Total No. of Pages:02

FIRST SEMESTER

Roll No.

M.Tech. (THE)

SUPPLEMENTARY EXAMINATION

February 2019

ME-513 OPTIMIZATION TECHNIQUE

Time: 3:00 Hours

Max. Marks: 100

Note: Answer any FIVE questions. All questions carry equal marks.

Assume suitable missing data, if any.

1. a) Consider the following minimization problem.

Minimize

 $U = x^2 + y^2 + z^2$

Subject to constraint:

3x+2y+z=10 & x+2y+2z=6.

Solve this using the Lagrange multiplier method.

(10)

- b) Explain the solution procedure for two variable unconstrained optimization problems. (10)
- 2. Find optimal solution of the following transportation problem. (20)

	D_1	D_2	D_3	D ₄	Supply
S_1	9	16	15.	9	15
S_2	2	1 .	3	5	15 25 20
S_3	6	4	7	3	20

3. A company wishes to assign 4 jobs to 3 machines. The estimates of the times (in minutes) each machine would take to complete a job is given below. How should the jobs should be allocated to the machines, so that the total cost is minimum?

	Machine			
Jobs	M_1	M_2	M_3	
I	8	25	14	
II	12	26	5	
Ш	34	19	14	
ĪV	17	29	19	

- 4. Discuss the procedure to solve an optimization problem using dynamic programming. (20)
- 5. Explain the branch and bound method for solving an Integer programming problem. (20)
- 6. a)Illustrate Golden Section method with suitable example.b) Write a short note on Duality.(10)
- 7. Write short note on any two from the various Intelligent Techniques of optimization. (20)

