative effects due to its construction such as excessive settlements or 

ground movement. Depending on whether it is a metro or a highway, various construction 

techniques are used.  

In case of metro construction, the main construction methods are Cut and Cover 

method, New Austrian Tunnelling Method, Shield Method. Various new innovative methods 

are being introduced which are combination of the methods mentioned above. In Cut and 

Cover method, the excavation takes place from up-to-down starting from basement of the 

tunnel to the desired elevation. Afterwards, backfilling of foundation pit to restore the ground 

is carried out. They are further classified into unsupported slope excavation and supported 

foundation pit excavation based on whether the side wall reinforcement is provided or not. 

This method of construction leads to economical design and delivers a well stressed main 

body of the tunnel. It is primarily chosen when there is no restriction on ground traffic 

movement and environment as the construction can be achieved as and when needed. It is to 

be avoided when there is a primary traffic route as it will block the same for a long time. 

Also, this choice of method is not appropriate when construction is to take place in the 

vicinity of a residential zone as it produces great noise and vibrations. Many scientific 

developments have been made in cut and cover method of tunnel construction (Guo (2019)). 

New Austrian Tunnelling method (NATM) (Xiao et al. (2009)) is principally the application 

of rock mechanics theory based on maintaining and utilizing the self-supporting capacity of 

the surrounding rock. The surrounding rock acts as the primary support system. The 

construction process involves in six steps i.e. line positioning ; drilling, loading and blasting; 

dust removal by ventilation; anchor and steel arch support followed by bar mat 

reinforcement; shortcreting to form the preliminary bracing; building the concrete as the 

secondary lining. The main advantage of NATM is the elimination of supporting material as 
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it makes use of the surrounding structure extensively. Another important trait of this method 

is its low cost.  NATM can be preferred for tunnel construction in weak surrounding rock, 

poor geology conditions and shallow tunnels. Scientific development in the field of NATM 

are quite a few (Guo (2019)). Construction of tunnels using NATM and by TBM have been 

discussed in detail (Phadke et al. (2017)). Shield method is the most widely used method in 

subway construction around the world. Tunnel Boring Machine (TBM) is used in this 

technique. A TBM consists of a shield and trailing support mechanism. Excavation of soil at 

the front face of the tunnel is done using shield and excavated waste is removed through 

machinery as either slurry or left as it is depending on the type of TBM. Hydraulic Jacks are 

used to push the TBM forward. An erector is used to pick-up precast concrete segments and 

place in the designated location to form the tunnel lining. The shield method is executed in 

five steps which are as follows: excavating foundation pit or constructing vertical shaft at 

both starting and end of the tunnel; soil excavation; TBM advancement and correction to 

deviation; assembling the lining material; pressing the lining material. Various developments 

in shield method are well presented (Guo (2019)). If the tunnel is constructed is to be carried 

out for a highway, various methods adopted around the world are Mining method, Shield 

method, Immersed tube method (He, Wang (2013)). The mining method is based on drilling 

and blasting excavation method. Various excavation methods available are full face 

excavation method, bench cut methods. These methods improved the stability of the 

surrounding rock mass. Another development in tunnel construction technology is the 

Norway tunnel Method (NTM) (Barton et al. (1974); Barton et al. (1992)) which is 

complementary to the NATM. The basic difference between NTM and NATM is the rock 

classification system adopted. NTM uses Q-system of classification of rock. High 

performance materials are applied as a permanent support, with secondary lining only if 

required in conditions such as leakage, frost and other hazardous conditions. Another 

advancement in tunneling technology appeared in the year 2000, the New Italian Tunnelling 

method (NITM) (Lunardi (2000)) which is an enhancement in the traditional NATM with 

addition of pressure arch theory. NITM is widely used in highway and railway tunnel 

designing. The Immersed tube tunnel is a commuting carrier tunnel which excavates a groove 

under the water of the sea, river or channel where the tunnel is to be constructed. Sections are 

floated to the site followed by related construction required to combine the individual 

segments into a whole and finally build road for traffic (Wang (1997)).    

 Over the past few decades, the advancement in computational power has led to 

development of multiple computer codes which can be implemented in studying the behavior 
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of structures, their response to different loading and many more. Moreover, numerical 

analysis is fast and accurate to some degree. The most important use of numerical analysis 

has been observed in the field of 3-dimensional analysis.   Various numerical simulations are 

present comprising of various types of analysis and various constitutive models. One can 

choose among these options to suit the needs of the project. A comparative comprehensive 

study had been performed which consists of more than 60 case histories published over the 

last two decades which compares the numerical results with field measurements and also, 

shows the performance of numerical modelling in tunneling in terms of ground displacement 

and lining loads (Negro et al. (2000)). The research evaluates the various case studies in the 

lines of physical as well as numerical aspects. Physical aspect involves classifying the case 

studies based on the construction method adopted for each case i.e. Side drift, shield, NATM, 

Mined, Open shield, Slurry shield etc. Numerical aspects were also considered for each case 

and all the cases are classified into type of analysis i.e. 2-D or 3-D, numerical simulation 

used, such as Stress reduction, imposed convergence, Core removal etc. , choice of 

constitutive model chosen i.e. Elastic, Non- Linear elastic, Elastoplastic in which yield and 

failure surface were coinciding or distinct yield and failure surface. The research also 

classified the computed code on the basis of method of analysis used i.e. Finite element 

analysis and Finite difference method.    

Analytical approach is adopted initially before deciding the appropriate method of 

construction of tunnel or method of numerical analysis to be adopted. This serves as the 

guideline to check for results with physical and numerical modelling. The only drawback of 

this approach is that it is time consuming and involves complex solutions which can be 

analytically challenging to solve. In the theory of plane elasticity which assumes the material 

to be isotropic and homogeneous, when the variation of body forces is ignored , the same 

stress distribution is obtained for both plane stress and plane strain by the solution of 

boundary value problems  in which, only the surface tractions are specified (Malvern 1969). 

Therefore, elastic stress distribution around a deep tunnel can be approximated by that of a 

hole having the same shape as the tunnel and situated in an infinitely large and elastic plate 

subjected to end loads. The classical solutions for stresses around a hole in an infinite plate 

were applied extensively to the early studies on the stresses around underground openings 

(Terzaghi et al. (1952); Obert et al. (1960)). Stress distribution around a circular hole in a 

uniaxially loaded plate has been considered perhaps the single most important problem in the 

field of rock mechanics (Jaeger et al. (1976)). The solution to this problem is known as 

Kirsch Solution (Kirsch (1898)), which is widely applied for the design of circular tunnels 
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and shafts. Similarly, Inglis’s Solution for the ellipse (Inglis (1913)) had multiple applications 

which further lead to immergence and development of fracture mechanics. Greenspan’s 

solution for the ovaloid (Greenspan (1944)) is another example of classical “hole in plate” 

solutions. Closed form solution for determination of stresses in conventionally used tunnel 

shapes having arched roof and a vertical symmetry axis have been presented (Gercek (1997)). 

