Total No. of Pages:1 Ist SEMESTER SUPPLIMENTARY EXAMINATION Roll No...... M.TECH. [CSE] (February- 2019)

CO-502 Subject: Parallel Computer Architecture

Time: 3:00 Hours

Max. Marks: 100

Note: Attempt any five questions. All questions carry equal marks.

- 1.(a) Explain Flynn's classification of computer system architecture with neat diagram and suitable examples.
- (b) Differentiate between SIMD and MIMD super computers with suitable examples
- (a) Explain the various network properties and differentiate between static and dynamic inter connection. And also discuss 16X16 baseline network.
- (b) What is cache coherence problem? Discuss various protocol to solve the cache coherence problem.
- 3.(a) Describe the branch effect and branch prediction in detail. And also define the performance degradation factor due to branch prediction.
- (b) Explain pipelining by calculating the speedup that may be achieved through pipeline versus base scalar machine. Using a diagram show that how deliberate delay insertion in apipeline could improve the throughput of the machine.
- Describe efficiency and quality of parallelism with suitable example.
- (b) Discuss Amdahl's law and Gustafson's law in detail.
- 5.(a) Compare the PRAM model with physical model of parallel computers in which PRAM variant can be best model SIMD machines and how?
 - (b) Describe Tomasulo's and scoreboarding techniques for dynamic scheduling in details.
- 6.(a) For given pipeline reservation table:

	T1	T2	ТЗ	T4	T5	T6	T7
S1	X					X	
S2			X				X
-S3-		-X-		-X			
S4			X		X		

- (i). Determine the latencies in the forbidden set and the initial collision vector.
- (ii). Draw the state transition diagram for scheduling the pipeline.
- (iii) Draw the MAL.
- (iv) Draw the speedup and efficiency of the pipeline.
- (b) Draw and define the architecture and instruction format of a VLIW processor.
- 7. Write short notes on the following:
 - i. Perfect shuffle and exchange.
 - ii. C/S Access memory organization.
 - iii. Software parallelism Vs hardware parallelism
 - iv. Grain packing and scheduling.