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Chapter 1  

Introduction 

Synthetic aperture RADAR (SAR) is one of the primary sensor used to perform the task 

of remote sensing for various applications. All weather and day and night operation of 

SAR makes them advantageous to their optical counterparts. SAR has been used for many 

applications like DEM generation, deforestation, activity monitoring, military 

surveillance, volcano eruption monitoring etc. High-resolution images of large areas are 

obtained by synthetic aperture radar imaging techniques. Spatial orientation, dielectric 

constant and roughness of the imaging area affects the intensities of pixels in a SAR 

image. 

Being an active sensor, SAR depends on its own transmitted energy. It generates the 

images of area based on the return scattered by it back to the radar’s antenna. Raw SAR 

signal data is processed to generate spatial image. The SAR imaging can be performed 

from satellite or airborne platform with a side looking antenna. SAR images are inherently 

contaminated by speckle noise, which is multiplicative in nature. Speckle is caused by 

interference of coherent wave fronts .Being an active imaging system, SAR images suffer 

from the inherent multiplicative noise known as speckle, which originates from the 

interference of the coherent wave fronts. The presence of speckle makes image processing 

tasks challenging for SAR images [1]. 

Segmentation of image is one of the most critical pre-processing step done before 

classification and identification of different regions and objects present in the image. 

Segmentation of image is to partition it into regions (also called segments, classes or 

subsets) which are similar with respect to one or more characteristics or features e.g. grey 

tone or texture. The performance of conventional intensity based image segmentation 

techniques deteriorates for speckle contaminated SAR images. Various speckle reduction 

techniques like spatial filtering and multi-look processing can be used, but it will reduce 

the resolution of image. Requirement of high resolution in remote sensing application 

make performing segmentation in presence of speckle inevitable. 

Given the challenge of segmenting SAR images in presence of speckle, thirteen image 

segmentation techniques are explored in this study. For speckle corrupted SAR images, 

intensity is not a suitable image feature for segmentation purposes, thus seventeen 
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different texture based image features have also been explored in the study. As a results, 

a total of 221 feature-segmentation technique combinations have been analysed in the 

study. 

Following SAR image features have been analysed: 

a. Intensity 

b. Roughness from G0A distribution [2] 

c. Scale from G0A distribution [3] 

d. Roughness and Scale based feature map [4] 

e. Roughness and Scale 

f. Shannon entropy 

g. Renyi entropy [5] 

h. Tsallis entropy 

i. Wavelet energy [6] 

j. Local binary pattern (LBP) 

k. Grey-Level Co-occurrence Matrices (GLCM) 

l. Central statistical moments 

m. Grey-Level Difference Method (GLDM) probability density functions 

n. Local pdf 

o. Grey-Level Run Length Matrix (GLRLM) 

p. Histogram of gradients 

q. Variogram 

For the above features, following image segmentation techniques have been analysed: 

a. K-means clustering 

b. Fuzzy C-Means (FCM) clustering 

c. Spatial FCM [7] 

d. Fuzzy Local Information C-Means (FLICM) clustering [8] 

e. Pixel Intensity and Location information FCM (ILKFCM) clustering [6] 

f. Gaussian Mixture Model (GMM) 

g. Self-Organising Map (SOM) 

h. Modified ILKFCM 

i. Kernel method Weighted FLICM (KWFLICM) [9] 

j. Fuzzy Local Information and Lp- norm distance-based clustering (FLILp) [10] 
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k. Modified FLICM 

l. Modified KWFLICM 

m. Modified Spatial FCM 

For evaluating the performance of these segmentation techniques using different textural 

features experimentation is performed on 72 synthetic and 3 real SAR images. Synthetic 

SAR images are generated using different foreground and background parameter 

combinations. These varying combinations maps to different “Difficulty of 

Segmentation” metric for different images. Performance evaluation for synthetic SAR 

images are based on overall accuracy, normalized accuracy and Kappa coefficient. For 

real SAR images performance is evaluated in terms of normalized accuracy, Kappa 

coefficient, F-Measure and cross-region fitting measure.  
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Chapter 2  

Image Features 

2.1 Intensity 

Pixel intensity value is the primary image information. For conventional image 

segmentation, intensity is the most popular and fundamental feature [11]. In a SAR image, 

the intensity value for each pixel is a single value as it is a grey-level image. 

2.2 Roughness from G0A distribution 

Segmentation techniques generally use the most evident image information, i.e., intensity 

of pixels. However, in the presence of noise, the intensity based segmentation may not be 

the best method. To tackle it, texture based methodology for automatic segmentation of 

SAR images can be used. 

Roughness from G0A distribution is one of the texture feature that can be used for 

segmentation purposes. It encompasses adopting a suitable data model (the G0A 

distribution) and parameter estimation (roughness and scale).  

The performance of SAR image segmentation technique is highly dependent on choice 

of an appropriate probability distribution to model image data [1]. In this study, G0I and 

G0A distributions [1] are used to model SAR image data in intensity and amplitude, 

respectively. These distributions are advantageous since they can accurately model 

varying degree of inhomogeneity of a SAR image [1]. In addition, other distributions such 

as K and Weibull do not present this feature.  

For SAR image segmentation, G0I and G0A distributions are used to estimate the 

roughness parameter maps of image. A nonlinear system of log cumulants of orders 1 and 

2 is solved to estimate parameters for both distributions [3].  

2.2.1 Statistical Models for SAR Data 

The probability density functions of general models for SAR intensity G0
I and amplitude 

G0
A with return data (𝑍) are defined as follows:  

} G0
I distribution, i.e., 
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𝑓!!"(𝑧, 𝛼, 𝛾, 𝐿) =
𝐿"Γ(𝐿 − 𝛼)
𝛾#Γ(−𝛼)Γ(𝐿)

 𝑧"$%(𝛾 + 𝐿𝑧)#$ " (2.1) 

Where, 

𝛤(𝐿) is the Gamma function; 

𝐿 ≥ 1 is the number of looks; 

−𝛼, 	𝛾, 𝑧 > 0; 

and the rth-order moment is given by 

𝐸!!"[𝑍
'] = 6

𝛾
𝐿7

' Γ(−𝛼 − 𝑟)Γ(𝐿 + 𝑟)
Γ(−𝛼)Γ(𝐿)

, 	 𝛼 < −𝑟 (2.2) 

} G0
A distribution, i.e., 

𝑓!#"(𝑧, 𝛼, 𝛾, 𝐿) =
2𝐿"Γ(𝐿 − 𝛼)
𝛾#Γ(−𝛼)Γ(𝐿)

𝑧("$%(𝛾 + 𝐿𝑧()#$" (2.3) 

Where, 

−𝛼, 	𝛾, 𝑧 > 0; 

and the rth-order moment is given by 

𝐸!#"[𝑍
'] = 6

𝛾
𝐿7

'
( Γ 6−𝛼 −

𝑟
27 Γ 6𝐿 +

𝑟
27

Γ(−𝛼)Γ(𝐿) , 	 𝛼 < −
𝑟
2

(2.4) 

For both distributions, 𝛼 and 𝛾 correspond to the roughness and scale parameters, 

respectively. The 𝛼 parameter can be interpreted in terms of roughness [1], [3].  

2.2.2 Parameter Estimation 

As reasoned in [2], the parameter estimation for both G0I and G0A distributions is 

performed by method of log cumulants (MoLC). Alternative classical approaches are 

maximum-likelihood (ML) and method of moments (MoM) [12]: 

} The method of logarithmic cumulants (MoLC) parameter estimation approach is 

specifically developed for positive-valued PDFs. Strategy involved in this method 

is somewhat similar to classical method of moments. MoLC uses the Mellin 

integral transform which, is a tool used in studying the distributions of products of 

nonnegative RVs. MoLC can provide analytical solutions for RVs which come 

from families with complicated PDF expressions. The Mellin transform and MoLC 

are well-suited for SAR image because they have speckle present in it which 

constitute multiplicative model. MoLC generates strongly consistent estimates and 
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is computationally faster than ML, and it becomes particularly useful when the 

classical approaches turns out to be unfeasible. 

MoLC is based on Mellin transform of a PDF, and it is defined by [12]: 

𝜙)(𝑠) = ℳ[𝑝)(𝑢)] = A 𝑢*$%
+

,

𝑝)(𝑢)𝑑𝑢 (2.5) 

where 𝑠 is a complex number with unity norm, and 𝑝𝑧(𝑢) is the PDF of the random 

variable 𝑍. 

The Mellin transform of a function 𝑓 only exists if 𝑓 is defined over ℝ-, and the log 

cumulant of order 𝑣 is defined as: 

𝑘.F =
𝑑.𝜓)(𝑠)
𝑑𝑠. H

*/%
, 	 𝑣 ∈ 𝑁 (2.6) 

With, 

𝜓"(𝑠) = ln8𝜙"(𝑠): (2.7) 

Another important relation is that the log moment of order 𝑣 can be obtained by: 

𝑚.N =
𝑑.𝜙)(𝑠)
𝑑𝑠. H

*/%
, 	 𝑣 ∈ 𝑁 (2.8) 

Here, log cumulants and log moments of orders 1 and 2 are used, which are related by 

[12]: 

𝑘%F = 𝑚%N (2.9) 

𝑘(F = 𝑚(N −𝑚%
(F (2.10) 

The log cumulants of orders 1 and 2 for G0
I are given by [13]: 

𝑘%F = log 6
𝛾
𝐿7 + Ψ

,(𝐿) − Ψ,(−𝛼) (2.11) 

𝑘(F = Ψ%(𝐿) + Ψ%(−𝛼) (2.12) 

and for G0
A, the log cumulants of orders 1 and 2 are defined by [14]: 

2𝑘%F = log 6
𝛾
𝐿7 + Ψ

,(𝐿) − Ψ,(−𝛼) (2.13) 
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4𝑘(F = Ψ%(𝐿) + Ψ%(−𝛼) (2.14) 

where, in both distributions, 𝛹,(⋅) is the digamma function, and 𝛹0(⋅) is the digamma 

of kth order. 

The above systems of nonlinear equations either for image intensity or amplitude are 

solved to estimate 𝛼 and 𝛾. The sample log moments of orders v are given as 

𝑚X.Y =
1
𝑛[log 𝑧1.

2

1/%

(2.15) 

with 𝑧1 , 	𝑖 ∈ {1,2, … , 𝑛}, being a sample of a random variable 𝑍 ∼ 	𝐺0𝐼 or 𝑍 ∼ 	𝐺0𝐴. These 

sample moments are used as estimates of moments in eq 2.9 and 2.10. 

2.3 Scale from G0A distribution 

As described in section 2.2, scale parameter γ as obtained using the MoLC is also explored  

as independent feature for image segmentation. The amount of backscatter amplitude can 

be represented by scale parameter and hence scale can also be used as distinct texture 

representation of the image. 

2.4 Roughness and Scale based feature map 

Together roughness and scale parameters (as defined in section 2.2) uniquely define SAR 

images and hence are essential for efficient discriminants of different regions in SAR 

image. Roughness and scale are used to define a function [4], which is used for 

segmentation purpose. Let 𝐼 be the image which can be segmented in distinct regions 

{Ω%, Ω(, …Ω2}. Samples of distinct image regions follow distinct distributions [15]. Thus, 

when G0
I  or G0

A  distribution is used to describe the image regions, roughness and scale 

parameters for the segmented image regions will be different. Then, cumulative 

distribution function (CDF) of these regions can be used to differentiate them. Thus, we 

can use following function for segmentation purpose: 

𝐹(𝑧, 𝛼, 𝛾, 𝐿) = Υ(3,$(56 f−
𝛼g
𝛾g 𝑧7

( h (2.16) 
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Here, Υ(3,$(56 is the Snedecor’s F-distribution with numerator degrees of freedom 2𝐿 and 

denominator degrees of freedom −2𝛼g. 𝑧7 is the optimum value of 𝑧 that maximises the 

F-distribution. 

Using the above function, energy map 𝜉 is obtained for the entire image. As roughness 

parameter increases the kurtosis of the energy function also increases, but it is 

independent of scale parameter. However, variations of the distribution function results 

when scale parameter increases and it consequently leads to decrement in the energy. 

Such observations suggests over the boundary regions the amplitude of energy variations 

should reach the highest values. However, for homogeneous regions these fluctuations 

should be limited to low values. This discriminatory property of energy variations serves 

as a reliable feature for segmenting images consisting of homogeneous, heterogeneous 

and extreme heterogeneous regions. Here, total energy variation is used to evaluate 

energy oscillations over region boundaries: 

𝐶 =[[|∇𝜉| (2.17) 

Where |∇𝜉| is the magnitude of the spatial gradient for energy map. The energy function 

provides the maximal discrimination when 

𝑧7 = 𝑎𝑟𝑔max
)
{𝐶} (2.18) 

2.5 Roughness and Scale 

As described in section 2.2, roughness and scale parameter as obtained using the MoLC 

can be used as two dimensional feature vector (for each image pixel) for segmentation od 

images. 

