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ABSTRACT

This work aims to classify human stress levels for rest v/s mental arithmetic task. In this

work, a publicly available EEG During Mental Arithmetic Tasks dataset is used, compris-

ing of EEG data of 36 participants. A 23-channel EEG device was used for collecting the

data while the participants were solving arithmetic problems. This induces a short-time

stress which is captured by the EEG device. For efficient classification of stress levels

pre-processing is done by applying filters and Independent Component Analysis.

This study employs the Hilbert Huang Transform for determining the Time-Frequency as-

pect of feature extraction which was not considered in prior studies utilising this dataset.

Features namely variance, mean frequency, maximum frequency and sample entropy are

computed on the dataset. We also apply the feature selection in order to determine a

subset of features which contributes most to the classification accuracy of this proposed

method. SVM and K-NN are used as classifiers. This work achieves a maximum accuracy

of 91.6% using SVM classifier trained on the complete set of features and 100% accuracy

when trained on subset of features. It is observed that accuracy of the model is signifi-

cantly improved by using the feature selection method. This work highlights the efficiency

of time-frequency domain features for mental workload classification.
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Chapter 1

INTRODUCTION

1.1 STRESS

Now a days, people live at a frantic pace and in a nearly constant state of competi-

tion. Whether it is office, school, colleges or any situation people, constantly try to prove

themselves better than others. At this fever pitch, stress is a natural response to the

information being received by the body as potentially harmful or problematic.

Over the evolution of humans, stress is a response when a person deals with difficult

situations. Whenever a stressful condition arises, neurons present in our head activate

the pitutary gland, which in-turn produces hormones that release corticotropin, which

is circulated in the entire body via the sympathetic nervous system. This triggers the

adrenal gland which releases adrenaline and cortisol. Adrenaline raises the respiratory

rate, and pulse and prepare our muscles to react to perceived danger. Whereas cortisol

increases the release of dopamine and blood glucose, which allow us to face challenges.

When stress is in limit, it may prove to be a motivator to help people survive in hostile

surroundings and face challenges. As it is said, ”Excess of anything is bad”, in similar

way, when stress increases and becomes a part of our daily routine it is extremely harmful

for the body. Stress has degenerative effect over time. A sustained state of emergency

affects the neurons associated with memory, as well as inhibiting the release of certain

hormones, eventually leading to depression. Some of the secondary affects of stress in-

clude insomnia, irritability, anxiety, and high blood pressure. It also leads to premature
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aging. It affects digestive system, skin etc. Hence, detecting stress at early stages can be

beneficial. Practicing mind fullness, taking help of psychiatrist can reduce stress amounts

but, sometimes people are unaware that they are living in a continuous stress state.

In order to identify stress, questionnaires such as Perceived Stress Scale (PSS) [1],

NASA Task Load Index (NASA-TLX) [2] were used in some studies [3]. It was seen that

these questionnaires are not a reliable measure to be used for stress level predictions,

as people don’t have complete knowledge about their mental health and it may lead to

inaccurate predictions. Another method to identify stress levels without human inter-

vention is by using wearable devices which are portable and measure accurate readings

which are then processed to predict stress levels. Some of these wearable devices include

Electroencephalogram (EEG), Electrocardiogram (ECG), Electromyogram (EMG), and

Electrodermal Activity (EDA). Apart from these eye blink, respiration rate, pulse, pupil

size can also be used for stress prediction.

In real time, stress can be induced by mental arithmetic tasks like complex mathemat-

ical problems [4], Stroop color test [5], Montreal Imaging Stress Test [6], conducting

interviews, impromptu speeches, etc.; thereby creating a situation where a person will

definitely experience stress. During these activities the participant wears the device so

that it can capture the readings while the subject is under stress. Then the captured data

is processed in order to make some meaningful conclusions.

This study focuses on using EEG Signals as a way to measure stress. The following

sections of this chapter discuss about the human brain, different areas of brain, EEG,

different EEG bands, and application of EEG in other domains.

2



1.2 BRAIN

Human brain is a three-pound organ which controls the human body. It interprets signals

coming from the outside world, thoughts and gives instruction to the other body parts.

It controls human emotions, decision making ability, intelligence, creativity and memory.

Brain is divided into two hemisphere left and right each governing separate functions.

Left brain controls speech, arithmetic ability, writing, etc. whereas right brain controls

spatial ability, creativity and so many other functions. There are different lobes in human

brain each with distinct ability to control different functions. The different brain regions

are described below and is shown in Figure 1.1:

• Occipital Cortex: Responsible for processing of visual information (color,light).

• Parietal Cortex: Interprets signal from vision, hearing, and motor. Interprets lan-

guage and words.

• Temporal Cortex: Responsible for language processing.

• Frontal Cortex: Responsible for control and monitoring our behavior, emotions,

judgement, problem solving skills, and concentration.

Figure 1.1: Human brain lobes

3



1.3 ELECTROENCEPHALOGRAM (EEG)

EEG represent the electrical activity of the brain. Whenever, a person is subjected to a

stimulus, in response to that the neurons present in the brain fire in sync and this activity

is recorded by the EEG device in terms of voltage or current. EEG devices like Emotiv

Epoc, Neurosky Mindwave, EEG cap and many more, tracks and record the brain waves.

The entire process is non-invasive and safe. In order to capture these waves, electrodes are

placed on the human skull in accordance with the 10-20 International system [7]. These

electrodes capture the variation of brain waves. Electrodes can be categorized as dry or

wet electrodes depending on the presence of gel solution. Number of electrodes ranges

from 1 to even 256 electrodes placed on human skull.

The placement of electrodes on skull is depicted in Figure 1.2 where the electrodes on the

right side of brain are numbered even and the electrodes on the left side of human skull

are represented using odd numbers. Also, different letters stands for different lobes of

human brain such as ‘F’ stands for frontal region, ‘O’ for occipital, ‘P’ for parietal, ‘T’ for

temporal, ‘C’ for central region of the brain. The data captured using the EEG devices is

then processed to detect brain abnormalities which may be a sign of brain disorders like

epilepsy, Alzheimer’s. These waves are able to determine the sleep stages, attention and

stress levels of individuals.

Figure 1.2: Electrode placement according to 10-20 International System
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The amplitude of EEG signal is very small in the range of −100µV to +100µV .

EEG signals are divided into various sub-signals depending on the frequency range. The

different bands and activities associated with them are as follows:

• Delta band (0-4 Hz) : Associated with Deepest level of relaxation, self healing and

Deep Sleep

• Theta band (4-7 Hz) : Associated with feeling Deep and Raw Emotions, light sleep

or Rapid Eye Movement (REM) sleep.

• Alpha band (8-15 Hz) : Associated with calmness and meditation when eyes are

closed, creativity and learning.

• Beta band (16-31 Hz): Associated with conscious state of mind, when a person is

in deep thought, alertness, focus, concentration.

• Gamma band (32-50 Hz): Associated with higher processing thoughts and when a

person tries to combine two different senses together.

EEG has several advantages over other conventional techniques such as:

• Non-invasive

• High temporal resolution

• EEG devices are portable, less bulky and are more frequently used as compared to

Functional Magnetic Resonance Imaging (fMRI), Positron Emission Tomography

(PET), Magneto-encephalography (MEG), etc.