Analytical solutions have also been presented for stresses and displacements in a semi-

infinite elastic ground subjected to surcharge loading for twin tunnels (H.N Wang et al 

(2017)). The simplicity of the elastic solution for the stresses and displacements around a 

deep circular opening provides great preliminary insight into the significance of various 

parameters (Muir et al. (1975); Curtis (1976)). 

Even though it is known that the actual deformation behavior of the soil during 

tunneling operation is not plain, the assumption of plain strain is made for the sake of 

simplicity. A tunnel is regarded as ‘deep’ if the free surface does not significantly affect the 

stresses and displacement around the opening. This is a reasonable approximation for the 

depth greater than several tunnel diameters. For the scope of this research, only deep circular 

tunnel is considered for study.  
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CHAPTER 3 
 

 

 

3.1 Various Analytical solutions for Circular Tunnel 

 
Over the decades, various theories have been presented by researchers across the world for 

the case of circular hole situated in a plate of infinite extent. It is assumed that the stresses 

applied act at the distant boundary as shown in the Fig. 3.1     

 

 
Fig. 3.1 Coordinate System adopted for Circular hole situated in an infinite plate 

 

The following nomenclature has been used:  
 

Circular hole radius = a  

Applied Stress along x-direction = Sx  

Applied Stress along y-direction = Sy 

Radial distance = r (from the center of the circle)  

Angle subtended by the radial axis from + x axis = θ (anticlockwise sense)  

Radial stress = 𝜎r  

Tangential stress = 𝜎θ  

Shear stress = 𝜏rθ  
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The equations for obtaining stresses are given as follows:  

 

𝜎r = 
1

2
{(Sx + Sy ) [1– 

𝑎2

𝑟2] + ( Sx – Sy )[1+ 
3𝑎4

𝑟4  – 
4𝑎2

𝑟2 ].cos(2θ)}                     (3.1) 

𝜎θ = 
1

2
{( Sx + Sy )[1 + 

𝑎2

𝑟2]  – ( Sx - Sy )[1+ 
3𝑎4

𝑟4 ].cos(2θ)}                (3.2) 

 

𝜏rθ = – 
1

2
( Sx – Sy )[1– 

3𝑎4

𝑟4  + 
2𝑎2

𝑟2 ].sin(2θ)                                (3.3) 

 

3.1.1 Kirsch (1898) Solutions 

 

Kirsch (1898) derived the solution for stress distribution around a circular hole. The original 

theory assumed a circular borehole situated in a very large plate subjected to remotely 

uniform tensile stresses. The same solutions can be adopted for circular tunnels situated in 

rock mass with little manipulations for uniaxial stress state. Assumptions are as follows: 

1. The circular hole is situated in a plate which extends infinitely (very large). 

2. Plane strain condition exists. (to reduce the complexity from 3D to 2D plane) 

3. The rock material surrounding the tunnel is continuous, homogeneous, isotropic and 

linearly elastic i.e. rock material is stressed within the elastic range.  

Considering an Uniaxial stress analysis, Let Sx = 0 but Sy ≠ 0, which reduces the current 

problem to plane stress problem.  The above equations (3.1), (3.2) and (3.3) transforms into: 

𝜎r = 
1

2
.Sy.{[1– 

𝑎2

𝑟2]– [1+ 
3𝑎4

𝑟4  – 
4𝑎2

𝑟2 ].cos(2θ)}             (3.4) 

𝜎θ = 
1

2
.Sy .{[1+ 

𝑎2

𝑟2] + [1+ 
3𝑎4

𝑟4  ].cos(2θ)}               (3.5) 

𝜏rθ =  
1

2
.Sy .[ 1– 

3𝑎4

𝑟4  + 
2𝑎2

𝑟2  ].sin(2θ)                  (3.6) 

 

Fig. 3.2 Coordinate System for stresses and deformation in a circular hole 
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The solutions given by Kirsch (1898) can be expressed as in Eqs. {(3.4),(3.5),(3.6)} . Some 

of the important observations derived from Eqs. {(3.4), (3.5), (3.6)} are as follows: 

• The Maximum Tangential stress is 3 times the applied stress and occurs at the 

boundary on the x axis, i.e. at θ = 0 or 𝜋 

• When the angle of inclination θ = 
3𝜋

2
 or 

𝜋

2
 , the tangential stress at the boundary of the 

opening is equal to the applied stress but is of opposite sign.  

 

The stress displacement relation for plain stresses may be then defined as:  

εr = 
𝜕𝑢

𝜕𝑟
=  

1

 E 
 (𝜎r - 𝜈.𝜎θ )       (3.7) 

εθ =  
𝑢

𝑟
 + 

1

𝑟
 
𝜕𝑣

𝜕θ
  = 

1

E 
 (𝜎θ - 𝜈.𝜎r )      (3.8) 

            γrθ =  
1

𝑟
 
𝜕𝑢

𝜕θ
 + 

𝜕𝑣

𝜕r
 - 

𝑣

𝑟
 = 

2 ( 1+ν ) 

𝐸
 𝜏rθ                             (3.9) 

 

Similarly, the displacement equations for plain strain case can be written as: 

 

Eu = 
1

2
 Sy [1– 𝜈2]{ [ r + 

𝑎2

𝑟
] –  [r – 

𝑎4

𝑟3
 + 

4𝑎2

𝑟
]}.cos(2θ) – 𝜈[1+𝜈].

1

2
 Sy.{   

[r - 
𝑎2

𝑟
]  + [r – 

𝑎4

𝑟3
].cos(2θ)}              (3.10) 

 

Ev = 
1

2
 Sy.{[1 – 𝜈2] [r + 

2𝑎2

𝑟
+ 

𝑎4

𝑟3
]  + 𝜈[1+𝜈][r –

2𝑎2

𝑟
 + 

𝑎4

𝑟3
]}sin(2θ)               (3.11) 

 

In Eqs. {(3.10),(3.11)}, u is the displacement coordinate in radial direction and v is the 

displacement coordinate in tangential direction respectively and both u and v are defined as 

the function of θ , 
𝑎

𝑟
 so it changes with angle θ and the radial distance from the tunnel center. 

It can be stated from Equations (3.10) & (3.11) that the radial displacement is maximum at  

θ = 
3𝜋

2
 or 

𝜋

2
 .  

