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Abstract 

 

Hyperspectral data, with its enhanced capabilities in terms of data capture in greater 

number of distinctive bands, has attracted the researchers over years to utilize and further 

analyze it for achieving the objectives of varied application areas. One such application area is 

target detection and target identification. The utilization of hyperspectral data in this field of 

application is still under active investigation. Several issues need to be addressed while 

performing detection of targets to achieve accurate results. It has been reported in literature 

that owing to the huge amount of data associated with the hyperspectral data, it needs to be 

reduced to a subset of useful bands corresponding the application under study. Dimensionality 

reduction has been one such method for the selection of the appropriate number of bands, 

however this needs to be carefully performed to ensure that there is no loss of target 

information. Also, due to the low spatial resolution of many sensors, there is another issue of 

mixed pixels, that needs to be addressed. Mixed pixels arise when more than one component 

jointly occupy a single pixel thereby complicating the detection of such mixed pixel targets. 

The problem aggravates due to the increased spectral variability which may arise due to a 

variety of reasons. Several techniques to handle the mixed pixels and the difficulties that arise 

in detection of such mixed pixel targets have been reported in literature. Spectral unmixing is 

one such method which aids the extraction of pure end members in the image and their 

corresponding abundance fractions in each pixel. However, this process needs careful handling 

as errors may occur in the generation of such end members and their abundance fractions. 

Besides, some literature is available to suggest that spectral index-based approach may also be 

considered for extraction of end members. The spectral unmixing methods provide the 

abundance fractions, but the exact spatial location of end members within the pixels remains 

unknown. In case of applications involving detection of targets such as tanks, aircrafts for 
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supporting the military applications, there is a requirement of proper identification of the target 

shape along with the detection of target location. Super resolution techniques have been 

proposed to optimize the abundance fractions to generate a subpixel map of the target but its 

implementation on hyperspectral data for recovery and identification of target is still limited. 

Moreover, the techniques are mostly based on random allocation and recursive optimizations 

that further complicate the process and add to the inaccuracy in detection and target 

identification.  

   Therefore, in view of these limitations, the objectives of this research which have 

been explored are as follows: 

a) To review various existing Dimension reduction algorithms with a view to 

achieve maximum possible Dimensionality reduction while ensuring 

minimal/no loss of the target data. 

b) To efficiently characterize the target and background spectral signatures for 

subpixel detection. 

c) To study various end member extraction techniques in available datasets using 

spectral unmixing and spectral indices-based approaches. 

d) Comparative assessment of random recursive technique with non-random non-

recursive super resolution mapping technique, for subpixel target detection and 

enhancement. 

In the first objective, a study of various combinations of dimensionality reduction (DR) 

techniques combined with full pixel and subpixel target detection (TD) algorithms has been 

performed to analyze the loss of target pixels in each case. Therefore, the tasks have been 

subdivided into 

a) Full pixel Target Detection with and without Dimensionality Reduction 
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b) Full pixel Target Detection with and without Dimensionality Reduction, along 

with the study of impact of Background characterization and, 

c) Subpixel Target Detection with and without Dimensionality Reduction, along with 

the study of impact of Background characterization 

For achieving the tasks mentioned above, two different sets of hyperspectral datasets 

have been explored. From the experiments it has been observed that in the case of full pixel 

targets, both dimensionality reduction and target detection result in the loss of target 

information, however, there is a greater loss of target information in the case when 

dimensionality reduction precedes target detection in comparison to a case where target 

detection is applied without dimensionality reduction. Background characterization appears to 

aid in improvement of full pixel target detection, and K-means is seen to provide better results 

of detection. In the case of subpixel target detection, however, there appears to be loss of 

subpixel target information in the case where detection alone is performed in comparison to a 

case where dimensionality reduction precedes target detection.  

 In the second objective, the focus is on target and background subspaces, and how these 

subspaces aid or inhibit the process of detection of full pixel and mixed pixel targets has been 

discussed. The tasks outlined in this objective are:  

a) Detection of low probability full pixel / subpixel targets with known spectral 

signatures,  

b) Detection of targets using background and target subspaces,  

c) Analysis of the impact of various combinations of background subspaces on full 

pixel and subpixel target detection, and, 

d) Analysis of the impact of illumination conditions on the targets. 

Various conclusions have been drawn from the results obtained. In case of detection 

using target and background subspaces, it may be concluded that for any given algorithm, if 
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the algorithm is performing well for detection of target pixels, the different background 

subspaces appear to have only marginal impact. Also, in case of analysis of target detection 

algorithms, Matched Filter is observed to perform better than other algorithms considered.  It 

has been observed that illumination affects the detection of targets immensely, where target 

pixels of targets in full illumination placed over Gravel roads and Grass are detected well in 

comparison to those under trees. Also, the targets in partial shade are detected whereas the 

targets in full shade are not detected by the above discussed algorithms for any combination of 

background subspace. After an analysis of the spectral profiles, it has been concluded that the 

surrounding vegetation (trees) has a greater impact on the spectral behaviour of pixel 

containing blue felt target. The gravel roads have minimum impact on spectral variation of this 

target out of the three background types. This appears to indicate that spectral contrast / 

similarity between the target and the background has a significant role in its detection. 

 In the third objective, the end member extraction in mixed pixels using Spectral 

Unmixing and Spectral Indices based approaches has been performed. Accordingly, there are 

three major tasks that have been explored / studied in this chapter. 

a) End member extraction and abundance estimation using spectral unmixing, 

b) Evaluating spectral indices for end member identification, and 

In case of spectral umixing, it has been observed that  ICA-EEA and Nfindr perform best while 

recovering the image end members including the target spectra, followed by ATGP, while PPI 

performed poorly in this case. Also Spectral indices provide a suitable way to extract / generate 

end members. 

 The fourth objective further extends the study of extraction of full pixel and subpixel 

targets in hyperspectral data by optimizing the spatial distribution of subpixels inside any given 

pixel based on the available abundance fractions. The super resolution has been studied as a 

means to suggest the most optimized spatial distribution/ arrangement of these subpixels 
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belonging to different end members/ components inside the mixed pixel. Random recursive 

pixel swapping method and the non – random non - recursive inverse Euclidean distance 

method have been studied on synthetic data sets and analyzed in terms of computation time 

and accuracy of detections. It has been observed that inverse Euclidean distance-based method 

(IED) (for binary class problems) certainly performs better than the PS (Pixel swap) in terms 

of accuracy for both the synthetic and hyperspectral data sets.  

 In this research, certain major issues, problems and gaps in target detection and 

enhancement such as size of targets, spectral variability, problem of mixed pixels, advantage 

of non-random non-recursive super resolution algorithms etc. have been explored. Some of the 

major findings / contributions are briefly mentioned here. Both dimensionality reduction (DR) 

and target detection (TD) lead to a loss of target information, however there is a greater loss if 

information when DR precedes TD. However, in the case of subpixel targets, there appears to 

be a loss of subpixel target information when TD alone is performed. Similarly, it has been 

found that non-random non-recursive algorithms definitely perform better than random 

recursive algorithms both in synthetic as well as hyperspectral data. While several minor / 

major issues in target detection have been explored in this research, there still remain many 

more issues in target detection and enhancement that need to be explored in future particularly 

using hyperspectral data. 
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Chapter 1:  

Target Detection and Enhancement in Hyperspectral 

Data using Super Resolution Mapping 

 

1.1   Motivation 

India, since its independence in 1947, has experienced regular invasions from across 

its northern borders. It has fought several bitter wars with its two major northern adversaries 

who always seem to be colluding to nibble away Indian territories or dominate various 

roads connecting the state of Jammu and Kashmir with the rest of India. Earlier India did 

not have an advanced space technology, but now it is amongst top few countries of the 

worlds having advanced space technologies. Yet there are several constraints of image 

processing and interpretation such as low spatial resolution that necessitate development of 

advanced satellite image processing and information extraction techniques. In the absence 

these advanced techniques, the country, despite having huge of amounts of satellite data, is 

still unable to regularly monitor the intrusions from across the borders.  

The Kargil intrusion of 1999 and the recent Chinese intrusions of 2020 across LAC 

are some of the examples. One such technique that needs to be evolved is Super Resolution 

which may address the issue of low spatial resolution and facilitate the comparison of multi-

sensor multi-resolution data. This is also one of the key requirements of the Indian Defence 

Forces and it therefore continues to be an Indian Defence Innovation Challenge even in 

2020 (https://idex.gov.in/).  

1.2 Introduction to the Problem 

This section discusses the contours of the problem presented in this thesis. This is 

done in two subsections, first a discussion on relevant aspects of target detection in 

https://idex.gov.in/


2 

 

hyperspectral data is presented, and then the concept and problems in super resolution is 

discussed. 

1.2.1 Target Detection (TD) in Hyperspectral Data 

Remote Sensing technologies have revolutionized the field of security and 

surveillance by significantly improving the processes involved in detection, monitoring, 

processing, extracting, analyzing, and visualizing the information related to any feature or 

object lying on the surface of Earth without direct physical contact with it (Stojce 2019, 

Camps-Valls et al. 2011, Richards 1999). This definition mostly applies to the earth 

observation from an airborne or a space-borne platform. These platforms are equipped with 

highly advanced sensors to acquire images that assist the users to remotely “sense” the 

features on the surface of the Earth, thereby resulting in an exponential rise in the 

applications seeking to explore Mother Earth from the space (Mark 2017, Launius. Roger 

D, 2005, Launius. Roger D, 1994). There have been continuous developments in the 

various fields associated with remote sensing such as sensor technologies, image 

processing etc.  

Fuelled by the requirements of higher accuracy in remote sensing applications, the 

data acquisition process has undergone significant qualitative and quantitative upgradation. 

The spatial resolution of the sensors has evolved over time, and so has the spectral 

resolution from single band coarse resolution panchromatic data to multiple bands 

multispectral data and now to hyperspectral data consisting of hundreds of bands 

(Rustamov et al. 2018, Dalla et al. 2011, Cracknell 1998). Hyperspectral sensors, currently 

available, have the capability to capture the data of earth surface in hundreds of contiguous, 

narrow spectral bands (Ghamisi et al. 2017). This has allowed in-depth examination of the 

earth’s features which was otherwise not possible with Coarse resolution data (Chen et al. 

2020, Stuart et al. 2019). Enhanced spectral capability has greatly improved accuracies in 
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several applications particularly those related to target detection and identification (Freitas 

et al. 2018, Davood et al. 2012).  

A target refers to an object / feature on earth surface with known spectral signature 

that is of interest to the users as shown in Figure 1.1 (Maria et al. 2016, Manolakis et al. 

2000). Thus, Target detection (TD) refers to the process of searching the pixels of interest 

in a hyperspectral data cube using its known spectral signatures (Maria et al. 2016, Eismann 

2012, Bitar et al. 2020, Shaw et al. 2003).  

 

  

(a) Hyperspectral Data Cube 

(Source: SHARE 2010 

campaign) 

(b) 200x200 pixels true 

colour image of SHARE 

2010 data 

Figure 1.1: Targets in Hyperspectral Data 

 

Target detection using hyperspectral data is affected by its location, condition, shape, size 

etc. and is accordingly classified as shown in Table 1.1 (Gautam et al. 2020, Arora and 

Tiwari, 2013). 

Table 1.1 – Target Categorization 

Target categorization 

constraint 

Target Classification 

Target Location  Surface, Subsurface or Air 

Target Condition Full illumination / Hidden / Camouflaged / buried 

Target Shape Point/ Linear / Area  

Target Size Group of pixels, full pixel, or mixed pixel 
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Most target detection algorithms are based on spectral modelling and are classified 

as spectral matching algorithms or anomaly detection algorithms. All such algorithms 

which are spectrally modelled make use of library spectra making a-priori availability of 

target spectra/ information necessary (Song et al. 2020). Besides, all spectrally modelled 

algorithms suffer from the fact that most of the artificial targets exhibit high spectral 

variability (Zhang and Gaigai, 2020).  

Figure 1.2 shows hyperspectral data representation using a pixel vector / spectrum 

and the spectral variability. In case, library spectra are not available, then the target 

detection requires extraction of endmember spectra from the scene itself. 

  

(a) Hyperspectral Data 

representation using a pixel 

vector / spectrum 

(b) Spectral variability 

(Source: Manolakis 2003) 

Figure 1.2: Target spectra used in spectral modelling and 

problems of spectral modelling   

 

Now, based on the foregoing background on target detection, the detection problem 

can be cast as a hypothesis testing problem (Manolakis et al. 2016), where the two 

hypotheses are, 

Null Hypothesis                

wasrH bb +=:0  

                                                       (Target absent)                                                1.1 

And,   

 Alternative Hypothesis  
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wasasrH bbtt ++=:1       

                                   (Target present)                                            1.2 

, where ts
 and bs

 are the spectral signature of target and background and ta
 and 

ba
are the corresponding abundance fractions.  

The above hypothesis testing problem is often solved using a goodness of fit 

measure applied between known target spectra (available from the spectral libraries or a 

known spectrum drawn from the image itself) and the unknown target spectra in the image 

scene. This may be sufficient to indicate detection.  

Target Detection differs from Classification in the fact that while classification 

assigns a pixel to multiple classes, target detection is hypothesis testing problem with the 

hypothesis being – either target is present, or target is not present (Manolakis et al. 2016).  

In most target detection applications, targets are generally small as shown in Figure 

1.3 thus occupying less than 1% of total pixels in the captured image (Davood et al. 2012).  

 

Figure 1.3: Depiction of targets in real life scenario (www.globalsecurity.org) 

Because of small size, many targets of military interest in hyperspectral images, at 

the spatial scale of measurements, often occupy only a few pixels fully (Khan et al. 2018, 

Chang 2013, Chang, 2003). Detection and recognition of these small targets, therefore, 
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continue to pose problems in coarser spatial resolution data and thus require them to be 

resolved both spatially and spectrally (Manolakis et al. 2003, Zhang et al. 2013, Xian-Hua, 

2019) as shown in Figure 1.4. For example, a small target may reside fully in one pixel and 

simultaneously also occupy several other pixels in the neighbourhood only partially 

(Manolakis et al. 2001). Alternatively, it may lie entirely within one single pixel.  

The first case may give few fully resolved pixels and several mixed pixels, while 

the second case gives an unresolved pixel. The problem in each of these cases is referred 

to as subpixel target detection. Therefore, many parameters linked with target of interest 

such as its location, condition, shape, size etc. influence the target detection process, 

thereby increasing the complexity (Arora and Tiwari, 2013).  

                                         
 

Figure 1.4: Cases in which a target may occupy a pixel in hyperspectral images 

 

Target detection, thus, faces several challenges such as small size of the target, 

spectral variability, mixed pixels etc. The conventional target detection algorithms utilize 

the spectral signature of the target.  The spectral signature is of any target, however, 

exhibits a lot of variation known as spectral variability due to varying illumination, 

location, and condition (surface, subsurface, underwater etc.) of the target, difference in 

compositions of different instances of the target, atmospheric and background noise, 

spectrometer error, self - shadowing other sensor limitations etc. (Shaw et al. 2003). 

Spectral variability is a major challenge in performing the target detection (Wendel and 

Underwood, 2017, Manolakis, 2016).  

Mixed pixel 

target 

Full pixel/ whole pixel target 

Subpixel target 
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Besides, most of the commonly available Target Detection algorithms detect only full pixel 

targets while the entire TD process involves five steps as explained in Table 1.2 (Chang, 

2003). Detection merely implies differentiation between full pixel signatures of a target and 

the background. The applicability of target detection in hyperspectral images gets restricted 

depending upon whether all or some of these steps of the target detection process can be 

completed. Target detection encompassing the entire process, as given below, may 

therefore necessitate detection of not only full pixels of a target but also the recovery of all 

the subpixel components of targets residing in several surrounding pixels. 

 

1.2.2 Super resolution Mapping  

 This section discusses the definition and concept of super resolution as presented in 

this thesis. 

1.2.2.1 Definition 

Super resolution (SR) is defined as the process that aims at increasing image 

resolution through various image processing techniques (Qingxiang, 2018). The SR process 

synthesizes sub-pixel information in imagery to increase the resolution of the image. 

Typical synthesis techniques include: (i) interpolation of nearby pixels within the image 

Table 1.2 Target detection process (Chang, 2003) 

Terms Explanation 

Detection To separate a target signature from background signatures  

Classification Grouping of signatures exhibiting similar spectral signatures into 

a single class.  

Discrimination Distinguish two classified targets from one another. Classification 

does not lead to automatic discrimination and vice versa.  

Identification 

/Recognition 

Target identifier requires a priori knowledge of database such as 

a spectral library and implies matching of target spectra with 

reference spectra 

Quantification Counting the detected targets of a given type. 
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(ii) interpolation of nearby frames within a video and, (iii) frequency filtering to reduce 

noise from nearby imageries etc (Yang et al. 2015).  

None of the methods mentioned in previous paragraph, however, make use of the 

abundance fractions of the target inside a pixel and therefore may not be an effective 

solution to the problem of mixed pixels and subpixel target detection. Super resolution 

mapping is therefore defined as a target enhancement technique that enhances the spatial 

resolution of image and produces the classification results at a sub-pixel scale. Here, SR is 

used to estimate the location of target / target component within a pixel, with the proportion 

of classes determined from a soft classification technique (Zhou et al. 2011).  

Super resolution mapping is thus a result of an optimization of subpixel class 

proportions within or between the pixels according to their relative abundance fractions to 

derive a subpixel map at a spatial resolution finer than that of the coarse resolution (Muad 

and Foody, 2012, Xu et al. 2014). 

1.2.2.2 Concept of Super resolution  

To understand the concept, consider any satellite image data with 8 bands. In this 

image every pixel has 8 different intensity values corresponding to the 8 bands for each 

pixel. Now say, the spatial resolution is 30 meters. Let us consider an example of an object 

(target) lying with two natural ground cover classes as they usually exist in nature. One 

such layout is shown in Figure 1.5 (a). It contains one object (target) and two different land 

cover types. The target is shown in brown color, vegetation in green and urban area in grey.  

Next, when this layout is captured in a pixel-based image of say 30-meter resolution, it gets 

represented as shown in Figure 1.5 (b). It may be seen in 1.5 (b), that the exact ground 

layout, shape, size, and area of the object (target) as well as the ground cover classes have 

been lost in the pixel-based representation. This often leads to incorrect assessment of target 
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and ground cover classes. This has severe implications in target detection applications. It 

is therefore important to recover the correct proportions of target / each class in each pixel.  

As defined earlier, super resolution is the process that synthesizes sub-pixel 

information in imagery to increase the resolution of the image. This is done in two steps, 

first, abundance fractions of the object (target) and the two ground cover types are 

determined using spectral unmixing. The abundance fraction gives the percent area 

occupied by the target and other ground cover classes in the coarse pixel. Spectral 

unmixing, however, does not give the spatial distribution of the abundance fractions within 

the pixel. 

To arrive at the optimal spatial distribution of the abundance fractions within the 

pixel, a suitable scale factor for super resolution that gives the ratio of pixel resolution 

enhancement needs to be fixed.  For the present example, let us consider scale factors of 3 

and 5. This in essence means that each pixel will be subdivided into 3x3, 5x5 subpixels. 

Next these subpixels will be assigned to the object (target) and ground cover class in the 

ratio of their abundance fractions. To determine their spatial distribution, certain mapping 

algorithms as discussed in the next sub section are made use of. Finally, we arrive at an 

enhanced image as shown in Figure 1.5 (c) and 1.5 (d). It may be observed that 1.5 (d) 

which is at a scale factor of 5 presents a much better enhancement than 1.5 (c) and is also 

much nearer to the image at 1.5 (a).  It may appear that if scale factors are linearly increased, 

it may result in greater enhancements, but it is not so because of the computational 

complexities involved in the optimization process. This is explained in the research gaps 

subsequently.  
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Figure 1.5: Super resolution mapping (a) Natural ground cover layout with vegetation 

(green), soil (brown) and Urban area (Grey) classes (b) Capture of ground layout in a 

2x2 image (c) super resolution at scale factor of 3 and (d) super resolution mapping at 

scale factor of 5. 

1.2.2.3 Review of Existing Super resolution Approaches  

The problem of determining spatial distribution of subpixels (based on abundance 

fractions estmated using spectral unmixing) has involved researchers since a long time 

because this would effectively solve the problem of mixed pixels and the subpixel target 

detction. Several algorithms have been reported in the literature to deal with this problem.  
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W. Schneider had attempted subpixel mapping of linear features based on a 3 pixel 

by 3 pixel kernel or moving window (Schneider 1993), which was later fine-tuned by W. 

Schneider and J. Steinwendner to include neural netwrok prediction of vector boundaries, 

but is restriceted to remotely sensed images and the detection of linear features 

(Steinwendner et al. 1998 and Schneider 1993).  

Atkinson a proposed a method called Pixel Swap Algorithm (2001 and 2005) to 

achieve subpixel mapping. It was proposed to divide each pixel into smaller pixels called 

subpixels. The task is then to assign each subpixel to an appropriate class according to the 

fractions in the subpixel classification. The objective of this algorithm is to change the 

spatial arrangement of subpixels in such a way that the spatial correlation between 

neighboring subpixels is maximized. The results obtained from soft classification (to 

identify the land cover class within each pixel) are utilized for transformation into subpixel 

classes. The method of initialization is a measure to compute the accuracy and efficiency 

of mapping at subpixel level. A random initialization is considered and further the 

algorithm intends to find the spatial arrangement of subpixels and works in a recursive 

manner to find their correct allocation by finding the maximum correlation among the 

neighboring subpixels. This algorithm works for a binary land cover class problem and not 

for multi class problem. Land cover class proportions for each pixel obtained from a soft 

classification (or unmixing) are input to the Pixel Swap algorithm. Based on the scale 

factor, the number of subpixels is calculated corresponding to the pixel in the coarse spatial 

resolution image. The number of subpixels for any given target/class in each pixel remains 

fixed throughout the Pixel Swap procedure. During this Pixel swapping process, each 

subpixel is allocated to a single land cover class such that the original class fractions in the 

coarse resolution image are maintained (Atkinson, 2005).  
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Tatem et al. introduced a technique called Hopfield Neural Network (HNN) 

subpixel mapping as well as for recreation of spatial pattern. The widespread feedforward 

back-propagated ANN that is used for sub-pixel classification were applied by Mertens et 

al. and even combined with wavelet theory (Tatem et al. 2001, 2002, Mertens et al. 2003, 

2006). HNN is a fully connected recurrent network, which works by mapping the spatial 

distribution of the class components within each pixel. This is formulated as a constraint 

satisfaction problem, and an optimal solution to this problem is determined by the minimum 

of an energy function coded into a Hopfield neural network. The network architecture is 

arranged to represent a finer spatial resolution image, and constraints within the energy 

function determined the spatial layout of binary neuron activations within this arrangement. 

This algorithm finds the minimum of the energy function, which corresponds to a bipolar 

map of class components within each pixel.  

 Kennedy and Eberhart,1995 proposed Particle Swarm Optimization (PSO) and 

Wang et al. 2012 proposed PSO based Super Resolution Mapping, inspired by the social 

behavior of bird flocking or fish schooling for food. It is an evolutionary computation 

technique based on swarm intelligence. PSO performs the global searching strategy based 

on community and avoids complex genetic operators with a simple speed offset model that 

requires fewer parameters. It traces the current searching situation and tunes the strategy 

when necessary for strong memory, which makes PSO easy to realize. 

The Markov Random Field (MRF) is a technique that can be used to model 

contextual information (Geman and Geman, 1984). Kasetkasem et al., 2005 used the MRF 

to generate super resolution for land cover mapping in remote sensing imagery. Every map 

is assumed to have Markov property. This approach assumes spatial dependence within and 

between pixels, in which two adjacent pixels are more likely to belong to the same land 
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cover class. Homogeneous regions of the land cover are more likely to be mapped by this 

model than isolated pixels. As a result, the isolated pixels tended to be ignored. Unlike 

many other super resolution mapping techniques, the MRF based super resolution is not 

dependent on a soft classification technique. Therefore, the MRF based method is not 

affected by inaccuracy of the soft classification. 

Inverse Euclidean Distance (IED) based method was proposed by Tiwari et al. 2011 

which was based on binary class problems to perform super resolution on synthetic as well 

as hyperspectral datasets. A summary of the algorithms mentioned above is also presented 

in Table 1.3.  

Table 1.3: A review of some of the existing super resolution mapping techniques. 

Algorithms Properties Advantages Limitations 

PS (Pixel 

Swap) 

(Atkinson. 

2001 and 2005) 

 

PS maintains the 

class composition 

information 

conveyed by the soft 

clas- sification 

If the soft 

classification is 

accurate, PS may be 

more suitable than the 

HNN for super 

resolution mapping. 

Highly sensitive to 

the accuracy of that 

classi- fication.  

Fails to consider the 

correlation between 

subpixels adequately. 

Iterative and 

consumes more time 

HNN(Hopfeild 

Neural 

network) 

(Tatem et al. 

2001, 2002, 

Mertens et al. 

2003, 2006) 

 

The neural network 

depends on the 

training and needs 

training for different 

types of 

classification. 

The network uses a 

energy function with 

several contraints 

converging to a 

minimum. After the 

implementation for 

features larger than a 

pixel, they expanded 

the method so it was 

also applicable for 

subpixel features.  

Based on the energy 

minimization 

principle. 

 

 

The mixture model as 

well as fuzzy c-means 

implementation 

needs pure pixels in 

an image, which are 

not always present. 

Produces rounded 

corners and, 

therefore, may poorly 

represent land cover 

patches with complex 

shape 

Predicted location of 

land covers within the 

area of a pixel may be 

imperfect, especially 

if there are small land 

cover patches 
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PSO (Particle 

swarm 

optimisation) 

Kennedy and 

Eberhart,1995  

Wang et al. 

2012  

 

It is an evolutionary 

computation 

technique based on 

swarm intelligence. 

Global search 

strategy is based on 

community and 

avoids complex 

genetic operators 

with a simple speed-

offset model 

It requires fewer 

parameters. 

It traces the current 

searching situation 

and tunes the strategy 

when necessary for 

strong memory, which 

makes PSO easy to 

realize. 

PSO is not a unique 

optimization 

algorithm to search 

the optimal solution. 

It is an iterative 

algorithm where the 

swarm Swarm goes 

through evolution a 

number of times 

adding to the 

computation time and 

complexity. 

MRF (Markov 

Random 

Fields) 

(Geman and 

Geman, 1984, 

Kasetkasem et 

al., 2005) 

 

Markov Random 

Fields (MRF) is 

based on the 

Bayesian probability 

theory, and includes 

this knowledge in the 

two key elements: 

the prior and 

conditional 

probability density 

functions. 

It considers the 

likelyhood of similar 

end members lying in 

neighbourhood pixels. 

The basic assumption 

is that, in a 

hyperspectral image, 

it is very likely that 

two neighboring 

pixels will have the 

class same label. 

When different 

amount of classes are 

implemented, it is 

noticed the algorithm 

needs more iterations 

because the algorithm 

chooses a class 

randomly and 

measures the energy 

of that chosen class. 

IED 

(Tiwari et al. 

2011) 

Inverse euclidean 

distance works on 

binary class 

problems 

It considers the 

attraction from clique 

pixels surrounding the 

pixel under 

observation.  

It is a non recursive 

algorithm thatis based 

on non random 

allocations of 

subpixels. 

 

1.3 Research Gaps 

This section presents a discussion on the research gaps identified. 

1.3.1 Loss of Target Information During Dimensionality Reduction 

The spatial resolution of the sensors have evolved over time, however, the targets 

of interest particularly in military target detection are usually exceedingly small as 

compared to the spatial resolution of most of the sensor (Freitas et al. 2018, Davood et al. 

2012). In some cases, there may be a sensor of appropriate resolution but it may either be 

prohibitively costly or may not be available for the period or area required (Eckardt and 

Reulke, 2018). Similarly, many targets of military interest may be of such composition that 
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many sensors may fail to resolve it even spectrally. Thus, the requirement of data with high 

spatial and/or spectral resolution continues to be a challenge (Garzonio et al. 2017).  

In terms of spatial resolution, the sensors can be a coarse resolution sensor 

(approximately over 1km), medium resolution (approximately over 100 m) or fine 

resolution sensor (approximately between 5m-100m) that captures the data in different 

spatial ranges (Govender et al. 2017, Landgrebe D 1999, Honkavaara et al. 2013, Wilcox 

et al. 2018). On the other hand, spectral resolution describes the ability of a sensor to define 

fine wavelength intervals. The finer the spectral resolution, the narrower the wavelength 

range for a particular channel or band (Garzonio et al. 2017). Current imaging sensors 

provide panchromatic data (which is single band data), multispectral data which is up to 10 

bands and hyperspectral data which is 100s of narrow contiguous bands (Bioucas-Dias et 

al. 2013). It is obvious that finer spatial and spectral resolutions are beneficial in addressing 

issues arising in hyperspectral remote sensing.  

The number of spectral channels used by the sensor to acquire data defines the 

dimension of hyperspectral data which is generally high (Bioucas-Dias et al. 2013). 

Analysis of hyperspectral data in any remote sensing application follows a definite process 

which involves dimensionality reduction in view of large amount of spectral content.  

Thus, the large content implies greater storage and processing resources, and highly 

correlated bands with lot of redundant information (Prasad et al. 2001).  Therefore, in 

applications involving hyperspectral data when the number of bands reaches a certain limit, 

the overall accuracy of detection often decreases resulting in Hughes phenomenon (Chang, 

2007). The process of reducing the number of bands to identify the most suitable ones for 

achieving the objectives of the application, is termed known as Dimensionality reduction.  

In view of the computational complexity arising out of the high dimension / narrow spectral 

bands / redundant information, Dimensionality reduction in hyperspectral data therefore 
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becomes an essential step because it improves the signal to noise ratio (Şi̇mşek et al. 2020, 

Muhammad Haq 2011, Koonsanit et al. 2012).  

Data pre-processing such as atmospheric and geometric corrections, removal of bad 

bands/redundant information (through band selection or dimensionality reduction) and is 

an essential requirement in all remote sensing applications including target detection. The 

pre-processed data is then analyzed for detection of targets of interest (Willett et al. 2014). 

Dimensionality reduction (DR) evaluates the optimality criteria for all possible 

combinations of a subset of bands out of total number of bands and selects a combination 

that minimizes or maximizes the criteria (Koonsanit et al. 2012, Song et al. 2007, Rhonda 

et al. 2008). Optimum and suboptimum search methods are available to achieve this, but 

these may either be computationally demanding or infeasible to implement (Webb and 

Copsey, 2011). However, the challenge is here to ensure that there should not be any loss 

of target information in various stages of data pre-processing because the spatial and 

spectral presence of the military target of interest in the image itself be very limited. While 

performing dimensionality reduction, certain information in the case of subpixel and mixed 

pixel targets might be lost leading to a failure of the entire target detection process 

(Muhammad et al. 2011, Webb and Copsey 2011, Lillesand et al. 2008). 

Therefore, in target detection applications, it assumes significance to study various 

combinations of dimensionality reduction (DR) techniques combined with full pixel and 

subpixel target detection (TD) algorithms (Binol et al. 2016). 

1.3.2 Assessment of Background Characterization in Subpixel Target Detection 

The challenge in subpixel target detection further lies in separating the target’s 

spectral signature from the competing background signatures. It is well known that for 

detection of mixed pixel targets, both spatial and spectral properties of the data may be 

exploited and utilized (Chang et al. 2004, Clark 2016, Cohen et al. 2016). Since the 
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retrieved spectra, in case of mixed pixel targets, is a combination of both the target as well 

as rest of the end members present in the pixel (Bitar et al. 2018, Lu et al. 2013, Govender 

et al. 2011, Boardman et al. 1995), it is of significance to consider the spectra of non-target 

end members as background (Chang et al. 2020).  

