Total No. of Pages: 2	Roll No
SEVENTH SEMESTER	B.TECH-EVENING (ECE)
END-SEMESTER EXAMINATION (SUPPLEMENT)	ARY) FEBRUARY-2019
CEC-401 Information Theory	and Coding
Time: 3:00 Hours	Max. Marks: 40
Note: *Q1 is compulsory. ***Answer any 08 questions out of remaining 10 questions i.e. Q2 to Q11. ***Assume suitable missing data, if any.	
1. Answer all the following Compulsory questions:	er
 (a) State the relation between the generator polynomial and the parity check polynomial of an (n,k) cyclic linear code. (1.5) (b) What is the physical meaning of the mutual information of a channel? State the properties of I (X;Y), the mutual information of the discrete random variable X and Y. (1.5) (c) Differentiate source coding theorem with channel coding theorem. (1.5) (d) In a linear block code, how are the parity check bits produced? (1.5) (e) Explain the Markov source with an example. (2.0) 	
2. Channel matrix for a channel is given as follows: $P\left(\frac{Y}{X}\right)$ Also, the input probabilities of the channel are: $P\left(X\right) = P(X) $ Determine (i) $H(X)$, (ii) $H(Y)$, (iii) $H(X,Y)$, (iv) $H(X,Y)$	[0.3 0.4 0.3] (X Y), (v) H(Y X) (0.5+0.5+1+1+1=4.0)
	=1-2-3-4-5 with-the-following-probabilities:
3. A discreate memoryless source produces symbols x_i , $i = 1, 2, 3, 4, 5$ with the following probabilities: $p(x_1) = 0.4, p(x_2) = 0.19, p(x_3) = 0.16, p(x_4) = 0.15, p(x_5) = 0.1$	
$p(x_1) = 0.4, p(x_2) = 0.15, p(x_3)$ Design a Huffman code for the above source. Find the expression of the expression	fficiency of code. (2+2=4.0)

4. Consider a DMS X with symbols x_i and corresponding probabilities $P(x_i) = P_i$, i = 1, 2, ..., m. Let n_i be the length of the code word for x_i such that

$$\log_2\left(\frac{1}{P_i}\right) \le n_i \le \log_2\left(\frac{1}{P_i}\right) + 1$$

Show that this relationship satisfies the Kraft inequality and find the bound for it.

(3+1=4.0)

5. Derive the following signal energy to noise power spectral density ratio for the Shannon's limit for additive white Gaussian noise (AWGN) channel.

$$\frac{E_b}{\eta} = -1.6dB$$

-254-

6. Encode the following binary sequence using LZW coding. Assume that binary symbols 0 and 1 are already there in the codebook. (4)

111010011000101...

For the Markoff source shown in figure below, Find (i) State probabilities, (ii) State entropies, and (1+1+1+1=4.0)(iii) Source entropy, (iv) G1, G2. Also show that G1, G2 > H.

- For a (6, 3) systematic linear block code, the three parity-check bits C4, C5 and C6 are formed from the following equations. $C_4 = d_1 \oplus d_3$, $C_5 = d_1 \oplus d_2 \oplus d_3$, $C_6 = d_1 \oplus d_2$ (1+1+2=4.0)
 - (i) Determine the generator matrix of the code.
 - (ii) List out all the code vectors of the code.
 - (iii) Suppose that the received word is 010111. Decode this received word by finding the location of the error and transmitted data bits.
- Consider the (7,4) systematic cyclic code with generator polynomial $g(x) = (1 + x + x^3)$ and if the received vector is 0110010, then find the following: (2+2=4.0)
 - (i) Transmitted data word
 - (ii) Syndrome calculation circuit.
- 10. Consider a (7,4) cyclic code with generator polynomial $g(x) = (1 + x + x^2)$. Obtain the code polynomial in a systematic form for the following data sequences: (2+2=4.0)
 - (i) 1010
 - (ii) 1100
- 11. Let us consider the (n=2,k=1, m=2) convolution coder with $g^{(1)} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$ and $g^{(2)} = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ where n: no. of output lines, k: no of input lines and m: no. of memory elements. Find the following: (i) Codewords for the data sequence (10011) using time-domain approach_

(ii) Codewords for the data sequence (10011) using transform domain approach. (2+2=4.0)