If we substitute r = a in Eqs. {(3.10), (3.11)} i.e. which is at the tunnel periphery, we obtain: 

 

Eu = [1 – 𝜈2].a.[Sy – 2.Sy.cos(2θ) ]                      (3.12) 
 

Ev = 2.[1-𝜈2].a.[Sy.sin(2θ)]                                                                               (3.13) 
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The limitations to Kirsch (1898) solutions are as follows: 

 

1. The assumption that plate extends infinitely is unrealistic as in practicality, the rock 

mass extends to a finite depth.  

2. The assumption of plain strain condition even though reduces the 3-dimensional 

problem to a 2-dimensional one, is not accurate as in practicality, a tunnel situated in 

rock mass is a 3D problem. 

3. Corrections or remarks to the results obtained by plain strain condition for 3D has not 

been provided or 3D has not been taken into account. 

4.  The assumption of rock mass being continuous, homogenous is not correct as rocks 

are accompanied by fissures and joints. Hence, are discontinuous structures with a 

little continuity in case of intact rock mass.  

5. The assumption that rock mass is isotropic and linearly elastic does not stand true as 

rock mass is anisotropic in nature and does not follow linear elasticity.  

 

3.1.2 Bray (1967) Solutions  
 

This model was proposed by Bray (1967). It states that when the tunnel is situated in weak 

rock, the stress developed exceeds the yield strength and hence formation of both elastic and 

plastic zone occurs around the tunnel periphery. The plastic zone is also known as yield zone. 

If ro is the radius of the tunnel and rp is the radius of the plastic zone.  

 

Assumptions made are as follows: 

1. The rock has been assumed as weak.  

2. The stress around the tunnel periphery exceeds the yield strength of the rock mass. 

3. Formation of yield zone takes place.  

4. The rock mass is assumed to possess homogeneity, isotropic and continuous. 

5. Tangential stress is negligible and hence ignored. 

6. The stresses are independent of the orientation from abscissa and radial distance and 

depend only on the inherent property of the rock mass. 

  

Nomenclature used is as follows:  

ϕ = angle of internal friction                        

c = cohesion  

Po = In situ stress considered   
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Stress equations are given as: 

𝜎r = m3.r.(m1 – m2)                 (3.14) 

𝜎θ = m4.r.(m1 – m2)                 (3.15) 

 

Where symbols have usual meaning. Parameters m1 , m2 , m3 and m4 are defined as:  

 

m1=  
 2. sin ϕ

1−sin ϕ
 `                 (3.16) 

m2 = c. cot ϕ                    (3.17) 

m3 =  
m2

r0.m1
                 (3.18) 

m4 = m3 [
1−sin ϕ

1+sin ϕ
 ]                 (3.19) 

Also, the plastic zone radius rp is defined by the equation:   

 

rp = a.{[P0 + c. cot ϕ][
1–sinϕ 

c.cotϕ
][ 

1–sinϕ 

2.sinϕ
]}              (3.20) 

 

Limitations to Bray (1967) solutions: 

1. The rock has been assumed as weak and hence this solution is not applicable for rocks 

with considerable strength. 

2. Yield zone formation is predetermined whereas in practicality, yielding does not 

necessarily take place. 

3. The assumption of rock mass being continuous, homogenous is not correct as rocks 

are accompanied by fissures and joints. Hence, are discontinuous structures with a 

little continuity in case of intact rock mass.  

4. The assumption that rock mass is isotropic and linearly elastic does not stand true as 

rock mass is anisotropic in nature and does not follow linear elasticity.  

5. It has been assumed that the stresses are independent of orientation from abscissa and 

radial distance from center of the tunnel. It means stress magnitude is same 

throughout the periphery and doesn’t change in magnitude which is not true.  

6. It has been assumed that stresses depend only on properties of the surrounding rock 

mass. But in practicality, the in-situ overlaying rock weight, surcharge due to imposed 

loads needs to be taken into account. Even the lateral pressure exerting due to the rock 

mass is to be considered.  
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 3.1.3 Pender (1980) Solution  

Pender (1980) derived the solutions for circular hole situated in a prestressed medium where 

the displacements are significant at the tunnel cross section and fades out with distance from 

the tunnel periphery. It is also assumed that the incremental stress changes are the major 

causes for the displacements. The assumptions made are as follows: 

1. The tunnel is excavated in a prestressed medium.  

2. The displacements are maximum at the tunnel cross-section and keeps decreasing as 

the radial distance increases beyond the tunnel periphery. 

3. Induced incremental stresses act the distant boundary of an infinite plate. 

4. Incremental stress induced at boundary are the only cause of deformation. 

 

The solutions provided are for estimation of change in stress due to increase in surface load 

magnitude (provided plain strain condition is satisfied) are as follows: 

∆𝜎 r =  –  
1

2
 Sy.{[

𝑎2

𝑟2] – [
3𝑎4

𝑟4  – 
4𝑎2

𝑟2 ]}cos(2θ)                         (3.21) 

∆𝜎θ =  
1

2
 Sy .{[ 

𝑎2

𝑟2] + [
3𝑎4

𝑟4 ]cos(2θ)}                        (3.22) 

∆𝜏rθ = – 
1

2
 Sy .[ 

3𝑎4

𝑟4  – 
2𝑎2

𝑟2 ] sin(2θ)                         (3.23) 

 

The Displacement caused at the tunnel periphery due to the stresses acting can be given by 

assuming identical assumptions as in {Kirsch (1898)} i.e. Only Uniaxial stresses exist and 

lateral stresses are ignored in the analysis: 

 

Eu = 
(1+ν)

2
.a.Sy.[1 – [3 - 4𝜈 ].cos2θ]                        (3.24) 

Ev = 
(1+ν)

2
.[3 - 4 𝜈]a.Sy.sin(2θ)                                                                              (3.25) 

Limitation to Pender (1980) solutions: 

1. The tunnel is situated in a prestressed medium. This assumption leads to deformation 

solutions which account only for the incremental stress. In practicality, incremental 

stress along with in-situ overburden cause stresses around the tunnel periphery. 

Hence, in-situ stresses are to be considered for more accuracy. 

2. The incremental loading is assumed to act at a distant boundary which is an ideal 

situation and leads to far-field stresses. In practicality, the rock mass is finite in depth.  
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3. Lateral pressure and overburden are not considered for deriving the solution.  

 

3.2 Trial Curves 

 
Trial curves depict the variation of stress distribution around the circular tunnel. The variation 

is further compared with each other. The main reason for consideration of these curves is the 

assumption of lateral stresses. For the comparison of analytical results, lateral pressure is 

assumed to be non-existent due to the uniaxial assumption. These curves have been obtained 

by adopting sample values to the Eqs. by Kirsch (1898) and Pender (1980).  

 
3.2.1 Kirsch (1898) Solutions  

 

Solutions provided by Kirsch were divided into 2 cases. Case I deals with trial curves 

depicting stress function and Case II deals with trial curves depicting displacement function 

in terms of Eu and Ev. 