2.6 Shannon entropy 

Entropy gives the degree of uncertainty associated with a random variable [16]. Let 𝑋 be 

a discrete random variable probability mass function 𝑝(𝑥). 

For a discrete random variable 𝑋, the Shannon entropy 𝐻(𝑋) is defined as: 

𝐻(𝑋) = −[𝑝(𝑥) log 𝑝(𝑥)
8∈:

(2.19) 
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Entropy of a region in an image is directly related to its textural uniformity. For texturally 

non-uniform images, entropy is large. Shannon entropy assumes implicit trade-off 

between contribution from the main mass and the tails of the distribution. In some 

applications, explicit control of this trade-off is desirable. Entropy measures that depend 

on powers of probabilities provides such control. Renyi and Tsallis entropy described in 

following sections are generalised entropies which provides desired control over shape of 

the probability distribution. 

2.7 Renyi entropy 

For a discrete random variable 𝑋, the Renyi entropy 𝐼#(𝑋) is defined by [17]: 

𝐼#(𝑋) =
1

1 − 𝛼 logv[𝑝1#
2

1/%

w (2.20) 

Here, 𝛼 is a real parameter and it is used to control the sensitivity of entropy with shape 

of probability distributions. Renyi entropy is more sensitive for high probable values if 𝛼 

has large positive value and for negative values of 𝛼 sensitivity shifts towards the tail of 

the distribution. In the limit as 𝛼 → 1, Renyi entropy approaches the Shannon entropy. 

2.8 Tsallis entropy 

For a discrete random variable 𝑋, the Tsallis entropy 𝐼#(𝑋) is defined as [17]: 

𝑆#(𝑋) =
1

𝛼 − 1v1 −[𝑝1#
2

1/%

w (2.21) 

Here, 𝛼 is a real parameter and it is used to control the sensitivity of entropy with shape 

of probability distributions. The sensitivity variation with 𝛼 is same as described in 

section 2.7. In the limit as 𝛼 → 1, Tsallis entropy approaches the Shannon entropy. 

2.9 Wavelet energy 

The wavelet transform is a tool which can perform multiresolution analysis and it can 

represent the local features of signals with varying details in both time and frequency 

domain. The wavelet transform has found a wide application in field of image processing 

applications. Wavelet transform generated features are used for image compression, 
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denoising, segmentation etc. An image can be decomposed using wavelet transform by 

carrying out 1-D filtering along directions x and y directions. With first level of 

decomposition, 4-channel information i.e. LL, HL, LH, and HH are obtained. LL contains 

low frequency coarser information, HL, LH and HH gives horizontal, vertical, and 

oblique details of the image, respectively. The dominant spatial- frequency information 

of the original image is represented by the energy of each channel. Hence, wavelet energy 

can be regarded as the texture representation of the image. Also, the feature extraction 

with  multi-level wavelet decomposition provides greater details as compared to one level 

decomposition [6]. The energy of each channel is calculated as: 

𝑒 =
1
𝑃𝑄

[[|𝑥(𝑝, 𝑞)|
;

</%

=

>/%

(2.22) 

Where, 𝑥(𝑝, 𝑞) is the coefficient value at (𝑝, 𝑞)and 𝑃𝑄 is the size of each channel 

coefficient matrix. 

2.10 Local binary pattern (LBP) 

Local binary pattern (LBP) is an effective texture descriptor which compare neighbouring 

pixels with central pixel and generate binary number as descriptor. For each pixel 𝑥𝑐, 

binary pattern is computed by thresholding its neighbourhood. It is based on the 

difference between the feature value of the centre pixel 𝑞𝑐 and its circular neighbourhood 

with specified radius 𝑅 centred at 𝑥𝑐. Thus, the Local Binary Pattern codes are computed 

as [18]: 

𝐿𝐵𝑃?,@(𝑥A) = [ 𝑠(𝑗)22
?$%

2/,

(2.23) 

where 𝑗 = 𝑥𝑝 − 𝑥𝑐 denotes the intensity level difference between the central pixel (𝑥𝑐) 

and of the neighbouring pixels (𝑥𝑝) within the circular neighbourhood of radius 𝑅 and 𝑁 

neighbouring pixels (Figure 2.1) [19]. Here, 𝑠(𝑗) is defined as [20]: 

𝑠(𝑗) = �
1 𝑗 ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(2.24) 
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Figure 2.1: Circular Neighborhood of Radius R and P Neighboring Pixels 

The LBP code has an added advantage that they are invariant against any monotonic 

transformation of image brightness. To generate texture descriptors of the image, 

histograms of these labels are used.  

Figure 2.2 [21] depicts the process for computation of LBP using grey-level values for a 

sample image region. 

 

Figure 2.2: Computation of Local Binary Pattern 

2.11 Grey-Level Co-occurrence Matrices (GLCM) 

GLCM is a statistical textural feature descriptor. Texture is one of the important feature 

of an image which can be used as an input to various image processing applications [22].  

The perception of texture depends on spatial arrangement of grey- level values in a local 

region. A GLCM is formed by analysing the co-occurrence of  pixels with given grey-

levels. 

The values of the co-occurrence matrix elements denotes the number of times with which 

two neighbouring pixels separated by distance 𝑑 and in a given angular direction appear 

on the image, where one of them has grey level 𝑖 and other 𝑗. 

A GLCM is defined as  𝑀(𝑖, 𝑗, 𝑑, 𝜃), a matrix with a size of  𝐿 × 𝐿 describing how often 

a pixel with grey value 𝑖  occurs adjacent to a pixel with the value 𝑗. The two pixels are 
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the LBP to multiple resolutions are presented. Finally, Sec. 3.6 describes how an
opponent color version of the LBP operator can be constructed.

3.1. Derivation

The derivation of the LBP follows that represented by Ojala et al.19. Due to the
lack of a universally accepted definition of texture, the derivation must start with a
custom one. Let us therefore define texture T in a local neighborhood of a gray-scale
image as the joint distribution of the gray levels of P + 1 (P > 0) image pixels:

T = t(gc, g0, . . . , gP�1), (1)

where gc corresponds to the gray value of the center pixel of a local neighborhood.
gp(p = 0, . . . , P � 1) correspond to the gray values of P equally spaced pixels on a
circle of radius R (R > 0) that form a circularly symmetric set of neighbors. This set
of P +1 pixels is later denoted by GP . In a digital image domain, the coordinates of
the neighbors gp are given by (xc +R cos(2⇡p/P ), yc�R sin(2⇡p/P )), where (xc, yc)
are the coordinates of the center pixel. Fig. 4 illustrates three circularly symmetric
neighbor sets for di↵erent values of P and R. The values of neighbors that do not fall
exactly on pixels are estimated by bilinear interpolation. Since correlation between
pixels decreases with distance, much of the textural information in an image can be
obtained from local neighborhoods.

P=8, R=1.0 P=12, R=2.5 P=16, R=4.0

Fig. 4. Circularly symmetric neighbor sets. Samples that do not exactly match the pixel grid are
obtained via interpolation.

If the value of the center pixel is subtracted from the values of the neighbors,
the local texture can be represented — without losing information — as a joint
distribution of the value of the center pixel and the di↵erences:

T = t(gc, g0 � gc, . . . , gP�1 � gc). (2)

Assuming that the di↵erences are independent of gc, the distribution can be
factorized:

T ⇡ t(gc)t(g0 � gc, . . . , gP�1 � gc). (3)

Ekstraksi Ciri Tekstur dengan Menggunakan Local Binary
Pattern

Texture Feature Extraction by Using Local Binary Pattern

Esa Prakasa
Pusat Penelitian Informatika, Lembaga Ilmu Pengetahuan Indonesia, Bandung, Indonesia

Email: esa.prakasa@lipi.go.id

Abstract

Local Binary Pattern (LBP) is a method used to describe texture characteristics of a surface. By applying LBP, texture
pattern probability can be summarised into a histogram. LBP values need to be determined for all of the image pixels.
Texture regularity might be determined based on the distribution shape of the LBP histogram. The implementation results
of LBP on two texture types - synthetic and natural textures - shows that extracted texture feature can be used as input for
pattern classification. Euclidean distance method is applied to classify the texture pattern obtained from LBP computation.

Keywords: texture feature, local binary pattern, natural textures

Abstrak

Local Binary Pattern (LBP) adalah salah satu metode yang digunakan untuk mendeskripsikan karakteristik tekstur
permukaan. Dengan menggunakan LBP, probabilitas pola tekstur tertentu dapat dirangkum dengan menggunakan
histogram. Nilai LBP dihitung secara merata pada setiap piksel yang ada dalam citra. Keteraturan pola tekstur suatu
permukaan dapat diamati berdasarkan sebaran histogram nilai LBP. Hasil uji coba LBP terhadap dua kelompok tekstur
- tekstur buatan dan alami - menunjukkan bahwa hasil ekstraksi ciri tekstur bisa digunakan sebagai input pada bagian
klasifikai pola. Metode Euclidean distance digunakan untuk menklasifikasi pola yang diperoleh dari perhitungan LBP.

Kata kunci: ciri tekstur, local binary pattern, tekstur alami

1. Introduction
Local Binary Pattern (LBP) method has been used
in various applications. The LBP algorithm was
applied to recognise human face [1] and facial
expression [2]. The LBP histograms are extracted
from Gabor map of human face. These histograms
are then concatenated into a single vector. The
vector is considered as a pattern vector [1]. In the
other implementations, the combination between
LBP texture features and a Self-Organizing Map
were applied to identify the quality of paper [3].

LBP is an operator for texture description that
based on the signs of differences between neighbour
pixels and central pixels [4, 5]. Figure 1 shows an
example of the calculation of LBP values. For each
pixel value in the image, a binary code is obtained
by thresholding its neighbourhood with the value of

Received: 6 July 2015; Revised: 2 Februari 2016; Accepted: 12 Februari
2016; Published Online: 30 May 2016 c�2015 INKOM 2015/15-
NO420

Figure 1. The stages of LBP calculation.

the centre pixel. This binary code can be considered
as a binary pattern. The neighbour pixel becomes 1
if the pixel value is greater than or equal to threshold
value, and it becomes 0 if the pixel value is less than
threshold. Next, the histogram will be constructed to
determine the frequency values of binary patterns.
Each pattern represents possibility of binary pattern
found in the image. The number of histogram bins
depends on the number of involved pixels in LBP
calculation. If LBP uses 8 pixels, the number of
histogram bin will be 28 or equal to 256.

INKOM, Vol. 9, No. 2, November 2015: 45-48
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separated by a distance of  𝑑 pixels in the direction of  𝜃. 𝐿 is the number of grey-level 

present in the image. To avoid computation complexity, number of grey levels in image 

are often reduced to 4 or 8. Figure 2.3 shows the procedure of constructing GLCM and 

computing its Homogeneity and Contrast features on a 2D example image. 

 

Figure 2.3: Computation of GLCM Matrix 

The calculation of co-occurrences matrix of whole image is computationally heavy. To 

reduce the computational load, its calculations can be performed in small windows 

scanning over the complete image. In this study, 5x5 size window around centre pixel is 

used to calculate GLCM. 

Following standard GLCM features are computed and used for segmentation purpose: 

a. Angular Second Moment (Energy): It provides the measure of uniformity of 

texture of an image. For constant or periodic grey level distribution, energy 

reaches its highest value. For homogeneous images very few significant intensity 

variations occurs and therefore GLCM of this image will have fewer entries of 

larger magnitude. This will result in significantly higher value of energy feature. 

For matrix with large number of entries with smaller values, energy feature will 

have relatively lower values. 

𝐴𝑆𝑀 =[[[𝑝(𝑖, 𝑗)](
"

1/%

"

1/%

(2.25) 

b. Contrast: It provides the measure of the amount of local variations present in an 

image.  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = [𝑛(

⎩
⎨

⎧
[ [𝑝(𝑖, 𝑗)

"

B/%

"

1/%
|1$B|/2 ⎭

⎬

⎫"$%

2/,

(2.26) 
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c. Correlation: It quantifies the grey-level relation between pixel and its neighbours. 

The correlation value is 1 for completely positive ,-1 for completely negative 

correlated and 0 for uncorrelated image. 

𝐶𝑜𝑟𝑟 =
∑ ∑ 𝑖𝑗𝑝(𝑖, 𝑗) − 𝜇1(𝑖)𝜇B(𝑗)"

1/%
"
1/%

𝜎1(𝑖)𝜎B(𝑗)
(2.27) 

d. Sum of squares (Variance): This feature is significant when elements of GLCM 

vary from the average value of 𝑝(𝑖, 𝑗) 

𝑆𝑢𝑚𝑆𝑞𝑢𝑎𝑟𝑒 =[[(𝑖 − 𝜇)(𝑝(𝑖, 𝑗)
"

B/%

"

1/%

(2.28) 

e. Inverse Difference Moment (Homogeneity): This parameter is the measure of 

homogeneity and it attains largest value for diagonally concentrated GLCM. 