Also, in the case of mixed pixel targets, the interference is more from the non – 

target end members present within the pixel also known as background components, which 

may further affect accurate detection of subpixel targets (Zhao et al. 2016, Eismann 2012, 

Manolakis, 2000, Cohen et al.2012). Therefore, the study of impact of background 

characterization on the recovery of target pixels is also equally significant (Jiao et al. 2018). 

It is studied from literature that there exist large number of parameters which can 

adversely affect the accuracy of detection algorithms (Gross et al. 2015). Therefore, for the 

evaluation of effectiveness of detection algorithms, it seems suitable to perform a detailed 

assessment on the impact of the various parameters affecting the detection. One such 

parameter for efficient subpixel target detection is the study of impact of target conditions 

(full illuminations or shade). The detection of target in such cases is performed by analyzing 

the spectral profiles. The target location (placement of target over different background 

types) is also known to influence the process of detection and thus may be considered to 

study the variation in target detection (Gross et al. 2015). Overall, an empirical analysis of 

impact of four parameters: illumination condition, background analysis, color of target and 

selection of algorithm for target detection needs to be evaluated to improve the results and 

accuracy of detection.  

1.3.3  Errors in Unmixing, Comparative Assessment of Unmixing Algorithms and 

Alternative approaches in Abundance Fraction Estimation.  

The process of decomposing the observed spectrum of a mixed pixel into a 

collection of constituent end members and their corresponding abundance fractions is 
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known as spectral unmixing (Marinoni et al., 2017). There are several models reported in 

literature to perform this, however, due to the simplicity, Linear mixture model is most 

widely used amongst various mixture models available thus far (Marinoni et al., 2017, Liu 

et. al. 2016, Rai et al. 2014, Keshava, 2003, Keshava 2002). Besides, multilayer neural 

networks and neuro fuzzy methods too are also used to recover the mixed components 

(Kerekes et al. 2013, Chen et al. 2016, Guifoyle et al. 2001). Unmixing techniques utilize 

the target information that may be available a-priori in the spectral libraries or may be 

taken from the scene itself. In the scene, an endmember is identified as a pure pixel with a 

unique spectral response different from other present components present in the image 

(Karbhari et al. 2019). A linear mixture model (LMM) is widely used unmixing algorithm 

that models the spectra of a pixel as a linear combination of  individual end member spectra 

and its abundance fraction. The general equation for LMM is explained in equation 1.3:  

𝓍 =  ∑ 𝑎𝑘𝑠𝑘 +  𝓌 

𝑀

𝑘=1

  

Where, 𝓍,  spectrum of the mixed pixel, 

sk, spectra of the end members, 

ak,   is their abundances;  

M,   number of the end members; 

W,  L dimensional error vector accounting for lack of fit and noise effects   

The abundance fractions obtained using various mixture models, however, indicate 

only the relative abundances of the end members and do not give the spatial distribution of 

these inside the given pixels (Shao et al. 2018).  

There are a few other issues too in spectral unmixing which complicate subpixel 

and mixed pixel target detection. For subpixel target detection, first, the abundance 

fractions of the end members present within the pixel needs to be determined (Gao et al. 

1.3 
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2015, Du and Zhang 2014, Jiao et al. 2018, Heylen et a. 2016, Guo et al 2009, Li et al. 

2011, Keshava 2002). Pure pixels can be used to determine the end members, the total 

number of components and the covered percentage of each component in a mixed pixel 

(Shao et al. 2018). These pure pixels represent the endmembers that may be present within 

a mixed pixel. Thus, if for every end member type a pure pixel can be found, abundance 

fractions within mixed pixels can be calculated. Alternatively, abundance fractions may be 

estimated provided the endmember spectra are known from existing spectral libraries 

(Rosin, 2001, Vikhamar et al. 2002). The extraction of end members may also be explored 

using alternative approaches owing to the limitations of the unmixing approaches such as 

spectral unmixing based approaches are completely dependent on the spectra and do not 

consider any wavelength based absorption variation (Zhang et al. 2006). 

To overcome such limitations, an alternative technique i.e., Spectral Indices has 

been explored for end member identification. In most of the available hyperspectral data 

of the urban region, the identification and mapping of the extent of impervious surfaces is 

an important task (Shih et al. 2020) and therefore spectral indices can be considered in 

extraction of abundance fractions of impervious surfaces. 

Several spectral indices have been proposed and implemented such as Normalized 

Difference Built up Index (NDBI), Built up area extraction index (BAEI) (Zha et al. 2003), 

Normalized Built-up Area Index (NBAI) (Bouzekri et al. 2015, Xu, 2010, Wolf, 2010) etc. 

However, the identification of (target) impervious surfaces using hyperspectral data is 

limited due to high dimensionality and greater processing time. Hence, the optimal 

wavelength regions that contain specific and significant information related to the target 

under consideration need to be identified prior to the implementation of spectral indices.    

1.3.4  Random Recursive Vs Non-Random Non-Recursive Super Resolution 

Approaches  
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From Figure 1.5 (c) and 1.5 (d) discussed earlier, it may appear that if the scale 

factor is increased linearly it will result in continuous resolution enhancement. However, 

most of these super resolution algorithms work on random allocation of location to the 

subpixels of different end members within the pixel. Being based on recursive optimisation, 

the implementation of algorithm commences with random allocation of subpixels and the 

number of subpixels allocated to each class depends upon its fractions. Random allocation 

of subpixels are time consuming, computationally complex and follow a process that 

decreases the accuracy of the subpixel mapping results (Wang et  al. 2006, Wang 2013). In 

addition, the subpixels are randomly distributed, and a series of iterations are required to 

cluster those subpixels based on a distance weighed attractiveness function. Since all the 

subpixels of a given target/class based on its abundance fraction are likely to be clustered 

together, this iterative procedure only leads to additional computational constraint 

(Atkinson, 2001 and 2005).  

In the case of linear targets, the algorithm works well only when the targets are at 

least one pixel wide and fails for targets which are about one half of the width of the pixel. 

Besides, certain subpixels once allocated to the incorrect class, continue to cluster the 

misclassified pixels (Atkinson, 2001 and 2005). 

Further, these techniques generally use a non-linear parameter in the calculation of 

distance dependent weight, which may not be determined deterministically for different 

scale factors and may vary for different applications.  This adds uncertainty to the 

procedure. As a result, the convergence of the algorithm usually becomes difficult to 

achieve (Atkinson, 2001 and 2005). 

Thus, there is a need to  overcome the limitations in case of random-recursive 

algorithms, as reported in the literature (Zhong et al. 2015, Xian 2019, Wang et al. 2012, 

Wang et al. 2017). Both these types of algorithms i.e., random-recursive, and non-random 
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non-recursive super resolution algorithms may have their own advantages and 

disadvantages. For example, in the case of a random recursive algorithm, a linear increase 

in scale factors could result in large number of subpixels getting randomly initialized that 

may never converge correctly. Similarly, in the case of non-random non-recursive 

algorithms, these may fail to correctly map the non-linearity present in the scene. Therefore, 

both these algorithms need to be examined at different scale factors for their usefulness.  

Based on the foregoing review, the research gaps which have been considered for 

the present study are summarised as follows,  

(a) The size of the target of interest for applications such as military target detection is 

generally small and requires both spectral as well as spatial detection. Also, 

hyperspectral data has large spectral content and thus requires Dimensionality 

reduction (DR) which leads to loss of target information both at full pixel and 

subpixel level. Loss of target information in the process of dimensionality reduction 

therefore needs to be explored. 

(b) Subpixel target detection is impacted by several factors such as background 

signatures. Errors may also occur in generation of initial abundance maps. There is 

thus a requirement of studying background characterization 

(c) Spectral unmixing and determination of abundance fractions is an essential pre-

requisite for carrying out super resolution mapping. Any inaccuracy in 

determination of abundance fractions would impact recovery of the subpixel 

component of the target. It is therefore important to identify suitable algorithms and 

techniques that provide better estimations of abundance fractions.  

(d) Most of the super resolution algorithms proposed in literature work on random 

allocation of subpixels and follow an iterative procedure that leads to higher 

computational time and algorithm complexity. Besides, it is also possible some of 
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these algorithms for certain data may never converge. Therefore, there is a 

requirement to assess the performance of random-recursive super resolution 

algorithms with non-random, non-recursive super resolution.  

1.4       Research Objectives 

The main aim of this research is to analyze existing and to develop a new approach 

for target detection and enhancement in hyperspectral data using super resolution mapping. 

This is achieved by exploring spatial and spectral properties of data. The objectives of this 

research are enumerated below: 

a) To review various existing Dimension reduction algorithms with a view to achieve 

maximum possible Dimensionality reduction while ensuring minimal/no loss of the 

target data. 

b) To efficiently characterize the target and background spectral signatures for 

subpixel detection. 

c) To study various end member extraction techniques in available datasets using 

spectral unmixing and spectral indices-based approaches. 

d) Comparative assessment of random recursive technique with non-random non-

recursive super resolution mapping technique, for subpixel target detection and 

enhancement. 

1.5 Organisation of Thesis  

 The work in this thesis is organized into Eight Chapters including the present 

Introduction section. Chapter 1 is dedicated to the basic concepts of remote sensing, the 

data acquisition, its pre – processing and analysis using the data description. It also gives 

an insight into the various issues that need to be dealt while performing target detection as 

well as the utilization of remote sensing data for target detection. The problem of mixed 

pixels, its impact on target detection and possibilities to address the issues using spectral 
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unmixing is also covered. An introduction to super resolution mapping is also given. This 

chapter also covers the research gaps found in the literature and the objectives of this work.  

The problem statements, experimental datasets, methodology and a step-by-step 

explanation of tasks, discussion of results and brief conclusions corresponding to each 

objective is explained under the Chapters 2 to 6.  

Chapter 2 investigates the various existing Dimensionality reduction algorithms 

with a view to achieve maximum possible Dimensionality reduction while ensuring 

minimal or no loss of the target data.  

Chapter 3 discusses the efficient characterization of target and background spectral 

signatures for full pixel and subpixel target detection.  

Chapter 4 highlights a study of various proposed end member extraction 

techniques for mixed pixels. Another approach for end member extraction using spectral 

index has been discussed. A comparative analysis is further done to study and assess the 

extracted end members, generated abundance maps and to compute the errors.  

Chapter 5 elaborates the non-random non-recursive approach for identification of 

targets via super resolution and highlights a comparative study that is performed on datasets 

to analyze the accuracy of two different super resolution approaches selected from 

literature, in terms of the algorithm efficiency and computation time.  

Chapter-6 provides the conclusions. Major contributions of this research, 

limitations and the future scope of research are also covered under this chapter. Flowchart 

giving the organization is shown in Figure 1.6. 
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Figure 1.6: Organization of the Thesis in the form of a flowchart 

Chapter 1

Motivation, Introduction to the problem, Research Gaps

and Research Objectives

Chapter 2

Dimensionality reduction ensuring minimal or no loss of 
target data 

Chapter 3 

Full pixel and subpixel Target detection using 
Background Subspaces

Chapter 4 

End member extraction in Mixed pixels using Spectral 
Unmixing and Spectral Indices Approaches

Chapter 5 

Random Recursive Vs. Non-Random Non-Recursive 
Super Resolution Mapping Algorithms

Chapter 6 

Summary, Conclusions, Contributions and Future work
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Chapter 2 

Dimensionality Reduction while ensuring minimal or 

no-loss of Target Data 
 

2.1 Introduction to the Problem 

The objective of target detection algorithms is to analyze the remote sensing data 

and detect the targets of interest automatically or with very less human intervention (Bitar 

et al. 2020, Gautam et al. 2020, Wang et al. 2017, Zhao et al. 2016, Maria et al. 2016, 

Zhang et al. 2014, Nasrabadi 2014, Eismann 2012, Wang et al. 2013). Target detection 

using hyperspectral data has several issues that need to be addressed (Freitas et al. 2018, 

Gao et al. 2015). First issue being that based upon the spatial resolution, the targets may be 

defined as full pixel (target occupies one full pixel) or subpixel target (target occupies the 

pixel partially or is completely embedded). Most target detection algorithms can at best 

detect full pixel targets, leaving out several partially occupied / mixed pixels (Snyder et al. 

2008. Wang and Xue 2018, Zhang et al. 2015, Zhang 2020, Zhao 2016, Jiao et al. 2018, 

Kelly 1986, Chen et al. 2011, Cisz et al. 2005). This reduces the number of detected pixels 

of the target (all pixels not being full pixels) and it is a challenge to recover all the pixels 

(both full and partially occupied) (Cohen et al. 2012, Keshava 2003, Bakken et al. 2019).  

Besides this, the large number of bands in hyperspectral data result in an increase 

in the volume of data and hence add to the problems of data transmission, storage, and 

analysis (Simsek et al. 2020). Due to greater number of bands, all of which may not be 

required by the underlying application, dimensionality reduction is performed to reduce the 

data volume and to find the most suitable bands for obtaining the required results (Binol et 

al. 2016, Manolakis 2016, Agarwal et al. 2007, Shippert 2004). However, while performing 

dimensionality reduction, certain information in the case of subpixel and mixed pixel 
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targets might be lost leading to a failure of the entire target detection process (Muhammad 

et al. 2011, Webb and Copsey 2011, Lillesand et al. 2008). 

Therefore, in target detection applications, it assumes significance to study various 

combinations of dimensionality reduction (DR) techniques combined with full pixel and 

subpixel target detection (TD) algorithms (Binol et al. 2016, Rotman et al. 2010). In 

addition, the study of impact of background characterization on the recovery of target pixels 

is also equally significant (Jiao et al. 2018). These issues have been explored in this study 

and to do so, the following tasks were implemented.  

Task 1: Full pixel Target Detection with and without Dimensionality Reduction 

Task 2: Full pixel Target Detection with and without Dimensionality Reduction, 

along with the study of impact of Background characterization  

Task 3: Subpixel Target Detection with and without Dimensionality Reduction, 

along with the study of impact of Background characterization 

2.1.1 Selection of TD and DR Algorithms 

The literature reports many algorithms for TD and DR out of which a few have been 

selected for the present work as explained below. 

TD Algorithms 

TD in this work is done using algorithms, Spectral Angle Mapper (SAM) (Hao et 

al. 2020, Imani, 2019), Adaptive Coherence Estimator (ACE) (Gautam et al. 2020, 

Zeumann et al. 2017, Manolakis et al. 2003), Matched filter(MF) (Geng et al. 2017, Gao 

et al. 2015, Manolakis et al. 2000), Constrained Energy Maximization (CEM) (Zhao et al. 

2019, Chang et al. 2000), Mixture Tuned Matched Filter (MTMF) (Shang et al. 2020, 

Boardman 1998), Normalised Euclidean Distance (NED) (Zhang et al. 2018), Target 

constrained interference minimised matched filter (TCIMF) (Shang et al. 2020, Ren et al. 
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2000, Du 2004), Spectral information divergence (SID) (Zhang et al. 2015) and Orthogonal 

subspace projection (OSP) (Dadon et al. 2016, Chang 2005) selected from the literature. 

SAM is background independent algorithm where only a-priori information related 

to target spectra needs to be known. Literature review suggests that despite the wide use of 

SAM, it is not much efficient in modelling of target spectrum under different illumination 

conditions (Hao et al. 2020, Imani, 2019). Algorithm that focuses on modelling the 

background is ACE, which follows a generalized likelihood ratio approach (Gautam et al. 

2020, Zeumann et al. 2017, Manolakis et al. 2003). After replacing normalization value in 

ACE by variance MF is obtained (Geng et al. 2017, Manolakis et al. 2000). It was shown 

by Manolakis et al. in 2001, that for a limited dataset, although each of the algorithms 

exhibited some degree of success in TD, ACE performs best.  

CEM (Ferrand et al.2004) minimizes the response of unknown background 

signatures while maintaining that of target at a desired constant level and is useful when 

interest is only in one target and there is a-priori availability of its spectral signature. 

However, it does not perform well in the presence of low probability background signatures 

and is sensitive to noise (Zhao et al. 2019, Chang et al. 2000, Scott 2002). MTMF (Shang 

et al. 2020, Boardman 1998) operates on MNF transformed data and uses MF along with 

an added output infeasibility (INF) score. Targets have large MF values and small 

infeasibility scores (SMF). ENVI software displays a plot of SMF vs. INF where end user 

manually selects appropriate target pixels based on the criteria previously described. OSP 

works on a priori availability of data. In this technique, spectral signature of target of 

interest is taken as desired signature and background spectral signatures are considered as 

undesired signatures (Muhammad 2011). OSP seeks to reduce data dimensionality, 

suppresses undesired background signatures, and maximizes SNR of target spectrum. OSP 

is suitable for detection of manmade objects (Dadon et al. 2016, Chang 2005). NED 
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normalizes the vectors first by dividing each vector by its mean and then computing the 

Euclidean distance between two vectors (Zhang et al. 2018). SSM (Chen et al.1987) is also 

based on computation of Euclidean distance between spectra of a pixel and reference 

spectrum to measure the similarity amongst them. 

DR Algorithms 

Principal component analysis (PCA):  

PCA states that neighbouring bands of all hyperspectral images are highly correlated and 

give almost same information about a target. It aims to identify and collect PC’s (principal 

components), and to find their significance by using eigenvalues (Willet et al. 2014, Farrell 

et al. 2005). 

High dimensional data is converted to PC’s using Eigen vectors which are 

orthogonal to each other. PC’s are ordered in order of decreasing variance (Harsanyi 1994, 

Du and Chang, 2004). Only the first few components which are in direction of maximum 

variation contain required information and are selected (Koonsanit et al.2012). 

The number of PC’s containing relevant information are very less as compared to 

the total number of bands (Priyadarshini et al. 2019). Bands retained are identified by 

accumulated sum of variance and eigenvalues. In the case of hyperspectral data, there is 

always a high computational cost and memory requirement (Zabalza et al.2014). There is 

a likelihood of loss of small targets using PCA (Ramakrishna et al. 2005, Chang 2003 and 

Chang et al. 2004). 

Independent component analysis (ICA):  

ICA assumes that spectra of components in any pixel is not related and presence of one 

substance in a mixed pixel should not interfere with scattering of another, regardless of 
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quantity in which they appear. It finds statistically independent components and a-priori 

information about targets is not needed.  

ICA transforms the set of randomly mixed signals into corresponding mutually 

independent components. The selection of an Independent Component (IC) is based on its 

score produced by 2 measures: skewness and kurtosis (Wang et al. 2006). 

ICA has been reported to be effective in case of small targets (Wang et al. 2006, 

Tiwari et al. 2011), however not much work has been reported regarding loss of target 

information using ICA.  

Minimum Noise Fraction (MNF):  

MNF works on the principle of computing the eigen vectors and maximizing signal-to-

noise ratio. Once the Eigenvectors are computed, individual covariance matrices are 

created. Noise levels are obtained from PCA of the covariance matrices. 

Decomposition of a signal into components is done on basis of ratio of noise to 

signal power (Kruse et al. 2003). Larger values of eigenvectors identify signal components 

which exhibit highest noise fractions, while smaller eigenvalues identify the opposite. A 

set of obtained random variables can be truncated to retain only those bands that have useful 

SNR (Sharma et al. 2020). The selection of number of truncated bands must ensure an 

optimal number of bands so as not to contain either too much noise or too little target 

information (Gholizadeh et al. 2011). 

The above discussion on three different types of DR algorithms is a broad categorisation 

and each of these algorithms would depend upon multiple factors such as nature of the 

study site, data quality, inference or adjacency effect, nature of the objects within the image, 

radiometric accuracy and resolutions etc. Therefore, each of these algorithms have their 
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own advantages and disadvantages in DR, however, in this study these algorithms are being 

examined only from the point of view of loss of target information while performing DR.   

2.2 Experimental Data Set 

It has been observed from the literature review as explained in section 1.3 and 1.4 

that hyperspectral data can be analyzed and utilized for detection of full pixel and subpixel 

targets. Therefore, for achieving the tasks mentioned in above section, two sets of 

hyperspectral datasets have been explored to perform the experiments. 

2.2.1    Data Set-1: SHARE-2010 

 In July 2006, Rochester Institute of Technology, USA, conducted a data collection 

campaign in Cooke City. The region includes a variety of natural and man-made objects as 

shown in Figure 2.1 (a). 

2.2.1.1 Acquisition and Characteristics of Data Set-1 

Table 2.1: General acquisition parameters for Data Set-1 

Sensor Data Type Data size Spectral 

Resolution 

Spectral 

region 

Spatial 

Resolution 

HyMap 

Sensor 
Hyperspectral 

280x800 

pixels 

126 contiguous 

bands, at 0.45 -

2.5 nm interval 

390-2450 

nm 
3 meters 

The sensor captured some vehicles and fabric panels of various sizes placed in and 

around RIT campus. For this study, three vehicles: V1 (Green Chevy Blazer), V2 (White 

Toyota T100) and V3 (Red Subaru GL); which occupy a few pixels (but are visually 

difficult to detect) and placed in different locations are chosen as targets (Figure 2.1 (b)).  

Each vehicle has 8 full pixels around 1 mixed pixel in data, making a total of 9 

target pixels of every vehicle.  Spectral signatures of vehicles are shown in Figure 2.1 (c). 
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(a)                                                                 (b) 

 

  (c)                                                                  (d) 

Figure 2.1: (a). RGB image showing Cooke city and surrounding terrain, (b). A 

zoomed in part of Cooke city, showing locations of V1, V2 and V3., (c). Spectral 

signatures of vehicles V1, V2 and V3 present in data, (d). Spatial subset S1 of 

190x84 pixels selected from available image of Cooke city 

A spatial subset (S1) of 190x84 pixels from an entire image of 280x800 pixels is chosen 

for implementation (to reduce complexity and computational time) as shown in Figure 2.1 

(d). 

2.2.2    Data Set-2: SHARE-2012 

A multi-modal (hyperspectral, multispectral, and LIDAR) imaging data collection 

campaign was conducted in Avon, NY on September 20, 2012 by RIT in conjunction with 

SpecTIR, LLC, the Air Force Research Lab, the Naval Research Lab, United Technologies 

Aerospace Systems and MITRE.  The region includes a variety of natural and man-made 

objects.  

From the entire data, Data set for Avon city (Figure 2.2 (a), Figure 2.3 with 

acquisition parameters as shown in Table 2.2 has been selected to conduct experiments for 

evaluation of subpixel detection and unmixing algorithms. Data contains an image and 

related GLT files. 
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Table 2.2: General acquisition parameters for Data Set-2 

Sensor Data Type Data size Spectral 

Resolution 

Spectral 

region 

Spatial 

Resolution 

Prospectir-

VS 
Hyperspectral 

280x800 

pixels 

360 bands, 5 

nm interval 

~400 nm to 

~2450 nm 
1 m, 0.5 m 

 

 

 

 

(a)                                                               (b) 

 

 

(c) 

Figure 2.2: (a). Mosaic of SpecTIR images in the visible spectrum for the morning 

pass over the main ground truth site, (b). A zoomed in picture of the unmixing 

target Y1. (c). RGB image of Targets Y1 and Y2 selected for unmixing target 

detection experiment in a Spatial subset S2 of 150x150 pixels placed on asphalt 

court. 

 

2.2.2.1 Acquisition and Characteristics of Data Set-2 
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Figure 2.3: Google earth image of the AVON city showing the line of sight. 

For target detection experiment, the deployment contains many fabric and wooden 

panels placed at different locations around the city. One such panel is a blue target (24 rows 

x 24 columns) visible in upper right area of asphalt court while yellow target (16 rows x 16 

columns) is placed in upper left as shown in Figure 2.3 (c). For unmixing and target 

detection experiment, these two sets of unique checkerboard type targets were designed so 

that a precise knowledge of the end members and their area fractions are known a-priori to 

perform further assessments and analysis.  

The yellow target is a mixed pixel target containing yellow felt and yellow cotton 

arranged in a 2x2 repeating pattern in the ratio of 75% and 25% of area fraction per pixel 

(comprising of 3 yellow felt squares and 1 yellow cotton square) respectively. Spectral 

signatures of yellow felt and yellow cotton are shown in Figure 2.5. Also, for enabling the 

in-scene detection of targets, six whole panels of fabrics (10 rows x 10 columns each) were 

placed below mixed pixel targets. Two small panels placed just below and to the left of the 

blue target are pink felt (on the left) and yellow cotton (on the right).  

For this work, a spatial subset (S2) of 150x150 pixels from entire data set is chosen 

for implementation and targets chosen are a mixed pixel target Y1 (8x8 pixels) and a full 

pixel target Y2 (5x5 pixels). 
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2.2.3 Ground Data Collection 

 Extensive ground collection was done for this data set during the morning pass and 

the evening pass. Two such images taken during the collection campaign are shown as 

examples in Figure 2.4. 

  

Figure 2.4: Images from the Ground truth collection done during the SHARE 2012 

campaign  

The obtained ground truth along with the data was further resampled according to 

the image wavelengths. The resampled data was then utilised to make comparative 

assessments. A summary of targets under consideration for both the data sets selected for 

the present work is shown in Table 2.3. 

 
Figure 2.5: Spectral signatures of targets Yellow felt and Yellow cotton. 
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Table 2.3: A summary of Data sets, targets and target pixels selected for the 

implementation. 

Data set Original 

Data size 

Subset 

size 

Targets Target 

pixel 

count 
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2.3 Methodology and Implementation 

The methodology explains the implementation procedure for the three tasks, Full 

pixel Target Detection with and without Dimensionality Reduction, Full pixel Target 

Detection with and without Dimensionality Reduction along with the study of impact of 

Background characterization and Subpixel Target Detection with and without 

Dimensionality Reduction and along with the study of impact of Background 

characterization. 

A common procedure for all three tasks includes the extraction of subsets S1 and 

S2 from the atmospherically correct and geo-referenced datasets. The implementation of 

Target Detection (TD) is done using algorithms SAM, ACE, MF, CEM, MTMF, NED, 

TCIMF, SID and OSP selected from the literature.  

Dimensionality reduction (DR) is performed using PCA, ICA and MNF. The 

following order is then followed to achieve the tasks outlined for this objective. Spectral 

unmixing techniques for resolving subpixel targets used in this research are LMM (Linear 

spectral unmixing) (Manolakis et al. 2001), and Background characterization using K-

Means (Keshava et al. 2000), SMACC (Sequential Maximum Angle Convex Cone) (Chen 

1987). The entire methodology includes following steps and are also shown in the form of 

a flowchart in Figure 2.6: 

Step 1: Obtain atmospherically correct and geo – referenced Data sets 1 and 2. 

Step 2: Create spatial subsets S, S2 from Data set-1 and Data set-2, respectively. 

Step 3: Perform Full pixel TD on Data set-1, with and without DR.  

Step 4: Perform Full pixel TD without DR without Background characterization, 

DR linked full pixel TD without Background characterization and 

implement Background characterization using SMACC and K – means. 
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Step 5: Perform a comparative assessment of TD algorithms using confusion matrix 

and obtain the best performing TD algorithm. 

Step 6: Perform a comparative assessment of DR linked full pixel TD algorithms 

using confusion matrix and thus obtain best performing DR linked TD 

algorithm. 

Step 7: Perform DR linked subpixel TD using spectral unmixing by LMM and 

evaluate the target pixels detected vs. target pixels lost. 

2.3.1 Full pixel Target Detection with and without Dimensionality Reduction 

TD has been implemented using selected TD algorithms on subset S1 for each target 

(V1, V2, and V3) without performing DR. An assessment of all the results obtained for 

every combination of algorithm and target is done to select an optimum value of threshold. 

Different thresholds have been explored to maximize the detections and minimize false 

positives. Outcomes for all the sets of experiments for a window of 20x30 pixels and results 

of computations of the values for true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN) are noted. Post analysis, the best performing TD algorithm 

is selected for further processing.  

To study the impact of DR linked full pixel TD, DR algorithms ICA, PCA and MNF 

are implemented. ICA based dimensionality reduced dataset contains more information in 

the initial bands and the noise or information with little spatial structure appear last 

(Hyvarinen et al.2000, Song et al. 2007). Noise is removed using a forward transform and 

bands containing coherent images are determined. Threshold selected for this is 0.0001 

with iterations of 100. Thereafter, sets of different good ICA bands i.e., 10 bands, 15 bands, 

20 bands, 25 bands, 30 bands have been analyzed and 20 bands containing maximum 

information and minimum noise are selected.  
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Figure 2.6: Flowchart explaining the steps followed to achieve the objectives of this chapter. 
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Next PCA is applied. Since maximum information is contained in first few PCA 

bands while the last bands appear noisy (Agarwal et al. 2007, Chang et al.2004, Harsanyi 

et al. 1994, Koonsanit et al.2012, Zabalza et al.2014), again sets of different good PCA 

bands i.e., first 10 bands, 15 bands, 20 bands, 25 bands, 30 bands have been analyzed for 

PCA and 20 bands containing maximum information and minimum noise are selected. 

MNF is then implemented which computes mean of each band, finds covariance statistics 

for noise and eigenvalues (Green et al.1988, Rhonda et al. 2008). Output obtained contains 

eigenvalues plot. Bands with large eigenvalues (>1) contain data and the bands with 

eigenvalues near 1 contain noise. Thus 20 best bands out of 126 bands have been selected.   

Further DR linked full pixel TD is performed on reduced spectral subset of 20 bands 

(window size of 20x30 pixels) selected respectively after ICA, PCA and MNF reduction. 

Accuracy assessment has been done using confusion matrix (Davood et al.2012, Binol et 

al.2016) and corresponding accuracy percentage is calculated 

2.3.2 Full pixel Target Detection with and without Dimensionality Reduction and 

Background characterization 

In subset S2, first full pixel TD without background characterization is performed. 

Results are analyzed to find out the best performing TD algorithm. Further analysis is done 

for DR linked full pixel TD without background characterization using MNF, ICA, PCA 

as DR algorithms. 

 Following this, the background characterization algorithms, K-Means and SMACC, 

have been implemented and further TD is done. After performing background 

characterization, the spectra of non - target components are attributed to the target detection 

algorithms which subsequently is analyzed for studying if there is an increase or decrease 

in detection of target pixels.  
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Thereafter, DR linked TD with background characterization is implemented to find 

out the best DR linked TD algorithm that gives minimal / no loss of target data.  

2.3.3 Subpixel Target Detection with and without Dimensionality Reduction and 

Background characterization 

 One part of target under consideration (Y1) in subset S2 is a mixture of yellow felt 

and yellow cotton. Thus, for subpixel TD and to find their respective compositions in Y1, 

spectral unmixing is done using LMM. Once their respective abundance fractions are 

retrieved, a new table is reconstructed for Y1 in the format of actual placement at the time 

of data collect as discussed in section 2.2.2. Thereafter, based on chosen threshold values, 

subpixel TD results are evaluated.  

 Spectral unmixing using LMM is performed afterwards without DR and without 

background characterization on S2. Again, after computation of abundance fractions, 

values for detection for yellow felt and yellow cotton are obtained. Results of subpixel TD 

with DR is then compared to results obtained without DR. 

All implementations have been done using MATLAB R2015a and ENVI 5.2. 

2.4 Results and Discussions  

 Based on the above methodology, the discussion of results at each step of the 

implementation stage is presented in the following subsections: 

2.4.1 Full pixel Target Detection without Dimensionality Reduction in Data Set-1 

The implementations have been done using the target detection algorithms 

mentioned in section 2.3. The results of computations of the values for TP (true positives), 

FP (false positives), TN (true negatives), and FN (false negatives) for a window of 20x30 

pixels, with respect to the target pixels have been tabulated in Table 2.4.  
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Table 2.4: Full pixel TD results for 126 bands and window of size 20x30 

pixels in Subset S1 of Data set-1 

 

Sr. 