 

Case I: Stress functions using Eqs. {(3.4), (3.5), (3.6)} are discussed in this case. Trial curves 

are obtained for:  

1) 
σθ

Sy
  v/s  

𝑟

𝑎
 

2) 
σr

Sy
  v/s  

𝑟

𝑎
  

Varying r/a values have been assumed from 1 to 5 (note that the magnitude and influence of 

stress becomes irrelevant beyond r/a = 4 i.e. when radial distance becomes 4 times the tunnel 

radius (Obert, Duvall (1967)). Hence, stresses beyond it can be ignored without 

compromising the accuracy of the curves. But for the smoothness and continuity of the curve, 

values till r/a = 5 are considered as a part of extrapolation. The Tunnel radius (a) is assumed 

to be 5m. The cover depth was assumed as 3m. 

Sx = 0 kN/m2 i.e. Horizontal applied stress is assumed to be negligible, so the case is 

representing a Uniaxial case where the only pressure acting is the vertical stress due to 

overburden and surcharge and the confining pressure due to lateral earth is neglected. By 

adopting the already mentioned assumption, the complex problem at hand reduces to a much 

simple problem which is easier to handle. Equations {(3.4), (3.5) & (3.6)} are used to 

calculate the stress component corresponding to different r/a values and different θ values.   

θ has been varied from 00 to 900 as the tunnel under analysis is a circular tunnel and 



15 

 

there lies a symmetry among the 4 quadrants each having a varying θ value from 00 - 900, 900 

- 1800, 1800 - 2700, 2700 - 3600. Hence, only 1st Quadrant is considered for this purpose.  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3 Variation of Radial and Circumferential Stresses along x and y direction  

 

Case II   Displacement functions using Eqs. {(3.12), (3.13)} are discussed in this case. 

Curves are obtained for: 

1. Eu(a)/ 𝜎v(a) v/s θ  

2. Ev(a)/ 𝜎v(a) v/s θ 

Assumptions made in the calculation for u and v (displacement component in x and y 

direction) using equations (3.12) and (3.13) are;   

Poisson’s ratio ʋ = 0.2 

Vertical stress Sy = 20 kN/m2; 

0
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4
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Horizontal Stress Sx = 10 kN/m2
  

And radius of the tunnel (a) = 5 m & all the displacements are calculated at the boundary 

interface of the tunnel i.e. at r = a.  Sign convention is taken as follows: 

• Radial displacement u is positive when it is directed towards the tunnel (  ) 

• Circumferential displacement v is positive in the anticlockwise direction (  ) 

 

 

Fig 3.4  
Eu(a)

𝝈𝒗𝒂
  &  

Ev(a)

𝝈𝒗𝒂
  v/s θ 

 

3.2.2 Bray (1967) Solutions  

 

The Eqs. {(3.14) - (3.20)} are empirical in nature and are independent of θ, Sy, υ, 
𝑎

𝑟
 . It only 

depends on the soil properties at which the tunnel is situated. Consequently, Trial curves 

can’t be generated for Bray’s Solution as within the scope of this study, it is assumed that the 

soil property is constant and the tunnel is situated in weak rock mass.  

 

 

3.2.3 Pender (1980) Solutions  

 

Solutions provided by Pender were divided into 2 cases i.e. Case III and Case IV. Case III 

deals with trial curves depicting stress functions and Case IV deals with trial curves depicting 

displacement function in terms of Eu and Ev. 

 

Case III: Stress functions using Eqs. {(3.21), (3.22), (3.23)} are discussed in this case. Trial 

curves are obtained for:  
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1) 
σθ

Sy
  v/s  

𝑟

𝑎
 

2) 
σr

Sy
  v/s  

𝑟

𝑎
  

Variation of various parameter and assumptions of the state of soil mass for the Eqs. {(3.21), 

(3.22), (3.23)} are identical to Case I which was already discussed.  

 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Variation of Radial and Circumferential Stresses along x and y direction 

 

Case IV:   Displacement functions using Eqs. {(3.24), (3.25)} are discussed in this case. 

Curves are obtained for: 

1. Eu(a)/ 𝜎v(a) v/s θ  

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6

σ
θ
/ 

S
y

an
d

  
 σ

r
/S

y

r/a

x var.
Radial Stress / Sy

Circumferential Stress / Sy

 



18 

 

2. Ev(a)/ 𝜎v(a) v/s θ 

Assumptions made in the calculation for u and v (displacement component in x and y 

direction) using equations (3.24) and (3.25) are: 

1. Poisson’s ratio ʋ = 0.2 

2. Vertical stress Sy = 20 kN/m2; 

3. Horizontal Stress Sx = 10 kN/m2 

Interestingly, it can be observed that even though the assumption of laterally applied 

confining stresses Sx = 10 kN/m2 is made for both the cases (Case II and Case IV), the 

deformation considered for the present study is at the tunnel periphery i.e. at r = a. As this 

value of r is substituted to the Eqs. {(3.10), (3.11)}, it can be observed that the set of Eqs. 

reduce to a function dependent only on Sy (applied vertical stress) and is independent of Sx. 

Similarly, the Eqs. {(3.24), (3.25)} have been derived assuming Sx = 0 kN/m2. 

 

 

Fig 3.6  
Eu(a)

𝝈𝒗𝒂
  &  

Ev(a)

𝝈𝒗𝒂
  v/s θ 

 

The trend of circumferential stress distribution in lateral direction as the r/a increases from 1 

onwards, can be observed to decrease as the r/a increases upto r/a = 2 and further attains a 

constant value beyond this point closely equal to the applied stress Sy (Fig. 3.3). This is 

according to Kirsch (1898) solution. But on the contrary, from Fig.3.5 (Pender (1980)), it can 

be observed that the trend of circumferential stress distribution in lateral direction as the r/a 

increases from 1 onwards, can be observed to decrease with a higher rate than Kirsch (1898) 
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and reduces to 0 at some point after r/a = 2. Further, there is a slight increase in the 

circumferential stress which eventually becomes negligible and ultimately reduces to 0.    

The trend of radial stress distribution in lateral direction as the r/a starts from 1 

onwards, can be observed to increase as the r/a increases upto r/a = 2 where it attains the peak 

and further gradually decreases and reduces to 0 (Fig. 3.3). This is according to Kirsch (1898) 

solution. But on the contrary, from Fig.3.5 (Pender (1980)), it can be observed that the trend 

of radial stress distribution in lateral direction as the r/a increases from 1 onwards, can be 

observed to decrease gradually in opposed to Kirsch (1898) where radial stress increased and 

then decrease. Moreover, even after r/a = 5, the radial stress as calculated using Pender 

(1980) does not reduces to 0 and seems asymptotic in nature which would attain 0 at infinity. 