• EEG does not aggravate claustrophobia, unlike fMRI, PET, MRS.

• Hardware cost is significantly low.

• EEG is relatively tolerant to subject movement.
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1.4 APPLICATION OF EEG SIGNALS

EEG is used in many research fields like sleep study, emotion recognition, stress detection,

epilepsy, Alzheimer’s and many more because of its non-invasive nature, availability of

portable and wearable devices like Emotiv Epoc, NeuroSky Mindwave , cost effectiveness,

and good software support to view, process, store, and analyse the EEG signals. Some of

the applications of EEG signals in different research areas are described below:

• Emotion Recognition: Recent studies are focusing on classifying human emotions

using brain wave. EEG headsets are used for data acquisition. After data collection

pre-processing and feature extraction are performed on the EEG data, and then

different classifiers are used for determining the accuracy of valance and arousal.

• Sleep stage classification: There are two sleep stages Non-Rapid Eye Movement sleep

which ranges from wake fullness to sleep stage and Rapid Eye Movement (REM)

sleep when the person is in dream state. Since, EEG bands like delta, theta , alpha,

beta reflects the sleep stages they are used for classification. Feature extraction and

classification is done in order to classify sleep stages.

• Gaming using EEG device: Games to enhance focus and attentive power are paving

way for future gaming prospects. Wearing EEG device while playing games can

help determine the focus and alertness of participants. Also, wearing EEG devices

while paying games paves way for moving car, objects through power of thoughts.

We just have to create a thought in our mind about moving objects and it actually

moves.
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1.5 MOTIVATION

It is seen that people are more focused on how to make themselves look better by spending

so many hours in gym, shopping malls and other similar activities, but they are very little

concerned about their mental health and as a result when body shows sign in individuals

experiencing stress, anxiety, it generally goes un-noticed. This lack of information and

concern about mental health leads to depression and in worst cases it leads to death.

With so many suicides happening because of severe stress, anxiety, and depression it be-

comes need of the hour that individual’s should be aware about their mental health and

if not some system should be designed which should be able to predict the stress levels of

individuals.

The news that we see on TV, time spent on social networking sites like Instagram, Face-

book, the content available on internet and human thoughts specifically negative ones,

can lead to stress and even depression. If by any means, one can assess the stress level

of a person on daily basis while they are performing tasks, or while watching videos or

while reading content posted on social networking sites and other browsers, stress level

of individuals can be determined. And hence, the content can be customized or doctor’s

could be notified in case of emergency situations to help individuals during tough times

and situations.

Also, if a person becomes anxious or stressed after watching a particular content, then it

can be determined, and related videos or information content can be removed from the

person’s browser window.

Real-Time stress analysis, can help the psychologist to treat individuals having stress and

anxiety issues much more efficiently. Stress analysis can be done either by using speech or

facial expression or by using physiological signals like EEG, ECG, etc. The latter method

is preferred as there is minimal human intervention, presence of portable and accurate

devices to capture and process the data.
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1.6 PROBLEM STATEMENT

In this fast paced life each and every individual at some point of time experiences stress.

Experiencing too much stress can lead to health issues and it even leads to depression.

Keeping this issue in mind, a methodology to predict stress levels of individuals is pre-

sented in this work.

The main objective of this research work is to classify human stress efficiently for rest v/s

mental arithmetic tasks. Mental arithmetic task is used to induce acute stress in partici-

pants and the brain signals are captured using an EEG device. For efficient classification

of stress, various factors play an important role like, pre-processing techniques employed

for noise and artefacts removal, features extracted from the data set and lastly, the clas-

sifiers used for the classification. This work employs the EEG During mental arithmetic

tasks dataset [8]. Feature Selection techniques are also applied in order to select a subset

of features which play a significant role in stress level classification.

The rest of the report comprises of eight major chapters. Chapter 2 introduces the

recent and relevant literature that has motivated this study. Chapter 3 focuses on the

various pre-processing and signal processing techniques that are commonly applied for

EEG signal processing. Chapter 4 describes the different feature domains and features

that can be computed in each domain. This is followed by the feature selection techniques

discussed in chapter 5, that can be applied in order to determine the prominent set of

features which play a major role in determining the classification accuracy. Chapter 6

briefly describes the machine learning algorithms, followed by chapter 7 which elaborates

the methodology adopted in this study. We report the results obtained by our proposed

method in chapter 8, comparing our work with other authors. Finally we conclude our

findings and share insights for future work in chapter 9.
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Chapter 2

RELATED WORK

In literature, different techniques are available for stress measurement namely subjective

analysis and objective analysis. In subjective analysis questionnaire or interviews con-

ducted by experts are used to predict the stress levels of participants. Perceived Stress

Scale (PSS) [1], NASA-TLX [2], Stress response inventory (SRI) [9] are few sample ques-

tionnaires that are available for stress prediction. Objectively stress can be measured

using physical as well physiological signals. Physical changes can occur in human beings

while the are experiencing stress in terms of facial expression may change, respiration rate,

speech, pupil size, eye blink rate etc. Physiological signals like Electroencephalography

(EEG), Electrocardiography (ECG), Electrodermal Activity (EDA), Electromyography

(EMG) can also be used for stress prediction. In [10] author used both questionnaire and

EEG data for stress level classification.

Based upon the duration of exposure to stimuli, stress can be Perceived (long-term) and

Acute (short-term). Perceived stress occurs when a person is under prolonged stress con-

ditions like a demoting career, or a failed marriage, poverty, and Post Traumatic Stress

Disorder (PTSD). In [11] author classified the perceived mental stress using the 4-channel

EEG device. They considered two scenarios, pre-activity phase and post-activity phase.

The subjects have to give presentation in front of other people and their EEG signals were

captured before presentation, during and after the presentation. Accuracy of 92.85% and

64.28% was achieved using SVM, Naive Bayes and MLP. On the hand, acute stress is

the intense, overwhelming and unpleasant response when a person experiences momen-

tary stress like a lapse at work, or failing an exam etc. Since Acute stress envelopes
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activities like mental arithmetic tasks, mock interviews, public speaking, etc., it can be

measured easily. Several studies measuring acute stress are described below. Fan et

al. [12] proposed a study to detect acute stress by conducting cold presser challenge and

lukewarm hand immersion challenge on 32 participants using EEG device. EEG signals

were recorded for pre, press and post states. Recurrence Quantification Analysis (RQA)

measures were computed as features and classification was done using SVM, and Least

Absolute Shrinkage and Selection Operator (LASSO).

Efficient classification of stress using EEG signals depends on various factors such

as artefact removal technique employed to remove noise present in the data, features

extracted from clean data and machine learning models employed for classification of

stress into different states.

Artefacts like power line noise, eye movements, muscular movements, faulty elec-

trodes and many more contaminate the EEG signals when recording the data during a

task. It is of high importance that the data should be clean for accurate prediction of

stress states. Thus, researchers implement various techniques like filtering, thresholding,

Discrete Wavelet Transform (DWT), Independent Component Analysis (ICA) for artefact

removal. Once the EEG data is clean, we can investigate different features and classifiers

for effective stress prediction. We describe some of the prominent researches in the field

of stress prediction using EEG signals in this section.

Hafeez et al. [13] used a 50 Hz notch filter for removal of power line noise, and

applied ICA, and filtering techniques for removal of ocular and muscular movement noise.