No 

TD 

algorithm 

Target 

ID’s 

TP 

(targets) 

FN 

(loss) 

FP 

(alarms) 

TN Accuracy 

1. 

 
ACE 

 

V1 

V2 

V3 

9 

9 

9 

0 

0 

0 

1 

2 

2 

590 

589 

589 

99.83% 

99.66% 

99.66% 
2. MF V1 

V2 

V3 

9 

8 

8 

0 

1 

1 

2 

3 

2 

589 

588 

589 

99.66% 

99.33% 

99.50% 
3. NED V1 

V2 

V3 

7 

6 

6 

2 

3 

3 

21 

45 

131 

570 

546 

460 

96.16% 

92.00% 

77.60% 
4. SAM V1 

V2 

V3 

6 

7 

6 

3 

2 

3 

30 

49 

89 

561 

542 

502 

94.50% 

91.50% 

84.60% 
5. SID V1 

V2 

V3 

7 

6 

4 

2 

3 

5 

35 

46 

47 

556 

545 

544 

93.80% 

93.50% 

91.30% 
6. OSP V1 

V2 

V3 

4 

4 

4 

5 

5 

5 

29 

16 

38 

562 

575 

553 

94.30% 

96.50% 

92.83% 
7. TCIMF V1 

V2 

V3 

4 

4 

3 

5 

5 

6 

84 

143 

75 

507 

448 

516 

85.16% 

75.33% 

86.50% 
8. CEM V1 

V2 

V3 

4 

3 

6 

5 

6 

3 

321 

291 

423 

270 

300 

168 

45.66% 

50.50% 

29.00% 
 

 

Following is observed from Table 2.4: 

ACE detects all 9 target pixels of V1, V2, V3 with very less FP. However, MF 

detects 9 pixels for V1 and 8 pixels for V2 and V3 (both) with a slight increase in FP.  NED 

and SAM further reduce the detected target pixels to 6 and 7 out of 9 but FPs are much 

higher. CEM gives the highest FPs. 

Following may be thus deduced from these observations: 

Since ACE detects all target pixels with very low FP and outperforms all other 

algorithms, it has been considered further to check results for DR linked TD. Second-best 

TD algorithm that detects higher number of target pixels, but less FP is MF and can 

therefore be retained for the next step of implementations. 
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2.4.2 Dimensionality Reduction linked Full pixel Target Detection In Data Set-1 

  To perform full pixel TD with DR on Dataset 1; ICA, PCA and MNF are 

implemented on subset S1 and further DR linked TD is carried on dimensionally reduced 

spectral subset of 20 bands.  

 Accuracy assessment has been done using confusion matrix. Results obtained for a 

window of 20x30 pixels are shown in Table 2.5. 

Table 2.5: DR linked TD results and their assessment using a window of size 20x30. 

Sr. 

No 

DR 

algo-

rithm 

TD  

algo- 

rithm 

Target 

ID’s 

Number 

of 

bands 

selected 

out of 

126 

TP 

(targets) 

FP 

(alarms) 

FN 

(loss) 

TN Accuracy 

1 ICA 

ACE 

V1 

V2 

V3 

20 

7 

7 

8 

4 

7 

1 

2 

2 

1 

587 

584 

590 

97.83% 

98.33% 

98.33% 

MF 

V1 

V2 

V3 

20 

3 

4 

7 

13 

21 

20 

6 

5 

2 

578 

570 

571 

96.83% 

95.00% 

95.33% 

2 PCA 

ACE 

V1 

V2 

V3 

20 

7 

8 

7 

5 

9 

22 

2 

1 

2 

586 

582 

569 

97.00% 

97.00% 

94.83% 

MF 

V1 

V2 

V3 

20 

4 

8 

4 

19 

18 

27 

5 

1 

5 

572 

573 

564 

95.50% 

95.67% 

94.17% 

3 
MNF 

 

 

ACE 

V1 

V2 

V3 

20 

7 

8 

8 

11 

12 

16 

2 

1 

1 

579 

579 

575 

96.50% 

96.83% 

95.83% 

MF 

V1 

V2 

V3 

 

20 

1 

8 

3 

23 

19 

34 

8 

1 

6 

568 

572 

557 

94.67% 

95.50% 

93.00% 

Following is observed from Table 2.5: 

 ICA with ACE detects 7,7,8 target pixels for V1, V2, V3 respectively and gives 

comparatively much lower false alarms with highest accuracy of detection ≈ 98.33%. PCA 

with ACE detects 7,8,7 pixels for V1, V2, V3 respectively but with higher false alarms 

decreasing the accuracy to 97% (V1, V2) and 94.83% (V3). MNF with ACE detect 7,8,8 
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target pixels for V1, V2, V3 respectively, however, false alarms have increased thus 

decreasing accuracy to 96.50% (V1), 96.83% (V2) and 95.83% (V3). 

 On the other hand, these DR algorithms when linked with MF, exhibit a very sharp 

decrease in detection of target pixels. Accuracy of ≈ 95% is achieved for PCA with MF, 

around 94% in case of MNF with MF, however, ICA with MF still performs better (than 

MNF or PCA) with accuracy ≈ 96 %.  

Following may be thus deduced from the observations: 

It appears that ICA performs better for DR assuring minimal loss of target data and 

higher accuracy after applying ACE for TD. A comparison of Table 2.4 (TD without DR) 

with Table 2.5 (TD with DR), also leads us to deduce that there is reduction in detected 

target pixels in case of TD with DR.  

In the case of TD using ACE without DR, number of target pixels detected 

successfully are more but when same TD algorithm is applied after ICA, there is a loss of 

target pixels. Results therefore give us a platform for usage of ICA linked ACE as a better 

DR linked TD algorithm ensuring minimal loss of target data.  

2.4.3 Full pixel Target Detection without Dimensionality Reduction in Data Set- 2 

 without considering Background characterization 

Target Detection is achieved on subset S2 of Dataset 2, in which, first part of 

selected target is subpixel target (a mixture of yellow felt and yellow cotton) and total 

number of pixels of is 64 pixels.  

Second part of the target which is a full pixel target (a yellow felt), occupies 25 

pixels in the image. Therefore, total target pixels under considerations are 89 pixels. First, 

TD is performed on atmospherically corrected and georeferenced data using MF, TCIMF, 

SAM, ACE, SID, CEM, NED and OSP. Results are shown in Table 2.6.   
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Table 2.6: Full pixel TD results for 360 bands, targets, and a window 

of size 20x30 pixels in Data set - 2, without DR and without 

background characterization. 

Sr. 

No 

TD 

algorithm 

TP 

(targets) 

FN 

(loss) 

FP 

(alarms) 

TN Accuracy 

1. MF 71 18 3 508 96.50% 

2. TCIMF 67 22 4 507 95.66% 

3. SAM 60 29 1 510 95.00% 

4. ACE 55 34 3 508 93.83% 

5. SID 42 47 2 509 91.83% 

6. CEM 60 29 76 435 82.50% 

7. NED 44 45 13 498 90.33% 

8. OSP 44 45 121 390 72.33% 

 

Following is observed from Table 2.6: 

MF detects 71 out of total 89 pixels with very less false alarms (3 pixels) and a loss 

of 18 target pixels. TCIMF gives loss of 22 pixels with false alarms of 4. With SAM, the 

detection further reduces to 60 target pixels with false alarm of 1. However, with ACE and 

SID, the detection reduces to 55 and 42 pixels respectively, thereby incurring an increased 

loss of target pixels. 

Thus, it is deduced based on these observations that, MF, TCIMF and SAM detect 

more target pixels and therefore suitable for the study of DR linked TD.  

2.4.4 Dimensionality Reduction linked Full pixel Target Detection In Data Set-2 

considering Background characterization 

 Target Detection is carried out in two steps, using background characterization 

(SMACC and K-Means) and without using background characterization.  

 Results for DR linked TD without background characterization are shown in Table 

2.7. 
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Table 2.7: DR linked TD results for targets and their assessment using a window 

of size 20x30 – Data set-2 and without background characterization. 

Sr. 

No 

DR 

algo-

rithm 

TD 

algo-

rithm 

Number 

of bands 

selected 

out of 360 

TP 

(targets) 

FP 

(alarms) 

FN 

(loss) 

TN Accuracy 

1 
MNF 

 

MF 20 67 8 22 503 95.00% 

TCIMF 20 69 11 20 500 94.83% 

SAM 20 73 21 16 490 93.83% 

2 

 

ICA 

 

MF 20 66 13 23 498 94.00% 

TCIMF 20 59 11 30 500 93.17% 

SAM 20 69 17 20 494 93.83% 

 

 

3 

 

 

PCA 

MF 20 66 7 23 504 95.00% 

TCIMF 20 40 11 49 500 90.00% 

SAM 20 35 10 54 501 89.33% 

Following is observed from the results of Table 2.7: 

 MNF with MF detects 67 target pixels and 8 false alarms attaining an accuracy of 

95%, which is reduced to 94.83% in MNF with TCIMF but here the false alarms increase 

to 11. With SAM, number of target pixels retained observe an increase with 73 pixels, 

however, false alarms increase further to 21 pixels reducing the accuracy to 93.83%. 

 ICA with MF delivers highest accuracy of 94% with successful detection of 66 

target pixels. ICA with TCIMF attains accuracy of 93.17% while ICA with SAM detects 

69 target pixels: higher than MF and TCIMF, but with 17 false alarms. 

 PCA with MF gives 95% accuracy, TCIMF delivers accuracy of 90% and SAM 

performs poorly in this case with 89.33% accuracy. 

Thus, it is deduced from the observations that,  

 MNF with MF provides better results of detection ensuring minimal loss of the 

target data. Therefore, a combination MNF as DR and MF as TD algorithm may be 

considered further. 

TD is next carried on by defining and submitting the background spectra (retrieved using 

background characterization algorithms SMACC and K-Means) to the target detection 
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algorithm. Background spectra for six end members are retrieved in both the cases and have 

been considered for a window size of 20x30 pixels. Spectra that have been obtained for 

background end members for both SMACC and K-Means are shown in Figure 2.7 (a) and 

2.7 (b) respectively. 

  Background characterization is done followed by TD using MF, TCIMF and SAM 

without DR. Results obtained for this study are shown in Table 2.8. 

 

Figure 2.7: Endmember spectra obtained from (a). SMACC, (b). K-Means 

 

Table 2.8: TD results and their assessment using a window of size 20x30 pixels 

– Data set-2 with background characterization using SMACC and K-Means. 

Sr 

No 

TD 

algo-

rithm 

Background 

characterization 

using SMACC 

and K-Means 

Number 

of bands 

selected 

out of 

360 

TP 

(targets) 

FP 

(alarms) 

FN 

(loss) 

TN Accuracy 

1 MF 
SMACC 

K-Means 
20 

66 

68 

13 

11 

23 

21 

498 

500 

94.00% 

94.67% 

2 TCIMF 
SMACC 

K-Means 
20 

40 

52 

15 

14 

49 

37 

496 

497 

89.33% 

91.50% 

3 SAM 
SMACC 

K-Means 
20 

66 

68 

16 

16 

23 

21 

495 

495 

93.50% 

94.17% 

Following has been observed from Table 2.8: 

. 
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Following is observed from the above Table 2.9: 

 

 

 

 

MF using SMACC gives lower accuracy (94%) as compared to K-means which gives an 

accuracy of 94.67%. TCIMF retains fewer target pixels with both SMACC and K-Means 

i.e. 40 pixels and 52 pixels, i.e. with a loss of 49 pixels and 37 pixels respectively. SAM 

performs better with detection of 66 and 68 target pixels for SMACC and K-Means 

respectively with false alarms of 16 pixels in each case. The false alarms are higher than 

that for MF, thereby reducing the accuracy to 93.5%(SMACC) and 94.17%(K-Means). 

It may therefore be deduced from the observations that K-means here retains 

more target pixels in all cases as compared to SMACC.  

DR linked TD is then implemented using ICA, MNF, and PCA as DR algorithms and 

MF, TCIMF, and SAM as TD algorithms. Detection process was aided using the 

background characterization and results using both SMACC and K-Means and further, 

TD results have been shown in Tables 2.9 and 2.10 respectively 

Table 2.9: DR linked TD results for target - yellow felt and their assessment using 

a window of size 20x30 pixels – Data set-2 and background characterization using 

SMACC 

Sr. 

No 

DR 

algorithm 

TD 

algorithm 

Number 

of bands 

selected 

out of 

360 

TP 

(targets) 

FP 

(alarms) 

FN 

(loss) 

TN Accuracy 

1 
MNF 

 

MF 20 67 8 22 503 95.00% 

TCIMF 20 53 4 36 507 93.33% 

SAM 20 68 10 21 501 94.83% 

2 

 

ICA 

 

MF 20 68 11 21 500 94.67% 

TCIMF 20 47 7 42 504 91.83% 

SAM 20 68 13 21 498 94.33% 

 

 

3 

 

 

PCA 

MF 20 67 6 22 507 95.13% 

TCIMF 20 18 6 71 505 87.17% 

SAM 20 34 0 55 511 90.83% 
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 While implementing background characterization using SMACC, with DR as MNF 

and with TD as MF, 67 target pixels are retained (in comparison to TD without DR which 

is 71 pixels) at an accuracy of 95%. With TCIMF, accuracy is 93.33% while SAM on the 

other hand gives accuracy of 94.83%. Thus, SAM performs better with DR as compared to 

SAM without DR.  

 With ICA and MF, accuracy reduces to 94.67%, which reduces further to 91.83% 

in case of TCIMF. With SAM, however, target pixels retained are 68 but alarms increase 

to 13 which reduces accuracy to 94.33%. With PCA, accuracy with SAM is reduced to 

90.83 % but with MF it is 95.13%. TCIMF performs poorly in this case. Thus, SAM with 

DR as MNF, detects more target pixels thereby incurring minimal loss of target data, 

followed by MF.  

It may be deduced from the observations listed above that MF, in all the cases (i.e. with 

DR as MNF, ICA, and PCA) gives nearly consistent results of detection and may also be 

considered for further TD.   

DR linked TD is then performed using background characterization as K-Means. The 

results have been compiled in Table 2.10. 

Table 2.10: DR linked TD results for target - yellow felt and their assessment 

using a window of size 20x30 pixels – Data set-2 and background characterization 

using K-MEANS. 

Sr. 

No 

DR 

algorithm 

TD 

algorithm 

Number 

of bands 

out of 

360 

TP 

(targets) 

FP 

(alarms) 

FN 

(loss) 

TN Accuracy 

1 ICA 

MF 20 67 0 22 511  96.33% 

TCIMF 20 59 3 30 508 94.50% 

SAM 20 68 13 21 498 94.33% 

2 

 

MNF 

 

MF 20 70 15 19 496 94.33% 

TCIMF 20 55 0 34 511 94.33% 

SAM 20 68 10 21 501 94.83% 

 

3 

 

 

PCA 

 

MF 20 68 11 21 500 94.67% 

TCIMF 20 60 0 29 511 95.17% 

SAM 20 34 0 55 511 90.83% 
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Following is observed from Table 2.10: 

MF with ICA gives accuracy of 96.33%, MF with MNF detects 70 target pixels 

which is the highest but false alarms are 15 which is reduced in case of SAM to 10 thus 

increasing accuracy to 94.83%. MF with PCA retains 68 target pixels out of 89 which is 

highest when PCA is used as a DR algorithm. With SAM and ICA, the loss is 21 pixels, 

but false alarms are 13. TCIMF with ICA performs worst with accuracy of 94.5%. SAM, 

however, performs the worst with PCA and K-Means with a loss of 55 pixels. TCIMF 

comparatively works better with DR as PCA detecting 60 target pixels.  

So, it may be seen that MF, in all the cases (MNF, ICA, and PCA) gives nearly 

consistent results with K-Means. ICA linked MF gives highest accuracy of the three, but 

maximum target pixels are retained with MNF+MF (70 pixels out of 89).  

It may be deduced from the observations that:  

Overall, the results of detection are improved with K-Means in comparison to 

SMACC. A combination of MF as TD algorithms with all the three DR algorithms (ICA, 

MNF and PCA) proves worthy and gives the better results of detection 

2.4.5 Subpixel Target Detection in Data Set-2 considering Background 

characterization 

In this section, the effect of providing background spectra to the TD algorithms on 

the detection of subpixel target has been explained. The implementations have been carried 

out on spatial subset S2 taken from Data Set-2.  

2.4.5.1 Dimensionality Reduction linked Subpixel Target Detection In Data Set-2 

considering Background characterization 

TD algorithms discussed above detect only yellow felt and assign whole pixel to it. 

DR chosen for this process is ICA and TD chosen is MF, based on results obtained for DR 

linked TD background characterization using K-Means in Table 2.10. Target under 
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consideration is Y1 as shown in Figure 2.2 (c). A result of performing LMM on a 150x150 

spatial subset S2 is shown in Figure 2.8. 

 

Figure 2.8: A result of performing LMM on a 150x150 spatial subset S2 

After spectral unmixing, two tables Table 2.11 (a) and (b), have been generated containing 

abundance fractions of Yellow felt and Yellow cotton respectively in Y1 (8x8 pixels). 

Table 2.11 (a). Fractional composition obtained after LMM of yellow felt in Y1 

0.71 0.85 0.63 0.83 0.86 0.86 1.04 0.76 

0.33 0.76 0.66 0.66 0.77 0.76 0.93 0.76 

0.76 0.71 0.28 0.71 0.72 0.88 0.89 0.75 

0.71 0.72 0.51 0.5 0.7 0.89 0.9 0.59 

0.71 0.76 0.54 0.81 0.81 0.71 0.92 0.78 

0.76 0.45 0.45 0.88 0.87 0.91 0.86 0.43 

0.71 0.28 0.89 0.86 0.9 0.9 0.91 0.55 

0.71 0.71 0.62 0.74 0.71 0.71 0.76 0.76 

Table 2.11 (b). Fractional composition obtained after LMM of yellow cotton in Y1 

0.34 0.22 0.22 0.23 0.21 0.21 0 0.24 

0.79 0.33 0.23 0.23 0.23 0.24 0.07 0.24 

0.35 0.21 0.71 0.23 0.23 0.21 0.21 0.25 

0.25 0.21 0.23 0.23 0.25 0.21 0.08 0.25 

0.26 0.22 0.22 0.23 0.55 0.18 0 0.22 

0.2 0.21 0.24 0.21 0.2 0.25 0.21 0.38 

0.15 0.15 0.23 0.31 0.3 0.15 0.15 0.23 

0.22 0.22 0.25 0.25 0.25 0.21 0.22 0.24 
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Based on results, we have tried to reconstruct a table for Y1 (8x8 pixels) in the format of 

the actual placement of yellow felt (75%) and yellow cotton (25%) blocks at the time of 

data collect. Table 2.12 shows the fractional compositions of both yellow felt and yellow 

cotton in the 8x8 pixels in subset S2. Yellow colored portion represents fractional 

composition of Yellow felt and pale colored portion represents composition of Yellow 

cotton in Y1.   

Table 2.12: Fractional compositions of both yellow felt and yellow cotton in the 8x8 

pixels in subset S2 

 
  .34   .22   .22   .23   .21   .21   0   .24 

.71   .85   .63   .83   .86   .86   1.04   .76   

  .79   .33   .23   .23   .23   .24   .07   .24 

.33   .76   .66   .66   .77   .76   .93   .76   

  .35   .21   .71   .23   .23   .21   .21   .25 

.76   .71   .28   .71   .72   .88   .89   .75   

  .25   .21   .23   .23   .25   .21   .08   .25 

.71   .72   .51   .50   .70   .89   .90   .59   

  .26   .22   .22   .23   .55   .18   0   .22 

.71   .76   .54   .81   .81   .71   .92   .78   

  .20   .21   .24   .21   .20   .25   .21   .38 

.76   .45   .45   .88   .87   .91   .86   .43   

  .15   .15   .23   .31   .30   .15   .15   .23 

.71   .28   .89   .86   .90   .90   .91   .55   

  .22   .22   .25   .25   .25   .21   .22   .24 

.71   .71   .62   .74   .71   .71   .76   .76   

Now, a random value of 1 is assigned to indicate the target detection if fractional abundance 

value is greater than 40% for Yellow felt and greater than 10% for yellow cotton in every 

pixel; otherwise, it is assigned a value of 0. This aids in understanding the presence or 

absence of the target in the pixel. These assigned values are shown in Table 2.13. The 

results, however, may vary for different values of threshold while implementing the 

detection algorithms. 
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Table 2.13: Values corresponding to target detected / not detected in the 8x8 pixels 

panel. 

  1   1   1   1   1   1   0   1 

1   1   1   1   1   1   1   1   

  1   1   1   1   1   1   0   1 

0   1   1   1   1   1   1   1   

  1   1   1   1   1   1   1   1 

1   1   0   1   1   1   1   1   

  1   1   1   1   1   1   0   1 

1   1   1   1   1   1   1   1   

  1   1   1   1   1   1   0   1 

1   1   1   1   1   1   1   1   

  1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1   

  1   1   1   1   1   1   1   1 

1   0   1   1   1   1   1   1   

  1   1   1   1   1   1   1   1 

1   1   1   1   1   1   1   1   

 

Based on these values, it is observed that the subpixel TD results are: 

Yellow felt:  

 Target pixels detected = 61 / 64,  

 Target pixels not detected = 03 / 64 

Yellow cotton:  

  Target pixels detected = 60 / 64, 

  Target pixels not detected = 04 / 64 

2.4.5.2 Sub-pixel Target Detection without Dimensionality Reduction in Data Set-2 

considering Background characterization 

Next, Spectral unmixing using LMM is performed without DR and without 

background characterization on same subset. Results obtained for Yellow felt and Yellow 

cotton have been shown in Table 2.14 (a) and (b) respectively.  
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Table 2.14 (a): Fractional composition obtained after LMM of yellow felt in Y1 

0.01 0 0.02 0.01 0.18 0.05 0.05 0.03 

0.01 0.05 0.1 0.5 0.18 0.36 0.03 0.08 

0.01 0.01 0.1 0.64 0.86 0.78 0.43 0.81 

0 0.04 0.03 0.36 1 0.96 1 0.49 

0 0.01 0.25 1 0.98 1 0.89 0.91 

0.02 0.05 0.42 0.94 0.87 1 0.87 0.25 

0.02 0.05 0.05 0.26 0.65 0.55 0.87 0.5 

0.02 0.02 0.01 0.01 0.08 0.07 0.15 0.01 

Table 2.14 (b): Fractional composition obtained after LMM of yellow cotton in Y1 

Fractional composition obtained after LMM of yellow cotton in Y1 

0.02 0 0.03 0.03 0.14 0.01 0.02 0.04 

0 0 0 0.03 0.11 0.06 0.14 0.05 

0.02 0.02 0.16 0.01 0.08 0.21 0.07 0.19 

0 0.05 0.16 0.07 0.07 0.12 0.11 0.28 

0.01 0.02 0.01 0.01 0.08 0.06 0.1 0.1 

0.01 0.01 0.22 0.03 0.16 0.04 0 0.1 

0.02 0.01 0.05 0.22 0.22 0 0.04 0 

0 0.01 0.03 0.04 0.03 0.02 0 0.04 

Based on the results, again a table for Y1 (8x8 pixels) has been reconstructed in 

format of the actual placement of yellow felt (75%) and yellow cotton (25%) blocks at the 

time of data collect. Table 2.15 shows fractional compositions of both yellow felt and 

yellow cotton in 8x8 pixels in subset S2. 

Table 2.15: Fractional compositions of both yellow felt and yellow cotton in the 8x8 

pixels in subset S2 

  0.02   0   0.03   0.03   0.14   0.01   0.02   0.04 

0.01   0   0.02   0.01   0.18   0.05   0.05   0.03   

  0   0   0   0.03   0.11   0.06   0.14   0.05 

0.01   0.05   0.1   0.5   0.18   0.36   0.03   0.08   

  0.02   0.02   0.16   0.01   0.08   0.21   0.07   0.19 

0.01   0.01   0.1   0.64   0.86   0.78   0.43   0.81   

  0   0.05   0.16   0.07   0.07   0.12   0.11   0.28 

0   0.04   0.03   0.36   1   0.96   1   0.49   

  0.01   0.02   0.01   0.01   0.08   0.06   0.1   0.1 

0   0.01   0.25   1   0.98   1   0.89   0.91   

  0.01   0.01   0.22   0.03   0.16   0.04   0   0.1 

0.02   0.05   0.42   0.94   0.87   1   0.87   0.25   

  0.02   0.01   0.05   0.22   0.22   0   0.04   0 

0.02   0.05   0.05   0.26   0.65   0.55   0.87   0.5   

  0   0.01   0.03   0.04   0.03   0.02   0   0.04 

0.02   0.02   0.01   0.01   0.08   0.07   0.15   0.01   
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 Again, by randomly assigning value of target detected to 1 for values of fractional 

abundances greater than 40% for Yellow felt and to 0 for values greater than 10% for yellow 

cotton in every pixel, certain values for detection are obtained as shown in Table 2.16. 

Based on the obtained values, it is observed that subpixel TD results are: 

Yellow felt:  

Target pixels detected = 24 / 64,  

Target pixels not detected = 40 / 64 

Yellow cotton:  

Target pixels detected = 17 / 64,  

Target pixels not detected = 47 / 64 

 

Table 2.16: Values corresponding to target detected / not detected in the 8x8 pixels 

panel. 

 

  0   0   0   0   1   0   0   0 

0   0   0   0   0   0   0   0   

  0   0   0   0   1   0   1   0 

0   0   0   1   0   0   0   0   

  0   0   1   0   0   1   0   1 

0   0   0   1   1   1   1   1   

  0   0   1   0   0   1   1   1 

0   0   0   0   1   1   1   1   

  0   0   0   0   0   0   1   1 

0   0   0   1   1   1   1   1   

  0   0   1   0   1   0   0   1 

0   0   1   1   1   1   1   0   

  0   0   0   1   1   0   0   0 

0   0   0   0   1   1   1   1   

  0   0   0   0   0   0   0   0 

0   0   0   0   0   0   0   0   
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Following are the observations in the case of subpixel TD of Yellow felt (75%) in target 

Y1: 

Subpixel TD without DR, without background characterization:  

Only 24 out of 64 pixels are detected. 

Subpixel TD with DR, with background characterization:  

With ICA, linked TD (MF), using background characterization(K-Means), 

detection improves to 61 pixels out of total 64 target pixels. 

Similarly, observations for subpixel TD of Yellow cotton (25%) in target Y1 are: 

 

Subpixel TD without DR, without background characterization:  

Only 17 out of 64 pixels are detected.   

Subpixel TD with DR, with background characterization:  

With ICA, linked TD(MF), using background characterization (K-Means), 

detection improves to 60 pixels out of total 64 target pixels. 

Thus, it may be deduced from the observations that: 

Subpixel target detection with dimensionality reduction provides better results in 

comparison to results obtained without dimensionality reduction. Also, background 

characterization immensely aids the detection of subpixel targets resulting in 

minimal loss of target data. 

 

A summary of all the obtained results for various combinations of DR and TD algorithms 

(already explained in detail under sections 2.4.1 to 2.4.5), have been compiled for an easy 

reference in Table 2.17 below.   
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Table 2.17: A summary of results obtained for target detection using various 

combinations of DR and TD algorithms for full pixel and subpixel targets 

 

DATA SET-1 Without DR With DR 

  

 

 

Full pixel TD 

• ACE detects all target 

Pixels, gives lowest FP 

• MF detects well with loss 

of only 1 target pixel 

• Detection of target pixels is 

reduced  

• However, with ICA linked ACE, 

the detection is more as 

compared to other combinations, 

thus incurring minimal loss of 

target pixels  

DATA SET-2 Without DR With DR 

 

Full Pixel TD 

without 

Background 

characterization  

• MF outperforms followed 

by TCIMF. 

• SAM also performs 

reasonably better than all 

other algorithms 

implemented 

• MNF outperforms as DR and 

MF outperforms as TD  

 

Full Pixel TD with 

Background 

Characterization 

• MF using K-Means as 

B/G characterization 

outperforms with highest 

accuracy 

• ICA linked MF gives maximum 

accuracy with K-Means. 

• Overall K-Means outperforms 

SMACC 

DATA SET-2 Without DR, Without B/G With DR (ICA), With B/G (K- 

Means) 

 

 

Subpixel TD with 

MF  

• Detection is very low. 

• For Yellow Felt, there is a 

loss of 40 target pixels out 

of 64 

• Whereas for Yellow 

Cotton, there is a loss of 

47 target pixels out of 64 

• Detection improved. 

• For Yellow Felt, there is 

successful detection of 61 target 

pixels out of 64, 

• For Yellow Cotton, there is a 

successful detection of 60 target 

pixels out of 64. 

 

2.5       Conclusions 

In this chapter, various combinations of dimensionality reduction algorithms (ICA, 

PCA and MNF) and target detection algorithms (SAM, ACE, MF, CEM, MTMF, NED, 

TCIMF, SID and OSP) have been studied with a view to achieve maximum possible 

dimensionality reduction while ensuring minimal or no loss of the target data. This work 

appears to aid the objectives and tasks related to the detection of targets of interest in 

hyperspectral data which is known to contain large number of narrow contiguous bands. 
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Therefore, reducing the number of bands to a useful subset increases the probability of 

detection by reducing the unwanted information contained in the noisy bands. In addition, 

it reduces the computation time and provides an ease to analyze the hyperspectral data for 

detection of targets of interest particularly those targets which are exceedingly small in 

comparison to the image size. 

From the summary given in Table 2.17 and the deductions of the results of 

detection, it may be concluded that the target detection process needs to be carefully 

executed as it leads to loss of certain information. The emphasis needs to be put on retaining 

the maximum information related to the target of interest. It can be further concluded that 

in the case of full pixel targets, both dimensionality reduction and target detection result in 

the loss of target information, however, there is a greater loss of target information in the 

case when dimensionality reduction precedes target detection in comparison to a case 

where target detection is applied without dimensionality reduction. 

Background characterization appears to aid in improvement of full pixel target 

detection, and K-means is seen to provide better results of detection. In the case of subpixel 

target detection, however, there appears to be loss of subpixel target information in the case 

where detection alone is performed in comparison to a case where dimensionality reduction 

precedes target detection.  

The above-mentioned results have been obtained using limited dataset made 

available as part of SHARE - 2010, 2012 campaigns and may need to be verified with other 

available high-resolution datasets. 
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Chapter 3 

Full Pixel and Subpixel Target Detection using 

Target and Background Subspaces 

 
3.1 Introduction to the Problem 

In chapter 2, we have discussed in detail the impact of dimensionality reduction on 

loss / recovery of target pixels while performing target detection in case of full pixel as well 

as subpixel targets. It was also explained how subpixel target detection responded when 

targets were selected to be mixed pixel targets (placed on asphalt court) and how these were 

detected using various combinations of dimensionality reduction and target detection 

algorithms. In addition, the characterization of backgrounds using a few algorithms have 

been discussed in detail there. 

In the present chapter, the focus is on target and background subspaces, and how 

these subspaces aid or inhibit the process of detection of full pixel and mixed pixel targets 

has been discussed. It is well known that for detection of mixed pixel targets, both spatial 

and spectral properties of the data may be exploited and utilized (Chang et al. 2004, Clark 

2016, Cohen et al. 2016). Since the retrieved spectra, in case of mixed pixel targets, is a 

combination of both the target as well as rest of the end members present in the pixel (Bitar 

et al. 2018, Lu et al. 2013, Govender et al. 2011, Boardman et al. 1995), it is of significance 

to consider the spectra of non-target end members as background (Chang et al. 2020).  