The trend of circumferential stress distribution in vertical direction as the r/a increases 

from 1 onwards, can be observed to have a compressive nature r/a = 1 (at the periphery) 

which increases as r/a increases and further attains a maximum value beyond r/a = 2 and then 

decreases to 0 after r/a = 4 (Fig.3.3). This is according to Kirsch (1898) solution. The similar 

trend is observed in Fig.3.5 (Pender (1980)) for circumferential stress distribution vertically, 

the rate of increase of circumferential stress is higher in the latter than the former. Though, 

after r/a = 2, the behavior is identical. 

The trend of radial stress distribution in vertical direction as the r/a starts from 1 

onwards, can be observed to increase gradually as the r/a increases and we move away from 

the tunnel periphery. Though, it can be overserved that the rate of increase is higher initially 

and reduces and ultimately becomes negligible after r/a = 5 (Fig. 3.3). This is according to 

Kirsch (1898) solution. But on the contrary, from Fig.3.5 (Pender (1980)), it can be observed 

that the trend of radial stress distribution in vertical direction as the r/a increases from 1 

onwards, increases a compressive radial stress which is directed towards the tunnel center and 

increases at r/a increases and is asymptotic to the x axis in Fig. 3.5 (reduces to 0 at infinity). 

 In the deformation curves (Fig. 3.4, Fig. 3.6) The Ev curve is identical when obtained 

from both solutions but the Eu curve obtained using Pender (1980) can be observed to be 

skewer vertically as compared to Eu curve from Kirsch (1898) solution. In other words, the 

radial deformation obtained using Pender (1980) is smaller than radial deformation in case of 

Kirsch (1898). 
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CHAPTER 4 

 

 

4.1 Experimental Setup 

 

Kumar, P. performed an experiment for the stress and deformation behavior under uniaxial 

conditions for circular tunnels. The experimental model involved circular tunnel with radius 

3cm and 5cm made using Plaster of Paris. Perspex glass box with a central hole was used as 

the casting mould. The hole which is situated at some appropriate cover depth represented the 

circular tunnel. Elastic solution were obtained for stresses in the case of tunnels located near 

the surface and having initial stress gradient with depth (Mindlin(1940)). The results indicate 

that the influence of the surface on the stress distribution is not significant for depth to 

diameter ratio over 2 or 3. The influence of induced stresses in a tunnel is negligible after a 

radial distance of r = 4a (Obert, L. & Duvall (1967)). Hence beyond this limit of radial 

distance, we need not consider the displacements and stress variations.  

The Perspex box was translucent in nature having a hole of radius 3cm and 5cm 

situated at the center (Fig. 3 (a)) and having an effective cover depth of 3cm and 5cm 

respectively from the top surface of the box. The box had detachable sides (edges) which can 

be removed after the hardening process is complete for easy retrieval of the model. PVC pipe 

was used to cast the circular tunnel which was fixed at the center through the circular hole. 

Plaster of Paris mixed with 60% by weight of water content was mixed and then poured into 

the Perspex box and allowed to set. After setting was complete, the detachable sides were 

then removed and the model was taken out. Also, the protruding edges of the PVC pipe were 

cut down to facilitate ease of handling. 

              For testing of the model, the mould was placed under the Uniaxial compression 

testing Machine at the Rock Mechanics Laboratory of Delhi Technological University, New 

Delhi and load was applied perpendicular to the axis of the tunnel. This case of loading 

simulated Uniaxial loading where only the vertical component of the loading is present and 

horizontal component is absent.  Also, for determination of displacements in the tunnel, 

Strain Gauges were attached to the inside of tunnel at a distance of  
𝐿

4
 , 

𝐿

2
 and 

3𝐿

4
 from the face 

of the tunnel. The strain gauges were of 350Ω resistance. Loading and strain gauge readings 

were tabulated with a time interval of 5s until model failure. Mean Strain of the 3 readings 

was considered for further analysis. 
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4.1.1 Perspex Box Design 

 

The box was in the shape of a cuboid with central hole only on 2 opposite faces of the box. 

The assumption for the cuboidal shape of the box as opposed to any other shape was made as 

the length of the tunnel considered was longer as compared to the area of cross section which 

influenced the induced stresses in tunnel. The cuboidal shape of the model also facilitated the 

ease of testing under the universal compression testing machine as it provided a plane surface 

for the platens. The plane surface was also used for simulating load exerted on ground 

surface. The ground surface was assumed as distant boundary. Hence, all 3 adjacent sides of 

the model had different dimension. The radius of the circular tunnel was taken as 3cm in one 

model and 5cm in the other. Then the maximum radial distance of influence zone which is 4a 

i.e. 4×3 = 12cm from the center of the tunnel in case of 3cm and 4×5 = 20cm in case of 5cm 

tunnel was provided. Hence the total vertical height of the box may be calculated as 

3+2×3+12 = 21cm. Taking into account the manufacturing difficulties, the final chosen size 

of the Perspex box of dimension 35cm × 25cm × 25cm for 3cm tunnel with a cover depth of 

3cm 

Similarly, the size of the box for 5cm diameter circular tunnel located at a cover depth 

of 5cm would be 35cm × 35cm × 35cm but it would be cubical in shape.  Fig. 3 shows the 

schematic diagram of the Perspex box and cross section 

 
Fig. 4.1 Schematic diagram of the Perspex box  

 

 

For the deformation measurement, strain gauges are fixed at a distance of  
𝐿

4
 , 

𝐿

2
 & 

3𝐿

4
 from 

the tunnel opening face, where L is the length of the tunnel, which is taken as 35cm. 

 



22 

 

 
 

Fig. 4.2 Front View and cross section at X-X 

  

 

Fig. 4.3 Load Setup of a circular tunnel model  
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CHAPTER 5 

 

 

5.1 Conduction of experiment  
 

The model test performed was by Kumar, P (2017). The loading was applied by the Uniaxial 

Compression testing machine at every 5 sec interval and corresponding Strain gauge readings 

were noted down. Mean Strain was calculated for each time interval. Readings were 

considered until the specimen model failed and there was a sudden decrease in the load in the 

subsequent readings. The load at which the failure of model took place was termed as 

Ultimate Load. The testing was performed for both the models. The output results from 

experiments were Mean strain v/s Time and Load v/s Time plots. These results have been 

directly acquired from the test conducted by Kumar, P. for the purpose of further analysis and 

study. 

 

5.2 Analytical Results  

For the calculation of stresses as well as deformations, data adopted are listed below: 

 

Table 5.1 Maximum induced stress values 
 

Model Sy (MPa) 

3cm Unlined 2.78 

5cm Unlined 3.59 

 

 

Nomenclature used:  

Sy = induced vertical stress 

Sy can be calculated by using definition of simple stress from mechanics of solids 

=  
Load acting 

Area normal to the loading plane
  . Considering the load at Failure point and Normal area 

as area of the loading platens used i.e. 95mm x 95mm. 