Homogeneity have inverse relationship with GLCM contrast  

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =[[
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

"

B/%

"

1/%

(2.29) 

f. Entropy: It is the measure of the disorder present in an image. When all elements 

in GLCM matrix are equal, its attains its highest value. For texturally non-uniform 

images entropy value is very small because of presence of many GLCM elements 

with very small values. Therefore, entropy have inverse relationship with GLCM 

energy.  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −[[𝑝(𝑖, 𝑗) log([𝑝(𝑖, 𝑗)]
"

B/%

"

1/%

(2.30) 

g. Sum average 

𝑆𝐴 =[�𝑖𝑝8-D(𝑖)�
("

1/(

(2.31) 

h. Sum entropy 

𝑆𝐸 = −[𝑝8-D(𝑖) log(�𝑝8-D(𝑖)�
("

1/(

(2.32) 

i. Sum variance 
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𝑆𝑉 =[(𝑖 − 𝑆𝐸)(𝑝8-D(𝑖)
("

1/(

(2.33) 

j. Difference Variance 

𝐷𝑉 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	𝑜𝑓	𝑝8$D (2.34) 

k. Difference Entropy 

𝐷𝐸 =[𝑝8$D(𝑖) log(�𝑝8$D(𝑖)�
"$%

1/,

(2.35) 

l. Informational measure of correlation 1: 

𝐼𝑀𝐶1 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1
max{𝐻𝑋,𝐻𝑌}

(2.36) 

m. Informational measure of correlation 2: 

𝐼𝑀𝐶2 = �1 − 𝑒$((FGH($FGH) (2.37) 

where: 

𝑝(𝑖, 𝑗): the probability distribution matrix of co-occurrence matrix	𝑀(𝑖, 𝑗, 𝑑, 𝜃), 

𝐿: the number of discrete intensity levels in the image, 

𝜇: the mean of 𝑝(𝑖, 𝑗), 

𝑝8(𝑖) = ∑ 𝑝(𝑖, 𝑗)"
B/%  is the marginal row probabilities, 

𝑝D(𝑗) = ∑ 𝑝(𝑖, 𝑗)"
1/%  is the marginal column probabilities, 

𝜇8: the mean of 𝑝8, 

𝜇D: the mean of 𝑝D, 

𝜎8: the standard deviation of 𝑝8, 

𝜎D: the standard deviation of 𝑝D, 

𝑝8-D(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)"
B/%

"
1/% , 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3, … ,2𝐿  

𝑝8$D(𝑘) = ∑ ∑ 𝑝(𝑖, 𝑗)"
B/%

"
1/% , |𝑖 − 𝑗| = 𝑘, 𝑘 = 2,3, … ,2𝐿  

𝐻𝑋 = −∑ 𝑝8(𝑖) log([𝑝8(𝑖)]"
1/%  is the entropy of 𝑝8 
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𝐻𝑌 = −∑ 𝑝D(𝑖) log([𝑝D(𝑖)]"
1/%  is the entropy of 𝑝D 

𝐻𝑋𝑌 = −∑ ∑ 𝑝(𝑖, 𝑗) log([𝑝(𝑖, 𝑗)]"
B/%

"
1/%  is the entropy of 𝑝(𝑖, 𝑗) 

𝐻𝑋𝑌1 = −∑ ∑ 𝑝(𝑖, 𝑗) log([𝑝8(𝑖)𝑝D(𝑗)]"
B/%

"
1/%   

𝐻𝑋𝑌1 = −∑ ∑ 𝑝8(𝑖)𝑝D(𝑗) log([𝑝8(𝑖)𝑝D(𝑗)]"
B/%

"
1/%   

2.12 Central statistical moments 

Another method of obtaining texture features is direct computation of moments in local 

regions from the grey-level image [23]. For purpose of computing central-moments 2-D 

image is reorganised as a 1-D vector. Then nth order central moment of image function 

𝑓(𝑖) (where 𝑖 is discrete) is given as: 

𝜇 = 𝑚% =
1
𝑁
[𝑓(𝑖)
1

(2.38) 

And for 𝑛 > 1: 

𝑚2 =
1
𝑁
[[𝑓(𝑖) − 𝜇]2
1

(2.39) 

Where, 𝑁 is the total number of pixels. 

2.13 Grey-Level Difference Method (GLDM) probability density 

functions 

The basis of GLDM is the occurrence of two pixels separated by a specific displacement 

and with a given absolute difference in grey level [24]. For any given displacement vector 

𝛿 = (Δ𝑥, Δ𝑦) let 

𝑆J(𝑥, 𝑦) = |𝐼(𝑥, 𝑦) − 𝐼(𝑥 + Δ𝑥, 𝑦 + Δ𝑦)| (2.40) 

Where, 𝐼(𝑥, 𝑦) represents the given image. 

Then, estimated probability-density function 𝐷(𝑖|𝛿) is defined by  

	𝐷(𝑖|𝛿) = Prob[𝑆J(𝑥, 𝑦) = 𝑖] (2.41) 



 

 16 

In this work, the vector 𝛿 is considered to take four possible forms given as: (0, 𝑑), 

(−𝑑, 𝑑), (𝑑, 0), and (−𝑑,−𝑑), where 𝑑 is the inter-sample spacing. The four forms 

represent four directions of [0°, 45°, 90°, 135°]. 

2.14 Local pdf 

Based on principle that different regions in image follow different probability distribution 

function (pdf), another feature is computed by finding the pdf of the grey-level image in 

local regions. The pdf are found using histograms of image grey-levels. 

2.15 Grey-Level Run Length Matrix (GLRLM) 

GLRLM is a texture descriptor which depends on the fact that for coarse textures many 

neighbouring pixels have the same grey level. For fine textures, a low number of 

neighbouring pixels have the same grey level. In GLRLM, the run length or primitive is 

maximum number of pixels with same grey level in a given direction [18]. A primitive 

for a given grey level is characterised by its length l and its direction. The elements of the 

GLRLM 𝑒(𝑔, 𝑙) are number of runs for pixels with grey level 𝑔 and run-length 𝑙. For e.g., 

in horizontal direction, GLRLM is computed by searching number of times all possible 

grey levels are present in horizontal direction. For a given image, different GLRLM can 

be computed for different directions. In practice, four different directions horizontal, 

vertical and two diagonals are used to compute different GLRLM. For each matrix, a 2D 

run-length histogram (𝐻𝑔, 𝑙) is computed and is used as a base for creating feature vectors.  

If 𝑃(𝑔, 𝑙)  denotes the probability of a specific run-length, several image texture features 

can be calculated from GLRLM [25]: 

a. Short-Run Emphasis (SRE): 

It indicates the dominance of short runs which are present in fine textures. It is 

defined as: 

𝑆𝑅𝐸 = [[
𝑃(𝑔, 𝑙)
𝑙(

"

K/%

!$%

L/,

(2.42) 

b. Long-Run Emphasis (SRE): 

It indicates the dominance of long runs which are present in coarse textures. It is 

defined as: 
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𝐿𝑅𝐸 = [[𝑃(𝑔, 𝑙)𝑙(
"

K/%

!$%

L/,

(2.43) 

c. Grey-Level Nonuniformity (GLNU): 

It is dominant when many grey-level outliers rule over the histogram. GLNU is 

defined as: 

𝐺𝐿𝑁𝑈 = [ ¥[𝑃(𝑔, 𝑙)
"

K/%

¦

(!$%

L/,

(2.44) 

d. Run-Length Nonuniformity (RLNU): 

It is dominant when few grey-level outliers rule over the histogram. RLNU is 

defined as: 

𝑅𝐿𝑁𝑈 =[§[𝑃(𝑔, 𝑙)
!$%

L/,

¨

("

K/%

(2.45) 

e. Run Percentage (RP): 

It represents the homogeneity of the histogram and obtains maximum value when 

all runs have unit length. This feature is defined as: 

𝑅𝑃 = [[
1

𝑃(𝑔, 𝑙)𝑙

"

K/%

!$%

L/,

(2.46) 

f. Low Grey-Level Run Emphasis (LGRE)  

This metric attains significant value when the texture is dominated by several runs 

of low grey-value. It can be defined as: 

𝐿𝐺𝑅𝐸 = [[
𝑃(𝑔, 𝑙)
(𝑔 + 1)(

"

K/%

!$%

L/,

(2.47) 

g. High Grey-Level Run Emphasis (HGRE)  

This metric gives significant value when the texture is dominated by several runs 

of high grey-value. It can be expressed as: 

𝐻𝐺𝑅𝐸 = [[𝑃(𝑔, 𝑙)(𝑔 + 1)(
"

K/%

!$%

L/,

(2.48) 



 

 18 

Here, G represents the number of greyscales in which image is quantized and L is the 

length of longest run. 

2.16 Histogram of gradient magnitudes 

In this feature descriptor, magnitude of gradients is used to compute histogram in local 

neighbourhood. In this texture descriptor the orientation information of gradients is 

ignored[26]. In general, gradient gives indication of changes occurring in the image 

regions, hence it provides the information of edges present in the image. The effect of 

ignoring orientation is that this feature descriptor is rotation invariant and is also 

computationally efficient. 

2.17 Variogram 

In an image, the pixels may be spatially correlated depending on the region in which they 

are present. Variogram is an effective measure of spatial correlation present in the data. 

For an image having 𝑁 pairs of pixel values and grey level levels 𝐼(𝑥, 𝑦) positioned at 

row 𝑥 and column 𝑦, the variogram for pixels separated by a distance ℎ is defined as [18]: 

2𝛾(ℎ) = A A [𝐼(𝑥, 𝑦) − 𝐼(𝑥M, 𝑦M)](𝑑𝑦𝑑𝑥
D8

(2.49) 

Where ℎ is the Euclidean distance between the pixel value at row 𝑥 and column 𝑦 and the 

pixel value at row 𝑥′ and 𝑦′. In practice, the variogram is approximated as: 

2𝛾(ℎ) =
1
𝑁[

[𝐼(𝑥, 𝑦) − 𝐼(𝑥M, 𝑦M)](
?

1/%

(2.50) 

For many applications, instead of variogram the semi-variogram is computed: 

𝛾(ℎ) =
1
2𝑁[

[𝐼(𝑥, 𝑦) − 𝐼(𝑥M, 𝑦M)](
?

1/%

(2.51) 

While computing variograms, different spatial directions can be chosen. For example, the 

E-W direction gives: 

𝛾(ℎ) =
1
2𝑁[

[𝐼(𝑥, 𝑦) − 𝐼(𝑥 + ℎ, 𝑦)](
?

1/%

(2.52) 



 

 19 

The calculation of variogram starts with one pixel offset distance i.e. ℎ = 1 and then 

incrementing the   semi-variogram is computed by starting at ℎ = 1 (a one-pixel offset), 

then incrementing the value of ℎ till maximum. The variogram plot is the plot of 𝛾(ℎ) as 

a function of distance ℎ. From this plot, three important attributes which characterise 

variogram are computed: 

a. Nugget: It is the y-intercept of the plot. Though the variogram at zero distance 

should be zero, but it is non-zero because of the variability at distances smaller 

than the sample spacing,  

b. Sill: It is the maximum variance reached by the variogram.  

c. Range: It is the distance at which the sill is reached. For the distances larger than 

range, pixels are uncorrelated. 

Variogram is beneficial because it obtains texture heterogeneity at different scales. Also, 

this method for textural feature extraction is computationally simple and easy to 

understand [25]. 
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Chapter 3  

Segmentation Techniques 

3.1 K-means clustering 

Clustering is a technique to group data into different objects based on similarity metric. 

One of the widely used clustering algorithm is K-means clustering algorithm. It is an 

unsupervised statistical clustering algorithm based upon the index of similarity or 

dissimilarity between pairs of data components. It classifies the input data points based 

on their inherent distance from each other [27]. K-means algorithm is, nondeterministic, 

iterative and unsupervised technique. The aim of K-means technique is to minimize the 

sum of squared distances between the cluster centre and all points [28].  

Initially, algorithm takes number of clusters as input and arbitrarily locates the cluster 

centres in the multidimensional feature space. Then distance between each data point and 

cluster centre is calculated, allocation is done to the cluster for which distance is 

minimum. After classification of all the pixels, revised mean vectors for each cluster are 

computed. This process is repeated until there is no significant change in the location of 

cluster mean vectors between successive iterations of the algorithm [29].  A flow chart 

demonstrating the steps of algorithm is given in Figure 3.1. 