Utilising clean EEG data; they evaluate the Power Spectral Density of Alpha, Beta, and

Theta bands for 14 subjects. The study concludes with a remark of 85% of students

experiencing stress before the examination.

Sharma and Chopra [14] employed Instantaneous Frequency of various Intrinsic Mode

Functions (IMFs) obtained by applying Hilbert Huang Transform (HHT) as a feature.

The data was cleaned using wavelet decomposition and a joint combination of 0.75 Hz

high-pass filter and 45Hz FIR filter. This work reports a maximum accuracy of 92.86%

using the SVM classifier.

Blanco et al. [15] propose a real-time stress prediction system using the Emotiv
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Epoc Headset on 18 subjects. The raw EEG data obtained from headset was cleaned

by subtracting the least-squares line of best fit, and then the data was passed through a

bandpass filter network of Chebyshev type II filters. Band Power and Root Mean Square

(RMS) value of signal were extracted as a feature from the artefact free data, and Logistic

Regression (LR), QDA and K-NN were used for prediction achieving a maximum accuracy

of 78.70%.

Hasan and Kim [16] employed the publically available DEAP dataset comprising

of 32 subjects for stress prediction. The data was averaged out to standard reference,

and bandpass filter of range 4-45 Hz was employed for data cleaning. Various time-

domain features like RMS, Peak-to-Peak value, Kurtosis, Skewness, Hjorth parameters like

Mobility and Complexity along with time-frequency domain features like Power Spectral

Density (PSD), Energy and Wavelet sum of the entropy of different EEG bands were

computed. This work achieves a classification accuracy of 73.38% for KNN classifier.

Nagar and Sethia [10] proposed a real-time stress prediction system, using a single

electrode Neurosky Mindwave device and collected data of 63 students. Thresholding

technique was employed to remove EEG data having an amplitude above 100 uV, and

frequency components above 50Hz were removed using a suitable low-pass filter. The

band power ratio of different EEG bands, namely Alpha, Beta, Delta, and Theta, was

computed as features. PSS-14 questionnaire response of students along with extracted

features was given as input to the KNN classifier, achieving a maximum accuracy of

74.43%.

Diez et al. [17] employed Empirical Mode Decomposition (EMD) method to extract

the time-frequency domain features. Data of 7 subjects performing five different mental

tasks was collected using a suitable EEG device. Various features were computed namely

variance, root mean square value, complexity, shannon entropy, mean and central fre-

quency. These features were given as input to linear discriminant and neural network

classifiers achieving a maximum accuracy of 91%.

Vanitha and Krishnan [18] extracted time-frequency domain features using Hilbert

Huang Transform (HHT). Data of 6 healthy subjects was collected using the Emotiv

Epoch EEG headset while the subjects were solving mathematical questions in limited

time. NASA-TLX stress scores were also filled by the subjects and are employed for clas-
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sification of stress levels. SVM was used for classification achieving a maximum accuracy

of 89.07%.

Ahammed and Ahmed [19] used the publically available EEG During Mental Arith-

metic Task [8] database for stress prediction during rest and mental task. Multivariate

Multiscale Entropy (MMSE) was used as a feature, and the channel selection was applied

to determine stressed regions of the brain. The SVM classifier was employed achieving

90% accuracy for rest v/s mental stress and 87.5% accuracy for good v/s bad counting.
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Chapter 3

BACKGROUND

Efficient Prediction of Stress depends upon the following factors:

• Pre-Processing Techniques

• Signal Processing Techniques

• Features Extraction

• Classification

In this chapter various Pre-Processing and Signal Processing Techniques used in Stress

Prediction are described.

3.1 PRE-PROCESSING TECHNIQUES

EEG signals get easily contaminated with artefacts due to there sensitive nature, es-

pecially when the sources are not brain. There could be various technical or person’s

own behavioural and physical activity which can cause artefact to occur. The former

may include power lines noise (50/60 Hz) , or because of broken EEG electrodes or leads.

Artifacts can even occur due to placement of excessive gel on electrodes, impedance fluctu-

ation of EEG device or in-terms of electromagnetic noise which can effect EEG equipment.
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Various other reasons could be Person’s own behavioral and physical activities related to

electrical activity generated by heart, blinking and movement of eyes, stretching of mus-

cles or body movement and sweating and so on which could result in artifact generation

in EEG Signals. These artifacts can be inspected manually by expert eyes, but automatic

artifacts detection is encouraged in automated system designs, otherwise artifacts can

corrupt the results. A wide range of artifact removal methods exists and are described as

follows:

3.1.1 Band-Pass Filter:

One of the most common and highly applied technique to remove EEG artifacts is to

pass the signal through a filter and only keeping the signal of frequency range desired.

Generally, a band-pass filter in range 0.5Hz-45 Hz is used and the rest of the frequency

range data is ignored.

3.1.2 Notch Filter:

Power lines noises can be eliminated by applying a 50/60 Hz notch filter. Notch Filter is

designed such that it eliminates a particular frequency component from the signal under

observation. Unlike, Band-pass filter which removes a range of frequencies, notch filters

are highly frequency selective. They are widely used to remove power line noises from the

signals.

3.1.3 Rejection method:

This is a simple method in which the contaminated signal is simply discarded. But it

also results in loss of information. For this method to work, the signal is first divided into

different frequency bands using the various decomposition methods available like wavelet

transform, Short-time Fourier transform, etc. Once, the signal is decomposed into desired

frequency levels, the sub-signals with artifacts can be discarded.

14



3.1.4 Subtraction method:

Every noisy signal can be represented as a combination of original signal and the noisy

signal. Subtraction method, simply subtracts the noisy part from the contaminated signal.

For better results the noisy signal should be modelled as close to the actual noisy signal.

Since, it is difficult to model the noise, available probability density distributions like

Gaussian, Rayleigh, etc. can be employed. Subtraction method is applied for removing

the artifacts produced by eye movement.

3.1.5 Simple amplitude threshold:

This is a relatively simple method in which the threshold value for positive and negative

peaks is set. Data out of this range is considered artifact. The threshold value should be

chosen carefully, so that the actual data without noise is not affected. Any data value

exceeding the set threshold value will be saturated to that particular threshold value. It

is also known as Saturation Method. EEG data lies in range of −100µV to 100µV and

hence, data outside this range can be considered as artefact.

3.1.6 Wavelet Transform (WT):

Wavelet Transform is a method to represent the signal in time-frequency domain. It

has better time-frequency resolution as compared to Fourier Transform and Short Time

Fourier Transform. Wavelet Transform is used in various researches to remove signal

artifacts. In Discrete Wavelet Transform (DWT), the signal is passed through a series of

low pass and high-pass filters and the signal is decomposed into various frequency bands.

After, decomposing the signal, thresholding is applied to remove the signal with artefact

and the artefact free signal is again added to reconstruct the EEG signal.
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3.1.7 Gradient Criterion:

Gradient is a mathematical operator which computes the point-to-point difference of value

of signal with respect to inter-sample time. This technique can be employed to remove

artifacts from the signal.

3.1.8 Joint Probability:

This method employs computing the probability of occurrence of a given value of point

in time in a specific channel and segment relative to global probability of occurrence of

such value.