 

5.2.1 Kirsch (1898) Solutions  

 

Consider a circular tunnel. Due to Symmetry of shape, we would consider only 1st Quadrant 

of the circle (00 ≤ θ ≤ 900). Using Eqs. {(3.4), (3.5), (3.6)} for stress calculation and Eqs. 

{(3.10), (3.11)} for deformation calculation. r i.e. the radial distance has been varied from 

minimum of a to a maximum distance of 4a (Obert, L. & Duvall (1967)).  
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Table 5.2 Nomenclature  
 

Quantity 𝜎r 𝜎θ 𝜏rθ Eu Ev 

Represented by p q r t w 

 

Note: p, q and r is expressed in MPa; t and w are expressed in N/mm. 

 

 

Table 5.3 Stress values for 3cm model 

 

r/a 1 2 3 4 

θ p q r p q r p q r p q r 

 

00 

 

0 

 

8.34 

 

0 

 

0.782 

 

3.388 

 

1.824 

 

0.405 

 

2.981 

 

1.643 

 

0.244 

 

2.883 

 

1.547 

 

300 

 

0 

 

5.56 

 

0 

 

0.912 

 

2.563 

 

0.912 

 

0.822 

 

2.261 

 

0.821 

 

0.774 

 

2.180 

 

0.773 

 

450 

 

0 

 

2.78 

 

0 

 

1.042 

 

1.738 

 

0 

 

1.238 

 

1.541 

 

0 

 

1.303 

 

1.476 

 

0 

 

600 

 

0 

 

0 

 

0 

 

1.173 

 

0.912 

 

-0.91 

 

1.656 

 

0.822 

 

-0.82 

 

1.833 

 

0.774 

 

-0.77 

 

900 

 

0 

 

-2.8 

 

0 

 

1.303 

 

0.087 

 

-1.82 

 

2.072 

 

0.102 

 

-1.26 

 

2.361 

 

0.071 

 

-1.55 

 

 

Table 5.4 Stress values for 5cm model 

 

 

r/a 1 2 3 4 

θ p q r p q r p q r p q r 

 

00 

 

0 

 

10.77 

 

0 

 

1.01 

 

4.375 

 

2.356 

 

0.523 

 

3.849 

 

2.122 

 

0.315 

 

3.723 

 

1.998 

 

300 

 

0 

 

7.18 

 

0 

 

1.178 

 

3.309 

 

1.177 

 

1.061 

 

2.919 

 

1.061 

 

0.999 

 

2.815 

 

0.999 

 

450 

 

0 

 

3.59 

 

0 

 

1.346 

 

2.243 

 

0 

 

1.599 

 

1.990 

 

0 

 

1.683 

 

1.907 

 

0 

 

600 

 

0 

 

0 

 

0 

 

1.514 

 

1.178 

 

-1.17 

 

2.138 

 

1.061 

 

-1.06 

 

2.366 

 

0.999 

 

-0.99 

 

900 

 

0 

 

-3.59 

 

0 

 

1.683 

 

0.112 

 

-2.36 

 

2.676 

 

0.131 

 

-2.12 

 

3.050 

 

0.091 

 

-1.99 

 

 

For displacement calculations, Assuming 𝜈 (Poisson ratio) = 0.2; E (Young’s modulus) = 

1800MPa.  
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Table 5.5 Displacement values 

            

            

    

    

    

    

    

    

    

    

    

    

    

    

    

     

 

5.2.2 Bray (1967) Solutions  
 

Eqs. (11) and (12) are used for stress calculation. 2 cases have been considered to identify the 

differences in the results. Case (i), where the adjacent soil mass have been considered as soft 

clay. In Case (b), medium has been considered as weak rock (having Uniaxial Compressive 

strength < 50 kPa (Záruba and Mencl (1974)). Even though, within the scope of this study , 

we are to consider only tunnel situated in rock mass, it is in the interest to determine the 

differences among the results provided by Bray(1967) solutions in case of soil as well as 

rock. The property of soil/rock mass is adopted from the GEOL manual which states the 

general properties of materials, soil and rock properties.  

 

Case (i) : Soft clay as surrounding soil mass 

Adopt ϕ = 200, c = cohesive strength = 48 kPa 

Using Eqs. {(3.16 - 3.19)} and substituting in Eqs. {(3.14), (3.15)} 

We get 𝜎r = 115.25 MPa ; 𝜎θ = 56.50 MPa 

 

Case (ii) : Weak rock as surrounding rock mass ϕ = 300 

Using Eqs. {(3.16 - 3.19)} and substituting in Eqs. {(3.14), (3.15)} 

We get 𝜎r = –132.64 MPa; 𝜎θ = –44.21 MPa 

 

Bray’s Solutions has a number of limitations in determination of stresses around a circular 

tunnel. The solutions provided by Bray are purely a function of shear strength parameters of 

3cm tunnel 5cm tunnel 

θ t w t w 

 

00 

 

-80.06 

 

0 

 

-172.32 

 

0 

 

300 

 

0 

 

138.675 

 

0 

 

298.466 

 

450 

 

80.06 

 

160.128 

 

172.32 

 

344.64 

 

600 

 

160.13 

 

138.675 

 

344.64 

 

298.467 

 

900 

 

240.192 

 

0 

 

516.96 

 

0 
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the soil mass (c, ϕ) and radius of tunnel only (r). Hence, it considers the soil mass present in 

the nearby vicinity of the tunnel as the prime load imposing element which induces the 

stresses and does not take into account the change in stress as the radial distance from the 

tunnel surface varies. Also, solution for shear stress was not provided. On the other hand, in 

case the tunnel is located at soil mass, it provides a clear demarcation of the extent to which 

plastic zone exits and also gives formulae to calculate the radius of plastic zone.    

 

5.2.3 Pender (1980) Solution  
 

Using Eqs. {(3.21), (3.22), (3.23)} for stress calculation and Eqs. {(3.24), (3.25)} for 

deformation calculation. 