For separation of the target spectra from the non-target end members, spectral 

unmixing (linear or non- linear) is performed (Helen et al. 2016, Helen et al. 2014, Chang 

et al. 2017). While considering the detection of full pixel targets, we need to address two 

major issues that can affect the accurate detection – noise (from the instrument or external) 

and the atmospheric interference. However, in the case of mixed pixel targets, the 
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interference is more from the non – target end members present within the pixel also known 

as background components, which may further affect accurate detection of subpixel targets 

(Zhao et al. 2016, Eismann 2012, Manolakis, 2000, Cohen et al.2012).    

The tasks outlined in this chapter are, to detect low probability full pixel / subpixel 

targets with known spectral signatures, to detect targets using background and target 

subspaces, to analyze the impact of various combinations of background subspaces on full 

pixel and subpixel target detection and to analyze the impact of illumination conditions on 

the targets.  

For the present work, the target detection algorithms that have been selected are, 

Matched Filter (MF), Orthogonal subspace projection (OSP), Adaptive coherence 

estimator (ACE) and Target constrained interference minimized filter (TCIMF). These 

have been shortlisted from the algorithms studied from literature as well as a list of 

algorithms implemented in Chapter 2. The performance of these four algorithms is seen to 

be better than a group of algorithms discussed there.   

3.2 Experimental Data Set 

 Two set of data sets have been used to perform the experiments and tasks explained 

under section 3.1 above.  

3.2.1 Data set – 2 (Subset S2) 

One such data set is a spatial subset S2 that has been taken from Data set-2 (SHARE 

2012) as shown in Figure 2.2 (c) and already explained in section 2.2.2. Here the targets 

under consideration are a mixed pixel target Y1 and a full pixel target Y2 as shown in 

Figure 3.1. 
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Figure 3.1: Mixed pixel target Y1 and full pixel target Y2 in subset S2 

3.2.2    Data Set-3: SHARE-2012 (Subset S3) 

Another data set that has been used for this work is also a spatial subset of size 

140x244, that has been extracted from SHARE-2012 data set (Data set-2) which was 

collected in September 2012 over Avon city by RIT, Air force research lab and a few other 

research laboratories. This subset, however, contains different targets placed at different 

locations around the campus and is labelled as Data set-3 (Subset S3) for future references 

(Figure. 3.2). 

 

Figure 3.2: True color representation of subset S3 of size 140x244 in visible 

spectrum  
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In this subset, Red and Blue Felt fabric targets of 3x3 and 2x2 meters can be seen 

placed around the Avon site. The set of targets used are same, however, the background 

and illumination conditions in each case is different. Specifically, the target pairs are placed 

in open (full illumination) on dirt / gravel road, grass and in partial / full shade of the trees. 

In total, nine unique placements of these red and blue targets were obtained during the data 

collection campaign.  

3.2.2.1 Targets in Data Set-3 

The target under study for the present work is Blue Felt. Ground reflectance spectra 

of the target material and the various background types have been obtained, resampled to 

the image wavelengths and are represented in Figure 3.3 below. 

                                

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Ground spectra for target materials and the background types 

For the present work, a total of nine blue felt targets have been selected from twelve 

blue felt targets placed around the campus, as shown in Figure 3.4. These are further are 

labeled as T1, T2, T3, T4, T5, T6, T7, T8, T9. The category to which these targets belong, 

as well the total number of target pixels corresponding to each, is also explained in Table 

3.1. Therefore, total number of pixels belonging to all these nine targets under study are 56. 

Red Felt  

 

Blue Felt  

 

Grass 

Trees  
 

Roads 

(Gravel) 
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Table 3.1: Table representing targets under considerations and target ID’s allotted to 

blue felt targets for present work and the super category to which targets belong. 

Target ID ( Blue Felt) Category Pixels 

T1 (2x2) and T2 (3x3) Gravel (Road) T1=4, T2=9 

T3 (2x2) and T4 (3x3) Open Field (Grass) T3=4, T4=9 

T5 (2x2) Path (shade) T5=4 

T6 (2x2) Single Tree (Partiallly shaded) T6=4 

T7 (3x3) Treeline Pair (Partially 

shaded) 

T7=9 

T8 (3x3) and T9 (2x2) Treeline Quad (under trees) T8=9,T9=4 

Total 56 

 

 

 

Figure 3.4: Annotated aerial image of Avon site with target locations identified.  

 

 

T1 

T2 

T3 

T4 

T5 

T6 

T7 T8 

T9 
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3.3 Target and Background Subspaces 

The target detection process in the case of mixed pixel targets, generates the need 

to study and understand whether the pixel under observation contains a single spectral 

signature or is a combination (linear of non - linear) of different end members present 

within the pixel. Thus, the spectra of the pixel has been divided into the target spectra and 

the background spectra (Liu et al. 2017, Zhang et al. 2015, Xiaochen et al. 2020,Nasrabadi, 

2014,Chang et al. 2020, Du and Zhang 2004, Song et al. 2020, Wang and Xue 2017, Wang 

and Xue 2018, Bajorski et al. 2004).  

The target spectra if present in the pixel form a part of the target subspace and 

spectra of the rest of the end members present within the pixel form a part of the background 

subspace (Figure 3.5). 

 

 

  

 

  

 

 

Hyperspectral image 

 

(a)                                                         (b) 

Figure 3.5: Defining the target and background subspaces. 

 

As explained in Figure 3.5 (a), the target is represented in black colour and the rest 

of the end members form a part of the background subspace. The other major end members 

Sb1 Sb2 
Sb3 

Sbn 

St 

Target 

Subspace 

Background 

subspace 

X 

Y 
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considered are trees as represented in green, pale yellow represents the grass, blue 

represents the water (pond) and orange represents the soil. Here, the target vector forms the 

part of the target subspace and end members grass, trees, soil and water are added as part 

of background subspace according to the equations 3.1 and 3.2 explained in section 3.3.1.   

This division of subspaces has been implemented to study,  

(i) If the target – background separation increases the detection of target pixels; 

(ii) Whether it leads to a loss of target pixels or the detection remains the same. 

(iii) In addition,  a background threshold is used to calculate the fraction of non 

– target spectra in pixel. The range for threshold values is usually from 0.5 

to 1.0. For example, a value of 1.0 indicates that the entire image pixels will 

be computed to calculate the statistics for the background while a value of 

0.5 indicates that 50% of the pixels of the image will be under consideration.  

 

 3.3.1 Theoretical explanation 

Subpixel and full pixel Target and Background subspace specification is done as 

follows (Manolakis et al. 2005, Chang et al. 2000): 

𝑥 = ∑ 𝑎𝑝𝑠𝑝 + 𝑤 =

𝑅

𝑝=1

∑ 𝑎𝑝𝑠𝑝 + ∑ 𝑎𝑝

𝑅

𝑝=𝑞+1

𝑠𝑝𝑠𝑏 + 𝑤

𝑝=1𝑡𝑜𝑞

 

𝑥 = 𝑆𝑎 + 𝑤 = 𝑆𝑡𝑎𝑡+ 𝑆𝑏𝑎𝑏 + 𝑤 

where, 

 x represents the spectrum obtained for the mixed pixel under observation, 

  𝑠𝑝 represents the spectra of the end members, 

  𝑎𝑝 are their abundances, 

R is the total number of end members, 

 𝑤 represents the noise / interference. 

(3.1) 

(3.2) 
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The spectra obtained for a pixel has been subdivided into: 

1. ∑ 𝑎𝑝𝑠𝑝𝑝=1𝑡𝑜𝑞 , which represents the target subspace,  

2. ∑ 𝑎𝑝
𝑅
𝑝=𝑞+1 𝑠𝑝𝑠𝑏, which represents the background subspace and, 

3. 𝑤, noise. 

Now, there can appear three cases while evaluating a pixel, that may be considered for 

target detection:  

i. Target present and Background absent – Full pixel target 

ii. Target present and Background present – Subpixel / mixed pixel 

iii. Target absent and Background present – Subpixels are removed from further 

analysis and narrows down the set of pixels for consideration for target detection. 

3.4 Methodology and Implementation 

The methodology used in this objective has similar initial implementation steps as 

discussed in Chapter 2 under section 2.3. Once the initial mandatory steps of performing 

corrections on the data, creating spatial subset, resampling the ground truth information etc. 

have been performed, end member extraction is then carried out on the data using in–scene 

spectra. Linear mixture model (LMM) has been implemented for end member identification 

and their abundance estimation within the pixel.  

The detection of targets is done by defining target and background subspaces. 

Utilizing these variables (spectral information and pixel type), target and background 

subspaces are obtained, and the detection of targets is further done using dimensionality 

reduction algorithm (DR) as MNF and target detection algorithms (TD) as MF, OSP, ACE 

and TCIMF. These algorithms have been selected, considering their performances in 

detection of targets, in terms of accuracy, minimal loss of target information and 

computation complexity, as studied in chapter 2.  
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The target subspace contains the target spectra of Blue felt, also represented as T 

(Blue_Felt). The background subspace contains mixed background end member spectra of 

Grass, Trees, Gravel Road and a combination of these, also represented as Mixed (Grass+ 

Trees+ Roads (Gravel)), Grass, Roads, Red Felt). Here the Red Felt spectra has only been 

considered as a part of mixed background subspace as its spectra is a part of the background 

spectra and may aid the efficient detection of target, however, while considering the 

different subsets of background subspace it has not been considered, as the target blue felt 

has not been kept over this red felt in the data. The target has been kept over roads, grass 

and under trees and therefore, these have been considered individually for detection of 

targets.  

The study of impact of target conditions (full illuminations or shade) on the 

detection of target is performed by analyzing the spectral profiles. The target location 

(placement of target over different background types) is also considered to study the 

variation in target detection.  

After performing detection, a comparative assessment / analysis of the impact of 

background subspaces, impact of illumination conditions, impact of target detection 

algorithm implemented, and impact of background types on target detection is done. The 

subpixel and full pixel target detection and its analysis on Data Set-2, subset S2 have been 

explained in detail in Chapter 2 under sections 2.4.3 to 2.4.5. The flowchart representing 

the steps followed is shown in Figure 3.6. 
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Figure 3.6: Flowchart representing the steps followed to perform full pixel and 

subpixel target detection using target and background subspaces. 

 

3.5 Results and Discussions 

 In this section, first, the results of assessment of subpixel target detection using 

Subset S2 of Data set 2 is discussed. After this, the study and analysis of target spectra 

placed over different background types in subset S3 has been discussed. Thereafter, target 

detection using different background subspaces and a combination of subsets of mixed 

background subspaces is performed on subset S2. Following this, an analysis of the 

obtained results has been done. Lastly, the different cases of illuminations for different 

combinations of background subspaces have been discussed. All this is explained step by 

step under each subsection below.  

 

Endmember extraction using in-scene spectra 

Implement LMM  

Define Target subspace Define Background subspace 

Full pixel / Subpixel TD with different combination of background subspaces, 

study of illumination conditions on detection of targets 

Comparative assessment / Analysis of the impact of B/G subspaces on TD, impact 

of Background types and find the most suitable TD algorithm   

Obtain Atmospherically corrected and geo-referenced Data set-2 

Obtain Subset S2 (150x150) Obtain Subset S3 (140x244) 
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3.5.1 Assessment of subpixel target detection on Subset S2 

 It has been observed from the results obtained in Section 2.4.3 - 2.4.5 (Chapter 2), 

that when subpixel detection is performed using MF (Matched filter). This result is briefly 

being dicussed here again because in chapter 2 the focus was on loss of target pixels using 

dimesionality reduction and background characterization. The same is also relevant here in 

full pixel and subpixl target detection: 

Without dimensionality reduction, without using Background characterization: 

i. Detection of targets is very low, 

ii. For Yellow Felt, there is a loss of 40 target pixels out of total 64 target pixels, 

iii. Whereas, for Yellow Cotton, there is a loss of 47 target pixels out of 64. 

With dimensionality reduction (ICA), using Background characterization (K-means): 

i. Detection of targets is observed to show an improvement. 

ii. For Yellow Felt, there is a loss of only 3 target pixels out of total 64 target 

pixels, 

iii. Whereas, for Yellow Cotton, there is a loss of only 4 target pixels out of 64. 

Thus it may be deduced that:  

In case of subpixel target detection there appears to be loss of subpixel target 

information in the case where detection alone is performed in comparison to a case where 

dimensionality reduction precedes target detection.  

The background characterization aids in increasing the accuracy of detection of 

subpixel targets.   

3.5.2 Impact of different Background types on the detection of target (Data set -3)   

The spectra of the target Blue Felt has been analysed to observe the variation in 

spectral behaviour when it has been placed over different background types. Following 

background types have been considered: 
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i. Roads (Gravel) 

ii. Grass (Vegetation) 

iii. Trees-1 (Partial shade) – in terms of covering the target 

iv. Trees-2 (Complete shade)  

This has been done to study the impact of varied background types on the detection of 

targets. Figure 3.7 represents this variation in spectral profile of target Blue Felt. 

 

  

Figure 3.7: Spectral variations observed in the case of target Blue Felt when it has 

been placed over different background types. 

 

Maximum spectral variation has been observed in the case where target has been 

placed under trees / shade of trees. Also, there is a greater amount of variation (dips) in the 

spectral reflectance values (curves represented in blue and green color in Figure 3.4) as 

compared to the spectra obtained when it is placed over Road and Grass. Maximum 

variations are observed in the case when target has been placed under trees (both partial 

and complete shade) at: 

Grass 

Road 

Trees-

1 

Trees-

2 
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a. 0.40-0.50 (wavelengths in micrometre) - Visible region of the EM spectrum 

b. 0.70-0.90 (wavelengths in micrometre) - VNIR region of the EM spectrum 

c. 1.90-1.99 (wavelengths in micrometre) - Early SWIR region of the EM 

spectrum 

Similar observations can be made with respect to the roads and grass spectra. Further, all 

the above variations are observed primarily in the visible/IR region. Therefore, it appears 

that illumination plays a dominant role than the background type. 

3.5.3 Target detection in different Background Subspaces 

In this section, the target detection has been performed using MF, ACE, OSP and 

TCIMF considering different combinations of background subspaces and their subsets to 

study the loss of target pixels. Results are explained in each of the following sub sections.   

3.5.3.1 Target detection using Background Subspace - Mixed(Trees, Grass, Roads 

(Gravel) and Red_Felt)  

In this case, the target detection has been performed considering the background 

subspace as a combination of background types (i.e. Trees, Grass, Gravel roads, Red Felt). 

Here the spectra for Red Felt is also included in the mixed background subspace to assess 

the results of detection algorithms.   

The results of detection are shown in Figure 3.8 and the numeric values of 

detections have been tabulated in Table 3.2.  

The computations for the values of true positives, false positives, true negatives and 

false negatives has been done to represent the detection results and is represented as TP, 

FP, TN and FN respectively.   
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MF OSP ACE TCIMF 

    

a) b) c) d) 

 Figure 3.8 Results of detection considering mixed background subspace for 

algorithms a) MF b) OSP c) ACE and d) TCIMF 

 

Table 3.2: Target detection results for Blue Felt using different TD algorithms for 

Mixed background subspace (image size of 140x244). 

Target subspace – Blue Felt  

Total target pixels – 56 

Background subspace – Mixed (Trees, Grass, 

Roads ( Gravel), Red Felt)  

TD 

algorithm 

Pixels detected in 

the entire image 

TP FP FN TN 

MF 59 38 21 18 34083 

ACE 25 21 4 35 34100 

OSP 59 33 26 23 34078 

TCIMF 59 37 22 19 34082 
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Following is observed from the results shown in Table 3.2: 

With mixed background subspace, a total of 59 pixels have been detected from the 

entire input data using MF out of which the target pixels (true positives) detected are 38 

and false positives are 21. Also in this case, TCIMF detects a total of 59 pixels out of which 

target pixels detected are 37 and false positives are 22. This performance in mixed subspace 

is better than OSP, which detects 33 target pixels and gives 26 false positives. 

ACE performs poorly in this case with detection of only 21 target pixels out of 25 

total pixels detected in the entire image. False positives are less in this case but this is 

probably due to the case that detection on the whole is very poor as compared to other 

algorithms. 

From the observations mentioned above, following may be inferred: 

TCIMF, and MF appear to be a better performing algorithms in comparison to OSP 

and ACE in this case. Both these algorithms detect a total of 59 pixels, three pixels higher 

than the actual number of target pixels, and each having true positives of 38 and 37 pixels 

respectively. Thus, these algorithms appear to give approximately 66%-67% true positives 

in the case of mixed background subspace. 

3.5.3.2 Target detection using Background Subspace – Trees 

To study impact of individual background types on detection results, the 

implementations have been done separately for the subsets of the background subspace. 

The results of detection when Trees form a part of background subspace are discussed in 

this subsection.  

Detections obtained using target detection algorithms are shown in Figure 3.9.  The 

numeric values obtained in terms of TP (true positives), TN (true negatives), FP (false 

positives) and FN (False negatives) are tabulated in Table 3.4. 
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MF OSP ACE TCIMF 

    

a) b) c) d) 

Figure 3.9 Results of detection considering background subspace - Trees for 

algorithms a) MF b) OSP c) ACE and d) TCIMF 

 

Table 3.3: Target detection results using different TD algorithms for Trees as 

background subspace (image size of 140x244) 

Target subspace – Blue Felt 

Total target pixels – 56 

Background subspace – Trees 

TD 

algorithm 

Pixels detected in 

the entire image 

TP FP FN TN 

MF 74 38 36 18 34068 

ACE 16 11 5 45 34059 

OSP 74 32 42 24 34080 

TCIMF 71 40 31 16 34088 
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The following is observed from the results: 

When the background subspace only contains the spectra of trees, MF is detects 38 

target pixels (true positives) out of the total detections of 74 pixels in the image, however, 

the false positives increase to 36 pixels as compared to  the results of detection when 

background subspace is considered to be mixed background as shown in Table 3.2. 

Also, in this subset of the background subspace, TCIMF detects 40 target pixels out 

of total detections of 74 pixels and false positives are 31. 

However, OSP detects 32 target pixels when trees are considered as background 

subspace, but the false positives increase to 41. In addition, ACE detects poorly in this case 

as well with detection of only 11 target pixels with a rise in false positives to 45. 

From the observations mentioned above, following may be inferred: 

Here, TCIMF, and MF once again appear perform better than OSP and ACE. Both 

these algorithms detect a total of 71 and 74 pixels respectively, fifteen and eighteen pixels 

higher than the actual number of target pixels, and each having true positives of 40 and 38 

pixels respectively. Here, the false positives for MF and TCIMF respectively are also 36 

and 31. Thus in this case, these algorithms appear to give approximately 67-71% true 

positives. 

Here it appears that the trees subspace gives a marginal improvement over mixed 

subspace. 

3.5.3.3 Target detection using Background Subspace – Grass 

The results obtained with the grass spectra as a subset of background subspace are 

shown in Figure 3.10. The numeric values corresponding to the pixels detected and pixels 

lost are tabulated in Table 3.4.  
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MF OSP ACE TCIMF 

    

a) b) c) d) 

Figure 3.10 Results of detection considering background subspace – Grass for 

algorithms a) MF b) OSP c) ACE and d) TCIMF 

 

 

Table 3.4: Target detection results using different TD algorithms for Grass as 

background subspace (image size of 140x244).  

Target subspace – Blue Felt  

Total target pixels – 56 

Background subspace – Grass 

TD 

algorithm 

Pixels detected in 

the entire image 

TP FP FN TN 

MF 64 38 26 18 34078 

ACE 16 11 5 45 34099 

OSP 93 31 62 25 34042 

TCIMF 60 38 22 18 34082 
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Following is observed from Table 3.4: 

In case of grass as background subspace, the detection algorithm MF detects 38 

target pixels (true positives) out of total 64 detections in the image with false positives of 

26. This value is lesser than the false positives obtained when background subspace 

contains Trees as discussed in Table 3.4. 

In this case of subset of subspace, TCIMF also detects 38 target pixels out of total 

detections of 60 pixels, however the false positives are 22 which is lesser than those 

obtained after implementing MF. 

OSP detects only 31 target pixels out of total detections of 93 thereby increasing 

the number of false positives to 62. ACE detects poorly in this case as well with detection 

of only 11 target pixels and a loss of 45 target pixels. 

From the observations mentioned above, following may be inferred: 

Here, TCIMF, and MF once again appear perform better than OSP and ACE. Both 

these algorithms detect a total of 60 and 64 pixels respectively, four and eight pixels higher 

than the actual number of target pixels, and each having true positives of 38 pixels. Here, 

the false positives for MF and TCIMF respectively are also 26 and 22. Thus in this case, 

these algorithms appear to give approximately 67% true positives. 

Here it appears that the grass subspace gives a similar result as that of mixed 

subspace. 

3.5.3.4 Target detection using Background Subspace – Gravel Roads 

The subset of background subspace selected for this part is Gravel roads. Impact of this 

background subspace on detection of target is studied and results are shown in Figure 3.11. 

Numeric values obtained for True Positives, True Negatives, False Positives and False 

Negatives are tabulated in Table 3.5. 
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MF OSP ACE TCIMF 

    

a) b) c) d) 

Figure 3.11: Results of detection considering background subspace – (Gravel) Roads 

for algorithms a) MF b) OSP c) ACE and d) TCIMF 

Table 3.5: Target detection results using different TD algorithms for Roads (Gravel) 

background subspace  ( image size of 140x244). 

Target subspace – Blue Felt  

Total target pixels – 56 

Background subspace – Roads (Gravel) 

TD 

algorithm 

Pixels detected in 

the entire image 

TP FP FN TN 

MF 69 38 31 18 34073 

ACE 25 20 5 36 34099 

OSP 60 33 27 23 34077 

TCIMF 64 38 26 18 34078 

 

Following is observed from the results in this case: 
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In case of gravel roads as background subspace, MF is able to detect 38 target pixels 

(true positives) out of total detections of 69 pixels which is same as the target pixels 

detected with MF when background subspace is Mixed but the number of false positives in 

this case are 31. 

In this background subspace, TCIMF also detects 38 target pixels out of total 

detections of 64 pixels, with false positives of 26. However, OSP detects 33 target pixels 

sucessfully but false positives in this case are 27. ACE detects poorly in this case as well 

with detection of only 11 target pixels. 

From the observations mentioned above, following may be inferred: 

Here, TCIMF, and MF once again appear perform better than OSP and ACE. Both 

these algorithms detect a total of 64 and 69 pixels respectively, eight and thirteen pixels 

higher than the actual number of target pixels, and each having true positives of 38 pixels. 

Here, the false positives for MF and TCIMF respectively are 31 and 26. Thus in this case, 

these algorithms appear to give approximately 67% true positives. 

Here again it appears that the roads subspace performs same as that of mixed 

subspace. 

In order to further explore these results a detailed analysis is performed which is discussed 

in the next subsection. 

3.5.3.5 Analysis of the impact of different background subspaces on the detection of 

target 

All the results obtained for all the background subspace combinations are compiled 

and tabulated in Table 3.6. 
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Table 3.6: Target detection results for target Blue Felt after performing 

characterization using target and background subspaces 

 

Target Subspace – Blue 

Felt 

Total pixels – 56 

Background Subspace - Mixed (Roads (Gravel), 

Trees, Grass, Red Felt), only Grass, Only Trees, 

Only Roads 

TD 

Algorithm 

Detections Mixed Trees Grass Roads 

MF 

Pixels 

Detected 

 

TP 

 

 

FP 

 

 

FN  

59 

105.3% 

 

38 

67.8% 

 

21 

 

 

18 

32.1% 

74 

132.1% 

 

38 

67.8% 

 

36 

 

 

18 

32.1% 

64 

114.2% 

 

38 

67.8% 

 

26 

 

 

18 

32.1% 

69 

123.2% 

 

38 

67.8% 

 

31 

 

 

18 

32.1% 

ACE 

Pixels 

Detected 

 

TP 

 

 

FP 

 

 

FN 

25 

44.1% 

 

21 

37.5% 

 

4 

 

 

35 

62.5% 

16 

28.5% 

 

11 

19.6% 

 

5 

 

 

45 

80.3% 

16 

28.5% 

 

11 

19.6% 

 

5 

 

 

45 

80.3% 

25 

44.6% 

 

20 

35.7% 

 

5 

 

 

36 

64.2% 

OSP 

Pixels 

Detected 

 

TP 

 

 

FP 

 

 

FN 

59 

105.3% 

 

33 

58.9% 

 

26 

 

 

23 

41.0% 

74 

132.0% 

 

32 

57.1% 

 

42 

 

 

24 

42.8% 

93 

171.4% 

 

31 

55.3% 

 

62 

 

 

25 

44.6% 

60 

107.1% 

 

33 

58.9% 

 

27 

 

 

23 

41.0% 

TCIMF 

Pixels 

Detected 

 

TP 

 

 

FP 

 

 

FN 

59 

105.3% 

 

37 

66.0% 

 

22 

 

 

19 

33.9% 

71 

126.7% 

 

40 

71.4% 

 

31 

 

 

16 

28.5% 

60 

107.1% 

 

38 

67.8% 

 

22 

 

 

18 

32.1% 

64 

114.2% 

 

38 

67.8% 

 

26 

 

 

18 

32.1% 
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The results of detection corresponding to different combinations of background 

subspaces utilizing the target detection algorithms MF, ACE, OSP and TCIMF, and the 

retrieved values for TP, TN, FP, FN has also been represented in the form of a graph as 

shown in Figure 3.12. for further analysis. 

 

 

Figure 3.12: Graphic representation of the results of detection considering four 

different combinations of background subspaces. 

Both from Table 3.6 and Figure 3.12, following may be observed: 

The total number of target pixels are 56. Across all the target subspaces, all the 

algorithms except ACE detects more pixels than the actual number of target pixels. MF and 

TCIMF appear to be closer to the actual number of target pixels in terms of true positives. 

However, in the case of MF, this performance remains same across all the subspaces but in 
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the case of TCIMF there is a marginal improvement in the case of trees vs. all other 

subspaces.  

Similarly, the false negatives in the case of MF remains constant across all the 

subspaces however, it varies in the case of all other algorithms.  

From the above observations, following may be inferred: 

For any given algorithm, if the algorithm is performing well for detection of target 

pixels, in that case the different background subspaces appear to influence the results less. 

Yet, in the case of trees subspace, a marginal improvement in true positives has been 

observed. This may be attributed to the similarities between the spectra of blue felt and 

trees as seen in Figure 3.3.  

With MF the number of detected target pixels is higher and constant for all 

background subspaces, with lesser number of false positives. TCIMF also shows better 

results for detection of target pixels than OSP and ACE and generates lesser false positives 

than these. OSP performs better in case of Mixed background subspace as compared to 

cases where subset of background subspaces is selected. 

For any given background subspace, if the algorithm performs well, values for false 

positives and false negatives is also less. It may also be inferred that target and background 

subspaces may aid target detection marginally. 

3.5.4 Impact of background subspaces and illumination conditions on detection:          

In this section, background subspaces have been considered along with illumination 

conditions to understand its effect on target detection. Results have been analyzed 

separately for different subspaces in Table 3.7.    
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Table 3.7 : Results of detection wrt the illumination conditions for target placements 

with mixed, trees, grass and gravel roads as background subspace.  

Target 

Id’s 

Illumination 

conditions 

Target 

pixels 

TD 

algorithm 

Pixels 

Detected 

(Mixed) 

Pixels 

Detected 

(Trees) 

Pixels 

Detected 

(Grass) 

Pixels 

Detected 

(Roads) 

T1 

Full 

Illumination 

(Over Gravel 

Road) 

4 

MF 4 4 4 4 

ACE 3 1 1 3 

OSP 4 4 4 4 

TCIMF 4 4 4 4 

T2 

Full 

Illumination 

(Over  

Gravel 

Road) 

9 

MF 8 8 8 8 

ACE 6 3 3 5 

OSP 8 8 8 8 

TCIMF 8 9 8 8 

T3 

Full 

Illumination 

(Over Grass 

– Open 

Field) 

4 

MF 4 4 4 4 

ACE 4 3 3 4 

OSP 4 4 4 4 

TCIMF 4 4 4 4 

T4 

Full 

Illumination 

(Over Grass 

– Open 

Field) 

9 

MF 9 9 9 9 

ACE 8 4 4 8 

OSP 8 8 8 8 

TCIMF 9 9 9 9 

T5 

Under Tree 

Shade (On 

path) 

4 

MF 0 0 0 0 

ACE 0 0 0 0 

OSP 0 0 0 0 

TCIMF 0 0 0 0 

T6 

Under 

Partial Tree 

Shade 

4 

MF 3 3 3 3 

ACE 0 0 0 0 

OSP 2 2 2 3 

TCIMF 3 4 3 3 

T7 

Under 

Partial Tree 

Shade 

9 

MF 7 7 7 7 

ACE 0 0 0 0 

OSP 7 6 5 6 

TCIMF 6 7 7 7 

T8 
Under trees 

(Full shade) 
9 

MF 0 0 0 0 

ACE 0 0 0 0 

OSP 0 0 0 0 

TCIMF 0 0 0 0 

T9 
Under trees 

(Full shade) 
4 

MF 3 3 3 3 

ACE 0 0 0 0 

OSP 0 0 0 0 

TCIMF 3 3 3 3 
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From the Table 3.7 following may be observed:  

Mixed background subspace: 

i. For targets T1, T2, T3, T4 placed in full illumination the algorithms MF and 

TCIMF perform the best (minimum detection of 88.8%, and maximum detection of 

100%) followed by OSP and ACE (minimum detection of 66.6%, and maximum 

detection of 100%). 

ii. For targets T5 and T8 placed under complete shade, none of the algorithm is able 

to detect any of the target pixels (detection is 0%). 

iii. However, for targets T6, T7 and T9 that are under partial shade, the algorithms 

MF and TCIMF are able to detect a few target pixels (minimum detection of 66.6%, 

and maximum detection of 77.7%) whereas, OSP and ACE perform poorly 

resulting in greater loss of target pixels (minimum detection of 0.0%, and maximum 

detection of 77.7%). 

Trees background subspace:   

i. For targets T1, T2, T3, T4 placed in full illumination, and a subset of background 

subspace (Trees), algorithm TCIMF performs the best (minimum and maximum 

detections = 100%), MF also gives good results of detection (minimum detections 

of 88.8% and maximum detections of 100%), followed by OSP and ACE (minimum 

detections of 25% and maximum detections of 100%). 

ii. For targets T5 and T8 placed under complete shade, none of the algorithm is able 

to detect any of the target pixels (detection is 0%). 

iii. However, for targets T6, T7 and T9 that are under partial shade, the algorithms 

MF and TCIMF are able to detect target pixels (minimum detections of 75% and 

maximum detections of 100%) whereas, OSP and ACE perform poorly resulting in 
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loss of target pixels (minimum detections of 0% and maximum detections of 

66.6%).   

Grass background subspace 

i. For targets T1, T2, T3, T4 placed in full illumination, with grass as background 

subspace, algorithms TCIMF and MF perform best (minimum detections of 88.8% 

and maximum detections of 100%), followed by OSP and ACE performs poorly 

(minimum detections of 25% and maximum detections of 100%). 

ii. For targets T5 and T8 placed under complete shade, none of the algorithm is able 

to detect target pixels (detection is 0.00%) 

iii. However, for targets T6, T7 and T9 that are under partial shade, the algorithms 

MF and TCIMF are able to detect target pixels (minimum detections of 75% and 

maximum detections of 77.7%) whereas, OSP and ACE perform poorly resulting 

in loss of target pixels (minimum detections of 0.00% and maximum detections of 

55.5%).   