3.1.9 Independent component analysis (ICA):

ICA performs blind source separation to split components that have statistical difference.

This technique is based on linear decomposition of the signal containing artifacts. The

ICA method is based on assumptions that the time series data recorded on the scalp:

• are spatially stable signals of activities which are not occurring in the part of brain,

and are due to artificial sources.

• the summation of potentials arising from scalp, body, brain is linear at electrodes.

• propagation delay from source to the electrodes is negligible.

The equation describing ICA working is as follows: W.x=U where W is the un-mixing

matrix, x is the EEG signal and U is the source of generation of signal. This un-mixing

matrix W decomposes or linearly un-mixes the multi-channel EEG data into sum of

temporally independent and spatially fixed components. The rows of output, U=Wx ,

are the time courses of activation of the ICA components. The columns of the inverse

matrix, inv(W), give the relative projection strengths of the respective components at

each of the scalp sensors. These scalp weights give the scalp topography of each signal

and provide source location. Some useful Heuristics:
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• Eye movement should project mainly to frontal sites with a low-pass time course.

• Eye blinks should project to the frontal sites and have large activation.

• Temporal muscle activity should project to temporal sites with a spectral peak

above 20Hz.

After determining the artefacts based on the source location, remove the artefacts and

reconstruct the signal. The signal will be free from artefacts.
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3.2 SIGNAL PROCESSING TECHNIQUES

In order to gain more information about the data, we transform the data from one domain

to another. There are several transforms available in literature in order to do so. In this

section we will be focusing on the transforms that convert time domain data to frequency

domain and vice-versa.

3.2.1 Fourier Transform (FT)

Fourier Transform is a mathematical technique that transforms the time domain signal

f(t) into frequency domain signal F (ω) and vice versa.

Although Fourier Transform is easier to implement, we cannot acquire the time and fre-

quency values of the signal simultaneously, i.e., if we are working in the time domain,

there is no information about the frequency domain and vice versa. Also Fourier Trans-

form cannot be used when the signal is non-stationary. Non-stationary signals are those

whose frequency vary with time. Fourier Transform of a signal is represented as:

F (ω) =

∫ ∞
−∞

f(t) exp−jωt dt (3.1)

f(t) =
1

2π

∫ ∞
−∞

F (w) expiωt dω (3.2)

For discrete time signals Discrete Fourier Transform (DFT) is used and is implemented

using the Fast Fourier Transform (FFT) algorithm. FFT is a commonly used technique

to compute spectral analysis of EEG signals.

3.2.2 Short Time Fourier Transform (STFT)

Since the natural signals are all non-stationary signals; hence, they cannot be handled by

Fourier Transform. Short-Time Fourier Transform overcomes this limitation. STFT is a

sequence of Fourier Transform of windowed signals. In STFT, there is a sliding window

whose length is such that each sub-signal in that window is stationary. As a result, the

Fourier Transform can be applied to each sub-signal. STFT of a signal x(t) with window
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function w(t− τ) is represented as :

STFTx(t)(τ, ω) = X(τ, ω) =

∫ ∞
−∞

x(t)ω(t− τ) exp−jωt dt (3.3)

The problem with STFT is that one cannot determine the exact time-frequency rep-

resentation of a signal. This principle is named as the Heisenberg Uncertainty Principle.

One cannot determine what spectral components exist at what time instance. What one

can know is the time intervals in which a certain band of frequencies exist, which is a

resolution problem. In STFT, our window is of finite length. Thus it covers only a portion

of the signal, which causes the frequency resolution to get poorer. We no longer know the

exact frequency components that exist in the signal, we only know a band of frequencies

that exist. If the length of the window in the STFT is selected as infinite, then it behaves

just like Fourier Transform and we will be having perfect frequency resolution but zero

time resolution. Since the signals are non-stationary so in order to apply FT window size

should be finite. Since, the window length of STFT is fixed a prior, there always exist

a trade-off in the time-frequency resolution. This limitation is overcome by the Wavelet

Transform.

3.2.3 Wavelet Transform

Wavelets are functions that have “wave” above and below the x-axis, and have the fol-

lowing properties:

• varying frequency

• are of limited duration

• have an average value of zero

In order to obtain simultaneous time and frequency resolution, the wavelet transform

is used. A wavelet function is characterized by a scaling parameter ’a’ and translation

parameter ’b’. By changing the value of ’a’ mother wavelet is represented at different

scales and by changing the value of ’b’ mother wavelet is translated in the right and left

directions.
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Types of Wavelet Transforms:

Continuous Wavelet Transform:

In this, first of all, a mother wavelet is chosen, then at a particular scale, it is translated

along the entire EEG signal x(t). At each and every time instant the correlation between

mother wavelet and signal x(t) is determined. The same procedure is repeated by changing

the value of the scaling ’a’ parameter.

Xω(a, b) =
1

|a|1/2

∫ ∞
−∞

x(t)φ(
t− b
a

)dt (3.4)

Discrete Wavelet Transform:

The DWT of a signal x(n) is determined by passing the signal through a series of filters

where g(n) is the high-pass filter and h(n) is the low pass filter. At each stage the scale

value and the data points available in the EEG signals are reduced to half. The output is

obtained in terms of detailed and approximation coefficients. As a result, the signal x(n)

is represented in the form of coefficients D1, D2, D3, A3.

Although, wavelet transform has better time-frequency resolution in comparison to STFT

Figure 3.1: Filter method

as the window size is flexible, it still has some limitations. In order to apply the transform

on the signal x(t) one has to fix the basis function φ(t) in advance i.e. one has to select the
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mother wavelet in-advance. Since, the real signals are unpredictable it may happen that

the chosen wavelet may not perform as expected. These transforms are non-adaptive. In

contrast adaptive transforms are the one, which change their parameters according to the

signal. One of the transform belonging to class of adaptive transform is Hilbert Huang

Transform which is discussed in the below section.

3.2.4 Hilbert Huang Transform (HHT)

Hilbert-Huang Transform is a two step method, used for the analysis of non-linear and

non-stationary signals.

• The first step, comprise of evaluating the Empirical Mode Decomposition (EMD)

of the time series data in order to obtain sub-signals which are also represented in

time known as Intrinsic Mode Functions (IMFs).

• The second step, is to compute instantaneous frequency of IMFs by applying the

Hilbert Spectral Analysis (HSA).

• These two steps when combined represent the signal in time-frequency domain.

EMD and HSA which characterize the HHT are discussed below.

Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) separates a signal in several Intrinsic Mode Func-

tions (IMFs). This method is termed empirical because it is an algorithm which has no

strong mathematical proof, in contrast with theoretical decomposition like that based on

the Fourier Transform. So it has some advantages when dealing with complicated real-life

signals, which are often non-stationary. For non-stationary signals, applying a band-pass

filter over a certain frequency range may not be ideal, as it will likely attenuate some

aspects of the signal you want to preserve. In EMD, the data is represented in time-

domain only. IMFs are the fancy names given to the signal components identified by

EMD because they satisfy the following criteria:
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• In the whole data set, the number of extrema and the number of zero-crossings must

either be equal or differ at most by one.

• At any point, the mean value of the envelope defined by the local maxima and the

envelope defined by the local minima is zero.