 

Table 5.6 Stress values for 3cm model 

 

 

r/a 1 2 3 4 

θ p q r p q r p q r p q r 

 

00 

 

0 

 

5.56 

 

0 

 

0.80 

 

0.60 

 

0 

 

0.405 

 

0.2 

 

0 

 

0.244 

 

0.103 

 

0 

 

300 

 

-0.7 

 

3.5 

 

-1.2 

 

0.22 

 

0.47 

 

0.376 

 

0.126 

 

0.176 

 

0.219 

 

0.078 

 

0.095 

 

0.136 

 

450 

 

-1.4 

 

1.39 

 

-1.4 

 

-0.35 

 

0.34 

 

0.434 

 

-0.15 

 

0.151 

 

0.253 

 

-0.09 

 

0.087 

 

0.157 

 

600 

 

-2.0 

 

-0.7 

 

-1.2 

 

-0.91 

 

0.21 

 

0.376 

 

-0.43 

 

0.126 

 

0.219 

 

-0.25 

 

0.078 

 

0.136 

 

900 

 

-2.8 

 

-2.8 

 

0 

 

-1.48 

 

0.08 

 

0 

 

-0.70 

 

0.102 

 

0 

 

-0.42 

 

0.071 

 

0 

 

 

Table 5.7 Stress values for 5cm model 

 

 

r/a 1 2 3 4 

θ p q r p q r p q r p q r 

 

00 

 

0 

 

7.18 

 

0 

 

1 

 

0.785 

 

0 

 

0.522 

 

0.259 

 

0 

 

0.315 

 

0.133 

 

0 

 

300 

 

-0.9 

 

4.50 

 

-1.6 

 

0.28 

 

0.617 

 

0.486 

 

0.164 

 

0.227 

 

0.283 

 

0.101 

 

0.122 

 

0.17 

 

450 

 

-1.8 

 

1.80 

 

-1.8 

 

-0.5 

 

0.448 

 

0.561 

 

-0.20 

 

0.195 

 

0.327 

 

-0.11 

 

0.112 

 

0.20 

 

600 

 

-2.7 

 

-0.9 

 

-1.6 

 

-1.2 

 

0.280 

 

0.486 

 

-0.55 

 

0.164 

 

0.283 

 

-0.33 

 

0.102 

 

0.17 

 

900 

 

-3.6 

 

-3.6 

 

0 

 

-1.9 

 

0.112 

 

0 

 

-0.91 

 

0.132 

 

0 

 

-0.54 

 

0.091 

 

0 
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Table 5.8 Displacement values 

 

 

 

 

 

 

 

 

 

 

The analytical solutions provided by Bray (1967) does not provide significant information 

about the point of application of the determined stresses but only gives a general idea of the 

nature of stresses. In other words, the stresses calculated using Bray (1967) solutions are 

independent of θ which is the angle taken anticlockwise from the positive abscissa. The Bray 

(1967) solution does not consider the effect of cover depth. It is applicable to weak soil mass. 

If we use the solutions for stress determination in case of circular tunnel situated in strong 

rock whose cohesion and angle of friction is known, the results are not satisfactory. Bray 

(1967) did not provide any solution to determine the displacements on the tunnel periphery. 

The solutions set provided by Bray (1967) cannot be compared with that of Kirsch (1898) 

and Pender (1980) due to above stated limitations. Hence the solutions provided in Bray 

(1967) are inferior when compared with Kirsch (1898) or Pender (1980). 

 

5.3 Graphical Comparison of Analytical Results  
 

 

5.3.1 Stress comparison 

 

As per the Tables {(5.3), (5.4)} and Tables {(5.6), (5.7)} the stress coordinates were 

determined and it is mapped graphically by plotting the stresses on the quadrant I of the 

tunnel section.   

The color codes used for stresses are as follows: 

𝜎𝑟  –                             𝜎θ –           𝜏rθ – 

 

3cm tunnel 5cm tunnel 

θ t w t w 

 

00 

 

-60.05 

 

0 

 

-129.24 

 

0 

 

300 

 

-5 

 

95.34 

 

-10.77 

 

205.196 

 

450 

 

50.04 

 

110.88 

 

107.70 

 

236.94 

 

600 

 

105.084 

 

95.34 

 

226.17 

 

205.196 

 

900 

 

160.128 

 

0 

 

344.64 

 

0 
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Note: The colour codes used in both the Cases are same. The scale considered for Fig.4 and 

Fig.5 are 1:1.  

    

Fig. 5.1 (a) 5cm Tunnel (Table 5.4)   (b) 5cm Tunnel (Table 5.7) 

         

Fig. 5.2 (a) 3cm Tunnel (Table 5.3)   (b) 3cm Tunnel (Table 5.6) 

 

The stresses determined by Eqs. {(3.4), (3.5), (3.6)}} and Eqs. {(3.21), (3.22), (3.23)} have 

higher magnitude as the size of tunnel diameter increases. This is due to the fact that the 

equations are in direct proportion to [ 
𝑎

𝑟
 ] where ‘a’ is the radius of the tunnel. Radial stress 

and Shear stress are absent at r = a i.e. at the periphery irrespective of size of the tunnel.   
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5.3.2 Deformation Comparison 

 

The color codes in both the Cases are same. The scale considered for Fig.11 and Fig.12 is 

1:1. Color code: u -   v -  

            

Fig. 5.3 (a) 5cm Tunnel (Table 5.5)   (b) 5cm Tunnel (Table 5.8) 

    

Fig. 5.4 (a) 3cm Tunnel (Table 5.5)   (b) 3cm Tunnel (Table 5.8) 

 

In Kirsch(1898) solutions, radial and tangential displacements increase with distance from the 

opening. Displacements would be largest where the stresses are applied. v would be greatest 

at the surface, although u would still be greatest at the tunnel periphery. 

 

Deformation of a tunnel may result in settlement of the ground surface. Generally, two basic 

deformation mechanisms occur when we discuss about deformation of a tunnel. Firstly, a 

uniform radial displacement representing the ground loss that may occur during the 

construction. And secondly, ovalization of tunnel. Hence total deformation is the sum of both 

cases, but within the scope of this study, the phenomenon of surface settlements is not taken 

into account. But, within the limits of this study, only peripheral displacements are 

accounted. 
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CHAPTER 6 

 

 

6.1 Analytical result curves 

 
Graphs depicting the variation of radial, circumferential and shear stresses with time for Eqs. 

{(3.4), (3.5), (3.6)} are as follows: 

 

 

For 3cm tunnel model, 

 

(a) 

 

(b) 

 

(c) 

Fig.6.1 (a)  𝜎𝑟 v/s t (sec) (b) 𝜎𝜃  v/s t (sec) 

(c) 𝝉𝒓𝜃 v/s t (sec) 

For 5cm tunnel model, 

 

(a) 

 

(b) 

 

(c) 

Fig.6.2 (a)  𝜎𝑟 v/s t (sec) (b) 𝜎𝜃  v/s t (sec) 

(c) 𝝉𝒓𝜃 v/s t (sec) 
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Graphs depicting the variation of radial, circumferential and shear stresses with time for Eqs. 