(Gravel) Roads background subspace: 

i. Full illumination targets T1,T2, T3, T4 are detected well with TCIMF and MF 

considering gravel roads as background subspace (minimum detection of 

88.8% and maximum detection of 100%), OSP also performs good (minimum 

detection of 88.8% and maximum detection of 100%), but ACE leads to greater 

loss of target pixels (minimum detection of 55.5% and maximum detection of 

100%),. 

ii. Targets under full shadow of trees, T5 and T8 are not detected by any algorithm 

(detection is 0%). 

iii. Targets, T6, T7 and T9 are placed under partial shadow of trees and target pixels 

are well detected for these target ID’s by TCIMF and MF (minimum detection of 
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75% and maximum detection of 77.7%), followed by OSP (minimum detection of 

0% and maximum detection of 75%),. ACE is not able to detect these targets 

(detection is 0%).  

 

Therefore, from the above observations, it may be deduced that: 

Illuminations affects the detection of targets greatly, where target pixels of targets 

in full illumination placed over Gravel roads and Grass are detected well in comparison to 

those under trees.  

Also, the targets in partial shade are detected whereas the targets in full shade are 

not detected by the above discussed algorithms for any combination of background 

subspace. 

3.6 Conclusions 

In this chapter, a study of detection of full pixel and subpixel targets has been 

performed using different background subspaces, varying background types and varying 

illumination conditions etc.  

In case of detection using target and background subspaces, it may be concluded 

that for any given algorithm, if the algorithm is performing well for detection of target 

pixels, the different background subspaces appear to influence the results less. Yet, in the 

case of trees subspace, a marginal improvement in true positives has been observed. This 

may be attributed to the similarities between the target and the background spectra. 

Therefore, the target and background separation continue to be a challenge and affects the 

target detection. Further, with MF the number of detected target pixels is higher and 

constant for all background subspaces, with lesser number of false positives. TCIMF also 

shows better results for detection of target pixels than OSP and ACE and generates lesser 
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false positives than these. OSP performs better in case of Mixed background subspace as 

compared to cases where subset of background subspaces is selected. Also, for any given 

background subspace, if the algorithm performs well, values for false positives and false 

negatives are also less. Thus, it may be inferred that target and background subspaces may 

aid target detection marginally.  

It may be further concluded after studying the impact of target detection algorithms 

that, MF produces comparatively better results of detection of target pixels and lower 

number of false positives. TCIMF follows next and performs better than OSP. ACE, 

however, appears to give poor results of detection with a greater number of false positives.  

Also, based on target condition (full illumination or shade), it can be concluded that 

the targets that are placed under open sky are detected well as compared to those placed 

under trees and their shadow. Illumination affects the detection of targets greatly, where 

target pixels of targets in full illumination placed over Gravel roads and Grass are detected 

well in comparison to those under trees. Also, the targets in partial shade are detected 

whereas the targets in full shade are not detected by the above discussed algorithms for any 

combination of background subspace. 

Lastly to study the impact of different types of backgrounds, implementations were 

performed and based on the analysis of spectral profiles, it may be concluded that the 

surrounding vegetation (trees) has a greater impact on the spectral behaviour of pixel 

containing blue felt target. The gravel roads have minimum impact on spectral variation of 

this target out of the three background types. 

 The experimental dataset used in this study has been taken from SHARE-2012 

campaign. Advantage has been taken of the targets deployed which could conveniently be 

used for the study presented. The controlled dataset made available however leaves the 



87 

 

question of scalability open. The results need to be compared with other similar 

experiments with similar or different datasets.   
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Chapter 4 

End Member Extraction in Mixed Pixels using 

Spectral Unmixing and Spectral Indices Approaches 

 

4.1 Introduction to the Problem 

Uptill this chapter, various aspects of target detection (full pixel and subpixel 

targets) in hyperspectral data have been studied. A study on the loss of target information 

(both full pixel and subpixel) while performing dimensionality reduction (Chapter 2), study 

of impact of background characterization on detection of targets as well as whether the 

separation of target and background subspaces aid the process of target detection (Chapter 

3) have also been discussed.  

A target need not necessarily be always an object of defined shape, size and 

orientation. It can also be any natural land cover class or any artificial impervious / pervious 

surfaces. These can also be treated as a full pixel / subpixel target as long as hypothesis of 

binary classification are applied to them for their detection. In this chapter, certain 

impervious surfaces have been considered as targets.     

In hyperspectral data, particularly in cases of wide spread surfaces which may be 

considered as target, there might arise a situation where adjacent end members may jointly 

occupy a single pixel thereby leading to generation of mixed pixels (Altmann et al. 2012, 

Boardmann et al. 1995, Boardmann 1998, Borel and Gerstl 1994). In case of mixed pixel 

targets, the resulting spectra of any given pixel contains a target spectra and also the spectra 

of other end members present within that pixel at the time of data collect. This complicates 

the detection of targets in hyperspectral data particularly the targets that are small in size 

as compared to the spatial resolution of the sensor which captured the data.  
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The target detection algorithms, in most of the cases, do not detect targets that are 

present in the mixed pixels. In all such cases, spectral unmixing is performed to separate 

the target spectra from the background spectra (Chang and Du 2004, Clark 2016,  Keshava 

et al. 2002). Spectral unmixing algorithms provide the end members present within the 

pixel and their corresponding abundance fractions (fraction of pixel area covered by each 

end member present in the image). However, errors may occur during the process of 

generation of end members, calculations of abundance fractions and creation of the initial 

abundance maps of each end member within the pixel (Lu et al. 2013, Makido et al. 2007). 

These issues have not been adequately studied. The limitations of spectral unmixing 

approach in extraction of end members are discussed in the subsection 4.2.1. 

Another technique that may be explored for extraction of end members from the 

hyperspectral data is Spectral Indices based approach. A spectral index is defined as the 

ratio between reflectance values obtained at two or more wavelength ranges (Benediktsson 

et al. 2003, Bhaskaran et al. 2000, Bouzekri et al. 2015). The computation using spectral 

indices is relatively easy and fast as compared to other spectral techniques for end member 

extraction. As reported in the literature, several techniques for development and analysis of 

spectral indices for multispectral data, specifically related to vegetation and crop 

monitoring have been reported (Liang et al. 2012, Usman et al. 2015, Verhoye and De-

wolf. 2002). However, the utilization of these spectral indices to extract impervious / 

pervious surfaces in urban land cover mapping using hyperspectral data is still limited and 

continues to pose a problem.  

Utilization of multispectral data limits the detection of targets which are spectrally 

similar or have lesser spectral differences, such as dry and bare soil, bushes / shrubs and 

trees, concrete road or asphalt road etc. To perform analysis in these areas, a high spatial 

and spectral resolution hyperspectral data has been explored. 
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Accordingly, this objective has been subdivided into following tasks: 

1. End member extraction and abundance estimation using spectral unmixing, 

2. Evaluating spectral indices for end member identification. 

The layout of this chapter is as follows. The objective end member extraction using 

spectral unmixing and spectral indices has been briefly introduced. Next in section 4.2, 

spectral unmixing and spectral indices based approaches for end member extraction have 

been reviewed. For reasons of assessment different sets of data have been used which are 

explained in section 4.3. Section 4.4 gives the methodology and implementations and 

results are discussed in section 4.5.  

4.2  Spectral Unmixing and Spectral Indices based approach for end member 

extraction. 

 In this section, spectral unmixing and spectral indices based approaches have been 

reviewed to understand their utility in the process of end member extraction. 

4.2.1 Review of spectral unmixing based approaches 

4.2.1.1 Spectral Unmixing for end member extraction and abundance estimation 

The estimation of fraction of an end member within a pixel in case of mixed pixels 

occuring in the image is known as abundance fraction estimation. Spectral unmixing is 

necessary to generate the end members and their corresponding abundance maps. Most 

unmixing algorithms search for the major end members occuring in the image (full pixel 

end members / pure spectra). All other pixels in the image are considered to be a linear 

combination of these identified end members. Thus it is relevant to first generate such pure 

full pixel end members. This process is also referred as end member extraction (Manolakis 

2002, Segl et al. 2003, Shao et al. 2018, Song et al. 2020, Villa et al. 2011).  

Following this, unmixing is performed to determine the existance of these end 

member spectra in adjacent mixed pixels and lastly the abundance maps are generated using 
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the computed abundance fractions. A linear mixture model (LMM) is widely used 

unmixing algorithm that models the spectra of a pixel as a linear combination of  individual 

end member spectra and its abundance fraction.  This algorithm assumes that sum of the 

abundance of each end member equals one but can not be less than zero (Manolakis et al. 

2005) . Mathematically, in case of L spectral bands, the spectrum of any pixel and the 

spectra of the end members can be represented by L-dimensional vectors. The general 

equation for LMM is explained in equation 4.1:  

𝓍 =  ∑ 𝑎𝑘𝑠𝑘 +  𝓌 ≜ 𝑆𝑎 +  𝓌

𝑀

𝑘=1

  

𝑆 ≜ [𝑠1 𝑠2 ⋯ 𝑠𝑀] 

𝒶 ≜ [𝑎1𝑎2 ⋯ 𝑎𝑀]𝑇 

𝓍,  spectrum of the mixed pixel, 

sk, spectra of the end members, 

ak,   is their abundances; 

M,   number of the end members; 

W,  L dimensional error vector accounting for lack of fit and noise effects   

𝑎𝑘   ≥ 0 (non negativity constraint) 

 ∑ = 1𝑀
𝑘=1  (additivity constraint) 

 

Many algorithms have been proposed in literature for implementing spectral 

unmixing in case of hyperspectral data (Fan et al. 2009, Heylen et al. 2014, Heylen et al. 

2016, Karabhari et al. 2019, Lee et al. 2006). A brief summary of  spectral unmixing 

algorithms is provided in Table 4.1.  

 

 

(4.1) 
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Table 4.1: A summary of spectral unmixing algorithms for hyperspectral images 

Algorithms Characteristics 

Pixel purity index (PPI) 

Non-statistical, supervised end member extraction method 

Limitations: 

i. It requires a human supervision. 

ii. It requires a way out to produce an appropriate initial 

set of endmembers as the number of iterations will 

otherwise be very high. 

iii. It requires a proper learning on how to procure 

accurate values of threshold for the pixel purity index 

counts. 

iv. Only considers the spectral information in 

endmembers detection with no attention to spatial 

information. 

N – FINDR 

Geometric end member extraction method, non- 

parameterized and simplex-growing algorithm. Iterative, fully 

automated, non-parametrized. Creates a Simplex with max. 

volume found, selects random end member for initialization.  

 

Limitations: 

i. It works for finding all the present endmembers 

thereby increasing the computational complexities. 

ii. Requires prior knowledge of the number of 

endmembers that are required to be extracted. 

iii. Does not include spatial information for end member 

detection 

Optical Real-time 

Adaptive Spectral 

Identification System 

(ORASIS) 

It is a fully automated, parameterized method for end member 

extraction.  

It provides low computational complexity and converges once 

all the exemplar spectra are found in data. It mostly applies in 

oceanography and target detection. 

 

Limitations: 

i. It is a simplex-shrinking algorithm that finds 

endmembers from a scene autonomously. 

Iterative error analysis 

(IEA) 

It is a fully automated, non – parameterized algorithm that 

shows minimum error in unmixing. It is mostly applicable to 

land cover and mineral mapping. 

 

Limitations: 

i. Does not include spatial information for end member 

detection 
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Convex cone analysis 

(CCA) 

It is a fully automated, geometric, parameterized algorithm. It 

is mostly applicable to anomaly detection and target detection. 

 

Limitations: 

i. Complexity is very high if there are large numbers of 

corners in the convex cone. 

ii. Does not include spatial information for end member 

detection 

Vertex Component 

Analysis (VCA) 

Geometric end member extraction method, unsupervised 

algorithm 

 

Limitations: 

i. Computational complexity is high as the algorithm 

iterates until all endmembers are exhausted 

ii. Only considers the spectral information in 

endmembers detection with no attention to spatial 

information 

 

Automatic Target 

Generation Procedure 

(ATGP) 

Fully automated, non-parametrized and iterative. 

Iterative orthogonal projections of the data are obtained, and 

then largest magnitude vector of this projection is found. 

 

Limitations: 

i. Slightly more convergence time than NFindr 

Independent 

Component Analysis 

end member Extraction 

(ICA-EEA) 

Nonparametric statistical unmixing approach. It considers 

spatial information and thus has the potential to improve the 

quality of the endmembers. It does not require a priori 

information about target. 

i. Compute component scores using covariance to rank 

the components, compute mean, sort in descending 

order, retrieve maxpixels. 

ii. Generate Abundance maps using FCLS algorithm, 

compute sum of each pixel abundance, compute the 

error between decomposed and real signature 

 

Limitations: 

i. This algorithm performs poorly when simulations are 

considered with very few materials present.  
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From the above review and based upon the literature survey, four algorithms have 

been selected, for the present work:  

i. Independent component analysis – end member extraction algorithm 

(ICA-EEA),  

ii. Automated target detection procedure (ATGP),  

iii. N-Findr and,  

iv. Pixel purity index (PPI).  

ICA-EEA utilises the independent component analysis approach to isolate the end 

members. ATGP on the other hand, works on principle of orthogonality. The orthogonal 

iterative projections are utilised to extract the end members. PPI  works by random 

projections of data on vectors and selection of end members which appear at the extrema 

of the projection.  

These algorithms have been used to estimate the total number of end members 

present in the image with a pure / unique spectra, to utilize a constrained least squares 

algorithm using the recovered endmember spectra to generate the abundance maps, to 

assess the generated abundance maps and to compute the errors corresponding to each. 

4.2.1.2 Limitations of Spectral unmixing 

The selection of end member to be fed to any of the spectral unmixing algorithms 

may be done in three ways as under,  

i. First, is to determine end members spectra from the image itself 

ii. Second, is to select a reference spectra from a collection in the laboratory / 

library (standard library or user defined) 

iii. Third, field spectra. 
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Spectral umixing suffers from various disadvantages some of which are mentioned below: 

i. It assumes that all the end members falling within a mixed pixel are 

combined linearly while in reality, it may not be so due to various reasons 

(Manolakis et al. 2001, Manolakis 2016, Drumetz et al. 2016). 

ii. Spectral unmixing requires providing reference spectra to the unmixing 

algorithms to produce end member spectrum and abundance fractions 

present within a mixed pixel. This reference spectra can be either a ground 

spectra or a pure pixel spectra drawn from the image itself. This pure pixel 

is assumed to be one of the end members present in the mixed pixel. 

Radiance to reflectance conversion often leads to certain erroneous spectra 

which may affect the results of spectral unmixing. In addition, it has been 

studied from literature that most of the algorithms for unmixing, work by 

finding the set of pure pixels. However, the algorithms such as LMM may 

not be able to find such pure pixels perfectly owing to the instrument noise 

and external noise. Due to large volumes of data in hyperspectral images, 

this process is even more difficult as the output may also contain the noisy 

pixels, outliers, or defects that lie outside the main end members (pure 

pixels) (Shao and Lan 2019, Halimi et al. 2016, Somers et al. 2011, Zare 

and Ho. (2014), Ghaffari et al. 2017).  

iii. Another issue that arises is that the end members that are very obvious to 

locate / identify on the ground may be much more difficult to determine 

from the remote sensing image itself. As an example, consider a case of a 

forest where 50 percent of the image pixels contain trees but actually in that 

image trees occupy less than half of any single pixel. In this case end 



96 

 

members determined from this image would not include a full pixel “tree” 

end member (Manolakis 2016). 

iv. In cases where there are say ‘n’ number of end members occupying a single 

pixel but one of these end members is very less in terms of the fractional 

occupancy within the pixel. The spectral unmixing approaches have not 

been effective in spectrally revolving such an end member (Costanzo 2000).  

v. Also, the spectral unmixing based approaches are completely dependent on 

the spectra and do not consider any wavelength based absorption variation 

(Zhang et al. 2006). 

4.2.2 Concept of Spectral Indices for end member identification  

A Spectral index is a combination of spectral reflectance from two or more 

wavelengths that indicate the relative abundance of features of interest (Im et al. 2012, 

Altmann et al. 2012). These wavelengths depend upon energy absorption features in 

different regions of the EM spectrum and are a better representation of an end member. 

This approach addresses the extraction based on the physical properties of the surfaces by 

utilizing the spectral information contained in the hyperspectral image.  

The spectral based approach is proposed to be studied by considering an urban area 

which can be divided into a set of impervious (which do not allow water to percolate) and 

pervious (which allow water to percolate) surfaces (Hu and Wang 2011, Weng 2012, Im et 

al. 2012, Bhaskaran et al. 2000, Foody 2002, Liang et al. 2012, Schueler 1994). The 

approach commences with the exploration of the spectral information for impervious 

(primarily man-made) and pervious (primarily natural) surfaces. Although, there are a large 

number of impervious and pervious surfaces, however, for the purpose of this study, only 

a few of them have been considered. These impervious and pervious surfaces can be 

categorized in three levels and Table 4.2 (a) and (b).  
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Table 4.2 (a) - Level-wise categorization of major pervious surfaces  

 

Many spectral indices have been developed and reported in the literature 

particularly for the multispectral data there appears to a few which works for hyperspectral 

data. 

4.2.2.1 Brief review of existing spectral indices 

The pervious surfaces such as water bodies mentioned above can be studied using 

Modified Normalized Difference Water Index (MNDWI) (to enhance open water features 

in urban land cover by suppressing the other land cover features such as soil, vegetation 

Level 1 

(Major class of 

urban surfaces) 

Level 2 

(Sub-class) 

Level 3 

Pervious 

 

 

 

 

 

 

 

 

 

Water Open Water 

Perennial Ice/Snow 

Canopy Level 

Soil Bare Rock 

Clay 

Sand Quarries  

Vegetation Grasslands 

Forest Upland 

Shrub land 

 

Table 4.2 (b) - Level-wise categorization of major impervious surfaces 

Level 1 

(Major class of 

urban surfaces) 

Level 2 

(Sub-class) 

Level 3 

 

 

 

 

Impervious 

Surface 

Roofs 

 

 

 

Roads 

 

 

 

Pavements 

 

 

Paths 

Plastic 

Glass 

Asbestos sheet 

 

Concrete 

Bitumen 

Gravel 

Stone 

Tiles 

Asphalt 
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etc.) (Xu 2010), Normalized Difference Water Index (NDWI) (Gao 1996, McFeeters 1996, 

Xu 2010), Normalized Difference Moisture Index (NDMI), Normalized Difference Snow 

Index (NDSI) (Salomonson et al. 2004) etc.  

Pervious surfaces such as Barren land (soil and rocks) can be identified using 

Simple Ratio Clay Index (SRCI) (Khasanah et al. 2013), Normalized Difference Soil Index 

(NDSI) (Waqar et al. 2012, Hall et al. 1995) and Normalized Difference Clay Index 

(NDCI) (Shabao et al. 2015) as explained. The longer the wavelength the larger is the 

difference between the finer grain features and coarser grain features of the soil.  

For identification of vegetation, various indices have been developed and studied 

such as Normalized difference vegetation index (NDVI) (Usman et al. 2015), Infrared 

Percentage Vegetation Index (IPVI) (Crippen 1990), Renormalized difference Vegetation 

Index (RDVI) (Roujean et al. 1995), Green Ratio Vegetation Index (GRVI) (Wolf 2010), 

Soil Adjusted Vegetation Index (SAVI) (Huete 1988, Rondeaux et al. 1996) etc. Various 

indices reported in the literature for pervious surfaces have been summarized in Table 4.3. 

Table 4.3 - Spectral indices for identification of pervious surfaces  

 

Spectral Index Formulation Wavelength (µm) 

Spectral Indices for Water 

MNDWI 

(Xu 2010) 

𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
 

Short Wave Infrared 

(SWIR): - 

Min:1.55; 

Mid:1.65; Max:1.75 

NDWI 

(Gao 1996, McFeeters 

1996, Xu 2010) 

𝐺𝑟𝑒𝑒𝑛 − 𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛 + 𝑁𝐼𝑅
 

Near Infrared (NIR): - 

0.72-0.80; 

0.83-0.99 

NDMI 

(Hall et al. 1995) 

𝜌795 − 𝜌990

𝜌795 +  𝜌990
 

0.72-0.80; 

0.83-0.99 

NDSI 

(Salomonson et al. 

2004) 

𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1

𝐺𝑟𝑒𝑒𝑛 − 𝑆𝑊𝐼𝑅1
 

Green: - 0.5-0.6; 

SWIR1: - 1.55- 1.75 
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Spectral Indices for Soil 

NDSI 

(Waqar et al. 2012) 

𝑀𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑀𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

MIR: -1.66; 

Green: - 0.56 

Clay Ratio 

(Khasanah et al. 2013) 

𝑆𝑊𝐼𝑅

𝑁𝐼𝑅
 

SWIR: - 

Min:1.55; 

Mid:1.65; Max:1.75 

NIR: - 

0.72-0.80; 

0.83-0.99 

SRCI 

(Khasanah et al. 2013) 

𝑆𝑊𝐼𝑅1

𝑆𝑊𝐼𝑅2
 

SWIR1:- 1.55-1.75 µm 

SWIR2:- 2.08-2.35 µm 

NDCI 

(Shabao et al. 2015) 

𝜌795 − 𝜌990

𝜌795 +  𝜌990
 

0.72-0.80; 

0.83-0.99 

Spectral Indices for vegetation 

NDVI 

(Gutman 1991, 

NOAA. 1990, Myneni 

et al. 1995, Usman et 

al. 2015) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NIR: - 

0.72-0.80; 

0.83-0.99 

Red: - 0.43-0.48 

IPVI 

(Crippen 1990) 

𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NIR: - 

0.72-0.80; 

0.83-0.99 

Red: - 0.43-0.48 

RDVI 

(Roujean et al. 1995) 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

√𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

NIR: - 

0.72-0.80; 

0.83-0.99 

Red: - 0.43-0.48 

GRVI 

(Wolf 2010) 

𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
 

NIR: - 

0.72-0.80; 

0.83-0.99 

Green:- 0.56 

SAVI 

(Huete 1988, 

Rondeaux et al. 1996) 

1.5 ∗ (𝑁𝐼𝑅 − 𝑅𝑒𝑑)

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5
 

NIR: - 

0.72-0.80; 

0.83-0.99 

Red: - 0.43-0.48 

Similarly, in the case of impervious surfaces such as roads, roofs etc., spectral 

indices such as Normalized Difference Built-up Index (NDBI) (Zha et al. 2003, Hongmai 

et al. 2005), Built-up Area Extraction Index (BAEI) (Wolf 2010), Normalized Built-up 
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Area Index (NBAI), and Normalized Difference Impervious Surface Index (NDISI) (Xu 

2010), New built up index (NBI) (Zhang 2009), Morphological building index (MBI) 

(Samsudin et al. 2016) have been reported in the literature. Some of these have been 

summarized in Table 4.4 

Table 4.4 - Spectral indices for impervious surfaces 

 

 

Spectral Index Formulation 
Wavelength 

(µm) 

NDBI 

(Zha et al. 2003, 

Hongmai et al. 2005) 

𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 

 

SWIR: - 

Min:1.55; 

Mid:1.65; 

Max:1.75 

NIR: - 

0.72-0.80; 

0.83-0.99 

BAEI 

(Wolf 2010) 

𝑅𝑒𝑑 + 𝐿

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅1
 L =0.3 

NBAI 

(Zhang 2009, 

(Hongmai et al. 

2005) 

𝑆𝑊𝐼𝑅 − 𝑇𝐼𝑅𝑆

𝑆𝑊𝐼𝑅 + 𝑇𝐼𝑅𝑆
 

 

TIRS: -10.6-

11.19 

NDISI 

(Xu 2010) 

𝑇𝑏 − (𝑀𝑁𝐷𝑊𝐼 + 𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1)/3

𝑇𝑏 + (𝑀𝑁𝐷𝑊𝐼 + 𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅1)/3
 

𝑤ℎ𝑒𝑟𝑒, 𝑀𝑁𝐷𝑊𝐼 =
𝜌𝐺𝑅𝐸𝐸𝑁 − 𝜌𝑆𝑊𝐼𝑅1

𝜌𝐺𝑅𝐸𝐸𝑁 + 𝜌𝑆𝑊𝐼𝑅1
 

𝑇𝑏 is 

brightness 

temperature 

of thermal 

band 

MBI 

(Samsudin et al. 

2016) 
𝑀𝐵𝐼 =

𝐵𝑆𝑊𝐼𝑅2 × 𝐵𝑅𝐸𝐷 − 𝐵𝑁𝐼𝑅
2

𝐵𝑅𝐸𝐷 + 𝐵𝑁𝐼𝑅 + 𝐵𝑆𝑊𝐼𝑅2
 

SWIR: - 

Min:1.55; 

Mid:1.65; 

Max:1.75 

NIR: - 

0.72-0.80; 

0.83-0.99 

RED:- 

0.47-0.48 

NBI 

(Zhang 2009) 

(𝐵𝑅𝐸𝐷 × 𝐵𝑆𝑊𝐼𝑅)

(𝐵𝑁𝐼𝑅)
 

SWIR: - 

Min:1.55; 

Mid:1.65; 

Max:1.75 

NIR: - 

0.72-0.80; 

0.83-0.99 

RED:- 

0.47-0.48 
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4.2.2.2 Development of spectral indices for hyperspectral data 

 Development of this approach commences with the creation of a spectral library of 

end members (targets and backgrounds) present in the image. For development of this 

approach, aerial hyperspectral data collected under AVIRIS – NG campaign of Ahmedabad 

– INDIA has been considered. The data consists of a total of 425 bands at a spectral 

bandwidth of 5 nm and spatial resolution of 4-8 m. Field data also has been collected for 

the same area. The description of the data is given in detail in the next section on Data. 

Spectral library creation  

The process requires a few pre implementation steps: band selection (removal of 

bad bands) and finding out the most suitable ranges for detection and identification of 

impervious / pervious surfaces. LDA / DA (Discriminant analysis) is performed to select 

appropriate / significant bands using hyperspectral data and ground truth to develop spectral 

indices. This involves following steps: 

i. Perform geometric correction, set the data to World Geodetic System 84-

datum. 

ii. QUAC (Quick atmospheric correction) – obtain reflectance data 

iii. Removal of bad bands (38) – Water absorption bands (1400-1900 nm), 

noisy bands with low SNR.  

Spectral subset selected therefore contains 387 bands (details in data description 

under section 4.3). Ground truth spectra has been obtained and end members have been 

categorized into classes impervious (targets) / pervious surfaces (backgrounds). 

Identification and extraction of impervious surfaces is then done from data set.  
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The obtained ground truth spectra are then resampled according to the number of 

good bands retained in the hyperspectral image. Spectral library has been created for all the 

impervious and pervious surfaces. The procedure for creation of spectral library for the 

purpose of this study is summarised in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Flowchart representing the order of implementation to create spectral 

library 

 

It is already discussed that while performing end member extraction, the most 

suitable spectral bands have been selected. The spectral subsetting into eight EM regions, 

Full spectral region, Ultraviolet, Visible, UV+visible, VNIR, Far NIR, Early SWIR, Far 

SWIR has been done to further extract significant spectral bands for developing spectral 

indices / performing end member extraction.  

Obtain ground truth spectra  

Select different end members categorized into Pervious/ Impervious classes and 

obtain different types of Impervious surfaces 

Create Spectral library of all surfaces/ materials 

Perform Spectral resampling 

Create resampled spectral library of all grades and types of impervious / 

pervious surfaces 
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Endmember Extraction using Indices 

Following the successful creation of spectral library, spectral indices have been 

explored for end member identification / extraction from the data. 

Surfaces that are to be detected (target) are identified and their corresponding 

reflectance is obtained in all the bands. To implement spectral indices, two most significant 

bands are selected in particular wavelength range. Here the pervious surfaces are selected 

as backgrounds and their reflectance values in all the bands is also obtained.  

Band ratio (ratio of two significant spectral wavelengths) is computed. To evaluate 

a spectral index, the least effective wavelength is first removed using OIF (Optimum Index 

Factor). OIF aids in evaluating the most informative band ratio in terms of standard 

deviation and correlation between the two spectral bands. Therefore, using these values of 

standard deviation and correlation, the best OIF using equation 4.2 can be evaluated if the 

significant information on variance of two spectral bands is present.  

𝑂𝐼𝐹 =  
𝑆𝑡𝑑𝜆1

+ 𝑆𝑡𝑑𝜆2

|𝐶𝑜𝑟𝑟 λ1,λ2 |
 

where, Std is standard deviation of significant spectral wavelengths, 

Corr is the correlation coefficient between the spectral wavelengths.  

Thereafter, the wavelengths corresponding to highest OIF are analyzed further 

using band ratio. For the detection of the target, the band ratio is then converted into 

normalised difference for building up of spectral indices. The normalised difference value 

(Equation 4.2) contains the reflectance measurements that enhance the object detection. 

Normalized spectral index computation is done using the following equation, 

N𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝐼𝑛𝑑𝑒𝑥 =  
𝑅( λ2)−𝑅(λ1 )

𝑅( λ2)+ 𝑅(λ1 )
 (4.3) 

(4.2) 
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where, R (λ1) represents the reflectance measurements of the significant spectral band from 

the numerator of the band ratio and R(λ2) indicates the reflectance measurements of another 

significant spectral band from the denominator of the band ratio.  

Five existing spectral indices have been selected after literature review (Zha et al. 

2003, Hongmai et al. 2005, Wolf 2010, Xu 2010, Zhang 2009, Samsudin et al. 2016) and 

explord further in this study. These are NBI (New built up index), NDBI (Normalized 

difference building index, NBAI (Normalized built up area index), BRBA and MBI 

(Morphological building index). A flowchart explaining the implementations of spectral 

indices is given in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: A Flowchart for step by step explanation of implementing spectral indices 

for end member extraction 

 

4.3    Experimental Data Set 

Obtain AVIRIS NG Data 

Preprocessing of obtained data  

Create 2 spatial subsets (SS1, SS2) of 300 x300 pixels 

  

Apply Spectral indices and their combinations to depict 

urban surfaces 

Select targets in Impervious surfaces Select backgrounds (Pervious surfaces)  

Obtain respective reflectance values and index value 

  

Obtain most significant band for a target type and better 

extraction of that end member 
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The tasks under this stiudy are, end member extraction and abundance estimation 

using spectral unmixing, evaluating spectral indices for end member identification, and a 

comparison of both techniques in terms of end member generation. Different data sets have 

been considered for the first two tasks. 

4.3.1 End member extraction and abundance estimation using spectral unmixing 

The data set used for this study is being referred as Data set-2. Spectral unmixing 

based approach has been studied using this data set because it contains specific mixed pixel 

targets obtained as part of SHARE-2012 campaign. The truth data is also available in this 

case. This data set is explained in previous chapter 2, section 2.2.2. 

Here for the purpose of these tasks, we have discussed the implementations on a 

spatial subset of 150x150 pixels from the entire data set, also referred to as Subset – 4. This 

subset contains various components e.g. fabric materials ( yellow felt, yellow cotton, blue 

felt, blue cotton, pink felt, golden felt etc. ) placed on asphalt court, grass and shrubs, a 

basketball court etc. The large (24’ x 24’) 50/50 blue felt / blue cotton target is visible in 

the upper right area of the asphalt court in Figure 4.3 while the smaller (16’ x 16’) 75/25 

yellow felt/yellow cotton target is in the upper left.  The six 10’ x 10’ whole panels of the 

fabrics are seen clearly just below the unmixing targets placed on asphalt court. The two of 

these small panels just below and to the left of the blue target are pink felt (on the left) and 

yellow cotton (on the right). The four small panels across the lower part of the asphalt area 

are (from left to right): yellow felt, blue cotton, gold felt, and blue felt. A RGB image 

representing the targets is shown in Figure 4.4. 
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Figure 4.3: A true colour representation of spatial subset 4 (100x112) selected from 

Data set – 2, target YF is marked with red circle. 