Resultant IMFs therefore are generally monotonic between their peaks (above 0) and

troughs (below 0). Therefore, the Hilbert transform, which is commonly used to extract

the instantaneous phase and amplitude of a signal, will yield clean results. This strategy of

applying EMD and Hilbert transform to get instantaneous frequency of a non-stationary

function is called the Hilbert-Huang Transform.

Determining EMD of a Signal x(t)

1. Find the local extrema of x(t).

2. Find the maximum envelope e+(t) of x(t) by fitting a natural cubic spline through

the local maxima. Then, repeat this step to find the minimum envelope, e(t), by

using the local minima.

3. Compute an approximation to the local average:

m(t) = (e+ (t) + e(t))/2 (3.5)

4. Find the proto-mode function:

pi(t) = x(t)−m(t) (3.6)

5. Check if pi(t) is an IMF. The properties for a signal to be considered as an IMF are

given below.

• The number of extrema and the number of zero crossings may differ by no

more than one.

• The local average is zero. The thresholds chosen to set this condition are

critical to avoid over or under-training.

• To avoid the extraction of accidental IMFs, the conditions must be accom-

plished in at least two to three consecutive iterations (three in our case).
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6. If pi(t) is not an IMF, repeat the EMD sifting process by setting:

x(t) = pi(t) (3.7)

If pi(t) is an IMF then set:

IMFi(t) = pi(t) (3.8)

EMD generate finite number of Intrinsic Mode Functions (IMFs). IMF are time-

varying single frequency functions. Highest frequency component is captured by first

IMF and as the number of IMFs increase the frequency variation decreases.

Hilbert Spectral Analysis

The second step of HHT is Hilbert transform that produces an orthogonal pair for each

IMF that is phase shifted by 90 degrees. Each IMF set and its orthogonal pair can be

used to estimate the instantaneous variation in magnitude and frequency of the IMF with

respect to time. Thus, HHT is very useful to extract information from nonlinear and

non-stationary time series data such as EEG. Instantaneous Frequency obtained using

Hilbert Transform are represented as give below.

w(t) =
1

2π

dθ(t)

dt
(3.9)

θ(t) = arctan(
Hx(t)

x(t)
) (3.10)

where H[.] is the Hilbert Transform, θ is the phase and x(t) is the IMF.

3.2.5 Comparison of different Transforms

Transform/Features FT WT HHT

Basis a priori a priori adaptive

Representation Energy-Frequency Energy-Time-Frequency Energy-Time-Frequency

Non-linear data No No No

Non-stationary data No Yes Yes

Frequency Global frequency Regional frequency Local frequency
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Chapter 4

FEATURES

Broadly there are three different types of features:

• Time Domain Features

• Frequency Domain Features

• Time-Frequency Domain Features

The main difference lies in the fact that one can directly compute the features if the

time-series EEG data available i.e, in Time Domain, whereas when computing features in

Frequency domain or in Time-Frequency domain one needs to first apply some transform

in order to convert the data from one domain to another and then on the transformed

data features are computed. This chapter describes the different features that can be

calculated on the EEG data for different domains.

4.1 TIME DOMAIN FEATURES

Time Domain features represent the data distribution in terms of a single value. A

distribution consisting of large data points can be represented in terms of it’s mean and

standard deviation which are the two most widely used time domain features. Different

Time domain features computed on EEG signals are described in this section.
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4.1.1 Mean

Mean value of a signal x(t) represents the average value of the signal about which rest of

the data points are distributed. values smaller than mean value are present on the left

side of mean and the values which are larger than mean value are present on the right of

the mean or centre value. In other words, the entire dataset can be distributed around

the mean value of the dataset. Mean value of the signal x(t) is defined as sum of all the

values present in the signal divided by the number of values present in the signal.

µ =
1

t

t∑
i=0

x(i) (4.1)

4.1.2 Standard Deviation

Standard deviation describes the deviation of values from the centre point or the mean

value of the dataset. A low standard deviation means the values are close to the average

value and a high standard deviation means that the values are more spread-out. It is

calculated by first computing the deviation of values present in the signal x(t) from the

mean value µ, squaring the difference of the deviations and then taking the average of it.

σ =

√√√√1

t

t∑
i=0

(x(i)− µ)2 (4.2)

4.1.3 Maximum and Minimum Value

Maximum and minimum values gives information about the peak values that are present

in the dataset.

xmax = max(x(t)) (4.3)

xmin = min(x(t)) (4.4)

Where x(t) represent the series of data.
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4.1.4 Peak to Peak value

Peak to Peak represent the range in which all the values lie. It is also a statistical

parameter which helps to represent the entire EEG data in terms of a single value. Peak

to Peak value can be computed as:

xpp = xmax − xmin (4.5)

4.1.5 Sample Entropy

Entropy is a non-linear feature which quantifies the complexity of time-series data. It is

a measure of uncertainty or the chaos of the system. For an ordered system the value

of entropy is zero. For EEG signals, entropy quantifies the repeatabilty of the waveform

pattern. It also describes the information present in the signal. Entropy computed on

time-series data is known as sample entropy.

For computing entropy, the entire EEG signal is divided into smaller segments using

a window of specific length and then the similarity of particular segment to the rest

of segments is computed. In other words, probability of occurrence of segment under

consideration is computed.

4.1.6 Kurtosis and Skewness

EEG data of normal and healthy people has a normal distribution and such a distribution

can be represented in terms of two statistical parameters that are mean and standard

deviation. In order to well define the distribution two more parameters which are kurtosis

and skewness are computed as they characterize the location and variability of the dataset.

Kurtosis determines that whether the data is high tailed or low tailed, in other words

whether the dataset has out liners or not.

On the other hand, skewness is the measure of asymmetry of data distribution about the

mean value. The data distribution can be right skewed or left skewed. These parameters

are mathematically represented as:

Skewness =

∑N
i=1(xi − µ)3/N

σ3
(4.6)
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kurtosis =

∑N
i=1(xi − µ4/N

σ4
(4.7)

4.1.7 Hjorth Parameters

There are three different Hjorth parameters namely Activity, Mobility, and complexity

which determine the statistical properties of the time series. Activity represents the

variance of signal in time domain or signal power. Mobility is defined as the ratio of

activity of the derivative of the signal to the activity of the signal. It represents the

centre frequency or the proportion of standard deviation of power spectrum. Complexity

is defined as the ratio of Mobility of the derivative of the signal to the mobility of the

signal. It represents the variation of frequency content of a signal. Mathematically, these

parameters are represented as:

Activity = σ2(x(t)) (4.8)

Mobility =
σ(d(x(t))

dt
)

σ(x(t))
(4.9)

Complexity =
Mobility(d(x(t))

dt
)

Mobility(x(t))
(4.10)

4.2 FREQUENCY DOMAIN FEATURES

Unlike Time domain where features can be directly computed on EEG time series, when

working in frequency domain the EEG data is first converted from amplitude versus time

to amplitude versus frequency representation. This can be achieved by using transforms

such as Fourier Transform, cosine transform etc. Once, we have data in frequency domain

various features can be computed which are known as Frequency domain features.

4.2.1 Power Spectral Density

Power spectral density (PSD) represents the signal variations or energy as a function of

frequency. Since EEG Signals are characterized by different waves with varying frequency
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values, PSD plot is used to determine which of the frequency bands are more active in a

particular task or situation. Like, when working on emotion detection using EEG signals

it is observed that theta, and beta values are more profound as compared to rest of the

bands.

