Total No. of Pag	es-
------------------	-----

Roll No.....

1ST SEMESTER SUPPLEMENTARY EXAMINATION

M.Tech. [VLSI] (February-2019)

EC-561 DIGITAL SYSTEM DESIGN

Time: 03 Hours

Max. Marks: 100

Note: Answer all Questions, selecting at least Two from each Question. Assume suitable missing data, if any.

- 1 a) Implement 2 to 4 decoder using logic gates and write VHDL code for the same circuit using any architecture body. (10)
- b) Explain various types of delays and their modeling in VHDL with suitable examples and diagrams. (10)
- e) Explain Identifiers and Data Operators in detail with their significance. (10)
- 2 a) Implement the synchronous sequential circuit for state diagram as shown in Fig.1, using D-Flip Flop.

b) Reduce the given state table using partitioning technique and find a minimum length that distinguishes state q₁ from state q₂. (10)

PS	NS, Z	
	X=0	X=1
qı	q2, I	qs, 1
q 2	q0. 1	q4. 1
qs	q4, O	qs, 1
94	q3. 0	q6, 1
qs	q4, 1	q3, 1
q ₆	q3. 1	q3, 1
97	q3, 1	q4, 1
q8	q3, 0	q1, 1

c) Explain various hazards and faults in digital circuits. Also suggest few examples with methods to make circuits hazard free. (10)

- 3 a) What are the Moore and Mealy machines? Compare them. Define: Successor, terminal state, strongly connected machine and machine equivalence. (
- b) What is a sequential machine? Discuss various memory elements used in sequential machines. How is the state of the memory element specified? (10)
- c) Construct the compatibility graph and obtain the minimal cover table for the sequential machine described by the state table as given below: (10)

	NS, Z	
PS	X=0	X=1
a .		£.0
b	b. 0	c. 0
c	e. 0	a.0
d	b, 0	d. 0
e	f. 1	d. 0
f	a 0	-

- 4 a) Design a synchronous sequential circuit (sequence detector) using D flip-flop, which produces an output z=1, whenever input sequence 1011 occurs. Overlapping is allowed. (10)
- b) Discuss the conversion process for Mealy to Moore machine. Convert the given Mealy state table to Moore State table: (10)

PS	NS, Z	
	X=0	X=1
A	A, 0	B, 0
В	C, 0	B, 0
С	A, 0	D. 0
D	C, 1	B. 0

- c) List various programmable logic devices. Explain full functioning of FPGA with the help of its block diagram. (10)
- 5 a) What are the elements of an ASM chart, explain each. Compare ASM Chart and Conventional flow chart in detail. (10)
- b) Draw the state diagram and ASM Chart for the sequence detector that can detect 1010 sequence. Overlapping is allowed. (10)
- c) Draw the ASM chart for the given state transitions. Start from the initial state T1, then if xy = 00 go to T2, if xy = 01 go to T3, if xy = 10 go to T1, otherwise to T3 and design it using multiplexer control method. (10)

13101