K-means algorithm is advantageous because of its simplicity of implementation and 

convergence speed, but it has three basic disadvantages [27]: 

a. Number of clusters 𝐾	must be known. 

b. Results may vary depending on initial conditions. 

c. Noise and outliers affects the performance of algorithm and pull the cluster 

prototypes away from optimum location. 
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Figure 3.1: K-Means Clustering Flowchart 

3.2 Fuzzy C-Means (FCM) clustering 

K-means clustering detailed in previous section is a hard clustering technique in which a 

data point can belong to one cluster only. In contrast, Fuzzy C-Means Clustering (FCM) 

is a soft clustering technique in which it is possible that a data sample belongs to multiple 

clusters at the same time. FCM has found wide range of applications namely from data 

analysis to segmentation of images [30]. In this technique membership value is computed 

which indicates the similarity of a data point with a cluster. The range of membership 

values is 0 to 1, more the similarity higher the membership value. At the end of algorithm, 

a defuzzification is applied to make hard assignments of data to the clusters. FCM is an 

iterative algorithm which repetitively update the cluster centres and membership values. 

The update equations for cluster centres and membership values are obtained by solving 

the cost function. 

Let  𝑋 = {𝑥%, 𝑥(, 𝑥N, … 𝑥?} denotes 𝑁 data samples; it has to be separated into c-clusters 

by minimizing the following cost function 
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𝐽7 =[[𝑢1B7¬𝑥B − 𝑣1¬
(

A

1/%

?

B/%

(3.1) 

Where, 𝑢1B represents the membership of  𝑥B with the 𝑖OPcluster, 𝑣1 is the 𝑖OP cluster center, 

‖. ‖ is Euclidean norm and m is a fuzzification constant which controls the fuzziness of 

the resulting partition. Higher value of m will increase the fuzziness in the partitioned 

data. Membership value 𝑢1B follows: 

0 ≤ 𝑢1B ≤ 1	for	all	𝑖, 𝑗 (3.2) 

[𝑢1B = 1
A

1/%

	for	all	𝑗 (3.3) 

0 ≤[𝑢1B < 𝑛	for	all	𝑖
2

B/%

(3.4) 

For minimizing the cost function the derivative of the cost function is taken and equated 

to zero by using Lagrange constrained optimization method. After solving, following 

equations are obtained: 

	𝑣1 =
∑ 𝑢1B7?
B/% 𝑥B
∑ 𝑢1B7?
B/%

(3.5) 

𝑢1B =[°
¬𝑥B − 𝑣1¬
¬𝑥B − 𝑣0¬

±
$(A

0/%

(3.6) 

Thus, the FCM algorithm is given as follows: 

a. Step 1: Input number 𝑐 of the cluster, fuzzification parameter 𝑚 and the stopping 

criterion 𝜀. 

b. Step 2: Randomly initialize the cluster centres and fuzzy partition matrix.  

c. Step 3: Set the loop counter 𝑛 = 0. 

d. Step 4: Calculate the updated cluster centres using equation (3.5). 

e. Step 5: Compute updated membership values using equation (3.6).  

f. Step 6. If stopping criterion i.e. max{𝑈2 − 𝑈2-%} < 𝜀 is reached then stop, 

otherwise, set 𝑛 = 𝑛 + 1 and go to step 4. 
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Conventional FCM do not consider the spatial relationship among the neighbouring 

pixels and hence its performance deteriorated in presence of noise and outliers. To 

overcome this limitation many variations of FCM have been proposed which incorporate 

spatial relationship among pixels in different ways. 

3.3 Self-Organising Map (SOM) 

A SOM is a type of artificial neural network (ANN) that is trained using unsupervised 

learning to produce a low-dimensional (typically two-dimensional) [31]. Self-organizing 

maps are based on competitive learning and they preserve the topological properties of 

the input space using a neighbourhood function. First, weight vectors are initialized 

randomly. Then a randomly selected sample vector is used to find its best match weight 

vector. The weight that is best matching is chosen is updated so that it is  like that 

randomly selected sample vector. The neighbours of best matching units are also updated 

so that they also become more like selected sample vector. With the progresses of 

algorithm, the size of neighbouring window around winning neuron is decreased. This 

makes the map to grow in different shapes.  

 

Figure 3.2: Dimensionality Reduction in SOM 

The Algorithm: 

a. Input number of iterations	𝑁 and learning rate. Randomly initialize each node’s 

weights.  

b. Randomly select a vector from the training data set. 
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c. From all the nodes, winning neuron i.e. Best Matching Unit (BMU) is identified 

which best represent the input vector.  

d. Calculate the neighbourhood of the BMU.  

e. The winning weight is rewarded by updating it so that it become more like the 

sample vector. The neighbours also updated to become more like the sample 

vector. The weights of nodes which are closer to winning node, gets altered more 

as compared to the nodes which are the farther. 

f. Repeat step b to e for 𝑁 iterations. 

In SOM, the data centres are fixed and predefined, hence it can be considered as 

constrained K-means clustering. 

3.4 Spatial FCM 

In an image, spatial information is of great importance. In general, in an image, there is 

high correlation between its pixels and the probability of them belonging to a particular 

cluster is significantly high. This spatial information should be incorporated in image 

analysis techniques to improve performance. A traditional FCM algorithm doesn't use 

spatial information in the image. The spatial fuzzy c-means (sFCM) modifies the 

membership function by incorporating this spatial information [7]. 

The modification is done by defining a spatial function ℎ1B: 

ℎ1B = [ 𝑢10
0∈?Q8'R

(3.7) 

Where 𝑁(𝑥𝑗) is a square window centered around pixel 𝑥𝑗. The spatial function ℎ𝑖𝑗  can be 

interpreted as the probability of pixel 𝑥𝑗 belonging to 𝑖OP cluster. For pixel 𝑥𝑗, the value of 

ℎ𝑖𝑗 is large if majority of its neighbourhood pixels belongs to the 𝑖OP cluster. The 

membership function is updated by incorporating the spatial function into it: 

𝑢1BM =
𝑢1B
> ℎ1B

<

∑ 𝑢0B
> ℎ0B

<A
0/%

(3.8) 

Where 𝑢1B is the membership of  pixel 𝑥B for the 𝑖OP cluster. Parameters 𝑝 & 𝑞 are used 

to control the relative importance of membership and spatial function respectively. For a 

homogenous region, original membership is retained in spatial function, and hence the 
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results of clustering are same as that obtained by conventional FCM. But for a noisy 

region, the effect of noisy pixel is reduces by weighing the labels of its neighbouring 

pixels. This will improve the classification performance for noisy regions. The spatial 

FCM with parameter 𝑝 and 𝑞 is denoted sFCMp,q.  

Spatial FCM consists of two main steps for each iteration. In first step, membership values 

are calculated in similar way as done in conventional FCM. In second step, while 

considering the local neighbourhood the spatial function is computed and membership 

values are updated. In next iteration of the algorithm the new updated values of 

membership functions are used. These iterations continues till the stopping criterion is 

met. For, final assignments of pixels a defuzzification is applied in which pixels are 

assigned to those clusters for which they have maximum membership value.  

The advantages of the technique are: 

a. For the case of noisy data, its performance is significantly better than conventional 

FCM.  

b. It will reduce the noisy spots and spurious blobs. 

3.5 Fuzzy Local Information C-Means (FLICM) clustering 

FLICM is another widely used algorithm which incorporates spatial information in FCM 

framework. In this algorithm, the objective function of conventional FCM is modified by 

introducing a local spatial and grey level information based fuzzy factor 𝐺01 [8]: 

𝐽7 =[[[𝑢017‖𝑥1 − 𝑣0‖( + 𝐺01]
A

0/%

?

1/%

(3.9) 

Where, 𝑐 represents the number of clusters with 2 ≤ 𝑐 < 𝑁, {𝑥1, 𝑥2, . . . , 𝑥𝑁} is the data set 

with 𝑁 data items, 𝑢𝑘𝑖 is the membership value of data point 𝑥𝑖 for 𝑘𝑡ℎ cluster, 𝑚 is the 

fuzzification factor, 𝑣𝑘 is the 𝑘𝑡ℎ cluster centre. 

In FLICM, the fuzzy factor 𝐺01 is introduced in cost function and this factor is defined 

as: 

𝐺01 = [
1

𝑑1B + 1
³1 − 𝑢0B´

7¬𝑥B − 𝑣0¬
(

B∈?0
1SB

(3.10)
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Where, 𝑁𝑖 is the local window centred on the 𝑖OP pixel, 𝑘 is the reference cluster and the 

𝑗OP pixel belongs to the neighbourhood window centred around 𝑖OP pixel (𝑁𝑖). Spatial 

Euclidean distance between pixels 𝑖 and 𝑗 is denoted by 𝑑𝑖, 𝑗 . 

The factor 𝐺01 possesses following characteristics: 

a. Introduces robustness and noise insensitiveness by incorporating neighbourhood 

grey-level information in a fuzzy way. 

b.  Based on the distance from the central pixel, the effect of the neighbourhood 

pixels is dampened. 

c. It uses original image and avoid pre-processing steps that may lead to missing 

details. 

d. The balance between the image noise and the image details is achieved 

automatically as no parameter selection is required. 

In the algorithm, membership function and cluster centres are updated as: 

𝑢01 =
1

∑ v‖𝑥1 − 𝑣0‖
( + 𝐺01

¬𝑥1 − 𝑣B¬
( + 𝐺B1

w

%
7$%

A
B/%

(3.11)
 

𝑣0 =
∑ 𝑢017𝑥1?
1/%

∑ 𝑢017?
1/%

(3.12) 

The algorithm for FLICM is same as that of FCM as described in Section 3.2 except for 

using equation (3.11) and equation (3.12) for updating membership values and cluster 

prototypes respectively. After convergence is reached, fuzzy partition matrix 𝑈 is 

changed to crisp partition by a defuzzification process. The pixel 𝑖 will be assigned to the 

cluster 𝐶 for which it have highest membership value:  

𝐶𝑖 = arg𝑘	µmax{𝑢𝑘𝑖}¶, 𝑘 = 1,2, … , 𝑐 (3.13) 

3.6 Kernel method Weighted FLICM (KWFLICM) 

KWFLICM algorithm is an improvement over FLICM algorithm. It introduces a trade-

off weighted fuzzy factor and kernel method in the original FLICM [9]. 

In KWFLICM, the objective function is modified as: 
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𝐽7 =[[𝑢017³1 − 𝐾(𝑥1 , 𝑣0)´ + 𝐺01M
A

0/%

?

1/%

(3.14) 

The reformulated fuzzy factor is given by: 

𝐺01M =[[𝑢017 [𝑤1B³1 − 𝑢0B´
7³1 − 𝐾(𝑥1 , 𝑣0)´

B∈?0
1SB

A

0/%

?

1/%

(3.15) 

Where, 𝑁𝑖 is the local neighbours window around pixel 𝑥𝑖 , 𝑤𝑖𝑗 is the trade-off weighted 

fuzzy factor for pixel 𝑗OP in the neighbourhood around pixel 𝑥𝑖 , 1 − 𝐾(𝑥𝑖, 𝑣𝑘) is enhanced 

kernel method based non-Euclidean distance measure and the penalty term (1 − 𝑢𝑘𝑖	)𝑚 is 

responsible for accelerating the iterative convergence to some extent. {𝑣𝑘}0/%A
 is the 

cluster prototype centres and the array {𝑢𝑘𝑖} represents a membership matrix of pixel 𝑥𝑖 

for cluster 𝑣𝑘. 

The updating formulas for membership values and cluster centres are based on 

minimizing the cost function  𝐽𝑚., the update expressions for 𝑢𝑘𝑖  and 𝑣𝑘 are given as 

follows: 

 	

𝑢01 =
1

∑ ·
³1 − 𝐾(𝑝1 , 𝑣0)´ + ∑ 𝑤1B³1 − 𝑢0B´

7³1 − 𝐾(𝑥1 , 𝑣0)´B∈?0
1SB

³1 − 𝐾(𝑝1 , 𝑣K)´ + ∑ 𝑤1B³1 − 𝑢0B´
7³1 − 𝐾(𝑥1 , 𝑣K)´B∈?0

1SB

¸

%
7$%

A
K/%

(3.16)

 

𝑣0 =
∑ (𝑢017𝐾(𝑝1 , 𝑣0)𝑥1)?
1/%

∑ 6𝑢017𝐾(𝑝1 , 𝑣0)7?
1/%

(3.17) 

3.6.1 Trade-Off Weighted Fuzzy Factor 

The trade-off weighted fuzzy factor 𝐺01M  defined in KWFICM depends on both local as 

spatial as well as grey-level constraint. The spatial constraint reflects the extent of 

dampening of neighbouring pixels. This dampening extent for pixel 𝑥1 with coordinate 

(𝑝1 , 𝑞1) is defined as: 

𝑤*A =
1

𝑑1B + 1
(3.18) 
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Where,  𝑁1 is the local window around  𝑖OP pixel and the 𝑗OP pixel represents pixels falling 

in the neighbouring window around the 𝑖OP pixel, 𝑑1B represents the spatial Euclidean 

distance between the 𝑗OP pixel and 𝑖OP the central pixel. This definition of the spatial 

component will effective adjust the influence of the neighbouring pixels according to their 

distance from the central pixel, which in fact will lead to enhanced local information.  

