Total No. of Pages 02

FIRST SEMESTER

Roll No.
M.Tech.[MOCE]

SUPPLEMENTARY EXAMINATION

Feburary 2019

EC-552 Numerical Techniques in Electromagnetism

Time: 3:00 Hours Max. Marks: 100

Note: Answer all questions

Assume suitable missing data, if any.

- 1. (a) Write the Maxwell's equations in differential as well as integral form.
 - (b) List and draw the common grid patterns used in the finite difference scheme.
 - (c) Explain the sources of error that are nearly unavoidable in numerical solution of problems.
 - (d) Find < u,v> if u = 1, $v = x^2 2y^2$ in the rectangular region 0 < x < 1, 1 < y
 - (e) Express 10 $\sin(\omega t kz) a_x + 20 \cos(\omega t kz) a_y$ in phasor form.
 - (f) Discuss the advantages and disadvantages of finite element method over other modelling techniques.

[6 * 5 = 30]

2. Using the separation of variables technique, obtain the solution to the one dimensional heat equation

 $U_{xx} = U_t$, 0 < x < 1, t > 0subject to the boundary conditions U(0,t) = 0 = U(1,t), t > 0and initial condition U(x,0) = 100, 0 < x < 1.

[10]

3. Solve the Poisson's equation $\nabla^2 V = -e^{-x}$ subject to the boundary conditions V(0,y,z) = V(a,y,z) = V(x,0,z) = 0; V(x,b,z) = V(x,y,0) = V(x,y,c) = 0 and w $a=b=c=\pi$, using the series expansion method.

[10]

4. Solve a boundary value problem defined by

$$\frac{d^2\emptyset}{dx^2} = x + 1$$

subject to $\varphi(0) = 0$ and $\varphi(1) = 1$, use the finite difference method to find $\varphi(0.5)$. Use $\Delta = 0.25$ and perform 5 iterations.

[10]

5. Explain the Yee's finite difference algorithm to solve Maxwell's equations.

[10]

6. Consider the wave equation of the form

 $u^2 \frac{\partial^2 \emptyset}{\partial x^2} = \frac{\partial^2 \emptyset}{\partial t^2}$, where u is the speed of the wave.

Write the equivalent finite difference formula.

Rewrite the equation by choosing the aspect ratio $r = (u\Delta t/\Delta x)^2$ Further draw its computational molecule.

Use the von Neumann approach to determine its stability condition.

[10]

7. Solve the two dimensional Laplace's equation using finite element method.

[10]

8. A potential field is defined over a triangular three node element by

Node i	$V_i(V)$	x _i (cm)	yi(cm)
1	40	4	6
2	-10	2	2
3	20	6	2

Calculate the potential and potential gradient at (4, 4) cm.