 

Figure 4.4: A zoomed in RGB image depicting the target YF placed on the 

asphalt court. 

 

Target in Data Set-4: For the present work, the target under consideration is YF - Yellow 

Felt. This is a (8x8) mixed pixel target containing yellow felt and yellow cotton arranged 

in a 2x2 repeating pattern in the ratio of 75% and 25% of area fraction per pixel (comprising 

YF 

YF 
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of 3 yellow felt squares and 1 yellow cotton square) respectively as shown in Figure 4.3. 

Total number of target pixels under consideration are 64.  

4.3.2 Evaluating spectral indices for end member extraction 

 

For this study a Data set – 4, which is a hyperspectral data (AVIRIS-NG) of an 

urban area having relevant impervious and pervious surfaces, has been explored. This data 

set has been collected as a part of the AVIRIS- NG (Airborne Visible/Infrared Imaging 

Spectrometer-Next Generation) data campaign which was conducted collectively by Indian 

Space Research Organization (ISRO) and National Aeronautics and Space Administration 

(NASA) under the Hyperspectral Imaging program. This 84 days data collection campaign 

was conducted in India using AVIRIS-NG sensor which covered a total of 57 different 

sites. The flight campaign was organized in nine airport bases Ahmedabad, Udaipur, 

Bhubaneshwar, Hyderabad, Mangalore, Coimbatore, Chandigarh, Patna, Kolkata. The 

flight path taken for the collection is shown in Figure 4.5. This collection campaign 

commenced on December 16th ,2014.  

Various field collections were also performed to collect the ground truth making it 

suitable for exploration by varied application areas (Urban mapping, vegetation, soil 

quality, water quality monitoring, forest, weather monitoring etc.). The part of data set 

selected for this work is the one collected over Ahmedabad city in the year 2016 referred 

to as Data set – 4.  
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Figure 4.5: Flight paths during AVIRIS-NG data collection campaign 

4.3.2.1 Data Acquisition and characteristics 

General acquisition parameters and the corresponding values are given in Table 4.5. 

Table 4.5: General acquisition parameters for Data set – 4 

Sensor Data Type Data size Spectral 

Resolution 

Spectral 

region 

Spatial 

Resolution 

AVIRIS -

NG 
Hyperspectral 

724x9946 

pixels 

425 bands, 5 

nm interval 

~380 nm to 

~2510 nm 
4 m - 8 m 

 

The spectral signatures obtained along with site information have been used for detection, 

accuracy assessment and validation of detection results. This data set has been explored for 

end member identification using spectral indices. 

The image in Figure 4.6 represents RGB band display of the Ahmedabad dataset 

containing the various major landmarks. Labelled numbers from 1 to 15 represent the 

various site ID’s alloted to these landmarks as shown in Table 4.6. The dataset consists of 

a variety of natural and man-made components. 
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Figure 4.6: RGB image showing Ahmedabad city and the site ID’s allotted to 15 

landmarks. 

 

Table 4.6: Site ID’s allocated to a few areas in Hyperspectral data collected by 

AVIRIS -NG sensor over Ahmedabad city  

Site Id 
Site Name 

1 Ten Acre Mall 

2 Kankaria Railway Yard 

3 Kankaria Lakefront 

4 Elish Bridge 

5 Jamia Masjid 

6 AMC Main office 

7 Raipur poll House 

8 Lal Darwaza Bus Terminal 

9 Town Hall 

10 Gujarat University Conventional Hall  

11 GMDC Ground 

12 Drive – in Cinema 

13 CEPT University 

14 Sabarmati Riverfront 

15 Gulbai Tekra Slums 
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4.3.2.2 Ground truth data 

Extensive ground truth collection was done over Ahmedabad city. Spectra from various 

materials were obtained. A few for the reference are shown in below Figures 4.7 and 4.8. 

 

Figure 4.7: Zoomed image showing the Site id 1 – Ten Acre Mall 

 

 

 

Figure 4.8: Zoomed image showing the Site id 2 – Kankaria Railway Yard 

 

 

 

Figure 4.9 shows some of the images of targets taken during the collection campaign. 

Ten Acre Mall 

Various spectra collected: 

China Mosaic – ceramic, Concrete, 

ceramic in shadow.  

60 points of roads and roofs have been 

noted with their latitude/longitude for 

further validation during experiments. 

 

Kankaria Railway Yard 

Various spectra collected: 

Asbestos sheet – concrete, Concrete 

platform and dust, Bare soil, Railway 

track, Sleeper, Ballast, Fodder and 

Bushes. 

80 points of roads and roofs have been 

noted with their latitude/longitude for 

further validation during experiments. 
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Figure 4.9: Field pictures taken during the ground data collection. 

 

4.3.2.3 Spatial subsets: 

Two spatial subsets SS1 and SS2 as shown in Figure 4.10 have been created each of 

300x300 pixels. Subset SS1 covers site ID’s: Anant University and Subset SS2 covers site 

ID’s: 1 (Ten Acre mall), 2 (Kankaria Railway yard), 3 (Kankaria Lakefront).  

The reason for selection of AVIRIS - NG data set in this objective is that this data 

provides ample opportunities for researchers to work in detection and identification of 

impervious / pervious surfaces using super resolution mapping, target detection, land cover 

mapping etc. However, since the data set was made available at a very late stage hence 

some of the works discussed in other chapters could not be implemented on this data. Hence 

this data set has only been studied and analysed for identification of target (impervious) 

and background (pervious) surfaces.  
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(a)                                                              (b) 

Figure 4.10: (a) Subset SS1 (b) Subset SS2 

 

These subsets contain both pervious and impervious surfaces as under. 

Major Impervious surfaces : Roof,  Pavement / Pathway / Platform, Road, 

Floor, Bridge, Basketball courts, Railway Track, 

Parking lots, Unpaved parking lot. 

Major Pervious surfaces : Vegetation, Water and Soil. 

Impervious surfaces considered as targets and pervious surfaces considered as backgrounds 

are shown in Table 4.7. 

Table 4.7: Levels of division of surface types 

Level 1 

(Major class of urban surfaces) 

Level 2 

(Sub-Class) 

Impervious (targets) Building/Roofs 

  

Roads 

Pervious 

(backgrounds) 

Vegetation 

 

Soil 
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4.4 Methodology  

This section presents details of implementation under the same three categories of tasks.  

4.4.1 End member extraction and abundance estimation using spectral unmixing 

 The methodology followed is to first obtain the in-scene spectrum of the target and 

to apply Principal component transformation to reduce dataset to useful bands.  

Following this the endmember generation is done using Automatic Target 

generation procedure (ATGP), Independent Component Analysis Endmember Extraction 

Algorithm (ICA-EEA), N-FINDR and Pixel Purity Index (PPI). After the generation of end 

members, abundance fractions of the target end member within the mixed pixels have been 

computed, corresponding to the abundance maps created for each algorithm. The number 

of target pixels retained with each algorithm has been calculated. Also, the error between 

the ground spectra and the recovered end member (target) spectra is computed and 

respective ROC curves have been generated for comparing the performance of above-

mentioned algorithms.  

All codes have been implemented in MATLAB. Steps of implementation have been 

explained in flowchart given in Figure 4.11. 

4.4.1.1 Identification of pure end members from the image  

 First the identification of pure end members has been performed. For obtaining this, 

a principal component transformation on the full band data has been done to remove the 

bad and noisy bands. Thereafter the algorithms ATGP, ICA-EEA, NFindr and PPI are 

implemented to obtain the pure end members within the image. 

4.4.1.2 Generation of Abundance maps using FCLS 
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Next, abundance estimation is done using in-scene extracted end members and 

using ground truth spectra. Abundance maps are generated using fully constrained least 

squares algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Flowchart to show the steps of implementation for spectral unmixing 

4.4.1.3 Computation of Fractional abundances. 

 

 From the abundance maps, the abundance fraction of target in YF is computed 

using the four algorithms for further analysis. 

4.4.1.4 Accuracy assessment 

Error is computed between the derived and the real spectral signature of end 

members. Abundance maps are generated for each end member computed. From these 

abundance maps, the abundance fractions for the target within the mixed pixel is computed. 

Read the input data 

Obtain in-scene spectrum of the Target 

Apply PCT Spectra (Ground 

truth) 

Generate pure end members using the algorithms 

Abundance 

estimation  

Generate abundance maps using FCLS 

Compute error between derived and real signature 

Comparative assessment of the generated abundance fractions for all algorithms 

Extracted end 

members 
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From here, based on the threshold values the total number of target pixels detected are 

calculated. Lastly, the error is computed, and output abundance images obtained from all 

the algorithms are analyzed using ROC (Receiver optimization curves) and histograms.   

4.4.2 Evaluating Spectral Indices for end member identification 

 The methodology including various theoretical aspects of spectral indices based 

approach have already been discussed in section 4.2.2. The steps of implementation are 

summarised below. 

 Step 1. Spectral Library creation. 

 Step 2. Identification of significant wavelengths using OIF. 

Step 3. Implementation of selected spectral indices  

Step 4. Accuracy assessment of spectral indices  

4.5 Results and Discussions 

 All implementations have been done in MATLAB. The results of implementation 

are discussed step by step.  

4.5.1 End member extraction and abundance estimation using spectral unmixing 

4.5.1.1 Identification of pure end members from the image 

 The in-scene end member spectra from the image for the target yellow felt is 

retrieved and plotted with the recorded ground truth spectra as given in Figure 4.3 (a).  For 

the identification of pure end members from the hyperspectral image, first the 

dimensionality reduction is performed using principal component transformation.  

Results of PCT Principal component transformation is applied to the input image to obtain 

the best bands. All the bands of the image are then screened, and the reduced set of good 

bands are obtained as shown in Figure 4.12.  
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 Here, the Input is a 2D image M, q is the number of components (20 in this case), 

Output is: 2D matrix (q*N), V which is the transformation matrix and Lambda which is 

the eigenvalues. [p, N] = size(M), remove data mean and compute covariance matrix C, 

then find eigenvalues of the covariance matrix using eigs function. [V, D] = eigs(C,q). Now 

we select the first ‘k’ eigenvectors with highest eigenvalues (here, k=20). Now original 

data is projected into these 20 eigenvectors resulting in 20 dimensions. Then we transform 

data using M_pct = V’ * Mand lambda = diag(D).  

 Using this, out of 360 Input bands, recovered best bands are 20. Following this, 

we have defined the number of potential end members ‘q’ that may be present in the image, 

in this case q selected is 12, pure pixel end members.  

 
    (a) 

 
                              (b)                                                                     (c) 

Figure 4.12 (a). The graph representing the spectra of target obtained from the image 

in red and the spectra recorded using ground truth values in blue. (b) True color 

image representing the components 2,5,9 in the reduced image (20 bands) after 

performing PCT (c). The gray scale image representing the component number 10 in 

the reduced set. 

Recorded 

Ground truth 

spectra 

In-scene spectra 

(from image) 
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Afterwards, using image retrieved spectra, twelve pure pixel image end members 

are recovered using the four algorithms, ATGP, ICA-EEA, N-Findr and PPI and the results 

are shown in below Figures 4.13 (a) to (d). 

   
(a)                                                                     (b) 

   
(c)                                                                   (d) 

Figure 4.13 End members recovered by (a) ATGP, (b) ICA-EEA (c) NFindr (d) PPI 

 

From Figure 4.13 (d), it is observed that the end member extraction using PPI has 

not produced satisfactory results and is therefore discontinued for further processing.  

4.5.1.2 Generation of Abundance maps using FCLS 

From the above obtained end members, their corresponding fractions in all the 

pixels is computed and abundance maps (representing the abundance of each of these end 

members in their respective maps) are then generated.  
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Abundance map for ATGP 

The abundance maps generated using ATGP for the 12 end members are shown here. The 

fractional composition for the yellow felt in YF is obtained from Abundance map 4. 
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Figure 4.14: Abundance maps generated using ATGP 
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N-Findr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15: Abundance maps generated using N-Findr 

The abundance maps generated using NFindr for the 12 end members are shown here. 

The fractional composition for yellow felt in YF is shown in Abundance map 3.  
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ICA-EEA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Abundance maps generated using ICA-EEA 

The fractional composition for yellow felt in YF is shown in Abundance map 3. 
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After this, the error corresponding to each algorithm is then studied to find the deviation 

from the real signature. 

 

     
                            (a)                                                                    (b) 

 
(c) 

 

Figure 4.17 Combined abundance image showing error is shown for (a) ATGP, 

(b) ICA-EEA, (c) NFindr  

 

 

4.5.1.3 Computation of Fractional abundances. 

 

 The abundance fractions obtained for target yellow Felt in YF is shown in tables 

given below for ATGP, ICA-EEA, and NFindr. After obtaining these fractions, a random 

value of 1 is assigned to indicate the target detection if fractional abundance value is greater 

than 40% for Yellow felt in every pixel; otherwise, it is assigned a value of 0. This aids in 

understanding the presence or absence of the target in the pixel. This is done as Yellow Felt 

is present in the ratio of 75% in every pixel as given in the ground truth information. 



122 

 

Table 4.8: Abundance fraction of yellow felt in mixed pixel target YF (8x8) - ATGP 

 

0.69 0.4 0.73 0.72 0.5 0.48 0.58 0.68 

0.59 0.21 0.4 0.43 0.34 0.45 0.24 0.6 

0.65 0.24 0.47 0.5 0.58 0.64 0.46 0.45 

0.42 0.36 0.48 0.49 0.45 0.59 0.62 0.45 

0.26 0.46 0.42 0.43 0.49 0.54 0.48 0.48 

0.35 0.63 0.41 0.25 0.48 0.69 0.3 0.67 

0.45 0.74 0.78 0.68 0.58 0.47 0.45 0.74 

0.45 0.65 0.68 0.75 0.46 0.45 0.68 0.37 

 

Table 4.9: Abundance fraction of yellow felt in mixed pixel target YF (8x8) - ICA-

EEA 

0.72 0.69 0.81 0.79 0.9 0.89 0.45 0.71 

0.73 0.28 0.46 0.46 0.27 0.9 0.48 0.76 

0.55 0.41 0.6 0.58 0.54 0.67 0.49 0.49 

0.48 0.44 0.55 0.55 0.49 0.69 0.62 0.35 

0.73 0.49 0.48 0.55 0.48 0.35 0.25 0.48 

0.7 0.84 0.83 0.38 0.81 0.74 0.38 0.68 

0.69 0.82 0.75 0.75 0.75 0.68 0.49 0.71 

0.49 0.75 0.74 0.69 0.56 0.45 0.46 0.78 

 

Table 4.10: Abundance fraction of yellow felt in mixed pixel target YF (8x8) -NFindr 

0.68 0.73 0.35 0.61 0.63 0.54 0.25 0.35 

0.67 0.69 0.46 0.36 0.02 0.45 0.48 0.69 

0.55 0.24 0.68 0.45 0.42 0.45 0.49 0.45 

0.88 0.4 0.45 0.46 0.46 0.62 0.62 0.4 

0.11 0.44 0.46 0.46 0.42 0.08 0.25 0.47 

0.24 0.35 0.41 0.47 0.53 0.01 0.39 0.59 

0.45 0.75 0.82 0.41 0.6 0.69 0.48 0.74 

0.49 0.79 0.71 0.12 0.47 0.71 0.45 0.79 

 

 

Now, after assigning values of 1 (>=.40) and 0 (<.40) corresponding to obtained fractions, 

for yellow felt in the mixed pixel target, the values generated are shown in below tables. 
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Table 4.11 Values corresponding to target detected/non detected in YF (8x8) - ATGP 

1 1 1 1 1 1 1 1 

1 0 1 1 0 1 0 1 

1 0 1 1 1 1 1 1 

1 0 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 

0 1 1 0 1 1 0 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 

 

Table 4.12: Values corresponding to target detected/non detected in YF (8x8) – ICA-

EEA 

1 1 1 1 1 1 1 1 

1 0 1 1 0 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 

1 1 1 1 1 0 0 1 

1 1 1 0 1 1 0 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

 

Table 4.13: Values corresponding to target detected/non detected in YF(8x8)-NFindr 

1 1 0 1 1 1 0 0 

1 1 1 0 0 1 1 1 

1 0 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

0 1 1 1 1 0 0 1 

0 0 1 1 1 0 0 1 

1 1 1 1 1 1 1 1 

1 1 1 0 1 1 1 1 
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4.5.1.4 Accuracy Assessment 

Thus, the number of target pixels detected for Yellow Felt in the mixed pixel target YF are 

counted and are shown below: 

Table 4.14: Accuracy of unmixing results obtained using three selected algorithms. 

Algorithm Total number of 

target pixels 

Number of target 

pixels detected 

Accuracy of 

detection 

ATGP 64 54 84.3% 

ICA-EEA 64 57 89.0% 

NFindr 64 50 78.1% 

 

Thus it may be observed from the results in Table 4.14 that:  

i. ICA-EEA detects more number of target pixels with highest accuracy of 89% 

ii. ATGP performs well with an accuracy of 84.3%, followed by NFindr which 

detects with an accuracy of 78.1%. 

ROC curves 

 Following the creation of abundance maps, the ROC curves have been implemented 

to show the error between the target spectra obtained from the ground truth for the target 

and the spectra obtained from the image itself for the target under consideration. The curves 

quantify the variability measured among the recovered values.  

For analysis, the values of True positives, true negatives, false positives and false negatives 

are computed and further the values of TPR and FPR are computed and these values give 

the TPR and FPR. 

TPR (True positive rate) = TP / TP+FN, ( / stands for division) 

FPR (False positive rate) = FP / FP+TN 

Here only resulting ROC curves are shown in figure 4.19 and not entire set of values 

calculated.  
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TPR  

             FPR 

(a).                                                                     

 

TPR  

             FPR 

 

 (b). 

 

TPR  

             FPR 

(c) 

Figure 4.19. ROC curves obtained for (a) ATGP, (b) ICA-EEA, (c) NFindr. (The 

circle/ellipse highlights the results. 
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Figure 4.20. Histograms showing the affinity of endmembers obtained  for (a) 

ATGP, (b) ICA-EEA, (c) NFindr. 

From the results following may be observed: 

• From the Table 4.14, it is observed that ICA-EEA generates end member spectra 

with more accuracy while the results of generation with PPI are worst amongst the 

four algorithms. 

• ROC curves also depict that the error between the generated spectra from the image 

and the ground truth spectra is least. ATGP may also be considered as an end 

member extraction algorithm owing to good results of detection for mixed pixel 

targets as TPR is more. 
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4.5.2 Evaluating Spectral Indices for end member identification 

 The results of implementation of spectral indices on Data set-5, subset SS1 and SS2, 

are shown step by step in below sub sections. 

4.5.2.1 Spectral library creation 

The spectral library has been created for selected impervious surfaces / targets 

(roads and roofs) and impervious surfaces / backgrounds (vegetation and soil). 

Impervious surfaces (targets) 

Roads – Parking lot bitumen road, bitumen road, concrete road (Figure 4.17). 

Roofs – Asbestos sheet, Red mangalore tile roof, bitumen membrane roof, 

reinforced cement, wood tile roof, bitumen water proofing, Corrugated GI sheet, corrugated 

GI sheet in shadow, AC duct Iron, convention hall metal sheet and convention hall metal 

sheet shadow, PVC fibre, Polythene blue, polythene black, green cloth shed, redcarpet 

cloth, plastic+cloth. (Figure 4.21) 

  
(a)                                                                          (b) 

 
(c) 

Figure 4.21: Spectral library for Impervious surfaces – Road (a). Parking lot-Road 

(Bitumen), (b). Bitumen Road (c). Concrete Road 
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(a)                                                                (b) 

  
(c)                                                                  (d) 

  
(e)                                                                  (f) 

  
(g)                                                                  (h) 

  
(i)                                                                  (j) 
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(k)                                                                  (l) 

  
(m)                                                                  (n) 

 
(o)                                                                  (p) 

 
(q) 

Figure 4.22: Spectral library for Impervious surfaces – Roof (a). Asbestos sheet, (b) 

Red mangalore tile roof, (c) bitumen membrane roof, (d) reinforced cement, (e) wood 

tile roof, (f) bitumen water proofing, (g) Corrugated GI sheet, (h) corrugated GI sheet 

in shadow, (i)AC duct Iron, (j)convention hall metal sheet and (k) convention hall 

metal sheet shadow, (l) PVC fibre, (m) Polythene blue, (n) polythene black, (o) green 

cloth shed, (p) redcarpet cloth, (q) plastic+cloth. 
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Pervious surfaces (backgrounds) 

 Soil – Bare soil, ground, sand, unpaved soil, excavation soil. (Figure 4.19) 

 Vegetation – Bushes, Lawn grass (Figure 4.20) 

  
(a)                                                                  (b) 

  
(c)                                                                  (d) 

 
(e) 

Figure 4.23: Spectral library for Pervious surfaces – Soil (a). Bare soil, (b). Ground, 

(c) Sand, (d) unpaved soil, (e) excavation soil 

  
(a)                                                                  (b) 

Figure 4.24: Spectral library for Pervious surfaces – Vegetation (a). Bushes, (b). Lawn 

grass 
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4.5.2.2 Selection of appropriate wavelength regions 

Spectral Subsetting into eight EM regions has been done as shown in Table 4.15 below: 

 

Table 4.15: Selection of appropriate spectral bands 

EM region Spectral range Number of bands selected 

Full Spectral range 376.44 to 2500 nm 387 

Ultraviolet 376.44 to 401.49 nm 6 

Visible 406.49 to 702 nm 60 

UV+Visible 376.44 to 702 nm 66 

VNIR 707.01 to 997.52 nm  59 

Far NIR 1002.52 to 1349.12 nm & 

1413.23 to 1499.39 nm  

99 

Early SWIR 1503.39 to1909.92 nm & 

1944.15 to 1999.25 nm 

74 

Far SWIR 2004.26- 2500 nm 100 

 

4.5.2.3 Implementation of Spectral indices 

(a) Impervious surface: Roof and roads (targets) detection using New built up index 

(NBI)  

 

The most suitable wavelengths are first selected using OIF as shown below:  

SN Significant Band Wavelength (nm) 

1 BGREEN 561 

2 BRED 666.94 

3 BNIR 967 

4 BSWIR2 1613 

5 BSWIR 2194 

6 NIR2 992 

7 BBLUE 466 

This index is then implemented using Red,SWIR and NIR bands and the equation 4.4: 

𝑵𝑩𝑰 =
(𝑩𝑹𝑬𝑫 × 𝑩𝑺𝑾𝑰𝑹)

(𝑩𝑵𝑰𝑹)
 (4.4) 
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Detection results: 

     
(a)                                                                   (b) 

Figure 4.25: Impervious surface detection using NBI in (a) SS1, (b) SS2 

(b) Impervious surface - Roof and roads (targets) detection using Normalised 

difference built up index (NDBI) 

 

This index is implemented using the SWIR and NIR bands from the obtained OIF 

wavelengths  as shown in section 4.5.2.3 (a) and the equation 4.5: 

𝑵𝑫𝑩𝑰 =
(𝑩𝑺𝑾𝑰𝑹−𝑩𝑵𝑰𝑹)

(𝑩𝑺𝑾𝑰𝑹+𝑩𝑵𝑰𝑹)
 

 

 

 

 

 

 

 

(4.5) 
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Detection results:  

   

(a)                                                                     (b) 

Figure 4.26: Impervious surface detection using NDBI in (a) SS1, (b) SS2 

(c) Impervious surface - Roof and roads (targets) detection using Normalised built up 

area index (NBAI)  

This index is implemented using the equation 4.6: 

𝑵𝑩𝑨𝑰 =
(𝑩𝑺𝑾𝑰𝑹 −

𝑩𝑺𝑾𝑰𝑹𝟐

𝑩𝑮𝑹𝑬𝑬𝑵
)

(𝑩𝑺𝑾𝑰𝑹 +
𝑩𝑺𝑾𝑰𝑹𝟐

𝑩𝑮𝑹𝑬𝑬𝑵
)
 

Here 3 wavelength bands, SWIR (2194), SWIR2(1613) and Green(561) are considered 

from obtained set of best wavelengths as mentioned in section 4.5.2.3 (a). 

Detection results: 

  
(a)                                                                            (b) 

Figure 4.27: Impervious surface detection using NBAI in (a) SS1, (b) SS2 

(4.6) 
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(d) Impervious surface - Roof and roads (targets) detection using - The band ratio for 

built up area (BRBA)  

This index is implemented using the equation 4.7: 

𝑩𝑹𝑩𝑨 =
𝑩𝑹𝑬𝑫

𝑩𝑺𝑾𝑰𝑹
 

The subset of wavelengths selected using OIF Red (666.94) and SWIR(2194) are utilised 

for calculations. 

Detection results: 

  
(a)                                                              (b) 

Figure 4.28: Impervious surface detection using BRBA in (a) SS1, (b) SS2 

  

(e) Impervious surface - Roof and roads (targets) detection using Morphological 

building index (MBI)  

This index is implemented using the equation 4.8: 

𝑴𝑩𝑰 =
𝑩𝑺𝑾𝑰𝑹𝟐 × 𝑩𝑹𝑬𝑫 − 𝑩𝑵𝑰𝑹

𝟐

𝑩𝑹𝑬𝑫 + 𝑩𝑵𝑰𝑹 + 𝑩𝑺𝑾𝑰𝑹𝟐
 

The corresponding wavelengths selected using a subset of wavelengths obtained using OIF 

are BSWIR2 (1613nm), RED(666.94nm), NIR (967  nm) 

Detection results: 

 

(4.7) 

(4.8) 
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(a)                                                               (b) 

Figure 4.29: Impervious surface detection using MBI in (a) SS1, (b) SS2 

In order to validate the above results, archived google earth images of the same period have 

been referred to confirm broad location and targets. The google earth images of Ten Acre 

Mall and Kankaria Railway Yard are shown in Figure 4.30 (a) and (b), respectively.   

 

 
(a)                                                     (b) 

Figure 4.30: Google Earth images of target sites (a) Ten Acre Mall, (b) Kankaria 

Railway Yard  
 

 

A ROI of 49x49 pixels from detected results of Spectral indices approach was then 

further analyzed. This ROI consisted of both impervious and pervious surfaces. Further 

within this ROI, a window of 30x30 pixels consisting of impervious surface (both roads 

and roofs) have been further investigated. As mentioned in the data section 4.3.2.2, 80 



136 

 

locations of Kankaria Railway Yard and 60 locations of Ten Acre Mall are correctly known. 

Therefore, while analyzing this 30x30 window, these locations only have been the focus.  

Figure 4.31 (a) shows the 49x49 ROI of Kankaria Railway Yard. Figure 4.31 (b)-

(f), are the detection results achieved using NBI, NBAI, BRBA, MBI and NDBI 

respectively. Figure (a) to (f) all have been converted to binary grey scale image (converted 

to unsigned int using MATLAB). Next, to determine the number of correctly identified 

pixels, Figure 4.31 (b) to (f) has been subtracted from (a). The results obtained are shown 

in Figure 4.31 (g) to (k). These results have been analyzed within the 30x30 window but 

only for the known locations, having impervious (both roads and roofs) surfaces. After 

subtraction, all values resulting in 0 for the known locations (80), have been assumed to be 

correct detection. These results are summarized in Table 4.16. 

Similarly, as shown in Figure 4.32 (a), the 49x49 ROI of Ten Acre Mall has been 

considered for detection of impervious surfaces. Figure 4.32 (b) to (f), are the detection 

results achieved using NBI, NBAI, BRBA, MBI and NDBI respectively. After conversion 

of Figure (a) to (f) to binary grey scale image, further the determination of the number of 

correctly identified pixels is done by subtracting Figure 4.32 (b) to (f) from (a). The results 

obtained are shown in Figure 4.32 (g) to (k). These results have been analyzed within the 

30x30 window but only for the known locations, having impervious (both roads and roofs) 

surfaces. After subtraction, all values resulting in 0 for the known locations (60), have been 

assumed to be correct detection. These results are also summarized in Table 4.16. 
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(g)                          (h)                          (i)                             (j)                           (k) 

Figure 4.31: Impervious surface extraction and corresponding subtraction images 

for site Kankaria Railway Yard using (a) NBI (b) NBAI (c) BRBA (d) MBI (e) NDBI  

 

 
(g)                          (h)                          (i)                         (j)                           (k) 

Figure 4.32: Impervious surface extraction and corresponding subtraction images 

for site Ten Acre Mall using (b,g) NBI (c,h) NBAI (d,i) BRBA (e,j) MBI (f,k) NDBI  

(b)                             (c)                            (d)                             (e)                              (f) 

Kankaria Railway Yard – AVIRIS image 

Detection results using Spectral Indices of impervious surfaces (Roads and Roofs) 

Ten Acre MAll – AVIRIS image 

Detection results using Spectral Indices of impervious surfaces (Roads and Roofs) 

Subtraction images 

(a) 

(b)                             (c)                            (d)                             (e)                              (f) 

(a) 

Subtraction images 
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Table 4.16 summarizes the assessment of pixels detected using spectral indices for the 

known locations. It is observed that for Kankaria Railway Yard, out of 80 known pixels, 

BRBA detects a minimum of 10 pixels (12.5% accuracy) while NDBI detects a maximum 

of 76 pixels (95% accuracy). Amongst other algorithms, NBAI and NBI also perform 

reasonably well. Similarly, for Ten Acre Mall, BRBA detects a minimum of 10 (16.66% 

accuracy) and NDBI detects a maximum of 58 (96.66% accuracy). Amongst the others, 

NBAI and NBI appear to perform well.  

Analysis of the NDBI with rest of the spectral indices indicates the possibility that 

SWIR (2194 nm) and NIR (967 nm) bands appear to be performing much better than other 

bands / wavelength regions. Similarly, a comparison of NDBI, NBAI and MBI suggest that 

SWIR (2194 nm), NIR (967 nm) and Green (561 nm) band alone may be sufficient for 

reasonable detections of impervious surfaces using spectral indices-based approach. 

 

Table 4.16: Assessment of pixels detected using Spectral Indices  

 

 

 

 

 

Subset Site Pixels on ground Index Pixels detected Accuracy (%) 

Subset 

2 

Kankaria 

Railway 

Yard 

 

 

80 

NBI 61 76.25 

NBAI 50 62.5 

BRBA 10 12.5 

MBI 48 60 

NDBI 76 95 

Ten  

Acre Mall 

 

 

 

60 

 

NBI 48 80 

NBAI 50 83.33 

BRBA 10 16.66 

MBI 11 18.33 

NDBI 58 96.66 
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Conclusions: 

 

In this study, two tasks namely, end member extraction and abundance estimation using 

spectral unmixing and evaluation of spectral indices based approach for end member 

identification have been performed. 

 The results of endmember extraction and abundance estimation using spectral 

unmixing indicate that  ICA-EEA and ATGP perform best while recovering the image end 

members including the target spectra, followed by NFindr, while PPI performed poorly in 

this case . Error was also found to be least in ICA-EEA and ATGP in comparison to NFindr 

and PPI. 