For each pixel 𝑗, the local coefficient of variation 𝐶𝑗 is defined as follow: 

𝐶B =
𝑣𝑎𝑟(𝑥)
(𝑥̅)(

(3.19) 

where 𝑣𝑎𝑟(𝑥) is the variance and 𝑥̅ is the mean of intensity in a local window of the 

image.  

Next 𝐶𝑗 is projected into kernel space. The defined exponential kernel decays rapidly, 

hence the large distance between 𝐶𝑗 and the mean of these local coefficients of variation 

will lead to nearly zero weights. Subsequently, the weights are normalized. Finally, 𝐶𝑗 is 

compared with 𝐶̅ (the mean of 𝐶𝑗 in local window) to provide varying compensation to 

𝐶𝑗, it will lead enlargement in the discrepancy of neighbourhood damping extent.  

Thus, the formulas are given as: 

𝐶̅ =
∑ 𝐶BB∈?0
𝑛1

(3.20) 

𝜉1B = exp 6−³𝐶B − 𝐶̅´7 , 𝑗 ∈ 𝑁1 (3.21) 

𝜂1B =
𝜉1B

∑ 𝜉100∈?0
(3.22) 

𝑤LA = �
2 + 𝜂1B 𝐶B < 𝐶̅

2 − 𝜂1B 𝐶B ≥ 𝐶̅
(3.23) 

Where 𝑁𝑖 is the local window centred around 𝑖OP pixel, the 𝑗OP pixel is the pixel falling in 

this neighbourhood window. The constant 2 is introduced so that the weight 𝑤𝑔𝑐 is non-

negative. The local coefficient of variation is denoted as 𝐶𝑗, this coefficient explains the 

local distribution of the 𝑗OP pixel, the mean value of 𝐶𝑗 is denoted by 𝐶̅ and 𝑛𝑖 is its local 

cardinality.  

Hence, the trade-off weighted fuzzy factor can be written as: 
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𝑤𝑖𝑗	 = 𝑤𝑠𝑐 × 𝑤LA (3.24) 

The degree of grey-level homogeneity in the local window is reflected by the value of 𝐶𝑗. 

For edges and noise corrupted areas it will exhibit high values and for homogeneous 

regions it will have relatively low value. 

3.6.2 Non-Euclidean Distance Based on Kernel Metric 

FLICM uses Euclidean metrics to obtain distance metrics of objective function. Although 

Euclidean distance based computations are convenient but its use may lead to degraged 

segmentation performance for images corrupted by noise and outliers. In KWFLICM a 

‘kernel method’ is used instead of Euclidean distance. A kernel function in the feature 

space can given as: 

𝐾(𝑥, 𝑦) = 〈Φ(𝑥).Φ(𝑦)〉 (3.25) 

where Φ(∗) denotes an implicit nonlinear map and 〈Φ(𝑥).Φ(𝑦)〉 refers to the inner 

product operation.  

There are many kernel functions in literature. In KWFLICM Gaussian Radial basis 

function (GRBF) kernel is used. Its mathematical formulation is as follow: 

𝐾(𝑥, 𝑦) = exp v−
³∑ |𝑥1 − 𝑦1|TU

1/% ´V

𝜎
w (3.26) 

Where 𝑑 represents the dimensions of vector 𝑥, 𝜎 is the bandwidth of kernel, and 𝑎 ≥ 0; 

1 ≤ 𝑏 ≤ 2. 𝐾(𝑥, 𝑥) = 1 for all 𝑥.  

In KWFLICM the distance variance of all data points is used to select bandwidth. For 

KWFLICM: 

𝐾(𝑥1 , 𝑣0) = exp °−
‖𝑥1 − 𝑣0‖(

𝜎
± (3.27) 

And to calculate 𝜎 these steps are followed: 

For a given dataset Ω = {𝑥1, 𝑥2, . . . , 𝑥𝑁}, the data center is given by: 

𝑥̅ =
∑ 𝑥1?
2/%

𝑁
(3.28) 
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Let the distance from data point 𝑥𝑖 to the data centre 𝑥̅ is denoted by  𝑑𝑖 = ‖𝑥𝑖 − 𝑥‖. be 

the distance from data point 𝑥𝑖 to the data centre 𝑥̅. The mean of the distances 𝑑𝑖 is then 

given by: 

𝑑̅ =
∑ 𝑑1?
2/%

𝑁
(3.29) 

The bandwidth 𝜎 is calculated as : 

σ = v
1

𝑁 − 1[
³𝑑1 − 𝑑̅´

(
?

1/%

w

%/(

(3.30) 

The distance variance of the data points represents the degree of aggregation around the 

clusters. For compact clusters which are well separated around clusters, the value of 

variance is small. While for fuzzy or undistinguished clusters, the variance attains large 

value.  

Then, the distance metric based on kernel method can be written as: 

𝐷10( = 1 − 𝐾(𝑥1 , 𝑣0) = 1 − exp °−
‖𝑥1 − 𝑣0‖(

𝜎
± (3.31) 

3.6.3 Framework of KWFLICM Iteration  

The algorithm for KWFLICM is same as that of conventional FCM with added 

computations of  trade-off weighted fuzzy factor 𝑤1B using equation (3.24) and the 

modified distance measurement 𝐷10(  using equation (3.31). After convergence of 

algorithm, the defuzzification process takes place to obtain crisp segmentation.  

3.7 Pixel Intensity and Location information FCM (ILKFCM) 

clustering 

In this section, a variant of FCM algorithm with pixel intensity and location information 

(ILKFCM) specifically designed for SAR image segmentation is described [6]. This 

algorithm uses weighted fuzzy factor into the objective function which incorporates a 

pixel spatial and intensity information. Here, kernel metric is used to measure feature 

similarity. 
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The ILKFCM’s framework consists of three main, first is the feature extraction, second 

is weighted fuzzy factor computation, and the last step is ILKFCM iteration. 

3.7.1 Weighted Fuzzy Factor  

To overcome the limitations of various FCM and its spatial variants for SAR image 

segmentation, upgradation of FCM objective function is needed. Hence a weighted fuzzy 

factor is introduced. This factor has three special features given as follows: 

a. It simultaneously considers the neighbour pixel intensity and location 

information. It will improve the algorithm’s robustness to speckle and outliers; 

b. It needs few parameter selections. 

c. Use of the original image avoids the pre-processing steps which may lead to 

missing image information. 

The fuzzy factor consists the intensity distance factor and the spatial distance factor. For 

every pixel, the location constraint factor reflects the damping extent of the neighbours 

with the spatial distance from the central pixel and is defined as: 

𝑤*U =
1

𝑑1BX + 1
(3.32) 

Where, all the symbols have conventional meanings as defined in the previous sections 

also. The above expression makes the influence of the pixels within the local window 

flexibly change according to their distance from the central pixel, in this way more local 

information can be used. 

Since he Euclidean distance based metrics is not robust for multiplicative noise present 

in SAR images, a ratio based distance measure is used in this algorithm. This distance 

measure is termed as ratio relativity and is defined as: 

𝑑1BY =
1
𝑀[

𝐼?0(𝑘)
𝐼?'(𝑘)

Z

0/%

, 	 𝐼?'(𝑘) ≠ 0 (3.33) 

where 𝐼?0 and 𝐼?' denote the intensity vectors of two same- sized square image patches 

𝑁1 and 𝑁B, i.e., which are centred around pixels 𝑖 and 𝑗. 𝑀 is the total pixel count of the 

image patches. For smaller distance, ratio relativity attains value that is closer to 1 and 

for larger distances , it is farther from. Hence, the ratio relativity is mapped as a rational 



 

 32 

distance. In this algorithm, a natural logarithm function is used to map the relativity into 

the intensity distance factor, which is given as: 

𝑤1U = 1 − log³𝑑1BY ´ (3.34) 

Here constant 1 is included to ensure that intensity distance factor 𝑤1U is nonnegative.  

Hence overall weighted fuzzy factor is given by: 

𝑤1B = 𝑤*U ⋅ 𝑤1U (3.35) 

ILKFCM algorithm considers the spatial distance and the pixel intensity distance 

simultaneously, hence it makes use of more local information, and the robust weighted 

fuzzy factor. These properties makes it more appropriate for SAR image segmentation 

application.  

3.7.2 Framework of ILKFCM Iteration  

The objective function of ILKFCM with added fuzzy factor is defined as: 

𝐽7 =[[[𝑢017‖Φ(𝑝1) − Φ(𝑣0)‖( + 𝐺01]
A

0/%

?

1/%

(3.26) 

Where, all the symbols have conventional meanings defined in previous sections. Here, 

Symbol ‖ ⋅ ‖ is the Euclidean norm, and 𝛷(⋅) is an implicit nonlinear map. The inner 

product between Φ(𝑝1) and Φ(𝑣0) in the feature space is Φ(𝑝1)[Φ(𝑣0) =

𝐾(𝑝1 , 𝑣0).	Through the kernel substitution, we get: 

‖Φ(𝑝1) − Φ(𝑣0)‖( = ³Φ(𝑝1) − Φ(𝑣0)´
[³Φ(𝑝1) − Φ(𝑣0)´	

= 	Φ(𝑝1)[Φ(𝑝1) − Φ(𝑣0)[Φ(𝑝1) − Φ(𝑝1)[Φ(𝑣0) + Φ(𝑣0)[Φ(𝑣0) 

= 𝐾(𝑝1 , 𝑝1) + 	𝐾(𝑣0 , 𝑣0) − 	2𝐾(𝑝1 , 𝑣0) (3.37) 

The algorithm considers Gaussian radial basis function (GRBF) kernel, its use will 

modify equation 3.37 in following form : 

‖Φ(𝑝1) − Φ(𝑣0)‖( = 2 ³1  −  K (𝑝1 ,  𝑣0)´ (3.38) 

Kernel distance K(𝑝1 , 𝑣0) is defined as: 

K(𝑝1 , 𝑣0) = exp°−
‖𝑝1 − 𝑣0‖(

𝜎
± (3.39) 
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Where,	𝜎 is the bandwidth of the GRBF kernel. The parameter is set on the basis of the 

distance variance of all feature vectors [6]. Let 𝐷3 =	‖𝑝3 − 𝑝̅‖ be the distance from feature 

vector 𝑝1 to feature average 𝑝̅. Then, we can get the mean distance of 𝐷1 as follows: 

𝐷Æ =
1
 𝑁  [𝐷1

?

1 / %

(3.40) 

and 𝜎 can be set as: 

σ = v
1

𝑁 − 1[
(𝐷1 − 𝐷Æ)(

?

1/%

w

%/(

(3.41) 

The weighted fuzzy distance 𝐺01 is written as follows: 

𝐺01 = [ 𝑤1B³1 − 𝑢0B´
7‖Φ(𝑝1) − Φ(𝑣0)‖(

B∈?0,BS1

(3.42) 

Similar to the FCM iteration, the two necessary conditions for 𝐽7 to be at its local minimal 

extreme, with respect to 𝑢01 and 𝑣0, is obtained as follows: 

𝑢01 =
1

∑ Ç
2³1 − 𝐾(𝑝1 , 𝑣0)´ + 𝐺01
2 61 − 𝐾³𝑝1 , 𝑣B´7 + 𝐺B1

È

%
7$%

A
B/%

(3.43)

 

𝑣0 =
∑ (𝑢017𝐾(𝑝1 , 𝑣0)𝑝1)?
1/%

∑ 6𝑢017𝐾(𝑝1 , 𝑣0)7?
1/%

(3.44) 

The algorithm for ILKFCM is same as of conventional FCM with added calculations of 

weighted fuzzy factor 𝑤1B and the kernel distance of the feature vectors, as depicted 

in equation (3.35) and equations (3.38) & (3.39), respectively. After convergence of 

algorithm, a defuzzification process takes place in order to convert fuzzy partition 

matrix 𝑈 to the crisp segmented image. 

3.8 Gaussian Mixture Model (GMM) 

Gaussian Mixture Model (GMM) is another type of soft assignment clustering algorithm 

which assumes Gaussian distribution for the dataset [32]. In GMM, a data point can 
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belong to multiple clusters with different Gaussian distributions. In effect, each 

distribution has some ‘responsibility’ for generating a particular data point. 