{(3.21), (3.22), (3.23)} are as follows: 

For 3cm Tunnel model, 

 

 
(a) 

 

 
(b) 

 

 
 

(c) 

 

 

Fig.6.3 (a)  𝜎𝑟 v/s t(sec) (b) 𝜎𝜃  v/s  t(sec) 

(c) 𝝉𝒓𝜃 v/s t (sec) 

 

 

 

 

 

For 5cm Tunnel model, 

 

 
 

(a) 

 

 
(b) 

 

 
(c) 

 

 

Fig. 6.4 (a)  𝜎𝑟 v/s t(sec) (b) 𝜎𝜃  v/s  t(sec) 

(c) 𝝉𝒓𝜃 v/s t (sec) 
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There is an increase of 29.13% in circumferential stress at the periphery. The maximum stress 

magnitude is observed at the abscissa (00) for all stress entities irrespective of size of the 

tunnel. Maximum increase in radial stress is observed as 29.13% where as 29.11% increase is 

observed in circumferential stress and 29.15% in shear stress across all radial distances till 

influence zone. Hence, it can be aptly said that there is an increase in stress magnitude by 

29% for an increase in the tunnel radius by 66.67%. 

 

6.2 Stress v/s Strain  

 

Stress v/s Strain curves are obtained for 3.1.1 (denoted by Kirsch(1898)) and 3.1.3 (denoted 

by Pender(1980)). Graphs indicating the interdependency of stress at the point of application 

of load with strain experienced at the point which have been obtained experimentally are as 

follows:  

 

Fig.6.5 (a) Stress v/s Strain trend for 3cm tunnel    (b) Stress v/s Strain trend for 5cm tunnel 

 

Fig.6.6 Percentage variation in Strain with experimental readings 
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Fig.7.5 (a) shows the trend for stress v/s strain for 3cm tunnel model. It can be seen that for 

the experimental curve, the stress increases faster than the strain developed (as the slope is 

steepest) as compared to Kirsch(1898) solutions and Pender(1980) solution curves. Also, 

Kirsch(1898) solutions curve is steeper as compared to Pender(1980) solution, hence it can be 

concluded that for tunnels of smaller diameter, Kirsch(1898) solutions is more realistic than 

Pender(1980) solution. Also, analytical curves are follows linear model which is due to the 

fact that solutions provided in Kirsch(1898) solutions and Pender(1980) solutions for stresses 

are linearly varying with strain. 

 

Fig. 7.5 (b) shows the trend for stress v/s strain for 5cm tunnel model. It can be seen that for 

the experimental curve, the curve is parabolic in nature whereas, both the analytical curves 

(Kirsch(1898) and Pender(1980) solution) are linear model. This is as per the fact that as 

these curves are obtained for the peripheral stress system, the terms in Eqs. {(3.4), (3.5), 

(3.6)} and Eqs. {(3.21), (3.22), (3.23)} reduces to linear function and depends only on the 

stress applied at the distant boundary Sy and θ and are independent of non-linear higher order 

terms like [
𝑎

𝑟
]2,  [

𝑎

𝑟
]3 etc. Another important observation is that, the Kirsch(1898) curves is 

flatter as compared to Pender(1980). Hence, it can be concluded that, for tunnels of larger 

diameter, Pender(1980) provides more realistic results   

 

In Pender(1980)  solutions, as the size of the tunnel increases, the same trend of increase in 

the stress magnitude is observed as in Kirsch(1898) solutions. However, the radial and shear 

stress are not absent at the tunnel periphery as it was in Kirsch(1898) solution. Increase of 

29% in radial stress, 29.13% in circumferential stress and 29.50% in case of shear stress is 

observed as the tunnel radius increases by 66.67%.  

 

Comparing Kirsch(1898) solution and Pender(1980) solution, it can be seen that as we move 

away from the tunnel periphery, the stress magnitudes decrease which is trivial as the 

influence of loads decreases and ultimately vanishes after r = 4a. However, the rate of 

decrease in the magnitude of stresses is greater in Pender(1980) solution as opposed to 

Kirsch(1898) solution. 
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6.3 Deformation Profile  

 

The deformation is measured indirectly with the help of Strain Gauges. 3 foil type strain 

gauges (NIE Phenolic Gate Resistance - 350 ± 0.3 Ω, Gauge factor = 2.11 ± 1%, Temperature 

Compensation as 11 × 10-6 / 0C, Gauge length = 3.175mm) are placed at a distance of  
𝐿

4
 , 

𝐿

2
 

and 
3𝐿

4
 from the face of the tunnel. Load and strain gauge readings were noted with a time 

interval of 5s until failure of the model. Mean Strain of the 3 readings was consider for 

further analysis. The deformed profile as obtained from Table {5.5} and Table {5.8} are as 

follows: 

 

Fig.6.7                  (a) Eu v/s θ        (b) Ev v/s θ                       

 

Above curves show the variation of Eu and Ev with θ (θ varies from 00 to 900). 

 

The displacement at the point of loading calculated as per Kirsch(1898) solution and 

Pender(1980) solution differ by 50% (maximum) and 33.33% (minimum) in case of u (radial 

displacement) and 45.45% (both minimum and maximum) in case of v (tangential 

displacement). From Fig. 7.5, it can be inferred that lesser variation in Strain values are 

observed for Kirsch(1898) solution than Pender(1980) solution. Hence Kirsch(1898) solution 

displacement results are superior to Pender(1980) solution. Also, variation in Strain value is 

lower when the size of the tunnel is smaller. Therefore, it can be stated that as the size of the 

tunnel increases, the degree of accuracy decreases to a large extent. This can be seen from 

Fig. 7.6 wherein for 3cm tunnel, the percentage variation varies from 67% (Kirsch(1898) 

solutions) to 76% (Pender’s solution) and percentage variation varies from 94% 

(Kirsch(1898) solutions) to 91% (Pender(1980) solution). Hence, for bigger tunnels, 

Kirsch(1898) solutions shows larger deviation from the experimental data than Pender’s 

solution.   
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CHAPTER 7 

 

 

7.1 Conclusion 
 

The major results obtained from the present study can be emphasized as follows: 

 

1) Kirsch(1898) displacement solutions are not relevant for the case of tunnel excavation 

but in cases where stresses in the ground surface change after the tunnel excavation 

has been completed.  

 

2) Further investigations are required to establish the changes of surface movement 

effects in the stresses computed analytically in Kirsch(1898) or Pender(1980) 

solution. 

 

3) Bray(1967) Solutions are relevant for tunnels located in soft soil and it greatly 

overestimates the magnitudes of radial and circumferential stress in case of rock mass.  

 

4) Both solutions (Kirsch(1898) and Pender(1980)) have limitations and hence are to be 

used only for primary estimation of stresses and displacements.  

 

5) For tunnels of smaller diameter, Kirsch’s solution is more preferable and for larger 

diameter tunnels, Pender’s solution is more preferable. 
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