 Evaluation of spectral indices-based approach for end member identification, 

indicate that this approach which is essentially based upon identification of significant 

wavelengths related to a particular end member may be more suitable in extraction of 

impervious (roads and roofs) surfaces. The results indicate upto a maximum of 96.66% 

accuracy using spectral indices based approach. Further, spectral indices based approach 

appear to suggest that appropriate indices evolved using SWIR (2194 nm) and NIR (962 

nm) may be most suitable in detection of impervious surfaces (roads and roofs). 
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Chapter 5 

Random Recursive Vs Non-Random Non-Recursive 

Super Resolution Mapping Algorithms 

 

5.1 Introduction  

This chapter further extends the study of extraction of full pixel and subpixel targets 

in hyperspectral data. Here, any object or material whose information is to be extracted 

from any type of remote sensing data is being referred as a “target”. In target detection, 

detection merely implies differentiation between full pixel signatures of a target and the 

background. The process of target detection in hyperspectral images, however, involves a 

series of steps viz classification, identification, discrimination, and quantification (Chang, 

2003). A complete target detection may therefore necessitate detection of not only the full 

pixels of a target but also the recovery of all the subpixel components of the target residing 

in surrounding pixels (Foody et al. 2005, Foody et al. 2007). 

Most target detection algorithms, however, suffer from the limitation that they can 

detect only the full pixels of the target and thus leaving out the components of the target 

that may simultaneously reside partially in several surrounding pixels. In this case, target 

detection has to deal with not only detection of full pixel targets but also recovery of 

components of the target from surrounding mixed pixels. In some other cases, the target 

may even be embedded completely within a pixel. In this case, this is purely a problem of 

subpixel target detection. In the former case, the problem is addressed by full pixel target 

detection followed by spectral unmixing to determine the abundance fraction of the target 

in the surrounding pixels. The problem in this case however is that, though spectral 

unmixing gives the abundance fractions, it does not give the spatial distribution/ 
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arrangement of subpixels of target with the surrounding pixels (Atkinson. 1997, 

2004,2005,2013, Chan et al. 2011, Foody and Cox 1994, Foody 2002). Lack of availability 

of spatial distribution within a mixed pixel is a major limiting factor in successfully 

completing the entire target detection process mentioned above. The process of optimizing 

the spatial distribution of subpixels inside any given pixel based on the available abundance 

fractions is known as super resolution (Gu et al. 2008, Guo et a1. 2009).  

A scale factor in super resolution is a number, the square of which determines the 

number of subpixels into which a mixed pixel is proposed to be sub-divided / super 

resolved. The product of end member fractions and the total number of subpixels of a pixel 

(based on the scale factor) determines the number of subpixels of that endmember / 

component (Kasetkasem et al. 2005, Li et al. 2011). The super resolution therefore provides 

a means to suggest the most optimized spatial distribution/ arrangement of these subpixels 

belonging to different end members/ components inside the mixed pixel (Ling et al. 2014).  

Most of these super resolution algorithms are currently under evolution with 

applications primarily in the field of land cover mapping (Ling et al. 2013, Ling et al. 2011, 

Kling et al. 2010, Mertens et al. 2006, 2003). Detection of full pixels of a target, recovery 

of target fractions/ components inside the surrounding pixels using spectral unmixing and 

their correct spatial distribution/ arrangement determined using super resolution 

algorithms, may not only aid target detection but also its identification and recognition. 

Study and development of super resolution algorithms is therefore extremely important 

particularly in small military target detection. Many super resolution mapping algorithms, 

such as, MRF (Markov Random Field) (Kasetkasem et al. 2005), HNN (Hopfield Neural 

Network) (Tatem et al. 2001, Tatem et al. 2002), Atkinson’s pixel swap algorithm 

(Atkinson, 2005, Thronton et al. 2006), PSO (Particle swarm optimization), linear 
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optimization etc. have been reported in the literature. Most of these super resolution 

algorithms reported in literature, work on random allocation of location to the subpixels of 

different end members within the pixel. In addition, it has been observed that a recursive 

procedure is followed for obtaining the results of super resolution thereby increasing the 

computational complexity and time consumption (Atkinson, 2001 and 2005). The 

limitations associated with these algorithms are summarized in the section 5.2.  

This chapter also extends the study to extraction and mapping of impervious 

surfaces in multi sensor, multi resolution, temporal urban data. Urbanization linked Land-

use is known to increase the total area of impervious surfaces (building rooftops, streets, 

highways, parking lots, and sidewalks etc.) significantly and which in turn has adverse 

environmental effects at local, regional and global scales (Kuang et al. 2014, Weng 2008). 

Water cannot percolate through these impervious surfaces directly (Weng 2012, Scheuler, 

1994) which not only affects the amount of runoff to streams and lakes but also influences 

non-point source pollution, water quality and the aesthetics of landscapes. Traditionally, 

ground surveys and aerial photo interpretation have been the most accurate methods of 

mapping of impervious surfaces and its area assessment, but they are not time effective. 

Availability of finer resolution spectral, spatial and temporal data can facilitate cost 

effective mapping and monitoring of changing impervious surfaces which in turn can assist 

in various aspects of urban planning, management of surface runoff/flooding and in 

monitoring the environment. A lot of work has been reported in the literature regarding 

mapping of impervious surfaces using a variety of remote sensing data, however, there is 

hardly work reported from within the country. Besides, the present ongoing research 

indicates immense scope for development of alternative approaches for cost effective and 

better approaches for mapping and area estimation of impervious surfaces. Also, from the 

review of literature, it is derived that many pixel and subpixel based algorithms as well as 
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feature based algorithms have been proposed for mapping and estimation of impervious 

surfaces using low, medium as well as high resolution datasets. However, there are several 

issues in mapping and estimation that need to be dealt with, such as since the impervious 

surfaces are mainly distributed in complicated urban areas, the accuracy of impervious 

surfaces is limited by the complexity of impervious surfaces. Also, due to the low spatial 

resolution of the sensors, mixed pixels arise which complicates the process of accurate 

detection and estimation of impervious surfaces. Further, the impervious surfaces from low 

spatial resolution images are often too coarse to use in urban environments and most of the 

impervious surface mapping techniques provide the fraction of impervious surfaces by 

using classification approaches, however, the accurate spatial distribution of these surfaces 

within the image remains unknown (Wand et al.2017, Atkinson 2013, Linden et al. 2009, 

Foody et al. 2005). In all such cases, an appropriate super resolution mapping method may 

prove useful. However, due to the nature of subpixel landcover fractions present, a non – 

random non – recursive algorithm is likely to perform better and faster.   

5.2 Limitations of Random-Recursive Super resolution Algorithms  

Several Super resolution algorithms such as Pixel Swap (PS) (Atkinson, 2001), 

Hopfield Neural Network (HNN) (Tatem et al. 2002), Particle Swarm Optimization (PSO) 

(Kennedy and Eberhart, 1995), Markov random field (MRF) (Geman and Geman, 1984, 

Kasetkasem et al., 2005) etc. A brief review of these algorithms has been presented in 

subsection 1.2.2.3 (under Section 1.2). Most of these super resolution algorithms work on 

random allocation of location to the subpixels of different end members within the pixel. 

There are several limitations of this random, recursive Super resolution algorithms, some 

of which are mentioned here.  

Being based on recursive optimisation, the implementation of algorithm 

commences with random allocation of subpixels and the number of subpixels allocated to 
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each class depends upon its fractions. Therefore, even for a small size of the dataset, the 

process becomes computationally intensive (Wang et  al. 2006, Wang 2013).  In addition, 

the subpixels are randomly distributed, and a series of iterations are required to cluster those 

subpixels based on a distance weighed attractiveness function. Since all the subpixels of a 

given target/class based on its abundance fraction are likely to be clustered together, this 

iterative procedure only leads to additional computational constraint (Atkinson, 2005).  

In the case of linear targets, the algorithm works well only when the targets are at 

least one pixel wide and fails for targets which are about one half of the width of the pixel. 

Besides, certain subpixels once allocated to the incorrect class, continue to cluster the 

misclassified pixels (Atkinson, 2001 and 2005). 

Further, these techniques generally use a non-linear parameter in the calculation of 

distance dependent weight, which may not be determined deterministically for different 

scale factors and may vary for different applications.  This adds uncertainty to the 

procedure. As a result, the convergence of the algorithm usually becomes difficult to 

achieve (Atkinson, 2001 and 2005). 

From the limitations discussed above, it is evident that the major issues lie in the 

underlying criteria to allocate the subpixels to a particular class / end member. The 

algorithms are usually based on initialization with random allocation of subpixels and 

follow a time consuming, computationally complex process that decreases the accuracy of 

the subpixel mapping results (Wang et  al. 2006, Wang 2013). Thus, there is a need to  

overcome the limitations in case of random-recursive algorithms, as reported in the 

literature (Zhong et al. 2015, Xian 2019, Wang et al. 2012, Wang et al. 2017).  

This focus in this chapter is to compare non-random non-recursive based super 

resolution algorithms with random – recursive algorithms on the basis of efficiency and 

computation time while being used in the process of identification of targets in image. One 
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random recursive super resolution mapping algorithm reported in the literature (Pixel 

Swap) has been compared with the non- random non-recursive based technique (Inverse 

Euclidean distance) using both synthetic as well as real hyperspectral data. The comparison 

has been carried out at different scale factors. 

5.3 Experimental Data Set 

5.3.1 Synthetic Data 

A total of four synthetic (consisting of different shapes) and one real hyperspectral 

data set (consisting of aircrafts as targets) have been used in these experiments. Since for 

validation of results, the availability of reference data is a pre-requisite (Thornton et al., 

2006), the synthetic data set has been generated, where abundance fractions within the 

subpixels is available and are used as the reference data for analyzing the super resolution 

algorithm. Experiments after performing on the synthetic data have also been performed 

on hyperspectral data where targets under consideration are aircrafts. The exact number of 

subpixels occupied by the aircraft in the mixed pixels, if any, is however not available in 

this case. 

Synthetic data set, each of 30x30 pixels have been generated approximating the 

shape of a vehicle, a temple, a circle, and an aircraft. In each case, a number of synthetic 

images have been generated for super resolution experiments at different scale factors 

namely, 3,5,7,9, and 11. For these scale factors, the pixel gets super resolved into 32, 52, 72, 

92, and 112 subpixels corresponding to each of the scale factor. 

 As an example, for super resolution at a scale factor of 7, the procedure for 

generating 30x30 pixels image is as given below: 
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(a) Determine the size of existing image (in this case 30x30 pixels) and scale factor 

(in this case 7). The size of the subpixel image used therefore be (30x7,30x7) 

i.e. (210,210) 

(b) Create a target of the desired shape as a binary image (consisting of 1 and 0) 

within the subpixel image of 210x210 pixels. This image acts as a reference 

image. 

(c) Degrade the 210x210 pixels image to size 30x30 pixels using 7x7 filter that 

adds the values in all the 49 pixels and then divides it by 49. Fractions arrived 

at may be modified slightly if required. For example, in the case of 210x210 

pixels approximating the shape of a vehicle, the fractions in the edge pixels have 

been modified to 0.75 

(d) Repeat the above steps at different scale factors for different shapes. 

The four images corresponding to different shapes have been referred as Synthetic – I, 

Synthetic – II, Synthetic – III and Synthetic – IV as shown in Figure 5.1(a), (b), (c) and (d). 

        

     (a)                                    (b)                                (c)                              (d) 

Figure 5.1: 30x30 pixels approximating the shape of (a) a vehicle (Synthetic- I) (b) a 

temple (Synthetic- II) (c) a circle (Synthetic- III) (d) an Aircraft (Synthetic- IV). Edges 

of these shapes have fractions from 0.25 to 0.9.   

 

5.3.2 Hyperspectral Data 

189 bands of an archived AVIRIS hyperspectral data (reflectance image, size 

400x400 pixels in 224 bands, spatial resolution 4 meters) after removing water absorption 
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and bad bands, captured over a Naval station in San Diego, California, have been used for 

super resolution experiments (Figure 5.2(a)). This image contains 5 aircrafts located at 

pixel coordinates (244,145), (232,137), (228,134), (89,11) and (70,22) which have been 

considered as targets. Each of these aircrafts/targets has been identified using ID’s from T1 

to T5. Two of these targets T1 and T2 are in illumination. Targets T3, T4 and T5 which are 

in shadow may be considered as difficult targets for detection. 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

(a) 

 

      
                                (b)                                                                          (c) 

Figure 5.2: (a).  Subset of 200x200 pixels selected from AVIRIS Dataset containing 

five targets: T1, T2, T3, T4, T5 (b). Spatially segmented image of 40x40 pixel size, with 

three targets: T3, T4 and T5 (c). Spatially segmented image of 40x40 pixel size, with 

two targets: T1, and T2 

Image of size 40x40 pixels containing three aircrafts each shown in Figure 5.2(b) and two 

targets shown in Figure 5.2(c) have been segmented from the original image 5.2(a). The 

T5 

T3 

T4 

T2 

T1 
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segmented region contains both the pixels i.e. pixels fully occupied by target (aircraft) and 

those partially occupied by target (aircraft). 

5.3.3 Multi - sensor, Multi – resolution, Temporal Urban dataset 

Multi-sensor, Multi-resolution, Temporal data for urban region – UDAIPUR 

(24.5854° N, 73.7125° E), INDIA has been selected for extending the non – random non – 

recursive super resolution on a real urban dataset. Data from space borne sensors – 

LANDSAT-8 and SENTINEL-2B and airborne sensor- AVIRIS-NG have been selected. 

This data is shown in Figure 5.3(a). It is however mentioned that there is no ground truth 

available in this case and hence the study is based on comparative visual analysis of the 

results. After performing corrections and data pre-processing, spectral unmixing has been 

implemented using LMM (Linear Mixture Model) and resulting images for impervious 

surfaces are shown on Figure 5.3(b).  

Figure 5.3: (a). Original images 

   
LANDSAT – 8 SENTINEL – 2B  AVIRIS – NG 

Figure 5.3: (b). Images After Spectral Unmixing 

   
LANDSAT – 8 SENTINEL – 2B  AVIRIS – NG 

Figure 5.3: (a). Original Images of Udaipur region acquired from different sensors 

and (b). Images obtained as results of spectral unmixing using LMM  
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The data specifications of this Multi sensor, Multi – resolution, Temporal urban 

dataset is summarized in Table 5.1.  

Table 5.1: Specifications of Multi sensor, Multi –resolution, Temporal urban dataset  

5.4      Methodology and Implementation 

Two algorithms, one random recursive (Pixel Swap) and one Non-random non-

recursive (Inverse Euclidean Distance) super resolution algorithms have been identifed for 

comparison and implemented on both the synthetic as well as hyperspectral datasets. 

5.4.1 Common Steps of Both Random Recursive (Pixel Swap) and Non-random 

Non- Recursive (Inverse Euclidean Distance) Super resolution Algorithms 

 Two steps namely, spectral unmixing for estimation of the abundance fractions and 

super resolution mapping using abundance fractions are common to both the approaches 

and have been explained here first. 

Spectral Unmixing for Estimation of Subpixel Abundance Fractions  

SN Parameters Description 

1 Image Location 
Udaipur, 

Rajasthan, India 

Udaipur, 

Rajasthan, India 

Udaipur, 

Rajasthan, 

India 

2 Name of Sensor Sentinel-2B Landsat-8 AVIRIS-NG 

3 
Date of Data 

acquisition 
02/06/2018 30/11/2017 02/02/2016 

4 Spatial Resolution 10 meter 30 meter 8.1 meter 

5 Wavelength Range 
443 nm – 2190 

nm 

430 nm – 2290 

nm 

376 nm – 2500 

nm 

6 

Number of 

Samples, Lines 

and Bands 

352, 352 ,13 117, 117, 7 400, 400, 380 

7 Level of data Level 2 Level 2 
Level 1 and 

Level 2 

8 Coordinate system 
WGS-84 / UTM 

Zone 43N 

WGS-84 / UTM 

Zone 43N 

WGS-84 / 

UTM Zone 

43N 
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Spectral unmixing is first step in super resolution. Spectral unmixing, using linear 

mixture model (LMM) may be stated as,  

 

Where,  is mixed pixel spectrum, is spectra of constituents,  is estimated abundance 

fractions within a pixel, and is noise / error component. Thus, the abundance fractions 

may be estimated provided the end member spectra are known from existing spectral 

libraries or alternatively, they may be drawn from the image itself (Rosin, 2001, Vikhamar 

et al. 2002). In the present study, an unsupervised spectral unmixing method named 

Simplex Maximum Angle Convex Cone (SMACC) has been used to estimate end member 

fractions by automatically generating the end member signatures from the image itself. 

Abundance fractions, thus obtained, form the input for super resolution as discussed in the 

next subsection.  

Super Resolution Mapping Using Abundance Fractions 

In super resolution mapping, the derivation / generation of a subpixel map (at a fine 

spatial resolution) from a coarse resolution input image is done by optimizing abundance 

fractions within the mixed pixels (Kasetkasem et al. 2005, Tatem et al. 2001, Tatem et al. 

2002, Muad et al. 2012, Muad and Oody 2019). Depending upon the spatial resolution 

required, the process may be performed at varied scale factors. The main criteria behind 

super resolution algorithms is the quantification of the number of target subpixels within a 

given pixel that are to be super resolved and to model an attractive influence that defines 

the relationship between various subpixels (within the pixel under consideration) and pixels 

in the neighbourhood.  

The calculation of the number of target subpixels at any pre-determined scale factor 

is done with the help of abundance fractions obtained after spectral unmixing. To exemplify 
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this, let us consider a scale factor of 7. This implies that the pixel to be super resolved is to 

be mapped onto a grid of seven rows and seven columns of subpixels. Thus, within each 

pixel, a total of 49 subpixels are generated. Now, if the abundance fraction value of end 

member is estimated to be 0.7 and the scale factor is 7, it implies that 70% (i.e., 49 x 0.7 = 

34 subpixels, rounded off to integer value) of the total number of subpixels belong to that 

end member. Modelling attractive influence between each subpixel and the neighbourhood 

pixels, however, requires defining an appropriate distance function. 

5.4.2    Random Recursive (Pixel Swap) Super resolution Algorithm 

 Proposed by Atkinson (2001 and 2005) to achieve subpixel mapping, the objective 

of this algorithm is to change the spatial arrangement of subpixels in such a way that the 

spatial correlation between neighboring subpixels is maximized. The results obtained from 

soft classification (to identify the land cover class within each pixel) are utilized for 

transformation into subpixel classes. The method of initialization is a measure to compute 

the accuracy and efficiency of mapping at subpixel level. A random initialization is 

considered and further the algorithm intends to find the spatial arrangement of subpixels 

and works in a recursive manner to find their correct allocation by finding the maximum 

correlation among the neighboring subpixels. This algorithm works for a binary land cover 

class problem and not for multi class problem.    

Land cover class proportions for each pixel obtained from a soft classification (or 

unmixing) are input to the Pixel Swap algorithm. Based on the scale factor, the number of 

subpixels is calculated corresponding to the pixel in the coarse spatial resolution image. 

The number of subpixels for any given target/class in each pixel remains fixed throughout 

the Pixel Swap procedure. During this Pixel swapping process, each subpixel is allocated 
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to a single land cover class such that the original class fractions in the coarse resolution 

image are maintained (Atkinson, 2005).  

The steps for implementing the algorithm can be summarized as   

(i) Randomly allocate subpixels to binary targets/classes based on pixel 

proportions. 

(ii) For each iteration for each pixel. 

(aa) For each subpixel within the pixel: 

(ab) Calculate attractiveness for each neighbouring subpixel within a 

window. The pixel neighbourhood considered here is 2x2 pixels. The 

attractiveness Ai of a pixel i is predicted as a distance weighted function of 

its neighbours, q =1, 2,..,q and is given by: 

                                                        . 

Where, z(yq)is the (binary target/class of the qth pixel at location yq and  

                                                       . 

Where, hiq is the distance between the location yi of a pixel i for which 

attractiveness is desired, location yq of a neighbouring pixel q, and a is the 

nonlinear parameter. 

(ac) Find minimum attractiveness Ai for all subpixels currently allocated to 

1 (i.e. Ai = min (Ai)|z(yq) =1)) 

(ad) Find maximum attractiveness Aq for all the subpixels currently 

allocated to 0 (i.e. Aq= min (Aq)| z(yq) =0)) 

(iii) If, Ai<Aq then swap the single pair of subpixel allocations  

(iv) Continue till threshold is achieved and no more swaps can be made. 
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5.4.3 Non - Random and Non - Recursive (Inverse Euclidean Distance) Super 

resolution Algorithm 

Euclidean distance Algorithm is based on a non-random non-recursive assignment 

of subpixels to binary end members. For ease of explanation, an m x n image is considered 

as shown below: 

 

     

(a)                           (b)   

(b)  

 

 

 

 

 

  

                        

                                                           (c) 

Figure 5.4: (a) An M x N Image array for super resolution, (b) 8- pixel 

neighbourhood (c) Central pixel for super resolution mapping 

From this image, any 3x3 pixel clique may be selected considering that its central pixel is 

the pixel that is to be super resolved. For scale factor of 7 for super resolution, a 7 x 7 

subpixel grid may be obtained at this central pixel. Thus, 49 subpixels within the central 

pixel should be spatially distributed across the pixel. So, this means a value of 0 or 1 is to 

be assigned to 49-pixel locations. However, the exact subpixels locations which are to be 

assigned these binary classes (i.e. the value of 0 or 1) are yet to be ascertained. 

It is logical to assume that a pixel in the neighbourhood with higher abundance 

fraction of the end member is likely to attract a greater number of subpixels from the pixel 
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under consideration. Note that at any point of time, there will be a pixel with certain number 

of subpixels under super resolution and a neighbourhood pixel would exert certain 

attraction on these subpixels in inverse proportion of the Euclidean distance between the 

two. The pixel under super resolution is referred as super resolution pixel and 

neighbourhood pixel exerting certain attraction is referred as end member center.   

Next step is defining an appropriate distance function to model the attractive 

influence: 

Pixel Neighbourhood:  

A group of pixels that exert or experience an attraction from the surrounding pixels is 

termed as pixel neighbourhood. The pixel neighbourhood may be represented using various 

schemes (such as 2x2, 4x4 and 8x8 pixels schemes etc.) as shown in Figures 5.5 (a) to 5.5 

(c).  

All the subpixels of an end member (under consideration) within a pixel, experience 

an attraction from neighbourhood pixels provided it has some fraction/proportion of the 

similar end member. Let the pixel under super resolution be referred as super resolution 

pixel and neighbourhood pixel exerting certain attraction be referred as end member center. 

In Figure 5.5, the black colored pixel is super resolution pixel and grey pixels are 

considered end member center one by one. 

 

 

Figure 5.5. (a) 2x2 pixel neighbourhood. (b) 4x4 pixel neighbourhood. (c) 8x8 pixel 

neighbourhood (Kasetkasem, 2005) 

Pixel Clique:  
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To understand super resolution mapping, let us consider that an image of size say 

m x n pixels is used. In such an image, the centrally located pixels are surrounded by eight 

pixels from all sides whereas, the corner pixels will be surrounded by pixels only from three 

sides. A subset of an image thus obtained, is called Clique, where two separate elements 

appear are mutual neighbours in an image (Baralde et al. 2001). Several cliques are thus 

possible in an image and they appear to be an important factor in determining the number 

of pixels directly influencing the pixel under consideration.   

Further, implementation of the Inverse Euclidean Distance Algorithm is discussed 

in the following steps.  

Step 1. Computation of the subpixels that are attracted to each of the neighbourhood 

pixel:  

  For ease of understanding, consider the 3x3 clique (Figure 5.6) with nine pixels also 

shown in Figure 5.5(c) and numbered as PX1 to PX9. Let the abundance fractions of an 

end member in it be af1 to af9. Further, let af1 to af9 be 0.3, 0.3, 0.3, 0.3, 0.7, 0.2, 0.2, 0.2, 

0.2. 

 

Figure 5.6. Abundance fractions of endmember in 

PX1 to PX9 in a 3x3 pixel array is af1 to af9 (Arora 

et al. 2013) 

 

The super resolution pixel under consideration is PX5 and the scale factor is 7. Thus, the 

number of subpixels of target that get attracted towards the end member are 49x0.7=34. 

This is determined in two steps. First, the total number of subpixels in the pixel under super 

resolution at a given scale factor is determined. Next, the number of subpixels from the 

pixel under super resolution getting attracted to each of the neighbouring pixels is 

determined which is in direct proportion to the abundance fractions of the end member in 

these respective neighbourhood pixels.  

PX1/af1 PX2/af2 PX3/af3 

PX4/af4 PX5/af5 PX6/af6 

PX7/af7 PX8/af8 PX9/af9 
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 The allocation of the number of subpixels is always an integer, thus, the obtained 

values are rounded off to next higher value. The total number of subpixels of an end 

member is however maintained and the number of subpixels in excess/shortfall are adjusted 

with the pixel having the lowest value of abundance fraction. This calculation has been 

further explained in Table 5.2. 

Step 2. Modelling the Attractive Influence:  

 The number of subpixels in the super resolution pixel that experience attractive 

influence from the neighbouring pixels have been calculated in Step 1, however, the exact 

spatial locations of these subpixels is still unknown. The attraction experienced by a 

subpixel in the super resolution pixel is computed as a function of inverse Euclidean 

distance between a subpixel in the super resolution pixel and the end member center as:  

𝐴𝑖𝑗 =  
1

𝑑𝑖𝑗
                                                                             

 𝑑𝑖𝑗 =  √(𝑖 − 𝑥𝑐)2 + (𝑗 − 𝑦𝑐)2                                         

Where, i is row coordinate of end member center, and j is column coordinate of end member 

center (neighboring pixel), xc and yc are the centers of the rows and column coordinates of 

subpixels (within the super resolution pixel) and dij is the Euclidean distance. It may be 

noted that for any super resolution pixel and an end member center, the attractive influence 

experienced by the subpixels in the super resolution pixel can be determined ab initio itself 

at each of the different scale factors, these values arranged in decreasing order of 

attractiveness and saved for subsequent recall. These values are recalled during super 

resolution. The advantage of this procedure is that re-computation of attractiveness values 

is not required at run time thus reducing the time of computation.  

Step 3. Achieving super resolution:  

 In Step 1, the number of subpixels in PX5 that experiences attractive influence from 

the end member center is determined, and in Step 2, the attractive influence experienced 

(5.2) 

(5.3) 
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by subpixels in any super resolution pixel for any given clique is determined, ranked, and 

then saved. Super resolution process is now started with the first pixel (which is converted 

into subpixels according to scale factor). This pixel is called as super resolution pixel. Its 

corresponding clique is then determined and the pixel having highest abundance fraction 

of target in the neighbourhood is obtained. The pixel that has the highest value of abundance 

fraction of target is considered as end member center. Number of subpixels in any super 

resolution pixel experiencing attraction from any given end member is known from Step 1. 

The ranked attractiveness is already available from Step 2. The number of subpixels 

determined in Step 1 is therefore assigned a binary value of 1 according to descending order 

of ranking available from Step 2. Next the end member is moved to the pixel that has the 

second higher abundance fraction value for the end member and process is continued till 

all the pixels of the clique have been used. Thereafter, the super resolution pixel is moved 

to the next pixel and the next concerned clique is used to progress the super resolution. The 

process continues till all the pixels have been super resolved. 

Table 5.2. Computation of number of subpixels attracted to neighbourhood pixels 

Computation of the subpixels that are attracted to each of the neighbourhood pixel:  

 

Consider a 3x3 pixel neighbourhood extracted from an m x n 

image such that its central pixel is the pixel that is to be super 

resolved. Assuming a scale factor of 7 for super resolution, a 

7x7 subpixel grid may be obtained at this central pixel. Thus, 

49 subpixels within the central pixel should be spatially 

distributed across the pixel. So, this means a value of 0 or 1 is 

to be assigned to 49-pixel locations.  

However, the exact subpixels locations which are to be assigned these binary classes (value of 0 

or 1) are yet to be ascertained. 

The 3x3 pixel neighbourhood with 9 pixels as shown in above matrix are from PX1 to PX9.  

Let the abundance fractions of an end member in it be af1 to af9. Further, let af1 to af9 be 0.3, 

0.3, 0.3, 0.3, 0.7, 0.2, 0.2, 0.2, 0.2. 

PX1/af1 PX2/af2 PX3/af3 

PX4/af4 PX5/af5 PX6/af6 

PX7/af7 PX8/af8 PX9/af9 

Abundance fractions of end 

member in PX1 to PX9 in a 

3x3 pixel array is af1 to af9 
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The super resolution pixel under consideration is PX5. Thus, the number of subpixels of end 

member that get attracted towards neighboring pixels are 49*0.7=34.  

 

Subpixels that are attracted to each of the neighbourhood pixel is then calculated as follows,  

(a) Sum of abundance fractions for the end member in all the surrounding neighbourhood 

pixels PX1 to PX9 (except PX5) is obtained (e.g. Sum (Ta) = 

(af1+af2+af3+af4+af6+af7+af8+af9) = (0.3+0.3+0.3+0.3+0.2+0.2+0.2+0.2) = 2.0). 

(b) Total number of subpixels of end member in central pixel = Ns =49*0.7=34.3= say 34 

pixels (because only integer values have been considered). 

(c) Number of subpixels of end member in central pixel attracted towards the pixel PX1 = 

(Ns*a1)/ Ta = (34*0.3)/2.0=5.1= say 5 pixels. 

(d) The abundance fraction values for af1 to af4 is 0.3. Therefore, 5 subpixels each in the 

pixels PX1 to PX4 can be assumed to be assigned to target. 

(e) Ignore PX5 as it is under super resolution.  

(f) Number of subpixels attracted towards pixel PX6 = (Ns*af6)/ Ta = (34*0.2)/2.0=3.4= say 

3 pixels (because only integer values have been considered).  

(g) The abundance fraction values for af6 to af9 is 0.2. Thus, 3 subpixels each in pixel PX6 

to PX9 can be assumed to be assigned to target. 

 

5.4.4 Implementation  

5.4.4.1 Implementations on Synthetic Data 

 The super resolution experiments in the case of synthetic data have been 

implemented as under: 

(a) The synthetic images have been created as explained above corresponding 

to each of the scale factors. By virtue of the process of creation of these 

synthetic images, the original images before degradation are available as 

reference images. 

(b) Super resolution is carried out using Pixel Swap as well as Inverse Euclidean 

distance algorithm at scale factors of 3,5,7,9, and 11.  

(c) Comparative assessment 
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5.4.4.2 Implementations on Hyperspectral Data 

The process of super resolution in case of hyperspectral data has been implemented 

as under: 

(a) Implementation using Pixel Swap algorithm. 

(b) Implementation using Inverse Euclidean distance algorithm:  

Step 1: Compute subpixels attracted to each of the neighbourhood pixel. 

Step 2: Modelling the Attractive Influence. 

Step 3: Perform Super resolution. 

5.4.4.2 Implementations on Multi - sensor, Multi – resolution, Temporal Urban Data 

The process of super resolution in case of LANDSAT-8, SENTINEL 2B AND 

AVIRIS-NG data has been implemented as under: 

(a) Implementation of Spectral Unmixing – using Linear Mixture Model (LMM) 

using ENVI-5.2. 

(b) Obtaining Abundance fractions for both Impervious (Road and Roof) and 

Pervious Surfaces (Vegetation and Soil).  

(c) Utilizing these fractions for implementation of super resolution using Inverse 

Euclidean distance algorithm (Implementations done in MATLAB):  

Step 1: Compute subpixels attracted to each of the neighbourhood pixel. 

Step 2: Modelling the Attractive Influence. 

(d) Perform Super resolution (on a 30x30 pixel subset obtained at same Latitude 

and Longitude values in the three datasets). 

5.5 Results and Discussions 

In this chapter, a comparative assessment of random recursive and non - random 

non recursive super resolution algorithms have been declared. A set of experiments have 
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been conducted on two different sets of Synthetic and Hyperspectral data using the two 

approaches of super resolution.  