PSD is computed using the Welch’s method [20], where the entire data is first divided

into small segments, with a maximum overlap of half the values in the segment. After

that Periodogram is computed on each segment and the average value of periodogram

is calculated. Periodogram is computed using the magnitude square of the Fast Fourier

Transform (FFT) of segment taken one at a time.

4.2.2 Band Power

Band-power represents which particular EEG band is active at a given time. For example,

when considering sleep studies the delta band power is high when the person is asleep but

the same band-power decreases when the person is wide awake. So, band-power plays an

important role in determining which bands are particularly active in specific tasks.

When PSD is computed on a single band for example, PSD of a signal having frequency

range of 0.5Hz-4Hz gives the band-power of that signal. In similar way, band-power for

delta, theta, alpha, beta and gamma bands can be calculated.

4.2.3 Relative Band Power

Yet another important feature in frequency domain is the relative band power. It charac-

terizes the contribution of a particular band with respect to all the bands. For example,

beta/alpha ratio is a well known index of mental arithmetic tasks. Relative band power

is computed as :

Relative Power =
Absolute Power of band

Total Power
(4.11)

4.2.4 Spectral Entropy

Spectral entropy represents the complexity of the system. In order to compute the spectral

entropy, firstly the PSD of entire EEG signal is computed and then PSD of particular
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band is calculated. Then normalized PSD of a band is computed by dividing the PSD of

particular band by PSD of EEG signal. Spectral entropy is represented as:

SE = −
30∑

f=0.5

P (f)log[P (f)] (4.12)

where P(f) is the normalized PSD.

4.2.5 Correlation

Correlation of EEG signal is defined as the distance between pair of electrodes. Since,

each electrode is placed at a different location and captures the signal related to that

particular brain region, correlation can be used as a feature to determine the physical

distance between the pair of electrodes like Fp1 and Fp2.

4.3 TIME-FREQUENCY DOMAIN FEATURES

Recent studies are focusing on the time-frequency aspect of signals as they help in deter-

mining the time at which a particular frequency is present. It is specially helpful in studies

where the response time is to be determined in response to a stimulus. In order to deter-

mine the time-frequency domain features simultaneous information of time-frequency and

amplitude is required which can be obtained using Wavelet Transform (WT) and Hilbert-

Huang Transform (HHT). Both of these transforms decompose the signal into sub-signals,

each sub-signal represents a particular frequency range. Hence, features belonging to time

and frequency domain can be computed on these sub-signal thus, giving rise to the time-

frequency domain features. Some of the time-frequency features are described

4.3.1 Variance

Variance of each and every sub-signal is computed as it represent the deviation from the

mean value. It is one of the most used feature in BCI.
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4.3.2 Shannon Entropy

Entropy is the measure of information stored in the signal. It is computed on the data

that is obtained after applying time-frequency transform.

4.3.3 Lempel Ziv Complexity

Lempel Ziv Complexity (LZC) quantifies the complexity of a signal. It is analyzed in

terms of spatio-temporal patterns. It computes the number of different segments that are

present in a signal.

4.3.4 Average Instantaneous Frequency

One of the widely used feature in time-frequency domain is average instantaneous fre-

quency. Since, the value of frequency is present at all instants of time, average value of

instantaneous frequency is used. It represents the center or mean frequency of the signal.

Average value of instantaneous frequency is calculated for each and every sub-signal.

favg =
1

N

N∑
i=0

x(i) (4.13)

4.3.5 Maximum Instantaneous Frequency

Maximum instantaneous frequency represents the bandwidth of the signal. It is repre-

sented as the maximum value of frequency that is present in the signal.

fmax = max(X(ω)) (4.14)

where X(ω) represents the signal in frequency domain.
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Chapter 5

FEATURE SELECTION

METHODS

It happen sometimes that the number of features become too large and not all features

contribute much to the accuracy of the algorithm. In other words, some of the features

can be removed without affecting the classification accuracy. There are various meth-

ods present which works in this direction and are known as Feature Selection Methods.

These methods reduce the computational cost, curse of dimensionality, and in some cases

improve the classification accuracy of the model. Also a feature set consisting of large

number of irrelevant feature can increase the computational time and may cause over-

fitting. Over-fitting occurs when training accuracy of a model is much higher than the

testing accuracy. Broadly there are three categories of selection methods:

• Filter Based Method: This method uses some metric like correlation between fea-

tures and output to filter out features.

• Wrapper-based: It selects a set of features by considering the problem as a search

problem.

• Embedded: These methods use algorithms which have selection methods embedded

in them.

All these methods can be further divided into sub-types depending on whether the output

variable is continuous or categorical. Some of the widely used feature selection Methods
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are described in this section.

5.1 PEARSON CORRELATION

This method belongs to the class of filter-based method. It determines the correlation

between output or target values and the features extracted from the dataset. After com-

puting correlation top N features are selected.

r =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑

(y − ȳ)2
(5.1)

5.2 CHI-SQUARE

This method is also a filter-based method but, the output variable is categorical. In this

method the metric chi-square is computed in order to select relevant features from the

feature set. Features with the best chi-square value are selected.

χ =
(Observed frequency − Expected frequency)2

Expected frequency
(5.2)

5.3 FISHER CRITERIA

This method selects those features which effectively separate two classes. Fscore is com-

puted and the larger the value of Fscore the better is the feature.

Fscore(d) =
(µi − µj)2

(σi)2 − (σj)2
(5.3)

where µ is the mean value for two class i and j, and σ is the standard deviation corre-

sponding to ’d’ feature. The numerator term represents the between class variance and

the denominator is with-in class variance. The value of Fscore will be high when nu-

merator is large and denominator value is small. Features having high Fscore value are

selected.
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5.4 ANALYSIS OF VARIANCE (ANOVA)

ANOVA is a variance based method. It determines the sensitivity of the features to

distinguish between classes. This test computes two parameters F-statistic which is the

ratio of mean squares and p-statistic which is the Cumulative Distribution Function (CDF)

of F. This test considers a hypothesis,H0 all mean values are equal and H1 not all mean

values are equal. On the basis of the value obtained from F-statistic this hypothesis is

accepted or rejected. Larger the value of F-statistic better is the feature.

5.5 RECURSIVE FEATURE ELIMINATION (RFE)

This method belongs to the class of wrapper-based method. It is a recursive method where

the set of features becomes smaller and smaller with each iteration. At each iteration the

feature set is pruned until the desired number of features are achieved.
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Chapter 6

Machine Learning Algorithms

Machine learning is a concept which allows the machines like computer, phones, etc. to

learn from experiences and examples. Broadly, machine learning algorithms are divided

into three different types namely Supervised, Unsupervised and Reinforcement Learning.

• Supervised Learning is the one where learning is done in presence of a teacher

or mentor who guides and help you get-through. In similar way, while applying

supervised learning the output values are known in advance or in other words the

dataset is labelled so, the machine tries to learn from the training data and once done

it makes prediction on the testing data. Supervised learning is further categorized in

two sub-types Regression and Classification. When the output value is continuous

it is Regression based supervised learning but, when the output is categorical like

yes or no, 0 or 1 it belongs to the class of Classification based supervised learning.