Due to applicability of central limit theorem, many real life datasets can be modelled by 

Gaussian Distribution. Hence it is appropriate to assume that different clusters can be 

modelled as different Gaussian Distributions. In GMM, it is assumed that dataset can be 

modelled as a mixture of several Gaussian Distributions. The presence of latent variables 

makes EM algorithm appropriate choice for parameter estimation. 

The EM algorithm generally consists E-step or Expectation step and M-step or 

Maximisation step: 

} The E-Step 

The Gaussian Mixture distribution can be written as a combination of Gaussians 

with weights equal to 𝜋. Where 𝐾 is the number of Gaussians we want to model. 

𝑝(𝑥) = [𝜋0𝑁(𝑥|𝜇0 , Σ0)
\

0/%

(3.45) 

Here 𝐾 is the number of distributions considered. Next, posterior distribution of the 

responsibilities can be calculated as: 

𝛾(𝑧20) =
𝜋0𝑁(𝑥2|𝜇0 , Σ0)

∑ 𝜋B𝑁(𝑥2|𝜇B , ΣB)\
B/%

 

} The M-Step 

In M-step, the parameters for each Gaussian are estimated based on the posteriors 

calculated in E-step. These two E and M steps are then repeated till convergence is 

acheived. 

𝜇02]^ =
1
𝑁0

[𝛾(𝑍20)𝑥2

?

2/%

(3.46) 

Σ02]^ =
1
𝑁0

[𝛾(𝑍20)(𝑥2 − 𝜇02]^)
?

2/%

(𝑥2 − 𝜇02]^)[ (3.47) 

𝜋02]^ =
𝑁0
𝑁

(3.48) 
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𝑁0 = [𝛾(𝑍20)
?

2/%

(3.49) 

ln 𝑝(𝑋|𝜇, Σ, 𝜋) =[ ln Ì[𝜋0𝑁(𝑥2|𝜇0 , Σ0)
\

0/%

Í
?

2/%

(3.50) 

3.9 Fuzzy Local Information and Lp- norm distance-based clustering 

(FLILp) 

FLILp is another variant of fuzzy c-means (FCM) clustering algorithm which uses 𝐿> 

norm distance in objective function. This algorithm has find wide application in image 

segmentation [10]. The use of 𝐿>- norm will improve performance over the FLICM 

algorithm. The incorporation of local and grey-scale information and spatial information 

enhances the performance of algorithm in presence of noise and outliers. 𝐿>-norm 

distance is approximated by weighted 𝐿(  distance to avoid mathematical inconvenience. 

Considering the case of grey-level images, i.e. 𝑥𝑖 ∈ 𝑅. Let 𝑝 ∈ (0,1] . We denote the local 

window centred at 𝑥1 by 𝑁1. Let 𝑢0B  be the degree of membership of the 𝑗OP pixel in the 

𝑘OP cluster with centre 𝑣0. The objective function of the FLILp technique is given as:  

𝐽7 =[[𝑢017(‖𝑥1 − 𝑣0‖> + 𝛼𝐺01)
A

0/%

?

1/%

(3.51) 

Where, 𝑁1 is the local window centred around pixel 𝑥1, 𝑢0B represents the membership 

value of 𝑗OP pixel for the 𝑘OP cluster with centre 𝑣0,  𝛼 > 0 provides noised robustness by 

controlling the contribution of the local factor (α=1 in FLICM). Large values of α is used 

for higher noise-levels. In equation (3.51) ∥⋅∥ represents the Euclidean distance. 𝐿>- 

norm-based local factor 𝐺01  is introduced to incorporate the local information, this factor 

is given as: 

𝐺01 = [ 𝐾1B³1 − 𝑢0B´
7‖𝑥1 − 𝑣0‖>

B∈?0

(3.52) 

One choice of 𝐾1B  is,  
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𝐾1B = Ï
0, 𝑖 = 𝑗
1

𝑑1B + 1
𝑖 ≠ 𝑗 (3.53) 

Where 𝑑1B represents spatial Euclidean distance between the 𝑖OP and 𝑗OP pixel. 

The update formula for membership functions is: 

𝑢01 =
1

∑ f𝐷01𝐷0B
h

%
7$%A

B/%

(3.54)
 

Where, 

𝐷01 = ‖𝑥1 − 𝑣0‖> + 𝛼𝐺01 (3.55) 

And cluster centres are updated using: 

𝑣0 =
∑ 𝑤01?
1/% 𝑥1
∑ 𝑤01?
1/%

(3.56) 

Where, 

𝑤01 =
𝑢017 + 𝛼(𝐾	𝑢017)(1 − 𝑢01)7

¬𝑥1 − 𝑣0]¬
($> (3.57) 

The algorithm for FLILp  is same as that of conventional FCM while using equation 

(3.54) to update the membership functions and equation (3.56) to update the centres of 

clusters. The final crisp segmentation result is obtained by assigning the pixel 𝑖 to the 

cluster 𝐶 for which it has maximum membership value. It can be given as: 

𝐶𝑖 = arg𝑘	µmax{𝑢𝑘𝑖}¶, 𝑘 = 1,2, … , 𝑐 (3.58) 

The advantage of FLILp are that it is comparatively robust to noise and outliers. Also, it 

is applied to original image and hence is computationally efficient. 

3.10 Modified FLICM 

In Modified FLICM, an enhanced fuzzy factor is used, in which weighted membership 

value is used to indicate the implicit Grey level information of the neighbourhood. Since, 

this factor does not use the Grey level values explicitly it is more robust for the case of 

SAR images.  
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The implicit Grey level information is incorporated using two steps procedure. First, for 

pixel 𝑥B 	and cluster 𝑘, weight 𝑤0B is calculated by averaging the membership values of 

neighbouring pixels (for cluster	𝑘) in the local window centred on the current pixel 𝑥B: 

𝑤0B = [ 𝑢0K
K∈?Q8'R
KS0

(3.59)
 

Where 𝑁(𝑥B) is a square window centred on pixel 𝑥B.  

The weights are calculated for each pixel and cluster combination. For given cluster 𝑐 and 

pixel 𝑥B 		, 𝑤AB is large if majority of pixels in the neighbourhood of pixel 𝑥B 	belong to 

cluster 𝑐.   

In second step, these weights 𝑤0B are used to update the membership values 𝑢0B of the 

pixels: 

𝑢0BM =
𝑢0B𝑤0B

∑ 𝑢KB𝑤KBA
K/%

(3.60) 

If majority of non-noisy neighbouring pixels of 𝑥B 	belongs to cluster 𝑐, then the effect of 

weight 𝑤0B will adjust membership value of pixel 𝑥B 	towards cluster c. This way of 

weighing gives consistent membership values when centre pixel 𝑥B 	or few of its 

neighbours are noisy. Hence with the incorporation of 𝑤0B the algorithm becomes more 

robust for noisy SAR images.  

Enhanced fuzzy factor with weighted membership function is defined as 

𝐺′01 = [
1

𝑑1B + 1
³1 − 𝑢′0B´

7¬𝑥B − 𝑣0¬
(

B∈?0
1SB

(3.61)
 

And the cost function with enhanced fuzzy factor is, 

𝐽7 =[[[𝑢017‖𝑥1 − 𝑣0‖( + 𝐺M01]
A

0/%

?

1/%

	 (3.62) 

At each iteration the algorithm calculates membership functions using equation (3.11) 

replacing 𝐺1B by 𝐺1BM  and then updates it using equation (3.60). Cluster prototypes are 
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calculated using equation (3.12) replacing 𝑢1B by 𝑢1BM . Equation (3.62) is used to calculate 

the cost function. The iterations continue until the algorithm converges. 

 

Figure 3.3: a) Noisy image and Grey level values for 5x5 patch; (b) Initial and final membership values using 
FLICM; (c) Initial and final membership values using Modified FLICM  (after 50 iterations) 

The effect of adding smoothing weight factor can be understood as follows. If a 

neighbourhood pixel ‘A’ is noisy, then its membership value for a given cluster will be 

significantly different from centre pixel and other neighbouring non-noisy pixels. If this 

membership value is directly used to calculate fuzzy factor 𝐺01, it will increase the value 

of cost function and will also affect the partition matrix and cluster prototypes 

calculations. But if its weighted membership value is used in calculation of 𝐺01, the effect 
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of noisy membership value smooth out. This situation is further illustrated in  Figure 3.3. 

A 5×5 patch is taken from a noisy image. In this patch centre pixel as well as neighbouring 

pixels are noisy. With FLICM, the membership value of the centre pixel and its 

neighbouring noisy pixel did not converge towards true cluster as shown in Figure 3.3(b). 

But with Modified FLICM, membership values of all pixels converged towards true 

cluster as shown in Figure 3.3(c). 

3.11 Modified KWFLICM 

KWFLICM takes into account both grey level and spatial distance information to 

incorporate spatial context information. Modified KWFLICM uses neighbourhood 

information in similar way as specified in KWFLICM (Section 3.6) , but it also enhance 

this neighbourhood information using membership value of adjacent pixels as done in 

sFCM. Hence, this technique takes advantage of both KWFLICM and Spatial FCM 

algorithms. At each iteration the algorithm updates the cluster prototypes and membership 

functions as is done in KWFLICM algorithm. At end of the KWFLICM iteration the 

membership functions are modified using membership function of neighbouring pixel as 

is done in Spatial FCM using equations (3.7) and (3.8). The iterations continue until the 

algorithm converges. 

3.12 Modified ILKFCM 

Modified ILKFCM is reduced version of ILKFCM. It is based on the observation that 

weight 𝑤1U as defined using equations (3.34) and (3.35) is not normalised i.e. it may fall 

outside the range [0,1]. Experimentally it was found that this weight affect the clustering 

result severally in some cases. This is due to the fact that a value more than 1 or less than 

0 can adversely affect the clustering performance of the algorithm. 

The modified ILKFCM algorithm is same as ILKFCM except the fact that weighted fuzzy 

factor is computed as: 

𝑤1B = 𝑤*U (3.63) 

3.13 Modified Spatial FCM 

In spatial FCM, to exploit the spatial information; a spatial function is used to modify the 

membership function at each iteration. However, this technique do not incorporates the 



 

 40 

damping extent of neighbouring pixels based on their distance from centre pixel. Hence, 

to further enhance the representation of this spatial information, the elements of the spatial 

function are weighted according to their Euclidean distance from the current pixel. The 

weights are defined as: 

𝑤B0 = Ï
0, 𝑗 = 𝑘
1

𝑑B0 + 1
𝑗 ≠ 𝑘 ,𝑤ℎ𝑒𝑟𝑒	𝑘 ∈ 𝑁³𝑥B´ (3.64) 

Where 𝑁(𝑥𝑗) represents a square window centered on pixel 𝑥𝑗 in the spatial domain and 

𝑑B0  is the spatial Euclidean distance of the 𝑗OP pixel and 𝑘OP pixel. 

Thus the spatial function is given by: 

ℎ1B = [ 𝑤B0 	𝑢10
0∈?Q8'R

(3.65) 

At each iteration, the algorithm updates the cluster prototypes and membership functions 

as is done in FCM algorithm. At end of the FCM iteration the membership functions are 

modified using ℎ1B as is done in Spatial FCM using equations (3.8). The iterations 

continue until the algorithm converge. 
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Chapter 4  

Performance Evaluation of Segmentation  

In the project, two different methodologies have been used for performance evaluation of 

synthetic images and real SAR images. 

4.1 Performance Evaluation for Synthetic Images 

The Ground Truth data is readily available in case of synthetic images and hence a 

confusion/error matrix can be computed. 

Suppose there are 𝑟 segments in the image, given by 𝑆%, 𝑆(, … , 𝑆'. Then the confusion 

matrix has dimensions of 𝑟 × 𝑟 and is given by [33]: 

𝐶𝑀 = Ð

𝑐𝑚%% 𝑐𝑚%( ⋯ 𝑐𝑚%'
𝑐𝑚(% 𝑐𝑚(( ⋯ 𝑐𝑚('
⋮ ⋮ ⋱ ⋮

𝑐𝑚'% 𝑐𝑚'( ⋯ 𝑐𝑚''

Ô (4.1) 

In matrix 𝐶𝑀, rows correspond to ground truth and columns to segmented results. 

Element 𝑐𝑚1B is equal to count of  pixels belonging to segment 𝑆1 and classified as 

segment 𝑆B. Therefore, the row total is equal to the pixel count of corresponding image 

segment in ground truth whereas column total is given by the pixel count of corresponding 

image segment in segmented result. 

An confusion is an efficient means of reflecting accuracy/inaccuracy in segmentation, 

because it provides a clear way of deriving the individual accuracies of each segment as 

well as errors related to false positives i.e. wrongly assigning a class to an image 

area(commission errors) and false negatives i.e. wrongly omitting an image area from the 

class to which it belongs (omission errors) in the segmented image. [34]. 