5.5.1    Super Resolution Using Synthetic Data 

 Four synthetic data have been considered, Synthetic – I (approximating shape of a 

vehicle), Synthetic – II (approximating shape of a temple), Synthetic - III ((approximating 

shape of a circle) and Synthetic – IV (approximating shape of an aircraft).  In case of 

Synthetic data, the target information at each pixel is known a priori. Therefore, the 

classification accuracy assessment has been performed using percent correct measure.  In 

addition, the CPU processing time has also been recorded for both the super resolution 

methods.  

 The classification accuracy and CPU time for Synthetic data I, II, III, and IV are 

given in Table 5.3, 5.4, 5.5 and 5.6, respectively. It can be seen from the Table 5.3, that for 

Synthetic – I data, the classification accuracy in the case of pixel swapping method across 

various scale factors is as high as 79.76% but remains constant across all the scale factors. 

Further, although the pixel swapping method takes only 2.81 seconds of CPU time to 

converge at a scale factor of 3 but thereafter the CPU time increases alarmingly to 28.78 

seconds with the increase in scale factor with no increase in classification accuracy. On the 

other hand, the classification accuracy of 83.17% obtained using the inverse Euclidean 

distance method is higher than the corresponding value for pixel swapping method at the 

same scale factor of 3. The CPU time in this case is marginally higher than that of the pixel 

swapping method. In case of inverse Euclidean distance method, the CPU time in this case 

does not increase appreciably, with the increase in scale factor. Thus, for this complex 

target, although pixel swapping algorithm attains a lower accuracy than the inverse 

Euclidean distance algorithm, the efficiency of pixel swapping algorithm is significantly 

more in comparison to that of the inverse Euclidean distance algorithm. 



161 

 

 It can be seen from the Table 5.4 that for Synthetic – II data, the classification 

accuracy in the case of pixel swapping method across various scale factors is as high as 

81.45%. Further, although the pixel swapping method takes only 2.12 seconds of CPU time 

to converge at a scale factor of 3 but thereafter the CPU time increases alarmingly to 27.82 

seconds with the increase in scale factor with no increase in classification accuracy. On the 

other hand, the classification accuracy of 86.53% obtained using the inverse Euclidean 

distance method is higher than the corresponding value for pixel swapping method at the 

same scale factor of 3. The CPU time in this case is marginally higher than that of the pixel 

swapping method. However, here also a gradual drop in the classification accuracy with 

increase in the scale factor has been observed in case of inverse Euclidean distance method. 

However, the CPU time in this case does not increase appreciably, with the increase in 

scale factor.  

 In case of synthetic data III, the values of classification accuracy and CPU time 

taken at each scale factor are shown in Table 5.5. It can be seen from the table that the 

classification accuracy in the case of pixel swapping method across various scale factors is 

as high as 83.88% but remains constant across all the scale factors. This may apparently be 

due to a fixed value of non-linear parameter a across different scale factors. Further, 

although the pixel swapping method takes only 1.92 seconds of CPU time to converge at a 

scale factor of 3 but thereafter the CPU time increases alarmingly to 30.92 seconds with 

the increase in scale factor with no increase in classification accuracy. On the other hand, 

the classification accuracy of 86.16%, obtained using the inverse Euclidean distance 

method is higher than the corresponding value for pixel swapping method at the same scale 

factor of 3. The CPU time in this case is marginally higher than that of the pixel swapping 

method. However, a gradual drop in the classification accuracy with increase in the scale 

factor has been observed in case of inverse Euclidean distance method. However, the CPU 
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time in this case does not increase appreciably, with the increase in scale factor. In fact, the 

IED method takes one tenth of the CPU time taken at a scale factor of 11 by the pixel 

swapping method. Thus, for a target with simple geometry such as a circle, although pixel 

swapping algorithm attains a higher accuracy than the inverse Euclidean distance 

algorithm, the efficiency of pixel swapping algorithm is significantly low in comparison to 

that of the inverse Euclidean distance algorithm.  

  The classification accuracy and CPU time for synthetic data IV, for both the 

methods are given in Table 5.6. It can be seen from this table that the accuracy of super 

resolved target detection using pixel swapping method is significantly lower than that 

produced from the inverse Euclidean distance method. This demonstrates the superlative 

performance of the IED algorithm for detecting subpixel targets of complex shapes such as 

an aircraft, where the pixel swapping method fails miserably. Further, the classification 

accuracy of the IED method increases with increase in the scale factor. Thus, for detecting 

shapes of complex targets, a higher scale factor may be suitable.  

  Moreover, examining the efficiency of the two algorithms in terms of CPU times, 

it can again be seen that there is a distinct difference between the performance of the two 

algorithms. The IED algorithm takes significantly lesser CPU time than the other algorithm. 

Further, the CPU time for the Euclidean distance method remains largely constant across 

all the scale factors. This demonstrates the effectiveness of the IED algorithm in creation 

of super resolution maps at any given spatial resolution. The main reason of greater 

computational efficiency in case of Euclidean distance method is the fact that the pixel 

swapping method requires a series of iterations before achieving the convergence of 

randomly allocated subpixels to a target class. In contrast Euclidean distance method does 

not involve any iteration as the attractive influence experienced by subpixels for each scale 

factor are stored ab initio itself and are simply recalled at the run time for super resolution. 
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Table 5.3: Classification accuracy for shape approximating vehicle (Synthetic-I) 

 

Scale 

Factor 
Pixel Swapping Method Inverse Euclidean Distance 

Method - > 
Classification  

Accuracy (%) 

CPU Time 

(secs) 

Classification 

Accuracy (%) 

CPU Time 

(secs) 

3 79.76 02.81 83.17 4.29 

5 79.76 03.01 85.45 4.90 

7 79.76 08.13 85.66 5.10 

9 79.76 19.20 85.66 7.50 

11 79.76 28.78 85.66 7.83 

 

Table 5.4: Classification accuracy for shape approximating temple (Synthetic-II) 

 

Scale 

Factor 
Pixel Swapping Method Inverse Euclidean Distance 

Method - > 
Classification  

Accuracy (%) 

CPU Time 

(secs) 

Classification 

Accuracy (%) 

CPU Time 

(secs) 

3 81.45 02.12 86.53 6.20 

5 81.45 05.19 87.71 6.45 

7 81.45 12.89 87.41 7.20 

9 81.45 20.50 86.58 7.38 

11 81.45 27.82 86.58 8.04 

 

Table 5.5: Classification accuracy for shape approximating circle (Synthetic-III) 

 

Scale 

Factor 
Pixel Swapping Method Inverse Euclidean Distance 

Method - > 
Classification  

Accuracy (%) 

CPU Time 

(secs) 

Classification 

Accuracy (%) 

CPU Time 

(secs) 

3 83.88 01.92 86.16 02.28 

5 83.88 07.15 77.03 02.67 

7 83.88 13.15 75.01 02.78 

9 83.88 21.00 73.67 03.10 

11 83.88 30.92 73.11 03.37 

   

Table 5.6: Classification accuracy for shape approximating aircraft (Synthetic-IV) 

Scale 

Factor 
Pixel Swapping Method Inverse Euclidean Distance 

Method - > 

Classification  

Accuracy 

(%) 

CPU Time 

(secs) 

Classification 

Accuracy (%) 

CPU Time 

(secs) 

3 38.05 01.95 75.94 09.25 

5 38.05 07.07 81.85 09.25 

7 38.05 13.00 81.65 09.28 

9 38.05 20.98 81.98 09.54 

11 38.05 30.81 82.22 09.59 
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  The Super resolved images generated from Synthetic data – I, II, III and IV are 

shown in Figure 5.7, 5.8, 5.9 and 5.10, respectively. It can be seen from the super resolved 

images for Synthetic –I that the shape of the recovered vehicle is apparently constant for 

pixel swapping method across all the scale factors whereas a continuous improvement in 

the shape of the circle by varying scale factor 3 to 7 can be seen for the Euclidean distance 

method.  For higher scale factors, the performance of the IED algorithm, however, 

deteriorates. A possible reason for this may be the use of a linear parameter for calculation. 

Scale 

factors 

Pixel Swap IED 

3x3 

  

5x5 

  

7x7 

  

9x9 

  

11x11 

  

                              (a) (b) 

Figure 5.7:  Super resolution in case of Synthetic-I data containing targets 

approximating the shape a vehicle 
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Scale 

factors 

Pixel Swap IED 

3x3 

  

5x5 

  

7x7 

  

9x9 

  

11x11 

  
                              (a) (b) 

Figure 5.8:  Super resolution in case of synthetic-II data containing targets 

approximating the shape a temple 
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Figure 5.9:  Super resolution in case of synthetic-III data containing targets 

approximating the shape a circle 

 

Scale 

factors 

Pixel Swapping Method IED 

3x3 

  

5x5 

  

7x7 

  

9x9 

  

11x11 

  



167 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: Super resolution in case of synthetic-IV data containing targets 

approximating the shape of an aircraft 

 

 The super resolution images for synthetic data II- IV, as obtained from the two 

algorithms, are shown in Figure 5.8- Figure 5.10. Focusing on shape of the target (let us 

take case of the aircraft), these figures depict almost constant performance of pixel 

swapping method across all the  scale factors thereby signifying that scale factor does not 

have any impact on refining the shape of the target in this method. In contrast, in case of 

Scale factors Pixel Swapping 

Method 

Inverse Euclidean 

Distance Method 

3x3 

  

5x5 

  

7x7 

  

9x9 

  

11x11 

  



168 

 

the IED method, the shape of the target improves marginally over all the scale factors, 

which signifies the role of scale factor in this method. Further, the CPU time remains 

constant over all the scale factors. This clearly demonstrates the effectiveness of the IED 

algorithm over the pixel swapping method.  

  It may be observed from these results that the pixel swapping method involves 

random initial allocation of subpixels and correct target class clusters are obtained through 

a series of iterations. Since these iterations may also result in translation or rotation of 

several pixels away from the target class, it also has the chances of lowering the 

classification accuracy. 

5.5.2 Super Resolution Using Hyperspectral (AVIRIS) Data  

 The earlier experiments on synthetic data highlighted the major limitations of the 

random – recursive (pixel swapping) method as, 

(i)  It required longer processing time,  

(ii) The classification accuracy did not improve beyond a certain point 

(iii) Its performance depended on selection of an appropriate value of the non-linear 

parameter for estimation of attractiveness function and could super resolve only the 

simple shapes.    

Despite these limitations, the pixel swapping method has been implemented on both the 

AVIRIS –I and AVIRIS- II datasets. The abundance fractions of each pixel in these images 

have been obtained using the unsupervised spectral unmixing method as discussed earlier. 

The results of the pixel swapping method across different scale factors are as shown in 

Figure 5.11. As is evident from the pictorial views, pixel swapping method fails completely 

for both the AVIRIS –I and AVIRIS- II data. The reason for this failure can be many. The 

main reason can be attributed to the fact that due the iterative nature of super resolution 

procedure, the method did not converge as the abundance fractions found were non-integer 
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values. Besides, it was also difficult to predict an appropriate value for the non-linear 

parameter for calculation of the attractiveness function.  

The inverse Euclidean distance method produces good results as shown in Figure 

5.12. The figure shows super resolution at all the super resolution scale factors i.e. 3, 5, 7, 

9, 11. These super resolved images can be compared with the input images. Visual 

examination of these images suggests that the performance of the super resolution is better 

at lower super resolution scale factors as compared to those at higher scale factors. The 

reason for success of this method lies in the fact that it does not involve any iterative 

convergence and is based on the stored rankings of attractiveness values of the super 

resolved subpixels. Due to non-availability of reference data, the results have not been 

evaluated quantitatively. The CPU time taken by the IED method was however found to 

increase with the increase in scale of the super resolution. On the other hand, the CPU time 

taken by the Atkinson’s Pixel swapping method was not only higher for both the data sets 

i.e. synthetic as well as AVIRIS data set, but it also failed completely for the AVIRIS data 

set. 

The IED method has also been extended to include more than one abundance 

fraction. This has been accomplished using three fractions corresponding to three end 

members including the target. Three binary images corresponding to different abundance 

fractions have been generated and then mapped together using three separate colours i.e 

Red, Green and Blue, as shown in Figure 5.12. The RGB image highlights the subpixel 

targets more accurately than shown in grey shade images. It has also been noticed that if 

the abundance fractions are selected carefully, then the RGB combination can highlight 

different parts of the target under different illumination conditions. Thus, super resolved 

binary images not only makes detection of subpixel target possible but also enhances the 

full pixel targets detected. Further it also facilitates the discrimination, classification, 
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identification, and quantification of the targets which otherwise may not be possible using 

only the spectral properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Super resolution of AVIRIS data using Atkinson’s pixel swapping 

method   
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Figure 5.12: Super resolution of AVIRIS data using inverse Euclidean distance-based 

method 
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Figure 5.13: RGB implementation of inverse Euclidean distance based super-

resolved AVIRIS data  
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5.5.3 Preliminary results on Multi-Sensor, Multi-Resolution, Temporal Urban 

dataset 

The results of implementation of non – random non – recursive algorithm (IED) on 

Multi-Sensor, Multi-Resolution, Temporal Urban dataset (LANDSAT – 8, SENTINEL – 

2B and AVIRIS – NG are shown in Figures 5.14-5.17.  

Figure 5.14 shows super resolution at different scale factors of LANDSAT -8 data. 

The left column of the figure shows the unmixed image (Impervious and Pervious) of 

UDAIPUR region. The middle column shows 30x30 zoomed pixels of the selected subset 

which has been used for super resolution. The right column shows the super resolved image 

of the Impervious surface (in black). 

Figure 5.15 shows super resolution at different scale factors of SENTINEL – 2B 

data. The left column of the figure shows the unmixed image (Impervious and Pervious) of 

UDAIPUR region. The middle column shows 30x30 zoomed pixels of the selected subset 

which has been used for super resolution. The right column shows the super resolved image 

of the Impervious surface (in black). 

Similarly, Figure 5.16 shows the results for AVIRIS – NG data. The left column of 

the figure shows the unmixed image (Impervious and Pervious) of UDAIPUR region. The 

middle column shows 30x30 zoomed pixels of the selected subset which has been used for 

super resolution. The right column shows the super resolved image of the Impervious 

surface (in black). 

Figure 5.17 shows a comparison of Super Resolution in Different Data Sets at 

different resolutions. Further, Table 5.7 gives the computation time in seconds using IED 

on Multi-sensor, Multi- resolution Temporal Urban data.  
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Figure 5.14: Super Resolution in Landsat – 8 
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Figure 5.15: Super Resolution in SENTINEL -2B 
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Figure 5.16: Super Resolution in AVIRIS – NG 
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Table 5.7: Computation time using IED on Multi-sensor, Multi- resolution 

Temporal Urban data 

                      COMPUTATION TIME (in seconds) 

CPU Time LANDSAT - 8 SENTINEL – 2B AVIRIS - NG 

Scale factor @ 3x3 5.54 3.09 4.47 

Scale factor @ 5x5 6.98 4.68 6.78 

Scale factor @ 7x7 6.06 4.46 6.98 

Scale factor @ 9x9 7.12 5.06 6.89 

Scale factor @ 11x11 9.26 7.61 12.28 

The following may be observed from the results obtained: 

In case of Sentinel data, the super resolution using IED appears to perform better in 

comparison to AVIRIS data, with clear separation of impervious and pervious surfaces and 

therefore may be considered suitable for identification and area estimation in case of urban 

land cover mapping. The algorithm also gives useful results in case of 30-meter LANDSAT 

data after super resolution. However, since the AVIRIS data is already at 8.1-meter 

resolution, the enhancement of this fine resolution data is not giving results as obtained in 

case of LANDSAT and SENTINEL.    

 But in case of AVIRIS data, it may be observed that as the scale factor increases 

from 3 to 11, the clarity about separation of impervious and pervious surfaces is more and 

therefore a higher scale factor may prove to be useful of extraction of impervious surfaces 

in case of AVIRIS data.  

 The computation time shows a marginal increase as the scale factor increases from 

3 to 11 across all the three data sets, however, the computation time is insignificant.  

 In this work, however due to lack of ground truth data, assessment of accuracy of 

super resolution could not be carried out.   

5.6  Conclusions  

Many a times, a small target occupies a few pixels fully and simultaneously 

occupies surrounding pixels only partially. Thus, the surrounding pixels present a case of 
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mixed pixel and many target detection algorithms which are capable of detecting only full 

pixels fail to recover the subpixel components. Recovery of these subpixel components 

along with full pixels, however, may significantly aid super resolution and thereby enhance 

the identification and recognition of target. Though spectral unmixing algorithms such as 

Linear Mixture Model (LMM) provide abundance fractions of end members within the 

pixel, but these do not provide their spatial distribution. Super resolution aids in optimizing 

the spatial distribution based on the available abundance fractions.  

However, most of the super resolution algorithms follow random recursive 

approaches which have severe limitations of computational complexity and convergence. 

Due to difference in the background in which a full pixel and a subpixel target may be 

embedded, the algorithms developed for detection of these targets treat the two cases 

separately. However, in practice, most of the targets occupy some pixels fully and several 

others only partially. Therefore, there is a requirement of integrating both the full pixel and 

subpixel target detection. A two-stage procedure has been discussed here. The first stage 

involves detection of full pixel targets using any of the full pixel target detection method. 

In the second stage, spectral unmixing which results in both the endmember spectra as well 

as the abundance fractions has been considered. While the endmember spectrum has 

usually been exploited for detection and classification, abundance fractions have not been 

fully exploited as the spatial distribution of the endmembers at subpixel level is not known. 

 In this work, a random – recursive (pixel swap) method has been compared with a 

non-random and non-recursive (Inverse Euclidean Distance) approach to achieve super 

resolution for target identification. The results in Synthetic and hyperspectral data have 

been compared. A major advantage of non-random non-recursive (Inverse Euclidean 

distance) method is its comparatively lower CPU time and higher accuracy. The efficiency 

of the algorithm is as high as 87.71% in the case of synthetic images across all scale factors 
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and it also aids the recognition of targets in real hyperspectral data. The performance is also 

found to be significantly better than random-recursive method for detecting targets of 

complex shapes in the synthetic dataset.  

  Further, the CPU time for super resolution using random-recursive (pixel swapping) 

method of a 30x30 pixels synthetic image at a scale factor of 11 was found to be 10 times 

higher than that for the non-random non recursive (inverse Euclidean distance) method. 

The non-random non recursive (inverse Euclidean distance) method was also found to 

perform equally well in detecting targets in hyperspectral data. In addition, the results of 

implementation of IED on Multi – sensor, Multi – resolution Temporal  

Urban datasets suggests that non-random non-recursive based super resolution mapping 

may be useful in more accurate mapping of impervious surfaces in urban datasets. Thus, it 

may be concluded that non-random non-recursive based super resolution mapping of 

subpixel targets performs better than the random recursive methods and not only aid in 

subpixel target detection but also facilitate its correct discrimination, classification, 

identification, and quantification.  
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Chapter 6 

Summary, Conclusions, Contributions and Future Work 

 6.1 General 

 The research presented in this thesis addresses the issues and problems associated 

with super resolution which in turn is expected to aid detection, identification and 

enhancement of full pixels, sub pixel and mixed pixel targets in hyperspectral data. Various 

combinations of data sets such as synthetic and real hyperspectral have been explored to 

understand problems associated with Super resolution and target detection. The study 

emphasizes subpixel target enhancement using super resolution for aiding detection of full 

pixel targets. The work has been done in line with the research gaps identified after a 

detailed literature survey in respect of super resolution technique and associated problems 

and limitations.   

6.2 Objectives and Methodology 

 Chapter 1 presents an introduction that outlines the problem of target detection, 

problems and issues associated with super resolution, research gaps and objectives. An 

insight into various issues that need to be dealt while performing target detection as well as 

its utilization in various remote sensing applications have been covered. The problem of 

mixed pixels, its impact on target detection and possibilities to address the issues using 

spectral unmixing is also addressed. 

Chapter 2 through Chapter 5 presents the work done under each of the objectives. 

All the objectives have been broken into two - three tasks based on the problems sought to 

be addressed. The problem statements, experimental datasets, methodology and step by 

step explanation of tasks, discussion of results and brief conclusions corresponding to each 

objective has been covered under respective chapter.  
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Chapter 2 presents an investigation of the various existing dimensionality reduction 

(DR) algorithms with a view to achieve maximum possible dimensionality reduction while 

ensuring minimal or no loss of the target data. Various combinations of dimensionality 

reduction algorithms (ICA, PCA and MNF) and target detection algorithms (SAM, ACE, 

MF, CEM, MTMF, NED, TCIMF, SID and OSP) have been studied step by step, with a 

view to achieve maximum possible dimensionality reduction while ensuring minimal or no 

loss of the target data. 

In Chapter 3, the efficient characterization of target and background subspaces for 

full pixel and sub pixel target detection have been carried out. The tasks presented under 

this objective include detection of low probability full pixel / subpixel targets with known 

spectral signatures, detection of mixed pixel targets using background and target subspaces, 

analysis of the impact of various combinations of background subspaces on full pixel and 

subpixel target detection and a study of the impact of illumination conditions on the 

detection of targets. To establish the role of background types and subspaces in accurate 

detection of full pixel and subpixel targets, a study of detection of full pixel and subpixel 

targets has been performed using different background subspaces, varying background 

types and varying illumination conditions etc. The target detection algorithms Matched 

Filter (MF), Orthogonal subspace projection (OSP), Adaptive coherence estimator (ACE) 

and Target constrained interference minimized filter (TCIMF) have been evaluated to 

analyze the results of detection by altering the parameters such as background types, 

subspaces and illumination conditions. 

To handle the problems of mixed pixels and extraction of end members, spectral 

unmixing techniques have been studied and implemented in Chapter 4. Also, the extraction 

of end members has been studied using another approach i.e. Spectral index. The tasks 

performed under this study include end member extraction and abundance estimation using 
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spectral unmixing, evaluating spectral indices for end member identification. In case of 

spectral unmixing for end member extraction, to estimate the total number of end members 

present in the image with a pure / unique spectrum, a few selected end member extraction 

algorithms (ICA-EEA, ATGP, N-Findr and VCA) have been evaluated and a constrained 

least squares algorithm using the recovered endmember spectra has been utilized to 

generate the abundance maps. For the identification and extraction of different types of 

surfaces present in the image using spectral indices, the spectral information for impervious 

(primarily man-made) and pervious (primarily natural) surfaces has been analyzed.  This 

study on end member extraction using spectral indices has been carried using AVIRIS-NG 

hyperspectral data to find the optimum bands for forming the band ratios and to identify 

the impervious and pervious surfaces using spectral band ratios.  

Though it has been observed that spectral unmixing, provides the abundance 

fractions of each end members within the pixels, the spatial distribution of these end 

members within the subpixels remains unknown. To overcome this limitation, a random 

recursive and non- random non-recursive approach for super resolution has been compared 

in Chapter 5. To identify the spatial distribution, super resolution has been carried out using 

two different sets of approaches, a non-random non-recursive based approach, and a 

random recursive based approach. The task here is to assess the comparative performance 

of non-random non-recursive super resolution algorithms in addressing the problem of 

allocating the subpixels of a particular class by performing a comparison with random 

recursive super resolution algorithm using both synthetic as well as real hyperspectral data. 

One random recursive (Pixel swap) super resolution method and one non-random non-

recursive (Inverse Euclidean distance) super resolution method reported in the literature 

have been considered for analysis of performance between the two types and their results 

have been discussed. 
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6.3 Conclusions 

From chapter 2, it may be concluded that in the case of full pixel targets, both 

dimensionality reduction and target detection result in the loss of target information, 

however, there is a greater loss of target information in the case when dimensionality 

reduction precedes target detection in comparison to a case where target detection is applied 

without dimensionality reduction. Also, from this chapter, it may be concluded that 

background characterization appears to aid in improvement of full pixel target detection. 

In the case of subpixel target detection, however, there appears to be loss of subpixel target 

information in the case where detection alone is performed in comparison to a case where 

dimensionality reduction precedes target detection.  

From Chapter 3, in case of detection using target and background subspaces, it may 

be concluded that for any given algorithm, if the algorithm is performing well for detection 

of target pixels, the different background subspaces appear to influence the results less. 

Yet, in some cases, a marginal improvement in true positives may be observed. Therefore, 

the target and background separation continue to be a challenge and affects the target 

detection.  Further, with MF, the number of detected target pixels are higher and constant 

for all background subspaces, with lesser number of false positives. TCIMF also shows 

better results for detection of target pixels than OSP and ACE and generates lesser false 

positives than these. OSP performs better in case of Mixed background subspace as 

compared to cases where subset of background subspaces is selected. Also, for any given 

background subspace, if the algorithm performs well, values for false positives and false 

negatives are also less. Thus, it appears that target and background subspaces aid target 

detection only marginally. But MF and TCIMF appear to aid the detection better in 

comparison to OSP and ACE. Also, based on target condition (full illumination or shade), 

it is reinforced that the targets that are placed under open sky are detected well as compared 
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to those placed under trees and their shadow. Lastly, after assessing the impact of different 

types of backgrounds, it may be concluded that when target spectra match(es) the 

background spectra, it adversely affects the detection.  

In Chapter 4, the results of endmember ectraction and abundance estimation using 

spectral unmixing indicate that  ICA-EEA and Nfindr perform best while recovering the 

image end members including the target spectra, followed by ATGP, while PPI performed 

poorly in this case . Error was found to be least in ICA-EEA and ATGP in comparison to 

NFindr and PPI. Evaluation of spectral indices based approach for end member 

identification, indicate that this approach which is essentially based upon identification of 

significant wavelengths related to a particular end member may be more suitable in 

extraction of impervious (roads and roofs) surfaces. The results indicate upto a maximum 

of 96.66% accuracy using spectral indices based approach. Further, spectral indices based 

approach appear to suggest that appropriate indices evolved using SWIR (2194 nm) and 

NIR (962 nm) may be most suitable in detection of impervious surfaces (roads and roofs). 

From Chapter 5, it may be concluded that the computation time is lesser, and 

accuracy of detection is higher with non-random non-recursive super resolution approach 

and thus may be a better approach in development of super resolution algorithms. Further, 

the CPU time for super resolution using random-recursive (pixel swapping) method of a 

30x30 pixels synthetic image at a scale factor of 11 was found to be 10 times higher than 

that for the non-random non recursive (inverse Euclidean distance) method. The non-

random non recursive (inverse Euclidean distance) method was also found to perform 

equally well in detecting targets in hyperspectral data. 

6.4 Major contributions 

The outcome of this research by way of various experiments discussed in this thesis 

lead to major research contributions which are summarised as under -  
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(a) In the case of for full pixel target detection, both DR and TD contribute to 

the loss of target information, however, there is a definite greater loss of target 

information in case DR precedes TD. This contribution is helpful in cases where it 

is already known that target pixels in an image may be rare.  

In the case of subpixel target detection however, there appears to be a greater 

loss of subpixel target information in case where TD alone is performed as 

compared to case where DR precedes TD.  

(b) The number of target pixels in any target detection task are very limited, 

Background characterization appears to significantly improve detection of targets. 

Further, the illumination, background type, the target detection algorithm, and the 

background subspace, all have an impact on both subpixel and full pixel target 

detection. It is reinforced that illumination has a favorable impact on detection of 

targets as the targets kept under open sky / sunlight are always much easier to detect. 

The study of background type indicates that the spectral contrast between 

background and the target aids target detection. It was evident that spectral contrast 

between the background subspaces and the target determines the ease in target 

detection. 

(c) Chapter 4 compares the endmember extraction algorithms chosen from 

literature. The results from algorithms that are non-parameterized and do not require 

any initialization using target spectra are seen to be performing better than 

algorithms which are parameterized and require an initialization vector and are the 

former ones are therefore recommended for the purpose of end member extraction.  

(d) Comparative assessment of non-random non-recursive super resolution 

algorithm with a random-recursive suggest that non-random non-recursive based 

super resolution performs better and has much lesser computation time.  
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6.5 Limitations 

 In Chapter 2, a study on loss of target information both in full pixel and subpixel 

targets during the DR process has been studied. To carry out this study there was a 

requirement of ground truth data with subpixel abundance fractions. This was available 

only in the SHARE 2012 data provided by RIT, USA. This data was limited in terms of 

targets available with subpixel abundance fractions (only one such data was available), 

therefore the conclusions drawn need to be supported by carrying out similar research 

experiments with more data. 

  It has been reported in literature that target detection requires both spatial and 

spectral properties of the data to be exploited and utilized. Since the retrieved spectra, in 

case of mixed pixel targets, is a combination of both the target as well as rest of the end 

members present in the pixel, it is of significance to consider the spectra of non-target end 

members as background. Also, in the case of mixed pixel targets, the interference is more 

from the non – target end members present within the pixel also known as background 

components, which may further affect accurate detection of subpixel targets. Accordingly 

target and background subspaces have been studied in Chapter 2 to enable better results of 

detection, however, the results could not substantiate any major advantage in detection 

results. This may be due to the limitations of underlying algorithms used. This needs to be 

further explored as it is logical to expect that background characterization must result in 

significant improvement in subpixel target detection. 

 In Chapter 4, end member extraction has been performed using two different 

approaches, spectral unmixing and spectral indices. Individually both the approaches and 

different techniques for implementations have been studied and experimented, however a 

comparative analysis may be further performed to analyze which approach suits better for 
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end member extraction. Also, a fusion of both approaches may be studied to further 

enhance the results of end member extraction.  

 In Chapter 5, one random recursive and one non-random non-recursive techniques 

for super resolution have been studied. From the results, IED was observed to be 

performing well in both synthetic and hyperspectral datasets. However, a few things need 

to be explored further. First at what scale factor most optimal results can be obtained 

because the algorithm is based on a linear parameter in the distance based attractive 

function and it is likely that the performance will deteriorate at certain higher scale factors. 

Further, a non-random non-recursive based super resolution mapping was also 

implemented on a Multi – sensor, Multi – resolution, Temporal Urban dataset, however, a 

detailed accuracy assessment could not be done for the want of ground truth data with 

abundance fractions. Third, IED is basically a binary classifier and although three different 

binary images have been generated and mapped using RGB in one of the experiments, 

however, the algorithm needs to be improved to handle multi class problems.    

6.6 Future Work 

 Based on the limitations discussed above, it is considered that following works be 

undertaken in future to understand the problem of target detection and enhancement.   

Lack of availability of data has been one of the major limitations of this work. It 

would be extremely useful if the non-random non recursive algorithm and random recursive 

algorithm presented in this thesis is compared using with complex land use land cover data 

of any Indian city.  

From the study of DR linked TD algorithms with a view to ensure minimal loss of 

target information, it has been observed that when DR precedes TD for detection of full 

pixel targets, there is a loss of target information in comparison to the case when TD is 
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performed without DR. From this, it may appear that DR should not performed in such 

cases, however, it is known that the huge volume of data associated with hyperspectral data 

adds to the complexity in processing of such images. Therefore, the work may be done to 

find an optimal solution to perform DR linked TD while ensuring that the target pixels are 

not lost. 

In the case of detection of subpixel targets, an approach that may aid in detection 

using target and background subspaces has been investigated. From the results it has been 

observed that the separation of target and background subspaces only aid the detection 

process marginally. A better way needs to be evolved to provide target and background 

subspace separation and may be studied in future for efficient detection of subpixel and full 

pixel targets.   

Non-random non-recursive based approaches have been studied and from the 

results it is concluded that these approaches aid the efficient detection and enhancement of 

target in hyperspectral data. New algorithms to perform super resolution mapping based on 

non-random non-recursive approach need to be investigated and implemented on 

hyperspectral data. Besides, it also needs to be investigated that at what scale factors non-

recursive approaches may fail to map inherent non-linearity present in the mixed pixels. 
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