• Unsupervised learning does not take place in presence on teacher, the student learns

from experience. In other words, the dataset is not labelled, the machine tries to

find some patterns or relationship among the data and cluster the data according

to the similarity.

• Reinforcement Learning uses the reward system. The machine learns from its ex-

periences. If the the answer is correct it gets reward and if not it is penalized.

Depending on the number of rewards the machine learns the correct behavior and

trains it self.
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This chapter discusses the various Supervised Learning algorithms.

6.1 SUPPORT VECTOR MACHINE

A Support Vector Classifiers (SVC) is a type of soft margin classifier. The name SVC

comes from the fact that observations or values on the edge and within the soft margin

are known as support vectors. For 2-D data the svc is a line. For 3-D data svc is a plane.

They can also be used for multi-dimensional data. The goal of SVC is to maximize the

margin i.e., the distance of hyper-plane separating the four or more classes from the points

in the respective classes. SVC depends on its support vectors. SVC can handle out-liners

and, since they allow mis-classification, this algorithm can also handle overlapping data.

When the data is inseparable or the data-points are overlapping, then Support Vector

Machines (SVM) are used. It takes the data in low dimension and transforms it into a

high-dimension where the data can be easily separated with the help of SVC. Support

vector machines use the kernel function or the polynomial function to systematically find

the SVC in higher dimensions.

6.1.1 Polynomial Kernel Function

Polynomial kernel is represented as :

(a ∗ b+ r)d (6.1)

Where a and b are the two classes, r is the polynomial coefficient and d is the degree of

polynomial. The value of r and d is determined by cross-validation and once the values

are set the values present in classes a and b are mapped to higher dimension.

6.1.2 Radial Basis Function Kernel

The most commonly used kernel is the Radial Kernel, also known as the Radial Basis

Function (RBF) Kernel which is represented as:

e−γ(a−b)
2

(6.2)
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where a and b refers to two different classes, the value of parameterγ is determined by

cross-validation. RBF finds SVC in infinite dimensions.

Figure 6.1: SVM applied on separable data

Figure 6.2: SVM applied on Inseparable data
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6.2 K-NEAREST NEIGHBOR’S

KNN algorithm is employed when the following conditions are true:

• the data set is small

• the dataset is labeled

• the dataset is noise-free

We start with a dataset with known categories, then cluster the data using well known

clustering techniques like k-means algorithm, principal component analysis. Then a new

test data is applied whose category is not known. The new data point is classified by

looking at the nearest neighbor’s. If k in the nearest neighbor’s is equal to 1, then we only

use the nearest neighbor to define the category. If k=5, then 5 neighbor’s are considered.

We simply pick the category that gets the maximum votes.

Low value of k like k=1 or k=2 can be noisy and subject to the effects of out liners. Large

value for k smooth over things, we don’t want k to be so large that a category with only

a few samples in it will always be out voted by other categories.

6.3 DECISION TREE

Decision Tree is a supervised learning technique. It solves the classification problem

based on labeled examples. It starts from the root node, then depending on the number

of attributes the root node is divided into internal node. Each branch corresponds to

the attribute value. Each leaf node assigns a continuous variable or categorical variable.

This classification method is used when the person needs to know the reason behind the

decision taken. It works well in non-linear data fitting cases. Each node of the tree acts

as a test case for the attribute and each branch or edge that descends from the node

represent the possible answers to the test case. If a dataset has N different attributes

of features then which one should to be used as root node depends on different selection

measures. Some of the commonly used measures are Entropy, Information Gain, Gini

Index, etc.
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6.4 NAIVE BAYES

Naive Bayes is a machine learning algorithm which has probabilistic nature and is based

on the popular Bayes Theorem.

P (y|X) =
P (X|y)P (y)

P (x)
(6.3)

Bayes Theorem is used to determine the probability of occurrence of an event y when X

has occurred. X is called the evidence and y is called as hypothesis. In other words, y is

the class variable and X is the feature.

If there are n number of features Bayes Theorem can be rewritten as:

P (y|x1, x2, ..., xi) =
P (x1|y)P (x2|y)...P (xn)P (y)

P (x1)P (x2)....P (xn)
(6.4)

where y is the class variable and x1, x2, ..., xn are the features. The first assumption is

all the features are independent i.e. one feature does not affect the other and the second

assumption is every feature has equal affect on the output.

The algorithm is easy to implement and works fast but in real time scenarios the features

or predictors are dependent and hence, it degrades the performance of naive bayes.
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Chapter 7

METHODOLOGY

The flow chart below describes the methodology adopted in this work.

7.1 MATERIALS

This study utilises the EEG During Mental Arithmetic Tasks dataset [8] to classify the

stress states. This dataset is publicly available on PhysiobankThere were initially 66

healthy participants comprising of 19 men and 47 women. But the data of 30 out of 66

participants was discarded because of artefacts and poor quality. As a result the data of 36

participants was provided comprising of 9 were men and 27 women. All the participants

were healthy right handed candidates, having no history of any mental illness, verbal and

non-verbal disabilities.

7.1.1 Experiment

The participants were involved in mental arithmetic task where they had to perform

serial subtraction of two numbers. This is a single trial study comprising of the four-digit

minuend and two-digit subtrahend. The questions were communicated verbally. The

entire experiment was split-up into three phases: adaption, rest phase and active phase.

Participants were given 3 mins to adapt to the environment. The resting phase lasted for

about 3 mins where the participants were told to relax and rest with their eyes closed.
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Figure 7.1: Flowchart of the methodology used

Participants were made to perform serial subtraction in 4 mins.

7.1.2 Data Acquisition

The EEG data was recorded using the Neurocom 23-channel system. The placement of

electrodes was done according the 10-20 International System [7]. The sampling frequency

of the device was 500 Hz. Channels belonging to different regions of brain are described

below.

• Symmetrical Anterior Frontal (Fp1, Fp2)

• Frontal (F3, F4, Fz, F7, F8)
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• Central (C3, C4, Cz)

• Parietal (P3, P4, Pz)

• Occiptal (O1, 02)

• Temporal (T3, T4, T5, T6)

7.2 PRE-PROCESSING

Since, raw EEG data consists of artefacts which is basically interference of signals having

source other than brain, they have to be minimized so as to have accurate classification.

The dataset used in this study is pre-processed using a 30 Hz low pass filter in order to

remove the high-frequency noise. Also a notch filter is used to remove the power line

noise. Along with that, ICA was applied to remove the artefacts due to eye blink, muscle

movement.

41



7.3 PLOT OF EEG SIGNAL FOR REST AND AC-

TIVE PHASE

Figure 7.2: EEG data of participant 1 for channel 1 during rest phase

Figure 7.3: EEG data of participant 1 for channel 1 during active phase
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It can be seen from Figure 7.2 and 7.3 that EEG signals differ for the two phases for

the same participant and channel. These signals can vary between participants depending

on the amount of stress induced. This study confines itself for subject independent model.

7.4 FEATURE EXTRACTION

In recent studies, the focus has shifted to time-frequency domain features as they repre-

sent the signal in multiple domain. The information related to both time and frequency

is useful in EEG related studies and hence, this study determines the time-frequency

domain features. For computing the features, Hilbert huang algorithm is used which is

an adaptive algorithm that handles the non-linear and non-stationary data efficiently.