The overall accuracy, normalised accuracy and Kappa statistics can be computed from 

the error matrix for assessing the segmentation performance. 

4.1.1 Overall Accuracy 

The major diagonal of the error matrix represents the count of correctly segmented pixels. 

The overall accuracy is given by trace (i.e., the correctly segmented pixels) of the error 

matrix divided by the pixel count (𝑁) in the confusion matrix. It can be computed as: 
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𝑂𝐴 =
1
𝑁[𝑐11

'

1/%

(4.2) 

4.1.2 Normalised Accuracy 

The error matrix is “normalised” or standardized using an algorithm called Margfit [34]. 

An iterative procedure using proportional fitting is utilised to force marginals i.e. rows 

and columns in the matrix, such that each row/column sum equals some predetermined 

value; hence the name Margfit-‘marginal fitting’. When this value is equal to 1, matrix 

elements lie in the range [0,1] and can be converted to percentage value by multiplying 

with 100. Otherwise if this value if set to 100, directly percentage values are obtained. 

The normalization process eliminates the effect of any difference existing in size of 

individual classes; making the value of individual cells directly comparable with each 

other. During iterations, sum of rows and columns is calculated which is used to normalise 

the matrix, thus the normalized error matrix is more representative of the values of the 

off-diagonal cells (omission and commission errors). During the process, cell values 

along the major matrix diagonal also gets modified. Overall accuracy computed for this 

normalised matrix in termed as normalized accuracy.  

Normalized accuracy incorporates information from major diagonal as well as off 

diagonal elements, thus when compared with overall accuracy, it is a better accuracy 

metric. 

4.1.3 Kappa Statistics 

Kappa analysis is used for comparing two error matrices statistical analysis [34]. The 

comparison is based on 𝐾Ö statistic (i.e. estimated Kappa). 𝐾Ö can also be used as metric of 

agreement. 𝐾Ö is based on difference between the actual agreement and chance agreement 

in the error matrix. Actual agreement is given by major diagonal of the error matrix 

whereas row and column totals indicate the chance agreement. 

𝐾Ö statistic can be computed using following equations: 

Let 𝑝1B, 𝑝1-, and 𝑝-B 

𝑝1B =
𝑐1B
𝑁

(4.3) 
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𝑝1- =[𝑝1B

'

B/%

(4.4) 

𝑝-B =[𝑝1B

'

1/%

(4.5) 

Then, the actual agreement is given by: 

𝑝T =[𝑝11

'

1/%

(4.6) 

And the chance agreement is given by: 

𝑝A =[𝑝1-	𝑝-B

'

1/%

(4.7) 

Then the 𝐾Ö is given by: 

𝐾Ö =
𝑝T − 𝑝A
1 − 𝑝A

(4.8) 

Combining above equations, we get: 

𝐾Ö =
𝑁∑ 𝑐11'

1/% −∑ 𝑐1-	𝑐-1'
1/%

𝑁( − ∑ 𝑐1-	𝑐-1'
1/%

(4.9) 

Where, 𝑐1- is row sum and 𝑐-1 is the column sum: 

𝑐1- =[𝑐1B

'

B/%

(4.10) 

𝑐-B =[𝑐1B

'

1/%

(4.11) 

The range of KHAT is [-1,1]. However, when used for current purpose of indication of 

accuracy, 𝐾Ö is expected to lie in the range [0,1] as positive correlation between the 

segmentation results and ground truth data exists. 
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4.2 Performance Evaluation for Real SAR Images 

For real SAR test images, cross-region fitting index (CRF) is used to assess the 

segmentation performance. CRF is used as ground truth data, which may not be available 

for the real images, is not required for its calculation. The values CRF lie in the range [0, 

1], where CRF = 1 indicates the best segmentation result. The CRF depend on Difficulty 

of Segmentation (DoS). On the basis of the contrast between foreground and background 

regions, DoS quantifies the difficulty in segmenting the two regions. CRF and DoS 

indexes depend on the arithmetic-geometric distance between samples from the two 

regions [35, 36]. 

} Arithmetic-Geometric Distance 

CRF and DoS are computed based on arithmetic-geometric distance. For speckled 

data this distance provides the best discrimination ability in performing the contrast 

quantification [36]. 

The arithmetic-geometric distance between 𝑍% ∈ Ω% and 𝑍( ∈ Ω( is given by [4]: 

𝑆_!(𝑍%, 𝑍() =
1
2
A ×f𝑓!!"(𝑧, 𝜃%, 𝑛) 	+ 𝑓!!"(𝑧, 𝜃(, 𝑛)h	
ℝ4

 

																																																												× log

⎝

⎛
𝑓!!"(𝑧, 𝜃%, 𝑛) 	+ 𝑓!!"(𝑧, 𝜃(, 𝑛)

2Ú𝑓!!"(𝑧, 𝜃%, 𝑛) 	× 𝑓!!"(𝑧, 𝜃(, 𝑛)⎠

⎞

⎦
⎥
⎥
⎤

(4.12) 

} Segmentation Distance 

Segmentation distance is an indicator of the statistical distance between the 

reference region and segmentation result. It can be expressed as [4]: 

𝑆𝐷 = 𝑆_!³𝑍a' , 𝑍a*´ (4.13) 

where 𝑍#$ ∈ Ω#$	is the reference foreground and 𝑍#% ∈ Ω#% is segmented area/region. 

} Difficulty of Segmentation (DoS) 

DoS quantifies the difficulty in segmenting the two regions, the 

foreground (Ωf) and background (Ωb) in present study. Low region contrast implies 

small SAG(Zf,Zb); and thus greater difficulty in segmentation them. It is calculated 

as [4]: 



 

 45 

𝐷𝑜𝑆	 = 	
1

𝑆_!³𝑍a , 𝑍V´
(4.14) 

} Cross Region Fitting (CRF) 

It quantifies the ability of the technique to segment the image areas/regions 

correctly. CRF can be calculated as [4]: 

𝐶𝑅𝐹 =
1

1 + Ú𝐷𝑜𝑆 × à𝑆_!³𝑍a' , 𝑍V*´ − 𝑆_!³𝑍a*, 𝑍V'´à
(4.15) 
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Chapter 5  

Experiments and Results 

To analyse segmentation performance of different segmentation techniques with different 

feature combinations, the experiments were conducted on synthetic as well as real SAR 

images. For all the features extraction methods requiring neighbourhood operations, the 

size of window is taken to be 5x5 until specified otherwise.  

5.1 Synthetic Data Generation 

First, for conducting systematic Monte-Carlo experiments, synthetic SAR images are 

generated. Here, G0A distribution is used to model different regions in the synthetic 

images as it can accurately model homogeneous, moderately heterogeneous, and 

extremely heterogeneous areas in a real SAR image. The greyscale synthetic SAR images 

of size 128×128 pixels contain a foreground rectangular patch of size 90×91 pixels, 

resulting in approximately equal number of foreground and background pixels. Single 

look (𝐿 = 1) synthetic images are used to analyse the performance of segmentation. 72 

different greyscale images of same size and shape with different foreground (f) and 

background (b) regions following the G0A ³𝛼a , 𝛾a , 𝐿´ and G0A (𝛼V , 𝛾V , 𝐿) distributions, 

respectively are used. To generate images various values of ³𝛼a , 𝛾a´ and (𝛼V , 𝛾V) were 

used. For generating the synthetic images, following equation is used [4]: 

𝑍 = Ú−
𝛾
𝛼 ΥZ,?

$% (𝑈) (5.1) 

Where,	𝑀 = 2L,𝑁 = −2𝛼 and ΥZ,?$% 	is the inverse cumulative distribution function of a 

Snedecor’s 𝐹Z,? distributed random variable with M and N degrees of freedom, and 𝑈 is 

a uniformly distributed random variable over [0, 1]. As result amplitude images are 

obtained. The intensity image is formed by squaring the amplitude values (𝑍). 

5.2 Results with Synthetic Data 

A total of 72 synthetic images were generated. The parameters used for the synthetic 

images are listed in Table 5.1. The table also lists the Difficulty of Segmentation (DoS) 

parameter for these images as computed using the relations given in Section Chapter 4.  
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Table 5.1: Parameters for Synthetic Images 

Image Name 
Foreground Background DoS 

𝛼 𝛾 𝛼 𝛾 24.44 

Synth_1 -1 1 -1 10 15.55 

Synth_2 -1 1 -1 25 2.81 

Synth_3 -1 1 -4 1 76.66 

Synth_4 -1 1 -4 10 29.51 

Synth_5 -1 1 -4 25 1.83 

Synth_6 -1 1 -10 1 200.68 

Synth_7 -1 1 -10 10 92.86 

Synth_8 -1 1 -10 25 24.24 

Synth_9 -1 10 -1 1 269.31 

Synth_10 -1 10 -1 25 1.57 

Synth_11 -1 10 -4 1 108.71 

Synth_12 -1 10 -4 10 1734.96 

Synth_13 -1 10 -4 25 0.5 

Synth_14 -1 10 -10 1 12.33 

Synth_15 -1 10 -10 10 93.15 

Synth_16 -1 10 -10 25 15.65 

Synth_17 -1 25 -1 1 523.63 

Synth_18 -1 25 -1 10 1.38 

Synth_19 -1 25 -4 1 48.23 

Synth_20 -1 25 -4 10 164.49 

Synth_21 -1 25 -4 25 0.41 

Synth_22 -1 25 -10 1 9.54 

Synth_23 -1 25 -10 10 43.08 

Synth_24 -1 25 -10 25 2.96 

Synth_25 -4 1 -1 1 1.57 

Synth_26 -4 1 -1 10 1.4 

Synth_27 -4 1 -1 25 1.96 

Synth_28 -4 1 -4 10 1.63 

Synth_29 -4 1 -4 25 20.21 
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Synth_30 -4 1 -10 1 4.06 

Synth_31 -4 1 -10 10 2.06 

Synth_32 -4 1 -10 25 81.31 

Synth_33 -4 10 -1 1 100.89 

Synth_34 -4 10 -1 10 40.99 

Synth_35 -4 10 -1 25 2.01 

Synth_36 -4 10 -4 1 179.82 

Synth_37 -4 10 -4 25 0.88 

Synth_38 -4 10 -10 1 29.84 

Synth_39 -4 10 -10 10 8710.55 

Synth_40 -4 10 -10 25 30.03 

Synth_41 -4 25 -1 1 1968.63 

Synth_42 -4 25 -1 10 157.01 

Synth_43 -4 25 -1 25 1.64 

Synth_44 -4 25 -4 1 192.61 

Synth_45 -4 25 -4 10 0.57 

Synth_46 -4 25 -10 1 14.07 

Synth_47 -4 25 -10 10 164.8 

Synth_48 -4 25 -10 25 1.72 

Synth_49 -10 1 -1 1 0.51 

Synth_50 -10 1 -1 10 0.43 

Synth_51 -10 1 -1 25 19.68 

Synth_52 -10 1 -4 1 0.91 

Synth_53 -10 1 -4 10 0.58 

Synth_54 -10 1 -4 25 2.12 

Synth_55 -10 1 -10 10 0.92 

Synth_56 -10 1 -10 25 145.51 

Synth_57 -10 10 -1 1 11.84 

Synth_58 -10 10 -1 10 8.82 

Synth_59 -10 10 -1 25 3.89 

Synth_60 -10 10 -4 1 30.1 

Synth_61 -10 10 -4 10 14.26 

Synth_62 -10 10 -4 25 2.3 

Synth_63 -10 10 -10 1 29.08 
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Synth_64 -10 10 -10 25 95.84 

Synth_65 -10 25 -1 1 102.72 

Synth_66 -10 25 -1 10 45.06 

Synth_67 -10 25 -1 25 2.02 

Synth_68 -10 25 -4 1 7899.06 

Synth_69 -10 25 -4 10 186.71 

Synth_70 -10 25 -4 25 0.89 

Synth_71 -10 25 -10 1 31.03 

Synth_72 -10 25 -10 10 24.44 

The ground truth for all the synthetic images is as per Figure 5.1. Each image is a 

200 × 200 pixel image. In each image the foreground occupies 140 × 140 pixels. 

 

Figure 5.1: Ground Truth for Synthetic Images 

For each image, features listed in Section Chapter 2 were computed and for each of these 

features, segmentation techniques listed in Section Chapter 3 were applied to segment the 

image. 