HHT is described in the chapter titled Signal processing methods. For computing the

HHT two different python modules are used namely PyEMD (for computing IMFs) and

Scipy.hilbert (for determining instantaneous frequency). After computing HHT the first

four IMFs are considered as they represent the beta, alpha, theta, and delta bands. The

decomposed signal is shown below in Figure 7.4.

The decomposed signal are also in time domain i.e. amplitude versus time plot. The sig-

nal length remains same as that of the original signal. In order to determine the frequency

values Hilbert Spectral Analysis is done. The combination of these two methods repre-

sents the data in time-frequency domain. The different time-frequency domain features

computed in this study are:

• Average instantaneous frequency

• Maximum instantaneous frequency

• Variance of IMFs

• Sample Entropy of IMFs

In order to compute variance, average and maximum value ’Numpy’ library of python is

used. For determining entropy ’EntroPy’ module is used. These features are explained

in detail in the chapter titled Features. The size of complete feature set is 16 features*20

channels which is 320 features in total.
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Figure 7.4: IMFs obtained from EEG Signal from participant 1 data for channel 1 during

rest phase

7.5 FEATURE SELECTION

Since, the number of features is large and also all features may not contribute in the accu-

racy of the system to classify stress states as rest or active, feature selection techniques are

used. In this study Recursive Feature Elimination using Cross-validation (RFECV) tech-

nique is employed. RFECV is a modified version of Recursive Feature Elimination (RFE)

method. Both the methods are recursive in nature but in RFECV the features selected

are cross-validated a number of times and it provides a refined set of features as compared

to RFE. In order to implement RFECV in python, the sklearn.feature selection is used

and RFECV is imported from this python module.

7.6 CLASSIFIER

In this work, both the complete feature set as well as the features selected after apply-

ing RFECV are given as separate inputs to the classifiers. Supervised machine learn-

ing classifiers namely SVM and K-NN are used in order to classify the stress states as

rest and active. Both the classifiers showcase excellent performance when used for two-

class classification problems, they take care of out-liners and are computationally effec-

tive and easy to implement. The value of K for K-NN is chosen as 5. The dataset is
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labelled. Rest phase is labelled as ’0’ and active phase is labelled as ’1’. The scikit-

learn [21] module of python is used to implement SVM and K-NN. This work uses

sklearn.model selection.StratifiedKFold method available in python to split the data

into training and testing sets. Different values of K fold is used to determine the classifi-

cation accuracy.
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Chapter 8

RESULT

8.1 EXPERIMENTAL RESULTS

In this section, the Accuracy and F1 score are compared for two scenarios:

• When the entire feature set is giving as input to the classifier.

• When subset of features selected by the feature selection technique is given as input

to the classifiers.

The Accuracy and F1 score are represented as:

Accuracy Score =
TP + TN

TP + FP + TN + FN
(8.1)

F1 Score =
2 ∗ Precision ∗Recall
Precision+Recall

=
2 ∗ TP

2 ∗ TP + FP + FN
(8.2)

Here, TP, FP, FN, and TN represent the True Positive, False Positive, False Neg-

ative, and True Negative respectively, are computed from the confusion matrix for the

predictions.
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8.1.1 Accuracy and F1 Score for Complete Feature Set

Results obtained by giving the complete feature set consisting of 320 features as input to

the classifiers namely SVM and K-NN are shown in table below.

Table 8.1: Classification Results for complete Feature Set with K fold value=6

Classifiers Training Testing

Accuracy(%) F1 score(%) Accuracy(%) F1 score(%)

SVM 100 100 90.27 90.36

K-NN 65.27 45.63 62.5 35.31

Table 8.2: Classification Results for complete Feature Set with K fold value=10

Classifiers Training Testing

Accuracy(%) F1 score(%) Accuracy(%) F1 score(%)

SVM 100 100 91.6 90.6

K-NN 70.6 57.14 63.92 41.67
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8.1.2 Accuracy and F1 Score for Subset of Features

Results obtained by giving the significant features as input to the classifiers which were

obtained after after applying RFECV method are summarized in table below. By applying

RFECV the number of reduced from 320 to just 95. This implies that only one-third

features play a role in determining the classification accuracy.

Table 8.3: Classification Results for Time-Frequency domain Features after applying

RFECV with k fold value=6

Classifiers Training Testing

Accuracy(%) F1 score(%) Accuracy(%) F1 score(%)

SVM 100 100 98.61 98.48

K-NN 72.5 61.95 69.44 54.67

Table 8.4: Classification Results for Time-Frequency domain Features after applying

RFECV with k fold value=10

Classifiers Training Testing

Accuracy(%) F1 score(%) Accuracy(%) F1 score(%)

SVM 99.84 99.84 100 100

K-NN 79.16 73.15 76.42 67.14
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8.1.3 Comparison of Proposed work with Existing work

This section compares the results of existing work with our proposed method. It can be

seen from the table below that the proposed work out-performs the work of [14, 17, 18],

which also computed the time-frequency domain features.

Ahammed et al. [19] used the same dataset as we have, and achieved a maximum accuracy

of 90% whereas our work achieves a maximum accuracy of 100%.

Table 8.5: Comparison of Results with other works

Paper Feature Domain Classifier Accuracy

Sharma et al. [14] Time-Frequency SVM 92.86%

Vanitha et al. [18] Time-Frequency SVM 89.07%

Diez et al. [17] Time-Frequency LD 91%

Ahammed et al. [19] Time SVM 90%

Our work Time-Frequency SVM 100%
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Chapter 9

CONCLUSION AND FUTURE

WORK

Employing HHT for determining Time-Frequency domain features for stress level classifi-

cations obtains a maximum accuracy of about 100% and F1 Score of 100% . It can be seen

from the comparison table that time-frequency domain features perform better than the

time domain and frequency domain features when used for stress related studies. Also,

feature selection techniques not only reduces the computational time and dimensionality

of feature set but also enhances the accuracy. Thus the system can be made more effi-

cient by applying feature selection techniques and it also helps in determining the features

which works well in these studies and hence can be employed for the designing of real-time

stress detection and prediction systems.

Since, this study limits itself to EEG based single trial and subject independent clas-

sification, in future we can look into the avenue of subject dependent classification as

in [22]which can then be helpful in designing customized systems as the training and

testing data will be subject dependent.

Also, conducting multiple trials of the same procedure not only increases the size of

dataset which is beneficial as the bias will reduce, but also makes the procedure more

effective in classifying stress.

In future, different physiological signals like heart rate, eye blinks, etc. can be used along

with EEG Signals for enhancing the accuracy and determining the efficiency of other

physiological signals in determining stress levels.
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Since, in this study the dataset comprises of EEG Signals of only 36 participants, which

is insufficient for generalizing the results for mass public. We can create our dataset,

conducting the trial on large number of subjects 100 or more and creating a system which

can help in real-time stress detection and prediction.

Also, in future we can compare the performance of time domain, frequency domain and

time-frequency domain features by computing them on the same dataset and deep learn-

ing techniques can also be applied to make stress classification process more efficient.

This study employs SVM and K-NN as classifiers which belongs to the class of ma-

chine learning classifiers, in future we can delve into deep learning classifiers which shows

promising results in EEG related studies [23].
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