For each feature-technique combination accuracy of segmentation, normalized accuracy 

and Kappa coefficient were computed. The segmentation performance of the techniques 

is given in subsequent sub-sections. The performance is shown in terms of feature-wise 

plots of DoS (of 72 images) vs segmentation accuracy. 
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5.2.1 Intensity 

 

Figure 5.2: DoS vs Segmentation Accuracy for Feature 'Intensity' (1) 

 

Figure 5.3: DoS vs Segmentation Accuracy for Feature 'Intensity' (2) 
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5.2.2 Roughness 

 

Figure 5.4: DoS vs Segmentation Accuracy for Feature 'Roughness' (1) 

 

Figure 5.5: DoS vs Segmentation Accuracy for Feature 'Roughness' (2) 
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5.2.3 Scale 

 

Figure 5.6: DoS vs Segmentation Accuracy for Feature 'Scale' (1) 

 

Figure 5.7: DoS vs Segmentation Accuracy for Feature 'Scale' (2) 
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5.2.4 Roughness and Scale based Feature Map 

 

Figure 5.8: DoS vs Segmentation Accuracy for Feature 'Roughness and Scale based Feature-Map' (1) 

 

Figure 5.9: DoS vs Segmentation Accuracy for Feature 'Roughness and Scale based Feature-Map' (2) 
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5.2.5 Roughness and Scale 

 

Figure 5.10: DoS vs Segmentation Accuracy for Feature 'Roughness and Scale' (1) 

 

Figure 5.11: DoS vs Segmentation Accuracy for Feature 'Roughness and Scale' (2) 
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5.2.6 Shannon Entropy 

 

Figure 5.12: DoS vs Segmentation Accuracy for Feature 'Shannon Entropy' (1) 

 

Figure 5.13: DoS vs Segmentation Accuracy for Feature 'Shannon Entropy' (2) 

0 20 40 60 80 100 120 140 160 180 200
Difficulty of Segmentation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Feature = Shannon Entropy

K-Means
GMM
SOM
FLILp
FCM
Spatial FCM
Modified Spatial FCM

0 20 40 60 80 100 120 140 160 180 200
Difficulty of Segmentation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Feature = Shannon Entropy

FLICM
KWFLICM
ILKFCM
Modified FLICM
Modified KWFLICM
Modified ILKFCM



 

 56 

5.2.7 Renyi Entropy 

 

Figure 5.14: DoS vs Segmentation Accuracy for Feature 'Renyi Entropy' (1) 

 

Figure 5.15: DoS vs Segmentation Accuracy for Feature 'Renyi Entropy' (2) 
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5.2.8 Tsallis Entropy 

 

Figure 5.16: DoS vs Segmentation Accuracy for Feature 'Tsallis Entropy' (1) 

 

Figure 5.17: DoS vs Segmentation Accuracy for Feature 'Tsallis Entropy' (2) 
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5.2.9 Wavelet Energy 

 

Figure 5.18: DoS vs Segmentation Accuracy for Feature 'Wavelet Energy' (1) 

 

Figure 5.19: DoS vs Segmentation Accuracy for Feature 'Wavelet Energy' (2) 
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5.2.10 Local Binary Pattern 

 

Figure 5.20: DoS vs Segmentation Accuracy for Feature 'Local Binary Pattern' (1) 

 

Figure 5.21: DoS vs Segmentation Accuracy for Feature 'Local Binary Pattern' (2) 
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5.2.11 GLCM 

 

Figure 5.22: DoS vs Segmentation Accuracy for Feature 'GLCM' (1) 

 

Figure 5.23: DoS vs Segmentation Accuracy for Feature 'GLCM' (2) 
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5.2.12 Central Statistical Moments 

 

Figure 5.24: DoS vs Segmentation Accuracy for 'Central Statistical Moments' (1) 

 

Figure 5.25: DoS vs Segmentation Accuracy for 'Central Statistical Moments' (2) 
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5.2.13 GLDM 

 

Figure 5.26: DoS vs Segmentation Accuracy for Feature 'GLDM' (1) 

 

Figure 5.27: DoS vs Segmentation Accuracy for Feature 'GLDM' (2) 
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5.2.14 Local PDF 

 

Figure 5.28: DoS vs Segmentation Accuracy for Feature 'Local PDF' (1) 

 

Figure 5.29: DoS vs Segmentation Accuracy for Feature 'Local PDF' (2) 
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5.2.15 GLRLM 

 

Figure 5.30: DoS vs Segmentation Accuracy for Feature 'GLRLM' (1) 

 

Figure 5.31: DoS vs Segmentation Accuracy for Feature 'GLRLM' (2) 
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5.2.16 Histogram of Gradients 

 

Figure 5.32: DoS vs Segmentation Accuracy for Feature 'Histogram of Gradients' (1) 

 

Figure 5.33: DoS vs Segmentation Accuracy for Feature 'Histogram of Gradients' (2) 

0 20 40 60 80 100 120 140 160 180 200
Difficulty of Segmentation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Feature = Histogram of Gradients

K-Means
GMM
SOM
FLILp
FCM
Spatial FCM
Modified Spatial FCM

0 20 40 60 80 100 120 140 160 180 200
Difficulty of Segmentation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ac
cu

ra
cy

Feature = Histogram of Gradients

FLICM
KWFLICM
ILKFCM
Modified FLICM
Modified KWFLICM
Modified ILKFCM



 

 66 

5.2.17 Variogram 

 

Figure 5.34: DoS vs Segmentation Accuracy for Feature 'Variogram' (1) 

 

Figure 5.35: DoS vs Segmentation Accuracy for Feature 'Variogram' (2) 
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5.3 Comparison of Results for Synthetic Images 

Based on the results obtained for synthetic images (Figure 5.2 to Figure 5.35), Figure 5.36 

shows the feature-technique combinations which have performed better than the others. 

These combinations are: 

a. Wavelet Energy – FLICM (WE-FLICM) 

b. Wavelet Energy – ILKFCM (WE-ILKFCM) 

c. Wavelet Energy – Modified FLICM (WE-mFLICM) 

d. Wavelet Energy – Modified ILKFCM (WE-mILKFCM) 

e. Central Statistical Moments – FLICM (CM-FLICM) 

f. Central Statistical Moments – ILKFCM (CM-ILKFCM) 

g. Central Statistical Moments – Modified FLICM (CM-mFLICM) 

h. Central Statistical Moments – Modified ILKFCM (CM- mILKFCM) 

i. GLDM  – FLICM (GL-FLICM) 

j. GLDM – Modified FLICM (GL-mFLICM) 

 

Figure 5.36: Comparison of Results for Synthetic Images 
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Here it is observed that, Modified FLICM with Wavelet Energy feature of image gives 

the best overall performance for synthetic SAR images. 

Next these techniques are used to segment real SAR images. 

5.4 Results with Real SAR Images 

Those feature-technique combinations which performed better on synthetic SAR images 

were also analysed with real SAR data. For testing on real SAR data, intensity images 

from the MSTAR public target dataset [37] are used. These images have military vehicles 

in a vegetation background. Out of the various images available in the dataset, three 

images, one image each of 2S1 Gvozdika self-propelled howitzer, BRDM-2 amphibious 

armoured patrol car and T-72 tank, are used as the test images. 

Figure 5.37 shows the segmented images using the ten feature-techniques for 2S1. 

 

(a) 

 

(b) 

Feature=Wavelet energy, Method=FLICM

Feature=Wavelet energy, Method=ILKFCM
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(c) 

 

(d) 

 

(e) 

Feature=Wavelet energy, Method=Modified FLICM

Feature=Wavelet energy, Method=Modified ILKFCM

Feature=Central Statistical Moments, Method=FLICM
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(f) 

 

(g) 

 

(h) 

Feature=Central Statistical Moments, Method=ILKFCM

Feature=Central Statistical Moments, Method=Modified FLICM

Feature=Central Statistical Moments, Method=Modified ILKFCM
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(i) 

 

(j) 

Figure 5.37: Segmented Images for SAR Image of 2S1 [(a)-{j)] 

Error! Reference source not found.Table 5.2, Table 5.3 and Table 5.4 list the 

performance of the ten feature-techniques for the three images: 

Table 5.2: Segmentation Performance for SAR Image of 2S1 (DoS=2.141) 

Technique Accuracy 
Normalised 

Accuracy 
Kappa CRF F-Measure 

WE-FLICM 0.755 0.969 0.071 0.645 0.093 

WE-ILKFCM 0.841 0.942 0.113 0.686 0.134 

WE-mFLICM 0.997 0.986 0.878 0.974 0.88 

Feature=GLDM, Method=FLICM

Feature=GLDM, Method=Modified FLICM
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WE-mILKFCM 0.590 0.955 0.034 0.601 0.058 

CM-FLICM 0.756 0.969 0.071 0.646 0.094 

CM-ILKFCM 0.894 0.947 0.168 0.721 0.187 

CM-mFLICM 0.997 0.986 0.874 0.819 0.876 

CM-mILKFCM 0.633 0.958 0.041 0.611 0.064 

GL-FLICM 0.896 0.896 0.160 0.499 0.179 

GL-mFLICM 0.584 0.563 0.007 0.482 0.032 

Table 5.3: Segmentation Performance for SAR Image of BRDM2 (DoS=2.345) 

Technique Accuracy 
Normalised 

Accuracy 
Kappa CRF F-Measure 

WE-FLICM 0.996 0.984 0.881 0.794 0.883 

WE-ILKFCM 0.885 0.924 0.200 0.605 0.224 

WE-mFLICM 0.996 0.985 0.892 0.941 0.894 

WE-mILKFCM 0.665 0.931 0.062 0.629 0.094 

CM-FLICM 0.996 0.984 0.881 0.794 0.883 

CM-ILKFCM 0.922 0.938 0.277 0.624 0.299 

CM-mFLICM 0.996 0.985 0.893 0.720 0.895 

CM-mILKFCM 0.627 0.956 0.054 0.515 0.086 

GL-FLICM 0.581 0.952 0.045 0.507 0.077 

GL-mFLICM 0.542 0.061 0.035 0.498 0.014 
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Table 5.4: Segmentation Performance for SAR Image of T72 (DoS=2.228) 

Technique Accuracy 
Normalised 

Accuracy 
Kappa CRF F-Measure 

WE-FLICM 0.996 0.988 0.920 0.665 0.922 

WE-ILKFCM 0.989 0.988 0.797 0.861 0.802 

WE-mFLICM 0.997 0.990 0.934 0.966 0.935 

WE-mILKFCM 0.648 0.965 0.074 0.538 0.113 

CM-FLICM 0.996 0.988 0.919 0.962 0.921 

CM-ILKFCM 0.993 0.981 0.809 0.888 0.813 

CM-mFLICM 0.997 0.990 0.932 0.966 0.933 

CM-mILKFCM 0.813 0.977 0.160 0.525 0.194 

GL-FLICM 0.773 0.974 0.130 0.513 0.165 

GL-mFLICM 0.781 0.975 0.135 0.512 0.171 

Thorough experimentation and analysis of segmentation performance with various 

features and techniques suggests that Wavelet energy and Central statistical moments are 

the best features to perform segmentation of SAR images. Technique-wise FLICM, 

mFLICM, ILKFCM, mILKFCM perform best on synthetic SAR images with Wavelet 

energy based mFLICM outperforming all other feature-techniques. For real SAR data 

same consistency is observed in terms of results .i.e. Wavelet energy based mFLICM, 

hereafter called Weighted Membership Fuzzy Local Information C-Means (WMFLICM) 

gave best segmentation results in terms of considered performance metrics. The 

performance of Central moment based mFLICM is also found to be comparable to 

wavelet energy based mFLICM, suggesting it to be the second best technique for 

segmentation of SAR images. 



 

 74 

Chapter 6  

Conclusion and Future Work 

A research on image segmentation techniques has been carried out under this project. 

Current work focused on image segmentation techniques for SAR images specifically. 

Seventeen different textural features were extracted for SAR images and fed to thirteen 

different segmentation techniques. Out of these 13 techniques, 9 techniques already exists 

in literature and have found wide application in variety of domains. To enhance spatial 

context information used in existing techniques, 4 modifications are suggested in the 

these techniques. The suggested modifications are to improve utilisation of spatial context 

information and to provide two level robustness for noisy data. 

After performing extensive experiments on SAR images of different background and 

foreground characteristics, it is observed that segmentation techniques perform best with 

Central statistical moments and Wavelet energy as features. Out of all the techniques 

considered FLICM, mFLICM, ILKFCM, mILKFCM perform best in overall sense for 

synthetic SAR data. From the experimentation on synthetic SAR images, 10 best 

performing feature-technique combinations were identified and were further used for 

segmentation of real SAR images. For real SAR data, it is observed that WMFLICM 

performs best in overall sense. Central statistical moments based mFLICM also 

segmented real SAR images accurately with performance metrics marginally lower than 

WMFLICM. 

In current work, performance evaluation was carried out on images with single 

foreground region. In future, extensive experiments can be carried out on images with 

multiple foreground regions.  

As mFLICM emerged as best performing technique for SAR images, improvement in its 

performance can further be analysed with more image features. Computational efficiency 

improvement aspect can also be explored for the better performing techniques. 
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